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Abstract. This work presents a novel approach for applying compo-
sitional model checking of behavioral UML models, based on learning.
The Unified Modeling Language (UML) is a widely accepted modeling
language for embedded and safety critical systems. As such the cor-
rect behavior of systems represented as UML models is crucial. Model
checking is a successful automated verification technique for checking
whether a system satisfies a desired property. However, its applicability
is often impeded by its high time and memory requirements. A success-
ful approach to tackle this limitation is compositional model checking.
Recently, great advancements have been made in this direction via auto-
matic learning-based Assume-Guarantee reasoning.

In this work we propose a framework for automatic Assume-Guarantee
reasoning for behavioral UML systems. We apply an off-the-shelf learn-
ing algorithm for incrementally generating environment assumptions that
guarantee satisfaction of the property. A unique feature of our approach is
that the generated assumptions are UML state machines. Moreover, our
Teacher works at the UML level: all queries from the learning algorithm
are answered by generating and verifying behavioral UML systems.

1 Introduction

This work presents a novel approach for learning-based compositional model
checking of behavioral UML systems. Our work focuses on systems that rely on
UML state machines, a standard graphical language for modeling the behavior
of event-driven software components. The Unified Modeling Language (UML)
[3] is becoming the dominant modeling language for specifying and constructing
embedded and safety critical systems. As such, the correct behavior of systems
represented as UML models is crucial and model checking techniques applicable
to such models are required.

Model checking [7] is a successful automated verification technique for check-
ing whether a given system satisfies a desired property. The system is usually
described as a finite state model such as a state transition graph, where nodes
represent the current state of the system and edges represent transitions of the
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system from one state to another. The specification is usually given as a tem-
poral logic formula. The model checking algorithm traverses all of the system
behaviors (i.e., paths in the state transition graph), and either concludes that
all system behaviors are correct w.r.t. to the checked property, or provides a
counterexample that demonstrates an erroneous behavior.

Model checking is widely recognized as an important approach to increase
the reliability of hardware and software systems and is vastly used in industry.
Unfortunately, its applicability is often impeded by its high time and memory
requirements. One of the most appealing approaches to fighting these problems is
compositional model checking, where parts of the system are verified separately.
The construction of the entire system is avoided and consequently the model
checking cost is reduced. Due to dependencies among components’ behaviors, it
is usually impossible to verify one component in complete isolation from the rest
of the system. To take such dependencies into account the Assume-Guarantee
(AG) paradigm [14,17,27] suggests how to verify a component based on an
assumption on the behavior of its environment, which consists of the other sys-
tem components. The environment is then verified in order to guarantee that
the assumption is actually correct.

Learning [2] has become a major technique to construct assumptions for the
AG paradigm automatically. An automated learning-based AG framework was
first introduced in [9]. It uses iterative AG reasoning, where in each iteration an
assumption is constructed and checked for suitability, based on learning and on
model checking. Many works suggest optimizations of the basic framework and
apply it in the context of different AG rules (e.g. [4,6,11,16,24,25]).

In this paper we propose a framework for automated learning-based AG
reasoning for UML state machines. Our framework is similar to the one pre-
sented in [9], with the main difference being that our framework remains at the
state machine level. That is, the system’s components are state machines, and
the learned assumptions are state machines as well. This is in contrast to [9],
where the system’s components and the learned assumptions are all presented
as Labeled Transition Systems (LTSs), which are a form of low-level state tran-
sition graphs. To the best of our knowledge, this is the first work that applies
learning-based assume guarantee reasoning in the context of behavioral UML
systems.

A naive implementation of our framework might translate a given behavioral
UML system into LTSs and apply the algorithm from [9] on the result. However,
due to the hierarchical and orthogonal structure of state machines such transla-
tion would result in LTSs that are exponentially larger than the original UML
system. Moreover, state machines communicate via event queues. Such transla-
tion must also include the event queues, which would also increase the size of
the LTSs by an order of magnitude. We therefore choose to define a framework
for automated learning-based AG reasoning directly on the state machine level.
Another important advantage of working with state machines is that it enables
us to exploit high level information to make the learning much more efficient.
It also enables us to apply model checkers designed for behavioral UML systems
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(e.g. [1,5,8,10,15,19,20,23,29]). Such model checkers take into account the spe-
cific structure and semantics of UML, and are therefore more efficient than model
checkers designed for low-level representations (such as state transition graphs).

We use the standard AG rule below, where M1 and M2 are UML state
machines. We replace 〈A〉 with [A], to emphasize that A is a state machine
playing the role of an assumption on the environment of M1. The first premise
(Step 1) holds iff A||M1 satisfies ϕ, and the second one (Step 2) holds iff every
execution of M2 in any environment has a representative in A. Together they
guarantee that M1||M2 satisfies ϕ in any environment.

Rule AG-UML (Step 1) [A] M1 ϕ
(Step 2) true M2 [A]

true M1||M2 ϕ

We assume ϕ is a safety property, and use the learning algorithm L∗ [2,28] to
iteratively construct assumptions Ai until both premises of the rule hold for Ai,
implying M1||M2 |= ϕ, or until a real counterexample is found, demonstrating
that M1||M2 �|= ϕ.

UML state machines communicate via asynchronous events using thread-
local event queues. When a state machine receives an event, it makes a run-to-
completion (RTC) step, in which it processes the event and continues execution
until it cannot continue anymore. During its execution, the state machine may
send events to other state machines. We exploit the notion of RTC steps for
defining the alphabet Σ of the learned assumptions. We define an alphabet
over sequences of events, where a letter (i.e., a sequence of events) represents
a single RTC step of the assumption. A word w over these letters corresponds
to an execution of the assumption. It also represents the equivalence class of all
executions of the checked system, which are interleaved with w. Our alphabet is
defined based on statically analyzing the behavior of M2.

Learning words over sequences of events makes L∗ highly efficient, as it avoids
learning sequences that can never occur in M2 and therefore should not be
considered in an assumption. Moreover, our learning is executed w.r.t. equiva-
lence classes of executions. Even though our learning process is over equivalence
classes, we show that our framework is sound and complete. That is, we do
not lose information from grouping executions according to their representative
word.

The remainder of the paper is organized as follows. Some background on UML
and AG reasoning is given in Sect. 2. UML computations, executions, words
and their relations are defined in Sect. 3. In Sect. 4 we present our framework,
implementing Rule AG-UML for UML systems. We conclude in Sect. 5.

2 Preliminaries

2.1 UML Behavioral Systems

We present here a brief overview of behavioral UML systems, and in particular,
UML state machines. We refer the interested reader to the UML specification [13].
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Fig. 1. Example State Machine of Class client

Behavioral UML systems include objects (instances of classes) that process
events. Event processing is performed by state machines, which include com-
plex features such as hierarchy, concurrency and communication. UML objects
communicate by sending each other events (asynchronous messages) that are
kept in event queues (EQs). Every object is associated with a single EQ, and
several objects can be associated with the same EQ. In a multi-threaded system
there are several EQs, one for each thread. Each thread executes a loop, taking
an event from its EQ, and dispatching it to the target object, which then makes
an RTC step. Only when the target object finishes its RTC step, the thread
dispatches the next event available in its EQ. RTC steps of different threads are
interleaved.

Figure 1 describes the state machine of class client. UML state machines
include hierarchical states (states Work and Client in Fig. 1), a single initial
state in each hierarchical state (e.g., state s0 in Work), and transitions between
states. Each transition is labeled with t[g]/a, where t, g and a are trigger, guard,
and action, respectively. Each of them is independently optional. A trigger is
an event name, a guard is a Boolean expression over local and global variables,
and an action is a piece of code in the underlying language used by the model.
Actions can include statements generating event e and sending it to the relevant
EQ. We represent such statements as “GEN(e)”. An event e includes the name
of the event and the state machine to which the event is sent. The set of events
of a system includes events sent by a state machine in the system, and events
sent by the “environment” of the system (to be formally defined later).

A transition from state s is enabled if s is part of the current (possibly
hierarchical) active state, the trigger (if there is one) matches the current event
dispatched, and the guard holds (an empty guard is equivalent to true). Further,
all transitions contained in s are disabled. For example, in Fig. 1, the transition
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from Work to Cancel is enabled only if Work is active, the event dispatched is
e1, and the transitions from s0, s1, s2 and s3 are disabled. When a transition
is taken, the action labeling it is executed, and the state machine moves to
the target state. An object executes an RTC step by traversing on enabled
transitions, until it cannot continue anymore.

A state can include multiple orthogonal regions, separated by a dashed line,
which corresponds to the parallel execution of the state machines contained in
them (e.g., state Client has two orthogonal regions). When an event is dis-
patched to a state machine, and it has no enabled transitions, then the event is
discarded and the RTC step terminates immediately. Otherwise, if there exists
an enabled transition, we say that the event is consumed. In each RTC step only
the first transition may consume an event. An exception is the case of orthogonal
regions that share the same trigger. These transitions are executed simultane-
ously. Since the semantics of simultaneous execution is unclear, we assume that
the actions of transitions in orthogonal regions labeled with the same trigger do
not affect other transitions. That is, firing them in any order yields the same
effect on the system.

A computation of a system is defined as a sequence of system configurations.
A system configuration includes information about the current state of each state
machine in the system, the contents of all the EQs, and the value of all variables
in the system. The initial configuration in a computation matches the initial state
of the system, and the system moves from configuration c to configuration c′ by
executing an enabled transition or by receiving an event from the environment.
A formal definition of computations can be found in [21].

2.2 Assume Guarantee Reasoning and Compositional Verification

[9] presents a framework for automatically constructing assumption A in an iter-
ative fashion for applying the standard AG rule, where M1 and M2 are LTSs
and ϕ is a safety property. At each iteration i, an assumption Ai is constructed.
Afterwards, Step 1 (〈Ai〉M1〈ϕ〉) is applied in order to check whether M1 guar-
antees ϕ in an environment that satisfies Ai. A false result means that this
assumption is too weak, i.e., Ai does not restrict the environment enough for
ϕ to be satisfied. Thus, the assumption needs to be strengthened (which cor-
responds to removing behaviors from it) with the help of the counterexample
produced by Step 1. If Step 1 returns true then Ai is strong enough for the
property to be satisfied. To complete the proof, Step 2 (〈true〉M2〈Ai〉) must be
applied to discharge Ai on M2. If Step 2 returns true, then the compositional
rule guarantees 〈true〉M1||M2〈ϕ〉. That is, ϕ holds in M1||M2. If it returns false,
further analysis is required to identify whether M1||M2 violates ϕ or whether
Ai is stronger than necessary. Such analysis is based on the counterexample
returned by Step 2. If Ai is too strong it must be weakened (i.e., behaviors must
be added) in iteration i+1. The new assumption may be too weak, and thus the
entire process must be repeated. The framework in [9] uses a learning algorithm
for generating assumptions Ai and a model checker for verifying the two steps
in the rule.
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2.3 The L∗ Algorithm

The learning algorithm used in [9] was developed by [2], and later improved
by [28]. The algorithm, named L∗, learns an unknown regular language and
produces a minimal deterministic finite automaton (DFA) that accepts it. Let U
be an unknown regular language over some alphabet Σ. In order to learn U , L∗

needs to interact with a Minimally Adequate Teacher, called Teacher. A Teacher
must be able to correctly answer two types of questions from L∗. A membership
query, consists of a string w ∈ Σ∗. The answer is true if w ∈ U , and false
otherwise. A conjecture offers a candidate DFA C and the Teacher responds
with true if L(C) = U (where L(C) denotes the language of C) or returns a
counterexample, which is a string w s.t. w ∈ L(C) \ U or w ∈ U \ L(C).

3 Representing Executions as Words

A behavioral UML system with n state machines is denoted by Sys = M1||...||Mn.
We assume state machines communicate only through events (all variables are
local), and assume also that every RTC step is finite. These assumptions enable
us to define sequences of events representing a single RTC step, which will be the
letters of our alphabet (formally defined later). For simplicity of presentation,
we assume the following restrictions: (a) Transitions with triggers do not gen-
erate events, and each transition may generate at most one event, (b) A state
machine does not generate events to itself, (c) An event e cannot be generated
by more than one state machine, and (d) Each state machine runs in a separate
thread1.

Given a state machine M , Con(M) and Gen(M) denote the events that M
can consume and generate, respectively. An over-approximation of these sets can
be found by static analysis. The events of a system include events sent by a state
machine in the system denoted ESys, and events sent by the “environment” of
the system denoted EEnv. For a system Sys, ESys(Sys) = Gen(M1) ∪ ... ∪
Gen(Mn), and EEnv(Sys) = {Con(M1) ∪ ... ∪ Con(Mn)} \ {Gen(M1) ∪ ... ∪
Gen(Mn)}. We denote EV (Sys) = ESys(Sys) ∪ EEnv(Sys). We assume the
most general environment, that can send any environment event at any time.
Note that the environment of a system might send events that will always be
discarded by the target state machine. Since we are handling safety properties,
such behaviors do not affect the satisfaction of the property, and we can therefore
ignore them.

Recall that a computation of Sys is a series of configurations. Based on the
above assumptions on Sys, each move from configuration c to configuration c′ in
a computation is labeled by at most one of tr(e) and gen(e), where tr(e) denotes
that when moving from c to c′ event e was dispatched to the target state machine,
and gen(e) denotes that event e was either generated by a state machine in Sys
(if e ∈ ESys(Sys)) or sent by the environment of Sys (if e ∈ EEnv(Sys)). Note
that it is possible that a move is denoted with neither (labeled with ε).

1 The case where several state machines run on the same thread is simpler, however
presentation of both is cumbersome. We present only the more complex case.
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Note that events are always generated before they are dispatched. UML2
places no restrictions on the implementation of the EQs, and neither do we.
However, a specific implementation implies restrictions on the possible order of
events. For example, if the EQs are FIFOs, then if e was generated before e′ and
the target of both events is M , then e will be dispatched before e′. Given a set of
events EV , a sequence of labels over {tr(e), gen(e)|e ∈ EV } is an execution over
EV if it adheres to the above ordering requirements. A computation matches
an execution ex if ex is the sequence of non-ε labels of the computation. We
denote the set of executions of Sys by Lex(Sys). Note that every computation
matches a single execution. However, different computations may match the
same execution.

Fig. 2. Example State Machine for Class server

Example. Consider the system Sys = server||client where client and server are
presented in Figs. 1 and 2, respectively. Then gen(e1), tr(e1), gen(req1), tr(req1),
gen(grant1) ∈ Lex(Sys)2. However, gen(e1), tr(e1), gen(cancel1) �∈ Lex(Sys),
since client, when in initial state, cannot generate cancel1 after consuming e1.

From here on we do not address computations of a system, and consider only
executions. We say that “execution ex satisfies a property ϕ” iff all computations
that match ex satisfy ϕ. Let EV ′ ⊆ EV be a set of events, and ex be an execution
over EV . The projection of ex w.r.t. EV ′, denoted ex �EV ′ , is the projection of
ex on {tr(e), gen(e)|e ∈ EV ′}. The following theorem is a result of the fact that
state machines communicate only through events.

Theorem 1. Let Sys = M1||...||Mn, and let ex be an execution over EV (Sys).
Then, ex ∈ Lex(Sys) iff for every i ∈ {1, ..., n}, ex �EV (Mi)∈ Lex(Mi).

In order to later apply the L∗ algorithm for learning assumptions on state
machines, we first need to define an alphabet.

Definition 2. Let M be a state machine. σ = (t, (e1, .., en)) is in the alphabet
of M , Σ(M), if t ∈ Con(M) and there exists an RTC step of M that starts
by consuming or discarding t, and continues by generating a sequence of events
e1, ..., en.

2 In the examples throughout the paper we assume EQs are implemented as FIFOs.
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Letters in Σ(M) where n is 0 are denoted (t, ε). The idea behind our definition
is that since the state machines in our systems communicate only through events,
the alphabet maintains only the event information of the state machines. Since
every RTC is finite, then an over-approximation of Σ(M) can be found by static
analysis (by traversing the graph of M), and the over-approximation is finite.

Example. Let M = client (Fig. 1). Then Σ(M) = {(e1, (req1)), (deny1, ε),
(e1, (clr1, cancel1)), (e1, ε), (deny1, (clr1)), (grant1, ε), (ev1, (clr1)), (ev1, (cont1)),
(ev1, ε). For example, (e1, (clr1, cancel1)) ∈ Σ(M) (resulting from a possible RTC
step that starts when M is in state Req). Also (ev1, ε) ∈ Σ(M), since client can
discard ev1 (e.g., when in initial state).

For a letter σ = (t, (e1, ..., en)), trig(σ) = t and evnts(σ) = {e1, .., en}. We
extend these notations to the alphabet Σ in the obvious way. Also, EV (Σ) =
trig(Σ) ∪ evnts(Σ).

Following, we define the relation between executions and words. Intuitively,
an execution ex matches a word w if the behavior of M in ex matches w.

Definition 3. Let Sys be a system that includes state machine M , let ex =
f1, f2, .... ∈ Lex(Sys), and let w = σ1, σ2, ... ∈ Σ(M)∗. Let ξ1 = f ′

1, f
′
2, ... be the

projection of ex on {tr(e)|e ∈ Con(M))} ∪ {gen(e)|e ∈ Gen(M))}. Assume also
ξ2 = f ′′

1 , f ′′
2 , ... is the sequence created from w by replacing σ = (t, (e1, ..., en))

with tr(t), gen(e1), ..., gen(en). Then ex matches w, denoted ex � w, iff ξ1 = ξ2.

Note that an immediate result of the above definition is that if ex � w where
w ∈ Σ∗, then adding or removing from ex occurrences of events not in EV (Σ)
results in a sequence ex′ s.t. ex′ �w still holds. Another important thing to note
is that different executions can match the same word w. Thus w represents all
the different executions under which the behavior of M matches w.

Example. Consider execution ex = gen(e1), tr( e1), gen( req1) tr(req1),
gen(grant1), gen(ev1), tr( ev1) ∈ Lex(server||client). We denote with bold
the parts of the execution that represent behavior of client. For the word w =
(e1, req1), (ev1, ε) ∈ Σ(client)∗, ex � w. It also holds that for the execution ex′ =
gen(e1), gen(ev1), tr( e1), gen( req1), tr(req1), tr( ev1), gen(grant1), ex′ � w.

We consider safety properties over events, based on predicates such as
InQ(e), denoting that e is in the EQ, BeforeQ(e, e′) indicating that e is before
e′ in the EQ, and gen(e) (or tr(e)), indicating that e is generated (or dispatched).
We handle safety properties over LTLx, which is the Linear-time Temporal Logic
(LTL) [26] without the next-time operator. Model checking safety properties can
be reduced to handling properties of the form ∀Gp for a state formula p3 [18],
which means that along every execution path, p globally holds (every execution
path satisfies Gp). That is, every reachable configuration satisfies p. We therefore
assume ϕ = ∀Gp. The following theorem states that if an execution ex satisfies
Gp, then adding or removing occurrences that do not influence p, results in an
execution that satisfies Gp.
3 In LTL, the syntax of this property is AGp. We choose to denote it by ∀Gp in order

to differentiate the property from AG (which stands for Assume-Guarantee).
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Theorem 4. Let ex be an execution over EV and let p be a property over events
EV ′ ⊆ EV . Then ex |= Gp iff ex �EV ′ |= Gp.

4 AG for State Machines

Our goal is to efficiently adapt the AG framework for UML state machines. Fol-
lowing, we first show that Rule AG-UML (presented in Sect. 1) holds for UML
state machines, and present a framework for applying Rule AG-UML for UML
state machines (Sect. 4.1). We give a detailed description of the framework in
Sects. 4.2 and 4.3, discuss its correctness in Sect. 4.4, and present a performance
analysis in Section 4.5.

4.1 A Framework for Employing Rule AG-UML and Its Correctness

First, we formally define the meaning of the two premises in Rule AG-UML:
[A]M〈∀Gp〉 holds iff for every ex ∈ Lex(A||M), ex |= Gp. 〈true〉M [A] holds iff
EV (A) ⊆ EV (M) and for every ex ∈ Lex(M), ex �EV (A)∈ Lex(A).

Theorem 5. Let M1, M2 and A be state machines s.t. EV (A) ⊆ EV (M2), let
p be a property over events EV ′ ⊆ (EV (A) ∪ EV (M1)), and let ϕ = ∀Gp. Then
Rule AG-UML is sound.

We use L∗ to iteratively construct assumptions A, until either both premises
of Rule AG-UML hold, or until a real counterexample is found. L∗ learns
a language over words, where each word represents an equivalence class of
executions.

In order to apply the L∗ algorithm we define Σ, the alphabet of the language
learned by L∗. Intuitively, Σ includes details of M2 that are relevant for proving
ϕ with M1. The alphabet Σ(M2) (Definition 2) may include events of M2 which
are irrelevant. We therefore restrict Σ(M2) to Σ by keeping only elements of
EV (M2) that are relevant for the interaction with M1 and for ϕ.

Definition 6. Let M1||M2 be a system and ϕ be a safety property. Σ, the
assumption alphabet of M2 w.r.t. M1 and ϕ, is the maximal set, s.t. for every
σ = (t, (ei1 , ..., ein)) ∈ Σ there exists σ′ = (t, (e1, ..., em)) ∈ Σ(M2) s.t. both
requirements hold:

1. (ei1 , ..., ein) is the maximal sub-vector of (e1, ..., em) (i.e., 1 ≤ i1 < i2 < ... <
in ≤ m) where each eij is consumed by M1 or part of the property ϕ.

2. If t ∈ EEnv(M1||M2) and n = 0: add (t, ε) to Σ only if either t is part of ϕ
or there exists σ1 = (t, (e′

1, ..., e
′
k)) ∈ Σ s.t. k > 0.

Example. Let Sys = server||client where server is M1 and client is
M2, and let ϕ = ∀G(¬(InQ(grant1) ∧ InQ(deny1)). The events of ϕ are
grant1 and deny1. Σ, the assumption alphabet of M2 w.r.t. M1 and ϕ, is
{(e1, (req1)), (e1, ε), (grant1, ε), (deny1, ε), (e1, (cancel1))}. Note that although
(deny1, (clr1)) ∈ Σ(client), since clr1 is not consumed by the server and is not
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part of ϕ, then it is not included in Σ. Similarly, (e1, (clr1, cancel1)) ∈ Σ(client),
but only (e1, (cancel1)) ∈ Σ. Note also that Σ includes all the interface informa-
tion between client and server. Thus, (e1, (req1)) ∈ Σ, although neither e1 nor
req1 are part of ϕ.

We define the notion of weakest assumption in the context of state machines.

Definition 7. A language Aw ⊆ Σ∗ is the weakest assumption w.r.t. M1 and ϕ
if the following holds: w ∈ Aw iff for every execution ex over EV (Σ)∪EV (M1),
if ex � w and ex �EV (M1)∈ Lex(M1), then ex |= Gp.

Assume we could construct a state machine MAw
that represents Aw. That is,

for every execution ex over EV (Σ), ex ∈ Lex(MAw
) iff there exists w ∈ Aw s.t.

ex�w. Then, MAw
describes exactly those executions over Σ that when executed

with M1 do not violate Gp. The following theorem states that 〈true〉M1||M2〈ϕ〉
holds iff every execution of M2 matches a word in Aw.

Theorem 8. 〈true〉M1||M2〈ϕ〉 holds iff for every execution ex ∈ Lex(M2), there
exists w ∈ Aw s.t. ex � w, where Aw is the weakest assumption w.r.t. M1 and ϕ.

Proof Sketch. The proof of direction ⇐ is based on the definitions of execu-
tions (full proof available in [22]). For the proof of direction ⇒, assume there
exists an execution ex1 ∈ Lex(M2) and no word w ∈ Aw s.t. ex1 �w. Thus, there
exists a word w ∈ Σ∗ \ Aw s.t. ex1 � w. We show that 〈true〉M1||M2〈ϕ〉 does not
hold. If w �∈ Aw, then there exists an execution ex2 over EV (Σ) ∪ EV (M1) s.t.
ex2 �EV (M1)∈ Lex(M1), ex2 � w, and ex2 �|= Gp. We then construct an execu-
tion ex by combining ex1 and ex2. Our construction ensures that ex �EV (Mi)∈
Lex(Mi) for i ∈ {1, 2}. We conclude that ex ∈ Lex(M1||M2), and show that
ex �|= Gp as well. Note that the construction of ex is not straightforward; ex1

and ex2 both match w, however the other parts of the executions might not match,
i.e., the interleaving of M2 and the environment in ex2 may be different from
the interleaving of M1 and Σ in ex1. Our construction of ex actually shows that
there exists an interleaving that is possible by both M1 and M2, and that still
violates Gp. �

From the definition of Aw and from the above theorem we conclude the
following corollary, which states that Rule AG-UML holds if we replace A
with MAw

.

Corollary 9. Let Aw be the weakest assumption w.r.t. M1 and ϕ. Assume there
exists a state machine MAw

that represents Aw. Then Rule AG-UML holds
when replacing A with MAw

.

The goal of L∗ is therefore to learn Aw. To automate L∗ in our setting we
now show how to construct a Teacher that answers membership and conjec-
ture queries. The Teacher answers queries by “translating” the queries into state
machines, and verifying properties on state machines via a model checker for
behavioral UML systems. The model checker must be able to always return a
definite answer (true or false) for properties of type ∀Gp. Also, when answering
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false it should give a counterexample. Model checkers for behavioral UML sys-
tems verify the behavior w.r.t. system configurations. Thus, a counterexample is
a computation of the system. It is straightforward to translate the counterexam-
ple into a counterexample execution or word. Although our goal is to learn Aw,
our automatic framework may stop with a definite true or false answer before
Aw is constructed.

For a membership query on w, the Teacher constructs a state machine for w,
and checks if, when executed with M1, ϕ is violated. For conjecture queries, the
Teacher constructs a state machine A(C) from conjecture C, and verifies Step 1
and Step 2 of Rule AG-UML w.r.t. A(C).

From now on, in our following constructions, we sometimes include an err
state in state machines. For simplicity of presentation, for a given system Sys
where some of its state machines include err state, Lex(Sys) represents only the
executions that do not reach err state on any of its state machines.

4.2 Membership Queries

To answer a membership query for w ∈ Σ∗, the Teacher must return true iff
w ∈ Aw. The Teacher creates a state machine M(w) s.t. Σ(M(w)) ⊆ Σ. M(w)
is constructed s.t. for every ex over EV (Σ) ∪ EV (M1): ex ∈ Lex(M(w)||M1) iff
ex �EV (M1)∈ Lex(M1) and ex � w. If this holds, then (by the definition of Aw in
Definition 7) w ∈ Aw iff for every execution ex ∈ Lex(M(w)||M1), ex |= Gp.

Let w = σ1, σ2, ..., σm and let σi = (ti, (ei1, e
i
2, ..., e

i
ki

)), for i ∈ {1, ...,m}. The
state machine M(w) is presented in Fig. 3. A transition labeled with a set of trig-
gers T (e.g., the transition from s1 to err) is a shorthand for a set of transitions,
each labeled with a single trigger t ∈ T . For σ = (t, (e1, ..., ek)), a compound
transition, denoted as a double arrow ⇒, labeled with trig[grd]/GEN(σ) is a
shorthand for a sequence of states and transitions, where the first transition is
labeled with trig[grd], the second is labeled with action GEN(e1), the third
with action GEN(e2), etc. The idea behind splitting the compound transition
into intermediate states is to enable all possible interleaving between M(w) and
M1, thus ensuring that every execution over EV (Σ) ∪ EV (M1) that represents
an execution of M1 and matches w is indeed a possible execution of M(w)||M1.

We explicitly define at each state si the behavior of M(w) in response to
any possible event t ∈ trig(Σ). Not specifying such a behavior implies that if
t is dispatched to M(w) then M(w) discards t and remains in the same state.

Fig. 3. M(w) constructed for w
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This is an undesired behavior of M(w), which is supposed to execute w with no
additional intermediate letters. Thus, transitions that do not match w are sent
to state err. The following theorem describes the executions of M(w).

Theorem 10. Let M(w) be the state machine constructed for word w ∈ Σ∗.
For every execution ex over EV (Σ): ex ∈ Lex(M(w)) iff there exists a prefix w′

of w s.t. ex � w′.

Once M(w) is constructed, the Teacher model checks M(w)||M1 |= ∀G(p ∨
IsIn(err)), where IsIn(s) denotes that s is part of the current state of the sys-
tem. The model checker returns true iff for every execution one of the following
holds: (1) the execution does not reach state err, i.e. the execution matches a
prefix of w, and p is satisfied along the entire execution, or (2) the execution
reaches state err, meaning that the execution does not match w and therefore
we do not need to require p4. The Teacher returns true, indicating w ∈ Aw iff
the model checker returns true. The following theorem defines the correctness
of the Teacher.

Theorem 11. M(w)||M1 |= ∀G(p ∨ IsIn(err)) iff w ∈ Aw.

4.3 Conjecture Queries

A conjecture of the L∗ algorithm is a DFA over Σ. Our framework first trans-
forms this DFA, C, into a state machine A(C). Then, Step 1 and Step 2 are
applied in order to verify the correctness of A(C).

Constructing a State Machine from a DFA: A DFA is a five tuple C =
(Q,α, δ, q0, F ), where Q is a finite non-empty set of states, α is the alphabet,
δ ⊆ Q×α×Q is a deterministic transition relation, q0 ∈ Q is the initial state, and
F ⊆ Q is a set of accepting states. For a string w, δ(q, w) denotes the state that
C arrives at after reading w, starting from state q. A string w is accepted by C iff
δ(q0, w) ∈ F . The language of C, denoted L(C), is the set {w|δ(q0, w) ∈ F}. The
DFAs returned by the L∗ algorithm are complete, minimal, and prefix-closed.
Thus they contain a single non-accepting state, qerr, and for every σ ∈ α and
q ∈ Q, δ(q, σ) is defined.

The alphabet α of the DFA in our framework is exactly Σ. Given a DFA C =
(Q,Σ, δ, q0, Q \ {qerr}), we construct a state machine A(C) where EV (A(C)) =
EV (Σ). We then show that A(C) represents L(C), i.e., for every execution ex
over EV (Σ), ex ∈ Lex(A(C)) iff there exists w ∈ L(C) s.t. ex � w.

Definition 12 (A(C) Construction). Let C = (Q,Σ, δ, q0, Q \ {qerr}). A(C)
includes 3 states: init, end and err, where init is the initial state. A(C) includes
a single variable qs whose domain is Q, initialized to q0. A(C) has the following
transitions:
4 It is ok to require p on a prefix leading to state err, since Aw is prefix closed for

safety properties.
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(1) For every q ∈ Q and σ = (t, (e1, .., en)) ∈ Σ where δ(q, σ) = q′ add a
compound transition labeled with t[qs = q]/qs := q′;GEN(σ) from init to
end (if q′ �= qerr) or to err (if q′ = qerr).

(2) Add a transition with no trigger, guard or action from end to init.

Example. For Sys = server||client and ϕ = ∀G(¬(InQ(grant1)∧InQ(deny1)),
the conjecture DFA C returned from the L∗ algorithm, and state machine A(C)
representing L(C), are presented in Fig. 4.

Fig. 4. The conjecture DFA C (left) and the state machine A(C) (right)

The construction ensures that for every t ∈ trig(Σ) and for every q ∈ Q
there exists a transition with trigger t and guard qs = q. That is, as long as
A(C) is at state init in the beginning of an RTC step, it does not discard events.
Also, according to the semantics of state machines, every RTC step that starts
at state init, either moves to state err, which is a sink state, or moves to state
end and returns to state init. The following theorem states that A(C) is indeed
a state machine representing L(C).

Theorem 13. Let A(C) be the state machine constructed for DFA C. For every
execution ex over EV (Σ): ex ∈ Lex(A(C)) iff there exists w ∈ L(C) s.t. ex � w.

After creating A(C), the Teacher uses two oracles and a counterexample
analysis to answer conjecture queries.

Check [A(C )]M 1〈ϕ〉: Oracle 1 performs Step 1 in the compositional rule by
model checking A(C)||M1 |= ∀G(p ∨ IsIn(err)). If the model checker returns
false with a counterexample execution cex, the Teacher informs L∗ that the
conjecture is incorrect, and gives it the word w ∈ Σ∗ s.t. cex � w to witness this
fact (w ∈ L(C) and w �∈ Aw). If the model checker returns true, indicating that
[A(C)]M1〈ϕ〉 holds, then the Teacher forwards A(C) to Oracle 2.

Check 〈true〉M 2[A(C )]: Oracle 2 preforms Step 2 in the compositional rule.
That is, check that for every execution ex ∈ Lex(M2), ex �EV (A(C))∈ Lex(A(C)).
Note that this is a language containment check. In state machines there is no
known algorithm for checking language containment. We present here a method
for this check in the special case where the abstract state machine is the state
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machine A(C) previously defined. Step 2 is done by constructing a single state
machine, and applying model checking on the resulting state machine.

Given the state machines M2 and A(C), Oracle 2 constructs a new state
machine, M, that is composed from modifications of M2 and A(C) as two orthog-
onal regions. M is constructed so that the behavior of M2 is monitored by A(C)
after every RTC step. M includes a synchronization mechanism, so that when
an event is dispatched, first the region that includes M2 executes the RTC step.
When it finishes, the region that includes A(C) executes its step only if A(C)
has a behavior that matches M2. If A(C) does not have a matching behavior,
then M moves to an error state, indicating that 〈true〉M2[A(C)] does not hold.
The general structure of M is presented in Fig. 5.

From here on, we denote M2 and A(C) that are regions in M as M̂2 and
Â(C), respectively. We add a local queue, IQ, and two local variables, rtc and
tr, to M. tr “records” the event e dispatched to M, if e ∈ trig(Σ). IQ “records”
events generated by M̂2 which are from evnts(Σ). Whenever M̂2 generates an
event from evnts(Σ), it also pushes the event to IQ. Â(C) will, in turn, check
if it has a matching behavior by observing IQ. rtc is used for fixing the order
of execution along an RTC step of M. It is initialized to 0, and as long as the
monitoring is successful, the value of rtc at the end of the RTC step of M is 0.
rtc = 3 indicates that M̂2 is executing an RTC step that should be monitored.
rtc = 2 indicates that M̂2 finished its execution, and Â(C) can monitor the
behavior. rtc = 1 indicates that the monitoring step of Â(C) was successful, i.e.,
Â(C) has a behavior that matches M̂2. If the monitoring of Â(C) failed, then
rtc at the end of the RTC step is 2, indicating an error.

Fig. 5. General scheme for M created from A(C) and M2

The following modifications are applied to M2 for constructing M̂2: Set rtc
to 3 on transitions that consume event e ∈ trig(Σ), and add IQ.push(e′) on
transitions that generate event e′ ∈ gen(Σ).
The following modifications are applied to A(C) (Definition 12) for constructing
Â(C):

1. Add a new state called step to A(C), and for every t ∈ trig(Σ), add a
transition from init to step labeled t/tr := t.

2. Every compound transition from init to end labeled with:
t[qs = q]/qs := q′;GEN(e1); ...;GEN(en) s.t. n > 0
is replaced with a transition from step to end labeled with:
[tr = t ∧ qs = q ∧ rtc = 2 ∧ IQ = (e1, ..., en)]/qs := q′; rtc := 1
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3. Every compound transition from init to end labeled with: t[qs = q]/qs := q′

(no event generation), is replaced with a transition from step to end labeled
with: [tr = t ∧ qs = q ∧ ((rtc = 2 ∧ IQ = ()) ∨ rtc = 0)]/ qs := q′; rtc := 1

4. Every compound transition from init to err labeled with:
t[qs = q]/qs := q′;GEN(e1); ...;GEN(en) s.t. n > 0
is replaced with a transition from step to err labeled with:
[tr = t ∧ qs = q ∧ rtc = 2 ∧ IQ = (e1, ..., en)]/qs := q′; rtc := 2

5. Every compound transition from init to err labeled with: t[qs = q]/qs := q′

(no event generation), is replaced with a transition from step to err labeled
with: [tr = t ∧ qs = q ∧ ((rtc = 2 ∧ IQ = ()) ∨ rtc = 0)]/ qs := q′; rtc := 2

If Â(C) is at state step and rtc = 0 holds, then M̂2 discarded the event in
the current RTC step. Â(C) has a matching behavior if it has a behavior that
consumes an event and does not generate events. The transitions described in
(3) and (5) monitor RTC steps of M̂2 that consume event t and do not generate
any events, and also RTC steps that discard t. Note that items (2) and (4)
(respectively, (3) and (5)) are distinct in the target state (end or err) and in
the assignment to rtc on the action. The transitions in (2) and (3) monitor RTC
steps that are legal in Â(C), and transitions in (4) and (5) monitor RTC steps
that are not legal in Â(C).
The correctness of our construction is captured in the following theorem.

Theorem 14. For every ex ∈ Lex(M): ex reaches state RTCErr iff
ex �EV (M2)∈ Lex(M2) and ex �EV (A(C)) �∈ Lex(A(C)).

After constructing M, Oracle 2 model checks M |= ∀G(¬IsIn (RTCErr)).
If the model checker returns true, then the Teacher returns true and our frame-
work terminates the verification, because according to Rule AG-UML, ϕ has
been proved on M1||M2. Otherwise, if the model checker returns false with a
counterexample execution cex, then cex is analyzed as follows.

Counterexample Analysis: Note that only M̂2 generates events. Thus, by
projecting the execution cex on {tr(e)|e ∈ trig(Σ)} ∪ {gen(e)|e ∈ evnts(Σ)} we
can obtain w ∈ Σ∗ s.t. cex�w. The Teacher executes a membership query on w,
for checking whether w is in Aw (as presented in Sect. 4.2). If the membership
query succeeds (i.e., w ∈ Aw), the Teacher informs L∗ that the conjecture is
incorrect, and gives it w to witness this fact (since w ∈ Aw but w �∈ L(C)). If the
membership query fails then the Teacher concludes that 〈true〉M1||M2〈ϕ〉 does
not hold, since cex �EV (M2)∈ Lex(M2), cex �EV (M2)�w and w �∈ Aw (Theorem 8).
The Teacher then returns false.

Example. Consider the system server||client and the assumption A(C) (Fig. 4).
When checking 〈true〉client[A(C)], the model checker may return a counterex-
ample cex, represented by the word w = (e1, (req1)), (e1, (cancel1)), (e1, (req1))
(cex � w). cex �EV (M2)∈ Lex(client), cex �EV (M2) � w and w �∈ L(C).

During counterexample analysis, the Teacher performs a membership query
on w. This check fails, since there exists an execution of M(w)||server that vio-
lates the property ∀G(¬(InQ(grant1) ∧ InQ(deny1))). Note that the property is
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violated even though server receives the event cancel1 before it receives the sec-
ond req1. However, there exists a behavior of the environment of M(w)||server
that causes violation of the property: if server receives event req2 after cancel1,
then when it receives the second req1 it will send deny1. Note that since every
state machine runs on a different thread, it is possible that the event grant1,
previously sent to client, was not yet dispatched. Thus, when deny1 is added to
the EQ of client, the property is violated. Since the membership query fails, we
conclude that server||client �|= ϕ.

4.4 Correctness

We first argue correctness of our approach, and then the fact that it terminates.

Theorem 15. Given state machines M1 and M2, and a property ∀Gp, our
framework returns true if M1||M2 |= ∀Gp and false otherwise.

Termination: Assuming the number of configurations of M1||M2 is finite, the
weakest assumption w.r.t. M1 and ϕ, Aw, is a regular language. To prove this, we
construct an accepting automaton for Aw similarly to the construction in [12].
Since Aw is a regular language, then by correctness of the L∗ algorithm, we are
guaranteed that if it keeps receiving counterexamples, it will eventually produce
Aw. The Teacher will then apply Step 2, which will return, based on Theorem 8,
either true or a counterexample.

4.5 Performance Analysis

Our framework for automated learning-based AG reasoning is applied directly
at the state machine level. That is, the system’s components and the learned
assumptions are state machines. However, the learning is done by applying an off-
the-shelf L∗ algorithm, whose conjectures are DFAs and its membership queries
are words. Thus we need to translate DFAs and words into state machines. On
the other hand we never need to translate from state machines back to low level
representation (such as LTSs or DFAs). It is important to emphasize that, as
shown above, the translation from DFAs and words to UML state machines is
simple and straightforward, since the state machines created do not include com-
plex features (such as hierarchy or orthogonality). On the other hand, a trans-
lation from UML state machines to LTSs may result in an exponential blowup,
since the hierarchy and orthogonal structure should be flattened. Moreover, the
event queues need to be represented explicitly, causing another blowup. Note
that applying such a translation to LTSs does not influence the number of the
membership or conjecture queries, as the learned assumption remains the same.
However, it complicates the model checking used to answer these queries, since
the system is much larger.

Our framework learns assumptions over an alphabet consisting of sequences
of events representing RTC steps of M2. We refer to this alphabet as RTC
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alphabet. Note that it is also possible to apply the framework (with minor mod-
ifications) over an alphabet consisting of single event occurrences (called event
alphabet) rather then over the RTC alphabet, while still keeping the learning
at the UML level. However, learning over the RTC alphabet is often better, as
discussed below.

The complexity of the L∗ algorithm can be represented by the number
of membership and conjecture queries it needs in order to learn an unknown
language U . As shown in [9,28], the number of membership queries of L∗ is
O(n2 · k + n · log(m)) and the number of conjecture queries is at most n − 1,
where n represents the number of states in the learned DFA, k is the size of
the alphabet, and m is the size of the longest counterexample returned by the
Teacher. This results from the characteristics of L∗, which learns the minimal
automaton for U , and from the fact that each conjecture is smaller than the
next one.

In theory, the size of the RTC alphabet might be much larger than the size
of the event alphabet. This happens when every possible sequence of events is a
possible RTC step of M2. However, in practice typical state machines exhibit only
a much smaller number of different RTC steps. Moreover, the number of states
in the DFA QRTC learned over the RTC alphabet may be much smaller than
the number of states in the DFA Qevnt over the event alphabet. This is because
a single transition in QRTC might be replaced by a sequence of transitions in
Qevnt, one for each of the events in the RTC.

The above observations are demonstrated in the following example.

Example. We re-visit the example presented throughout Sect. 4. ϕ =
∀G(¬(InQ(grant1) ∧ InQ(deny1))), and Sys = server||client where server is
M1, client is M2. The final DFA learned when using event sequences is presented
in Fig. 4(a). The total number of membership queries is O(32 · 5 + 3 · log2) and
there are 2 conjecture queries.

If we apply learning over single event occurrence, then there are O(42·5+4·log3)
membership queries and 3 conjecture queries, since the resulting DFA has 4 states
and the alphabet is {tr(e1), tr(grant1), tr(deny1), gen(req1), gen(cancel1)}.

5 Conclusion

We presented a framework for applying learning-based compositional verification
of behavioral UML systems. Note that our framework is completely automatic;
we use an off-the-shelf L∗ algorithm. However, our Teacher works at the UML
level. In particular, the assumptions generated throughout the learning process
are state machines. From the regular automaton learned by the L∗ algorithm, we
construct a state machine which is a conjecture on M2. Also, the Teacher answers
membership and conjecture queries by “translating” them to model checking
queries on state machines. Our framework is presented for Sys = M1||M2 where
both M1 and M2 are state machines. However, M1 and M2 can both be systems
that include several state machines, as long as the state machines of M2 run on
a single thread. If M2 includes multiple state machines M2

1 ||...||M2
k that run on
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a single thread, then we can construct a single state machine ˜M2 where each M2
i

is an orthogonal region in ˜M2. The executions of ˜M2 are equivalent to those of
M2. We can then apply our framework on M1||˜M2.

In the future we plan to investigate other assume-guarantee rules in the con-
text of behavioral UML system. For example, we would like to define a frame-
work for checking [A1]M [A2]. Such a framework will enable us to apply recursive
invocation of the AG rule, where M2 includes several state machines.
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