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Abstract

Programs are often built in stages, a new (patched) program version is built on top of

an old one. If we could understand the semantic difference between two consecutive

program versions, it would be very beneficial for the fast development process of correct

programs. We can use the correctness of the old (and checked) version to infer the

correctness of the new version. Code reviews, security vulnerability checks, and new

feature verification would become easier if the reviewer were to understand the semantic

differences between both versions. In general this problem is undecidable, yet we devise

an algorithm for computing over– and under–approximations of the semantic (input–

output) differences between program versions. We aim at providing precise enough

abstractions for real code, and allowing guidance by the user to reach good results that

match their needs. Since this information is used during the development process, it

may be sufficient (and possibly preferable) to give results for intermediate procedures,

instead of the entire program. We provide a mechanism for guiding the analysis towards

interesting procedures, and the precision of the approximation is constantly improved

by our anytime algorithm.

While our algorithm can work for very different versions of code, it will work better

on syntactically similar versions. Syntactic changes in program versions are often small

and local, and may apply to procedures that are deep in the call graph. Our approach

analyses only those parts of the programs that are affected by the changes. Moreover, the

analysis is modular, processing a single pair of procedures at a time. Called procedures

are not inlined. Rather, their previously computed summaries and difference summaries

are used.

For efficiency, procedure summaries and difference summaries are abstracted using

uninterpreted functions, and may be refined on demand. We show how we can use

common uninterpreted functions to use our knowledge of equivalence when no precise

summery is available. Our algorithm works bottom-up from the locations of the syntactic

changes, towards the main procedure. When the precision of the abstractions used is not

sufficient, we run (top–down) refinement to create new summaries that are sufficiently

precise. The refinement is guided by the context of the call we analyse.

We define modular symbolic execution and prove its connection to standard symbolic

execution. We use modular symbolic execution to analyse each path in each procedure

at most once, without re-analysing paths in called procedures.
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We have compared our method to well established tools and observed speedups of at

least one order of magnitude. Furthermore, in many cases our tool proves equivalence

or finds differences while others fail to do so.
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Chapter 1

Introduction

The need to identify semantic difference often arises when a new (patched) program

version is built on top of an old one. The difference between the versions can be used

for:

• Regression testing, which checks whether the new version introduces security bugs

or errors. The old version is considered to be correct, a “golden model” for the

new, less-tested version [30].

• Revealing security vulnerabilities that were eliminated by the new version [11].

This information can be used to produce zero-day attacks.

• More generally, identifying and characterizing changes in the program’s function-

ality [24].

1.1 Related Work

Semantic difference has been widely studied, and several techniques have been suggested.

Abstract interpretation is applied to characterize differences or prove equivalence

in [23,24].

In [14,15] different notions of equivalence are defined, proof rules for showing the

equivalence between recursive procedures are given. These ideas are extended to less

similar procedures in [29].

Symbolic execution is used to find differences between programs in [5,25,26], and

syntactic similarity is used to direct symbolic execution to the ”interesting” paths. In [6],

both versions are run symbolically together, one ”shadowing” the other. This allows

using dynamic values to guide the execution towards changed behavior.

Symbolic execution is also used in [28], where the differences found are not over–

approximating or under–approximating the real ones; yet is effective for finding new

bugs using the differences between memory access of individual procedures between

program versions.
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Figure 1.1: Call graphs of two program versions P1, P2, where their syntactic differences
are local to the procedures p1, p2, and the bodies of procedures q1, q2 are identical.

1.2 Our Approach

In this dissertation we present a modular and demand-driven algorithm for finding se-

mantic difference between two closely-related, syntactically similar imperative programs.

We assume that the programs are sequential, deterministic, and we do not handle

pointers and aliasing.

In our work we aim at enhancing scalability and precision of existing techniques by

exploiting the modular structure of programs and avoiding unnecessary analysis.

We consider two program versions, consisting of (matched) procedure calls, arranged

in call graphs. Some of the matched procedures are known to be syntactically different

while the others are identical.

Often, changes between versions are small and limited to procedures deep inside

the call graph (see Figure 1.1). In such cases, it would be helpful to know how these

changes affect the program as a whole, without analysing the whole program. To achieve

this, we first compute a difference summary between syntactically different procedures

p1, p2 (modified procedures). Next, we analyse the procedures that call them, using

the difference summary for p1, p2 computed before. No inlining of called procedures

is applied. We also avoid analysing procedures that are not affected by the modified

procedures. As a result, the required work may be significantly smaller than analysing

the program as a whole. Our work is therefore particularly beneficial when applied to

programs that are syntactically similar. Even though it is applicable to programs which

are very different from each other, our technique would yield less savings in those cases.

Our approach is guided by the following ideas. First, the analysis is modular. That

is, it is applied to one pair of procedures at a time, thus it is confined to small parts

of the program. Called procedures are not inlined. Rather, their previously computed

summaries and difference summary are used.

We note that any block of code can be treated as a procedure, not only those defined

as procedures by the programmer. It is beneficial to choose the smallest possible blocks

that were modified between versions, and identify them as “procedures”.

Second, the analysis is restricted to only those pairs of procedures whose difference
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affects the difference of the full programs.

Third, we provide both under- and over-approximations of the input-output differ-

ences between procedures, which can be strengthened on demand.

Finally, procedures need not be fully analysed. Unanalysed parts are abstracted and

replaced with uninterpreted functions. The abstracted parts are refined upon demand if

calling procedures need a more precise summary of the called procedures for their own

summary.

As mentioned before, the goal of this work is to analyse the difference between two

program versions which are relatively similar. Our main concern is to avoid unnecessary

analysis, thus achieving scalability. Our analysis is not guaranteed to terminate. Yet it

is an anytime analysis. That is, its partial results are meaningful. Furthermore, the

longer it runs, the more precise its results are.

In our analysis we do not assume that loops are bounded. We are able to prove

equivalence or provide an under- and over-approximation of the difference for unbounded

behaviors of the programs. We are also able to handle recursive procedures.

We implemented our method and applied it to finding semantic difference between

program versions. We compared it to well established tools and observed speedups of

one order of magnitude and more. Furthermore, in many cases our tool could prove

equivalence or find differences, while the others failed to do so.

1.2.1 Our method in detail

We now describe our method in more detail. Our analysis starts by choosing a pair of

matched procedures p1 in program P1 and p2 in program P2, which are syntactically

different.

The basic block of our analysis is a (partial) procedure summary sumpi (i ∈ {1, 2})
for each procedure pi. The summary is obtained using symbolic execution. It includes

path summarizations (Rπ, Tπ) for a subset of the finite paths π of pi, where Rπ is the

reachability condition for π to be traversed and Tπ is the state transformation describing

transformation from initial states to final states when π is executed.

Next, we compute a (partial) difference summary (C(p1, p2), U(p1, p2)) for p1, p2,

where C(p1, p2) is a set of initial states for which p1 and p2 terminate with different final

states. U(p1, p2) is a set of initial states for which p1 and p2 terminate with identical

final state. Both sets are under-approximations. However, the complement of U(p1, p2),

denoted ¬U(p1, p2), also provides an over-approximation of the set of initial states for

which the procedures are different.

Note that procedure summaries and difference summaries are both partial. This

is because their computation in full is usually infeasible. More importantly, their

full summaries are often unnecessary for computing the difference summary between

programs P1, P2.

If U(p1, p2) ≡true we can conclude that no differences are propagated from p1, p2
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to their callers. Their callers will not be further analysed then. Otherwise, we can

proceed to analysing pairs of procedures q1, q2 that include calls to p1, p2, respectively.

As mentioned before, in building their procedure summaries and difference summary,

we use the already computed summaries of p1, p2.

The analysis terminates when we can fully identify the initial states of P1, P2 for

which the programs agree/disagree on their final states. Alternatively, we can stop when

a predefined threshold is reached. In this case the sets C(p1, p2) and U(p1, p2) of initial

states are guaranteed to represent disagreement and agreement, respectively.

Side results of our analysis are the difference summaries computed for matched

procedures in P1, P2, that can be reused if the procedures are called by other programs.

1.2.2 Main Contributions

The main contributions of this work are:

• We present a modular and demand-driven algorithm for computing semantic

difference between closely related programs.

• Our algorithm is unique in that it provides both under- and over-approximations

of the differences between program versions.

• We introduce abstraction-refinement into the analysis process so that a tradeoff

between the amount of computation and the obtained precision will be manageable.

• We develop a new notion of modular symbolic execution.
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Chapter 2

Preliminaries

2.1 Procedures

We start by defining some basic notions of programs and procedures.

Definition 2.1.1. Call Graph

Let P be a program, containing the set of procedures Π = {p1, . . . , pn}. The call graph

for P is a directed graph with Π as nodes, and there exists an edge from pi to pj if and

only if procedure pi calls procedure pj .

The procedure p1 is a special procedure in the program’s call graph that acts as an

entry point of the program; it is also referred to as the main procedure in the program

P , denoted mainP .

Next we formalize the notions of variables and states of procedures.

• The visible variables of a procedure p are the variables that represent the

arguments to the procedure and its return values, denoted V v
p .

• The hidden variables of a procedure p are the local variables used by the

procedure, denoted V h
p .

• The variables of a procedure p are both its visible and hidden variables, denoted

Vp (Vp = V v
p ∪ V h

p ).

• A state σp is a valuation of the procedure’s variables, σp = {v 7→ c|v ∈ Vp, c ∈ Dv},
where Dv is the (possibly infinite) domain of variable v.

• A visible state is the projection of a state to the visible variables.

Without loss of generality we assume that programs have no global variables, since

those could be passed as arguments and return values along the entire program. We

also assume, without loss of generality, that all program inputs are given to the main

procedure at the beginning. The programs we analyze are deterministic, meaning that

given a visible state of the main procedure at the beginning of an execution (an initial
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state), the execution of the program (finite or infinite) is fixed, and for a finite execution

the visible state at the end of the execution is fixed (called final state). The same

applies to individual procedures as well.

In our work, a program is represented by its call graph, and each procedure p is

represented by its control flow graph CFGp (also known as a flow program in [10]),

defined below.

Definition 2.1.2. Control Flow Graph (CFG)

Let p be a procedure with variables Vp. The Control Flow Graph (CFG) for p is

a directed graph CFGp, in which the nodes represent instructions in p and the edges

represent possible flow of control from one instruction to its successor(s) in the procedure

code. Instructions include:

• Assignment: x̄ = ē, where x̄ = x1, . . . , xn is a list of variable in Vp and ē =

e1, . . . , en a list of expression over Vp. All expressions ei are computed before

being assigned to the variables xi simultaneously. An assignment node has one

outgoing edge.

• Procedure call: g(Y ), where Y ⊆ Vp and the values of variables in Y are assigned

to the visible variables of procedure g.1 The variables in Y are assigned with the

values of the visible variables of g at the end of the execution of g. A call node

has one outgoing edge, to the instruction in p following the return of procedure g.

• Test: B(Vp), where B(Vp) is a Boolean expression over Vp; a test node has two

outgoing edges, one marked with T, and the other with F.

A CFG contains one node with no incoming edges, called the entry node, and one node

with no outgoing edges, called the exit node.

Definition 2.1.3. Path

Given CFGp of procedure p, a path π = l1, l2, . . . is a sequence of nodes (finite or

infinite) in the graph CFGp, such that:

1. For all i there exists an edge from li to li+1 in CFGp.

2. l1 is the entry node of p.

The path π is maximal if it is either infinite or it is finite and ends in the exit node of

p.

We assume that each procedure performs a transformation on the values of the

visible variables, and has no additional side-effects. Procedure p terminates on a

visible state σvp if the path traversed in p from σvp is finite and maximal. A program

terminates on a visible state σvmain if its main procedure terminates.

1We assume that Y = {y1, . . . , yn} and V v
g = {v1, . . . , vn}, yi is assigned to vi at the entry node,

and vi is assigned to yi at the exit node.
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1 void p1 ( int& x ) {
2 i f ( x < 0) {
3 x = −1;
4 return ;
5 }
6 i f ( x >= 2)
7 return ;
8 while ( x == 2)
9 x = 2 ;
10 x = 3 ;
11 }

1 void p2 ( int& x ) {
2 i f ( x < 0) {
3 x = −1;
4 return ;
5 }
6 i f ( x > 4)
7 return ;
8 while ( x == 2)
9 x = 2 ;
10 x = 3 ;
11 }

Figure 2.1: Examples of procedure versions

The following semantic characteristics are associated with finite paths, similarly to

the definitions for flow programs in [10]. The characteristics are given (for a path in

a procedure p) in terms of quantifier-free First-Order Logic (FOL), defined over the

set V v
p of visible variables.

Definition 2.1.4. Reachability Condition, State Transformation

Let π be a finite path in procedure p.

• The Reachability Condition of π, denoted Rπ(V v
p ), is a condition on the visible

states at the beginning of π, which guarantees that the control will traverse π.

• The State Transformation of π, denoted Tπ(V v
p ), describes the final state of π,

obtained if control traverses π starting with some valuation σvp of V v
p .

Tπ(V v
p ) is given by |V v

p | expressions over V v
p , one for each variable x in V v

p . The

expression for x describes the effect of the path on x in terms of the values of V v
p at the

beginning of π. Let Tπ(V v
p ) = (f1, . . . , f|V vp |) and Tπ′(V v

p ) = (f ′1, . . . , f
′
|V vp |

) be two state

transformations. Then, Tπ(V v
p ) = Tπ′(V v

p ) if and only if, for every 1 ≤ i ≤ |V v
p |, fi = f ′i .

Example 2.1.5. Consider procedure p1 in Figure 2.1. Its only visible variable is x, used

as both input and output. Consider the paths that correspond to the following line

numbers: α = (2, 3, 4) and β = (2, 6, 7). Then,

Rα(x) = x < 0 Rβ(x) = ((¬(x < 0)) ∧ x ≥ 2) ≡ x ≥ 2

Tα(x) = (−1) Tβ(x) = (x)

A path π is called feasible if Rπ is satisfiable, meaning that there exists an input

that traverses the path π. Note that, in p1 from Figure 2.1, the path (2, 6, 8, 9) is not

feasible.
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2.2 Symbolic Execution

Symbolic execution [7, 17] (path-based) is an alternative representation of a procedure

execution that aims at systematically traversing the entire path space of a given

procedure. All visible variables are assigned with symbolic values in place of concrete

ones. Then every path is explored individually (in some heuristic order), checking

for its feasibility using a constraint solver. During the execution, a symbolic state T

and symbolic path constraint R are maintained. The symbolic state maps procedure

variables to symbolic expressions (and is naturally extended to map expressions over

procedure variables), and the path constraint is a quantifier-free FOL formula over

symbolic values.

Given a finite path π = l1, . . . , ln, we use symbolic execution to compute the

reachability condition Rπ(V v
p ) and state transformation Tπ(V v

p ). The computation is

performed in stages, where for every 1 ≤ i ≤ n + 1, Riπ(Vp) and T iπ(Vp) are the path

condition and state transformation for path l1, . . . , li−1, respectively. Initialization:

• For every x ∈ Vp, T 1
π (Vp)[x] = x.

• R1
π(Vp) = true.

Assume Riπ(Vp) and T iπ(Vp) are already defined. Ri+1
π (Vp) and T i+1

π (Vp) are then defined

according to the instruction at node i:

• Assignment x̄ = ē: Ri+1
π (Vp) := Riπ(Vp), ∀xl ∈ vars(x). T i+1

π (Vp)[xl] := el[Vp ←
T iπ(Vp)] and ∀y /∈ vars(x), T i+1

π (Vp)[y] := T iπ(Vp)[y]

• Procedure call g(Y ): The procedure g is in-lined with the necessary renaming

and symbolic execution continues along a path in g, returning to p when (if) g

terminates.2

• Test B(Vp): T
i+1
π (Vp) := T iπ(Vp), and

Ri+1
π (Vp) :=

{
Riπ(Vp) ∧B[Vp ← T iπ(Vp)] if the edge li → li+1 is marked T

Riπ(Vp) ∧ ¬B[Vp ← T iπ(Vp)] otherwise

As a result, when we reach the last node ln of a finite path π we get:

Rπ(V v
p ) = Rn+1

π (Vp)

Tπ(V v
p ) = Tn+1

π (Vp) ↓V vp
3

As symbolic execution explores the program one path at a time, we start by

summarizing single paths, and then extend to procedures.

2Current values of Y are assigned to the visible variables of g, and assigned back at termination of g.
3Since we assume that all inputs are given through visible variables, and therefore no hidden variable

is used before it is initialized, V h
p will not appear in Rn+1

π (Vp) and Tn+1
π (Vp) ↓V v

p
.
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Definition 2.2.1. Path Summary

Given a finite maximal path π in p, a Path Summary (also known as a partition-effect

pair in [25]) is the pair (Rπ(V v
p ), Tπ(V v

p )).

Definition 2.2.2. Procedure Summary

A Procedure Summary (also known as a symbolic summary in [25]), for a procedure

p, is a set of path summaries

sump ⊆ {(Rπ(V v
p ), Tπ(V v

p )) |π is a finite maximal path in CFGp}.

Note that for a given CFG the reachability conditions of any pair of different maximal

paths are disjoint, meaning that for every initial state at most one finite maximal path

is traversed in the CFG. Thus, a procedure summary partitions the set of initial states

into disjoint finite paths, and describes the effect of the procedure p on each path

separately. This observation will be useful when procedure summaries are used to

compute difference summaries between procedures.

Unfortunately, it is not always possible to cover all paths in symbolic execution due

to the path explosion problem (even if all feasible paths are finite, their number may be

very large or even infinite). Therefore we allow for a given summary sump not to cover

all possible paths, meaning
∨

(r,t)∈sump r may not be valid (
∨

(r,t)∈sump r 6≡ true).

Definition 2.2.3. Uncovered part of a Procedure Summary

Given a procedure summary sump, the Uncovered Part of sump is ¬
∨

(r,t)∈sump r.

For all inputs that satisfy the uncovered part of the summary nothing is promised:

the procedure p might not terminate on such inputs, or terminate with unknown outputs.

A summary for which the uncovered part is unsatisfiable (
∨

(r,t)∈sump r ≡ true) is called

a full summary. Note that a full summary only exists for procedures that halt on every

input.

Example 2.2.4. We return to p1 from Figure 2.1. Any subset of the set {(x < 0,−1),

(x ≥ 0 ∧ x ≥ 2, x), (x ≥ 0 ∧ x < 2, 3)} is a summary for p1. For the summary

sump1 = {(x < 0,−1), (x ≥ 0 ∧ x ≥ 2, x)},

the uncovered part is characterized by x ≥ 0 ∧ x < 2.

2.3 Equivalence

We modify the notions of equivalence from [13] to characterize the set of visible states

under which procedures are equivalent, even if they might not be equivalent for every

initial state. Let p1 and p2 be two procedures with visible variables V v
p1 and V v

p2 ,

respectively. Since their sets of visible variables might be different, we take the union

11



V v
p1 ∪ V

v
p2 as their set of visible variables V v

p . Any valuation of this set can be viewed as

a visible state of both procedures.

Definition 2.3.1. State-Equivalences

Let σvp be a visible state for p1 and p2.

• p1 and p2 are partially equivalent for σvp if and only if the following holds: If

p1 and p2 both terminate on σvp , then they terminate with the same final state.

• p1 and p2 mutually terminate for σvp if and only if the following holds: p1

terminates on σvp if and only if p2 terminates on σvp .

• p1 and p2 are fully equivalent for σvp if and only if p1 and p2 are partially

equivalent for σvp and mutually terminate for σvp .
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Chapter 3

Our Contribution

3.1 Modular Symbolic Execution

A major component of our analysis is the modular symbolic execution, which analyses

one procedure at a time while avoiding inlining of called procedures. This prevents

unnecessary execution of previously explored paths in called procedures. Assume

procedure p calls procedure g. Also assume that a procedure summary for g is given by:

sumg = {(r1, t1), . . . , (rn, tn)}.
Modular symbolic execution is defined as symbolic execution for assignment and test

instructions (see Section 2.2). For procedure call instruction g(Y ) (where Y ⊆ Vp) it is

defined as follows. For given Riπ(Vp) and T iπ(Vp):

Ri+1
π = Riπ ∧ (

∨
(r,t)∈sumg

r(T iπ[Y ])) (3.1)

∀x 6∈ Y. T i+1
π [x] = T iπ[x] (3.2)

∀yj ∈ Y. T i+1
π [yj ] = ITE (r1(T iπ[Y ])1, t1j (T

i
π[Y ]), ITE (r2(T iπ[Y ]), t2j (T

i
π[Y ]),

ITE (. . . , ITE (rn(T iπ[Y ]), tnj (T iπ[Y ]),UK ) . . . ))),

where:

• ITE (b, e1, e2) is an expression that returns e1 if the condition b holds and returns

e2, otherwise. It is similar to the conditional operator (?:) in some programming

languages.

• tkj refers to the jth element (for yj) of the path transformation tk.

• UK represents the value that is given if no path condition from sumg is satisfied.

That it, UK is returned when an unexplored path is traversed. Note, however,

that since we added (
∨

(r,t)∈sumg r(T
i
π[Y ]) to the path condition Riπ, a path that

satisfies Ri+1
π will never return UK . Thus, UK is just a place holder.

1We use r(T iπ[Y ]) to indicate that every vk ∈ V v
g is replaced by the expression T iπ[yk].
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Modular symbolic execution, as defined here, restricts the analysis of procedure p

to paths along which g is called with inputs traversing paths in g that have already

been analyzed. For other paths, the reachability condition will be unsatisfiable. In

Section 3.5.1 we define an abstraction, which replaces unexplored paths by uninterpreted

functions. Thus, the analysis of p may include unexplored (abstracted) paths of g. If the

analysis reveals that the unexplored paths are essential in order to determine difference

or similarity on the level of p, then refinement is applied by symbolically analysing more

of g’s paths.

We prove in Section 3.2 the connection between modular symbolic execution and

standard symbolic execution on the in-lined version of the program. Intuitively, as long

as the paths taken in called procedures are covered by the summaries of the called

procedures, the following holds: Assume that a path π in p includes a call to procedure

g. Then π corresponds to a set of paths in the in-lined version, each of which executing

a different path in g, more formally:

• For every path πin in the in-lined version of p there is a corresponding path π in

p such that:

– Rπin → Rπ

– Rπin → Tπin = Tπ

• For every path π in p, there are paths πin1 , . . . , π
in
n in the in-lined version of p such

that:

– Rπ ↔
∨n
i=1Rπini

– ∀i ∈ [n]. Rπini
→ Tπini

= Tπ

3.2 Symbolic Execution vs. Modular Symbolic Execution

We formally define and prove the relationship between standard symbolic execution,

defined on the program obtained by in-lining procedures, and modular symbolic execu-

tion, defined on the original program. For simplicity we assume here that we have a

single procedure q that calls procedures p1, . . . , pk from locations l1, . . . , lk with inputs

Y1, . . . , Yk, respectively. First we assume procedures p1, . . . , pk contain no procedure

calls. We deal with further sub-calls in Subsection 3.2.3. We further assume we are given

the summaries sump1 , . . . , sumpk , and that different procedures do not have common

variable names.

We start by defining an in-lined CFG to which the standard symbolic execution

will be applied.

Definition 3.2.1. Inlined CFG

Let q be a procedure, represented by CFGq, that calls procedures p1, . . . , pk from

14



nodes l1, . . . , lk, respectively. We obtain the in-lined version CFGinq from CFGq, by

performing the following changes for every i ∈ [k]:

• Changes in nodes:

1. Remove node li (li : pi(Yi)).

2. Add assignment node lprei : V v
pi := Yi.

3. Add assignment node lposti : Yi := V v
pi .

4. Add all the nodes from CFGpi .

• Changes in edges:

1. Remove edge (l, li), add edge (l, lprei ).

2. Remove edge (li, l), add edge (lposti , l).

3. Add edge (lprei , lentryi ), where lentryi is the entry node of CFGpi .

4. Add edge (lexiti , lposti ), where lexiti is the exit node of CFGpi .

5. Add all edges from CFGpi .

The hidden variables of CFGinq are (V h
q )in , V h

q ∪
⋃k
i=1 Vpi (disjoint sets according

to our assumption). The visible variables of CFGinq are the visible variables of q,

(V v
q )in , V v

q . Note that indeed hidden variables are not used before they are assigned

in CFGinq , since we assign each visible variable of pi at node lprei . Therefore again we

conclude that, when Rπ, Tπ computed with symbolic execution for some π of length n

in CFGinq , (V h
q )in will not appear in Rn+1

π ((Vq)
in) and Tn+1

π ((Vq)
in) ↓(V vq )in .

Definition 3.2.2. Legal Path

A finite path π = lin1 , . . . , l
in
m in CFGinq is called legal if:

• linm ∈ CFGq, or

• There exists i ∈ [k] such that linm = lposti

A legal path can not end inside a called procedure. Thus, by the definition of CFGinq ,

for every legal path π = lin1 , . . . , l
in
m , and for every node linj = lprei , there exists r > j

such that:

• linr = lposti , and

• for every j < s < r, lins is a node from CFGpi .

We can now decompose each legal path to its original paths.

Definition 3.2.3. Projected Path

Let π be a legal path in CFGinq ,
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• Its pi-projected path, denoted π ↓pi , is the interval of nodes between lstarti and

the first lexiti following it, if such lstarti exists, or empty otherwise.2

• Its q-projected path, denoted π ↓q, is the path obtained from π by the following

operations:

– Every node lprei is replaced by li, the original calling node to pi.

– Every node not in CFGq is removed (including nodes from called procedures,

and lposti nodes).

Observation 3.2.4. A pi-projected path π ↓pi is a path in CFGpi .

Observation 3.2.5. A q-projected path π ↓q is a path in CFGq.

Next to prove our claims we need to make sure that paths are covered by the

procedure summaries that are used to replace their procedures.

Definition 3.2.6. Covered path

• We say that a path π in CFGp is covered by sump if (Rπ, Tπ) ∈ sump.

• We say that a path π in CFGinq is calling-covered if for every i ∈ [k], π ↓pi is

covered by sumpi

Lemma 3.2.7. Let π1 = l11, . . . , l
1
n and π2 = l21, . . . , l

2
m be two paths in CFGp with

no procedure calls, such that there exists an edge (l1n, l
2
1). Then the path π1 · π2 =

l11, . . . , l
1
n, l

2
1, . . . , l

2
m is a path in CFGp and:

1. Rπ1·π2 = Rπ1 ∧Rπ2(Tπ1)

2. Tπ1·π2 = Tπ2(Tπ1)

Proof. We prove the lemma by induction on m, the length of π2:

Base: If m = 0 then π2 is empty, (π1 · π2) = π1, and:

1. Rπ1·π2 = Rπ1 = Rπ1 ∧ true = Rπ1 ∧Rπ2(Tπ1) since Rπ2 = true.

2. Tπ1·π2 = Tπ1 = Tπ2(Tπ1), since Tπ2 is the identity function.

Step: Assume correctness for π′ = l21, . . . , l
2
m−1, and consider the last node, l2m.

• If node l2m is an assignment node x̄ = ē, then:

1. Rπ1·π2 = R(π1·π′),l2m
= Rn+m+1

(π1·π′),l2m
=(a) Rn+m

(π1·π′),l2m
= Rπ1·π′ =(b)

= Rπ1 ∧Rπ′(Tπ1) = Rπ1 ∧Rmπ2(Tπ1) =(a) Rπ1 ∧Rm+1
π2 (Tπ1) =

= Rπ1 ∧Rπ2(Tπ1)
where:

2For simplicity we assume that on every path each procedure appears at most once, which is not
necessarily true in the presence of loops. We can easily deal with it by indexing called intervals by
occurrence as well as procedure.
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(a) Definition of R for assignment.

(b) Induction hypothesis for π′.

2. ∀xl ∈ vars(x̄). T π1·π2 [xl] = T(π1·π′),l2m
[xl] = Tn+m+1

(π1·π′),l2m
[xl] =(a)

= el(T
n+m
(π1·π′),l2m

[Vp]) = el(Tπ1·π′ [Vp]) =(b)

= el(Tπ′(Tπ1)[Vp]) = el(T
m
π2(Tπ1)[Vp]) =(a)

= Tm+1
π2 (Tπ1)[xl] = Tπ2(Tπ1)[xl]

∀y ∈ Vp \ vars(x̄). T π1·π2 [y] = T(π1·π′),l2m
[y] = Tn+m+1

(π1·π′),l2m
[y] =(a)

= Tn+m
(π1·π′),l2m

[y] = Tπ1·π′ [y] =(b) Tπ′(Tπ1)[y] =

= Tmπ2(Tπ1)[y] =(a) Tm+1
π2 (Tπ1)[y] = Tπ2(Tπ1)[y]

where:

(a) Definition of T for assignment.

(b) Induction hypothesis for π′.

• If node l2m is a test node B(Vp), then:

1. Rπ1·π2 = R(π1·π′),l2m
= Rn+m+1

(π1·π′),l2m
=(a) Rn+m

(π1·π′),l2m
∧ B̃(Tn+m

(π1·π′),l2m
[Vp]) =

= Rπ1·π′ ∧ B̃(Tπ1·π′ [Vp]) =(b) Rπ1 ∧Rπ′(Tπ1) ∧ B̃(Tπ′(Tπ1)[Vp]) =

= Rπ1 ∧Rmπ2(Tπ1) ∧ B̃(Tmπ2(Tπ1)[Vp]) =(a) Rπ1 ∧Rm+1
π2 (Tπ1) =

= Rπ1 ∧Rπ2(Tπ1)

where B̃ is either B or ¬B, according to the edge marking on π2, and:

(a) Definition of R for test.

(b) Induction hypothesis for π′.

2. Tπ1·π2 = T(π1·π′),l2m
= Tn+m+1

(π1·π′),l2m
=(a) Tn+m

(π1·π′),l2m
= Tπ1·π′ =(b)

= Tπ′(Tπ1) = Tmπ2(Tπ1) =(a) Tm+1
π2 (Tπ1) = Tπ2(Tπ1)

where:

(a) Definition of T for test.

(b) Induction hypothesis for π′.

The theorems below, showing the connection between symbolic execution and

modular symbolic execution, rely on the corollary below that summarizes the effect of

in-lining and symbolically executing a path.

Let π be a legal path in CFGinq , we assume that Rπ, Tπ were computed by standard

symbolic execution, and that Rπ↓q , Tπ↓q where computed by modular symbolic execution.

Corollary 3.1. Let π = lin1 , . . . , l
in
m be a legal path in CFGinq , if linj = lprei and linn = lposti ,

where Yi = {y1, . . . , yr} and V v
pi = {v1, . . . , vr} then:

1. Rn+1
π = Rjπ ∧Rπ↓pi (T

j
π [Yi])

2. For every yl ∈ Yi, Tn+1
π [yl] = Tπ↓pi (T

j
π [Yi])[vl]
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3. For every x ∈ Vq \ Yi, Tn+1
π [x] = T jπ [x]

Proof. We get the corollary from the lemma, if we mark π′ = lin1 , . . . , l
in
j−1:

1. Rn+1
π = Rπ = Rπ′·lprei ·π↓pi ·l

post
i

=(a) Rπ′ ∧Rlprei ·π↓pi ·l
post
i

(Tπ′) =(b)

= Rπ′ ∧Rlprei
(Tπ′) ∧Rπ↓pi ·lposti

(Tlprei
(Tπ′)) =(c)

= Rπ′ ∧Rπ↓pi ·lposti
(Tlprei

(Tπ′)) =(d)

= Rπ′ ∧Rπ↓pi (Tlprei
(Tπ′)) ∧Rlposti

(Tπ↓pi (Tl
pre
i

(Tπ′))) =(e)

= Rπ′ ∧Rπ↓pi (Tlprei
(Tπ′)) =(f) Rπ′ ∧Rπ↓pi (Tlprei

(Tπ′)[V v
pi ]) =(g)

= Rπ′ ∧Rπ↓pi (Tπ′ [Yi]) = Rjπ ∧Rπ↓pi (T
j
π [Yi])

where:

(a) Lemma 3.2.7 for π1 = π′, π2 = lprei · π ↓pi ·l
post
i .

(b) Lemma 3.2.7 for π1 = lprei , π2 = π ↓pi ·l
post
i .

(c) Rlprei
= true.

(d) Lemma 3.2.7 for π1 = π ↓pi , π2 = lposti .

(e) Rlposti
= true.

(f) Rπ↓pi is defined over V v
pi .

(g) lprei : V v
pi = Yi.

2. Let yl ∈ Yi, then:

Tn+1
π [yl] = Tπ′·lprei ·π↓pi ·l

post
i

[yl] =(a) Tlposti
(Tπ′·lprei ·π↓pi

)[yl] =(b)

= Tπ′·lprei ·π↓pi
[vl] =(c) Tπ↓pi (Tπ′·lprei

)[vl] =(d) Tπ↓pi (Tl
pre
i

(Tπ′))[vl] =(e)

= Tπ↓pi (Tl
pre
i

(Tπ′)[V v
pi ])[vl] =(f) Tπ↓pi (Tπ′ [Yi])[vl] = Tπ↓pi (T

j
π [Yi])[vl]

where:

(a) Lemma 3.2.7 for π1 = π′ · lprei · π ↓pi and π2 = lposti .

(b) lposti : Yi = V v
pi and therefore Tlposti

(f)[yl] = f [vl].

(c) Lemma 3.2.7 for π1 = π′ · lprei and π2 = π ↓pi .

(d) Lemma 1 for π1 = π′ and π2 = lprei .

(e) Tπ↓pi is defined over V v
pi .

(f) lprei : V v
pi = Yi.

3. Let x ∈ Vq \ Yi, then:

Tn+1
π [x] = Tπ′·lprei ·π↓pi ·l

post
i

[x] =(a) Tlposti
(Tπ′·lprei ·π↓pi

)[x] =(b)

= Tπ′·lprei ·π↓pi
[x] =(c) Tπ↓pi (Tπ′·lprei

)[x] =(d) Tπ′·lprei
[x] =(e)

= Tlprei
(Tπ′)[x] =(f) Tπ′ [x] = T jπ [x]

18



where:

(a) Lemma 3.2.7 for π1 = π′ · lprei · π ↓pi and π2 = lposti .

(b) lposti : Yi = V v
pi and since x /∈ Yi Tlposti

(f)[x] = f [x].

(c) Lemma 3.2.7 for π1 = π′ · lprei and π2 = π ↓pi .

(d) x ∈ Vq and therefore according to our assumption that there are no common

variable names between functions, x /∈ Vpi . π ↓pi is a path in CFGpi and

therefore does not change x.

(e) Lemma 3.2.7 for π1 = π′ and π2 = lprei .

(f) lprei : V v
pi = Yi and since x /∈ V v

pi Tlprei
(f)[x] = f [x].

3.2.1 Symbolic Execution ⊆ Modular Symbolic Execution

To show the relation between standard and modular symbolic execution we show first that

every in-lined path π analysed using standard symbolic execution has a corresponding

path (its projection), that when analysed with modular symbolic execution, contains

the behaviors from π.

Theorem 3.2. Let π be a legal, calling-covered path in CFGinq , its q-projected path

π ↓q satisfies:

1. Rπ(V v
q )→ Rπ↓q(V

v
q )

2. Rπ(V v
q )→ Tπ(V v

q ) ↓Vq= Tπ↓q(V
v
q )

Proof. We prove the theorem by induction on the length of legal paths π (π = lin1 , . . . , l
in
m).

We denote the length of π ↓q by n.

Base: If m = 0 then π, π ↓q are empty and:

1. Rπ = R1
π = true→ Rπ↓q = R1

π↓q = true

2. ∀x ∈ Vq. (Tπ[x] = T 1
π [x] = x = T 1

π↓q [x] = Tπ↓q [x]), and therefore

Rπ → Tπ ↓Vq= Tπ↓q

Step: Assume correctness for all legal paths of length strictly smaller than m. We

consider the last node, linm :

• If node linm is an assignment node x̄ = ē, then by definition π′ = lin1 , . . . l
in
m−1 is

legal, π ↓q= (π′ ↓q, linm), and:

1. Rπ = Rm+1
π =(a) Rmπ = Rπ′ →(b) Rπ′↓q = Rnπ↓q =(a) Rn+1

π↓q = Rπ↓q ,

where:

(a) Definition of R for assignment.

(b) Induction hypothesis for the legal path π′.
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2. Rπ =Rm+1
π =(a) Rmπ = Rπ′ →(b) (Tπ′ ↓Vq= Tπ′↓q)→

(Tmπ ↓Vq= Tnπ↓q)→
(c) (Tm+1

π ↓Vq= Tn+1
π↓q ),

where:

(a) Definition of R for assignment.

(b) Induction hypothesis for the legal path π′.

(c) ∀xl ∈ vars(x̄). Tm+1
π [xl] := el(T

m
π [Vq]) = el(T

n
π↓q [Vq]) = Tn+1

π↓q [xj ]

∀y ∈ Vq \ vars(x̄), Tm+1
π [y] := Tmπ [y] = Tnπ↓q [y] = Tn+1

π↓q [y].

• If node linm is a test node B(Vq), then by definition π′ = lin1 , . . . l
in
m−1 is legal,

π ↓q= (π′ ↓q, linm), and:

1. Rπ =Rm+1
π =(a) Rmπ ∧ B̃(Tmπ ) = Rπ′ ∧ B̃(Tπ′)→(b)

(Rπ′↓q ∧ B̃(Tπ′↓q)) = (Rnπ↓q ∧ B̃(Tnπ↓q)) =(a) Rn+1
π↓q = Rπ↓q ,

where B̃ is either B or ¬B, according to the edge marking on π, and:

(a) Definition of R for test.

(b) Induction hypothesis for the legal path π′.

2. Rπ = Rm+1
π →(a)Rmπ = Rπ′ →(b) (Tπ′ ↓Vq= Tπ′↓q)→

(Tmπ ↓Vq= Tnπ↓q)→
(c) (Tm+1

π ↓Vq= Tn+1
π↓q ),

where:

(a) Definition of R for test.

(b) Induction hypothesis for the legal path π′.

(c) Tm+1
π = Tmπ and Tn+1

π↓q = Tnπ↓q (definition of T for test).

• If node linm is a node lposti then there exists j < n such that lj = lprei , by definition

π′ = lin1 , . . . l
in
j−1 is legal, π ↓q= (π′ ↓q, li), where li is the original call node to pi

from CFGq, and:

1. Rπ = Rm+1
π =(a) (Rjπ ∧Rπ↓pi (T

j
π [Yi])) = (Rπ′ ∧Rπ↓pi (Tπ′ [Yi]))→(b)

(Rπ′↓q ∧Rπ↓pi (Tπ′↓q [Yi])) = (Rnπ↓q ∧Rπ↓pi (T
n
π↓q [Yi]))→

(c)

(Rnπ↓q ∧ (
∨

(r,t)∈sumpi

r(Tnπ↓q [Yi]))) =(d) Rn+1
π↓q

where:

(a) Corollary 3.1.

(b) Induction hypothesis for the legal path π′.

(c) We assumed π is calling-covered, and therefore (Rπ↓pi , Tπ↓pi ) ∈ sumpi .

(d) Definition of R for a procedure call in the modular version.

2. Rπ = Rm+1
π →(a) (Rjπ ∧Rπ↓pi (T

j
π [Yi])) = (Rπ′ ∧Rπ↓pi (Tπ′ [Yi]))→(b)((

Tπ′ ↓Vq= Tπ′↓q
)
∧Rπ↓pi

(
Tπ′↓q [Yi]

))
=((

T jπ ↓Vq= Tnπ↓q

)
∧Rπ↓pi

(
Tnπ↓q [Yi]

))
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and therefore:

∀x ∈ Vq \ Yi. Tn+1
π↓q [x] =(c) Tnπ↓q [x] = T jπ [x] =(a) Tm+1

π [x]

∀yl ∈ Yi. Tn+1
π↓q [yl] = ITE (r1(Tnπ↓q [Yi]), t

1(Tnπ↓q [Y ])[vl], . . . ) =(d)

Tπ↓pi (T
n
π↓q [Yi])[vl] = Tπ↓pi (T

j
π [Yi])[vl] =(a) Tm+1

π [yl]

where:

(a) Corollary 3.1.

(b) Induction hypothesis for the legal path π′.

(c) Definition of T for a procedure call in the modular version.

(d) We assumed π is calling-covered, and therefore (Rπ↓pi , Tπ↓pi ) ∈ sumpi .

Also, Rπ↓pi is implied by Rπ, and all reachability conditions in the

summary are disjoint.

3.2.2 Symbolic Execution ⊇ Modular Symbolic Execution

For each path π analysed with modular symbolic execution there exists a set of cor-

responding in-lined paths that show the same behavior. Therefore for this direction

we say that given a path and an input, there exists an in-lined (single) corresponding

path that behaves the same as the modularly analysed path for that input. Since we

show this for any input we get that the entire behavior of π has corresponding in-lined

behaviors.

Let π be a finite path in CFGq, we assume that Rπ, Tπ were computed by modular

symbolic execution.

Theorem 3.3. Let π be a finite path in CFGq, and σvq a visible state, such that

σvq |= Rπ(V v
q ) and for all i ∈ k the pi-projected paths traversed from σvq in the in-lined

program are in their procedures’ summaries. Then there exists a path πin in CFGinq

that satisfies:

1. πin ↓q= π

2. σvq |= Rπin(V v
q )

3. Tπin(σvq ) ↓Vq= Tπ(σvq )

Proof. Given a path π = l1, . . . , ln we define πin inductively, while maintaining that πin

satisfies all three conditions.

Base: n = 0, meaning π is empty, then πin is empty as well and we get:

1. πin ↓q= π by definition.

2. σvq |= true and therefore σvq |= Rπin since Rπin = R1
πin

= true.
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3. ∀x ∈ Vq. Tπin(σvq )[x] = T 1
πin

(σvq )[x] = x = T 1
π (σvq )[x] = Tπ(σvq )[x].

Step: Let π = l1, . . . , ln be a path in CFGq. We assume that for π′ = l1, . . . , ln−1,

π′in = lin1 , . . . , l
in
m−1 is defined and maintains the conditions.

• If ln is an assignment node x̄ = ē, then we define πin = (π′in, ln) and:

1. πin ↓q= (π′in ↓q, ln) = (π′, ln) = π by definition.

2. σvq |= Rπ = Rn+1
π =(a) Rnπ = Rπ′ and therefore by induction hypothesis

σvq |= Rπ′in = Rm
πin

=(a) Rm+1
πin

= Rπin where:

(a) By the definition of R for assignment.

3. ∀y ∈ Vq \ vars(x̄). Tπ(σvq )[y] = Tn+1
π (σvq )[y] =(a) Tnπ (σvq )[y] =

= Tπ′(σvq )[y] =(b) Tπ′in(σvq )[y] = Tmπin(σvq )[y] =(a)

= Tm+1
πin

(σvq )[y] = Tπin(σvq )[y]

∀xl ∈ vars(x̄). Tπ(σvq )[xl] = Tn+1
π (σvq )[xl] =(a) el(T

n
π [Vq])(σ

v
q ) =

= el(Tπ′ [Vq])(σ
v
q ) =(b) el(Tπ′in [Vq])(σ

v
q ) = el(T

m
πin [Vq])(σ

v
q ) =(a)

= Tm+1
πin

(σvq )[xl] = Tπin(σvq )[xl]
where:

(a) By the definition of T for assignment.

(b) Induction hypothesis for π′.

• If ln is a test node B(Vq), then we define πin = (π′in, ln) and:

1. πin ↓q= (π′in ↓q, ln) = (π′, ln) = π by definition.

2. σvq |= Rπ = Rn+1
π =(a) Rnπ∧B̃(Tnπ ) = Rπ′∧B̃(Tπ′), and therefore by induction

hypothesis σvq |= Rπ′in ∧ B̃(Tπ′in) = Rm
πin
∧ B̃(Tm

πin
) =(a) Rm+1

πin
= Rπin where:

(a) By the definition of R for test.

3. Tπ(σvq ) = Tn+1
π (σvq ) =(a) Tnπ (σvq ) = Tπ′(σvq ) =(b)

= Tπ′in(σvq ) ↓Vq= Tmπin(σvq ) ↓Vq=(a) Tm+1
πin

(σvq ) ↓Vq= Tπin(σvq ) ↓Vq
where:

(a) By the definition of T for test.

(b) Induction hypothesis for π′.

• If ln is a call node to pi(Yi), then we define πin = (π′in, lprei , li1, . . . , l
i
k, l

post
i ), where

πi = li1, . . . , l
i
k is a path in CFGpi that is traversed from Tπ′(σvq )[Yi]. meaning:

(∗) σvq |= Rπi(Tπ′ [Yi]).

1. πin ↓q= (π′in ↓q, li) = (π′, ln) = π by definition.

2. σvq |= Rπ = Rn+1
π =(a) Rnπ∧

∨
(r,t)∈sumpi

r(Tnπ [Yi]) = Rπ′∧
∨

(r,t)∈sumpi
r(Tπ′ [Yi]),

therefore by induction hypothesis and (∗)
σvq |= Rπ′in ∧ Rπi(Tπ′in [Yi]) = Rm

πin
∧ Rπi(Tmπin [Yi]) =(b) Rm+k+1

πin
= Rπin ,

where:
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(a) Definition of R for a procedure call in the modular version.

(b) Corollary 3.1.

3. ∀x ∈ Vq \ Yi. Tπ(σvq )[x] = Tn+1
π (σvq )[x] =(a) Tnπ (σvq )[x] =

= Tπ′(σvq )[x] =(b) Tπ′in(σvq )[x] = Tmπin(σvq )[x] =(d)

= Tm+k+1
πin

(σvq )[x] = Tπin(σvq )[x]

∀yl ∈ Yi. Tπ(σvq )[yl] = Tn+1
π (σvq )[yl] =(a)

= ITE (r1(Tnπ (σvq )[Yi]), t
1(Tnπ (σvq )[Yi])[vl], . . . ) =(c)

= Tπi(T
n
π [Yi])(σ

v
q )[vl] = Tπi(Tπ′ [Yi])(σ

v
q )[vl] =(b)

= Tπi(Tπ′in [Yi])(σ
v
q )[vl] = Tπi(T

m
πin [Yi])(σ

v
q )[vl] =(d)

= Tm+k+1
πin

(σvq )[yl] = Tπin(σvq )[yl]
where:

(a) Definition of T for a procedure call in the modular version.

(b) Induction hypothesis for π′.

(c) (∗), and πi must be covered by sumpi since σvq |= Rπ and therefore σvq |=∨
(r,t)∈sumpi

r(Tπ′ [Yi]) and all reachability conditions in the summary are

disjoint.

(d) Corollary 3.1.

3.2.3 Deeper Call Graphs

We proved so far our claims only for call graphs of depth 1. To extend to deeper call

graphs we first need to define some new definitions.

We assume that q calls procedures p1, . . . , pk from locations l1, . . . , lk with inputs

Y1, . . . , Yk, respectively. And the set of all procedures transitively called from q is Q.

Definition 3.2.8. Inlined CFG

Let q be a procedure, represented by CFGq, that calls procedures p1, . . . , pk from

nodes l1, . . . , lk, respectively. We obtain the in-lined version CFGinq from CFGq, by

performing the following changes for every i ∈ [k]:

• Changes in nodes:

1. Remove node li (li : pi(Yi)).

2. Add assignment node lprei : V v
pi := Yi.

3. Add assignment node lposti : Yi := V v
pi .

4. Add all the nodes from CFGinpi .

• Changes in edges:

1. Remove edge (l, li), add edge (l, lprei ).
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2. Remove edge (li, l), add edge (lposti , l).

3. Add edge (lprei , lentryi ), where lentryi is the entry node of CFGinpi .

4. Add edge (lexiti , lposti ), where lexiti is the exit node of CFGinpi .

5. Add all edges from CFGinpi .

The depth of an in-lined call graph is the call depth of the deepest call3 from q.

The definitions of legal paths and q-projected path remain the same. We now need

two versions of pi-projected paths:

Definition 3.2.9. pi-Projected Path

Let π be a legal path in CFGinq ,

• Its modular pi-projected path, denoted π ↓mpi is the sequence of nodes from

CFGpi that appear in π, with sub-calls replaced by the original calling site.

• Its in–lined pi-projected path, denoted π ↓inpi is the interval of nodes between

lstarti and the first lexiti following it, if such lstarti exists, or empty otherwise.

Observation 3.2.10. A modular pi-projected path π ↓mpi is a path in CFGpi .

Observation 3.2.11. An in–lined pi-projected path π ↓inpi is a path in CFGinpi .

Corollary 3.4. (π ↓inpi ) ↓pi= (π ↓mpi)

As before we need to clarify when our summaries have enough information.

Definition 3.2.12. Covered Path

We say that a path π in CFGinq is calling-covered if for every p ∈ Q, π ↓mp is covered

by sump.

To cope with further sub-calls, we apply the same theorems by induction on the

depth of the call graph.

The proofs we have for depth 1 will be used as base cases.

Symbolic Execution ⊆ Modular Symbolic Execution

Theorem 3.5. Let π be a legal, calling-covered path in CFGinq , its q-projected path

π ↓q satisfies:

1. Rπ(V v
q )→ Rπ↓q(V

v
q )

2. Rπ(V v
q )→ Tπ(V v

q ) ↓Vq= Tπ↓q(V
v
q )

3Recursion can be unwound up to the needed depth, and since we analyse paths to a certain depth,
this suits our needs.
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Proof. We prove by induction on c, the depth of the call graph CFGinq . The base case

where c = 1 is Theorem 3.2. For the step we assume the depth of CFGinq is c+ 1 and

we assume correctness for all CFGs of lower depth (bounded by c).

To prove for depth c + 1 we use an internal induction on the length of legal paths π

(π = lin1 , . . . , l
in
m). We denote the length of π ↓q by n.

Base: If m = 0, the same proof as in the base case in the proof of Theorem 3.2.

Step: Assume correctness for all legal paths of length strictly smaller than m. We

consider the last node, linm :

• If node linm is an assignment node or a test node, then it’s the same proof as in the

proof of Theorem 3.2

• If node linm is a node lposti then there exists j < n such that lj = lprei , by definition

π′ = lin1 , . . . l
in
j−1 is legal, π ↓q= (π′ ↓q, li), where li is the original call node to pi

from CFGq, and:

1. Rπ = Rm+1
π =(a) (Rjπ ∧Rπ↓inpi (T

j
π [Yi])) = (Rπ′ ∧Rπ↓inpi (Tπ′ [Yi]))→(b)

(Rπ′↓q ∧Rπ↓inpi (Tπ′↓q [Yi]))→(c) (Rπ′↓q ∧Rπ↓mpi (Tπ′↓q [Yi])) =

(Rnπ↓q ∧Rπ↓mpi (T
n
π↓q [Yi]))→

(d) (Rnπ↓q ∧ (
∨

(r,t)∈sumpi

r(Tnπ↓q [Yi]))) =(e) Rn+1
π↓q

where:

(a) Corollary 3.1, since if all the sub-calls are in-lined, then we can apply

the lemma and its corollary.

(b) Internal Induction hypothesis for the legal path π′.

(c) External Induction hypothesis for π ↓inpi , since the depth of CFGpi is

bounded by c.

(d) We assumed π is calling-covered, and therefore (Rπ↓mpi
, Tmπ↓pi

) ∈ sumpi .

(e) Definition of R for a procedure call in the modular version.

2. Rπ = Rm+1
π →(a) (Rjπ ∧Rπ↓inpi (T

j
π [Yi])) = (Rπ′ ∧Rπ↓inpi (Tπ′ [Yi]))→(b)((

Tπ′ ↓Vq= Tπ′↓q
)
∧Rπ↓inpi

(
Tπ′↓q [Yi]

))
→(c)((

Tπ′ ↓Vq= Tπ′↓q
)
∧Rπ↓mpi

(
Tπ′↓q [Yi]

))
=((

T jπ ↓Vq= Tnπ↓q

)
∧Rπ↓mpi

(
Tnπ↓q [Yi]

))
and therefore:

∀x ∈ Vq \ Yi. Tn+1
π↓q [x] =(d) Tnπ↓q [x] = T jπ [x] =(a) Tm+1

π [x]

∀yl ∈ Yi. Tn+1
π↓q [yl] = ITE (r1(Tnπ↓q [Yi]), t

1(Tnπ↓q [Y ])[vl], . . . ) =(e)

Tπ↓mpi
(Tnπ↓q [Yi])[vl] = Tπ↓mpi

(T jπ [Yi])[vl] =(f)

Tπ↓inpi
(T jπ [Yi])[vl] =(a) Tm+1

π [yl]

where:
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(a) Corollary 3.1, since if all the sub-calls are in-lined, then we can apply

the lemma and its corollary.

(b) Internal induction hypothesis for the legal path π′.

(c) External Induction hypothesis for π ↓inpi , since the depth of CFGpi is

bounded by c.

(d) Definition of T for a procedure call in the modular version.

(e) We assumed π is calling-covered, and therefore (Rπ↓mpi
, Tπ↓mpi

) ∈ sumpi .

Also, Rπ↓mpi
is implied by Rπ, and all reachability conditions in the

summary are disjoint.

(f) External Induction hypothesis for π ↓inpi , since the depth of CFGpi is

bounded by c. Also, Rπ↓inpi
is implied by Rπ.

Symbolic Execution ⊇ Modular Symbolic Execution

Theorem 3.6. Let π be a finite path in CFGq, and σvq a visible state, such that

σvq |= Rπ(V v
q ) and for all i ∈ k the pi-projected paths traversed from σvq in the in-lined

program are in their procedures’ summaries. Then there exists a path πin in CFGinq

that satisfies:

1. πin ↓q= π

2. σvq |= Rπin(V v
q )

3. Tπin(σvq ) ↓Vq= Tπ(σvq )

Proof. We prove by induction on c, the depth of the call graph CFGinq . The base case

where c = 1 is Theorem 3.3. For the step we assume the depth of CFGinq is c+ 1 and

we assume correctness for all CFGs of lower depth (bounded by c).

To prove for depth c+ 1, we use an internal induction on the length of π. Given a path

π = l1, . . . , ln we define πin inductively, while maintaining that πin satisfies all three

conditions.

Base: n = 0, the same construction and proof as in the base case in the proof of

Theorem 3.3.

Step: Let π = l1, . . . , ln be a path in CFGq. We assume that for π′ = l1, . . . , ln−1,

π′in = lin1 , . . . , l
in
m−1 is defined and maintains the conditions.

• If ln is an assignment node or a test node, then it’s the same construction and

proof as in the base case in the proof of Theorem 3.3.

• If ln is a call node to pi(Yi), then we define πin = (π′in, lprei , li1, . . . , l
i
k, l

post
i ), where

πi = li1, . . . , l
i
k is a path in CFGinpi that is traversed from Tπ′(σvq )[Yi]. meaning:

(∗) σvq |= Rπi(Tπ′ [Yi]).
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1. πin ↓q= (π′in ↓q, li) = (π′, ln) = π by definition.

2. σvq |= Rπ = Rn+1
π =(a) Rnπ∧

∨
(r,t)∈sumpi

r(Tnπ [Yi]) = Rπ′∧
∨

(r,t)∈sumpi
r(Tπ′ [Yi]),

therefore by the internal induction hypothesis and (∗)
σvq |= Rπ′in ∧ Rπi(Tπ′in [Yi]) = Rm

πin
∧ Rπi(Tmπin [Yi]) =(b) Rm+k+1

πin
= Rπin ,

where:

(a) Definition of R for a procedure call in the modular version.

(b) Corollary 3.1, since if all the sub-calls are in-lined (as in πi), then we

can apply the lemma and its corollary.

3. ∀x ∈ Vq \ Yi. Tπ(σvq )[x] = Tn+1
π (σvq )[x] =(a) Tnπ (σvq )[x] =

= Tπ′(σvq )[x] =(b) Tπ′in(σvq )[x] = Tmπin(σvq )[x] =(d)

= Tm+k+1
πin

(σvq )[x] = Tπin(σvq )[x]

∀yl ∈ Yi. Tπ(σvq )[yl] = Tn+1
π (σvq )[yl] =(a)

= ITE (r1(Tnπ (σvq )[Yi]), t
1(Tnπ (σvq )[Yi])[vl], . . . ) =(c)

= Tπi↓pi (T
n
π [Yi])(σ

v
q )[vl] =(e) Tπi(T

n
π [Yi])(σ

v
q )[vl] =

= Tπi(Tπ′ [Yi])(σ
v
q )[vl] =(b) Tπi(Tπ′in [Yi])(σ

v
q )[vl] =

= Tπi(T
m
πin [Yi])(σ

v
q )[vl] =(d)

= Tm+k+1
πin

(σvq )[yl] = Tπin(σvq )[yl]
where:

(a) Definition of T for a procedure call in the modular version.

(b) Induction hypothesis for π′.

(c) (∗), and πi must be covered by sumpi since σvq |= Rπ and therefore σvq |=∨
(r,t)∈sumpi

r(Tπ′ [Yi]) and all reachability conditions in the summary are

disjoint.

(d) Corollary 3.1.

(e) External induction hypothesis, since the depth of CFGinpi is bounded by

c.

3.3 Difference Summary

Throughout the rest of the paper, we refer to a syntactically different pair of procedures

as modified , and to a semantically different pair of procedures (not fully equivalent for

every state) as affected . Note that a modified procedure is not necessarily affected.

Further, an affected procedure is not necessarily modified, but must call (transitively) a

modified and affected procedure.

Our main goal is, given two program versions, to evaluate the difference and similarity

between them. For that purpose we define the notion of difference summary, in an

attempt to capture the semantic difference and similarity between the programs. A
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difference summary is defined for procedures and extends to programs, by computing

the difference summary for the main procedures in the programs.

We start by defining the notion of full difference summary, which precisely captures

the difference and similarity between the behaviors of two given procedures. In this

section we give all definitions in terms of sets of states that might be infinite.

Definition 3.3.1. A Full Difference Summary for two procedures p1 and p2 is a

triplet

∆Fullp1,p2 = (chp1,p2 , unchp1,p2 , termin chp1,p2)

where,

• chp1,p2 is the set of visible states for which both procedures terminate with different

final states.

• unchp1,p2 is the set of visible states for which both procedures either terminate

with the same final states, or both do not terminate.

• termin chp1,p2 is the set of visible states for which exactly one procedure terminates.

Note that chp1,p2 ∪ unchp1,p2 ∪ termin chp1,p2 covers the entire visible state space. The

three sets are related to the state equivalence notions of Definition 2.3.1 as follows.

• chp1,p2 is the set of the visible states that violate partial equivalence. It only

captures differences between terminating paths.

• termin chp1,p2 is the set of visible states that violate mutual termination.

• unchp1,p2 is the set of visible states for which the procedures are fully equivalent.

Example 3.3.2. Consider the procedures in Figure 2.1. The full difference summary for

this pair of procedures is:

chp1,p2 = {{x 7→ 4}}

unchp1,p2 = {{x 7→ c} | c 6= 2 ∧ c 6= 4}

termin chp1,p2 = {{x 7→ 2}}

For input 2 the old version p1 does not change x, while the new version p2 reaches an

infinite loop, and therefore 2 is in termin chp1,p2 . For input 3, although the paths taken

in the two versions are different, the final value of x is the same (3), and therefore 3 is

in unchp1,p2 . For input 4, p1 does not change x, while p2 changes x to 3, and therefore 4

is in chp1,p2 .

The full difference summary and any of its three components are generally in-

computable, since they require halting information. We therefore suggest to under-

approximate the desired sets. In the next section we present an algorithm that computes
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under-approximated sets and can also strengthen them. The strengthening extends the

sets with additional states, thus bringing the computed summary “closer” to the full

difference summary.

Definition 3.3.3. Given two procedures p1, p2, their Difference Summary

∆p1,p2 = (C(p1, p2), U(p1, p2))

consists of two sets of states where

• C(p1, p2) ⊆ chp1,p2 .

• U(p1, p2) ⊆ unchp1,p2 .

A difference summary gives us both an under-approximation and an over-approximation

of the difference between procedures, given by C(p1, p2) and ¬U(p1, p2)
4, respectively.

The algorithm presented in the next section is based on the notion of path difference,

presented below. Recall that for a given path π, its path summary is the pair (Rπ, Tπ)

(see Definition 2.2.1).

Definition 3.3.4. Let p1 and p2 be two procedures with the same visible variables

V v
p1 = V v

p2 = V v
p , and let π1 and π2 be finite paths in CFGp1 and CFGp2 , respectively.

Then the Path Difference of π1 and π2 is a triplet (d, Tπ1 , Tπ2), where d is defined as

follows:

d(V v
p )↔ (Rπ1(V v

p ) ∧Rπ2(V v
p ) ∧ ¬(Tπ1(V v

p ) = Tπ2(V v
p ))).

We call d the condition of the path difference. Note that d implies the reachability

conditions of both paths, meaning that for any visible state σ that satisfies d, path π1

is traversed from σ in CFGp1 and path π2 is traversed from σ in CFGp2 . Moreover,

when starting from σ, the final state of π1 will be different from the final state of π2

(at least for one of the variables in V v
p ). If d is satisfiable we say that π1 and π2 show

difference .

3.4 Computing Difference Summaries

3.4.1 Call Graph Traversal

Assume we are given two program versions, each consisting of one main procedure and

many other procedures that call each other. Assume also a matching function, which

associates procedures in one program with procedures in the other, based on names

(added and removed procedures are matched to the empty procedure). Our objective is

to efficiently compute difference summaries for matching procedures in the programs.

We are particularly interested in the difference of their main procedures. This goal

4We use ¬ for set complement with respect to the state space.
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will be achieved gradually, where precision of the resulting summaries increases, as

computation proceeds. In this section we replace the sets of states describing difference

summaries by their characteristic functions, in the form of FOL formulas.

As mentioned before, any block of code can be treated as a procedure, not only

those defined as procedures by the programmer.

Our main algorithm DiffSummarize, presented in Algorithm 3.1, provides an

overview of our method. The algorithm does not assume that the call graph is cycle-free,

and therefore is suitable for recursive programs as well.

For each pair of matched procedures, the algorithm computes a Difference summary

Diff[(p1, p2)], which is a pair of C(p1, p2) and U(p1, p2). Sum is a mapping from all

procedures to their current summary.

The algorithm computes a set workSet, which includes all pairs of procedures

for which Diff should be computed. The set workSet is initialized with all modified

procedures, and all their callers (lines 3–8), as those are the only procedures suspected to

be affected. We initially trivially under-approximate Diff for the procedures in workSet

by (false, false) (line 10). We can also safely conclude that all other procedures are not

affected (line 14).

Next we analyse all pairs of procedures in workSet (lines 17–31), where the order

is chosen heuristically. Given procedures p1 and p2, if they are syntactically identical,

and all called procedures have already been proven to be unaffected (line 19) – we can

conclude that p1, p2 are also unaffected. Otherwise, we compute sump1 and sump2 by

running ModularSymbolicExecution (presented in Section 3.1) on the code of each

procedure separately, up to a certain bound (chosen heuristically).

Since it is possible to visit a pair of procedures p1, p2 multiple times we keep the

computed summaries in Sum[p1] and Sum[p2], and re-use them when re-analyzing the

procedures to avoid recomputing path summaries of paths that have already been visited.

We then call algorithm ConstructProcDiffSum (explained in Section 3.4.2) for

computing a difference summary for p1 and p2.

Each time a difference summary changes (line 27), we need to re-analyse all its

callers to check how this newly learned information propagates (line 29).

Algorithm DiffSummarize is modular. It handles each pair of procedures separately,

without ever considering the full program and without inlining called procedures.

As mentioned before, Algorithm DiffSummarize is not guaranteed to terminate.

Yet it is an anytime algorithm. That is, its partial results are meaningful. Furthermore,

the longer it runs, the more precise its results are.

3.4.2 Computing the Difference Summaries for a Pair of Procedures

Algorithm ConstProcDiffSum (presented in Algorithm 3.2) accepts as input pro-

cedure summaries sump1 , sump2 and also the current difference summary of p1, p2.

It returns an updated difference summary ∆p1,p2 . In addition, it returns the set

30



Algorithm 3.1 DiffSummarize(P1, P2)

Input: Two program versions P1, P2

Output: Difference Summary and a set of Path Difference Summaries for each pair of
matching procedures, including mainP1 ,mainP2

1: match = ComputeProcedureMatching(P1, P2)
2: FoundDiff[(p1, p2)] = ∅, for each (p1, p2) ∈ match
3: workSet := ∅
4: newWorkSet:= {(p1, p2) ∈ match : p1 different syntactically from p2}
5: while newWorkSet 6= workSet do
6: workSet := newWorkSet
7: newWorkSet := workSet ∪ {(q1, q2) ∈ match : ∃(p1, p2) ∈ workSet s.t. q1 calls
p1 or q2 calls p2}

8: end while
9: for each (p1, p2) ∈workSet do

10: Diff[(p1, p2)] := (false, false)
11: Sum[p1]:=∅, Sum[p2]:=∅
12: end for
13: for each (p1, p2) ∈ match\workSet do
14: Diff[(p1, p2)] := (false, true)
15: Sum[p1]:=∅, Sum[p2]:=∅
16: end for
17: while workSet 6= ∅ do
18: (p1, p2) := chooseNext(workSet) . heuristic order
19: if p1, p2 are syntactically identical and for all (g1, g2) ∈ match s.t. p1 calls g1 or

p2 calls g2, Diff[(g1, g2)]=(*,true) then
20: newDiff := (false,true)
21: else
22: Sum[p1] := ModularSymbolicExecution(p1,Sum)
23: Sum[p2] := ModularSymbolicExecution(p2,Sum)
24: (newDiff,newFoundDiff) :=ConstProcDiffSum(Sum[p1],Sum[p2],Diff[(p1, p2)])

25: FoundDiff[(p1, p2)]:=FoundDiff[(p1, p2)] ∪ newFoundDiff
26: end if
27: if Diff[(p1, p2)] 6= newDiff then
28: Diff[(p1, p2)] := newDiff
29: workSet := workSet ∪ {(q1, q2) ∈ match : q1 calls p1 or q2 calls p2}
30: end if
31: end while
32: return (Diff, FoundDiff)
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Algorithm 3.2 ConstProcDiffSum(sump1 , sump2 ,oldDiff)

Input: Procedure summaries sump1 , sump2 of procedures p1, p2, respectively, and
oldDiff, previously computed ∆p1,p2

Output: updated ∆p1,p2 , found diff p1,p2
1: (C(p1, p2), U(p1, p2)) := oldDiff
2: found diff p1,p2= ∅
3: for each (r1, t1) in sump1 do
4: for each (r2, t2) in sump2 do
5: diffCond := r1 ∧ r2 ∧ t1 6= t2
6: if diffCond is SAT then
7: C(p1, p2):=C(p1, p2)∨ diffCond
8: found diff p1,p2 := found diff p1,p2∪{(diffCond , t1, t2)}
9: end if

10: eqCond := r1 ∧ r2 ∧ t1 = t2
11: if eqCond is SAT then
12: U(p1, p2):= U(p1, p2)∨ eqCond
13: end if
14: end for
15: end for
16: return ((C(p1, p2), U(p1, p2)), found diff p1,p2)

found diff p1,p2of path differences, for every pair of paths in the two procedure sum-

maries, which shows difference.

The construction of diffCond in line 5 ensures that (diffCond ,t1, t2) is a valid

path difference. We add diffCond to C(p1, p2) (line 7), and (diffCond ,t1, t2) to

found diff p1,p2(line 8). Thus, we not only know under which conditions the proce-

dures show difference, but also maintain the difference itself (by means of t1 and

t2).

The construction of eqCond in line 10 ensures that for all states that satisfy it the final

states of both procedures are identical, as required by the definition of U(p1, p2). The

satisfiability checks in lines 6,11 are an optimization that ensures we do not complicate

the computed formulas unnecessarily with unsatisfiable formulas.

We avoid recomputing previously computed path differences. For simplicity, we do

not show it in the algorithm.

3.5 Abstraction and Refinement

3.5.1 Abstraction

In Section 3.1 we show how to define symbolic execution modularly. There, we restrict

ourselves to procedure calls with previously analyzed inputs. However, full analysis of

each procedure is usually not feasible and often not needed for difference analysis at the

program level. In this section we show how partial analysis can be used better.

We abstract the unexplored behaviors of the called procedures by means of uninter-
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preted functions [18]. A demand-driven refinement is applied to the abstraction when

greater precision is needed.

We modify the definition of Modular symbolic execution for procedure call instruction

g(Y ) in the following manner:

• First, we now allow the symbolic execution of p to consider paths along which p

calls g with inputs for which g traverses an unexplored path. To do so, we change

the definition from Equation (3.1) to Ri+1
π = Riπ.

• Second, to deal with the lack of knowledge of the output of g, we introduce a

set of uninterpreted functions UF g = {UF j
g | 1 ≤ j ≤ |V v

g |} 5. The uninterpreted

function UF j
g(T

i
π[Y ]) replaces UK in T i+1

π [yj ] (Equation (3.2)), where yj ∈ Y is

the j-th parameter to g.

We can now improve the precision of Si+1[yj ] if we exploit not only the summaries

of g1 and g2 but also their difference summaries. In particular, we can use the fact

that U(g1, g2) characterizes the inputs for which g1 and g2 behave the same. We thus

introduce three sets of uninterpreted functions: UF g1 ,UF g2 ,UF g1,g2 .

We now revisit Equation (3.2) of the modular symbolic execution for procedure call

g1(Y ), where we replace UK in T i+1
π [yj ] with

ITE (U(g1, g2)(T
i
π[Y ]),UF j

g1,g2(T iπ[Y ]),UF j
g1(T iπ[Y ])).

Similarly, for a procedure call g2(Y ) we replace UK with

ITE (U(g1, g2)(T
i
π[Y ]),UF j

g1,g2(T iπ[Y ]),UF j
g2(T iπ[Y ])).

The set UF g1,g2 includes common uninterpreted functions, representing our knowledge

of equivalence between g1 and g2 when called with inputs T iπ[Y ], even though their

behavior in this case is unknown. In some cases this could be enough to prove the

equivalence of the calling procedures p1, p2. The sets UF g1 and UF g2 are separate

uninterpreted functions, which give us no additional information on the differences or

similarities of g1, g2.

Example 3.5.1. Consider again procedures p1, p2 in Figure 2.1. Let their procedure

summaries be

sump1(x) = {(x < 0,−1), (x ≥ 2, x)}

sump2(x) = {(x < 0,−1), (x > 4, x)}

and their difference summary be ∆p1,p2 = (false, x < 2 ∨ x > 4). When symbolic

execution of a procedure g reaches a procedure call p1(a), where a is a variable of the

5An obvious optimization is to use the previous symbolic state for visible variables of p that are only
used by g as inputs but are not changed in g. However, for simplicity of discussion we will not go into
those details.
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1 void f 1 ( int& x ) {
2 i f ( x == 5) {
3 abs ( x ) ;
4 i f ( x == 0) {
5 x = 0 ;
6 return ;
7 }
8 }
9 }

1 void f 2 ( int& x ) {
2 i f ( x == 5) {
3 abs ( x ) ;
4 i f ( x == 0) {
5 x = 1 ;
6 return ;
7 }
8 }
9 }

1 void abs ( int& x ) {
2 i f ( x >= 1)
3 return ;
4 else
5 x = −x ;
6 }

Figure 3.1: Procedure versions in need of refinement

calling procedure g, we will perform:

Ri+1
π =Riπ

∀yj 6= a. T i+1
π [yj ] =T iπ[yj ]

T i+1
π [a] = ITE (T iπ[a] < 0,−1, ITE (T iπ[a] ≥ 2, T iπ[a],

ITE (T iπ[a] < 2 ∨ T iπ[a] > 4,UF x
p1,p2(T

i
π[a]),UF x

p1(T
i
π[a]))).

3.5.2 Refinement

Using the described abstraction, the computed Rπ, Tπ may contain symbols of uninter-

preted functions, and therefore so could diffCond = r1 ∧ r2 ∧ t1 6= t2 and eqCond =

r1 ∧ r2 ∧ t1 = t2 (lines 5, 10 in Algorithm ConstProcDiffSum). As a result, C(p1, p2)

and U(p1, p2) may include constraints that are spurious, that is, constraints that do not

represent real differences or similarities between p1 and p2. This could occur due to the

abstraction introduced by the uninterpreted functions. Thus, before adding diffCond to

C(p1, p2) or eqCond to U(p1, p2), we need to check whether it is spurious. To address

spuriousness, we may then need to apply refinement by further analysing unexplored

parts of the procedures. This includes procedures that are known to be identical in

both versions, since their behavior may affect the reachability or the final states, as

demonstrated by the example below.

Example 3.5.2. To conclude that the procedures in Figure 3.1 are equivalent, we need

to know that abs(5) cannot be zero. Therefore, we need to analyse abs, even though it

was not changed or affected.

We use the technique introduced in [4]: Let ϕ be a formula we wish to add to

either C(p1, p2) or U(p1, p2) (ϕ ∈ {diffCond , eqCond}) such that ϕ includes symbols of

uninterpreted functions. Before being added, it should be checked for spuriousness.

For every k ∈ {1, 2}, assume procedure pk calls procedure gk(Yk) at location lik
on the single path π′ from pk, described by ϕ. For every k ∈ {1, 2} apply symbolic

34



execution up to a certain limit on gk with the pre-condition

ϕ ∧ ¬

 ∨
(r,t)∈sumgk

r
(
T ik−1π′ [Yk]

) ∧ V v
g = T ik−1π′ [Yk].

where:

• ϕ - restricts the paths traversed in gk to ones feasible under the call from π′.

• ¬
(∨

(r,t)∈sumgk
r
(
T ik−1π′ [Yk]

))
- restricts the paths traversed in gk to ones not

previously explored.

• V v
g = T ik−1π′ [Yk] - links between the inputs to gk to the visible variables of gk,

which are the ones that will appear during the traversal.

When the reachability checks are performed with this precondition, only new paths

reachable from this call in pk are explored. For every such new path π, add (Rπ, Tπ) to

sumgk , replace the old sumgk with the new sumgk in ϕ and check for satisfiability again.

As a result, we either find a real difference or similarity, or eliminate all the spurious

path differences that involve the explored path π in gk. The refinement suggested above

can be extended in a straightforward manner to any number of function calls along a

path.

Example 3.5.3. Consider again the procedures in Figure 3.1. Assume that the current

summaries of abs1=abs2=abs are empty, but it is known that both versions are identical

(unmodified syntactically). We get (using symbolic execution and Algorithm 3.2) the

diffCond for p1 and p2:

diffCond =

[
x = 5 ∧

(
ITE (true,UF abs1,abs2(x),UF abs1(x)) = 0

)
∧

x = 5 ∧
(

ITE (true,UF abs1,abs2(x),UF abs2(x)) = 0
)
∧ 0 6= 1

]
≡
[
x = 5 ∧UF abs1,abs2(x) = 0

]
Next we use x = 5 as a pre-condition, and perform symbolic execution, updating the

summary for abs: (x ≥ 1, x). Now diffCond is:[
x = 5 ∧

(
ITE

(
x ≥ 1, x, ITE (true,UF abs1,abs2(x),UF abs1(x))

)
= 0

)
∧

x = 5 ∧
(

ITE
(
x ≥ 1, x, ITE (true,UF abs1,abs2(x),UF abs2(x))

)
= 0

)
∧ 0 6= 1

]

≡

[
x = 5 ∧

(
ITE

(
x ≥ 1, x,UF abs1,abs2(x)

)
= 0

)]
≡ x = 5 ∧ x = 0

which is now unsatisfiable. We thus managed to eliminate a spurious difference without

computing the full summary of abs.
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Once a difference summary is computed, we can choose whether to refine the difference

by exploring more paths in the individual procedures; or, if diffCond or eqCond contains

uninterpreted functions, to explore in a demand driven manner the procedures summa-

rized by the uninterpreted functions; or continue the analysis in a calling procedure,

where possibly the unknown parts of the current procedures will not be reachable. In

Chapter 4 we describe the results on our benchmarks in two extreme modes: running

refinement always immediately when needed (ModDiffRef), and always delaying the

refinement (ModDiff).

3.6 Comparison to Related Work

A formal definition of equivalence between programs is given in [13]. We extend these

definitions to obtain a finer-grained characterization of the differences.

We extend the path-wise symbolic summaries and deltas given in [25], and show

how to use them in modular symbolic execution, while abstracting unknown parts.

The SymDiff [20] tool and the Regression Verification Tool (RVT) [14] both check

for partial equivalence between pairs of procedures in a program, while abstracting

procedure calls (after transforming loops into recursive calls). Unlike our tool, both

SymDiff and RVT are only capable of proving equivalences, not disproving them.

In [16], a work that has similar ideas to ours, conditional equivalence is used to

characterize differences with SymDiff. The algorithm presented in [16] is able to deal

with loops and recursion; however, the algorithm is not fully implemented in SymDiff.

Our tool is capable of dealing soundly with loops, and as our experiments show, is often

able to produce full difference summaries for programs with unbounded loops. We also

provide a finer-grained result, by characterizing the inputs for which there are (no)

semantic differences.

Both SymDiff and RVT lack refinement, which often causes them to fail at proving

equivalence, as shown by our experiments in Chapter 4. Both tools are, however,

capable of proving equivalence between programs (using, among others, invariants and

proof rules) that cannot be handled by our method. Our techniques can be seen as an

orthogonal improvement. SymDiff also has a mode that infers common invariants, as

descried in [21], but it failed to infer the required invariants for our examples.

Under-constrained symbolic execution, meaning symbolic execution of a procedure

that is not the entry point of the program is presented in [27, 28], where it is used

to improve scalability while using the old version as a golden model. The algorithm

presented in [27, 28] does not provide any guarantees on its result, and it does not

attempt to propagate found differences to inputs of the programs. By contrast, our

algorithm does not stop after analysing only the syntactically modified procedures, but

continues to their calling procedures. On the other hand, procedures that do not call

modified procedures (transitively) are immediately marked as equivalent. Thus, we

avoid unnecessary work. In [27], the new program version is checked, while assuming
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that the old version is correct. We do not use such assumptions, as we are interested in

all differences: new bugs, bug fixes, and functional differences such as new features.

In [5, 26] summaries and symbolic execution are also used to compute differences.

The technique there leverages a light-weight static analysis to help guide symbolic

execution only to potentially differing paths. In [6], symbolic execution is applied

simultaneously on both versions, with the purpose of guiding symbolic execution to

changed paths. Both techniques, however, lack modularity and abstractions. A possible

direction for new research would be to integrate our approach with one of the two.

Our approach is similar to the compositional symbolic execution presented in [4, 12],

that is applied to single programs. However, the analysis in [4,12] is top-down while ours

works bottom-up, starting from syntactically different procedures, proceeding to calling

procedures only as long as they are affected by the difference of previously analyzed

procedures. The analysis stops as soon as unaffected procedures are reached.

Our algorithm is unique in that it provides both an under- and over-approximations

of the differences, while all the described methods have no guarantees or only provide

one of the two.
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Chapter 4

Experimental Results

We implemented the algorithm presented in section 3.4 with the abstractions from

Section 3.5 on top of the CProver framework (version 787889a), which also forms

the foundation of the verification tools CBMC [8], SatAbs [9], Impact [22] and

Wolverine [19]. The implementation is available online [2]. Since we analyse programs

at the level of an intermediate language (goto-language, the intermediate language used

in the CProver framework), we can support any language that can be translated to this

language (currently Java and C). We report results for two variants of our tool – without

refinement (ModDiff for Modular Demand-driven Difference), and with refinement

(ModDiffRef). The unwinding limit is set to 5 in both variants.

SymDiff and RVT: We compared our results to two well established tools, SymDiff

and RVT. For SymDiff, we used the smack [3] tool to translate the C programs into

the Boogie language, and then passed the generated Boogie files to the latest available

online version of SymDiff.

4.1 Benchmarks and Results

We analysed 28 C benchmarks, where each benchmark includes a pair of syntactically

similar versions. Our benchmarks are available online [1]. Our benchmarks were chosen

to demonstrate some of the benefits of our technique, as explained below. A total of 16

benchmarks are semantically equivalent (Table 4.1a), while some benchmarks contain

semantically different procedures. When using refinement, our algorithm was able to

prove all equivalences between programs but not between all procedures (although

some were actually equivalent). RVT’s refinement is limited to loop unrolling, and

its summaries are limited as well. Thus, it cannot prove equivalence of ancestors of

recursive procedures or loops that are semantically different. Also, if it fails to prove

equivalence of semantically equivalent recursive procedures or loops, it cannot succeed

in proving equivalence of their ancestors. As previously mentioned, RVT can sometimes

prove equivalence when our tool cannot. The latest available version of SymDiff failed

to prove most examples, possibly also for lack of refinement.
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Benchmark ModDiff ModDiffRef RVT SymDiff

Const 0.545s 0.541s 4.06s 14.562s

Add 0.213s 0.2s 3.85s 14.549s

Sub 0.258s 0.308s 5.01s F

Comp 0.841s 0.539s 5.19s F

LoopSub 0.847s 1.179s F F

UnchLoop F 2.838s F F

LoopMult2 1.666s 1.689s F F

LoopMult5 F 3.88s F F

LoopMult10 F 9.543s F F

LoopMult15 F 21.55s F F

LoopMult20 F 49.031s F F

LoopUnrch2 0.9s 0.941s F F

LoopUnrch5 1.131s 1.126s F F

LoopUnrch10 1.147s 1.168s F F

LoopUnrch15 1.132s 1.191s F F

LoopUnrch20 1.157s 1.215s F F

(a) Semantically equivalent

Benchmark ModDiff MDDiffRef

LoopSub 1.187s 2.426s

UnchLoop F 8.053s

LoopMult2 3.01s 3.451s

LoopMult5 F 5.914s

LoopMult10 F 10.614s

LoopMult15 F 14.024s

LoopMult20 F 25.795s

LoopUnrch2 2.157s 2.338s

LoopUnrch5 2.609s 3.216s

LoopUnrch10 2.658s 3.481s

LoopUnrch15 2.835s 3.446s

LoopUnrch20 3.185s 3.342s

(b) Semantically different

Table 4.1: Experimental results. Numbers are time in seconds, F indicates a failure to
prove equivalence in (a), and that the difference summary of main was not full (some
differences were not found) in (b).
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int foo1 ( int a , int b) {
int c=0;
for ( int i =1; i<=b ; ++i )

c+=a ;
return c ;

}

int foo2 ( int a , int b) {
int c=0;
for ( int i =1; i<=a ; ++i )

c+=b ;
return c ;

}

(a) procedures foo1 and foo2 in
LoopMult benchmarks

int main ( int x ,
char∗argv [ ] ) {

//LoopMult2
return f oo (2 , 2 ) ;

}

int main ( int x ,
char∗argv [ ] ) {

//LoopMult5
i f (x>=5 && x<7)

return f oo (x , 5 ) ;
return 0 ;

}

(b) main functions of
LoopMult2 and Loop-
Mult5

int foo1 ( int a , int b) {
int c=0;
i f ( a<0) {

for ( int i =1;
i<=b;++ i )

c+=a ;
}
return c ;

}

int foo2 ( int a , int b) {
int c=0;
i f ( a<0) {

for ( int i =1;
i<=a;++ i )

c+=b ;
}
return c ;

}

(c) procedures foo1 and foo2 in
LoopUnrch benchmarks

Figure 4.1: LoopMult and LoopUnrch benchmarks

4.2 Analysis
We now explain in detail the benefit of our method on specific benchmarks. The

LoopUnrch benchmarks illustrate the advantages of summaries. Our tool analyses foo1

and foo2 from Figure 4.1c, finds a condition under which those procedures are different

(for example inputs −1,1), and a condition under which they are equivalent (a ≥ 0).

In all versions of this benchmark, foo1 and foo2 are called with positive (increasing)

values of a (and b), and hence the loop is never performed. We are able to prove

equivalence efficiently in all versions, both with and without refinement.

The LoopMult benchmarks illustrate the advantages of refinement. Our tool analyses

foo1 and foo2 from Figure 4.1a, finds a condition under which those procedures are

different (for example inputs 1,−1), and a condition under which they are equivalent.

We also summarise all behaviors that correspond to unwinding of the loop 5 times.

This unwinding is sufficient when the procedures are calls with inputs 2,2 (benchmark

LoopMult2, the first main from Figure 4.1b), and therefore both MD-Diff and MD-

DiffRef are able to prove equivalence quickly. This unwinding is, however, not sufficient

for benchmark LoopMult5 (the second main from Figure 4.1b). Thus, MD-Diff is not

able to prove equivalence (the summary of foo1/2 does not cover the necessary paths),

while MD-DiffRef analyses the missing paths (where 5 ≤ a < 7 ∧ b = 5), and is able

to prove equivalence. As the index of the LoopMult benchmark increases, the length

of the required paths and their number increases, and the analysis takes more time,

accordingly, but only necessary paths are explored.

The remaining 12 benchmarks are not equivalent, and our algorithm is able to find

inputs for which they differ (presented in Table 4.1b). Since both SymDiff and RVT

are only capable of proving equivalences, not disproving them, we did not compare to

those tools.
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Chapter 5

Conclusion and Future Work

In this dissertation we developed a modular and demand driven method for finding

semantic differences and similarities between program versions. It is able to soundly

analyse programs with loops, and guide the analysis towards ”interesting” paths. Our

method is based on (partially abstracted) procedure summarizations, that can be refined

on demand. Our experimental results demonstrate the advantage of our approach due

to these features.

Some ideas for future work are:

• Incorporate the ideas shown here with some of the ideas from other works, such

as [14] or [5, 26].

• Extend the implementation to support pointers and memory allocation.
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סטנדרטית. סימבולית הרצה לבין בינה הקשרים את ומוכיחים מודולרית, סימבולית הרצה מגדירים אנו

על מחזרה הימנעות תוך בשגרה, מסלול כל לנתח כדי מודולרית סימבולית בהרצה משתמשים אנו

פעמים. מספר שנקראות משגרות מסלולים

מהיר שלנו הכלי כי מראות התוצאות מובילים. לכלים אותו והשווינו שלנו, האלגוריתם את מימשנו

בכך. נכשלים האחרים הכלים כאשר גם שקילות להוכיח ומצליח יותר,

מרכזיות תרומות

הן: זו עבודה של המרכזיות התרומות

תוכנה. גרסאות בין סמנטיים הבדלים לחישוב ומונחה-דרישה מודולרי אלגוריתם מציגים אנו •

הסמנטיים. להבדלים תחתון וקירוב עליון קירוב מייצר שהוא בכך ייחודי שלנו האלגוריתם •

של והדיוק היעילות שבין באיזון לשלוט לנו המאפשרים ועידון לאבסטרקציה כלים מציגים אנו •
התוצאה.

מודולרית. סימבולית הרצה של הרעיון את מפתחים אנו •

ii



תקציר

יכולנו אילו קודמת. בגרסה שינויים ביצוע ע"י מתקבלת חדשה גרסה כאשר בשלבים, נבנות תכניות

של מהיר לפיתוח רבות מסייעים היינו תוכנה, של גרסאות שתי של בהתנהגות ההבדלים את להבין

כדי הבדלים על ובמידע בעבר) (שנבדקה הישנה הגרסא של בנכונות להשתמש ניתן נכונה. תוכנה

באופן המפתח. של לציפיה תואם אכן השינוי האם לבדוק גם ניתן החדשה. הגרסא של נכונות להסיק

לחישוב כללי אלגוריתם מציגים אנו זאת, עם לחישוב. ניתנת אינה כלומר כריעה, אינה זו משימה כללי

מאפיינים אנו תוכניות. שתי בין קלט־פלט) יחסי (מבחינת הסמנטיים השינויים של (אומדן) מקורב

מצבים וגם שונים, הם הגרסאות שתי מהרצת המתקבלים הסופיים המצבים עבורם התחלתיים מצבים

מספיק מדוייקים יהיו שהאומדנים היא העיקרית המטרה זהים. הסופיים המצבים עבורם התחלתיים

כי יתכן תכנה, פיתוח בזמן הוא העיקרי והשימוש היות אמיתיות. תכניות עבור המשתמש לצרכי

התוכנית על מאשר למפתח) עדיף (ואף מספיק יהיה מסויימות שגרות בין ההבדל של מקורב חיושב

להנחות למשתמש אפשרות נותנים אנו יותר. מדוייקות יהיו שכאלו ביניים שתוצאות גם יתכן כולה.

המשתפרים מהשגרות אחת לכל השינויים של קירובים ומייצרים מעניינות, לשגרות האלגוריתם את

וניתן הריצה, במהלך משתפרות תוצאותיו אך יסתיים, שהאלגוריתם מובטח לא ריצה. כדי תוך

ביניים. תוצאות ולקבל עת בכל אותו להפסיק

שקיימת מניחים (אנו מתאימות שגרות זוג כל של הקלטים טווח של חלוקה הן שלנו הניתוח תוצאות

השגרות של הפלט עבורם קלטים קבוצות: לשלוש הגרסאות) משתי שגרות של זוגות בין התאמה

עבורם וקלטים עוצרות, אינן ששתיהן או זהה עוצרות) (אם השגרות של הקלט עבורם קלטים שונה,

הבדל. יש האם ידוע לא

כאשר יותר הרבה יעילה בצורה פועל הוא אבל תוכניות, שתי כל על לעבוד יכול האלגוריתם אמנם

עוקבות גרסאות בין סינטקטיים שינויים מעטים. יחסית הם התוכניות בין הסינטקטיים ההבדלים

בעץ עמוק לעיתים התכנית, של מסויים באזור ומרוכזים מעטים אכן קרובות לעיתים הם תוכנה של

גם הוא שלנו הניתוח השינוי. מן המושפעים בתכנית אזורים רק מנתחים אנו שלנו בגישה הקריאות.

אנו זאת ובמקום מועתקות, אינן מתוכן הנקראות שגרות בנפרד. שגרות זוג כל המנתח כזה מודולרי,

שלהן. בסיכום משתמשים

שניתן מפורשות) לא פונקציות (בעזרת אבסטרקטיים שגרות סיכומי מייצרים אנו היעילות, למען

לבטא כדי משותפות מפורשות לא בפונקציות להשתמש ניתן כיצד מראים אנו דרישה. לפי לעדן

השגרות. של המדוייקת ההתנהגות על מידע לנו אין כאשר גם סמנטית, שקילות על שלנו הידע את

לנקודות ועד הגרסאות, בין הסינטקטיים מהשינויים החל מלמטה-למעלה, פועל שלנו האלגוריתם

(מלמעלה- עידון מבצעים אנו מספיק, אינו הסיכומים אחד של הדיוק כאשר התכניות. של הכניסה

הקוראת. השגרה צרכי על העונה חדש סיכום לייצר כדי הנוכחי, הקריאה בהקשר המשתמש למטה)

i





המחשב. למדעי בפקולטה גרומברג, ארנה פרופסור של בהנחייתה בוצע המחקר

תקופת במהלך בכנס למחקר ושותפיו המחבר מאת כמאמר פורסמו זה בחיבור התוצאות מן חלק

המחבר: של המגיסטר מחקר

Anna Trostanetski, Orna Grumberg, and Daniel Kroening. Modular demand-driven analysis
of semantic difference for program versions. In International Static Analysis Symposium.
Springer, NY, USA, 2017.
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לימודיי. במהלך וחברה השראה מקור מדהימה, מנחה שהייתה גרומברג לארנה להודות ברצוני

הדרך. לאורך לי שעזרו האנשים וכל גוטמן עופר שטריכמן, עופר קרונינג, לדניאל מודה אני בנוסף

על סייבר אבטחת ולימוד למחקר בתכנית ברלין ר. ומלווין ל. רנדי ולמלגת לטכניון מודה אני

בהשתלמותי. הנדיבה הכספית התמיכה
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