Formal Methods:
Model Checking and Other Applications

Orna Grumberg
Technion, Israel

Marktoberdorf 2017
Lecture 1
Outline

• Model checking of finite-state systems

• Assisting in program development
 – Program repair
 – Program differencing
Why (formal) verification?

- safety-critical applications: Bugs are unacceptable!
 - Air-traffic controllers
 - Medical equipment
 - Cars

- Bugs found in later stages of design are expensive

- Hardware and software systems grow in size and complexity: Subtle errors are hard to find by testing

- Pressure to reduce time-to-market
 Automated tools for formal verification are needed
Formal Verification

Given
- a model of a (hardware or software) system and
- a formal specification

does the system model satisfy the specification?

Not decidable!

To enable automation, we restrict the problem to a decidable one:
- Finite-state reactive systems
- Propositional temporal logics
Finite state systems -
examples

• Hardware designs
• Controllers (elevator, traffic-light)
• Communication protocols (when ignoring the message content)
• High level (abstracted) description of non finite state systems
Properties in propositional temporal logic - examples

- mutual exclusion:
 \[\text{always} \quad \neg (cs_1 \land cs_2) \]

- non starvation:
 \[\text{always} \ (\text{request} \Rightarrow \text{eventually granted}) \]

- communication protocols:
 \[(\neg \text{get-message}) \text{ until send-message} \]
Model Checking [CE81, QS82]

An efficient procedure that receives:

- A finite-state model describing a system
- A temporal logic formula describing a property

It returns

yes, if the system has the property
no + Counterexample, otherwise
Model of a system
Kripke structure / transition system

Labeled by atomic propositions AP
(critical section, variable value...)

Reactive Systems
Temporal Logics

• Temporal Logics
 – Express properties of event orderings in time

• Linear Time
 - Every moment has a unique successor
 - Infinite sequences (words)
 - Linear Time Temporal Logic (LTL)

• Branching Time
 - Every moment has several successors
 - Infinite tree
 - Computation Tree Logic (CTL)
Propositional temporal logic

\(\text{AP} \) - a set of atomic propositions

Temporal operators:

- \(Gp \)
- \(Fp \)
- \(Xp \)
- \(pUq \)

Path quantifiers:

- \(A \) for all path
- \(E \) there exists a path
CTL formulas: Example

- **mutual exclusion:** $AG \neg(cs_1 \land cs_2)$
- $EF(\text{request} \land AG \neg\text{grant})$
- “sanity” check: $EF\text{request}$
Model checking AGp on M

- Iteratively compute the sets S_j of states reachable from an initial state in j steps

- At each iteration check whether S_j contains a state satisfying $\neg p$
 - If so, declare a failure

- Terminate when all states were found
 $$S_k \subseteq \bigcup_{i=0}^{k-1} S_i$$
 - A fixpoint has been reached
Mutual Exclusion Example

- Two processes with a joint Boolean signal `sem`
- Each process P_i has a variable v_i describing its state:
 - $v_i = N$ Non critical
 - $v_i = T$ Trying
 - $v_i = C$ Critical
Mutual Exclusion Example

- Each process runs the following program:

 \[P_i :: \text{while (true)} \{
 \begin{align*}
 &\text{if (v_i == N) v_i = T;} \\
 &\text{else if (v_i == T && sem) \{ v_i = C; sem = 0; } \\
 &\text{else if (v_i == C) \{ v_i = N; sem = 1; } \\
 &\}
 \}
 \]

- The full program is: \(P_1 || P_2 \)
- Initial state: \((v_1=N, v_2=N, \text{sem})\)
- The execution is interleaving
Mutual Exclusion Example

\[
\begin{align*}
\text{Mutual Exclusion Example} & \quad v_1=N, v_2=N, \text{sem} \\
v_1=T, v_2=N, \text{sem} & \quad v_1=N, v_2=T, \text{sem} \\
v_1=C, v_2=N, \neg\text{sem} & \quad v_1=N, v_2=C, \neg\text{sem} \\
v_1=C, v_2=T, \neg\text{sem} & \quad v_1=T, v_2=C, \neg\text{sem} \\
v_1=T, v_2=T, \text{sem} & \\
\end{align*}
\]
We define atomic propositions: \(\text{AP} = \{C_1, C_2, T_1, T_2\} \)

- A state is marked with \(T_i \) if \(v_i = T \)
- A state is marked with \(C_i \) if \(v_i = C \)
• Property 1: $A\Gamma_{\downarrow}(C_1 \land C_2)$
Property 1: $AG_{\pi}(C_1 \land C_2)$
• Property 1: $AG^\bot (C_1 \land C_2)$
Property 1: $\text{AG}_\mathcal{S}(C_1 \land C_2)$

S_2
• Property 1: $AG_\updownarrow(C_1 \wedge C_2)$

S_3
• M ⊨ AG \rightarrow (C_1 \land C_2) \checkmark

S_4 \subseteq S_0 \cup S_1 \cup S_2 \cup S_3
• Property 2: $AG^{-1}(T_1 \land T_2)$
• Property 2: $AG^{-1}(T_1 \wedge T_2)$
• Property 2: $AG^{-1}(T_1 \land T_2)$
- $\mathcal{M} \not\models AG \rightarrow (T_1 \land T_2)$
- A violating state has been found
• $M \not\models AG \rightarrow (T_1 \land T_2)$

Model checker returns a counterexample
Forward Reachability Analysis

- terminates when
 - either a bad state satisfying $\neg p$ is found
 - or a fixpoint is reached: $S_j \subseteq \bigcup_{i=0}^{j-1} S_i$
Main limitation

The state explosion problem:

Space and time requirements grow with the size of the model
SAT-based model checking:
A solution for the state explosion problem

Main idea

• Translate the model and the specification to propositional formulas

• Use efficient tools (SAT solvers) for solving the satisfiability problem
Since the satisfiability problem is **NP-complete**, SAT solvers are based on heuristics.
Bounded model checking (BMC) for checking AGp

- Given
 - A finite system M
 - A safety property AGp
 - A bound k

- Determine
 - Does M contain a counterexample to AGp of k transitions (or fewer)?
Bounded Model Checking (BMC) for checking $\text{AG}p$

- **Unwind** the model for k levels, i.e., construct all computations of length k

- If a state satisfying $\neg p$ is encountered, produce a counterexample; Otherwise, increase k

[BCCZ 99]
Bounded Model Checking

Terminates
• with a counterexample or
• with time- or memory-out

The method is suitable for falsification, not verification
BMC for checking $AGp (\ EF \neg p \)$

Input to SAT-based BMC:

A system over variables $V = \{v_1, \ldots, v_n\}$, where

- $\text{INIT}(V)$ is a propositional formula representing the set of initial states

- $R(V, V')$ is a propositional formula representing the transition relation

A specification:

- $\neg p(V)$ is a propositional formula representing the set of states satisfying $\neg p$
• If \((f_M^k \land f_\varphi^k)\) is unsatisfiable:
 \(M\) has no counterexample of length \(k\)

• If \(k = 2^{|V|}\) then we can conclude \(M \models AGp\)
 - Too big - not practical

• The method is suitable for refutation
 - Bug finding
BMC for checking $\varphi = \neg AGp \equiv EF\neg p$

- $f_M^k (V_0, ..., V_k) =$
 $\text{INIT}(V_0) \land R(V_0, V_1) \land ... \land R(V_{k-1}, V_k)$

- Uses $k+1$ copies of $V = \{ v_1, ..., v_n \}$
- V_i represents the state after i transitions
BMC for checking $\varphi = \text{EF} \neg p$

- To check if p is violated within k steps:

$$f_{\varphi}^k (V_0, ..., V_k) = \neg p(V_0) \lor ... \lor \neg p(V_k) = \bigvee_{i=0}^{k} \neg p(V_i)$$
BMC for checking $\varphi = \text{EF} \neg p$

- **The iterative algorithm:**

$$INIT(V_0) \land \neg p(V_0)$$

$$INIT(V_0) \land R(V_0, V_1) \land \neg p(V_1)$$

$$INIT(V_0) \land R(V_0, V_1) \land R(V_1, V_2) \land \neg p(V_2)$$

$$\vdots$$

$$\vdots$$

$$\vdots$$

$$INIT(V_0) \land R(V_0, V_1) \land R(V_1, V_2) \land \ldots \land R(V_{k-1}, V_k) \land \neg p(V_k)$$
Example – shift register of $\langle x, y, z \rangle$

The set of states: all valuations of $\langle x, y, z \rangle$

Transition relation:
$T(x, y, z, x', y', z') = x' = y \land y' = z \land z' = 1$

Initial condition:
$INIT(x, y, z) = x = 0 \lor y = 0 \lor z = 0$

Specification: $AG (x = 0 \lor y = 0 \lor z = 0)$
Propositional formula for $k=2$

$$f_{M,2} = (x_0=0 \lor y_0=0 \lor z_0=0) \land$$

$$\quad (x_1=y_0 \land y_1=z_0 \land z_1=1) \land$$

$$\quad (x_2=y_1 \land y_2=z_1 \land z_2=1)$$

$$f_{\varphi,2} = \bigvee_{i=0,\ldots,2} (x_i=1 \land y_i=1 \land z_i=1)$$

Satisfying assignment: 101 011 111

This is a counterexample!
Verification with SAT solvers

Two successful methods for SAT-based verification are based on:

- **Interpolation** [McMillan 03]
- **IC3** [Bradley 11]