SAT-Based Model Checking: Interpolation, IC3 and Beyond

Orna Grumberg
Technion, Israel
Based on presentations by Yakir Vizel

Marktoberdorf 2013

outlines

• Model checking
• SAT-based bug finding
 - Bounded Model Checking (BMC)
• SAT-based verification with
 - Interpolation
 - Interpolation-sequence
 - IC3
 - IC3 + lazy abstraction
 - Forward and backward interpolation
Why (formal) verification?

- safety-critical applications: Bugs are unacceptable!
 - Air-traffic controllers
 - Medical equipment
 - Cars
- Bugs found in later stages of design are expensive
- Hardware and software systems grow in size and complexity: Subtle errors are hard to find by testing
- Pressure to reduce time-to-market

Automated tools for formal verification are needed

Formal Verification

Given
- a model of a (hardware or software) system and
- a formal specification

does the system model satisfy the specification? Not decidable!

To enable automation, we restrict the problem to a decidable one:
- Finite-state reactive systems
- Propositional temporal logics
Finite state systems - examples

- Hardware designs
- Controllers (elevator, traffic-light)
- Communication protocols (when ignoring the message content)
- High level (abstracted) description of non finite state systems

Properties in temporal logic - examples

- mutual exclusion:
 always $\neg (cs_1 \land cs_2)$

- non starvation:
 always (request \Rightarrow eventually granted)

- communication protocols:
 \neg get-message until send-message
Model Checking \([CE81,QS82]\)

An efficient procedure that receives:
- A finite-state model describing a system
- A temporal logic formula describing a property

It returns
- yes, if the system has the property
- no + Counterexample, otherwise

Model of a system

Kripke structure / transition system
Temporal Logics

- **Temporal Logics**
 - Express properties of event orderings in time

- **Linear Time**
 - Every moment has a unique successor
 - Infinite sequences (words)
 - Linear Time Temporal Logic (LTL)

- **Branching Time**
 - Every moment has several successors
 - Infinite tree
 - Computation Tree Logic (CTL)

Propositional temporal logic

AP - a set of atomic propositions

Temporal operators:

- **Gp**
- **Fp**
- **Xp**
- **pUq**

Path quantifiers:

- **A** for all path
- **E** there exists a path
Model checking $AG \ p$ on M

- Iteratively compute the sets S_j of states reachable from an initial state in j steps
- At each iteration check whether S_j contains a state satisfying $\neg p$.
 - If so, declare a failure
- Terminate when all states were found. $S_k \subseteq \bigcup_{i=0}^{k-1} S_i$
 - Result: the set $Reach$ of reachable states.

Model checking $AG \ p$

- Also called forward reachability analysis
Mutual Exclusion Example

- Two process mutual exclusion with shared semaphore
- Each process has three states
 - Non-critical (N)
 - Trying (T)
 - Critical (C)
- Semaphore can be available (S_0) or taken (S_1)
- Initially both processes are in the Non-critical state and the semaphore is available --- $N_1 N_2 S_0$

\[
\begin{align*}
N_1 & \rightarrow T_1 \\
T_1 \land S_0 & \rightarrow C_1 \land S_1 \\
C_1 & \rightarrow N_1 \land S_0 \\
N_2 & \rightarrow T_2 \\
T_2 \land S_0 & \rightarrow C_2 \land S_1 \\
C_2 & \rightarrow N_2 \land S_0
\end{align*}
\]

\[M \models AG \neg(C_1 \land C_2)\]

The two processes are never in their critical states at the same time
Mutual Exclusion Example

\[M \models AG \neg (C_1 \land C_2) \]

\[S_0 \]

Mutual Exclusion Example

\[M \models AG \neg (C_1 \land C_2) \]

\[S_1 \]
Mutual Exclusion Example

\[M \models AG \rightarrow (C1 \land C2) \]

\[S_2 \]

Mutual Exclusion Example

\[M \models AG \rightarrow (C1 \land C2) \]

\[S_3 \]
Mutual Exclusion Example

\[M \vDash AG \neg (C_1 \land C_2) \]

\[S_4 \subseteq S_0 \cup \ldots \cup S_3 \]

Forward Reachability Analysis

- terminates when
 - either a bad state satisfying \(\neg p \) is found
 - or a fixpoint is reached: \(S_j \subseteq \bigcup_{i=0,j-1} S_i \)
Main limitation

The state explosion problem:

Space and time requirements grow with the size of the model

SAT-based model checking:
A solution for the state explosion problem

Main idea

• Translate the model and the specification to propositional formulas

• Use efficient tools (SAT solvers) for solving the satisfiability problem
Bounded Model Checking (BMC) for checking AGp

- Unwind the model for k levels, i.e., construct all computations of length k

- If a state satisfying \(\neg p \) is encountered, produce a counterexample; Otherwise, increase k

[BCCZ 99]
Bounded Model Checking

Terminates
• with a counterexample or
• with time- or memory-out

The method is suitable for falsification, not verification

Example - shift register

Shift register of 3 bits: \(<x, y, z> \)

Transition relation:
\[R(x,y,z,x',y',z') = \ x' = y \land y' = z \land z' = 1 \]

Initial condition:
\[I(x,y,z) = \ x = 0 \lor y = 0 \lor z = 0 \]

Specification: \(AG \ (x = 0 \lor y = 0 \lor z = 0) \)
Propositional formula for $k=2$

$$f_M = (x_0=0 \lor y_0=0 \lor z_0=0) \land$$

$$\quad (x_1=y_0 \land y_1=z_0 \land z_1=1) \land$$

$$\quad (x_2=y_1 \land y_2=z_1 \land z_2=1)$$

$$f_\varphi = V_{i=0,..,2} (x_i=1 \land y_i=1 \land z_i=1)$$

Satisfying assignment: 101 011 111
This is a counter example!

Bounded model checking

- Can be used for verification by choosing k which is large enough so that every path of length k contains a cycle

- Using such a k is often not practical due to the size of the model
Verification with SAT solvers

Two successful methods for SAT-based verification are based on:
• Interpolation [McMillan 03]
• IC3 [Bradley 11]

In this series of talks
we present methods for enhancing interpolation- and IC3-based model checking
Interpolation-Sequence Based Model Checking [Vizel, Grumberg 09]

Inspired by:
- forward reachability analysis

Combines:
- Bounded Model Checking
- Interpolation-sequence [Jhala, McMillan 05]

Obtains:
- SAT-based model checking algorithm for full verification

Interpolation [Craig 57]

- If $A \land B = \text{false}$, there exists an interpolant I for (A,B) such that:

 $$A \Rightarrow I$$
 $$I \land B = \text{false}$$
 I refers only to common variables of A,B
Interpolation (cont.)

Interpolants from proofs

• When \(A \land B \) is unsatisfiable, SAT solvers return a proof of unsatisfiability in the form of a resolution graph

• Given a resolution graph, \(I \) can be derived in linear time.

\[\text{[Pudlak,Krajicek 97]} \]

Interpolation in the context of model checking

• Given the following BMC formula \(\varphi^k \)

\[
\begin{align*}
\text{A} & \quad \text{B} \\
INIT(V_0) \land T(V_0,V_1) \land T(V_1,V_2) \land \ldots \land T(V_{k-1},V_k) \land \neg p(V_k) \\
\downarrow \\
I \\
A \Rightarrow I \\
I \land B \equiv \text{false}
\end{align*}
\]

I is over the common variables of A and B, i.e. \(V_1 \)
Interpolation in the context of model checking

- I is over V_1
- $A \Rightarrow I$
 - I over-approximates the set S_1
- $I \land B \equiv \text{false}$
 - States in I cannot reach a bug in $k-1$ steps

Interpolation-Sequence

- The same BMC formula partitioned in a different manner:

\[
\begin{align*}
&INIT(V_0) \land T(V_0, V_1) \land T(V_1, V_2) \land \ldots \land T(V_{k-1}, V_k) \land \neg p(V_k) \\
&I_1 \quad I_2 \quad I_3 \quad I_{k-1} \quad I_k
\end{align*}
\]

$I_0 = \text{true}, I_{k+1} = \text{false}$

$I_{j-1} \land A_j \Rightarrow I_j$

I_j is over the common variables of A_1, \ldots, A_j and A_{j+1}, \ldots, A_{k+1}, i.e. V_j
Interpolation-Sequence

• I_j - over-approximation of the set of states reachable in j steps

• $I_k \land A_{k+1} \Rightarrow \text{false}$
 the states in I_k do not violate p

Interpolation-Sequence

• Can easily be computed. For $1 \leq j < n$
 - $A = A_1 \land \ldots \land A_j$
 - $B = A_{j+1} \land \ldots \land A_n$
 - I_j is the interpolant for the pair (A,B)
Combining Interpolation-Sequence and BMC

- Uses BMC for bug finding

- Uses Interpolation-sequence for computing over-approximation of sets S_j of reachable states

Always terminates
- either when BMC finds a bug:
 $M \not\models AG\beta$

- or when all reachable states has been found:
 $M \models AG\beta$
Using Interpolation-Sequence

\[\text{INIT}(V_0) \land T(V_0, V_1) \land \neg p(V_1) \]

\[\text{INIT}(V_0) \land T(V_0, V_1) \land T(V_1, V_2) \land \neg p(V_2) \]

Checking if a “fixpoint” has been reached

- \[I_j \Rightarrow V_{k=1,j-1} I_k \]

- Similar to checking fixpoint in forward reachability analysis:
 \[S_j \subseteq U_{k=1,j-1} S_k \]

- But here we check inclusion for every \(2 \leq j \leq N \)
 - No monotonicity because of the approximation

- “Fixpoint” is checked with a SAT solver
The Analogy to Forward Reachability Analysis

INIT S_1 S_2 S_3

$\text{BAD } \neg p$

Notation:
If no counterexample of length N or less exists in M, then:

- I_j^k is the j-th element in the interpolation-sequence extracted from the BMC-partition of φ^k

- $I_j = \land_{k=j,N} I_j^k \ [V_j \leftarrow V]$

- The reachability vector is: $\hat{I} = (I_1, I_2, ..., I_N)$
function FixpointReached (\(\hat{I} \)) // check \(I_j \Rightarrow V_{k=1,j+1} I_k \)
 j=2
 while (\(j \leq \hat{I}.\text{length} \)) do
 R = \(V_{k=1,j-1} I_k \)
 \(\alpha = I_j \land \neg R \) // negation of \(I_j \Rightarrow R \)
 if (SAT(\(\alpha \))==false) then return true
 end if
 j = j+1
 end while
 return false
end function

Interpolation-Based Model Checking [McM03]
Interpolation In The Context of Model Checking

- We can check several bounds with one formula.
- Given a BMC formula with possibly several bad states.

\[
\begin{align*}
I & \equiv \Box (\phi) \\
\Box (\phi) & \equiv (\phi_0) \land (\phi_1) \\
\phi_0 & \equiv \text{INIT}(V_0) \land \neg (V_1) \\
\phi_1 & \equiv \text{T}(V_1, V_2) \land \text{T}(V_2, V_3) \land \ldots \land \text{T}(V_{k-1}, V_k) \land (\neg q(V_1) \lor \ldots \lor \neg q(V_k))
\end{align*}
\]

\[A \Rightarrow I \]
\[I \land B \equiv F \]

I is over the common variables of A and B, i.e. V_i

Interpolation In The Context of Model Checking

- The interpolant represents an over-approximation of reachable states after one transition.
- Also, there is no path of length \(k-1 \) or less that can reach a bad state.
Using Interpolation

\[\text{INIT}(V_0) \land T(V_0, V_1) \land \neg q(V_1) \]

\[I_1(V_0) \land T(V_0, V_1) \land \neg q(V_1) \]

\[I_2(V_0) \land T(V_0, V_1) \land \neg q(V_1) \]

Using Interpolation

\[\text{INIT}(V_0) \land T(V_0, V_1) \land T(V_1, V_2) \land (\neg q(V_1) \lor \neg q(V_2)) \]

\[I_1'(V_0) \land T(V_0, V_1) \land T(V_1, V_2) \land (\neg q(V_1) \lor \neg q(V_2)) \]

\[\vdots \]

\[\vdots \]

\[I_k'(V_0) \land T(V_0, V_1) \land T(V_1, V_2) \land (\neg q(V_1) \lor \neg q(V_2)) \]
The Analogy to Forward Reachability Analysis

\[\text{INIT} \quad S_1 \quad S_2 \quad S_3 \]

\[\neg q \]

If BMC finds a satisfying assignment the counterexample might be spurious
- The set of initial states is over-approximated

Increase k and start with the original INIT
Characteristics

- When calculating the interpolant for the i-th iteration, for bound k the following holds:
 - The interpolant represents an over-approximation of reachable states after i transitions
 - Also, it cannot reach a bad state in $k-I+i$ steps or less
 - It is similar to I_i calculated in ISB after $k+i$ iterations

Comparison to interpolation-sequence based model checking

- The computation itself is different
 - Uses interpolation, not interpolation sequence
 - Based on nested loops
 - Not incremental
- The computed over-approximated sets are different.
Experimental Results

Compared interpolation based and interpolation-sequence based model checking
• Experiments were conducted on two (then) future CPU designs from Intel (two different architectures)
• Real-life properties were checked on each

Comparison Analysis

• Results vary
• Some properties cannot be verified by one method but can be verified by the other and vise-versa
Summary

• A new SAT-based method for **unbounded** model checking.
 - BMC is used for falsification.
 - Simulating forward reachability analysis for verification.

• Method was successfully applied to industrial sized systems.
Incremental Construction of Inductive Clauses for Indubitable Correctness

or simply: IC3

[Bradley, VMCAI’11]

A Simplified Description

Recall: Following reachability analysis
Notations

• System is modeled as \((V, I, T)\), where:
 - \(V\) is a finite set of variables
 - \(I \subseteq 2^V\) is the set of initial states
 - \(T \subseteq 2^V \times 2^V\) is the set of transitions

• A safety property of the form \(AG P\)
 - \(P\) is a propositional formula over \(V\)

Induction for proving \(AG P\)

• The simple case: \(P\) is an inductive invariant
 - \(I \Rightarrow P\)
 - \(P \land T \Rightarrow P'\)

• \(P'\) – the value of \(P\) in the next state

• \(I(V) \Rightarrow P(V)\)
• \(P(V) \land T(V, V') \Rightarrow P(V')\)
Induction for proving $AG\; P$

- Usually, P is not an inductive invariant
- BUT – a stronger inductive invariant R may exist (strengthening)
 - $I \Rightarrow R$
 - $R \land T \Rightarrow R'$
 - $R \Rightarrow P$
- R can be computed in various ways (BDDs, k-induction, Interpolation-Sequence,…)

Inductive invariant
IC3

• The Goal: Find an Inductive Invariant stronger than P by learning relatively inductive facts (incrementally)

 - Recall: F is inductive invariant if
 - \(I \Rightarrow F \)
 - \(F \land T \Rightarrow F' \)
 - If F is stronger than P, i.e., \(F \Rightarrow P \), then
 - \(F \land P \land T \Rightarrow F' \Rightarrow P' \)

What Makes IC3 Special?

• No unrolling of the transition relation \(T \) is required

• All previous approaches require unrolling
 - Searching for an inductive invariant
 - Unrolling = A form of strengthening

• IC3 strengthen in a different way
 - Learning relatively inductive facts locally
IC3 Basics

• Iteratively compute Over-approximated Reachability Sequence (OARS) \(\langle F_0, F_1, \ldots, F_k \rangle \) s.t.
 - \(F_0 = INIT \)
 - \(F_i \models p \) : p is an invariant up to k
 - \(F_i \models F_{i+1} \) : \(F_i \subseteq F_{i+1} \)
 - \(F_i \land T \models F'_{i+1} \) : Simulates one forward step

\(F_i \) - over-approximates the set of states reachable within i steps

• If \(F_{i+1} \Rightarrow F_i \) then fixpoint

IC3 Basics

• P is inductive relative to F if
 - \(I \models P \)
 - \(F \land P \land T \models P' \)

• Notations:
 - Cube \(s \): conjunction of literals
 - \(v_1 \land v_2 \land \neg v_3 \) - Represents a state
 - \(s \) is a cube \(\Rightarrow \neg s \) is a clause (DeMorgan)
A Backward Search

• Search for a predecessor \(s \) to some error state: \(P \land T \land \neg P' \)
 - If none exists, property \(P \) holds:
 • \((P \land T \land \neg P') \) unsat IFF \((P \land T \Rightarrow P') \) valid

• Otherwise, try to block \(s \)
 - \(P = P \land \neg s \)
 - BUT, first need to show the \(s \) is not reachable
IC3 - Initialization

• Check satisfiability of the two formulas:
 - $I \land \neg P$
 - $I \land T \land \neg P'$

• If both are unsatisfiable then:
 - $I \Rightarrow P$
 - $I \land T \Rightarrow P'$

• Therefore
 - $F_0 = I, F_1 = P$
 - $\langle F_0, F_1 \rangle$ is OARS
IC3 - Iteration

- Our OARS contains F_0 and F_1
 - If P is an inductive invariant - done! 😊
 - Otherwise:
 - F_1 should be strengthened

IC3 - Iteration

- P is not an inductive invariant
 - $F_1 \land T \land \neg P'$ is satisfiable
 - From the satisfying assignment get the state s that can reach the bad states

\[F_0 \quad I \quad P \quad F_1 \]

\[I \quad F_0 \quad P \quad F_1 \quad s \]
IC3 - Iteration

• Is s reachable or not?
 - Hard to know
 - If it is reachable a CEX exists
 • Why?

\[
\begin{align*}
F_0 & \quad p \quad F_1 \\
\text{I} & \quad s
\end{align*}
\]

IC3 - Iteration

• Is s reachable in one transition from the previous set? (Bounded reachability)
 - Check $F_0 \land T \land s'$
 - If satisfiable, s is reachable from F_0 (CEX)
 - Otherwise, block it = remove it from F_1
 • $F_1 = F_1 \land \neg s$

\[
\begin{align*}
F_0 & \quad p \quad F_1 \\
\text{I} & \quad s
\end{align*}
\]
IC3 - Iteration

- Iterate this process until $F_1 \land T \land \neg P'$ becomes unsatisfiable
 - $F_1 \land T \Rightarrow P'$ holds
 - F_2 can be defined to be P
 - Any problems/issues with that?

IC3 - Iteration

- New iteration, check $F_2 \land T \land \neg P'$
 - If satisfiable, get s that can reach $\neg P$
 - Now check if s can be reached from F_1 by $F_1 \land T \land s'$
 - If it can be reached, get t and try to block it
IC3 - Iteration

- To block t, check $F_0 \land T \land t'$
 - If satisfiable, a CEX
 - If not, t is blocked, get a "new" t by $F_1 \land T \land s'$
 - If it can be reached, get t^* and try to block it
 -you get the picture 😊

General Iteration

IC3 - Iteration

- Given an OARS \(\langle F_0, F_1, \ldots, F_k \rangle \), define \(F_{k+1} = P \)
- Apply a backward search
 - Find predecessor \(s \) in \(F_k \) that can reach a bad state
 - Check \(F_k \land T \land \neg P' \)
 - If none exists \((F_k \land T \Rightarrow P') \), move to next iteration
 - If exists, try to find a predecessor \(t \) to \(s \) in \(F_{k-1} \)
 - \((F_{k-1} \land T \land s') \)
 - If none exists \((F_{k-1} \land T \Rightarrow \neg s') \), \(s \) is removed from \(F_k \)
 - \(F_k = F_k \land \neg s \)
 - Otherwise: Recur on \((t, F_{k-1}) \)
 - We call \((t, k-1) \) a proof obligation
- If we can reach \(I \), a CEX exists

That Simple?

- Looks simple
- But this “simple” solution does NOT work
- It amounts to States Enumeration
 - Too many states...
- Does IC3 enumerate states?
 - In general - No.
 - It applies generation for removing more than one state at a time
 - Sometimes, yes (when IC3 does not perform well)
Consider the case:

- State s in F_k can reach a bad state in one transition
- s in not reachable (in k transitions):
 - Therefore $F_{k-1} \land T \Rightarrow \neg s'$ holds
- We want to generalize this fact
 - s is a single state
 - Goal: Find a set of states, unreachable in k transitions

Generalization

- We know $F_{k-1} \land T \Rightarrow \neg s'$
- And, $\neg s$ is a clause
- Generalization: Find a sub-clause $c \subseteq \neg s$ s.t. $F_{k-1} \land T \Rightarrow c'$
 - Sub clause means less literals
 - Less literals implies less satisfying assignments
 - $(a \lor b \lor c)$ vs. $(a \lor b)$
 - $c \Rightarrow \neg s$ - c is a stronger fact
- $F_k = F_k \land c$
 - More states are removed from F_k making it stronger/more precise (closer to R_k)
Generalization

• How do we find a sub-clause \(c \subseteq \neg s \) s.t.
 \(F_{k-1} \land T \Rightarrow c' \)?

• Trial and Error
 - Try to remove literals from \(\neg s \) while \(F_{k-1} \land T \land \neg c' \)
 remains unsatisfiable

• Use the UnSAT Core
 - \(F_{k-1} \land T \land s' \) is unsatisfiable

Observation 1

• Assume a state \(s \) in \(F_k \) can reach a bad state in
 one transition

• Important Fact: \(s \) is not in \(F_{k-1} \) (!!)
 - \(F_{k-1} \land T \Rightarrow F_k \)
 - \(F_k \Rightarrow P \)
 - If \(s \) was in \(F_{k-1} \) we would have found it in an earlier
 iteration

• Therefore: \(F_{k-1} \Rightarrow \neg s \)
Inductive Generalization

- Assume a state s in F_k can reach a bad state in one transition
- Assume s is not reachable (in k transitions):
 - We get $F_{k-1} \land T \Rightarrow \neg s'$ holds
 - BUT, this is equivalent: $F_{k-1} \land \neg s \land T \Rightarrow \neg s'$
 - Since $F_{k-1} \Rightarrow \neg s$
- This looks familiar!
 - $I \Rightarrow \neg s$
 - Otherwise, CEX! ($I \not\Rightarrow \neg s \iff s$ is in I)
 - $\neg s$ is inductive relative to F_{k-1}

Inductive Generalization

- Find $c \subseteq \neg s$ s.t.
 $F_{k-1} \land c \land T \Rightarrow c'$ and $I \Rightarrow c$ hold

- Define $F_k^* = F_k \land c$

- Since $F_i \Rightarrow F_{i+1}$,
 c is inductive relative to $F_{k-1}, F_{k-2}, \ldots, F_0$
 - Add c to all of these sets
 - $F_i^* = F_i \land c$
 - $F_i^* \land T \Rightarrow F_{i+1}^*$ hold
Observation 2

- Assume a state s in F_i can reach a bad state in a number of transitions.
- s is also in F_j for $j > i$, since $F_i \Rightarrow F_j$.
- A longer CEX may exist:
 - s may not be reachable in i steps, but it may be reachable in j steps.
- If s is blocked in F_i, it must be blocked in F_j for $j > i$.
 - Otherwise, a CEX exists.

Push Forward
Push Forward - summary

- s is removed from F_i
 - by conjoining a sub-clause c:
 $$F_i = F_i \land c$$
- c is a clause learnt at level i
 Try to push it forward to $j \geq i$
 - If $F_j \land \mathcal{T} \Rightarrow c'$ holds
 - c is implied by F_j in level $j+1$.
 $$F_{j+1} = F_{j+1} \land c$$
 - Else: s was not blocked at level $j > i$
 - Add a proof obligation (s,j)
 - If s is reachable from I, CEX!

IC3 - Key Ingredients

- Backward Search
 - Find a state s that can reach a bad state in a number of steps
 - s may not be reachable (over-approximations)
- Block a State
 - Do it efficient, block more than s
 - Generalization
- Push Forward
 - An inductive fact at frame i may also be inductive at higher frames
 - If not, a longer CEX is found
IC3 - High Level Algorithm

If I \land \neg P \text{ is SAT return false; // CEX}
If I \land T \land \neg P' \text{ is SAT return false; // CEX}
OARS = <I,P>; // <F_0,F_1>
k=1
while (OARS.is_fixpoint() == false) do
 while (F_k \land T \land \neg P' \text{ is SAT}) do
 s = get_state();
 If (block_state(s, k) == false) return cex; // recursive function
 extend(OARS);
 push_forward();
return valid;
Lazy Abstraction and SAT-Based Reachability \textit{(with IC3)} in Hardware Model Checking

[Vizel, Grumberg, Shoham 12]

Abstraction

• Fights the state explosion problem
• Removes or simplifies details that are irrelevant

• Abstract model contains less states
• Often - more behaviors

 - Over-approximation
Visible Variables Abstraction

Abstraction-Refinement

- Abstract model may contain spurious behaviors
 - Spurious counterexample may exist

- Refinement is applied to remove the spurious behavior
Lazy Abstraction

• Different abstractions at different steps of verification

• Refinement is applied locally, where needed

Locality in IC3

• IC3 applies checks of the form
 - $F_k \land T \land \neg P'$
 • Finds a state in F_k that can reach $\neg P$
 - $F_i \land T \land s'$
 • Finds a predecessor in F_i to the state s

• Using only one T
 - No unrolling
Our Approach - L-IC3

- Use IC3's local checks for *Lazy Abstraction*
 - Different abstraction at different time frames
 - Use visible variables abstraction
 - Different variables are visible at different time frames

Concrete Model
Using Abstraction

Using Lazy Abstraction
Lazy Abstraction + IC3 = L-IC3

- \(<F_0, F_1, \ldots, F_{k+1}> \) - Reachable states

- \(<U_1, U_2, \ldots, U_{k+1}> \) - Abstractions
 - \(U_i \) - set of visible variables
 - \(U_i \) variables have a next state function
 - The rest, inputs
 - \(U_i \subseteq U_{i+1} \)
 - \(U_{i+1} \) is a refinement of \(U_i \)

L-IC3 Iteration

- Initialize \(F_{k+1} \) to \(P \)
- Initialize \(U_{k+1} \) to \(U_k \)
- Same problem, the sequence may not be an OARS
Abstract Counterexample

\[F_i \land T_{i+1} \land s' \quad F_k \land T_{k+1} \land \neg P' \]

Check Spuriousness

- An abstract CEX of length \(k+1 \) exists
- Use an IC3 iteration with the concrete \(T \)
- If a real CEX exists, it will be found
Check Spuriousness (2)

• If no real CEX exists:
 - Compute a strengthened sequence
 \(\langle F^r_0, F^r_1, \ldots, F^r_{k+1} \rangle\)
 • Strengthening by IC3 algorithm
 - The strengthened sequence is an OARS
 - Strengthening eliminates all (real) CEXs of length \(k+1\)

Lazy Abstraction Refinement

• If no real CEX is found by (concrete) IC3 even though (abstract) L-IC3 strengthening failed
 - Abstraction is too coarse

• Refine the sequence \(\langle U_1, U_2, \ldots, U_{k+1} \rangle\) as follows:

• Since \(F^r_i \land T \Rightarrow F^r_{i+1}\)
 - \(F^r_i \land T \land \lnot F^r_{i+1}\) is unsatisfiable
 - Use the UnSAT Core to add visible variables
 • \(U^r_{i+1} = U_{i+1} \cup UCore_i\)
Incrementality

• The concrete IC3 iteration works on the already computed sequence \(<F_0, F_1, ..., F_{k+1}> \)

• At the end of refinement, L-IC3 continues from iteration \(k+2 \)

Experiments - Laziness

<table>
<thead>
<tr>
<th>Test</th>
<th>#Vars</th>
<th>#TF</th>
<th>#TV</th>
<th>#TF</th>
<th>#AV</th>
<th>#TF</th>
<th>#AV</th>
<th>#TF</th>
<th>#AV</th>
<th>#TF</th>
<th>#AV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ind 2</td>
<td>5693</td>
<td>7-1</td>
<td>31</td>
<td>8</td>
<td>42</td>
<td>9</td>
<td>51</td>
<td>10-14</td>
<td>54</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ind 3</td>
<td>11866</td>
<td>1</td>
<td>323</td>
<td>2</td>
<td>647</td>
<td>3</td>
<td>686</td>
<td>4</td>
<td>699</td>
<td>5</td>
<td>705</td>
</tr>
<tr>
<td>Ind 5</td>
<td>3854</td>
<td>1</td>
<td>428</td>
<td>2</td>
<td>453</td>
<td>3</td>
<td>495</td>
<td>4</td>
<td>499</td>
<td>5</td>
<td>503</td>
</tr>
</tbody>
</table>

112
Summary

• Lazy abstraction algorithm for hardware model checking
• Abstraction-Refinement is done incrementally
• We compared our method (L-IC3) to Bradley’s method (IC3)
 - Up to two orders of magnitude runtime improvement

Conclusions

• L-IC3 combines two approaches to fight the state-explosion problem
• L-IC3 exposes and exploits the abstraction, implicit in IC3
Intertwined Forward-Backward Reachability Analysis Using Interpolants

[Vizel, Grumberg, Shoham, TACAS 2013]
Interpolants

- Given an inconsistent pair \((A,B)\) of propositional formulas
- There exists a formula \(I\) such that:
 - \(A \rightarrow I\)
 - \(I \land B\) is unsatisfiable
 - \(I\) is over the common variables of \(A\) and \(B\)
- \(I = \text{Itp}(A,B)\)

Approximated Forward Reachability

- \(F(V)\) - a set of states
- For the unsatisfiable formula \(F(V) \land T(V,V') \land \neg P(V')\), define:
 - \(A = F(V) \land T(V,V')\)
 - \(B = \neg P(V')\)

- Approximated forward reachability:
 \(\text{ApxImg}(F,T) = \text{Itp}(A, B)\)
Backward Reachability Analysis

Does AGp hold?

- \(B_n = \text{PreImg}(B_{n-1}, T)\)
- \(B_2 = \text{PreImg}(B_1, T)\)
- \(B_1 = \text{PreImg}(\neg P, T)\)

Starting states:
Starting from the initial states and making one step forwards, do we reach the bad states?

Duality In a SAT Query

- \(\text{INIT}(V) \land T(V, V') \land \neg P(V')\)
- We tend to read it "Forward"
 - From left to right

Do we reach the bad states?
Duality In a SAT Query

- $\text{INIT}(V) \land T(V,V') \land \neg P(V')$
- **We tend to read it "Forward"**
 - From left to right

- **We can also read it "Backward"**
 - From right to left
 - Does the pre-image of the bad states intersect the initial states?

Approximated Backward Reachability

- $B(V)$ - a set of states
- For the unsatisfiable formula $\text{INIT}(V) \land T(V,V') \land B(V')$, define:

 $A = T(V,V') \land B(V')$

 $B = \text{INIT}(V)$

- Approximated backward reachability: $\text{ApxPreImg}(B,T) = \text{Itp}(A, B)$
Dual Approximated Reachability (DAR)

- Compute two sequences of reachable states
 - Forward Sequence: \(<F_0,F_1,...,F_n>\)
 - Backward Sequence: \(<B_0,B_1,...,B_n>\)

- Sequences are over-approximations
 - For the forward sequence:
 - \(F_i(V) \land T(V,V') \Rightarrow F_{i+1}(V')\)
 - \(F_i(V) \Rightarrow P(V)\)
 - For the backward sequence
 - \(B_{i+1}(V) \leftarrow T(V,V') \land B_i(V')\)
 - \(B_i(V) \Rightarrow \neg INIT(V)\)

Dual Approximated Reachability (DAR)

- Two main phases during the computation
 - Local Strengthening
 - No unrolling
 - Global Strengthening
 - Limited unrolling
 - In case the Local Strengthening fails
Dual Approximated Reachability

• Check the formula:
 \[\text{INIT}(V) \land T(V, V') \land \neg P(V') \]

\[F_0 = \text{INIT} \quad \quad \quad B_0 = \neg P \]

• If SAT then CEX is found

Dual Approximated Reachability

• UNSAT:
 \[\begin{cases} \text{INIT}(V) \land T(V, V') \land \neg P(V') \\ A \end{cases} \quad \begin{cases} B \end{cases} \]

\[f_0 = \text{INIT} \quad \quad \quad B_1 \quad B_0 = \neg P \]
Local Strengthening - Intuition

What if F_1 and B_1 intersect each other?

There may be a counterexample

$F_0 = \text{INIT}$

F_1

B_1

$B_0 = \neg P$

Local Strengthening - Intuition

What if F_1 and B_1 intersect each other?

$F_1(V) \land T(V,V') \land B_0(V')$

$F_0(V) \land T(V,V') \land B_1(V')$

$F_0 = \text{INIT}$

F_1

B_1

$B_0 = \neg P$
Local Strengthening - Intuition

- Compute forward and backward interpolants
 - F_2 is the forward interpolant
 - Backward interpolant strengthens the already existing B_1

Local Strengthening - Intuition

- Compute forward and backward interpolants
 - B_2 is the backward interpolant
 - F_1' is strengthening the already existing F_1
Local Strengthening Fails

\[F_0(V) \land T(V,V') \land B_0(V) \]

Global Strengthening

- Apply unrolling gradually
 - Start from the initial states
 - Try to reach the backward sequence using an increasing number of T's
Global Strengthening

\[F_0(V_0(V)) \land (V_1(V)) \land (V_2(V)) \land (V_3(V)) \land (V_4(V')) \land (V_5(V'')) \land (B_1(V')) \land (B_2(V'')) \land (B_3(V''')) \land (B_4(V')) \land (B_5(V'')) \land (B_6(V''')) \land \neg P(V''') \]

Interpolantion-Sequence

- Given a sequence \(<A_1,...,A_n>\) such that its conjunction is unsatisfiable.
- Then, there exists an interpolation sequence \(<I_0,...,I_n>\) such that:
 - \(I_0 = \text{TRUE}, I_n = \text{FALSE}\)
 - \(I_i \land A_{i+1} \rightarrow I_{i+1}\)
 - \(I_i\) is over the common variables of \(A_1,...,A_i\) and \(A_{i+1},...,A_n\)
Global Strengthening

• If a CEX exists - Full unrolling
• Otherwise, gradually unroll the model
 – Try to reach the Backward sequence
• When the backward sequence is not reachable
 – Extract interpolation sequence
 – Strengthen forward sequence
 – Reapply Local Strengthening
Summary

- Interpolation-based model checking algorithm
- Uses both Forward and Backward traversals
- Two main phases during the computation
 - Local Strengthening
 - No unrolling
 - Global Strengthening
 - Limited unrolling
 - In case the Local Strengthening fails
- Mostly local - No unrolling
 - When unrolling is used, it is restricted

Summary

We presented several methods for SAT-based (unbounded) model checking

- Over-approximate the (forward) reachability analysis
- Apply different methods for making the over-approximation more precise
Thank You

Model checking:

- E.M. Clarke, A. Emerson, Synthesis of Synchronization Skeletons for Branching Time Temporal Logic, workshop on Logic of programs, 1981

- E.M. Clarke, O. Grumberg, D. Peled, Model Checking, MIT press, 1999
• **BDDs:**

• **BDD-based model checking:**

• **SAT-based Bounded model checking:**
 Symbolic model checking using SAT procedures instead of BDDs, A. Biere, A. Cimatti, E. M. Clarke, M. Fujita, Y. Zhu, DAC'99

• **Visible variables abstraction:**

• **Lazy abstraction:**
Interpolation based model checking:

- K. McMillan, Interpolation and SAT-Based Model Checking, CAV’03

- T. Henzinger, R. Jhala, R. Majumdar, K. McMillan, Abstractions from Proofs, POPL’04

- Y. Vizel and O. Grumberg, Interpolation-Sequence Based Model Checking, FMCAD’09

- Y. Vizel, O. Grumberg, S. Shoham, Intertwined Forward-Backward Reachability Analysis Using Interpolants, TACAS’13

Model checking with IC3:

- A. Bradley, SAT-based model checking without unrolling, VMCAI’11

- Y. Vizel, O. Grumberg, S. Shoham, Lazy abstraction and SAT-based reachability in hardware model checking, FMCAD’12