Modular Demand-Driven
Analysis of Semantic Difference
for Program Versions

Anna Trostanetski

Modular Demand-Driven
Analysis of Semantic Difference
for Program Versions

Research Thesis

Submitted in partial fulfillment of the requirements

for the degree of Master of Science in Computer Science

Anna Trostanetski

Submitted to the Senate
of the Technion — Israel Institute of Technology
Tamuz 5777 Haifa July 2017

This research was carried out under the supervision of Prof. Orna Grumberg, in the

Faculty of Computer Science.

Some of the results in this dissertation have been published in a paper by the author
and collaborators in a conference (SAS 2017) during the course of this masters, the

most up-to-date version of which is:

Anna Trostanetski, Orna Grumberg, and Daniel Kroening. Modular demand-driven analysis

of semantic difference for program versions. In International Static Analysis Symposium.
Springer, NY, USA, 2017.

Acknowledgements

I would like to thank Orna Grumberg, who was an amazing advisor, a mentor, an
inspiration and a friend to me during the course of my studies.
I would also like to thank Daniel Kroening, Ofer Strichman, Ofer Guthmann, and all

others that helped me along the way.

The generous financial help Of The Technion, and Randy L. and Melvin R. Berlin
Fellowship in the Cyber Security Research are hereby gratefully acknowledged.

Contents

List of Figures
Abstract

1 Introduction
1.1 Related Work e
1.2 Our Approach
1.2.1 Ourmethodindetail
1.2.2 Main Contributions

2 Preliminaries
2.1 Procedures e
2.2 Symbolic Execution oo

2.3 Equivalence

3 Owur Contribution

3.1 Modular Symbolic Execution

3.2 Symbolic Execution vs. Modular Symbolic Execution.
3.2.1 Symbolic Execution C Modular Symbolic Execution
3.2.2 Symbolic Execution O Modular Symbolic Execution
3.2.3 Deeper Call Graphs L.

3.3 Difference Summary Lo

3.4 Computing Difference Summaries
3.4.1 Call Graph Traversal
3.4.2 Computing the Difference Summaries for a Pair of Procedures

3.5 Abstraction and Refinement o 0L
3.5.1 Abstraction
3.5.2 Refinement

3.6 Comparison to Related Work

4 Experimental Results
4.1 Benchmarks and Results
4.2 Analysis

S O W W

10
11

13
13
14
19
21
23
27
29
29
30
32
32
34
36

5 Conclusion and Future Work

Hebrew Abstract

43

List of Figures

1.1 Call graphs of two program versions P;, P», where their syntactic differ-
ences are local to the procedures p1, p2, and the bodies of procedures

q1,q2 are identical.o Lo
2.1 Examples of procedure versions
3.1 Procedure versions in need of refinement

4.1 LoopMult and LoopUnrch benchmarks

Abstract

Programs are often built in stages, a new (patched) program version is built on top of
an old one. If we could understand the semantic difference between two consecutive
program versions, it would be very beneficial for the fast development process of correct
programs. We can use the correctness of the old (and checked) version to infer the
correctness of the new version. Code reviews, security vulnerability checks, and new
feature verification would become easier if the reviewer were to understand the semantic
differences between both versions. In general this problem is undecidable, yet we devise
an algorithm for computing over— and under—approximations of the semantic (input—
output) differences between program versions. We aim at providing precise enough
abstractions for real code, and allowing guidance by the user to reach good results that
match their needs. Since this information is used during the development process, it
may be sufficient (and possibly preferable) to give results for intermediate procedures,
instead of the entire program. We provide a mechanism for guiding the analysis towards
interesting procedures, and the precision of the approximation is constantly improved
by our anytime algorithm.

While our algorithm can work for very different versions of code, it will work better
on syntactically similar versions. Syntactic changes in program versions are often small
and local, and may apply to procedures that are deep in the call graph. Our approach
analyses only those parts of the programs that are affected by the changes. Moreover, the
analysis is modular, processing a single pair of procedures at a time. Called procedures
are not inlined. Rather, their previously computed summaries and difference summaries
are used.

For efficiency, procedure summaries and difference summaries are abstracted using
uninterpreted functions, and may be refined on demand. We show how we can use
common uninterpreted functions to use our knowledge of equivalence when no precise
summery is available. Our algorithm works bottom-up from the locations of the syntactic
changes, towards the main procedure. When the precision of the abstractions used is not
sufficient, we run (top—down) refinement to create new summaries that are sufficiently
precise. The refinement is guided by the context of the call we analyse.

We define modular symbolic execution and prove its connection to standard symbolic
execution. We use modular symbolic execution to analyse each path in each procedure

at most once, without re-analysing paths in called procedures.

We have compared our method to well established tools and observed speedups of at
least one order of magnitude. Furthermore, in many cases our tool proves equivalence

or finds differences while others fail to do so.

Chapter 1

Introduction

The need to identify semantic difference often arises when a new (patched) program
version is built on top of an old one. The difference between the versions can be used

for:

e Regression testing, which checks whether the new version introduces security bugs
or errors. The old version is considered to be correct, a “golden model” for the

new, less-tested version [30].

e Revealing security vulnerabilities that were eliminated by the new version [11].

This information can be used to produce zero-day attacks.

e More generally, identifying and characterizing changes in the program’s function-
ality [24].

1.1 Related Work

Semantic difference has been widely studied, and several techniques have been suggested.

Abstract interpretation is applied to characterize differences or prove equivalence
in [23,24].

In [14,15] different notions of equivalence are defined, proof rules for showing the
equivalence between recursive procedures are given. These ideas are extended to less
similar procedures in [29].

Symbolic execution is used to find differences between programs in [5,25,26], and
syntactic similarity is used to direct symbolic execution to the ”interesting” paths. In [6],
both versions are run symbolically together, one ”shadowing” the other. This allows
using dynamic values to guide the execution towards changed behavior.

Symbolic execution is also used in [28], where the differences found are not over—
approximating or under—approximating the real ones; yet is effective for finding new
bugs using the differences between memory access of individual procedures between

program versions.

P1 P2

q2

Figure 1.1: Call graphs of two program versions P;, P>, where their syntactic differences
are local to the procedures p1, p2, and the bodies of procedures qi, go are identical.

1.2 Owur Approach

In this dissertation we present a modular and demand-driven algorithm for finding se-
mantic difference between two closely-related, syntactically similar imperative programs.

We assume that the programs are sequential, deterministic, and we do not handle
pointers and aliasing.

In our work we aim at enhancing scalability and precision of existing techniques by
exploiting the modular structure of programs and avoiding unnecessary analysis.

We consider two program versions, consisting of (matched) procedure calls, arranged
in call graphs. Some of the matched procedures are known to be syntactically different
while the others are identical.

Often, changes between versions are small and limited to procedures deep inside
the call graph (see Figure 1.1). In such cases, it would be helpful to know how these
changes affect the program as a whole, without analysing the whole program. To achieve
this, we first compute a difference summary between syntactically different procedures
p1, p2 (modified procedures). Next, we analyse the procedures that call them, using
the difference summary for p;, po computed before. No inlining of called procedures
is applied. We also avoid analysing procedures that are not affected by the modified
procedures. As a result, the required work may be significantly smaller than analysing
the program as a whole. Our work is therefore particularly beneficial when applied to
programs that are syntactically similar. Even though it is applicable to programs which
are very different from each other, our technique would yield less savings in those cases.

Our approach is guided by the following ideas. First, the analysis is modular. That
is, it is applied to one pair of procedures at a time, thus it is confined to small parts
of the program. Called procedures are not inlined. Rather, their previously computed
summaries and difference summary are used.

We note that any block of code can be treated as a procedure, not only those defined
as procedures by the programmer. It is beneficial to choose the smallest possible blocks
that were modified between versions, and identify them as “procedures”.

Second, the analysis is restricted to only those pairs of procedures whose difference

affects the difference of the full programs.

Third, we provide both under- and over-approximations of the input-output differ-
ences between procedures, which can be strengthened on demand.

Finally, procedures need not be fully analysed. Unanalysed parts are abstracted and
replaced with uninterpreted functions. The abstracted parts are refined upon demand if
calling procedures need a more precise summary of the called procedures for their own
summary.

As mentioned before, the goal of this work is to analyse the difference between two
program versions which are relatively similar. Our main concern is to avoid unnecessary
analysis, thus achieving scalability. Our analysis is not guaranteed to terminate. Yet it
is an anytime analysis. That is, its partial results are meaningful. Furthermore, the
longer it runs, the more precise its results are.

In our analysis we do not assume that loops are bounded. We are able to prove
equivalence or provide an under- and over-approximation of the difference for unbounded
behaviors of the programs. We are also able to handle recursive procedures.

We implemented our method and applied it to finding semantic difference between
program versions. We compared it to well established tools and observed speedups of
one order of magnitude and more. Furthermore, in many cases our tool could prove

equivalence or find differences, while the others failed to do so.

1.2.1 Owur method in detail

We now describe our method in more detail. Our analysis starts by choosing a pair of
matched procedures p; in program P; and ps in program P», which are syntactically
different.

The basic block of our analysis is a (partial) procedure summary sum,, (i € {1,2})
for each procedure p;. The summary is obtained using symbolic execution. It includes
path summarizations (Ry,Ty) for a subset of the finite paths 7 of p;, where R is the
reachability condition for 7 to be traversed and T} is the state transformation describing
transformation from initial states to final states when 7 is executed.

Next, we compute a (partial) difference summary (C(p1,p2),U(p1,p2)) for p1, pa,
where C'(p1,p2) is a set of initial states for which p; and ps terminate with different final
states. U(p1,p2) is a set of initial states for which p; and py terminate with identical
final state. Both sets are under-approximations. However, the complement of U(p1, p2),
denoted —U(p1, p2), also provides an over-approximation of the set of initial states for
which the procedures are different.

Note that procedure summaries and difference summaries are both partial. This
is because their computation in full is usually infeasible. More importantly, their
full summaries are often unnecessary for computing the difference summary between
programs P;, Ps.

If U(p1,p2) =true we can conclude that no differences are propagated from py, po

to their callers. Their callers will not be further analysed then. Otherwise, we can
proceed to analysing pairs of procedures g1, g that include calls to p1, po, respectively.
As mentioned before, in building their procedure summaries and difference summary,
we use the already computed summaries of p1, ps.

The analysis terminates when we can fully identify the initial states of P, P, for
which the programs agree/disagree on their final states. Alternatively, we can stop when
a predefined threshold is reached. In this case the sets C'(p1,p2) and U(p1, p2) of initial
states are guaranteed to represent disagreement and agreement, respectively.

Side results of our analysis are the difference summaries computed for matched

procedures in Py, P, that can be reused if the procedures are called by other programs.

1.2.2 Main Contributions

The main contributions of this work are:

e We present a modular and demand-driven algorithm for computing semantic

difference between closely related programs.

e Our algorithm is unique in that it provides both under- and over-approximations

of the differences between program versions.

e We introduce abstraction-refinement into the analysis process so that a tradeoff

between the amount of computation and the obtained precision will be manageable.

e We develop a new notion of modular symbolic execution.

Chapter 2

Preliminaries

2.1 Procedures

We start by defining some basic notions of programs and procedures.

Definition 2.1.1. CALL GRAPH

Let P be a program, containing the set of procedures II = {p1,...,p,}. The call graph
for P is a directed graph with II as nodes, and there exists an edge from p; to p; if and
only if procedure p; calls procedure p;.

The procedure p; is a special procedure in the program’s call graph that acts as an
entry point of the program; it is also referred to as the main procedure in the program

P, denoted mainp.

Next we formalize the notions of variables and states of procedures.

e The wvisible variables of a procedure p are the variables that represent the

arguments to the procedure and its return values, denoted V).

e The hidden wvariables of a procedure p are the local variables used by the

procedure, denoted Vph.

e The wariables of a procedure p are both its visible and hidden variables, denoted
V (V= VU VD).

e A state oy, is a valuation of the procedure’s variables, o, = {v — c|v € V,,c € D, },

where D, is the (possibly infinite) domain of variable v.
e A wisible state is the projection of a state to the visible variables.

Without loss of generality we assume that programs have no global variables, since
those could be passed as arguments and return values along the entire program. We
also assume, without loss of generality, that all program inputs are given to the main
procedure at the beginning. The programs we analyze are deterministic, meaning that

given a visible state of the main procedure at the beginning of an execution (an initial

state), the execution of the program (finite or infinite) is fixed, and for a finite execution
the visible state at the end of the execution is fixed (called final state). The same
applies to individual procedures as well.

In our work, a program is represented by its call graph, and each procedure p is
represented by its control flow graph CFG) (also known as a flow program in [10]),
defined below.

Definition 2.1.2. ConTROL FLOW GRAPH (CFG)

Let p be a procedure with variables V,,. The Control Flow Graph (CFG) for p is
a directed graph CFG,, in which the nodes represent instructions in p and the edges
represent possible flow of control from one instruction to its successor(s) in the procedure

code. Instructions include:

e Assignment: ¥ = €, where ¥ = x1,...,x, is a list of variable in V,, and & =
et,...,e, a list of expression over V,. All expressions e; are computed before
being assigned to the variables x; simultaneously. An assignment node has one

outgoing edge.

e Procedure call: g(Y), where Y C V,, and the values of variables in Y are assigned
to the visible variables of procedure ¢g.! The variables in Y are assigned with the
values of the visible variables of g at the end of the execution of g. A call node

has one outgoing edge, to the instruction in p following the return of procedure g.

e Test: B(V},), where B(V,) is a Boolean expression over V,; a test node has two

outgoing edges, one marked with T, and the other with F.

A CFG contains one node with no incoming edges, called the entry node, and one node

with no outgoing edges, called the exit node.

Definition 2.1.3. PATH
Given CFG) of procedure p, a path m = [1,ls,... is a sequence of nodes (finite or
infinite) in the graph CFG,, such that:

1. For all 7 there exists an edge from [; to ;11 in CFG),.
2. 1 is the entry node of p.

The path 7 is maximal if it is either infinite or it is finite and ends in the exit node of

p.

We assume that each procedure performs a transformation on the values of the
visible variables, and has no additional side-effects. Procedure p terminates on a

visible state oy if the path traversed in p from o, is finite and maximal. A program

v if its main procedure terminates.

terminates on a visible state o), ...

"We assume that Y = {y1,...,y»} and Vi = {v1,...,vn}, yi is assigned to v; at the entry node,
and v; is assigned to y; at the exit node.

1 void pl(int& x) { 1 void p2(int& x) {
2 if (x < 0) { 2 if (x < 0) {
3 x = —1; 3 x = —1;

4 return; 4 return;

5 } 5

6 if (x >= 2) 6 if (x > 4)

7 return; 7 return;

8 while (x = 2) 8 while (x = 2)
9 X = 2; 9 X = 2;

10 x = 3; 10 x = 3;

11} 11}

Figure 2.1: Examples of procedure versions

The following semantic characteristics are associated with finite paths, similarly to
the definitions for flow programs in [10]. The characteristics are given (for a path in
a procedure p) in terms of quantifier-free First-Order Logic (FOL), defined over the

set Vp” of visible variables.

Definition 2.1.4. REACHABILITY CONDITION, STATE TRANSFORMATION
Let 7 be a finite path in procedure p.

e The Reachability Condition of 7, denoted R:(V}’), is a condition on the visible

states at the beginning of 7, which guarantees that the control will traverse .

e The State Transformation of 7, denoted T (V})), describes the final state of ,

obtained if control traverses 7 starting with some valuation o, of V.

T:(V}) is given by [V’| expressions over V', one for each variable z in V). The
expression for x describes the effect of the path on z in terms of the values of V)" at the
beginning of 7. Let T(V) = (f1,..., f\v;|) and T (V)Y) = (f, ..., f|’va‘) be two state
transformations. Then, T (V))) = Tr(V})) if and only if, for every 1 <i <[V'[, fi = f].

Ezxample 2.1.5. Consider procedure pl in Figure 2.1. Its only visible variable is x, used
as both input and output. Consider the paths that correspond to the following line
numbers: « = (2,3,4) and § = (2,6,7). Then,

Ra(z) =z <0 Rs(z) = (~(z <0)Az>2) =2 >2
To(z) = (1) Tp(z) = (z)

A path 7 is called feasible if R, is satisfiable, meaning that there exists an input
that traverses the path 7. Note that, in pl from Figure 2.1, the path (2,6,8,9) is not

feasible.

2.2 Symbolic Execution

Symbolic execution [7,17] (path-based) is an alternative representation of a procedure
execution that aims at systematically traversing the entire path space of a given
procedure. All visible variables are assigned with symbolic values in place of concrete
ones. Then every path is explored individually (in some heuristic order), checking
for its feasibility using a constraint solver. During the execution, a symbolic state T’
and symbolic path constraint R are maintained. The symbolic state maps procedure
variables to symbolic expressions (and is naturally extended to map expressions over
procedure variables), and the path constraint is a quantifier-free FOL formula over
symbolic values.

Given a finite path # = [y,...,l,, we use symbolic execution to compute the
reachability condition R;(V,’) and state transformation 77 (V). The computation is
performed in stages, where for every 1 <i < n+ 1, R.(V,) and T%(V,) are the path

condition and state transformation for path ly,...,l;_1, respectively. Initialization:

e For every x € V,,, T1(V,)[z] = .

o RL(V,) = true.

Assume R (V,) and T%(V},) are already defined. R:(V,) and T2 (V) are then defined

according to the instruction at node ¢:

e Assignment T = &: REFL(V,) := RL(V},), Va; € vars(z). TS (V,)[z)] = e[Vp +
T3 (Vp)] and Yy ¢ vars(a), T (Vy)[y] = Th(Vp)[y]
e Procedure call g(Y): The procedure g is in-lined with the necessary renaming

and symbolic execution continues along a path in g, returning to p when (if) g

terminates.2

o Test B(V,): Tf}“(vp) = Tfr(vp)a and

RV =

RL(V,) A B[V, <~ T:(V,)] if the edge l; — l;+1 is marked T
RL(V,) A =BV, <+ Ti(V,)] otherwise

As a result, when we reach the last node [,, of a finite path © we get:

R(V)) = RyHH(V))
Tﬂ(v;)) — Tn+1(‘/jp) \vav 3

As symbolic execution explores the program one path at a time, we start by

summarizing single paths, and then extend to procedures.

2Current values of Y are assigned to the visible variables of g, and assigned back at termination of g.
3Since we assume that all inputs are given through visible variables, and therefore no hidden variable
is used before it is initialized, V' will not appear in Rz (V,) and Ty (V}) vy

10

Definition 2.2.1. PATH SUMMARY
Given a finite maximal path 7 in p, a Path Summary (also known as a partition-effect
pair in [25]) is the pair (R (V})), Tx(V})).

Definition 2.2.2. PROCEDURE SUMMARY
A Procedure Summary (also known as a symbolic summary in [25]), for a procedure
p, is a set of path summaries

sumy C {(Rx(Vy,), Tx(V,))) | 7 is a finite maximal path in CFG)}.

Note that for a given CFG the reachability conditions of any pair of different maximal
paths are disjoint, meaning that for every initial state at most one finite maximal path
is traversed in the CFG. Thus, a procedure summary partitions the set of initial states
into disjoint finite paths, and describes the effect of the procedure p on each path
separately. This observation will be useful when procedure summaries are used to
compute difference summaries between procedures.

Unfortunately, it is not always possible to cover all paths in symbolic execution due
to the path explosion problem (even if all feasible paths are finite, their number may be
very large or even infinite). Therefore we allow for a given summary sum, not to cover

all possible paths, meaning V(r,t) , T may not be valid (\/(nt)esump r Z true).

esum

Definition 2.2.3. UNCOVERED PART OF A PROCEDURE SUMMARY

Given a procedure summary sum,, the Uncovered Part of sum,, is = \/(m) csum, T

For all inputs that satisfy the uncovered part of the summary nothing is promised:
the procedure p might not terminate on such inputs, or terminate with unknown outputs.

A summary for which the uncovered part is unsatisfiable (\/(JT= true) is called

r,t)Esum
a full summary. Note that a full summary only exists for procedures that halt on every

input.

Ezample 2.2.4. We return to pl from Figure 2.1. Any subset of the set {(z < 0,-1),
(x>0Az>2,2),(x >0Az<2,3)} is a summary for p;. For the summary

sump, = {(r <0,-1),(x 20Nz > 2,2)},

the uncovered part is characterized by z > 0 A x < 2.

2.3 Equivalence

We modify the notions of equivalence from [13] to characterize the set of visible states
under which procedures are equivalent, even if they might not be equivalent for every
initial state. Let p1 and pz be two procedures with visible variables V' and V),
respectively. Since their sets of visible variables might be different, we take the union

11

Vi UV, as their set of visible variables V7. Any valuation of this set can be viewed as

a visible state of both procedures.

Definition 2.3.1. STATE-EQUIVALENCES
Let o, be a visible state for p; and po.

e p; and py are partially equivalent for o, if and only if the following holds: If

p1 and pa both terminate on o,, then they terminate with the same final state.

e p1 and p mutually terminate for o, if and only if the following holds: p;

terminates on o, if and only if py terminates on oy.

e p1 and po are fully equivalent for o, if and only if p; and py are partially

equivalent for o) and mutually terminate for o,,.

12

Chapter 3

Our Contribution

3.1 Modular Symbolic Execution

A major component of our analysis is the modular symbolic execution, which analyses
one procedure at a time while avoiding inlining of called procedures. This prevents
unnecessary execution of previously explored paths in called procedures. Assume
procedure p calls procedure g. Also assume that a procedure summary for g is given by:
sumg = {(rt,th), ..., (r" ")}

Modular symbolic execution is defined as symbolic execution for assignment and test
instructions (see Section 2.2). For procedure call instruction g(Y') (where Y C V},) it is
defined as follows. For given R%(V,) and T.(V,):

R = R A\ n(TY)) (3.1)
(rit)Esumg
Vo g Y. T z] = T x] (3.2)

Vy; € Y. Ty = ITE(r (TR [Y) (TR [Y]), ITE (r*(TL[Y)), (T, [Y)),

J

ITE(... , ITE(r™(TLY)), tH(TLY]), UK)...))),
where:

o [TE(b,eq,ez) is an expression that returns e; if the condition b holds and returns
ez, otherwise. It is similar to the conditional operator (7:) in some programming

languages.
. té‘? refers to the jth element (for y;) of the path transformation ¢*.

e UK represents the value that is given if no path condition from sum, is satisfied.
That it, UK is returned when an unexplored path is traversed. Note, however,
that since we added (V ;. 4)esum, r(Ti[Y]) to the path condition R, a path that

s

satisfies R will never return UK. Thus, UK is just a place holder.

'"We use r(T}[Y]) to indicate that every vy, € V,” is replaced by the expression T7 [yx].

13

Modular symbolic execution, as defined here, restricts the analysis of procedure p
to paths along which g is called with inputs traversing paths in g that have already
been analyzed. For other paths, the reachability condition will be unsatisfiable. In
Section 3.5.1 we define an abstraction, which replaces unexplored paths by uninterpreted
functions. Thus, the analysis of p may include unexplored (abstracted) paths of g. If the
analysis reveals that the unexplored paths are essential in order to determine difference
or similarity on the level of p, then refinement is applied by symbolically analysing more
of ¢g’s paths.

We prove in Section 3.2 the connection between modular symbolic execution and
standard symbolic execution on the in-lined version of the program. Intuitively, as long
as the paths taken in called procedures are covered by the summaries of the called
procedures, the following holds: Assume that a path 7 in p includes a call to procedure
g. Then 7 corresponds to a set of paths in the in-lined version, each of which executing

a different path in g, more formally:

e For every path 7" in the in-lined version of p there is a corresponding path 7 in

p such that:

- Rﬂ-in — Rﬂ-
- Rﬂ-in — Tﬂ-in = Tﬂ—

e For every path 7 in p, there are paths 7", ... 7" in the in-lined version of p such
that:

- Ry < V?:l Rﬂz"

3.2 Symbolic Execution vs. Modular Symbolic Execution

We formally define and prove the relationship between standard symbolic execution,
defined on the program obtained by in-lining procedures, and modular symbolic execu-
tion, defined on the original program. For simplicity we assume here that we have a
single procedure ¢ that calls procedures p1,...,pr from locations Iy, ...,y with inputs
Y1,...,Y;, respectively. First we assume procedures p1,...,pg contain no procedure
calls. We deal with further sub-calls in Subsection 3.2.3. We further assume we are given
the summaries sumy,, ..., sumy, , and that different procedures do not have common
variable names.

We start by defining an in-lined C'F'G to which the standard symbolic execution
will be applied.

Definition 3.2.1. INLINED CFG
Let g be a procedure, represented by CFG,, that calls procedures py,...,p; from

14

nodes ly,...,lx, respectively. We obtain the in-lined version C’FG?I" from CFGy, by

performing the following changes for every i € [k]:
e Changes in nodes:

1. Remove node I; (I; : p;(Y3)).
2. Add assignment node I} : V! :=Y;.

3. Add assignment node I’*": Y; := V.
4. Add all the nodes from CFG),.

e Changes in edges:

1. Remove edge (1,1;), add edge (I,1"™).

Remove edge (I;,1), add edge (17", 1).

Add edge (1", lfntry), where I;™" is the entry node of CFG,,.
Add edge (I, lfOSt), where [$¥ is the exit node of CFG),.
Add all edges from CFG,,.

AT I

The hidden variables of CFG* are (th)m = th U Ule Vp, (disjoint sets according
to our assumption). The visible variables of C'F Gz" are the visible variables of ¢,
(un)m = V. Note that indeed hidden variables are not used before they are assigned
in CFGZ", since we assign each visible variable of p; at node 1. Therefore again we

conclude that, when R;,T; computed with symbolic execution for some 7 of length n
in CFGI, (V™ will not appear in R ((Vg)™) and T2 ((V,)™) Lvpyin-

Definition 3.2.2. LEGAL PATH
A finite path = I{" ... ! in CFGfI” is called legal if:

e " e CFG,, or

e There exists i € [k] such that 17 = [P°*

A legal path can not end inside a called procedure. Thus, by the definition of C'F’ Gf{‘,

pre

for every legal path 7 = ", ..., 1", and for every node l;-" =1,

AU , there exists r > j
such that:

o " =[P and

e for every j < s <7, [is a node from CFG,,.

We can now decompose each legal path to its original paths.

Definition 3.2.3. PROJECTED PATH
Let 7 be a legal path in CFGfI",

15

e Its p;-projected path, denoted 7 |,,, is the interval of nodes between [5**'* and

the first [$¥1* following it, if such [$*"* exists, or empty otherwise.?

e Its g-projected path, denoted 7 |, is the path obtained from 7 by the following

operations:

— Every node I is replaced by [;, the original calling node to p;.

— Every node not in CF G|, is removed (including nodes from called procedures,

and [P°* nodes).
Observation 3.2.4. A p;-projected path 7 |, is a path in CFG,,.
Observation 3.2.5. A g-projected path 7 |4 is a path in CFG|,.

Next to prove our claims we need to make sure that paths are covered by the

procedure summaries that are used to replace their procedures.
Definition 3.2.6. COVERED PATH
e We say that a path 7 in CFG), is covered by sum,, if (Rx,Tr) € sum,.

e We say that a path 7 in CF Gé" is calling-covered if for every i € [k], 7 |,, is

covered by sum,,

Lemma 3.2.7. Let 7! = 1},... 1} and 7* = 13,...,12, be two paths in CFG, with

no procedure calls, such that there exists an edge (IL,13). Then the path 7' - 7% =

I,... 05 03,... .12, is a path in CFG, and:
1. Ra2=RaAR, (Tﬂ.l)
2. Tﬂ-l,ﬂ-Q — Tﬂ-Q (Tﬂ-l)

Proof. We prove the lemma by induction on m, the length of 7%

Base: If m = 0 then 72 is empty, (7! - 72) = 7!, and:

1. Rpi2 =R =R ANtrue = R A R 2(Ty) since R 2 = true.
2. T2 = Too = Tr2(T), since Ty is the identity function.

Step: Assume correctness for 7' = [2,...,12, |, and consider the last node, 2.

e If node /2, is an assignment node z = &, then:

L. Rpe =R e = szlﬁjsll% —(a) R@:Tr'),z;n =R, =

= Rt ARy (Tp1) = Ry A R™(Tpa) = Ry A R™STH(T) =
=R ANR2(Th)

where:

2For simplicity we assume that on every path each procedure appears at most once, which is not
necessarily true in the presence of loops. We can easily deal with it by indexing called intervals by
occurrence as well as procedure.

16

(a) Definition of R for assignment.
(b) Induction hypothesis for 7.

— prtml (a)

2. Vz; € vars(:i"). T2 [.Tl] = T(Wl'ﬂl):l%q [fl] (rln), 12, [:L‘l] =
= (T3 2 [Vl) = el(Trrw[Vy]) =)

— (T (T,) V) = e T (T)[V]) =
— T (D)) = T (T i

Vy € Vp \ vars(a?). T2 [y] = T(Wl-ﬂ’),lgn [y} = T@T?ﬂ)ﬁ?ﬂ [y] -

= T, o [0 = T [y] = T (T] =

!

= T(Tr)ly] =\ T (T)ly) = T (T)[y]

(a)

where:

(a) Definition of T for assignment.

(b) Induction hypothesis for 7’
e If node 2, is a test node B(V},), then:

1. Rﬂ'l-ﬂ'2 - R(Tfl-’ﬂ'/),l?n_ = Rn+m+1 :(a) Rn+m A B(Tn+m [‘/;7]) =

(wtem’) 13, () 05, () 05,
— R A BT V) = Rps A Ry (Tyn) A B(T (T [V]) =
= R A R (Tr) A B(TB(T0)[Vp)) =\ Roa A R (T) =
=R ARp2(Th)
where B is either B or ~B, according to the edge marking on 72, and:
(a) Definition of R for test.
(b) Induction hypothesis for 7’
2 T = Toons, = TS, = T = T =
= T (Tp) = T3 (T) =\ T (To) = T2 (T1)
where:
(a) Definition of T' for test.
(b) Induction hypothesis for 7’ O

The theorems below, showing the connection between symbolic execution and
modular symbolic execution, rely on the corollary below that summarizes the effect of
in-lining and symbolically executing a path.

Let 7 be a legal path in CF Gé”, we assume that R, T, were computed by standard

symbolic execution, and that Ry, _, T, where computed by modular symbolic execution.

Corollary 3.1. Let 7 = Ii" ... 1i" be a legal path in C’FGEI", Zflé” = 1" and Iin = lfOSt,
where Y; = {y1,...,yr} and Vi = {vi,...,v} then:

1. R = R} A Rny, (T2[Yi])

2. For every y, € Y;, TP [y = Try,, (T2 [V [vl]

17

3. For every x € V; \ Vi, TP z] = Tfr[l’]

T

Proof. We get the corollary from the lemma, if we mark =’ = 11", ... ,l;" 1

1. Rg"rl == Rﬂ- == RTF/-lPre-ﬂ’\L .-lPOSt :(a) Rﬂ-/ VAN Rlpre_ lpost (Tﬂ-/) :(b)

Tyl
= Ry A\ Rppre (T DA R, 1P (lepre(Tw,)) —(0)

=Re AR post (Typre (T,r/)) =

= Rﬂ-/ /\ Rﬂ'ipi (ﬂfre()) /\ Rlpost(7T~Lp (ﬂpre (T))) :(6)

= R A Ry, (Typee(Tw)) =) R A Ry, (Typre (Tr)[Vi2]) =19
= Ru/ A Rey,, (Tw[Yi]) = RL A Ry, (T2[Y7)

where: "
(a) Lemma 3.2.7 for 7' = o/, 72 = [P . 7 |, -IP".
(b) Lemma 3.2.7 for 7! = I, 72 = 7 |, -IP*".

(c
(d
(e post = Lrue.

(f is defined over V).
() lpre DV =Y

Rlprc = true.

Lemma 3.2.7 for 7! = 7 i 7= lfOSt.

)
)
)
)
) R
) R

2. Let y; € Y;, then:

T;.L+1 [yl] =T o lpre 7TJ/ lpost [yl] (a) q}gost (Tﬂ-l'lfre'ﬂipi) [yl] :(b)
= T7r’~l,Pre'7Tipi [vi] = Tﬂim (TTr’-l,Pre)[vl] =) Tﬂipi (Tllpre (Tw))[v] =(©)
= Try,,, (Tee (To) VD) [or] = T, (T Vi) [01] = T, (TLYi]) 1]

pi ™

where:

(a) Lemma 3.2.7 for 7 = 7/ - 1P - 7 |, and 72 = [P°".

(b) P*": Y; = V! and therefore Tlpoqt(f)[yl] = flu].

© e
)
) T

emma 3.2.7 for 7! =7 and 2 =7 |,

L
(d) Lemma 1 for 7! = 7’ and 72 = I"™°.
(e is defined over V.

(f) lpre : =Y.
3. Let x € V;\ Y}, then:
T7?+1 [ZL'} == Tﬂ'/'lfre'TrJ,pi -lfOSt [l’] :(a) ﬂfost (Tﬂ—/'lgre‘ﬂJ/pi) [:E] :(b)

= T gpre.y, (2] =19 Ty, (Trgpee)] =19 T yore 2] =
= Tppre (Tr) 2] =) T[] = T[]

18

where:
(a ’%)re
(b) 1P : ¥; = V¥ and since z ¢ V; Typost (f)[2] = fla].

)
)

(c) Lemma 3.2.7 for 7! =7/ - [P"® and 72 = 7 |,,,.
)

(d

post
i .

Lemma 3.2.7 for 7! =7/ - 1P . 7w |}, and 7% =1

x € V, and therefore according to our assumption that there are no common
variable names between functions, x ¢ Vj,,. 7 |,, is a path in CFG), and
therefore does not change =x.

(e) Lemma 3.2.7 for 7! = 7/ and 7% = II"°.

(f) 1™ : V) =Y; and since = ¢ V) Tlfrc(f)[a:] = flx]. O

i

3.2.1 Symbolic Execution C Modular Symbolic Execution

To show the relation between standard and modular symbolic execution we show first that
every in-lined path 7 analysed using standard symbolic execution has a corresponding
path (its projection), that when analysed with modular symbolic execution, contains

the behaviors from .

in

q's its g-projected path

Theorem 3.2. Let w be a legal, calling-covered path in CFG,

7 lq satisfies:
1. Rx(V)) = Ry, (V)
2. Rx (V) = Tnu(Vy) dv,= Try, (V)
Proof. We prove the theorem by induction on the length of legal paths 7 (7 = Ii", ... 1in).

We denote the length of 7 |, by n.

Base: If m = 0 then 7, 7 |, are empty and:
1. Ry = R: =true — Ry, = R71r¢q = true

2. Vo € V. (Tp[z] = Tiz] =2 = T#iq [x] = Ty, [2]), and therefore
Ry — T di: TWJ,q

Step: Assume correctness for all legal paths of length strictly smaller than m. We

consider the last node, [

e If node /! is an assignment node Z = €, then by definition 7/ = I ... [!" | is
legal, 7 Lg= (' 1, lit), and:

L Ry =Ryt =@ Ry = Ry 5O Ry = Ry = RV =Ry,

where:

(a) Definition of R for assignment.

(b) Induction hypothesis for the legal path 7’.

19

% Ry =RIH1 =0 R = Ry) (T, Ly,= Thy,) -
(T3 bv,=Tp,,) = (T Ly, = T30,
where:
(a) Definition of R for assignment.
(b) Induction hypothesis for the legal path 7’
() Vay € vars(z). Ty [a] = ef(T[Vy]) = el(T7, V) = Ty]
vy € Vo \vars(z), TP [y) == Ty = T3,] = T).

e If node [is a test node B(V,), then by definition «’ = Ii" ... 17" | is legal,
T lq= (ﬂJ lgs Z%L)v and:

1. Ry =R™1' =@ R™ A B(T™) = Ry A B(Ty) —®
(Rpry, N B(Twy,)) = (i A B() =@ R:fql = Ry},
where B is either B or —B, according to the edge marking on m, and:
(a) Definition of R for test.
(b) Induction hypothesis for the legal path =’
2. Ry =R" S@pm — g, -0 (T, v, = Trry,) —
(T2 Ly, = w,) Gy L)
where:
(a) Definition of R for test.
(b) Induction hypothesis for the legal path =’
(c) T+ =T and T:’jl =Ty, (definition of T' for test).
q q

post pre

e If node I’ is a node ;7" then there exists j < n such that [; = [;”", by definition

=11 lm , is legal, m |q= (7" l4,1;), where [; is the original call node to p;
from CFGy, and:
1. Ry = RP = (RLA Ry, (T2[Yi]) = (Re A Rey,, (Tw[Yi])) =)
(Reryy A Ry, (T [Vi))) = (R, A Ry, (T2 [Vi])) =)
(R A (N (T, D) = ReF

(rt)esump,
where:

(a) Corollary 3.1.
(b

) Induction hypothesis for the legal path 7’.
(c) We assumed T is calling-covered, and therefore (R, ,Tx,.) € sumy,.
)

(d) Definition of R for a procedure call in the modular version.
2. Rp = Ry = (RL A Ry, (T21Y1)) = (Ru A Ry, (Tw[Yi]) =
(T b= Do) A By, (T, [Yi])) =

((T v, =) ARz, (Tﬁﬁq [Yi]))

20

and therefore:

Ve € Vy\ Yi Tl =) T3 o] = Tlla) =) 7l

™

Vo € Yi T i) = ITE(r (T2, 1Y), € (T2, YD i, ...) =@

T¥q

Ty, (T, YD) [] = Ty, (T2Yi) 0] =) Ty

T

where:

(a) Corollary 3.1.

(b) Induction hypothesis for the legal path 7’.

(¢) Definition of T for a procedure call in the modular version.

(d) We assumed 7 is calling-covered, and therefore (Ry|, ,Tr|,) € sumy,.
Also, Rﬂipi is implied by R;, and all reachability conditions in the

summary are disjoint. O

3.2.2 Symbolic Execution © Modular Symbolic Execution

For each path 7 analysed with modular symbolic execution there exists a set of cor-
responding in-lined paths that show the same behavior. Therefore for this direction
we say that given a path and an input, there exists an in-lined (single) corresponding
path that behaves the same as the modularly analysed path for that input. Since we
show this for any input we get that the entire behavior of m has corresponding in-lined
behaviors.

Let m be a finite path in CFG,, we assume that R, T were computed by modular

symbolic execution.

Theorem 3.3. Let m be a finite path in CFGy, and oy a visible state, such that
oy = Ry (V) and for all i € k the p;-projected paths traversed from oy m the in—lingd
program are in their procedures’ summaries. Then there exists a path " in CFGy
that satisfies:

1. 7'n b=
3. Trin(oy) dv,= Tr(0y)

Proof. Given a path m =1y, ...,1, we define 7 inductively, while maintaining that 7"
satisfies all three conditions.

Base: n = 0, meaning 7 is empty, then 7" is empty as well and we get:
1. 7 |,= 7 by definition.

2. oy = true and therefore op = R in since Ryin = RL,, = true.

rin

21

3. Vo € Vg Tpn(09)[2] = T (00)[2] = @ = T2(00)[z] = Tr(o?)[a].

win q
Step: Let m = l1,...,l, be a path in CFG,. We assume that for ' = l1,... 1,1,

/z‘n_lin
=17",.

T ., 1" | is defined and maintains the conditions.

e If [, is an assignment node = €, then we define 7" = (7", 1,,) and:

L 7 = (7" |4,1n) = (7', 1,,) = 7 by definition.

2. 0 = Ry = R =@ R = R and therefore by induction hypothesis
ol = Ryin = R™, =@ R"F1 = R i, where:
(a) By the definition of R for assignment.

3. Wy € Vg \wars(z). Tr(og)ly] = T3 (o)ly] =) T3 (04 ly] =

= T (o)ly] =) T fm(ofj)[y] =17 (0g)[y) =
=T (0g)ly] = Trin (o) Y]
)

V€ vars(z). Tr(og)lw] = TJ?“(UZ;)[el(T7 [Val)(og) =

=
= (T [Vy)) (o) =) e Trin V] (o) = en(T7

=T (o)) = Tran (0[]

rin

Val) (o) =

where:

(a) By the definition of T for assignment.
(b) Induction hypothesis for 7’.

e If [, is a test node B(V,), then we define 7 = (7', 1,,) and:

L 7 = (7" |4,1n) = (7', 1,,) = 7 by definition.

2. o) F Rx = Rt =(@) R A B(T™) = R AB(Ty), and therefore by induction
hypothesis oy |= Rpin A B(Tyin) = R A B () =(a) RZZ;H = R, in where:
(a) By the definition of R for test.

3. Telog) = T3 (o) =) T3 () = Tro(org) ="
= Trin(0y) dv,= T (0g) v, —(a) T:};Ll(og) v,= Trin(0g) v,

where:

(a) By the definition of T for test.
(b) Induction hypothesis for 7’

e If [, is a call node to p;(Y;), then we define 7" = (x/™, I, 1%, ... 1L, lpoSt), where

m =13,...,1} is a path in CFG), that is traversed from Ty (c?)[Y;]. meaning:

(x) oy b= B (Tw[Yi])-

1. 7" lg= (7Tlm g li) = (', 1) = m by definition.

2. 0y | Ry = RV =@ BRIV (o r(TR[YH]) = RerAV oy, (T [Yi)),
therefore by induction hypothesis and (%)
00 |= Ryrin A Re,(Tin[Yi]) = R™, A Ry, (T, [Vi]) =® R = R,

where:

22

(a) Definition of R for a procedure call in the modular version.

(b) Corollary 3.1.

3.V €V \ i Ta(o})le] = T2+ (0] =) T2 (o} [a] =

q

v] = T, (T [Yi) (o) [ur] =
= Tm (Tw”i" [Yz

_ Tm-‘rk:-i-l (O.ZI) yz] — Trri” (O,v) yl]

Tin

(
= Tr (T7 [Yi]) (o

]

)

where:

(a) Definition of T" for a procedure call in the modular version.
(b) Induction hypothesis for 7.

(c) (%), and m; must be covered by sumy, since oy = Rr and therefore oy |=
Ve sumy, r(T,[Y:]) and all reachability conditions in the summary are
disjoint.

(d) Corollary 3.1. O

3.2.3 Deeper Call Graphs

We proved so far our claims only for call graphs of depth 1. To extend to deeper call
graphs we first need to define some new definitions.
We assume that ¢ calls procedures pq,...,pr from locations [1,...,[; with inputs

Y1,...,Ys, respectively. And the set of all procedures transitively called from ¢ is Q.

Definition 3.2.8. INLINED CFG
Let ¢ be a procedure, represented by CFG,, that calls procedures pi,...,p; from
nodes Iy, ..., [, respectively. We obtain the in-lined version C'F GfI" from CFGy, by

performing the following changes for every i € [k]:
e Changes in nodes:

1. Remove node I; (I; : p;i(Y3)).
2. Add assignment node I} : V! :=Y;.
3. Add assignment node I°* : Y; := V.

4. Add all the nodes from CFG;’Z.
e Changes in edges:

1. Remove edge (1,1;), add edge (I, 1™).

23

. Remove edge (I;,1), add edge (lfOSt,l),
. Add edge (1P, 15™™), where 15" is the entry node of CFG.

2
3
4. Add edge (14, 1P°™"), where [$*1t is the exit node of CF G,
5. Add all edges from CF G;:‘.

The depth of an in-lined call graph is the call depth of the deepest call® from q.
The definitions of legal paths and g-projected path remain the same. We now need

two versions of p;-projected paths:

Definition 3.2.9. p,-PROJECTED PATH
Let 7 be a legal path in CFGf]”,

e Its modular pi-projected path, denoted 7]! is the sequence of nodes from

CFG), that appear in 7, with sub-calls replaced by the original calling site.

e Its in—lined pj-projected path, denoted 7 ifo’z is the interval of nodes between

5% and the first lf"it following it, if such [5*** exists, or empty otherwise.
Observation 3.2.10. A modular p;-projected path 7]! is a path in CFG),.
Observation 3.2.11. An in—lined p;-projected path = i;:? is a path in CFG;;‘.
Corollary 3.4. (7 |1") |,,= (7)

As before we need to clarify when our summaries have enough information.

Definition 3.2.12. COVERED PATH
We say that a path 7 in C'F GfI" is calling-covered if for every p € Q, 7 |} is covered

by sum,,.

To cope with further sub-calls, we apply the same theorems by induction on the
depth of the call graph.

The proofs we have for depth 1 will be used as base cases.

Symbolic Execution C Modular Symbolic Execution

Theorem 3.5. Let w be a legal, calling-covered path in CFGf]”, its q-projected path

7 1q satisfies:
1. Ry (V)) = Ry, (V)

2. Re(Vy) = T (V) dvy= Ty (V)

3Recursion can be unwound up to the needed depth, and since we analyse paths to a certain depth,
this suits our needs.

24

Proof. We prove by induction on ¢, the depth of the call graph CF Gfln. The base case
where ¢ =1 is Theorem 3.2. For the step we assume the depth of CFG}" is ¢ + 1 and
we assume correctness for all CF'Gs of lower depth (bounded by c).

To prove for depth ¢ 4+ 1 we use an internal induction on the length of legal paths 7
(=1, ...,1i"). We denote the length of 7 |, by n.

Base: If m = 0, the same proof as in the base case in the proof of Theorem 3.2.
Step: Assume correctness for all legal paths of length strictly smaller than m. We

consider the last node, [:

e If node [is an assignment node or a test node, then it’s the same proof as in the

proof of Theorem 3.2

e If node I’ is a node ZPOSt then there exists j < n such that [; = l?re, by definition

7 =1 lm 1 is legal, m Lq= (7" lq4,1;), where [; is the original call node to p;

from CFGy, and:
L Re = R = (RLA Ry (TAYi])) = (Rar A Ry (T [Yi])) =
(Rfr’iq A Rﬂi“? (Tﬂ"iq [Yi]) —{ (Rx 'Lg N Rﬂ'im(m'lq Yi])) =

(Riy, A Ry (T, V) =D Ry A\ (TR, Vi) = R

(r,t)Esumyp,
where:

(a) Corollary 3.1, since if all the sub-calls are in-lined, then we can apply
the lemma and its corollary.
(b) Internal Induction hypothesis for the legal path 7’.

(c) External Induction hypothesis for = f,’z, since the depth of CFG), is
bounded by c.

(d) We assumed 7 is calling-covered, and therefore (R m m, T Lo,) € sumy,.

(e) Definition of R for a procedure call in the modular version.

2. Rp = Ry™ =1 (RLA Ry (T2[Yi))) = (Br A Ry (T [Yi])) =)
(T b=, q)/\an (T, Y1)) =
(T b= Twy,) A Regy (T [Yi])) =

(T:
(T (
(72 vi=)ARW (72,))

and therefore:

va € Vo \ Vi T o) =1 T3] = T3la] =) 12 o]
Yy €Y. T:j{:l[)| = ITE(rH(T" YD), tl(T7?¢q[Y])[vl],...) (@)

Ty (T2, i) [01] = Tryye (T (V][] =9
Ty (TIYi) o] =) T3 (3]

™

where:

25

(a) Corollary 3.1, since if all the sub-calls are in-lined, then we can apply
the lemma and its corollary.

(b) Internal induction hypothesis for the legal path =’

(c¢) External Induction hypothesis for 7 J,;,:L, since the depth of CFG), is
bounded by c.

(d) Definition of T" for a procedure call in the modular version.

(e) We assumed 7 is calling-covered, and therefore (R, g T wz) € sumy,.
Also, R, i is implied by R;, and all reachability conditions in the
summary are disjoint.

(f) External Induction hypothesis for 7 ;’i‘, since the depth of CFG), is

bounded by c. Also, R, Lin is implied by R. O

Symbolic Execution O Modular Symbolic Execution

Theorem 3.6. Let m be a finite path in CFG,, and oy a visible state, such that
o F Rx(V)) and for all i € k the p;-projected paths traversed from oy in the in-lined
program are in their procedures’ summaries. Then there exists a path 7" in CFG"
that satisfies:

1. o =7
2. 0y F Rein(VY))
3. Trin(oy) dv,= Tr(0y)

Proof. We prove by induction on ¢, the depth of the call graph CF Gf]”. The base case
where ¢ =1 is Theorem 3.3. For the step we assume the depth of CFG" is ¢+ 1 and
we assume correctness for all CF'Gs of lower depth (bounded by c).

To prove for depth ¢+ 1, we use an internal induction on the length of 7. Given a path
7 =1,...,l, we define 7" inductively, while maintaining that 7" satisfies all three
conditions.

Base: n = 0, the same construction and proof as in the base case in the proof of
Theorem 3.3.

Step: Let m = l4,...,l, be a path in CFG,. We assume that for 7’ = [,...,l,_1,

o' =" 1 s defined and maintains the conditions.

e If [, is an assignment node or a test node, then it’s the same construction and

proof as in the base case in the proof of Theorem 3.3.

e If [, is a call node to p;(Y;), then we define 7™ = (x/™, I 1%, ... |1}, 1), where

m =13,...,1} is a path in CFG} that is traversed from Ty (oy)[Y;]. meaning:
(x) og = B (T [Yi])-

26

1. win b= (W/in lgli) = (7', 1) = m by definition.

2. 0y |= Re = R =) REAV (oo, (TR = R AV 1y eum,, (T [Yi]),
therefore by the internal induction hypothesis and (x)
00 |= Rpin A Re,(Tin[Yi]) = R™, A Ry, (T, [Yi]) =® R = R,

rin rin

where:

(a) Definition of R for a procedure call in the modular version.
(b) Corollary 3.1, since if all the sub-calls are in-lined (as in 7;), then we
can apply the lemma and its corollary.
3. Vo €V, \ Vi Tulop)la] = T3 (09)a] = T3 (0}] =
= T (og)[a] =) Tin ()] = Ty (o) 2] =1V

ein | = ﬂm(g)le]
Yy € Yi. Tr(og)lyl] = T”“ Dl =1

= ITE(r (T3 (o) [Yi]), ' (T

_ Tm+k:+1 (

e
(o

i(
= T, (T [Yz])(UZ)[’Uz] =) T (Tpin [Yi]) (o)) 1] =
= T, (T75 [Yi)) (o) [ur] =1
= T (o)] = Trin (09)]

where:

(a) Definition of T for a procedure call in the modular version.

(b) Induction hypothesis for 7’

(c) (%), and 7; must be covered by sumy, since oy = R; and therefore o} =
Ve sumy, r(T[Y;]) and all reachability conditions in the summary are
disjoint.

(d) Corollary 3.1.

(e) External induction hypothesis, since the depth of C’FG;,’Z’ is bounded by
c. U

3.3 Difference Summary

Throughout the rest of the paper, we refer to a syntactically different pair of procedures
as modified, and to a semantically different pair of procedures (not fully equivalent for
every state) as affected. Note that a modified procedure is not necessarily affected.
Further, an affected procedure is not necessarily modified, but must call (transitively) a
modified and affected procedure.

Our main goal is, given two program versions, to evaluate the difference and similarity
between them. For that purpose we define the notion of difference summary, in an

attempt to capture the semantic difference and similarity between the programs. A

27

difference summary is defined for procedures and extends to programs, by computing
the difference summary for the main procedures in the programs.

We start by defining the notion of full difference summary, which precisely captures
the difference and similarity between the behaviors of two given procedures. In this

section we give all definitions in terms of sets of states that might be infinite.

Definition 3.3.1. A Full Difference Summary for two procedures p; and po is a
triplet

AFully, p, = (Chphpzv unchp, p,, termlnihm,pz)

where,

® chy, p,is the set of visible states for which both procedures terminate with different

final states.

o unchy, p,is the set of visible states for which both procedures either terminate

with the same final states, or both do not terminate.

o termin_chy, p,is the set of visible states for which exactly one procedure terminates.

Note that chp, p, U unchp, p, U termin_chy, 5, covers the entire visible state space. The

three sets are related to the state equivalence notions of Definition 2.3.1 as follows.

o chy, p, is the set of the visible states that violate partial equivalence. It only

captures differences between terminating paths.
o termin_chy, p, is the set of visible states that violate mutual termination.
o unchy, p, is the set of visible states for which the procedures are fully equivalent.

Ezxample 3.3.2. Consider the procedures in Figure 2.1. The full difference summary for

this pair of procedures is:

chpypy = {{z = 4}}
unchp, p, = {{x = c}|c#2ANc#4}

termin_chy, p, = {{z — 2}}

For input 2 the old version pl does not change x, while the new version p2 reaches an
infinite loop, and therefore 2 is in termin_chy, p,. For input 3, although the paths taken
in the two versions are different, the final value of x is the same (3), and therefore 3 is
in unchy, p,. For input 4, pl does not change x, while p2 changes x to 3, and therefore 4

is in chp, p-

The full difference summary and any of its three components are generally in-
computable, since they require halting information. We therefore suggest to under-

approximate the desired sets. In the next section we present an algorithm that computes

28

under-approximated sets and can also strengthen them. The strengthening extends the
sets with additional states, thus bringing the computed summary “closer” to the full

difference summary.

Definition 3.3.3. Given two procedures p1, p2, their Difference Summary

Apipe = (C(p1,p2),U(p1,p2))

consists of two sets of states where

e C(p1,p2) C chyp, p,-
L4 U(pl,p2> - unChPhpz'

A difference summary gives us both an under-approximation and an over-approximation
of the difference between procedures, given by C(p1,p2) and =U (p1, p2)*, respectively.

The algorithm presented in the next section is based on the notion of path difference,
presented below. Recall that for a given path m, its path summary is the pair (R, Tr)
(see Definition 2.2.1).

Definition 3.3.4. Let p; and po be two procedures with the same visible variables
Vo =V, =Vy, and let m; and 3 be finite paths in CFG),, and CFG,,, respectively.
Then the Path Difference of m; and 79 is a triplet (d, Ty, Tr,), where d is defined as
follows:

d(Vy) < (R (V) A By (V) A =(Try (V) = To (V)

We call d the condition of the path difference. Note that d implies the reachability
conditions of both paths, meaning that for any visible state ¢ that satisfies d, path m
is traversed from o in CFG,, and path my is traversed from o in CFG),. Moreover,
when starting from o, the final state of m; will be different from the final state of mo
(at least for one of the variables in V). If d is satisfiable we say that m and m2 show

difference.

3.4 Computing Difference Summaries

3.4.1 Call Graph Traversal

Assume we are given two program versions, each consisting of one main procedure and
many other procedures that call each other. Assume also a matching function, which
associates procedures in one program with procedures in the other, based on names
(added and removed procedures are matched to the empty procedure). Our objective is
to efficiently compute difference summaries for matching procedures in the programs.

We are particularly interested in the difference of their main procedures. This goal

4We use — for set complement with respect to the state space.

29

will be achieved gradually, where precision of the resulting summaries increases, as
computation proceeds. In this section we replace the sets of states describing difference
summaries by their characteristic functions, in the form of FOL formulas.

As mentioned before, any block of code can be treated as a procedure, not only
those defined as procedures by the programmer.

Our main algorithm DIFFSUMMARIZE, presented in Algorithm 3.1, provides an
overview of our method. The algorithm does not assume that the call graph is cycle-free,
and therefore is suitable for recursive programs as well.

For each pair of matched procedures, the algorithm computes a Difference summary
Diff[(p1, p2)], which is a pair of C'(p1,p2) and U(p1,p2). Sum is a mapping from all
procedures to their current summary.

The algorithm computes a set workSet, which includes all pairs of procedures
for which Diff should be computed. The set workSet is initialized with all modified
procedures, and all their callers (lines 3-8), as those are the only procedures suspected to
be affected. We initially trivially under-approximate Diff for the procedures in workSet
by (false, false) (line 10). We can also safely conclude that all other procedures are not
affected (line 14).

Next we analyse all pairs of procedures in workSet (lines 17-31), where the order
is chosen heuristically. Given procedures p; and po, if they are syntactically identical,
and all called procedures have already been proven to be unaffected (line 19) — we can
conclude that pi,p2 are also unaffected. Otherwise, we compute sum,, and sum,, by
running MODULARSYMBOLICEXECUTION (presented in Section 3.1) on the code of each
procedure separately, up to a certain bound (chosen heuristically).

Since it is possible to visit a pair of procedures p1, po multiple times we keep the
computed summaries in Sum[p;] and Sum[ps], and re-use them when re-analyzing the
procedures to avoid recomputing path summaries of paths that have already been visited.
We then call algorithm CONSTRUCTPROCDIFFSUM (explained in Section 3.4.2) for
computing a difference summary for p; and ps.

Each time a difference summary changes (line 27), we need to re-analyse all its
callers to check how this newly learned information propagates (line 29).

Algorithm DIFFSUMMARIZE is modular. It handles each pair of procedures separately,
without ever considering the full program and without inlining called procedures.

As mentioned before, Algorithm DIFFSUMMARIZE is not guaranteed to terminate.
Yet it is an anytime algorithm. That is, its partial results are meaningful. Furthermore,

the longer it runs, the more precise its results are.

3.4.2 Computing the Difference Summaries for a Pair of Procedures

Algorithm CONSTPROCDIFFSUM (presented in Algorithm 3.2) accepts as input pro-
cedure summaries sumy, ,sumyp, and also the current difference summary of pi,ps.

It returns an updated difference summary A, ,,. In addition, it returns the set

30

Algorithm 3.1 DIFFSUMMARIZE(P), P,)

Input: Two program versions Pi, P>
Output: Difference Summary and a set of Path Difference Summaries for each pair of
matching procedures, including mainp, , mainp,
match = COMPUTEPROCEDUREMATCHING (P, P»)
FoundDiff[(p1, p2)] = 0, for each (p1,p2) € match
workSet := ()
newWorkSet:= {(p1,p2) € match : p; different syntactically from po}
while newWorkSet # workSet do
workSet := newWorkSet
newWorkSet := workSet U {(q1,q2) € match : I(p1,p2) € workSet s.t. ¢ calls
p1 or go calls pa}
end while
: for each (p1,p2) €workSet do
10: Dift[(p1, p2)] := (false, false)
11: Sumpi]:=0, Sum[ps]:=0
12: end for
13: for each (pi1,p2) € match\workSet do
14: Dift[(p1, p2)] := (false, true)
5. Sumpi]:=0, Sum[ps]:=0

© *®

16: end for

17: while workSet# () do

18: (p1,p2) := CHOOSENEXT(workSet) > heuristic order

19: if p1,po are syntactically identical and for all (g1, g2) € match s.t. p; calls g1 or
p2 calls go, Diff[(g1, g2)]=(*,true) then

20: newDiff := (false,true)

21: else

22: Sum|p;] := MODULARSYMBOLICEXECUTION(p;,Sum)

23: Sum[ps] := MODULARSYMBOLICEXECUTION(p2,Sum)

24: (newDiff,newFoundDiff) :=CoONSTPROCDIFFSUM (Sum|[p; |,Sum[p2],Diff[(p1, p2)])

25: FoundDiff[(p1, p2)]:=FoundDiff[(p1, p2)] U newFoundDiff

26: end if
27 if Diff[(p1,p2)] # newDiff then

28: Diff[(p1, p2)] := newDiff
29: workSet :== workSet U {(q1,q2) € match : q calls p; or g2 calls pa}
30: end if

31: end while
32: return (Diff, FoundDiff)

31

Algorithm 3.2 CONSTPROCDIFFSUM(sumy, , sum,, ,oldDiff)

Input: Procedure summaries sumy,, sumy, of procedures pi,p2, respectively, and
oldDiff, previously computed A, ,,
Output: updated Ay, p,, found_diff,, ,,
1: (C(p1,p2), U(p1,p2)) := oldDiff
2: found_diff ,,, ,,= 0
3: for each (r1,%1) in sum,, do

4: for each (rg,t2) in sum,, do

5: diffCond = r1 Arog ANty # to

6: if diffCond is SAT then

T: C(p1,p2):=C(p1,p2)V diffCond
8: found_diff ,, ,,-= found_diff ,, ,,U{(diffCond, t1,t2)}
9: end if

10: eqCond ;=11 Aro Nt1 =to

11: if eqCond is SAT then

12: U(p1,p2):= U(p1,p2)V eqCond
13: end if

14: end for

15: end for

16: return ((C<p17p2)7 U(plva))a found*diﬁ‘pl,pg)

found_diff , ,,of path differences, for every pair of paths in the two procedure sum-
maries, which shows difference.

The construction of diffCond in line 5 ensures that (diffCond ,t1,t2) is a valid
path difference. We add diffCond to C(p1,p2) (line 7), and (diffCond ti,t2) to
found _diff ,, ., (line 8). Thus, we not only know under which conditions the proce-
dures show difference, but also maintain the difference itself (by means of ¢; and
ta).

The construction of eqCond in line 10 ensures that for all states that satisfy it the final
states of both procedures are identical, as required by the definition of U(p;,p2). The
satisfiability checks in lines 6,11 are an optimization that ensures we do not complicate
the computed formulas unnecessarily with unsatisfiable formulas.

We avoid recomputing previously computed path differences. For simplicity, we do

not show it in the algorithm.

3.5 Abstraction and Refinement

3.5.1 Abstraction

In Section 3.1 we show how to define symbolic execution modularly. There, we restrict
ourselves to procedure calls with previously analyzed inputs. However, full analysis of
each procedure is usually not feasible and often not needed for difference analysis at the
program level. In this section we show how partial analysis can be used better.

We abstract the unexplored behaviors of the called procedures by means of uninter-

32

preted functions [18]. A demand-driven refinement is applied to the abstraction when
greater precision is needed.
We modify the definition of Modular symbolic execution for procedure call instruction

g(Y) in the following manner:

e First, we now allow the symbolic execution of p to consider paths along which p
calls g with inputs for which g traverses an unexplored path. To do so, we change
the definition from Equation (3.1) to REH = RL.

e Second, to deal with the lack of knowledge of the output of g, we introduce a
set of uninterpreted functions UF, = { UF g |1<j <|VP[}®. The uninterpreted
function UF%(T}; [Y]) replaces UK in T:M[y;] (Equation (3.2)), where y; € Y is
the j-th parameter to g.

We can now improve the precision of S;y1[y;] if we exploit not only the summaries
of g1 and g9 but also their difference summaries. In particular, we can use the fact
that U(g1, g2) characterizes the inputs for which ¢g; and g2 behave the same. We thus
introduce three sets of uninterpreted functions: UFy,, UFg,, UFy, 4,.

We now revisit Equation (3.2) of the modular symbolic execution for procedure call
g1(Y), where we replace UK in T y;] with

ITE(U (g1, 92)(TR[Y)), UF§, 4, (TR[Y]), UF5, (TL[Y])).

Similarly, for a procedure call g2(Y) we replace UK with

ITE(U(g1, 92)(TR[Y]), UF), o, (TR[Y]), UF}, (TR[Y])).
The set UFy, 4, includes common uninterpreted functions, representing our knowledge
of equivalence between g; and go when called with inputs T:[Y], even though their
behavior in this case is unknown. In some cases this could be enough to prove the
equivalence of the calling procedures pi, p2. The sets UF, and UF,, are separate
uninterpreted functions, which give us no additional information on the differences or

similarities of g1, gs.

Ezxample 3.5.1. Consider again procedures pl, p2 in Figure 2.1. Let their procedure

summaries be
(.Z' < 07 _1)7 (l’ > 27:6)}
(.%' < 07 _1>7 (CU > 47 .’E)}

sump, () = {
sump, () = {
and their difference summary be A, ,, = (false,z < 2V 2 > 4). When symbolic

execution of a procedure g reaches a procedure call pl(a), where a is a variable of the

5An obvious optimization is to use the previous symbolic state for visible variables of p that are only
used by g as inputs but are not changed in g. However, for simplicity of discussion we will not go into
those details.

33

1 void f1(int& x) { 1 void f2(int& x) {

2 if (x =5) { 2 if (x =5) { 1 void abs(int& x) {
3 abs(x); 3 abs(x); 9 i (x >= 1)

4 if (x =0) { 4 if (x =0) { 3 return :

5 x = 0; 5 x = 1; 4 else ’

6 return; 6 return; 5 ‘= —x-

7 } 7 } 6} ’

8 } 8 }

9 } 9 }

Figure 3.1: Procedure versions in need of refinement

calling procedure g, we will perform:

Ri+1 :RZ
Vy; # a. TS y;) =Ty
T a] = ITE(T}[a] < 0,—1,ITE(T}[a] > 2, T}[al,

ITE(Tyla] < 2V Tyla] > 4, UFy, 1p(Thla]), UFg (Ty]a))))-

3.5.2 Refinement

Using the described abstraction, the computed R, T, may contain symbols of uninter-
preted functions, and therefore so could diffCond = r1 A rg Aty # to and eqCond =
r1 Arg Aty = to (lines 5, 10 in Algorithm CONSTPROCDIFFSUM). As a result, C(p1, p2)
and U(p1, p2) may include constraints that are spurious, that is, constraints that do not
represent real differences or similarities between p; and po. This could occur due to the
abstraction introduced by the uninterpreted functions. Thus, before adding diffCond to
C(p1,p2) or eqCond to U(p1,p2), we need to check whether it is spurious. To address
spuriousness, we may then need to apply refinement by further analysing unexplored
parts of the procedures. This includes procedures that are known to be identical in
both versions, since their behavior may affect the reachability or the final states, as

demonstrated by the example below.

Ezample 3.5.2. To conclude that the procedures in Figure 3.1 are equivalent, we need
to know that abs(5) cannot be zero. Therefore, we need to analyse abs, even though it

was not changed or affected.

We use the technique introduced in [4]: Let ¢ be a formula we wish to add to
either C(p1,p2) or U(p1,p2) (¢ € {diffCond, eqCond}) such that ¢ includes symbols of

uninterpreted functions. Before being added, it should be checked for spuriousness.

For every k € {1,2}, assume procedure pj, calls procedure gi(Yy) at location I;,

on the single path 7’ from py, described by ¢. For every k € {1,2} apply symbolic

34

execution up to a certain limit on g; with the pre-condition

en-| NV r(TEDA)) A vy =T Y

™
(rt)€sumg,

where:
e ¢ - restricts the paths traversed in g to ones feasible under the call from 7’

o — (\/(T 1) esumy, T(Tfrlf_l[YkD) - restricts the paths traversed in g to ones not
previously explored.

o V) = Tfr’f_l[Yk] - links between the inputs to g, to the visible variables of gy,

which are the ones that will appear during the traversal.

When the reachability checks are performed with this precondition, only new paths
reachable from this call in py are explored. For every such new path m, add (R, T}) to
sumyg, , replace the old sumg, with the new sumg, in ¢ and check for satisfiability again.
As a result, we either find a real difference or similarity, or eliminate all the spurious
path differences that involve the explored path 7 in g,. The refinement suggested above
can be extended in a straightforward manner to any number of function calls along a
path.

Ezxample 3.5.3. Consider again the procedures in Figure 3.1. Assume that the current
summaries of abs;=absy=abs are empty, but it is known that both versions are identical
(unmodified syntactically). We get (using symbolic execution and Algorithm 3.2) the
diffCond for p; and pa:

diffCond = [Jc =5A (ITE (true, UF gbs, abss (%), UF aps, (2)) = O)/\
z=5A (ITE (true, UF aps, apsy (), UF aps, (z)) = 0) AO # 1]

= |:£L' =5A UFabsl,absg(x) =0

Next we use x = 5 as a pre-condition, and perform symbolic execution, updating the
summary for abs: (z > 1,x). Now diffCond is:

lx =5A (ITE (m > 1,x, ITE(true, UF gps, abs, (T), UFabsl(x))) = O)/\
z=5A (ITE (x > 1,1, ITE (true, UF aps, apsy (), UF aps, (x))) - o) AO # 1]

= lx =5A <ITE<$ >1,x, UFabsl’asz(m)) = O) =rx=5Az=0

which is now unsatisfiable. We thus managed to eliminate a spurious difference without

computing the full summary of abs.

35

Once a difference summary is computed, we can choose whether to refine the difference
by exploring more paths in the individual procedures; or, if diffCond or eqCond contains
uninterpreted functions, to explore in a demand driven manner the procedures summa-
rized by the uninterpreted functions; or continue the analysis in a calling procedure,
where possibly the unknown parts of the current procedures will not be reachable. In
Chapter 4 we describe the results on our benchmarks in two extreme modes: running
refinement always immediately when needed (MODDIFFREF), and always delaying the
refinement (MODDIFF).

3.6 Comparison to Related Work

A formal definition of equivalence between programs is given in [13]. We extend these
definitions to obtain a finer-grained characterization of the differences.

We extend the path-wise symbolic summaries and deltas given in [25], and show
how to use them in modular symbolic execution, while abstracting unknown parts.

The SYMDIFF [20] tool and the Regression Verification Tool (RVT) [14] both check
for partial equivalence between pairs of procedures in a program, while abstracting
procedure calls (after transforming loops into recursive calls). Unlike our tool, both
SYMDIFF and RVT are only capable of proving equivalences, not disproving them.
In [16], a work that has similar ideas to ours, conditional equivalence is used to
characterize differences with SYMDIFF. The algorithm presented in [16] is able to deal
with loops and recursion; however, the algorithm is not fully implemented in SYMDIFF.
Our tool is capable of dealing soundly with loops, and as our experiments show, is often
able to produce full difference summaries for programs with unbounded loops. We also
provide a finer-grained result, by characterizing the inputs for which there are (no)
semantic differences.

Both SYMDIFF and RVT lack refinement, which often causes them to fail at proving
equivalence, as shown by our experiments in Chapter 4. Both tools are, however,
capable of proving equivalence between programs (using, among others, invariants and
proof rules) that cannot be handled by our method. Our techniques can be seen as an
orthogonal improvement. SYMDIFF also has a mode that infers common invariants, as
descried in [21], but it failed to infer the required invariants for our examples.

Under-constrained symbolic execution, meaning symbolic execution of a procedure
that is not the entry point of the program is presented in [27,28], where it is used
to improve scalability while using the old version as a golden model. The algorithm
presented in [27,28] does not provide any guarantees on its result, and it does not
attempt to propagate found differences to inputs of the programs. By contrast, our
algorithm does not stop after analysing only the syntactically modified procedures, but
continues to their calling procedures. On the other hand, procedures that do not call
modified procedures (transitively) are immediately marked as equivalent. Thus, we

avoid unnecessary work. In [27], the new program version is checked, while assuming

36

that the old version is correct. We do not use such assumptions, as we are interested in
all differences: new bugs, bug fixes, and functional differences such as new features.

In [5,26] summaries and symbolic execution are also used to compute differences.
The technique there leverages a light-weight static analysis to help guide symbolic
execution only to potentially differing paths. In [6], symbolic execution is applied
simultaneously on both versions, with the purpose of guiding symbolic execution to
changed paths. Both techniques, however, lack modularity and abstractions. A possible
direction for new research would be to integrate our approach with one of the two.

Our approach is similar to the compositional symbolic execution presented in [4,12],
that is applied to single programs. However, the analysis in [4,12] is top-down while ours
works bottom-up, starting from syntactically different procedures, proceeding to calling
procedures only as long as they are affected by the difference of previously analyzed
procedures. The analysis stops as soon as unaffected procedures are reached.

Our algorithm is unique in that it provides both an under- and over-approximations
of the differences, while all the described methods have no guarantees or only provide

one of the two.

37

38

Chapter 4
Experimental Results

We implemented the algorithm presented in section 3.4 with the abstractions from
Section 3.5 on top of the CProver framework (version 787889a), which also forms
the foundation of the verification tools CBMC [8], SATABS [9], IMPACT [22] and
WOLVERINE [19]. The implementation is available online [2]. Since we analyse programs
at the level of an intermediate language (goto-language, the intermediate language used
in the CProver framework), we can support any language that can be translated to this
language (currently Java and C). We report results for two variants of our tool — without
refinement (MODDIFF for Modular Demand-driven Difference), and with refinement
(MoDpDIFFREF). The unwinding limit is set to 5 in both variants.

SymDiff and RVT: We compared our results to two well established tools, SYMDIFF
and RVT. For SYMDIFF, we used the smack [3] tool to translate the C programs into
the Boogie language, and then passed the generated Boogie files to the latest available

online version of SYMDIFF.

4.1 Benchmarks and Results

We analysed 28 C benchmarks, where each benchmark includes a pair of syntactically
similar versions. Our benchmarks are available online [1]. Our benchmarks were chosen
to demonstrate some of the benefits of our technique, as explained below. A total of 16
benchmarks are semantically equivalent (Table 4.1a), while some benchmarks contain
semantically different procedures. When using refinement, our algorithm was able to
prove all equivalences between programs but not between all procedures (although
some were actually equivalent). RVT’s refinement is limited to loop unrolling, and
its summaries are limited as well. Thus, it cannot prove equivalence of ancestors of
recursive procedures or loops that are semantically different. Also, if it fails to prove
equivalence of semantically equivalent recursive procedures or loops, it cannot succeed
in proving equivalence of their ancestors. As previously mentioned, RVT can sometimes
prove equivalence when our tool cannot. The latest available version of SYMDIFF failed

to prove most examples, possibly also for lack of refinement.

39

Benchmark | MopDirr | MODDIFFREF | RVT | SYMDIFF

Const 0.545s 0.541s 4.06s 14.562s

Add 0.213s 0.2s 3.85s | 14.549s
Sub 0.258s 0.308s 5.01s F
Comp 0.841s 0.539s 5.19s F
LoopSub 0.847s 1.179s F F
UnchLoop F 2.838s F F
LoopMult2 1.666s 1.689s F F
LoopMulth F 3.88s F F
LoopMult10 F 9.543s F F
LoopMult15 F 21.55s F F
LoopMult20 F 49.031s F F
LoopUnrch2 0.9s 0.941s F F
LoopUnrchb 1.131s 1.126s F F
LoopUnrch10 1.147s 1.168s F F
LoopUnrch15 1.132s 1.191s F F
LoopUnrch20 1.157s 1.215s F F

(a) Semantically equivalent

Benchmark | MopDiFF | MDDIFFREF
LoopSub 1.187s 2.426s
UnchLoop F 8.053s
LoopMult2 3.01s 3.451s
LoopMulth F 5.914s
LoopMult10 F 10.614s
LoopMult15 F 14.024s
LoopMult20 F 25.795s
LoopUnrch2 2.157s 2.338s
LoopUnrchb 2.609s 3.216s
LoopUnrch10 2.658s 3.481s
LoopUnrch15 2.835s 3.446s
LoopUnrch20 3.185s 3.342s

(b) Semantically different

Table 4.1: Experimental results. Numbers are time in seconds, F indicates a failure to
prove equivalence in (a), and that the difference summary of main was not full (some
differences were not found) in (b).

40

int fool (int a, int b) {

int c=0;
if (a<0) {
int fool(int a, int b) { int main(int x, for (int i=1;
int c=0; charxargv []) { i<=b;++i)
for (int i=1; i<=b; ++i) //LoopMult2 ct=a;
ct+=a; return foo (2,2); }
return c; } return c;
} }
int main(int x,
int foo2(int a, int b) { charxargv []) { int foo2(int a, int b) {
int ¢=0; //LoopMult5 int c¢=0;
for (int i=1; i<=a; ++i) if (x>=b && x<7) if (a<0) {
ct+=b; return foo (x,5); for (int i=1;
return c; return 0; i<=a;++1i)
} } c+=b;
(a) procedures fool and foo2 in (b) main functions of } .)
LoopMult benchmarks LoopMult2 and Loop- } returin ¢
Multb

(c) procedures fool and foo2 in
LoopUnrch benchmarks

Figure 4.1: LoopMult and LoopUnrch benchmarks

4.2 Analysis

We now explain in detail the benefit of our method on specific benchmarks. The
LoopUnrch benchmarks illustrate the advantages of summaries. Our tool analyses fool
and foo2 from Figure 4.1c, finds a condition under which those procedures are different
(for example inputs —1,1), and a condition under which they are equivalent (a > 0).
In all versions of this benchmark, fool and foo2 are called with positive (increasing)
values of a (and b), and hence the loop is never performed. We are able to prove
equivalence efficiently in all versions, both with and without refinement.

The LoopMult benchmarks illustrate the advantages of refinement. Our tool analyses
fool and foo2 from Figure 4.1a, finds a condition under which those procedures are
different (for example inputs 1,—1), and a condition under which they are equivalent.
We also summarise all behaviors that correspond to unwinding of the loop 5 times.
This unwinding is sufficient when the procedures are calls with inputs 2,2 (benchmark
LoopMult2, the first main from Figure 4.1b), and therefore both MD-Dirr and MD-
DiFFREF are able to prove equivalence quickly. This unwinding is, however, not sufficient
for benchmark LoopMult5 (the second main from Figure 4.1b). Thus, MD-DIFF is not
able to prove equivalence (the summary of fool/2 does not cover the necessary paths),
while MD-DIFFREF analyses the missing paths (where 5 < a < 7A b =5), and is able
to prove equivalence. As the index of the LoopMult benchmark increases, the length
of the required paths and their number increases, and the analysis takes more time,
accordingly, but only necessary paths are explored.

The remaining 12 benchmarks are not equivalent, and our algorithm is able to find
inputs for which they differ (presented in Table 4.1b). Since both SYMDIFF and RV T
are only capable of proving equivalences, not disproving them, we did not compare to

those tools.

41

42

Chapter 5

Conclusion and Future Work

In this dissertation we developed a modular and demand driven method for finding
semantic differences and similarities between program versions. It is able to soundly
analyse programs with loops, and guide the analysis towards ”interesting” paths. Our
method is based on (partially abstracted) procedure summarizations, that can be refined
on demand. Our experimental results demonstrate the advantage of our approach due
to these features.

Some ideas for future work are:

e Incorporate the ideas shown here with some of the ideas from other works, such
as [14] or [5,26].

e Extend the implementation to support pointers and memory allocation.

43

44

Bibliography

[1] ModDiff benchmarks. https://github.com/AnnaTrost/ModDiff/tree/master/benchmarks.
[2] ModDiff tool. https://github.com/AnnaTrost/ModDiff.

[3] SMACK software verifier and verification toolchain.

https://github.com/smackers/smack.

[4] S. Anand, P. Godefroid, and N. Tillmann. Demand-driven compositional
symbolic execution. In Tools and Algorithms for the Construction and Analysis
of Systems, LNCS, pages 367-381. Springer, 2008.

[5] J. D. Backes, S. Person, N. Rungta, and O. Tkachuk. Regression verification
using impact summaries. In Model Checking Software (SPIN), volume 7976
of LNCS, pages 99-116. Springer, 2013.

[6] C. Cadar and H. Palikareva. Shadow symbolic execution for better testing
of evolving software. In Companion Proceedings of the 36th International
Conference on Software Engineering, pages 432-435. ACM, 2014.

[7] C. Cadar and K. Sen. Symbolic execution for software testing: three decades
later. Communications of the ACM, 56(2):82-90, 2013.

[8] E. Clarke, D. Kroening, and F. Lerda. A tool for checking ANSI-C programs.
In Tools and Algorithms for the Construction and Analysis of Systems, LNCS,
pages 168-176. Springer, 2004.

[9] E. Clarke, D. Kroening, N. Sharygina, and K. Yorav. SATABS: SAT-based
predicate abstraction for ANSI-C. In Tools and Algorithms for the Construc-
tion and Analysis of Systems, LNCS, pages 570-574. Springer, 2005.

[10] N. Francez. Program verification. Addison-Wesley Longman, 1992.

[11] D. Gao, M. K. Reiter, and D. Song. BinHunt: Automatically finding semantic
differences in binary programs. In Information and Communications Security,
LNCS, pages 238-255. Springer, 2008.

[12] P. Godefroid. Compositional dynamic test generation. In ACM SigPlan
Notices, volume 42, pages 47-54. ACM, 2007.

45

[13]

[14]

[15]

[16]

[17]

18]

[21]

[26]

B. Godlin and O. Strichman. Inference rules for proving the equivalence of
recursive procedures. Acta Informatica, 45(6):403-439, 2008.

B. Godlin and O. Strichman. Regression verification. In Proceedings of the
46th Annual Design Automation Conference, pages 466—-471. ACM, 2009.

B. Godlin and O. Strichman. Regression verification: proving the equivalence
of similar programs. Software Testing, Verification and Reliability, 23(3):241—
258, 2013.

M. Kawaguchi, S. K. Lahiri, and H. Rebelo. Conditional equivalence. Tech.
Rep. MSR-TR-2010-119, 2010.

J. C. King. Symbolic execution and program testing. Communications of the
ACM, 19(7):385-394, 1976.

D. Kroening and O. Strichman. Equality logic and uninterpreted functions.

In Decision Procedures, pages 59-80. Springer, 2008.

D. Kroening and G. Weissenbacher. Interpolation-based software verification
with WOLVERINE. In Computer Aided Verification, LNCS, pages 573-578.
Springer, 2011.

S. K. Lahiri, C. Hawblitzel, M. Kawaguchi, and H. Rebélo. SYMDIFF: A
language-agnostic semantic diff tool for imperative programs. In Computer
Aided Verification, LNCS, pages 712-717. Springer, 2012.

S. K. Lahiri, K. L. McMillan, R. Sharma, and C. Hawblitzel. Differential as-
sertion checking. In Proceedings of the 2013 9th Joint Meeting on Foundations
of Software Engineering, pages 345-355. ACM, 2013.

K. L. McMillan. Lazy abstraction with interpolants. In Computer Aided
Verification, LNCS, pages 123-136. Springer, 2006.

N. Partush and E. Yahav. Abstract semantic differencing for numerical

programs. In Static Analysis, LNCS, pages 238-258. Springer, 2013.

N. Partush and E. Yahav. Abstract semantic differencing via speculative
correlation. In ACM SIGPLAN Notices, volume 49, pages 811-828. ACM,
2014.

S. Person, M. B. Dwyer, S. Elbaum, and C. S. Pasareanu. Differential symbolic
execution. In Foundations of Software Engineering, pages 226-237. ACM,
2008.

S. Person, G. Yang, N. Rungta, and S. Khurshid. Directed incremental
symbolic execution. In ACM SIGPLAN Notices, volume 46, pages 504-515.
ACM, 2011.

46

[27]

[30]

D. A. Ramos and D. Engler. Under-constrained symbolic execution: cor-
rectness checking for real code. In 24th USENIX Security Symposium, pages
49-64, 2015.

D. A. Ramos and D. R. Engler. Practical, low-effort equivalence verification
of real code. In Computer Aided Verification, LNCS, pages 669—685. Springer,
2011.

O. Strichman and M. Veitsman. Regression verification for unbalanced recur-
sive functions. In F'M 2016: Formal Methods: 21st International Symposium,
Limassol, Cyprus, November 9-11, 2016, Proceedings 21, pages 645—658.
Springer, 2016.

W. E. Wong, J. R. Horgan, S. London, and H. Agrawal. A study of effective
regression testing in practice. In Software Reliability Engineering, 1997.
Proceedings., The Eighth International Symposium on, pages 264-274. IEEE,
1997.

47

JPOITIVD D210 NNIN P20 N2 DAYPN DR DN, IPIAINTIN P10 NNIN O THIN 1IN

S5y NATNN MYMN TN ,NIVA D900 95 NNID SO NISTIN NPD1AND ININT DWYNNYHN DN
.DNYH 990N MNIPIV MINYHD D9O0N

PN IOV OO D MXIN MNNNN 0D 000 IMN IPNYMN IOV DIPININD NN YD
L7932 ©HWI) DINKD DI IYUNRD D) MPPPY NYIND NYHNM ANy

DY HNMIn

AN N NTIAY DY NN MmN

.MOIN MNDI P2 OPVIND ODTIAN 1IWND AYIAT-NNNNDI MINTIN DNINON DIINN 1IN e

.DPVINON OOTIND NNNN IVPY DY PP NP NINY TI2 >TINY 13OV DIPIMIONN

SV PYTN MDD PIV PONI VIDYY 1D DIVINRNDN NIV MPNPIVDIRD D9 DIINN 1IN
JSIRSINN

PIOYTIN YDIADY0 NNIN OV PYIN IR ONNOND 1IN

ii

8N

13910 N NNTIP DDA 0MPY VI Yy NOAPNN AYTN DD GUND ,0°25V2 NN MNON
SV PN MIIPSY MAT DXY»ON 137N ,NIN DY MND PNV DY NNINNA OYTaNN NN Pand
1D DOTAN YY YN (Haya NPTIIV) MY RDDN DY MNOYIA YNNYND 1N AN MmN
1OIND .NNSNN DY PN ONIN 1IN NPWN DN P1TAD 03 12 .IYTNN RN DY MND) Pond
2IWND 259D DIPINON DXINN NN NN DY 21N TN’ NPN MDD NI NN I NNYYN 995
D2”ONND DN .NPIDN PNV Pa (VD9-VOP YON NYNIAN) OPVINDN DNIPYN SV (YTOIN) 2 NPN
DXANND DN DY 0N MNXDN PNV NXINN DYAPNNN DPIDN DXANNN DNAY OPNONNN DXANN
2900 DPMTN PP DYTOINIY NN NIPPYN NI0NN D D90 DANNN DNAY O»NONNN
3 o1 70N MIPS AT NI IPPYN VDU NPN NPIPHN NN NIAY WNRNWNND 208D
TIOINN 2Y IWND (NN9ND PTY GNI) P2901 717 MINMON MDY Pa DTa0N DY 2PN avrn
MNIND YRNYND MIYAN DIN DX .INY MPT PP ORIV 0”P2 MNNINY 0) 1O5 .09
DM9NYNN MNYNN DNN YO0 DMPYN DY DX PP DINOD ,MIIYN MNYO DIPINOND NN
AN NN TONNI MIANYN PIMIRNIN TR 07N> DIPINONIY NV KD . 2T TN

0”32 MINXIN D2P5 NY Y52 N PPDaND

NNOPY DNIN NR) NYPRIN MDY IR 9D DY 00PN NNV JY NPIDN 1D 1OV MNIN MINNIN
MNYN SY V0N ONAY DVIP MNP VIOV (MNXDDN SNYHN MDY OV NN P DHRND
DMNAY DVOP ,MANIY PN JPNVY IX I (MY DX) MY DY VOPN DNAY DVOP NNV

DTAN W ORN T RO

AUND INY N2 N2 NN OIS NIND DAN NN NV YD DY Tiayd 515 DIMINOND DINN
MAPWY MNDI P2 DPOPLID DMPY .DOYN NPON 0N NNDINN P DPOPVIDN DDTIANN
Y2 DY DOIPYY [NNONN DY DMDN INNI DROIN DVYN IR MNP DXIPYY DN MIDIN SV
D) NIN NOY MNNN IPYN 0 DYIVIND NDONI DMK P DN DN IOV YN .INIPN
PN NN DIPH,MPAYIN PN IDINND MXIPIN MDY . TI92 MY 21T DD NNINN D AN TN

JNYY D150 DVNNYN

DIV (MYNIN RO NPIPNS NIRY) DPOVPIVDIN MY MDD DN DN MWD Jynd
NOID YO MOAMYN MYNN RO NPXPNO YRNYND N2 THD OORIND DN .IWAT 29D YTYD
YN OV NPYTNN NRDNMNNN DY YN NY PR IYUNRD D) ,IP0IND MODPY HY 1OV YN NN
MTIPID TY ,MNRDN P2 OPOPLVLYDN DMPYNN ONN ,NDYND-NVNIN SNS NOY DNPINONRN
-NoYNoN) PTY DYNIN NN ,PPADN PR DIMDON TN DY PPTN IUND .NMONN DY NDON
NP NTIVN DI DY NNYN YITN D120 8D 2T PNONN NP IYPNA vnnvnn (Nund

AYNNN OYTNRD NVNPO XTI IR NDNIO OV NNPNIND YA IPNNN

NAPN TONN2 DI IPNNT POMYI I2NNN NNYD NN MDNS Nt NN MRHND P PON
:32NNN DY 00NN IPNN

Anna Trostanetski, Orna Grumberg, and Daniel Kroening. Modular demand-driven analysis
of semantic difference for program versions. In International Static Analysis Symposium.

Springer, NY, USA, 2017.

nmn

2T TONNA NN ANIYD NP ADNTHN NN DNYAY X129 TIND MTIND MNN9a
TN CTNND 20 NYY DIVIND DI) 10N 19 JNDI0Y I I1NIP ONITO NTIN 2N 0N

Sy 92”0 NNLVIAN TP APNND NIDNT POIA .9 PNYYY D OTIT MIDNI PMIDLY NN I
STINONYNA NTIN H’90I1N NNNN

D970 DY AYINT-ININ DITIN NIN
DN DY MNRDI))2 DYV

PPN DYy NN

ANINN NOAPO MYWITN YV 'PON "o Dwd
2AVNNN PYTHI DYTND I0DNN

HSIODINO N

DN MONOV NON — POV VIDD YN
2017 OV nan 5777 1N

D970 DY AYINT-ININ DITIN NIN
DN DY MNRDI))2 DYV

IHSIODIN0 N

	List of Figures
	Abstract
	1 Introduction
	1.1 Related Work
	1.2 Our Approach
	1.2.1 Our method in detail
	1.2.2 Main Contributions

	2 Preliminaries
	2.1 Procedures
	2.2 Symbolic Execution
	2.3 Equivalence

	3 Our Contribution
	3.1 Modular Symbolic Execution
	3.2 Symbolic Execution vs. Modular Symbolic Execution
	3.2.1 Symbolic Execution Modular Symbolic Execution
	3.2.2 Symbolic Execution Modular Symbolic Execution
	3.2.3 Deeper Call Graphs

	3.3 Difference Summary
	3.4 Computing Difference Summaries
	3.4.1 Call Graph Traversal
	3.4.2 Computing the Difference Summaries for a Pair of Procedures

	3.5 Abstraction and Refinement
	3.5.1 Abstraction
	3.5.2 Refinement

	3.6 Comparison to Related Work

	4 Experimental Results
	4.1 Benchmarks and Results
	4.2 Analysis

	5 Conclusion and Future Work
	Bibliography
	Hebrew Abstract

