
Finding Security Vulnerabilities
in Network Protocols Using

Methods of Formal Verification

Adi Sosnovich

Finding Security Vulnerabilities
in Network Protocols Using

Methods of Formal Verification

Research Thesis

Submitted in partial fulfillment of the requirements

for the degree of Doctor of Philosophy

Adi Sosnovich

Submitted to the Senate

of the Technion — Israel Institute of Technology

Tevet 5777 Haifa January 2017

This research was carried out under the supervision of Prof. Orna Grumberg, in the

Faculty of Computer Science.

Acknowledgements

First, I would like to express my sincere gratitude my supervisor, Prof. Orna Grumberg.

Thank you for years of dedicated guidance and support throughout the production of

this research and thesis. I am grateful for the opportunity to work with you under your

supervision. My sincere thanks also goes to Dr. Gabi Nakibly. Thank you for years

of collaboration, inspiration, and help, throughout my research. I would also like to

thank to Prof. Michael Schapira. Thank you for you help, with very useful ideas and

comments.

Last but not the least, I would like to thank my family: my parents and to my

husband for supporting me spiritually throughout writing this thesis and my life in

general.

The generous financial help of the Randy L. and Melvin R. Berlin Fellowship in the

Cyber Security Research and Teaching Program and of the Technion is gratefully

acknowledged.

Contents

List of Figures

Abstract 1

Abbreviations and Notations 3

1 Introduction 5

2 Finding Vulnerabilities in OSPF Using Model Checking 11

2.1 Perliminaries . 11

2.2 Related Work . 13

2.3 The OSPF Protocol . 13

2.3.1 OSPF Basics . 13

2.3.2 Threat Model . 14

2.4 Modeling OSPF . 15

2.4.1 The Concrete Model . 15

2.4.2 Formal Model for OSPF . 16

2.4.3 Specification . 18

2.4.4 Experimental Data . 18

2.4.5 Example of Attacks on OSPF . 19

2.5 An Abstract Network and Its Matching Concrete Networks 20

2.5.1 Abstract Topology . 22

2.5.2 Matching Abstract and Concrete Topologies 23

2.5.3 Global Abstract States . 26

2.5.4 Matching Abstract and Concrete states 26

2.5.5 Abstract Transitions and Their Matching Concrete Transitions . 27

2.5.6 Examples of OSPF Attacks in the Abstract Model 29

2.6 Correctness of the Abstract Model . 32

2.6.1 Flooding and Fight Back Destinations 33

2.6.2 Correctness Proof . 37

2.7 Extension of the Concrete Model . 42

2.7.1 Extended OSPF Basics . 42

2.7.2 Extension Goals . 44

2.7.3 Extended OSPF Modeling . 46

2.7.4 Results . 50

2.8 Conclusion . 51

3 Analyzing BGP Traffic Attraction Attacks Using Model Checking 55

3.1 Preliminaries . 55

3.2 Related Work . 57

3.3 BGP Background . 58

3.4 BGP Modeling . 61

3.4.1 Model simplifications . 61

3.4.2 Threat Model . 62

3.4.3 The BGP Model . 62

3.4.4 Attack Definitions and Specifications 66

3.5 Attacker Model Simplifications . 67

3.5.1 Abstraction of Paths Originated By the Attacker 67

3.5.2 Reducing the Number of Messages Originated By the Attacker . 72

3.6 Reductions and Abstractions . 75

3.6.1 Self-contained Fragments . 75

3.6.2 Definite Routing Choice . 80

3.6.3 Routing-preserving Path . 85

3.6.4 Example of a Network Reduction 87

3.7 The BGP-SA Method . 89

3.7.1 Reducing the Network Topology 90

3.7.2 Simulating the Trivial Attack . 90

3.7.3 Generating the C Model . 90

3.7.4 Applying Model Checking to the Implemented Model Using Ex-

pliSAT . 92

3.8 Experimental Results . 93

3.8.1 Results on Internet Fragments 93

3.8.2 Example Demonstrating Model Checking Advantages 95

3.9 Conclusion . 96

3.9.1 Possible Directions for Extensions 96

4 Formal Analysis of a Black Box OSPF Implementation 99

4.1 Preliminaries . 99

4.1.1 Background in Symbolic Execution 101

4.1.2 OSPF Background . 101

4.2 Black Box Analysis Procedures . 102

4.2.1 The Method Flow . 102

4.2.2 The OSPF Symbolic Model . 103

4.2.3 Black Box Testing of the Generated Tests 106

4.2.4 Extending the Method to Multiple LSAs 107

4.3 Evaluation . 109

4.3.1 Testbed . 110

4.3.2 Results With a Single LSA . 111

4.3.3 Results With Multiple LSAs . 117

4.4 Advantages and Limitations of Our Method 118

4.5 Related Work . 119

4.5.1 Formal Black Box Analysis . 119

4.5.2 Symbolic Execution . 120

4.5.3 OSPF Analysis . 120

4.6 Conclusions . 121

5 Conclusions 123

Hebrew Abstract i

List of Figures

2.1 Example of a concrete topology . 16

2.2 Example of an abstract topology . 16

2.3 A sketch of the router r procedure. 17

2.4 The experimented OSPF topology . 19

2.5 Procedure of a singleton router . 29

2.6 Flooding procedure of a singleton router 30

2.7 Abstract topology of attack #2 . 31

2.8 Abstract topology of attack #3 . 31

2.9 The structure of an LSA header . 43

2.10 The topology used with the extended model 50

3.1 BGP network example . 61

3.2 Algorithm for Computing a Self-Contained Fragment S of N 80

3.3 Fragment example . 81

3.4 Valid paths trees example . 82

3.5 Algorithm for computing the tree To of all valid paths in N from the

originating node o . 83

3.6 Algorithm for computing PRO(n) for each node n on the tree To 83

3.7 Algorithm for computing drc(n) for n ∈ Nodes 84

3.8 Reductions example . 88

3.9 The BGP-SA Method . 89

3.10 Partition of Node Types in the Extracted Fragment 89

4.1 The flow of our method . 103

4.2 Systematic extension algorithm . 109

4.3 Topology 1 . 111

4.4 Topology 2 . 112

Abstract

The routers and networks of the Internet are clustered into connected sets. Each such set

is called an autonomous system (AS). Routing of data packets on the Internet works in

two levels. The Border Gateway Protocol (BGP) is the routing protocol that determines

through which ASes the packets will traverse. The Open Shortest Path First (OSPF)

protocol is a widely used routing protocol that determines the path taken by the packets

within each AS. Finding security vulnerabilities and attack strategies in these routing

protocols is an important task and is significant for the Internet security.

Formal verification methods were originally developed to prove correctness of systems

based on formal specifications. A very common approach in formal verification is

model checking. Model checking is an efficient algorithm, that given a system model

and a required specification, determines whether the system satisfies the specification

requirements or not. When the answer is no, there is also a counterexample in the form

of an undesired behavior of the system. In this thesis, we develop several methods to

apply a systematic and automatic security analysis of these Internet routing protocols.

We use methods and tools from the field of formal verification.

We first develop a security analysis method for finding built-in vulnerabilities in the

OSPF protocol using model checking. We model parts of the OSPF standard and use a

model checker tool to automatically find vulnerabilities which are inherent to the design

of the protocol on simple network topologies. We then extend our analysis to more

general network topologies. We develop a novel technique for parameterized networks

that allows finding general attacks which are applicable to families of networks.

Next, we develop a security analysis method for the BGP protocol. We focus on

traffic attraction attacks, where an attacker sends false routing advertisements to gain

attraction of extra traffic in order to increase its revenue from customers, drop, tamper,

or snoop on the packets. We use model checking to perform exhaustive search for

attraction attacks on BGP. To deal with scalability issues of the entire Internet topology,

we propose static methods to identify and automatically reduce Internet fragments

of interest. Using a model checking tool we identify attacks as well as show that

certain attraction scenarios are impossible on the Internet under the modeled attacker

capabilities.

Finally, we propose a formal black box method to reveal non-standard protocol

deviations in closed-source network devices. The method relies only on the ability to

1

test the targeted protocol implementation and observe its output. We use a model-based

testing approach, which relies on a formal model of the protocol. We cope with scalability

issues using optimizations that are tailored to analysis of network protocols. They allow

reducing the number of generated tests without loss of functionality cover of the model.

We evaluate our method against the OSPF protocol. We search for deviations in the

OSPF implementation of Cisco – the largest networking vendor in the world.

2

Abbreviations and Notations

LSA : Link State Advertisement

OSPF : Open Shortest Path First

BGP : Border Gateway Protocol

AS : Autonomous System

ASN : Autonomous System Number

LSDB : LSA database

R : a router R

RID : Router ID

R.LSDB : The LSA database of a router R

R.Q : The incoming message queue of a router R

3

4

Chapter 1

Introduction

In this thesis we develop and implement methods to automatically find vulnerabilities

and attack strategies in common Internet routing protocols. We focus on two of the

most widely used protocols for routing on the Internet, the OSPF and BGP protocols.

We use methods and tools of formal verification to allow a systematic and automatic

search for attacks.

The routers and networks of the Internet are clustered into connected sets. Each

such set is called an autonomous system (AS). Routing of data packets on the Internet

works in two levels:

1. Inter-domain routing that determines through which ASes the packets will traverse.

This level of routing is handled by a single routing protocol called the Border

Gateway Protocol [54] (BGP).

2. Intra-domain routing that determines the path taken by the packets within each

AS. This is determined independently in each AS. The most common examples of

such routing protocols are OSPF [50], RIP [46], or IS-IS [20].

Finding security vulnerabilities and attack strategies in routing protocols is a complex

task and is important for the Internet security.

Open Shortest Path First (OSPF) is one of the most widely deployed interior gateway

routing protocols on the Internet. The most common attack vector against OSPF is

spoofing of routing advertisements on behalf of a remote router. OSPF employs a

self-defense “fight-back” mechanism that quickly reverts the effects of such attacks.

Nonetheless, some attacks that evade the fight-back mechanism have been discovered,

making it possible to persistently falsify routing advertisements [37, 51]. This type of

attacks are the most serious threat to a routing protocol since they allow an attacker to

gain persistent control over how traffic is routed throughout the network. This shows

that despite its maturity, the OSPF specification is not without security flaws and may

have still-unknown vulnerabilities. Manually identifying vulnerabilities in a complex

protocol such as OSPF is a hard task which requires deep understanding and close

acquaintance with the protocol.

5

BGP is the sole protocol used for inter-domain routing. In essence, BGP is the glue

that holds the Internet together and which allows to connect between different ASes.

The primary function of BGP is to exchange network reachability information between

different ASes. A BGP manipulator may exploit vulnerabilities in the protocol to attract

traffic towards its own AS. Attracting extra traffic enables the AS to increase revenue

from customers, drop, tamper, or snoop on the packets. In recent years, there have been

frequent occurrences of traffic attraction attacks on the Internet [67, 65, 63, 64, 43, 44].

Some of those attacks allowed oppressive governments to block their citizens from

accessing certain websites. In other attacks the perpetrators eavesdropped or altered the

communications of others, while in different attacks spammers sent millions of emails

from IP addresses they do not own.

Formal verification methods were originally developed to prove correctness of systems

based on formal specifications. A very common approach in formal verification is model

checking. Model checking [24] is an efficient algorithm, that given a system model

and a required specification, determines whether the system satisfies the specification

requirements or not. When the answer is no, there is also a counterexample in the form

of an undesired behavior of the system.

In this work we develop and implement methods to automatically find vulnerabilities

and attack strategies in common Internet routing protocols. We focus on the OSPF and

BGP protocols. We use methods and tools of formal verification to allow a systematic

and automatic search for attacks. A thorough analysis which is implemented by formal

verification tools has a major advantage over ad-hoc approaches, manual analysis, or

simple testing techniques that randomly search for attacks. In the formal verification

approach we model certain parts of the protocol. Then a systematic search over the

execution paths of the model is applied. A common problem of this approach is that

large-sized models cause scalability issues. We develop unique abstraction techniques to

allow using compact abstract models for complex routing protocols over large network

topologies.

In chapters 2 and 3 we use the model checking apporach to find vulnerabilities

and attack strategies in OSPF and BGP. A network topology consists of regular nodes

and an attacker. Each regular node runs the modeled protocol and an attacker node

has predefined capabilities. Based on its modeled capabilities the attacker can apply

manipulation techniques. We define specifications to identify certain types of attacks.

A model checker tool systematically scans the execution paths of the model. If it finds

a run that violates the specification, it returns a counterexample that represents a

successful attack.

In chapter 4 we use another approach to find vulnerabilities in certain OSPF

implementations. We use a model-based testing approach [11, 66], which relies on a

formal model of the protocol in question. The model can be an abstraction of the

protocol and refer to specific parts of it. Test cases are generated from the model itself,

and are then executed on the system under test (SUT). We use symbolic execution to

6

systematically generate tests from our model. Symbolic execution [18] allows analyzing

the execution paths of a program and generating corresponding test cases. The input

variables of the program are defined as symbolic variables. Then, the program is

symbolically run, where symbolic expressions represent values of the program variables.

On each execution path a path-constraint is obtained in the form of a first order formula.

Its solutions form a set of concrete values from which a test case is derived.

In each of the chapters 2, 3, and 4, we define a different type of security analysis.

We start with an analysis of a protocol standard to reveal built-in vulnerabilities that

are inherent to the protocol itself. In order to resolve such vulnerabilities it may be

required to change the standard of the protocol. Next, we propose an analysis that

allows revealing non-trivial attack strategies for a certain known vulnerability. Such an

analysis can provide a better understanding of the implications of a known vulnerability

and can reveal unknown strategies that exploit it. Finally, we develop a formal black

box analysis to find deviations of a closed-source implementation of a protocol from

its standard. Such deviations may reveal security vulnerabilities of the implementation

itself. In the following, we describe the different approaches for security analysis of

routing protocols that we focus on in our research.

Finding Built-in Vulnerabilities in a Network Protocol Standard

A built-in security vulnerability is inherent to the protocol itself , and attacks taking

advantage of such vulnerabilities rely on legitimate functionality of the protocol. In

order to handle such security vulnerabilities and prevent attacks, a modification of the

protocol itself is required. The process of identifying built-in security vulnerabilities

in network protocols is done mostly manually, in an ad-hoc manner. In addition, it

requires deep familiarity with the protocol, and is therefore usually done by experts.

In Chapter 2 we model the OSPF routing protocol based on its standard and use a

model checker tool to automatically find attacks and reveal built-in vulnerabilities. We

develop a novel technique for parameterized networks, representing a family of networks,

which is suitable for finding a counterexample (in our case an attack) on each member of

the family. We define an abstract network topology that represents a family of concrete

networks with varied sizes and topologies. We prove that an abstract attack found on

an abstract network topology has a corresponding concrete attack on each member of

the family. It allows finding general attacks which are applicable to families of networks.

This work was published in [61] and in [52].

Finding Non-trivial Attack Strategies for a Certain Vulnerability

The BGP protocol is known to be vulnerable to traffic attraction attacks [35, 15]. In

such attacks malicious Autonomous Systems manipulate BGP routing advertisements

in order to attract traffic to, or through, their AS networks. Attracting extra traffic

enables the AS to increase revenue from customers, drop, tamper, or snoop on the

7

packets. Although the vulnerability is known, there exist a variety of attack strategies

which a manipulator can use to gain traffic attraction from certain ASes. Such strategies

may depend on the network topology, the business relationships between Autonomous

systems, and the location of the manipulator within the network.

In Chapter 3 we focus on this known vulnerability of BGP, and we develop a method

to automatically search for non-trivial attack strategies that exploit this vulnerability.

Our goal is to provide insights to where and how BGP traffic attraction attacks are

possible. We use model checking to systematically reveal BGP traffic attraction attacks

on the Internet, or prove their absence under certain conditions. We develop powerful

reductions and abstractions that allow model checking to explore relatively small

fragments of the Internet, yet obtain relevant results. Reductions are essential as the

Internet nowadays includes roughly 50, 000 ASes. Our analysis method allows identifying

safe nodes that are not amenable to traffic attraction attacks and can be exploited to

reduce vulnerability of other nodes in the Internet. This work was published in [62].

Finding Vulnerabilities of a Network Protocol Black-box Implementa-

tion

The Internet infrastructure relies almost entirely on network protocols that are based

on open standards. However, the overwhelming majority of network devices on the

Internet, e.g. routers and switches, are proprietary and closed source. Hence, there is no

straightforward way to analyze them. Specifically, one cannot easily and systematically

identify deviations of a protocol implementation of a network device from the protocol’s

standard. Such deviations (either deliberate or inadvertent) are particularly important

to identify since they present a non-standard functionality which have not been openly

and rigorously analyzed by the networking and security community. Therefore, these

deviations may degrade the security or resiliency of the network.

In Chapter 4 we propose a formal black box method to unearth non-standard

protocol deviations in closed-source network devices. The method relies only on the

ability to test the targeted protocol implementation and observe its output. We use a

model-based testing approach [11, 66], which relies on a formal model of the protocol in

question. We use concolic execution [34, 57] to systematically generate tests from our

model. Concolic testing is a dynamic symbolic execution technique to systematically

generate tests along different execution paths of a program. It involves concrete runs of

the program over concrete input values alongside symbolic execution. Each concrete

execution is on a different path. The paths are explored systematically and automatically

until full coverage is achieved.

In general, such an approach has significant scalability issues in terms of number of

tests needed to cover a desired functionality. We cope with these issues using efficient

and practical optimizations that are tailored to the analysis of network protocols. They

allow to significantly reduce the number of generated tests without loss of functionality

8

cover of the model.

The method we propose allowed us to implement the first practical tool to identify

deviations of black box implementations of one of the most complex multi-party protocols

on the Internet – the OSPF routing protocol. We search for deviations in the OSPF

implementation of Cisco – the largest networking vendor in the world. Our evaluation

identified numerous significant deviations. Some of them can be abused to compromise

the security of a network. The deviations were confirmed by Cisco.

9

10

Chapter 2

Finding Vulnerabilities in OSPF

Using Model Checking

2.1 Perliminaries

In this chapter we present a novel approach to automatically finding security vulnerabil-

ities in the routing protocol Open Shortest Path First (OSPF) [50]. OSPF is the most

widely used protocol for Internet routing, thus finding vulnerabilities which are inherent

to the design of the protocol is significant for Internet security. Manually identifying

vulnerabilities in a complex protocol such as OSPF is a hard task which requires deep

understanding and close acquaintance with the protocol.

We propose to find vulnerabilities automatically by using model checking techniques.

In order to use model checking for our purpose we build a model for the protocol

when running on a given network topology; we include in the model an attacker with

predefined capabilities; and we specify the absence of a state in which an attack succeeds

(to be defined later). If the model checker finds a state violating the specification, it

returns a counterexample leading to that state. The counterexample being a run of the

protocol is, in fact, an attack on the protocol.

A high level description of the OSPF protocol is given below. OSPF runs on each

router in a network of routers. Its goal is to distribute the full network topology to

all routers. The routers send each other messages describing their partial view of the

network topology. When a router gets a message from its neighbor, it updates its

database accordingly and floods the message on to all of its other neighbors. OSPF

includes a mechanism for fighting against possible attacks. If a router gets a message in

its own name that it did not originate, then the router initiates a “fight back” message

in order to correct the topology view of all other routers.

We start by modeling (concrete) networks with a fixed number of routers in a specific

topology, where each router runs the OSPF protocol. The attacker is one of the routers

running the same protocol, except that it can also send fake messages in the name of

other routers, and can ignore messages sent to it. A state of the model consists of the

11

databases and message queues of all routers in the network. We say that an attack

succeeds in a state if (at least) one of the routers has a fake message in its database,

and no router has a message waiting to be sent. This means that no fight back is going

to change the fake topology view of this router. Thus, the attack is persistent.

We ran the model checking tool CBMC [25] on several topologies. We note that

the OSPF protocol is quite elaborate. Further, the size of the database of each router

is proportional to the size of the network. We therefore limited the topology sizes in

order to fit in the model checker capacity. We have found several attacks on small

network topologies. The vulnerabilities revealed by the attacks we found are known

and accepted by OSPF experts.

The limitation of the approach described so far is clear. It can only check a specific

and small network topology which may expose only a part of the protocol’s functionality.

In order to allow for a good coverage of the protocol’s functionality many other specific

topologies need to be checked, taking more time and computing resources.

We therefore develop an approach which can search for attacks in a parameterized

network, consisting of a family of networks with varied sizes and topologies. We define

an abstract network, that represents such a family. The abstract network A has the

property that if there is an attack on A then there is a corresponding attack on each of

the (concrete) networks represented by A. An abstract network allows revealing security

vulnerabilities in the OSPF protocol, which can harm routing in huge networks with

complex topologies. Finding such attacks directly on the huge networks is practically

impossible. Abstraction is therefore essential.

The abstraction is defined on all levels of the model: We define an abstract topology

which represents a family of concrete topologies. An abstract state represents a set of

concrete states. The correspondence between abstract transitions and their concrete

counterpart is more subtle. Each abstract transition represents a set of finite concrete

runs, one in each of the concrete topologies represented by A. As a result, our abstract

model is unusual: It under-approximates each member in a family of concrete models.

That is, every run of the abstract model has a corresponding run in each of the concrete

models represented by it. This is an important characteristic of our abstraction as

it allows us to find general attacks on an abstract network which are manifested in

each of the concrete models it represents. Thus, these attacks are applicable in a

large (even infinite) number of networks. This indicates that they exploit fundamental

vulnerabilities, which are applicable to many configurations of the network. This is in

contrast to finding a specific attack that is only applicable for a single perhaps marginal

network configuration.

In this part, we have found attacks on abstract networks manually. However, our

abstract model can be implemented for instance in C to be used with CBMC, similarly

to our implementation of the concrete model.

It should be noted that in principle, more attacks could be found on a concrete

system that belongs to a family. However, in this work we are interested in finding

12

general attacks, that are robust to changes in the topology. These are usually the first

attacks a network operator would like to know with regard to its network.

We emphasize that the contributions of this work go beyond the security analysis

of OSPF. The abstract concept and definition can be beneficial for finding security

vulnerabilities in other protocols as well.

2.2 Related Work

There are a few works that present a security analysis of the OSPF protocol. Most such

works (e.g., [69, 70, 37, 51]) focus on LSA falsification attacks. Only two past works

([37] and [51]) present OSPF attacks with a persistent effect while evading a fight-back.

This low number of works stands in contrast to the centrality of OSPF to Internet

routing. This can be partially explained by the difficulty to do a manual and thorough

security analysis of complex distributed network protocols.

There are some works that propose a security analysis of the design of network

protocols based on model checking (e.g., [48, 49, 41]) . All past works check a given

network configuration with a predetermined set of participants. In particular, some

works (e.g., [47, 30, 45]) analyzed the security of OSPF and other routing protocols,

while considering only a given network model. As other distributed network protocols the

functionality of a routing protocol is highly dependent of the number of participants in

the protocol and the network topology. Hence, current works that employ model checking

for distributed network protocols may not cover the entire protocol’s functionality.

Reasoning about families of systems, also known as parameterized systems, is a

known research area (e.g. [33, 40, 27, 56, 7]). Most works present an abstract model

which over-approximates all members in the family and is used to verify that they

all satisfy a given property. We, on the other hand, define an abstract model which

under-approximates each member in the family. Our abstract model is therefore most

suitable for finding attacks on all members. To the best of our knowledge, no similar

reasoning has been applied before to parameterized systems.

2.3 The OSPF Protocol

2.3.1 OSPF Basics

The Internet is clustered into sets of connected networks and routers called Autonomous

Systems (AS). Each AS is administered by a single authority, such as a large organization,

or an Internet service provider. Within each AS a routing protocol is run. Its aim is to

allow routers to construct their routing tables, while dynamically adapting to changes in

the AS topology. Open Shortest Path First (OSPF) [50] is currently used within most

ASes on the Internet. It was developed and standardized by the IETF organization.

Each OSPF router composes a list of all its links to neighboring routers and their

13

costs. This list is termed Link State Advertisement (LSA). Each LSA is flooded

throughout the AS. Every router compiles a database of the LSAs from all routers

in the AS, thus having a complete view of the AS topology. This allows a router to

calculate the least cost paths between it and every other router in the AS. As a result,

the router’s routing table is formed.

A new instance of each LSA is advertised periodically every 30 minutes, by default.

Every LSA has a sequence number which is incremented with every new advertised

instance. A more recent LSA instance with a higher sequence number will always take

precedence over an older instance with a lower sequence number. An LSA includes the

following fields: a) src - the router which just sent the LSA; b) dest - the router to

which the LSA is destined; c) orig - the router which first advertised the LSA; d) seq -

sequence number.

Two routers in the AS may be connected over a point-to-point link. A subset of two

or more routers may be connected over a transit network. One router in every transit

network is selected to act as a designated router. During the flooding of an LSA each

router sends the LSA to all its neighbors (except the neighbor from which the LSA was

received). To alleviate flooding load this rule has an exception: a non-designated router

may flood an LSA over a transit network only to the designated router of that network.

The designated router will send it to all the other routers in that transit network. Note

that a router will only receive an LSA from one of its neighbors. An LSA having a src

that is not one of the router’s neighbors will be dropped.

A common goal for an OSPF attacker is to advertise a fake LSA on behalf of some

other router in the AS. Such an attack changes the view other routers have of the

AS topology and consequently changes their routing tables. The primary measure by

which OSPF defends against such attacks is the “fight-back” mechanism. Once a victim

router receives an instance of its own LSA which is newer than the last instance it

originated, it immediately advertises a newer instance of the LSA with a higher sequence

number which cancels out the false one. This mechanism prevents most OSPF attacks

from persistently falsifying an LSA of another router. Another defense measure is the

authentication of LSAs using a secret key shared by the routers of the autonomous

system. An outside router that does not know the shared secret can not send LSAs to

routers inside the autonomous system.

2.3.2 Threat Model

We adopt the common threat model found in the literature ([69, 70, 37, 51]). This

model assumes the attacker has the ability to send LSAs to routers in the AS, and the

routers process them as valid LSAs. This assumption can be trivially achieved by an

insider, namely an attacker who gained control over just a single router in the AS.

The attacker can gain control of a router, for example, by remotely exploiting an

implementation vulnerability on the router. Several such vulnerabilities have been

14

published in the past (e.g., CVE-2010-0581, CVE-2010-0580, and CVE-2009-2865).

Note that since the attacker has control of a legitimate router, the attacker knows

the secret key used to authenticate the LSA messages. An outside router that does not

know the shared secret cannot send LSAs to routers inside the autonomous system.

2.4 Modeling OSPF

2.4.1 The Concrete Model

In the following we present the concrete model for OSPF we used to find attacks. We

note that our model is a simplified version of the real OSPF.

Our model assumes as a starting point a stable routing state in the AS. Namely,

all the routers advertised their LSAs and calculated their routing tables. In particular,

no LSA flooding is in progress or about to start. The LSA databases of all routers are

complete and identical. Without loss of generality we assume that the sequence numbers

of all the LSAs that have been advertised are 0. In addition, designated routers for

all transit networks have been selected. The model is composed of three entities: (AS)

topology which models a concrete topology of the AS, Router which models a legitimate

router inside the AS; Attacker which models a malicious router inside the AS.

Autonomous System Topology Model

We denote the concrete topology by Tc = (R,S,E,DRc), where R is the set of routers,

S ⊆ 2R is the set of transit networks, which we refer to as sub-network, E ⊆ R×R is a

set of undirected edges, each representing a point-to-point link between two routers,

and DRc : S → R maps sub-networks to their designated routers. For simplicity of

presentation we assume that each router belongs to at least one sub-network. We

emphasize that the routers forming a sub-network are directly connected to each other

as if they were forming a clique. Nonetheless, those connections are not part of the set

E which only includes point-to-point links. Figure 2.1 depicts an example of a topology.

The dashed circles marked as si are sub-networks, the circles ri are routers, and lines

connecting routers are edges. Bold circles represent designated routers.

Router Model

The router model executes the standard functionality of the protocol. We model only

part of the functionality defined by the OSPF standard since a large model might be

infeasible for model checking. Nonetheless, our model captures the protocol’s essential

operations which any attack must exploit. For example, flooding by its very nature

must be exploited by any attack that aims to advertise false LSAs. The functionality we

modeled includes: (1) LSA message structure. (2) Flooding procedure. (3) Designated

router logic. (4) Fight-back mechanism.

15

Figure 2.1: Example of a concrete
topology

Figure 2.2: Example of an abstract
topology

We do not model the actual contents of each LSA, i.e. the list of advertised links and

their costs, because the LSA content has no material effect on the attack technique used

to advertise a fake LSA. Figure 2.3 gives a high level overview of the router procedure.

r.Q denotes r’s incoming message queue. A message m = (src, dest, orig, seq). r.DB

denotes the set of LSA instances currently installed in r’s database.

Attacker Model

In our work we assume that an attacker is one of the routers of the autonomous system.

Other routers treat the attacker as a legitimate router. The attacker is free from the

protocol’s standard and is able to ignore incoming messages and to originate messages

arbitrarily. In particular, an attacker may originate fake LSAs on behalf of other routers

in the topology. The model indicates such LSAs by a special isFake flag, which is not

part of the OSPF standard, and legitimate routers do not make use of it. This flag

allows us to easily define the specifications for the model (see section 2.4.3). Note that

since the attacker has control of a legitimate router, the attacker knows the secret key

used to authenticate the LSA messages (see Section 2.3.2).

Another important capability of the attacker is sending an LSA to a non-neighbor

destination through several links without being opened on the way. Thus, the inter-

mediate routers will not process the message. We call this unicast sending. This is a

trivial capability that is inherent to any IP network. Every router (malicious or benign)

can send messages directly to remote routers. However, regular routers following the

OSPF protocol do not use this capability when flooding LSA messages.

2.4.2 Formal Model for OSPF

The formal model we use for OSPF is a finite state machine with global states and

transitions. In order to obtain a finite model suitable for model checking, we impose a

predefined bound SB on the sequence number of messages, and a predefined bound K

16

if (r.Q not empty)
{
m = pop-head(r.Q)
if (m.dest 6= r)

send m according to r’s routing table
else //m.dest is r
{

if (m is newer than the copy in r.DB)
{

if (m.orig == r)
fight-back

else
update r.DB and flood m

}
else

ignore m
}
}

Figure 2.3: A sketch of the router r procedure.

on the queue size of each router. It should be noted that in real OSPF such bounds

exist as well. The queue of each router consists of up to K messages of the form

m = (src, dest, orig, seq, isFake), taken from the message domain M = R×R×R×
{0, ..., SB} × {T, F}. The database of router r, r.DB : R → {0, . . . , SB} × {T, F},
includes for each router r′ the sequence number of the last message that was originated

by r′ and reached r , and the value of the flag isFake indicating whether this message

was in fact originated by the attacker and not by r′.

Definition 2.1. A global state σ = {r.DB |r ∈ R} ∪ {r.Q |r ∈ R} consists of a database

and a message queue for each of the routers in the topology, including the attacker.

Definition 2.2. An r-transition between two global states corresponds to an application

of the router r procedure (which is either the procedure given in Figure 2.3 if r is a

regular router, or the attacker’s procedure if r is the attacker). Note that an r-transition

may change, in addition to the queue and the database of r, the queues of some of its

neighbors.

Definition 2.3. A run of the model consists of a sequence of global states σ1, . . . σn, such

that for each i, a router r from R is chosen nondeterministically, and an r-transition is

applied to σi, resulting in σi+1.

17

2.4.3 Specification

Our aim is to discover attacks on OSPF that allow an attacker to persistently falsify

LSAs of legitimate routers. Our specification for the absence of a successful persistent

attack requires that each state will satisfy at least one of the following two conditions:

1. No router has a fake LSA in its database.

2. At least one message resides in a router’s queue.

The first condition verifies that the attacker has not fooled another router to install a

fake LSA. The second condition relates to the attack’s persistency. If not all the routers’

queues are empty then the router whose LSA has been falsified might still fight back and

revert the effect of the attack. Note that a state which violates the specification defines

the outcome of a successful persistent attack regardless of a specific attack technique.

A model checker will search for a violation of the specification. When found, it will

return a counterexample in the form of a run of the model which leads to a violating

state. This run is actually an attack on OSPF.

2.4.4 Experimental Data

We have implemented in C our concrete model of OSPF, which is a simplified version

of the protocol. The implementation is a rather small C program with a few hundreds

of code lines. To find counterexamples, i.e. attacks, for which the above specification

does not hold we use CBMC, a bounded model checker tool [25]. CBMC can check if

a C program satisfies a specification along bounded runs. In our model, we bounded

the number of cycles by 8, such that in each cycle any of the routers (including the

attacker) can run their procedure once. In order to have a finite model which is rather

small, we used a bound of K = 4 for the queue size, and a bound of SB = 8 for possible

sequence numbers.

All our experiments were conducted on Intel Xeon X5650 with 32GB of memory.

Table 2.1 details for several network topologies of different sizes, the number of variables

and clauses in the CNF formula generated by CBMC, and the time it took to solve the

formula using the solver MiniSAT2 [26] .

Table 2.1: For CNF formulas encoding topologies of different sizes, the number of
variables and clauses in millions and the solving time in hours

#Routers #Variables #Clauses Time

5 8M 21M 3.17h
6 17M 40M 7.07h
7 23M 55M 12.87h

18

Figure 2.4: The experimented OSPF topology

2.4.5 Example of Attacks on OSPF

As mentioned before, when an attack is found the model checker CBMC outputs a path

of global concrete states ending with a state that violates the specification. Figure 2.4

depicts an example of a topology with three sub-networks: {r1, r2}, {r3, r4}, and {r0}.
r1 and r4 act as designated routers. The router r0 is attached to r1 and r4 using

point-to-point links. In this topology r3 is the attacker. Note that although there are no

edges between routers in the same sub-network, they are considered directly connected.

In the following we describe several attacks we found using the above concrete model

having the topology depicted in Fig. 2.4. The state explosion problem of the model

checking impedes finding more complex attacks which may only be exhibited on larger

topologies.

Recall that our model is a simplified version of the real OSPF. As the OSPF standard

is given in an English manuscript, we cannot formally prove that our model is an under-

approximation of the real OSPF. However, an OSPF expert validated that attacks found

in our model are also valid in the full OSPF protocol.

Attack #1

The attacker (r3) originates a fake LSA on behalf of r4 directly to r2 (using unicast

sending), while falsifying the source to be r1. The fields of the fake LSA are: src = r1,

dest = r2, orig = r4, seq = 1, and isFake = true. r2 receives this LSA while considering

it to be a valid LSA sent by r1. Since the sequence number of the attacker’s LSA is

larger than that of the LSA instance installed in r2’s database, r2 installs the attacker’s

LSA in its database. Since r2 received the message from r1, it does not flood it back to

it. Since r2 has no other links no further messages are sent in the topology. Hence, the

specification of our model is violated.

19

Attack #2

The following attack relies on the fact that the routers’ queues are bounded. Note that

any real-life router must bound its queue size that is dependent on the size of memory

space in the router. The attacker continuously sends the following message many times:

(src = r3, dest = r4, orig = r0, seq = 1, isFake = true). The number of sent copies

should be larger than the bound on the size of the routers’ queues. The messages are

received by r4 which floods the first message to r0. r0 then originates a fight-back

message m′ with seq = 2. Since the queue of r4 is full, m′ will be discarded leaving r4

with the fake message installed in the database. All subsequent fake messages flooded

to r0 will not trigger fight-back, since their sequence number (1) is smaller than that of

the last message originated by r0 (m′ with seq = 2). We note that the OSPF standard

makes use of a reliable delivery of messages by leveraging acknowledgment messages.

Hence a real router retransmits a message until it receives an acknowledgment. Our

model does not include this functionality. Nonetheless, this attack would still be feasible

in real life if the attacker continued sending messages to keep r4’s queue full.

Attack #3

The following attack was first described in [51]. The attacker sends the following two

LSA messages: m1 = (src = r3, dest = r4, orig = r1, seq = 1, isFake = true) and m2

= (src = r3, dest = r4, orig = r1, seq = 2, isFake = true). First, m1 is received and

installed by r4. Then, r4 floods it to r0. Afterwards, m2 is received by r4. Since it

has a higher sequence number than m1, m2 supersedes it in r4’s database. m2 is also

flooded to r0. r0 processes and sends both messages to r1, while m2 is the last to be

installed in its database. Once r1 receives m1 it immediately originates a fight-back

message m3 with seq = 2 and floods it to all its neighbors. r1 then receives m2. Since

m2 and m3 have equal sequence number (2), m2 is not considered newer than m3,

hence r1 does not send another fight-back message and ignores m2. Once r0 receives

m3, it does not consider it newer than m2 which is currently installed in its database.

Hence, it ignores m3. Since r4 installed the fake message m2 and no more messages are

waiting to be sent the specification of our model is violated.

2.5 An Abstract Network and Its Matching Concrete Net-

works

In the previous section we showed how attacks can be found on concrete models. Due

to the state explosion problem, the models that can be handled are very small and

hence restricted in their topologies. We would like to extend our search for attacks

to larger and more complex topologies. Further, we are interested in general attacks,

which are insensitive to most of the details of the topology and therefore can be applied

in a family of topologies.

20

In order to achieve that, we define an abstract model which can represent a family of

concrete models. The models in the family are similar in some aspects of their topologies

but may differ in many other aspects.

The abstract model consists of an abstract topology which includes abstract compo-

nents representing many routers and sub-networks, and of an abstract protocol which is

an adjustment of OSPF to the abstract components.

We define several levels of abstract components. The most abstract component is the

sub-topology, which represents any number of concrete sub-networks. The edges between

the sub-topology and the rest of the topology are not abstracted. As a result, routers

within the sub-topology which are connected to these edges remain un-abstracted as

well. These routers are called singleton routers. The concrete routers they represent are

called visible. All other routers within the sub-topology and the edges among them are

fully abstracted, and are referred to as invisible.

Another abstract component is the abstract router which represents a set of concrete

routers, all contained within the same sub-network, and have no edges outside of the

sub-network. An abstract sub-network consists of a set of abstract routers and a set of

singleton routers. As with sub-topologies, the singleton routers in a sub-network are un-

abstracted. They represent a single concrete router whose edges are un-abstracted too.

We require that each singleton router belongs to either a sub-topology or a nonempty

set of abstract sub-networks.

The intuition behind the definition of an abstract topology is as follows. The

un-abstracted routers are those that may participate in an attack. The others are

needed to form a topology that brings un-abstracted routers to manifest more of their

OSPF functionality and thus to possibly expose more security vulnerabilities. Moreover,

abstracted routers allow to show that a found attack is general and applicable to a

family of topologies.

Clearly, the attacker is always an (un-abstracted) singleton router. Moreover, the

messages sent by the attacker are un-abstracted as well. That is, their originator, source,

and destination fields refer to singleton routers.

We impose some constraints on abstract sub-topologies, to guarantee that for every

abstract transition and every concrete topology represented by the abstract topology,

there can be found a corresponding finite concrete run.

For a sub-topology st, recall that each singleton router in st represents a single

concrete visible router. We require that in the part of the concrete topology which is

represented by st, each of its visible routers must belong to a different sub-network.

Also, visible routers in st may not be directly connected to each other, but should be

connected to at least one invisible router. Further, the invisible routers in st form a

strongly connected component. These constraints guarantee that if a message is flooded

to st by a singleton router r, then there is a concrete run along which the message is

opened by all invisible routers prior to being opened by any other singleton router.

While these constraints seem quite restrictive, our abstract topologies still represent

21

a large variety of topologies of different sizes. As shown in Section 2.5.6, some nontrivial

attacks were found on them. Many of these constraints can be removed for the price of

much more complex definitions and correctness proof. We choose to present a simpler

version here, and to demonstrate its usability.

2.5.1 Abstract Topology

Formally, an abstract topology is denoted by TA = (SR, ST,AR, SN,EA, DRA), where

• SR is a set of abstract singleton routers, each of which representing a single

concrete router.

• ST ⊆ 2SR is a set of sub-topologies. A sub-topology contains a set of abstract

singleton routers from which there are edges to other components in the abstract

topology. Each sub-topology represents a set of concrete sub-networks which forms

a strongly connected component in the concrete topology.

• AR is a set of abstract routers. Each abstract router represents a set of concrete

routers within the same sub-network in the concrete topology.

• SN ⊆ 2AR∪SR is a set of abstract sub-networks. Each abstract sub-network

represents a single concrete sub-network.

• EA ⊆ SR × SR is a set of undirected edges, each representing a point to point

link between two abstract singleton routers.

• DRA : SN → SR is a function that maps sub-networks to their designated router,

which must be from SR.

We will use the following notations:

• sr denotes a singleton router in SR

• st denotes a sub-topology in ST

• ar denotes an abstract router in AR

• sn denotes a sub-network in SN

• r denotes a concrete router in R

• s denotes a concrete sub-network in S

Example 2.4. The following abstract topology is depicted in Figure 2.2:

TA = (SR, ST,AR, SN,EA, DRA), where:

• SR = {sr1, sr2, sr3, sr4, sr5, sr6}

• ST = {st1, st2}, where: st1 = {sr6} , st2 = {sr4, sr5}

22

• AR = {ar1}

• SN = {sn1}, where: sn1 = {ar1, sr1, sr2, sr3}

• EA = {(sr4, sr3), (sr2, sr5), (sr6, sr1)}

• DRA = {(sn1, sr2)}

Note that connections between routers within the same sub-network are not depicted

in the figure, similarly to the concrete case.

Below we detail the constraints imposed on the abstract topology TA:

1. A singleton router cannot be in both a sub-network and a sub-topology, but has

to be in either a sub-topology or a sub-network:

∀sr, sn : (sr ∈ sn⇒ ¬∃st : (sr ∈ st))
∀sr, st (sr ∈ st⇒ ¬∃sn : (sr ∈ sn))

∀sr ((∃st [sr ∈ st]) ∨ (∃s [sr ∈ s]))

2. A singleton router cannot be in more than one sub-topology:

∀st1, st2 : (st1 6= st2 ⇒ st1 ∩ st2 = ∅)

3. EA does not include edges between routers within the same sub-topology:

∀sr1, sr2,∀st (((sr1 ∈ st) ∧ (sr2 ∈ st) ∧ (sr1 6= sr2))⇒ ((sr1, sr2) /∈ EA))

2.5.2 Matching Abstract and Concrete Topologies

We define a matching relation between abstract and concrete topologies. The match-

ing relation adhere to the intuitive explanation given above. Let TA = (SR, ST,

AR, SN,EA, DRA) be an abstract topology and TC = (R,S,E,DRC) be a concrete

topology. A relation

H ⊆ (SR×R) ∪
(
AR× 2R

)
∪ (SN × S) ∪

(
ST × 2S

)
∪ (EA × E)

is a matching relation between TA and TC if it satisfies the set of constraints defined

below.

Example 2.5. The relation H, given below, is a matching relation between TA from

Figure 2.2 and TC from Figure 2.1.

• H ∩ (SR×R) = {(sr1, r8) , (sr2, r9) , (sr3, r11) , (sr4, r18) , (sr5, r12) , (sr6, r2)}

• H ∩
(
AR× 2R

)
= {(ar1, {r7, r10})}

• H ∩ (SN × S) = {(sn1, s3)}

• H ∩
(
ST × 2S

)
= {(st1, {s1, s2}) , (st2, {s4, s5, s6, s7})}

23

• H ∩ (EA × E) = {((sr1, sr6) , (r8, r2)) , ((sr4, sr3) , (r18, r11)) ,

((sr2, sr5) , (r9, r12))}

Below we detail the constraints imposed on the matching relation H:

• Constraints related to the matching between SR and R:

1. H ∩ (SR×R) is a 1-1 function. We will denote this part of H by abuse of

notation: H : SR→ R. In fact, all other parts of H are also constrained to

be a 1-1 function, and thus this notation will apply to all parts.

2. An abstract sub-network sn contains a singleton router sr if and only if the

matched concrete sub-network H(sn) contains the matched router H(sr):

∀sr, sn [(sr ∈ sn⇔ H (sr) ∈ H (sn))]

3. Given the sub-topology st and a singleton router sr ∈ st, all concrete sub-

networks that contain H (sr) must be matched to the sub-topology (because

a sub-topology cannot represent a partial sub-network).

∀sr, ∀st [sr ∈ st⇒ (∀s [H (sr) ∈ s⇒ s ∈ H (st)])]

4. For each singleton router in a sub-topology, there must be a matching concrete

router in the matched part of the concrete topology.

∀sr, ∀st

(
sr ∈ st⇒ H (sr) ∈

⋃
s∈H(st)

s

)
5. Singleton routers within the same sub-topology must be matched with con-

crete routers which are in different sub-networks on the concrete topology.

∀sr1, sr2, st ([sr1 ∈ st ∧ sr2 ∈ st]⇒ (¬∃s (H (sr1) ∈ s ∧H (sr2) ∈ s)))

• Constraints related to the matching between AR and 2R:

1. H ∩
(
AR× 2R

)
is a 1-1 function.

2. Any 2 sets of concrete routers that are matched with different abstract routers

must be disjoint.

∀ar1 6= ar2 [H (ar1) ∩H (ar2) = ∅]

3. The set of concrete routers that is matched with an abstract router must be

in the concrete sub-network that is matched with the abstract sub-network

of the abstract router.

∀ar, ∀sn [ar ∈ sn⇒ H (ar) ⊆ H (sn)]

4. ∀ar [H (ar) 6= ∅]

• Constraints related to the matching between SN and S:

1. H ∩ (SN × S) is a 1-1 function.

24

2. For each router r in a concrete sub-network which is matched to an abstract

sub-network in the abstract topology, there should either exist a matching

singleton router in the matching abstract-sub-network, or an abstract router

in the abstract sub-network that is matched with a set of concrete routers in

the concrete sub-network, which includes this concrete router r.

∀sn, ∀r [r ∈ H (sn)⇒ ((∃sr : (r = H (sr))) ∨ (∃ar : (r ∈ H (ar))))]

• Constraints related to the matching between ST and 2S :

1. H ∩
(
ST × 2S

)
is a 1-1 function.

2. Any two sets of concrete sub-networks which are matched with different

sub-topologies in the abstract topology must be disjoint.

∀st1 6= st2

[(⋃
s∈H(st1)

s

)
∩

(⋃
s∈H(st2)

s

)
= ∅

]
3. For each st ∈ ST , the sub-graph formed by

⋃
s∈H(st)

s in the concrete network

is a strongly connected component, taking into account the implicit links

within sub-networks, which are not part of E.

4. ∀st [H (st) 6= ∅]

5. For each st ∈ ST , the sub-graph in the concrete network formed by: ⋃
s∈H(st)

s

 \ (r ∈ R|∃sr (H (sr) = r))

is a strongly connected component, taking into account the implicit links

within sub-networks, which are not part of E.

• Constraints related to the matching between EA and E:

1. H ∩ (EA × E) is a 1-1 function.

2. An edge between two singleton routers in the abstract topology must be

matched with an edge between two concrete routers, which are matched with

the singleton routers.

∀ (sr1, sr2) ∈ EA, ∀ (r1, r2) ∈ E :

[((sr1, sr2) , (r1, r2)) ∈ H ⇒ H (sr1) = r1 ∧H (sr2) = r2]

3. A concrete edge between routers that have matching abstract singleton

routers, should be matched with the edge between the singleton routers.

∀r1, r2[((r1, r2) ∈ E ∧ ∃sr1 (H (sr1) = r1) ∧ ∃sr2 (H (sr2) = r2))⇒
((sr1, sr2) ∈ EA) ∧ ((sr1, sr2) , (r1, r2)) ∈ H]

4. There is no concrete edge between concrete router which is represented by

an abstract router in the abstract topology.

(r1, r2) ∈ E ⇒ (¬∃ar : (r1 ∈ H (ar) ∨ r2 ∈ H (ar)))

25

• More global constraints on the matching relation H

1. Each singleton router that is a designated router in the abstract topology,

should be matched with a concrete router which is also designated.

∀sn, ∀sr [DRA (sn) = sr ⇒ DRC (H (sn)) = H (sr)]

2. For each concrete router which is designated, if it has a matched singleton

router, then it also should be designated in the matching sub-network.

∀s, ∀r, ∀sn [(DRC (s) = r) ∧ (H (sn) = s)⇒ H (DRA (sn)) = r]

3. Any two different types of abstract components are matched with disjoint

sets of concrete routers in the concrete topology.

– ∀st,∀sr

((⋃
s∈H(st)

s

)⋂
{H (sr) |sr /∈ st} = ∅

)

– ∀st,∀ar

((⋃
s∈H(st)

s

)⋂
H (ar) = ∅

)
– ∀sr, ∀ar (H (ar)

⋂
{H (sr)} = ∅)

2.5.3 Global Abstract States

Let TA be an abstract topology and let AC = ST ∪AR∪SR be the set of components in

the abstract topology. Abstract messages consist of the same fields as concrete messages.

The message domain in the abstract model is M = AC ×AC ×ORIGS×{0, ..., SB}×
{T, F}, where ORIGS ⊆ SR is a predefined set of originators which can be used by

the attacker in its messages.

An abstract state is defined by σA = {ac.DB |ac ∈ AC } ∪ {ac.Q |ac ∈ AR ∪ SR},
where for every component ac ∈ AC, the structure of its database is identical to that

of a concrete component, ac.DB : ORIGS → {0, ..., SB} × {T, F}, except that here

it is only defined for the subset ORIGS ⊆ SR. In addition, for every ac ∈ AR ∪ SR,

ac.Q is a queue of up to K messages. The database is restricted to ORIGS since in our

setting (see section 2.4.1) only the attacker originates messages, and those messages

have orig ∈ ORIGS. Thus, there is no need for ac.DB to contain entries of other

originators.

Note that, we do not define a queue for sub-topologies st, since flooding within st

is always described as a single abstract transition. Each singleton router in st has a

queue. Thus, a queue for st would have represented the queues of all invisible routers,

matched to st. However, the queues of all invisible routers are empty whenever the

abstract transition begins or ends. Thus, there is no need to represent their content.

2.5.4 Matching Abstract and Concrete states

Let TA and TC be an abstract and concrete topologies and let H be their matching

relation. In order to define a matching between abstract and concrete states, we first

define a matching between abstract and concrete databases and queues.

26

We use h to denote a function that matches abstract databases, messages, queues,

and global states to sets of their concrete counterparts.

1. An abstract database DBA matches a concrete database DBC , denoted DBC ∈
h(DBA), if for each o ∈ ORIGS, the entry for o in DBA is identical to the entry

of H(o) in DBC .

2. An abstract message m and a concrete message m′ match, denoted m′ ∈ h (m),

if m′.src ∈ H (m.src), m′.dest ∈ H (m.dest), m′.orig = H (m.orig), m′.seq =

m.seq, and m′.isFake = m.isFake.

Since orig is a singleton router and since seq and IsFake are un-abstracted, they

have a single matching.

3. An abstract queue matches a concrete queue if

(a) For a singleton router sr, each message m in its queue is matched with a

sequence of (one or more) concrete messages in h(m).

The reason for matching more than one concrete message with m is that

an abstract transition may add only one message to the queue. On the

other hand, the concrete run that correspond to this transition consists of

several concrete transitions, each of which may add a matching message to

the queue. This is because, when sr is part of a sub-topology st, then the

invisible routers represented by st may flood the message several times to sr

via different paths in the sub-topology.

(b) For an abstract router ar, its queue represents the queues of all concrete

routers matched with ar. Here the sizes of the queues are identical since

a message received by ar corresponds to single messages received by each

r in H(ar) from the designated router. No other messages are sent among

routers in H(ar).

We can now define matching of abstract and concrete states. Let σC be a concrete

global state and σA be an abstract global state. σC ∈ h (σA) if the following conditions

hold:

1. ∀ac ∈ AR ∪ SR [∀r ∈ H (ac) (r.Q ∈ h (ac.Q))]. That is, queues of matching com-

ponents must match.

2. ∀ac ∈ SR ∪ ST ∪ AR [∀r ∈ H (ac) (r.DB ∈ h (ac.DB))]. That is, databases of

matching components must match.

2.5.5 Abstract Transitions and Their Matching Concrete Transitions

An abstract transition between two global abstract states corresponds to an application

of the procedure of one of the abstract components. The abstract model includes

27

procedures for a singleton router, an abstract router, and an attacker. Our model does

not include a procedure for a sub-topology. Instead, its behavior is defined as part of

the procedure of singleton routers included in it.

A high-level description of the procedure of a singleton router sr is given in Figure 2.5.

It is similar to the procedure of a concrete router, except that it does not handle messages

whose destination is not sr. This is because in the abstract model such messages are

sent by unicast directly to their destination. The singleton router procedure can perform

either flooding or fight back. Figure 2.6 describes the flooding procedure performed

by a singleton router (as part of its procedure). FDA(sr,m.src) returns the flooding

destinations, i.e. set of abstract components to which sr floods a message m obtained

from component src. The fight back procedure is similar, except that FDA is replaced by

the fight back destinations, FBDA. The statement ac1.Q
′ = ac1.Q �{msr→ac1} performs

an update of ac1’s queue. The resulting queue, ac1.Q
′, is obtained by concatenating the

old queue ac1.Q with a message which is identical to m, except that its src is sr and

its destination is ac1.

The procedure of an abstract router is simpler. It only installs a message from its

queue in its database and does not perform flood or fight back. This is because it is

part of a single abstract sub-network, and is not connected by any edges.

An ac-abstract transition corresponds to a single application of the procedure for

abstract component ac. This transition may represent either a single concrete transition

or a sequence of concrete transitions (i.e., a concrete run), depending on the type of

ac and on the message content. Below we detail a few non-trivial cases where abstract

transitions correspond to a concrete run. For every concrete topology TC represented

by an abstract topology TA and for every abstract transition in TA, a corresponding

concrete run as detailed below can be found in TC .

Case 1

Consider an abstract transition in which a singleton router sr floods a message m, where

sr is within a sub-topology st, and st belongs to the flooding destinations of sr. In such

a case, the concrete run represented by the abstract transition includes, in addition to

the flooding done by sr, the flooding applied by the invisible routers in H(st). By the

end of this run, all invisible routers within st have already removed m from their queue,

updated their databases (if their databases were less updated), and flooded m further

to the rest of the visible routers in H(st).

Case 2

Consider an abstract transition in which a singleton router sr in a sub-topology st

floods a message m, where m.src = st. This abstract transition represents a concrete

run in which H(sr) floods m. In addition, invisible routers in H(st), which are included

in the flooding destinations of H(sr), remove m from their queue and ignore it.

28

Case 3

Consider an abstract transition in which the attacker sends a message m by unicast

to a destination which is not one of its neighbors. That is, the message m is added to

the queue of its destination. This abstract transition represents a sequence of concrete

transitions in which each router on the routing path which is not the destination, sends

the message according to its routing table, without opening the message.

Case 4

Abstract transition taken by an abstract router ar represents a sequence of similar

concrete transitions taken by each of the concrete routers represented by ar exactly

once.

singleton router procedure(sr)
if (sr.Q not empty)
{
m = pop-head(Q)

if (m is newer than the copy in sr.DB)
{

if (m.orig == sr)
fight back(sr,m)

else
update sr.DB and flood(sr,m)

}
else

ignore m
}

}

Figure 2.5: Procedure of a singleton router

2.5.6 Examples of OSPF Attacks in the Abstract Model

In this section we describe a few attacks, found on different abstract models which we

picked manually.

Attack #1

This attack has been found on the abstract topology TA, presented in Figure 2.2.

The attacker is sr2. The set of predefined originators is ORIGS = {sr1}. The

attacker originates a fake message on behalf of sr1: m = (src = sr2, dest = sr5,

orig = sr1, seq = 1, isFake = T). sr5 receives this message while considering it to be

a valid message, sent by sr2. Since the sequence number of m is larger than that of

the message instance installed in sr5’s database, sr5 installs m in its database, and

29

flood(sr,m)
For each
ac1 ∈ FDA (sr,m.src) ∩ (AR ∪ SR))
{
ac1.Q

′ = ac1.Q � {msr→ac1}
}
For each st ∈ FDA (sr,m.src) ∩ ST
{
if (st.DB[m.orig].seq < m.seq)
{
st.DB′[m.orig] = (m.seq,m.isFake)
For each sr1 ∈ FDA (st, sr)
sr1.Q

′ = sr1.Q � {mst→sr1}
}
}

Figure 2.6: Flooding procedure of a singleton router

floods it. The fake message will be flooded and installed in the databases of st2, sr4,

and sr3. When m is installed by sr3, it will be flooded to the attacker sr2, since sr2 is

the designated router of the sub-network sn1. The attacker will choose to ignore m,

thus preventing this message from being flooded to sr1, and avoiding fight back. Since

no more messages are waiting to be sent, the specification is violated.

Formally, the abstract path that represents the attack can be described as:

π : σ0
sr2−−→ σ1

sr5−−→ σ2
sr4−−→ σ3

sr3−−→ σ4
sr2−−→ σ5

We denote on each abstract transition, the abstract component in SR∪AR for which

the procedure was taken. The contents of the abstract global states can be described as

follows, where we will denote only the changes between two consequent states:

• σ0 = [<>]

• σ1 = [sr5.Q =< msr2→sr5 >]

• σ2 = [sr5.DB[sr1] = (1, T) ; st2.DB[sr1] = (1, T) ; sr4.Q =< mst2→sr4 >; sr5.Q =<>]

• σ3 = [sr4.DB[sr1] = (1, T) ; sr3.Q =< msr4→sr3 >; sr4.Q =<>]

• σ4 = [sr3.DB[sr1] = (1, T) ; sr2.Q =< msr3→sr2 >; sr3.Q =<>]

• σ5 = [sr2.Q =<>]

A matching concrete path that represents this attack on the matching concrete

topology from Figure 2.1 can be denoted as:

30

π′ : σ0
′ r9−→ σ1

′ r12−−→ σ2
′ r13−−→ σ3

′ r14−−→ σ4
′ r15−−→ σ5

′ r19−−→ σ6
′ r20−−→ σ7

′ r17−−→ σ8
′ r17−−→ σ9

′ r16−−→
σ10
′ r16−−→ σ11

′ r17−−→ σ12
′ r15−−→ σ13

′ r18−−→ σ14
′ r18−−→ σ15

′ r17−−→ σ16
′ r11−−→ σ17

′ r9−→ σ18
′

Matching between abstract and concrete transitions:

The abstract transition σ0
sr2−−→ σ1 matches the concrete transition:σ0

′ r9−→ σ1
′. The

abstract transition σ1
sr5−−→ σ2 matches the sequence of concrete transitions: σ1

′ r12−−→
σ2
′ r13−−→ σ3

′ r14−−→ σ4
′ r15−−→ σ5

′ r19−−→ σ6
′ r20−−→ σ7

′ r17−−→ σ8
′ r17−−→ σ9

′ r16−−→ σ10
′ r16−−→ σ11

′ r17−−→
σ12
′ r15−−→ σ13

′. The abstract transition σ2
sr4−−→ σ3 matches the sequence of concrete

transitions: σ13
′ r18−−→ σ14

′ r18−−→ σ15
′ r17−−→ σ16

′. The abstract transition σ3
sr3−−→ σ4 matches

the concrete transition σ16
′ r11−−→ σ17

′. The abstract transition σ4
sr2−−→ σ5 matches the

concrete transition σ17
′ r9−→ σ18

′.

Figure 2.7: Abstract topology of attack
#2

Figure 2.8: Abstract topology of attack
#3

Attack #2

TA is the abstract topology presented in Figure 2.7. The attacker is sr3. The set of

predefined originators is ORIGS = {sr1}. The attacker originates a fake message on

behalf of sr1: m = (src = sr1, dest = sr2, orig = sr1, seq = 1, isFake = T), which is

sent by unicast to sr2. sr2 installs the fake message in its database and floods it only

to the sub-topology st2 due to the flooding rules of OSPF. Therefore, in the final state

the queues of all abstract components are empty, and the databases of sr2 and st2 are

installed with the fake message. Thus, the specification is violated.

Formally, the abstract path that represents the attack can be described as:

π : s0
sr1−−→ s3

sr2−−→ s2

The contents of the abstract global states can be described as follows, where we will

denote only the changes between two consequent states:

• σ0 = [<>]

• σ1 = [sr2.Q =< msr1→sr2 >]

• σ2 = [sr2.DB[sr1] = (1, T) ; st2.DB[sr1] = (1, T) ; sr2.Q =<>]

31

Attack #3

TA is the abstract topology presented in Figure 2.8. The attacker is sr3. The set of

predefined originators is ORIGS = {sr2}. The attacker sends the following two LSAs

(using unicast sending): m1 = (src = sr3, dest = sr2, orig = sr2, seq = 1, isFake = T)

and m2 = (src = sr4, dest = sr5, orig = sr2, seq = 2, isFake = T). As a result, sr2

sends a fight back message m3 with orig = sr2, seq = 2, isFake = F , but sr5 opens

m3 after it has already installed m2 in its database, and will thus ignore the fight back

message and will remain with the fake message.

Formally, the abstract path that represents the attack can be described as:

π = σ0
sr3−−→ σ1

sr3−−→ σ2
sr2−−→ σ3

sr5−−→ σ4
sr6−−→ σ5

sr1−−→ σ6
sr1−−→ σ7

sr3−−→ σ8
sr6−−→ σ9

The contents of the abstract global states can be described as follows, where we will

denote only the changes between two consequent states:

• σ0 = [<>]

• σ1 = [sr2.Q =< msr3→sr2 >]

• σ2 = [sr5.Q =< m′sr4→sr5 >]

• σ3 = [sr2.Q =<>; sr2.DB[sr2] = (2, F) ; st1.DB[sr2] = (2, F) ;

sr1.Q =< m′′st1→cr1 >; sr3.Q =< m′′sr2→sr3 >]

• σ4 = [sr5.DB[sr2] = (2, T) ; st2.DB[sr2] = (2, T) ; sr5.Q =<>; sr6.Q =< m′st2→sr6 >]

• σ5 = [sr6.DB[sr2] = (2, T) ; sr6.Q =<>; sr1.Q =< m′′st1→sr1,m
′
sr6→sr1 >]

• σ6 = [sr1.DB[sr2] = (2, F) ; sr1.Q =< m′sr6→sr1 >; sr6.Q =< m′′sr1→sr6 >]

• σ7 = [sr1.Q =<>]

• σ8 = [sr3.Q =<>]

• σ9 = [sr6.Q =<>]

2.6 Correctness of the Abstract Model

Theorem 2.6. Let TA and TC be an abstract and concrete topologies and let H be

their matching relation. Then, for each finite abstract run σ1, . . . σn, there exists a

corresponding finite concrete run σ′1, . . . σ
′
k, such that σ′1 ∈ h(σ1) and σ′k ∈ h(σn).

Corollary 2.7. An abstract attack found on an abstract topology TA, has a corresponding

attack on each matching topology TC .

32

Proof Sketch

• We show that for each abstract transition, there is a concrete finite run, such that

the initial and final states of the transition and of the run are matching.

• An abstract attack is an abstract run for which the final state violates our

specification. A concrete state matching an abstract state which violates the

specification, also violates the specification. Thus, the corresponding paths are

concrete attacks.

• The proof is based on the matching relation H and on the function h, defined in

section 2.5.

In Section 2.6.1 we define the concept of flooding and fight back destinations in

the concrete and abstract models. Then, in Section 2.6.2 we give the full proof of

Theorem 2.6.

2.6.1 Flooding and Fight Back Destinations

Flooding Destinations in the Concrete Model

We define a flooding destinations function FDC : R × R → 2R such that given a

destination router dest and a source router src, FDC (dest, src) is the set of routers to

which dest will flood an LSA message received from src.

FDC (dest, src) is the minimal set that contains the following routers:

1. For each (dest, r′) ∈ E if src 6= r′ then r′ ∈ FDC (dest, src).

2. For each s ∈ S such that dest ∈ s, if DR (s) = dest then:

{
r′ ∈ s

∣∣r′ 6= dest ∧ src 6= r′
}
⊆ FDC (dest, src)

If src 6= DR (s) then: DR (s) ∈ FDC (dest, src).

Fight Back Destinations in the Concrete Model

The fight back destinations function FBDC : R→ 2R defines, for each router r, the set

of routers to which r will flood an LSA fight back message originated by it. FBDC (r)

is the minimal set that contains the following routers:

1. For each s ∈ S such that r ∈ s, if DR (s) = r then {r′ ∈ s |r′ 6= r} ⊆ FBDC (r)

else DR (s) ∈ FBDC (r).

2. For each (r, r′) ∈ E: r′ ∈ FBDC (r).

33

Flooding Destinations in the Abstract Model

Let AC = SR ∪ AR ∪ ST . We define a function of flooding destinations: FDA :

(SR ∪ ST) × (SR ∪ ST) → 2AC , such that given a destination component dest ∈
SR∪ST and a source component src ∈ SR∪ST , FDA (dest, src) is the set of abstract

components in AC to which dest will flood an LSA message received from src.

1. FDA (dest, src) for dest ∈ SR is the minimal set that contains the following

routers:

(a) For each (dest, ac′) ∈ EA, if src 6= ac′ then ac′ ∈ FDA (dest, src).

(b) For each sn ∈ SN such that dest ∈ sn, if DR (sn) = dest then

{ac′ ∈ sn |ac′ 6= dest ∧ src 6= ac′ } ⊆ FDA (dest, src). Else, if src 6= DR (sn),

then DR (sn) ∈ FDA (dest, src)

(c) For each st ∈ ST such that dest ∈ st, If src 6= st then st ∈ FDA (dest, src)

Note: in the abstract model, if src is a sub-topology, there might be flooding

back to the sub-topology in the concrete model. However, since we assume

messages originated from the attacker do not have an abstract src field, we

can be sure that the sub-topology will ignore the flooded message (since

the message must have arrived by regular flooding, thus it has installed the

flooded LSA in its database). Thus, we do not include it in the flooding

destination. (It actually defines another kind of a macro step. The hidden

flooding will be taken into account in the translation of the abstract path

into a concrete one).

2. FDA (dest, src) for dest ∈ ST is the minimal set that contains the following

routers: {ac′ ∈ st|ac′ 6= src} ⊆ FDA (dest, src)

Fight Back Destinations in the Abstract Model

We define FBDA : SR→ 2AC be a fight back destinations function, such that given an

abstract singleton router sr,FBDA (sr) is the set of abstract components to which sr

will flood an LSA fight back message originated by it. FBDA (sr) is the minimal set

that contains the following abstract components in AC:

1. For each (sr, ac′) ∈ EA: ac′ ∈ FBDA (sr).

2. For each sn ∈ SN such that sr ∈ sn, if DR (sn) = sr then {ac′ ∈ sn |ac′ 6= sr} ⊆
FBDA (sr) , else DR (sn) ∈ FBDA (sr)

3. For each st ∈ ST such that sr ∈ st: st ∈ FBDA (sr)

34

Matching Flooding Destinations

Lemma 2.8. Let TA be an abstract topology and TC a matching concrete topology, such

that H is their matching relation. The following matching between flooding destinations

exists:

1. ∀r ∈ SR, ∀src ∈ SR ∪ ST : c ∈ FDA (r, src) ∧ c /∈ ST ⇒
[∀r′ ∈ H (c) : (r′.Q ∈ h (c.Q)⇒ r′.Q′ ∈ h (c.Q′))]

2. ∀r ∈ R,∀src ∈ R : ∀r′ ∈ FDC (r, src) :

[(∃c /∈ ST : (r′ ∈ H (c)))⇒ ((r′.Q ∈ h (c.Q)⇒ r′.Q′ ∈ h (c.Q′)))]

We refer to matching floodings, i.e, an abstract message is flooded by r, and a

matching concrete message is flooded by H (r). Note that Q represents a component’s

queue before the flooding , and Q′ represents the queue after the flooding. When

denoting r′ ∈ H (c) for some c ∈ AR ∪ SR, we actually refer to r′ = H (c) in the case

where c ∈ SR.

Proof .

1. Let r ∈ SR, src ∈ SR ∪ ST , such that r receives an LSA from src and floods it

to FDA (r, src). We will prove the claim for any possible flooding destinations,

according to the definition of the function FDA:

(a) For each (r, c) ∈ EA such that src 6= c, we know that c ∈ FDA (r, src) (and

c ∈ SR due to the definition of EA). According to the matching defined

between abstract and concrete topologies, we know that for each (r, c) ∈ EA

there exists a matching edge of the form: (H (r) , H (c)) ∈ E.

If src ∈ SR, then it can be immediately inferred that src 6= c⇒ H (src) 6=
H (c). Therefore, according to the definition of FDC , we can then infer

that H (c) ∈ FDC (H (r) , H (src)). This implies that H (c) .Q ∈ h (c.Q)⇒
H (c) .Q′ ∈ h (c.Q′). If the message is flooded to c in the abstract model,

then a matching message is flooded to H (c) in the concrete model. Thus,

the matching of their queues is preserved after the flooding.

If src ∈ ST , then we know that in the concrete model, the concrete source,

denoted as srcC , that flooded the message to H(r) had to be an invisible

router (because there is no direct link between any two visible routers in

a sub-topology). This implies that H (c) 6= srcC . Therefore, according to

the definition of the FDC function: H (c) ∈ FDC (H (r) , srcC). Thus, the

abstract flooding to c matches the concrete flooding to H(c), and we can

infer that H (c) .Q ∈ h (c.Q)⇒ H (c) .Q′ ∈ h (c.Q′).

(b) If DR (sn) = r then Csn = {c ∈ sn |c 6= r ∧ src 6= c} ⊆ FDA (r, src). Ac-

cording to the matching with the concrete topology, DR (H (sn)) = H (r).

35

For each c ∈ Csn such that c ∈ SR, we know that H (c) ∈ H (sn). Also, we

know hat c 6= r ⇒ H (c) 6= H (r). In addition, since c 6= src, it implies that

the concrete source denoted as srcC is necessarily not H (c) as explained in

the previous case (a). Therefore, H (c) ∈ FDC (H (r) , srcc). If src ∈ SR
then srcc = H (src) and if src ∈ ST then srcc ∈ H (src) such that srcc is

a neighbor of H (r). This implies that for each c ∈ Csn such that c ∈ SR,

H (c) .Q ∈ h (c.Q)⇒ H (c) .Q′ ∈ h (c.Q′).

For each c ∈ Csn such that c ∈ AR, we know that H (c) ⊆ H (sn). Also,

we know that c 6= r ⇒ ∀r′ ∈ H (c) : [r′ 6= H (r)]. In addition, since c 6=
src, it implies that ∀r′ ∈ H (c) : [r′ 6= srcC]. Therefore, ∀r′ ∈ H (c) :

[r′ ∈ FDC (H (r) , srcc)]. This implies that for each c ∈ Csn such that c ∈
AR, ∀r′ ∈ H (c) : (r′.Q ∈ h (c.Q)⇒ r′.Q′ ∈ h (c.Q′)). If DR (sn) 6= r and

src 6= DR (sn), then DR (sn) ∈ FDA (r, src). According to the matching

with the concrete topology, we can infer that DR (H (sn)) 6= H (r) and that

DR (H (sn)) 6= srcC . Therefore, DR (H (sn)) ∈ FDC (H (r) , srcc). This

implies that for c = DR (sn) , H (c) .Q ∈ h (c.Q)⇒ H (c) .Q′ ∈ h (c.Q′).

(c) If ∃st ∈ ST : (r ∈ st) and src 6= st, then st ∈ FDA (r, src). This case is

irrelevant to the lemma, because it only refers to a flooding destination in

ST . However, the lemma does not refer to such flooding destinations.

2. Let r ∈ R, src ∈ R such that r receives an LSA from src and floods it to

FDC (r, src). We will prove the claim for any possible flooding destinations,

according to the definition of FDC :

(a) For each (r, r′) ∈ E , if src 6= r′ then r′ ∈ FDC (r, src). If ∃c /∈ ST :

(r′ ∈ H (c)), then either c ∈ SR or c ∈ AR. If c ∈ AR, then it would

contradict the fact that there is no matching edge in the abstract topology.

This implies that c ∈ SR. Therefore, there is a matching edge (c, c′) ∈ EA

such that r′ = H (c) , r = H (c′). Since src 6= r′, we can conclude that

: srcA 6= c (the abstract source is denoted as srcA), and therefore c ∈
FDA (c′, srcA). This implies that (r′.Q ∈ h (c.Q)⇒ r′.Q′ ∈ h (c.Q′)).

(b) For each s ∈ S such that r ∈ s:
If DR (s) = r, then Cs = {r′ ∈ s |r′ 6= r ∧ src 6= r′ } ⊆ FDC (r, src). If

∃c /∈ ST : (r′ ∈ H (c)), then there exists sn ∈ SN such that H (sn) = s. For

each r′ ∈ Cs there exists c ∈ SR ∪ AR such that r′ ∈ H (c). Also, there

exists c′ ∈ SR such that r = H (c′) and DR (sn) = c′.

If c ∈ SR, then r′ 6= r implies that c 6= c′. In addition, src 6= r′ implies

that srcA 6= c. This is because the flooded messages are matching, and thus

their sources are matching. Therefore, c ∈ FDA (c′, srcA). This implies that

(r′.Q ∈ h (c.Q)⇒ r′.Q′ ∈ h (c.Q′)).

36

If c ∈ AR then r′ 6= r implies that c 6= c′ (because r is necessarily mapped

by a concrete router which is a designated router). Also, srcA 6= c′ because

abstract router cannot be a source in the abstract model. Therefore, c ∈
FDA (c′, srcA), which implies (r′.Q ∈ h (c.Q)⇒ r′.Q′ ∈ h (c.Q′)).

If DR (s) 6= r and src 6= DR (s) then DR (s) ∈ FDC (r, src). If ∃c /∈
ST : (DR (s) ∈ H (c)), then there exists sn ∈ SN such that H (sn) = s.

Therefore, there exists c′ ∈ SR such that H (c′) = r , and thus DR (s) 6=
r ⇒ DR (sn) 6= c′. Also, src 6= DR (s) implies that DR (sn) 6= srcA.

Therefore, DR (sn) ∈ FDA (c′, srcA), which implies that for r′ = DR (s) and

c = DR (sn):(r′.Q ∈ h (c.Q)⇒ r′.Q′ ∈ h (c.Q′)).

�

Matching Fight Back Destinations

Lemma 2.9. Let TA be an abstract topology, and TC a matching concrete topology, such

that H is their matching relation. The following matching between flooding destinations

exists:

1. ∀r ∈ SR : c ∈ FBDA (r) ∧ c /∈ ST ⇒
[∀r′ ∈ H (c) : (r′.Q ∈ h (c.Q)⇒ r′.Q′ ∈ h (c.Q′))]

2. ∀r ∈ R : ∀r′ ∈ FBDC (r) :

[(∃c /∈ ST : (r′ ∈ H (c)))⇒ ((r′.Q ∈ h (c.Q)⇒ r′.Q′ ∈ h (c.Q′)))]

The proof of this lemma is very similar to the proof of Lemma 2.8.

2.6.2 Correctness Proof

Below we prove Theorem 2.6.

Proof . Let TA be an abstract topology, TC a matching concrete topology, and H their

matching relation. We will prove for each possible abstract transition the following:

1. There exists a translation to a sequence of concrete transitions, starting from a

concrete state that matches the initial state of the abstract transition.

2. The final concrete state of the translation matches the final abstract state of the

original abstract transition.

3. At the final concrete state of the translation, all queues of concrete routers which

are represented by a sub-topology in the abstract topology are empty, given that

they were empty at the first state of the transition sequence.

37

Abstract Transitions of a Singleton Router

First, we will refer to the possible abstract transitions that can be taken by a singleton

router. Let σ1
sr−→ σ2 be an abstract transition taken by sr ∈ SR. Let σ1

′ be a concrete

state that satisfies: σ1
′ ∈ h (σ1). Let sr.Q1 =< m1,m2, ...,mn > be the queue of sr in

state σ1 for some n ≥ 1. Let H (sr) .Q1 =< m1
′,m′2, ...,mp

′ > be the queue of H (sr)

in state σ1
′ for some p ≥ 1. We will refer to the following cases, when each requires a

different translation to the corresponding concrete run:

• If ¬∃st ∈ ST : (sr ∈ st), then the abstract transition represents a single concrete

transition, because a sub-topology is not involved in the potential flooding. In

addition, the abstract message must be matched with a single concrete message,

since the source of the message cannot be a sub-topology (since sr is not in a sub-

topology). Therefore, the translation to the concrete transition is straight-forward

(whether the abstract transition was ignoring, flooding or sending a fight back).

The matching proof is also simple in this case, and is relying on the lemmas from

Section 2.6.1. In addition, for any sub-topology, the queues of the hidden routers

remain empty after such a transition, because this transition does not involve any

sub-topology.

• If ∃st ∈ ST : (sr ∈ st) , then the corresponding concrete run may involve several

concrete transitions. Let m1
′, ...,mt

′ be the matched sequence of messages for

some 1 ≤ t ≤ p (if m1.src /∈ ST then t = 1). We will refer to the possible

actions performed in the abstract transition, and will show their corresponding

translations.

1. If m1.seq ≤ sr.DB [m1.orig] .seq , then sr removes m1 from its queue and

ignores it. The translation to the sequence of concrete transitions in that

case is: σ1
′ H(sr)−−−→ σ2

′ H(sr)−−−→ . . .
H(sr)−−−→ σt+1

′ . Due to the matching of the

initial states (σ1
′ ∈ h (σ1)), the concrete router H (sr) will ignore all these

messages that are matched with the abstract message m1. The matching

proof in this case is also trivial (removing matching parts from matching

abstract and concrete queues results in matching queues at the final states).

In addition, since this abstract transition does not involve any flooding to a

sub-topology, it is also implied that for any sub-topology the queues of the

hidden routers remain empty after such a transition.

2. If m1.seq > sr.DB [m1.orig] .seq ∧ m1.orig 6= sr , then sr removes m1 from

its queue, installs it in its database, and floods it. However, we need to refer

to two possibilities in this case.

(a) If m1.src ∈ ST ,then the translation will include concrete transitions

taken by H (sr), such that at the first one it will flood the message, and

there might be more transitions of ignoring, if the abstract message is

38

matched with a sequence of concrete messages. However, since H (sr)

may flood the message also to concrete routers that are invisible in the

abstract topology and represented by the sub-topology, the translation

will also include concrete transitions taken by these routers. It is guaran-

teed that these routers will ignore this message flooded by H (sr), since

m1.src ∈ ST and due to the restriction in our abstract model that src in

a message sent by the attacker is a singleton router. As a result, we can

infer that the sub-topology has already installed m1 in its database before

flooding it to sr. Thus, it is assured that if H (sr) floods this message

back to any of the invisible routers represented by the sub-topology, they

will ignore it. Thus, at the end of the translation it is assured that the

queues of concrete routers represented by the sub-topology are empty.

The concrete translation will be composed of three parts at most:

i. The first transition is taken by H (sr), in which it updates its

database and floods m1
′.

ii. If there are more ”copies” of this message in its queue (of H (sr)),

i.e.: t > 1, then the next t transitions will be taken by H (sr), in

which it will ignore the messages m2
′, ...,mt

′.

iii. Let {r1′, ..., ri′} ⊆
⋃

s∈H(m1.src)

s be the set of invisible concrete routers

to which H (sr) floods m1
′, for some i ≥ 0. If this set is not empty

(i > 0), then the next i transitions will be taken by each of the

routers in this set, and in each transition the router rj
′ will ignore

the message flooded by H (sr).

To prove the matching of the final abstract and concrete state, we shall

first present these final states. In the abstract transition, we can infer

that the final abstract state is σ2 such that:

i. sr.Q2 =< m2, ...mn >

ii. sr.DB2[m1.orig] = (m1.seq,m1.isFake)

iii. ∀c ∈ FDA (sr,m1.src) :
(
c.Q2 = c.Q1 �

{
m1[sr→c]

})
In the concrete model, due to the sequence of transitions we have shown,

we can infer (assuming that the index of the final concrete state is k)

that the final concrete state is σk
′ such that:

i. H (sr) .Qk =< mt+1
′, ...mp

′ >

ii. H (sr) .DBk[m1
′.orig] = (m1

′.seq,m1
′.isFake)

iii. ∀c ∈ FDC (H (sr) ,m1
′.src) :

(
c.Qk = c.Q1 �

{
m1
′
[H(sr)→c]

})
Therefore, the matching between the final states is similar to the previous

cases: the databases of matching routers were updated by matching

messages, the queues remain matching due to the removal of matching

parts, and the queues of neighbors are matching bases on Lemma 2.9.

39

Note that the state of invisible routers was not changed at the end of

these transitions.

(b) If m1.src /∈ ST , then the translation should include the concrete run of

flooding the message within the sub-topology. (since FDA (sr,m1.src)∩
ST 6= ∅). Let st ∈ ST be the sub-topology for which r ∈ st. i.e.,

FDA (sr,m1.src) ∩ ST = {st} . The corresponding concrete run will be

composed of three parts at most:

i. The first transition is taken by H (sr), in which it updates its

database and floods m1
′.

ii. If there are more copies of this message in its queue (of H (sr)), i.e.:

t > 1, then the next t transitions will be taken by H (sr), in which

it will ignore the messages m2
′, ...,mt

′.

iii. The last part will be composed of transitions taken by invisible

routers in
⋃

s∈H(st)

s, until all their queues become empty. At the

end of this sequence, it is assured that the message will be flooded

to the queues of the remaining visible routers in the sub-topology

(not including sr itself), due to the constraints we imposed on a

sub-topology structure.

It is clear how to generate the concrete transitions described at the first

two parts. For the third part, it is possible to choose any interleaving

for which all invisible routers apply their concrete procedures until all

their queues are emptied. It is easy to prove that there exists such an

interleaving, based on the constraints mentioned in the sub-topology

definition, and in particular - based on the fact that all invisible routers

form a strongly connected component in the concrete topology. After all

queues of invisible routers are emptied, their databases are installed with

the flooded LSA, and the flooded LSA has been inserted to the queues of

other visible routers. This can be proved if we assume by negation that

there exists an invisible router for which its database was not installed

with the flooded LSA, but it has a neighbor that was installed with that

LSA (we can assume that there is necessarily such a neighbor, because

at the beginning the message was inserted to at lease one of the invisible

routers’ queue which is an immediate neighbor of sr, the router which

flooded the message, and due to the connectivity of the set of invisible

routers).

Based on that, we can prove the matching of the final states. We

denote by RS The set of invisible routers within the sub-topology in the

concrete topology. Let σk
′ be the final concrete state after the sequence

of transitions described above are taken, starting from σ1
′.

– If st.DB1[m1.orig].seq < m1.seq: In that case, the final abstract

40

state is:

σ2 = [sr.Q2 =< m2, ...mn >;

sr.DB2[m1.orig] = (m1.seq,m1.isFake) ;

∀c ∈ FDA (sr,m1.src) :
(
c.Q2 = c.Q1 �

{
m1[sr→c]

})
;

st.DB2[m1.orig] = (m1.seq,m1.isFake) ;

∀sr′ 6= sr ∈ st :
(
sr′.Q2 = sr′.Q1 �

{
m1[st→sr′]

})
]

The final concrete state is, based on what we proved before:

σk
′ = [H (sr) .Qk =< mt+1

′, ...mp
′ >;

H (sr) .DBk[m1
′.orig] = (m1

′.seq,m1
′.isFake) ;

∀c ∈ FDC (H (sr) ,m1
′.src) :

(
c.Qk = c.Q1 �

{
m1
′
[H(sr)→c]

})
;

∀r ∈ RS : (r.DBk [m1
′.orig] = (m1

′.seq,m1
′.isFake)) ;

∀sr′ 6= sr ∈ st(∃t ≥ 1[(H(sr′).Qk = H(sr′).Qi �{m1
′′,m2

′′, ..,mt
′′})∧

∀i(mi
′′ ∈ h(m1st→H(sr′)

))]]

It can be easily proved that these states are matching.

– If st.LSA DB[m1.orig].seq ≥ m1.seq , then the matching proof is

very similar, and the only difference is that the databases contents

of the sub-topology was not changed, and that the message was not

flooded to other visible routers in the sub-topology.

3. If m1.seq > sr.DB [m1.orig] .seq ∧ m1.orig = r , then there is a fight back

message which is flooded within a sub-topology. The concrete translation

is similar to the regular flooding case, except that in this case the flooded

message is a fight back message. Thus, it is flooded to neighbors according

to the fight back destinations function instead of the flooding destinations

function.

Abstract Transitions of an Abstract Router

We will now refer to the possible abstract transitions that can be taken by an abstract

router. Assuming that r ∈ AR and σ1
′ ∈ h (σ1), we will show the concrete translation

and will prove that σk
′ ∈ h (σ2). Let r.Q1 =< m1,m2, ...,mn > be the queue of r

in state σ1 for some n ≥ 1. Let r′.Q1 =< m1
′,m2

′, ...,mn
′ > be the queue of each

r′ ∈ H (r) in state σ1
′. Let H (r) = {r1′, ..., rk−1′} for some k ≥ 2. Concrete translation:

σ1
′ r1′−−→ σ2

′ r2′−−→ ...
rk−1

′

−−−→ σk
′. The concrete translation is a sequence of concrete

transitions, such that each transition is taken by a different router represented by the

abstract router in the abstract topology (such that all router represented by the abstract

router have taken exactly one transition), in some order.

The matching proof of the final states is straight forward. In the final states the queues

are matching, since in the abstract transition the first abstract message was removed

from the queue, and in the concrete run the matching message was removed from the

queues of all routers matched with the abstract router. If the abstract router installed

the LSA in its databases, then all concrete routers in the matched concrete run has

41

installed the LSA, thus the databases are also matching at the end of the transitions.

In addition, the queues of invisible routers remain empty after this transition because

no sub-topology is involved in this macro-step.

Abstract Transitions of an Attacker

Finally, we will refer to possible abstract transitions taken by an attacker. We refer to

translation of an abstract transition in which a message is sent from the attacker to

its destination (the message arrives to the destination within one abstract step). We

define this macro-step as enabled when the queues of routers within the routing path are

empty. Therefore, it can be directly translated into concrete transition taken by concrete

routers in the concrete routing path. Other possible actions of the attacker can be

translated similarly to the translation shown for a concrete router. Let σ1
r−→ σ2 be the

abstract transition, and let σ1
′ r1−→ σ2

′ r2−→ ...
rk−1−−−→ σk

′ be the corresponding translation

to concrete transitions. Let m be the message sent in the abstract transition. Therefore,

the change between σ1 and σ2 is: (m.dest) .Q2 = (m.dest) .Q1 • {m}. In the concrete

topology, let ri = nextHop (ri−1,m.dest) for each i > 1, and let r1 be a neighbor of the

attacker r. Therefore, in each concrete transition, σi
′ ri−→ σi+1

′, the message m′ ∈ h (m)

is removed from the queue of ri−1 and added to the queue of ri. In the final state σk
′,

it is added to the queue of m′.dest: (m′.dest) .Qk = (m′.dest) .Q1 • {m′}. There are no

other changes in σk
′ relative to σ1

′, and therefore σk
′ ∈ h (σ2). (Since m′ ∈ h (m), it

implies that the queues of m.dest and m′.dest are matching). Thus, the final states

are matching. The queues of invisible routers remain empty, since the destination is

necessarily a singleton router in the abstract topology.

�

2.7 Extension of the Concrete Model

2.7.1 Extended OSPF Basics

Below we give an extended overview of the OSPF protocol based on [50]. OSPF is a link

state routing protocol: each router advertises an LSA containing the links to neighboring

networks and routers and their associated costs. Each LSA is flooded throughout the

Autonomous System (AS). Routers construct a complete view of the AS topology by

compiling all the LSAs they receive into a single database. From this global view routers

compute their routing tables. Each router is identified by a parameter called router ID.

A local network having two or more routers directly attached to it is called a transit

network. A router connected to a transit network advertises a link to the network rather

than to the neighboring routers. In addition, one of the neighboring routers is chosen

to act as a designated router. This router advertises an LSA on behalf of the local

network, in addition to its own LSA, advertising links back from the network to all the

routers attached to the network.

42

Figure 2.9: The structure of an LSA header

Each LSA is advertised periodically every 30 minutes, by default. An LSA includes

a Sequence Number field, which is incremented for every new instance. A fresh LSA

instance with a higher sequence number will always take precedence over an older

instance with a lower sequence number. In addition, an LSA includes an Age field

indicating the elapsed time since the LSA’s origination. When it reaches 1 hour, the

LSA instance is removed from the LSA database.

The sequence number field is 32 bit long. Once the sequence number reaches its

maximum value it needs to wrap to zero in the next LSA instance. To do that the

LSA instance with the maximum sequence number (MaxSeqNum) is first flushed by

advertising another instance having the maximum sequence number and an age field of

1 hour. This instance replaces the current LSA instance but then immediately removed

from the LSDB due to its age. Therefore, no instance of that LSA is kept in the

LSDB. At this stage a fresh instance of the LSA with a sequence number of zero will be

advertised.

For scalability reasons, OSPF allows an AS to be partitioned into areas. Flooding is

confined to a single area while routing information is disseminated between different

areas through a special backbone area. For simplicity of the presentation we shall

consider only the case where an AS is composed of a single area.

The OSPF defines four basic types of LSA: Router-LSA, Network-LSA, Summary-

LSA and AS-external-LSA. The most common type is Router-LSA, which is used to

advertise the links of a given router. For brevity, throughout this section we refer to a

Router-LSA as simply LSA.

All LSAs begin with a common 20 byte header. Figure 2.9 depicts the LSA header.

A description of the LSA header fields follows.

• LS age – The time in seconds since the LSA was originated.

43

• Options – Optional capabilities supported by the described portion of the routing

domain.

• LS type – The type of LSA.

• Link State ID – Identifies the part of the AS that is being described by the LSA.

• Advertising Router – Identifies the router that originated the LSA.

• LS sequence number – The sequence number of the LSA.

• LS checksum – The checksum of the complete contents of the LSA.

• Length – The length in bytes of the LSA.

The standard specifies (Sec. 12.1 of [50]) that an LSA is identified by the three

fields: LS type, Link State ID, and Advertising Router.

2.7.2 Extension Goals

The goal of our extension is to extend our systematic analysis by model checking of the

OSPF protocol. It is motivated by a new OSPF vulnerability that was found during a

manual analysis of the protocol ([52]). We will refer to it as the new vulnerability. We

extend the modeled functionalities of the fight-back mechanism and the routing table

calculation.

Below we describe the additional vulnerabilities that should be captured by our

extended modeling of the fight-back mechanism and were not captured in our original

model from Section 2.4.

• The periodic injection attack : Jones et al. [37] introduced the first known

attack that evades the fight-back mechanism – called ’periodic injection’. The

attack exploits a vulnerability in which the fight-back mechanism is triggered only

after the router has flooded the false LSA (which was advertised on its behalf) to

its neighbors. Since the OSPF specification prevents a router from originating

two instances of its own LSA within less than 5 seconds, the victim router must

wait for that time period before it is able to send the fight-back LSA. Hence, if

the attacker periodically advertises the false LSA at least once every 5 seconds, it

will ultimately prevent the victim from issuing any fight-back LSAs.

• The new vulnerability: The new vulnerability [52] was found during a manual

analysis of the OSPF standard. The Link State ID field of a Router-LSA equals

the ID of the router whose links are described by the LSA. Moreover, since a

Router-LSA is originated by the router described by that LSA, the Advertising

Router field of the LSA will also equal the router’s ID. Therefore, we note that in

every Router-LSA, the above two fields – Link State ID and Advertising Router

44

– are expected to have the same exact value. The first part of the vulnerability

arises because the standard neglects to specify a sanity check to verify this equality

on LSA reception. Thus, a Router-LSA is considered valid even if it has different

values in these two fields. In the following we explain how an attacker can benefit

from this.

According to Section 13.4 of [50], a router is triggered to send a fight-back LSA

only if it receives a false LSA in which

“the Advertising Router is equal to the router’s own Router ID.”

This means that no fight-back shall be triggered by the victim router as long as

the Advertising Router field of a received LSA is not equal to the victim router’s

ID. This is true even if the Link State ID field of that LSA equals the victim

router’s ID. Namely, no fight-back is triggered even if the false LSA claims to

describe the links of the victim router itself.

An attacker can exploit the above vulnerability as follows. Let us assume the

attacker wishes to advertise a false LSA on behalf of some victim router, Rv. The

attacker will advertise on its local links the false LSA while having a header in

which:

– Link State ID = ID of Rv,

– Advertising Router 6= ID of Rv.

The false LSA shall be flooded throughout the AS as usual and will eventually

be received by all routers, including the victim router Rv. The OSPF standard

guarantees that such false LSA will not trigger fight-back by Rv. Consequently,

all routers within the AS – including Rv – install the false LSA in their LSA

databases. Thus, the attacker achieves complete poisoning of the LSA databases

of all routers within the AS.

However, does this LSA database poisoning indeed poison the routing tables as

well? Recall that an LSA is identified by the combination of the following three

fields:

1. LS type,

2. Advertising Router,

3. and Link State ID.

This means that the false LSA advertised by the attacker has a different identifier

than that of the valid LSA of the victim router. They differ in the Advertising

Router field’s value. The value of a valid LSA equals that of the victim router’s

ID while the value of the false LSA does not. Therefore, the false LSA should not

replace the valid LSA in the LSA databases. Consequently, following the attack,

both LSAs are expected to reside in the LSA databases of all routers.

45

Now let us turn to the second part of the vulnerability. The OSPF standard

(Section 16.1) specifies that during the routing table calculation phase LSAs are

looked up in the LSA database

“based on the Vertex ID”.

The vertex ID refers in the standard to the LSA’s Link State ID field. This means

that while a router calculates its routing table, it identifies LSAs on the basis

of their Link State ID field only and not on the basis of the full LSA identifier,

which also includes the Advertising Router and LS type fields. The fact that the

lookup is based on the partial identifier is explicitly reiterated in footnote 14 of

the standard, which also explains the motivation behind this:

“[14] There is one instance where a lookup must be done based on

partial information. This is during the routing table calculation, when

a network-LSA must be found based solely on its Link State ID. The

lookup in this case is still well defined, since no two network-LSAs can

have the same Link State ID.”

Namely, the standard motivates this lookup by saying that during the routing

table calculation the full identifier of Network-LSAs is not known. However, it

seems that the standard unduly generalized this partial information lookup to

Router-LSAs as well, despite the full identifier of a Router-LSA being known

during the routing calculation phase1.

The above gives rise to the following question: which LSA will be fetched from

the LSA database during the routing table calculation: the valid LSA of the

victim router or the false LSA advertised by the attacker? Remember, both LSAs

reside side by side in the LSA database of each router in the AS. Both LSAs have

the exact same value in their Link State ID field – the ID of the victim router.

Unfortunately, the standard fails to answer this question; it does not consider

the case where two different LSAs have the same Link State ID field. Because

this question is not addressed in the standard, the answer is thus dependent

on the implementation. An OSPF implementation that fetches the valid LSA

during the routing table calculation is oblivious to the attack. However, an OSPF

implementation that fetches the false LSA is completely vulnerable to the attack.

2.7.3 Extended OSPF Modeling

We extend the formal model of OSPF described in Section 2.4.1. In this extension, the

fight-back mechanism and routing table calculation are modeled in more detail. Such

1Note that for Router-LSAs, the Advertising Router field must be equal to the Link State ID field
and hence must also be known.

46

Listing 2.1: The model’s main loop

main ()
{

loop {
for every route r R
{

Router (R) ; // execu te R’ s procedure

i f (R. f l o o d i n g t i m e r > 0)
R. f l o o d i n g t i m e r −−;

for every LSA in R.LSA DB
{

LSA. counter++;

// v i o l a t i o n o f t h i s a s s e r t i o n
// i n d i c a t e s a s u c c e s s f u l a t t a c k
a s s e r t (

LSA. mark == f a l s e | |
LSA. o r i g i n a t e d b y a t t a c k e r == f a l s e | |
LSA. counter < MIN COUNTER

) ;
}

}

Attacker () ; // execu te a t t a c k e r ’ s procedure

num cycles++;
}

}

extended modeling allows us to better search for attacks that may exploit intricate

details of the fight-back mechanism.

The model is composed of a fixed network topology that contains legitimate OSPF

routers and a single malicious router. The modeled functionality includes the LSA

message structure, the LSA flooding procedure, the fight-back mechanism, and the

routing table calculation. In the following we include a pseudo-code that gives a general

overview of the model we used. The next sections explain the pseudo-code.

Listing 2.2: The attacker’s procedure

Attacker ()
{

LSA = generate arb i t ra ry LSA () ;
f l o o d (LSA) ;

}

47

The Main Function

The main function of the model is a loop, where in each loop iteration any of the routers

(including the attacker) can run their procedure once. Each loop iteration is considered a

cycle. The flooding timers of each router are decremented in every cycle (An explanation

of the flooding timers is given below as part of the router model description).

We mark LSAs which are deemed to affect the routing table. We count the number

of cycles each LSA resides in an LSA database. The last portion of the main loop is the

assertion of the model’s specification. A detailed explanation of the assertion is given

below as part of the specification description.

The Attacker Model

The attacker generates an LSA with arbitrary content. This models an attacker with

complete control over the false LSAs it sends out. Note that the identity of the victim

router on whose behalf the false LSA is sent is not predefined. It can be any one of

the legitimate routers. The model checker will cover every possible false LSA during

its search for an attack. Note that the attack may be composed of a sequence of false

LSAs sent by the attacker.

The Router Model

In the initial state, each router R has in its LSA database LSAs originated by R, and

for each link described in these LSAs, there is also an LSA in the database with a link

back to R. Namely, there is a link from one of R’s neighbors back to R. We need these

links in our model because, as per the OSPF standard, a link can be considered in the

routing table calculation only if there are links in the reverse direction.

Each router has a flooding timer that determines how many cycles it should wait

before originating an LSA. When the timer is set to 0 the router can originate its

own LSA without any delay. After the router floods its own LSA, its timer is set to

MinLSInterval, a predefined constant that determines by how many cycles to delay the

next LSA origination. The timer is decreased by 1 in each cycle for which its value is

greater than 0.

When the router R receives an LSA, it first checks that it is valid (i.e., properly

formatted and received from a valid neighbor). If so, it checks whether such an LSA

exists in its LSA database. If it exists and is considered newer than the database copy

or if it does not exist in the database, then R floods this LSA. Afterward it checks

whether the LSA is self-originated. A self-originated LSA is a one whose Advertising

Router field equals R’s ID. If this conditions holds, a fight-back is triggered, in which

case the LSA will not be installed in the database. The fight-back itself is delayed due

to the flooding of the false LSA prior to discovering that it was self-originated.

Otherwise, R adds this LSA to its LSA database and triggers the routing table

calculation. The calculation logic must be modeled since not every LSA installed in the

48

LSA database of a router eventually affects that router’s routing table.

The Routing Table Calculation

To keep the model compact, we do not model the entire routing table calculation logic.

We are not interested in modeling the calculated routing table, but only the functionality

that determines which LSAs will ultimately affect it. We start by considering R as

reachable (it is the root of its shortest path’s tree). Then, a lookup for R’s LSA in its

database is performed using the Link State ID field. Note that the fetched LSA may

be either a valid LSA of R or a malicious LSA crafted by the attacker in a previous

stage. For each advertised link in the fetched LSA, let W denote the neighbor on the

other side of that link. If an LSA for W is found and contains a link back to R, then

R’s LSA is marked and W is considered reachable in the shortest path tree. This loop

is executed for every reachable router.

According to the OSPF standard, a Summary-LSA installed in the database affects

the routing table if and only if its Advertising Router field contains an ID of a reachable

router. Therefore, our model marks such LSAs only if this condition holds.

Specification

We say that an attack is successful if there is an LSA installed in a router for which all

the following three conditions hold:

1. The LSA was originated by the attacker.

2. The LSA is marked, i.e., it affects the routing table calculation.

3. The LSA’s counter exceeds MIN COUNTER (where

MIN COUNTER is some large value).

The last condition ensures that the attack is persistent, i.e., it is not reverted by the

fight-back mechanism. The MIN COUNTER is a predefined constant that determines

the persistency of the attack. In our model, when an LSA that was originated by

the attacker replaces an older instance of that LSA which was also originated by the

attacker, then the counter value of the older LSA is copied to that of the newer one.

This allows our model to find attacks in which the false LSA’s instances are constantly

changed by the attacker. These are also considered persistent attacks since the attacker

has an uninterrupted effect on the routing table.

This specification is coded as an assertion in the model’s main loop. If the model

checker finds a state of the model which violates this assertion, then it must be the

case that the attacker managed to persistently affect the routing table calculation while

evading the fight-back mechanism.

49

Figure 2.10: The topology used with the extended model

2.7.4 Results

We implemented the above model in C and used the CBMC tool [23] to perform the

model checking. We used a simple fixed network topology with three routers as depicted

in Figure 2.10. The routers R1, R2 are the legitimate routers and R0 is the attacker.

The links between the routers are of type point-to-point.

Attacks Found in Our Model

By running the model checker with our OSPF model implementation, we recreated the

following attacks:

1. The disguised LSA attack was found, where the attacker sent two LSAs – a trigger

LSA and a disguised LSA. This attack was also found on the original model as

described in the third attack of Section 2.4.5.

2. The periodic injection attack – where the attacker periodically sent LSAs on behalf

of some router at a higher rate than MinLSInterval. Each LSA sent by the attacker

had a sequence number greater than the previous one. Therefore, the delayed

fight-back was also replaced and delayed for each new instance. Consequently,

a sequence of malicious LSAs were present in the victim’s LSA database more

than MIN COUNTER cycles, and the fight-back was never sent due to reset of

the flooding timer with every received false LSA.

3. An attack that exploits the new vulnerability, originally found in a manual analysis

as described in [52]. The output contained an execution path that described the

above attack, where the LSA sent by the attacker was a Router-LSA having a Link

50

State ID equal to the victim’s ID but having a different value for the Advertising

Router.

Correcting the Vulnerabilities in the Model

The CBMC model checker halts after it finds the first counterexample for the assertion

in our model. Therefore, in order to find new vulnerabilities, we had to correct the ones

found above.

1. In order to avoid receiving the disguised LSA attack, we changed the condition

that triggers the fight-back mechanism, such that not only newer self-originated

LSA instances will trigger it, but also instances that are considered identical to

the LSA in the database, and were actually originated by the attacker. In that

case the disguised LSA will also trigger a fight-back.

2. In order to avoid receiving the periodic injection attack, we set the MinLSInterval

to 0. In that case the fight-back is not delayed thus the attack cannot be persistent.

3. In order to avoid receiving the new attack, we added an assumption that during

LSA generation by the attacker, the Link State ID field must equal the Advertising

Router field. This condition was actually used in the patches released by most

vendors who were found vulnerable to the attack.

We reran CBMC on the corrected model and no new attacks were found. This

indicates that, once the above conditions are enforced, an attacker will not be able to

craft a malicious LSA such that it will not trigger the fight-back mechanism while still

affecting the routing table calculation.

Nonetheless, we note that model checking is only as good as the model itself. The

above result cannot be considered “proof” that no further weaknesses exist in OSPF

in general since we omitted details of OSPF operation that are not relevant to the

fight-back mechanism. Moreover, since we used a bounded model checker, namely one

that does not explore all the states of the model, the above result cannot be considered

“proof” that no other weaknesses in the fight-back mechanism exist. Nonetheless, we

believe this result provides a strong indication that there are no additional weaknesses

in this mechanism.

2.8 Conclusion

In this chapter we developed and implemented a formal analysis of the OSPF protocol

using model checking to allow finding built-in vulnerabilities in the standard of the

protocol. We focused on persistent poisoning attacks and defined a corresponding

specification. We found general attacks which are applicable to families of networks

and demonstrated security vulnerabilities in the OSPF protocol. We developed a novel

51

technique for parameterized networks which is suitable for finding a counterexample (in

our case an attack) on each member of the family.

In the last part we extended our modeling of the fight-back mechanism. Using model

checking, we sought other persistent attacks that aim to evade the fight-back mechanism.

The results give an indication that once the known weaknesses are mitigated no other

weakness in the fight-back mechanism exists.

52

Listing 2.3: A valid router procedure

Router (R)
{

// f e t c h the LSA at the top o f the
// rou te r ’ s incoming queue
LSA = R. in queue . dequeue ()

i f (!R. v a l i d (LSA))
continue ;

i f (LSA i s newer than one in R.LSA DB)
{

R. f l o o d (LSA) ;

i f (R. i s s e l f o r i g i n a t e d (LSA))
{

R. f l o o d i n g t i m e r = minLSInterval ;
FB LSA = R. g e n e r a t e f i g h t b a c k () ;

// r ep l a c e e x i s t i n g queued f i g h t−back
// wi th the new one .
i f (R. f l ood ing queue . s i z e () > 0)

R. f l ood ing queue . dequeue ()
R. f l ood ing queue . enqueue (FB LSA) ;

}

else
{

R.LSA DB. update (LSA) ;
R. ca l cRT f lag = True ;

}
}

i f (R. f l o o d i n g t i m e r == 0)
{

i f (R. f l ood ing queue . s i z e () > 0)
{

LSA = R. f l ood ing queue . dequeue ()
R. f l o o d (LSA) ;

}
}

R. Rout ingTableCalcu lat ion () ;
}

53

Listing 2.4: The routing table calculation procedure

Rout ingTableCalcu lat ion ()
{

i f (! ca l cRT f lag)
continue ;

ca l cRT f lag = False ;
//R i s the curren t rou te r
R. reachab l e = True ;

for every V where V. r eachab l e == True
{

// lookup in an a r b i t r a r y order w i th in LSA database f o r V’ s LSA
V LSA = DB lookup (V) ;

for every l i n k L in V LSA
{

W = L . neighbor ;
W LSA = DB lookup (W) ;
i f (W LSA has l i n k back to V)
{

//V LSA a f f e c t s the rou t ing t a b l e
V LSA . mark = True ;
W. reachab l e = True ;
}

}
}

for (every Summary−LSA in LSA DB)
{

i f (LSA. Advert i s ingRouter . r eachab l e == True)
//LSA a f f e c t s the rou t ing t a b l e
LSA. mark = True ;

}
}

54

Chapter 3

Analyzing BGP Traffic

Attraction Attacks Using Model

Checking

3.1 Preliminaries

In this chapter we combine static examination and model checking to examine fragments

of the Internet and either identify possible attacks on their routing protocol or prove

that specific attacks are not possible.

The Internet is composed of Autonomous Systems (ASes). Each AS is administered

by a single entity (such as an Internet service provider, or an enterprise) and it may

include dozens to many thousands of networks and routers. Inter-domain routing

determines through which ASes packets will traverse. Routing on this level is han-

dled throughout the Internet by a single routing protocol called the Border Gateway

Protocol [54] (BGP).

It is well known that the Internet is vulnerable to traffic attacks [35, 15]. In such

attacks malicious Autonomous Systems manipulate BGP routing advertisements in

order to attract traffic to, or through, their AS networks. Attracting extra traffic

enables the AS to increase revenue from customers, drop, tamper, or snoop on the

packets. In the recent past, there have been frequent occurrences of traffic attraction

attacks on the Internet [67, 65, 63, 64, 43, 44]. Some of those attacks allowed oppressive

governments to block their citizens from accessing certain websites. In other attacks the

perpetrators eavesdropped or altered the communications of others, while in different

attacks spammers sent millions of emails from IP addresses they do not own. In one

type of attack scenario the traffic is diverted through the attacker’s AS network and

then forwarded to its real destination, which allows the attacker to become a “man-in-

the-middle” between the source of the traffic and its final destination. Such attacks

are called interception attacks. In another type of attack scenario, the traffic is not

55

forwarded to its real destination, which allows the attacker to impersonate the real

destination or simply block access to it. Such attacks are called attraction attacks. In

the sequel, when we refer to any attack of these types we call it a traffic attack.

Our goal is to provide insights to where and how BGP traffic attacks are possible.

Note that BGP is the sole protocol used throughout the Internet for inter-domain

routing, hence its importance. We develop a method that exploits model checking to

systematically reveal BGP traffic attacks on the Internet, or prove their absence under

certain conditions. Our method is based on powerful reductions and abstractions that

allow model checking to explore relatively small fragments of the Internet, yet obtain

relevant results. Reductions are essential as the Internet nowadays includes roughly

50, 000 ASes.

In a normal mode of the BGP operation, when no attacker is present, an AS node

receives from some of its neighbors their choice of routing path to the destination. When

AS A announces a routing update to its neighbor AS B consisting of a target node n and

a path π, it means that A announces to B that it is willing to carry packets destined to

n from B, and that packets will traverse over the path π. From the announced routing

paths, the node chooses its most preferred route (according to business relationship

between the entities that administer the ASes, length of path, etc.) and sends it further

to some of its neighbors. Its announced path may, in turn, influence the choice of

preferred paths of its neighbors. In contrast, an attacker may send its neighbors faulty

routing paths whose goal is to convince them and other AS nodes in the Internet to

route through the attacker on their way to the destination.

Our static examination investigates the announcements flowing throughout the

Internet. The basic idea is that if announcements cannot flow from one part of the

Internet to another then nodes in the first part cannot influence the routing decisions

of nodes in the second part. Our first reduction is thus based on BGP policies that

determine the flow of announcements in the Internet. Given a destination and an

attacker, we statically identify on the full Internet topology a self-contained fragment S

that consists of a set of nodes, including the destination and attacker. S is defined so

that nodes in S may send announcements inside and outside of S, but nodes outside of

S never send announcements to nodes in S. Thus, the routing choices of nodes in S are

not influenced by routing choices of the rest of the Internet.

We can now isolate S from the rest of the Internet and apply model checking only

to it in order to search for an attack strategy that attracts traffic to the attacker. Since

routing decisions in S are made autonomically, an attack strategy found on S will

attract the same nodes from S when the full Internet is considered. This result allows to

significantly reduce the processing burden on model checking while searching for attacks

on the Internet. Similarly, if we show that no attack strategy manages to attract traffic

from certain victims in S then the attacker will not manage to attract traffic from those

victims in the full Internet as well. Thus, by searching a small fragment we find attacks

on the full Internet or show their absence.

56

The second reduction we suggest is applied within a self-contained fragment S to

further reduce it. We statically identify nodes in S that for all BGP runs choose the

same route to the destination (that does not pass through the attacker), regardless of

the attacker’s behavior. Such nodes are considered safe with respect to the destination

and the attacker of S.

The advantage of this reduction is twofold. First, safe nodes can be safely removed

from the model, thus easing the burden on model checking. Second, nodes that

wish to improve their routing security may decide to route through safe nodes, thus

avoiding traffic attacks from this specific attacker. We further elaborate on the latter in

Section 3.9.

Our third reduction is based on an abstraction. We can statically identify a routing-

preserving set of nodes that all make the same routing choices. Such a set can be

replaced by a single node with similar behavior without changing routing decisions of

other nodes in the network.

Note that all three reductions are computed statically by investigating the Internet

topology and are therefore easy to compute.

We implemented our method, called BGP-SA, for BGP Security Analysis. We first

extracted from the Internet self-contained fragments, which are defined by a destination

and an attacker nodes, and applied reductions to them. We chose the attacker and the

destination nodes either arbitrarily or in order to reconstruct known recent attacks. In

order to apply model checking, we modeled the BGP protocol for each AS node. We

also modeled an attacker with predefined capabilities. The BGP model is written in C.

We considered several specifications which allow to reveal different types of attacks. We

ran IBM’s model checking tool ExpliSAT [22] on self-contained, reduced fragments.

We found interception attacks. One of those attacks reconstructs a recent known

attack where Syria attracted traffic destined to YouTube [63]. In other cases we showed

that some attraction scenarios are impossible under the modeled attacker capabilities.

In the latter case, model checking could also reveal additional safe nodes.

3.2 Related Work

Ref. [35] discusses the security of BGP and its vulnerability to different attacks. It

shows that an attacker may employ non-trivial and non-intuitive attack strategies in

order to maximize its gain. This was shown by giving anecdotal evidence (obtained

manually) for each attack strategy in specific parts of the Internet. In our work we

develop reductions and use model checking to systematically and automatically search

for BGP traffic attacks on the Internet.

There are some past works that use formal methods to analyze convergence properties

of BGP. [14] uses a static model of BGP path selection and analyzes configurations of

BGP policy. [13] uses static and dynamic models to reason about BGP convergence.

[55] analyzes convergence of routing policies with an SMT solver. We use a different

57

modeling to reason about traffic attraction scenarios on the Internet. Our modeling

implements runs of the protocol until stabilization, includes an attacker, and is based

on the routing policy used by most ASes on the Internet. Our model includes parts of

BGP that are most relevant to the analysis of traffic attraction, and is based on the

model presented in [35].

A formal analysis dealing with the security of secured variants of BGP was presented

in [17] . They suggested a formal security model for path-vector routing protocols,

such as BGP. Using their security model they have proven manually by reduction that

S-BGP (a more secured variant of BGP) satisfied part of the security requirements of

their model, and showed how the protocol could be modified to meet all requirements.

To the best of our knowledge, there are no previous works that employed model

checking tools to find attacks and reveal security vulnerabilities automatically on BGP.

3.3 BGP Background

The routers and networks of the Internet are clustered into connected sets. Each such

set is called an autonomous system (AS). As of the end of 2014, there are roughly

50,000 autonomous systems on the Internet. An AS is usually administered by a single

network operator, such as an ISP (Internet service provider), an enterprise, a university,

etc. Each AS has a predefined routing policy determined by the network operator.

An autonomous system is assigned a globally unique number, sometimes called an

Autonomous System Number (ASN).

Routing of data packets on the Internet works in two levels:

1. Inter-domain routing that determines through which ASes the packets will traverse.

This level of routing is handled by a single routing protocol called the Border

Gateway Protocol [54] (BGP).

2. Intra-domain routing that determines the path taken by the packets within each

AS. This is determined independently in each AS. Each network operator is free to

choose any routing protocol to employ within its AS. The most common examples

of such routing protocols are OSPF [50], RIP [46], or IS-IS [20].

Note that BGP is the sole protocol used for inter-domain routing. In essence, BGP is

the glue that holds the Internet together and which allows to connect between different

ASes. The currently used version of BGP is number 4. The protocol’s standard is

specified by the IETF (Internet Engineering Task Force) standardization body in [54].

The primary function of BGP is to exchange network reachability information between

different ASes.

Each AS periodically announces to all its neighboring ASes (i.e., the ASes to which

it is directly connected) routing updates. A routing update consists of the identity of

a target network and a path that consists of a sequence of ASes that starts from the

58

advertising AS and leads to the AS in which the target network resides. Note that

BGP advertises routing updates pertaining to networks residing within ASes (not to

ASes themselves), while the routing path is at the AS level. When AS A advertises a

routing update to its neighbor AS B consisting of a target network n and a path π, it

means that A announces to B that it is willing to carry packets destined to n from B,

and that packets will traverse over the path π. This routing information will then be

propagated by AS B to its neighbors, after prepending itself to π. The propagation of

routing information by one AS to all its neighbors is a matter of a policy determined by

that AS. We shall elaborate on this in the following.

An AS can also send route withdrawals. A withdrawal retracts an earlier routing

update. When an AS A receives a withdrawal message from its neighbor B, A removes

the route that was previously advertised by B from its routing table and propagates

the withdrawal to its neighbors.

Every AS stores the routing updates learned from its neighboring ASes in a data

structure called Adj-RIBs-In. If several routes were advertised for the same target

network by different neighboring ASes, then the AS must choose its most preferable one.

Once a route is chosen all packets destined to that target network will be routed via

the neighboring AS that announced the chosen route. The chosen routes for all target

networks on the Internet are stored in a data structure called Loc-RIB. Choosing the

most preferable route is a matter of policy specific to each AS. We will refer to it as the

preference policy.

As noted above, each AS propagates to its neighbors the routing updates it receives.

Only routes within the Loc-RIB may be propagated. Namely, an AS can only propagate

a route it has chosen as its most preferable one. Before propagating a route the AS

must prepend itself to that route. An AS may choose a subset of its neighbors to which

a route is propagated. This is a matter of policy specific to each AS. We call it an

export policy.

Preference and Export Policies

As noted above, the preference and export policies are a local matter for each AS

determined by the network operator. These policies usually abide by business rela-

tionships and commercial agreements between the different network operators. While

in reality there are many types of business relationships and agreements, the follow-

ing two relationships are widely believed to capture the majority of the economic

relationships [32].

• Customer-provider – in such a relationship the customer pays the provider for

connectivity. Usually, the provider AS is larger and better connected than the

customer AS. For example, the AS administered by Sprint is a provider of the

AS of Xerox corporation. Xerox pays money to Sprint for connecting Xerox to

59

the rest of the Internet through Sprint. In this chapter we denote this kind of

relationship with arrow from customer to provider.

• Peer-peer – in such a relationship the two peer ASes agree to transit each other’s

traffic at no cost. Usually, the two ASes are of comparable size and connectivity.

For example, the ASes administered by Sprint and NTT are peers. Each provides

the other connectivity to parts of the Internet it may not have access to. In this

chapter we denote this kind of relationship with an undirected line between the

two ASes.

Based on the above business relationships the following is a well-accepted model for

the preference and export policies [32].

Preference Policy.. This policy is based on the following simple rationale. An AS has an

economic incentive to prefer forwarding traffic via customer (that pays him) over a peer

(where no money is exchanged) over a provider (that he must pay). Combined with the

fact that routing must be loop free and preferably on short routes the following policy

is defined:

1. Reject a routing update that contains a route if the AS itself already appears on

the announced route.

2. Prefer routes that were announced by a customer over routes announced by a peer

over routes announced by a provider.

3. Among the most preferable routes choose the shortest ones, i.e., the ones which

traverse the fewest ASes.

4. If there are multiple such paths, choose the one that was announced by the AS

with the lowest ASN.

Export Policy.. This policy is based on the following simple rationale. An AS is willing

to carry traffic to or from other ASes only if it gets paid to do so. Based on this rationale

the following policy is

• AS B will announce to AS A a route via AS C if and only if at least one of A

and C are customers of B.

To illustrate the above policies consider the topology depicted in Figure 3.1. Let

us consider the routing of AS 9 to AS 0. There are three possible paths: (9,3,2,1,0),

(9,4,5,0), and (9,7,1,0). Due to the above preference policy 9 will favor the first route

over the second route which is favored over the third route. This is because the first

route is announced by a customer AS (i.e., 3), while the second and third routes are

announced by a peer (4) and provider (7) ASes, respectively. Note that the chosen route

(9,3,2,1,0) will be propagated to 7 and 4, according to the above export policy.

60

Figure 3.1: BGP network example

3.4 BGP Modeling

We use a BGP standard model acceptable in the literature (e.g. [17, 38, 35]) to facilitate

the analysis of traffic attacks using false route advertisements. The model includes all the

relevant parts of the protocol that deal with the dissemination and processing of route

advertisements and withdrawals. In particular, the mechanisms of route distribution

and route preference are modeled, including malicious routes originated by an attacker.

3.4.1 Model simplifications

Motivation

To simplify the model implementation we apply several abstractions and simplifications

as detailed below. The goal is to generate a simple and compact model on which a

model checker tool can run.

Single Destination Simplification

We assume a single destination, called Dest, such that the other ASes want to send

traffic to a target network within Dest. We can focus on a single destination because

routing announcements referring to different destinations flow independently of each

other. Namely, the routing to one destination does not influence the routing to another

destination. As a result, in our model a routing update does not include the identity of

61

the target network.

Simplifications and Abstractions of the Attacker

The simplifications related to the modeled attacker are described in Section 3.5.

3.4.2 Threat Model

We use a similar thread model to the one used in [35]. The network contains a single

attacker AS node and the other nodes are regular nodes. The attacker can originate

arbitrary path announcements and can use arbitrary export policy. The regular nodes

make use of all route announcements as legitimate. Thus, when a regular node receives

a false route announcement originated by the attacker, it may use the false path in its

routing table.

Note that we model a BGP version that does not include mechanisms to validate

the routing announcements. There are more secure BGP variants. In Section 3.9.1 we

discuss possible extensions of the model that include these more secure variants of BGP.

A more secure variant includes some validation mechanisms of BGP announcements,

such that the attacker cannot announce any path he wants.

3.4.3 The BGP Model

Modeling the BGP Network

A BGP network N is a tuple N = (Nodes, Links,Dest, Attacker) where Nodes is a

set of Autonomous System (AS) nodes in the network graph. Links is a set of node

pairs with one of the following types: customer-provider or peer-to-peer, representing

the business relationships between ASes in the network. Dest is an AS from Nodes

representing a single destination node that contains the target network to which all

other nodes build routing paths. Attacker is a node from Nodes representing an AS

that can send false routing advertisements to achieve traffic attraction or interception.

Dest and the Attacker are called the originators of N . All other nodes are called reg-

ular nodes. The originators are considered concrete. Concrete nodes are not eliminated

or abstracted by our reductions.

For a node n, we define neighbors(n) to be the set of nodes linked to it by any type

of link. customer-neighbors(n) is the set of neighbors that are customers of n.

Example 3.1. Consider the BGP network presented in Figure 3.1. Nodes = {0, 1, . . . 9},
Links consists of customer-provider links such as (1 → 2) and (9 → 7), and also

peer-to-peer links such as (4− 9) and (1− 7). For node 9, neighbors(9) = {3, 4, 7} while

customer-neighbors(9) = {3}.
A path in N is a sequence π = (n1, . . . , nk) of nodes in Nodes, such that for every

1 ≤ i < k, ni and ni+1 are connected by an edge (of any kind) from Links.

62

Modeling BGP Messages

A BGP message can be one of the following message types:

• Routing Update: A Routing update consists of a path with a sequence of ASes.

Formally, a routing update is of the form 〈n1, n2, ..., nk〉 where ni ∈ Nodes for

all 1 ≤ i ≤ k. When an AS n receives a routing update 〈n1, n2, ..., nk〉 from its

neighbor nk, it means that it can use the routing path via nk → ...→ n1 towards

the destination.

For example, consider the BGP network presented in Figure 3.1. When AS2

receives a routing update of the form 〈0, 1〉 from its neighbor AS1, it means that

AS2 can use the routing path via 1 → 0 towards the destination. When AS3

receives a routing update of the form 〈0, 1, 2〉 from its neighbor AS2, it means

that AS3 can use the routing path via 2→ 1→ 0 towards the destination.

• Route Withdrawal:

A route withdrawal is a message of the form 〈WITHDRAW,n〉, where n ∈ Nodes.
When an AS n′ receives a route withdrawal 〈WITHDRAW,n〉 from its neighbor

n, it means that n retracts its previously announced routing update that was sent

to n′ and n′ can no longer use it to route towards the destination.

For example, consider the BGP network presented in Figure 3.1. When AS2

receives a route withdrawal of the form 〈WITHDRAW, 1〉 from its neighbor AS1,

it means that AS1 retracts its previously announced routing update and that AS2

cannot use it as a routing path. Thus, if AS2 previously received a routing update

of the form 〈0, 1〉 from its neighbor AS1 and then received the route withdrawal

〈WITHDRAW, 1〉 from AS1, it means that AS2 can no longer use the routing

path via 1→ 0 towards the destination.

Local Configurations

The local configuration of a regular AS n consists of:

• A message queue Q(n) containing incoming BGP messages. A BGP message can

be a routing update or a route withdrawal as described previously.

• A Routing Information Base RIB(n) containing a set of possible routes to Dest

via neighbors(n). Formally, RIB(n) is a mapping of nodes from neighbors(n) to

routing paths. Let ε represent an invalid routing path. For each n′ ∈ neighbors(n)

there is a single element (n′, π) in RIB(n), where π is a routing update or ε. We

have that (nk, 〈n1, ..., nk〉) ∈ RIB(n) if and only if n received from its neighbor

nk the routing update 〈n1, ..., nk〉. If (nk, ε) ∈ RIB(n), it means that n has no

available routing path via its neighbor nk. Note that this means that either n

63

has not received any routing update from its neighbor nk or that the most recent

message it received from nk was a route withdrawal 〈WITHDRAW,nk〉.

• The chosen routing path which is the most preferred is denoted chosen(n).

For example, if RIB(3) = {(9, 〈0, 4, 5, 9〉), (2, 〈0, 1, 2〉)} and if the most preferred

routing path of AS3 is via AS2, then chosen(3) = 〈0, 1, 2〉. Note that chosen(n)

is determined based on the content of RIB(n) and on the preference policy as

described in Section 3.3.

Global Configuration

A (global) configuration of N consists of the local configurations of all nodes.

A BGP Run

A run of the BGP protocol on network N starts from an initial configuration in which

all queues are empty and all RIBs contain invalid routing paths. Initially Dest sends

announcements to all its neighbors. The run terminates after all nodes in N terminate

their run and their queues are empty. In particular, the originators have already sent

out all their announcements. The final configuration of a run is called stable.

The set of actions performed by the various AS nodes in the network is denoted by

Acts. An action performed by a node n is enabled in a configuration C if n is a regular

node and Q(n) is not empty in C or if n is an originator which is not in its terminating

configuration. Note that, in a stable configuration no action is enabled.

A run in N is a sequence r = C1, α1, C2, . . . , αk−1, Ck where C1 is the initial

configuration, Ck is a stable configuration, and for every 1 ≤ i < k, Ci+1 is obtained

from Ci by applying the action αi, which is enabled at Ci. We will often be interested

in referring to export actions along a run. We denote by export(n, n′) the action of

node n exporting a BGP message to its neighbor n′.

The set of all runs of N is denoted by R.

AS protocols

Below we give a high level description of the protocols in our model that run by the

different type of AS nodes in the BGP network.

Dest Protocol:

The destination AS Dest sends a single routing update of the form 〈Dest〉 to each of its

neighbors and then terminates. Dest ignores messages sent by any other ASes in the

network. This is because it does not try to build routing paths to the target network

which is located within its own AS. Therefore, its queue is always empty.

64

Attacker Protocol:

An attacker can originate a predefined bounded number Bound of arbitrary path

announcements to any of its neighbors. Its path announcements are of the form

〈n1, .., nk, attacker〉, where 0 ≤ k and ni ∈ Nodes for all 0 ≤ i ≤ k. Any path

announcement it originates can be sent to any subset of its neighbors.

Note that a routing path announced by the attacker does not necessarily represent

a real routing path in the network graph. It may contain repeating occurrences of AS

nodes and does not necessarily lead to Dest.

The regular AS nodes use any routing update as a legitimate routing path leading

to an AS in which the target network resides, regardless of whether it was originated by

the attacker or by Dest (see Section 3.4.2).

Regular AS Protocol of Node n:

A regular AS node uses export and preference policies as detailed in Section 3.3. AS

n is enabled when Q(n) 6= ∅. Let M be a given message on Q(n), and let n′ be the

neighbor from which M was sent to n.

• If M is a routing update and n is on the announced routing path of M , reject M .

The rejection process includes setting the path via n′ on RIB(n) to invalid. If

chosen(n) was via n′ of the form 〈n1, ..., nk, n′〉 before the rejection, n also sends

a route withdrawal message of the form 〈WITHDRAW,n〉 based on its export

policy. Finally, chosen(n) is updated based on the prefernce policy and the current

state of RIB(n) (after invalidating the path via n′ on RIB(n)).

• Otherwise, if the announcement M is a new route 〈n1, ..., nk, n′〉, update RIB(n)

with (n′, 〈n1, ..., nk, n′〉) and then update chosen(n) based on the updated RIB(n).

• If M is a withdrawal 〈WITHDRAW,n′〉, invalidate the routing path via n′ in

RIB(n). If the chosen routing path was invalidated, a withdrawal is sent based

on the export policy. Additionally, chosen(n) is updated based on the prefernce

policy and the current state of RIB(n) (after invalidating the routing path via n′

on RIB(n)).

• If the update modifies chosen(n) in one of the previous cases, export the new chosen

routing path (if exists), based on the export policy. If chosen(n) = 〈n1, ..., nk〉,
then the exported routing path is of the form : 〈n1, ..., nk, n〉.

Convergence

It was shown that for a BGP network with normal ASes using the modeled preference

and export policies, convergence is guaranteed [32]. It was also shown that in the

presence of an attacker with our modeled capabilities, convergence is guaranteed as well

65

[42]. Moreover, there is a single stable configuration for which the network converges,

regardless of the interleaving. For a BGP run r we denote by stable(r) the stable

configuration of the BGP network obtained at the end of the run r.

3.4.4 Attack Definitions and Specifications

Attacker Goal

The goal of the attacker in our model is to achieve traffic attraction or interception. We

say that a node n is attracted by the attacker if in the stable configuration, chosen(n) is

a routing path on which the attacker appears. A node n is intercepted by the attacker

if it is attracted, and in addition the attacker has an available routing path to the

destination.

Successful Attack

A successful attack is a BGP run such that its final stable configuration satisfies the

attacker goal. The attack strategy can be represented by the sequence of actions

preformed by the attacker during the attack, where each of its actions contains the sent

announcement and a set of neighbors to which it was sent.

Normal Outcome

The normal outcome is the final routing choices of all ASes in N when the attacker acts

like a regular AS. Formally, it is defined by chosen(n) for every regular node n ∈ Nodes
on the final configuration stable(r), where r is a BGP run on which the attacker acts

like a regular AS.

Trivial Attack Strategy

In the trivial strategy the attacker sends a false advertisement to all its neighbors

on which it announces that the target network is located within its own AS. The

announcement sent by the attacker in the trivial attack is of the form: 〈attacker〉.

Specifications

To measure how successful a traffic attraction or interception attack is, we suggest

several types of specifications. Except for the last one, they all compare the result of

the attack to the normal outcome of the protocol run and to the result of the trivial

attack, when applicable. Below are examples of possible specifications:

1. Non-trivial traffic attraction from certain victims: The attacker can success-

fully attract traffic from some victims, while it fails to do so in the normal run

and the trivial attack.

66

2. Non-trivial traffic interception from certain victims: The attacker can suc-

cessfully apply traffic interception on some victims, while it fails to do so in the

normal run and the trivial attack.

3. Shorten-path : The attacker manages to attract traffic from certain victims and

shorten their routing paths with respect to the trivial attack. Shorter routing

paths may be considered more attractive and have a potential to attract more

traffic from the rest of the non-modeled ASes on the Internet.

4. Quantified traffic attraction or interception: The attacker can attract traffic

from more than n nodes, where n is a predefined constant. No specific victims are

specified.

We choose to use specifications (1) and (2) in our method and experiments.

3.5 Attacker Model Simplifications

In this section we detail additional abstractions and simplifications of the attacker model

that we used.

3.5.1 Abstraction of Paths Originated By the Attacker

Motivation

We noticed that in the attacker model as described in Section 3.4.3 many paths originated

by the attacker may have a similar effect on the final configuration of the BGP run.

The order of the nodes and their number of repetitions within the announced routing

path have no effect on the routing choices of the regular ASes. We are only interested

in the information of which AS nodes appear on the originated routing path at least

once. If a node n appears on a path and the path is propagated to n, n will reject the

path once it receives it.

The Abstraction

Let LoopNodes be a set of nodes from Nodes \ {attacker} that are predefined as nodes

for which an attacker can make use of, in order to apply some of its manipulation

strategies. Such nodes cannot be abstracted away from the network, and are thus

predefined.

An abstract routing announcement that the attacker can originate is of the form:

〈[∗, attacker], length, LN〉

where:

• length ≥ 1 is the length of the path.

67

• LN ⊆ LoopNodes is the set of AS nodes which appear on the path at least once.

• The component [∗, attacker] denotes a sequence of AS nodes on the announced

path, where ∗ denotes an abstraction for any sequence of length − 1 AS nodes

from LN ∪ {attacker}.

• Any such path originated by the attacker should satisfy the condition: |LN | ≤
length − 1. This is because the number of AS nodes that appear on the path

cannot exceed the length of the path.

The model is adjusted to the above abstraction:

• Since an abstract routing announcement originated by the attacker is propa-

gated and exported by regular nodes, the general form of an abstract routing

announcement in the model is: 〈[∗, attacker, n1, ..., nk], length, LN〉.

• When an AS n receives an abstract routing update, it is of the general form:

〈[∗, attacker, n1, ..., nk], length, LN〉. A node n appears on the abstract routing

path if and only if n ∈ LN or n ∈ {n1, ..., nk}. If n chooses to route via

an abstract announcement 〈[∗, attacker, n1, ..., nk], length, LN〉, it will export an

updated abstract announcement 〈[∗, attacker, n1, ..., nk, n], length+1, LN〉 to some

of its neighbors based on the export policy. Additionally, the received abstract

announcement is stored in n.RIB for the corresponding neighbor nk.

For an abstract routing announcement π we denote by concrete(π) the set of concrete

routing announcements that it represents.

Definition 3.2. If π = 〈[∗, attacker, n1, ..., nk], length, LN〉, then concrete(π) is the set

of all concrete routing announcements of the form 〈p1, ..., pi, attacker, n1, ..., nk〉, such

that the following conditions hold:

• {p1, ..., pi} = LN or {p1, ..., pi} = LN ∪ {attacker}

• i+ k + 1 = length

Example 3.3. If the attacker is AS1 and it originates the following abstract announce-

ment: 〈[∗, 1], 3, {2}〉, it represents the following set of concrete routing updates: 〈2, 1, 1〉,
〈1, 2, 1〉, 〈2, 2, 1〉.

Definition 3.4. A concrete announcement π and an abstract announcement π′ are

considered matching if and only if π ∈ concrete(π′).

68

AS Abstract Configuration

A concrete configuration of an AS n is composed of n.Q and n.RIB (note that n.RIB

uniquely defines chosen(n) based on the modeled preference policy). It contains only

concrete routing paths as modeled in Section 3.4.3.

An abstract configuration of an AS n is composed of n.Q′ and n.RIB′ which may

contain abstract routing announcements.

An abstract configuration S′ represents a set of concrete configurations concrete(S′).

For a concrete configuration S of a node n we say that S ∈ concrete(S′) if and only if for

every abstract routing path π′ in n.Q′ or in n.RIB′ within the abstract configuration S′,

a matching concrete routing path π (such that π ∈ concrete(π′)) is in the corresponding

content of n.Q or n.RIB within the configuration S. Additionally, for every concrete

routing path π in n.Q or in n.RIB within the concrete configuration S a matching

abstract routing path π′ is in the corresponding content of n.Q′ or n.RIB′ within the

abstract configuration S′. That is, the abstract content of n.Q′ and n.RIB′ represents

the concrete content of n.Q and n.RIB.

Definition 3.5. A concrete configuration S and an abstract configuration S′ are consid-

ered matching if and only if S ∈ concrete(S′).

Lemma 3.6. Let S, S′ be concrete and abstract configurations of a node n such that

S ∈ concrete(S′). Let 〈n1, π1〉 be within the concrete RIB and let 〈n1, π′1〉 be a matching

routing path within the abstract RIB′. In the concrete model, n prefers the routing

path π1 via n1 if and only if in the abstract model, n prefers the routing path π′1 via n1.

Additionally, n exports its chosen routing path to the same set of neighbors in both the

concrete and abstract models.

Proof . The preference policy of n can be affected by the link type from which a route

announcement is received, by the length of a route announcement, and by the ASN

of the neighbor from which the announcement is received. The information of the

route length and of the neighbor’s ASN which exports the announcement is kept in the

abstraction. The link types are identical in both models (the abstraction has no effect

on the network topology). Thus, in both of the abstract and concrete models the above

values are equal for matching route announcements. Therefore, the results of a node’s

preference policy on matching concrete and abstract configurations are the same.

The export policy depends on the link types between n and its neighbors. Since the

link types are identical in both models (the network topology is unchanged), the set of

neighbors to which n exports its chosen routing path is the same in both models.

�

69

Global Abstract Configuration

A global abstract configuration contains the set of all abstract configurations of ASes

within the network N .

A global abstract configuration S′ and a global concrete configuration S are matching

if and only if for every node n the abstract configuration of n matches the concrete

configuration of n. (That is, the concrete configuration is represented by the abstract

configuration). A global abstract configuration S′ represents a set of global concrete

configurations concrete(S′) such that every concrete configuration S ∈ concrete(S′)
matches the global abstract configuration.

Equivalence of the Abstract Attacker and the Concrete Attacker

Let M be the BGP model as described in Section 3.4.3, and let M ′ be the BGP model

with the abstraction of routing announcements that the attacker originates. Let N be

a BGP network. Let R be the set of all possible BGP runs on N as modeled by M ,

and let R′ be the set of all possible BGP runs on N as modeled by M ′. We denote by

stable(R) the set of all stable(r) for every run r in R.

Lemma 3.7. Let π′ be an abstract routing announcement and let π be a matching

concrete routing announcement. Let S′ be a global abstract configuration and let S

be a matching global concrete configuration. After an AS n receives the above routing

announcement and applies its procedure in the abstract and concrete model, the obtained

global configurations are matching.

Proof . The AS n appears on the routing announcement π if and only if it appears on

π′, based on the definition of matching abstract and concrete routing announcements.

Thus, n rejects the announcement in the abstract model if and only if it rejects it in the

concrete model. Let p be the node that exported the announcement to n. If n rejects

the announcement and sends a withdrawal, it sends the withdrawal to the same set

of neighbors on the abstract and concrete model based on its export policy. If n does

not reject the path, it is added to n.RIB as 〈p, π〉 and to n.RIB′ as 〈p, π′〉. Thus, the

content of n.RIB and of n.RIB′ remains matching after the update. As a result, based

on Lemma 3.6, chosen(n) is determined similarly on both the abstract and concrete

model. If the new routing announcement is chosen and exported, it is added to the

queues of the same neighbors on both the abstract and concrete models. Thus, the

queues contents of the abstract and concrete configurations remain matching after the

update. Finally, we can conclude that the concrete and abstract global configurations

S, S′ remain matching after n terminates its procedure.

�

Lemma 3.8. If LoopNodes = Nodes \ {attacker} in M ′, then stable(R) and stable(R′)

are matching. That is, for every final configuration S in stable(R) there exists a corre-

70

sponding final configuration S′ in stable(R′) such that S ∈ concrete(S′). Additionally,

for every final configuration S′ in stable(R′) there exists at least one final configuration

S in stable(R) such that S ∈ concrete(S′).

Proof . Note that if LoopNodes 6= Nodes \ {attacker} then the set of announcements

that the attacker can originate in the abstract model cannot represent all concrete

announcements that it can originate in the concrete model. For example, if n is a regular

node such that n /∈ LoopNodes, then a concrete announcement on which n appears

cannot be represented in the abstract model. Thus, there exists a run in the concrete

model on which n receives an announcement originated by the attacker and rejects it to

prevent a routing loop, whereas there is no corresponding run in the abstract model

due to the limitation of LoopNodes.

If LoopNodes = Nodes \ {attacker} then every concrete run has a representing run

in the abstract model and vice versa. Let r be a concrete run in the model M . Let K

be the set of announcements that the attacker originates during that run. Let K ′ be a

matching set of abstract announcements. Let r′ be an abstract run obtained from r

by replacing the concrete announcements from K with abstract announcements from

K ′ and by adjusting the RIB and queues contents. Note that both runs r, r′ begin

from matching global configurations. The initial configuration in both models M,M ′

is defined as a global configuration for which every node’s queue is empty and every

node’s RIB contains invalid routing paths. Thus, by induction on the length of the run

r and based on Lemma 3.7 it is possible to obtain such a matching run r′, since both

runs begin from matching global configurations. Therefore, stable(r) and stable(r′) are

matching, and thus r′ is a matching run that represents r in the abstract model. In

the second direction, let r′ be an abstract run from the model M ′. Let K ′ be the set of

abstract messages sent by the attacker on this run. Thus, we can obtain a corresponding

set K of matching concrete announcements. Based on the abstraction definition every

abstract announcement represents at least one concrete announcement. Thus, a concrete

run r obtained from r by replacing the abstract announcements from K ′ with concrete

announcements from K is a matching run on the concrete model. Therefore, stable(r)

and stable(r′) are matching, and thus r is a matching run that is represented by r′ in

the abstract model.

�

Corollary 3.9. If LoopNodes = Nodes \ {attacker}, for every traffic attraction attack

in M there is a corresponding attack in M ′ and vice versa.

The attack specifications we use are based on the final configurations of the runs

in our model. We showed that every abstract final configuration has a corresponding

concrete final configuration and vice versa, if LoopNodes = Nodes \ {attacker}. Thus,

it follows that for every traffic attraction attack in M there is a corresponding attack in

M ′ and vice versa.

71

From the above it follows that the modeled attacker in the concrete and abstract

versions are equivalent when LoopNodes = Nodes \ {attacker}.

3.5.2 Reducing the Number of Messages Originated By the Attacker

In Section 3.4.3 we described the attacker capabilities and mentioned that it could

originate a predefined bounded number Bound of arbitrary path announcements to any

of its neighbors.

In this simplification we use a Bound = 1 and prove that an attacker with this

bound is equivalent to an attacker with any larger finite bound.

Lemma 3.10. If chosen(n) for some node n is defined, then the routing path π it

represents can be of one of the following forms:

• π = (Dest, n1, n2, .., nk) such that k ≥ 0 and ni /∈ {Dest,Attacker} for all

1 ≤ i ≤ k.

• π = (∗, Attacker, n1, n2, .., nk) such that k ≥ 0 and ni /∈ {Dest,Attacker} for all

1 ≤ i ≤ k. (The * denotes an abstract sequence of nodes from LoopNodes as

described in Section 3.5.1).

The correctness of the lemma above follows from the definition of the protocol.

Routing announcements are propagated by export actions. On each export action

of a path π by a regular node n, the node appends itself to π. Announcements

origination is only executed by originating nodes, and therefore an announced routing

path can only be of the form (Dest) or (∗, Attacker). The originating nodes do not

export any announcements that they receive from their neighbors. Therefore, a regular

node n can have in its RIB only routing paths of the form (Dest, n1, n2, .., nk) or

(∗, Attacker, n1, n2, .., nk). The sequence n1, n2, .., nk represents a real path on the

network topology. Through this path the message was exported until n received it from

nk.

Definition 3.11. Let n be a regular node such that chosen(n) = π. From the previous

lemma, π = (Dest, n1, n2, .., nk) or π = (∗, Attacker, n1, n2, .., nk) , for some k ≥ 0, and

such that ni /∈ {Dest,Attacker} for all 1 ≤ i ≤ k.

• We define the regular suffix of π, denoted RegSuf(π), as:

RegSuf(π) = (n1, n2, .., nk).

• We define the originator of π, denoted orig(π) as:

orig(π) = O, such that O = Dest if π = (Dest, n1, n2, .., nk) and O = Attacker if

π = (∗, Attacker, n1, n2, .., nk).

72

Lemma 3.12. Let r be a BGP run and let x be a regular node in the network topology.

If in the final configuration stable(r) the node x has a chosen routing path such that

chosen(x) = π, and such that:

• RegSuf(π) = (n1, n2, .., nk)

• orig(π) = O ,

then the following holds in the configuration stable(r):

• orig(chosen(ni)) = O for all 1 ≤ i ≤ k.

• RegSuf(chosen(n1)) = ()

• RegSuf(chosen(ni)) = (n1, n2, .., ni−1) for all 1 < i ≤ k

Example 3.13. Consider the topology from Figure 3.1. If in the final configuration AS3

routes via the path 3→ 2→ 1→ 0, then AS2 in the final configuration routes via the

path 2→ 1→ 0, and AS1 in the final configuration routes via the path 1→ 0.

Proof . If in the final configuration of r the node x has a routing path π to the destination

such that RegSuf(π) = (n1, n2, .., nk) and orig(π) = O, it means that this routing path

was originated by O and was exported by nodes along the path (n1, n2, .., nk) on the

network topology. This follows from the definition of the protocol. nk was the node

that exported the routing path π to x.

Therefore, during the run r, node n1 exported the routing path originated from O

to n2. When a node exports a routing path, its exported path is determined by chosen.

Thus, while exporting, it satisfied the conditions: RegSuf(chosen(n1)) = () and

orig(chosen(n1)) = O. Similarly, n2 exported the routing path to n3. While exporting,

it satisfied the conditions: RegSuf(chosen(n2)) = (n1) and orig(chosen(n2)) = O. We

can generalize this to each node ni on the path (n1, n2, .., nk). Therefore, each such

node, while exporting the relevant routing path originated by O, satisfied the conditions

from the lemma.

Assume by negation that in the final configuration stable(r) at least one of the nodes

violates the conditions of the lemma. Let ni be the node with the minimal index (that

is, closest to O on the path (O,n1, n2, .., nk)) that violates the conditions on the final

configuration.

Therefore, the node ni had changed its routing choice later on the run r (after

exporting to ni+1 the routing path originated from O that was eventually exported to

x).

Let M ′ be the announcement that changed the routing choice of ni afterwards. Let

M be the original announcement the ni received from ni−1 before its export to ni+1.

We will refer to all possible cases:

73

• M ′ was received by ni from the same neighbor ni−1 that sent the original message

M . This means that ni−1 has also changed its routing choice, since it exported

a different routing path afterwards. This contradicts the fact that ni is the first

node on the path (n1, n2, .., nk) that changed its routing choice.

• M ′ was received from a different neighbor y. This means that ni prefers the

route via y over the route via ni−1. Let Exp(ni, y) be the set of nodes to which

ni exports a route via y, and let Exp(ni, ni−1) be the set of nodes to which ni

exports a route via ni−1. We know that ni+1 ∈ Exp(ni, ni−1). Since ni prefers

the route via its neighbor y, it follows that the link type between ni and y is

either the same or a more preferred link type than the link type between ni and

ni−1. Based on the export policy it follows that Exp(ni, ni−1) ⊆ Exp(ni, y). This

means that ni+1 ∈ Exp(ni, y). Thus, the new preferred routing path is necessarily

propagated via a path from ni to x. This contradicts the fact that x routes via

the original routing path x→ nk...→ n1 → O in the final configuration.

• If M ′ was a route withdrawal, the only case where it could change the routing

choice of ni would be if it was received from ni−1. However, this means that ni−1

has also changed its routing choice. Thus, we get a contradiction similarly to the

first case.

�

Correctness of the Simplification

Theorem 3.14. Let M1,M2 be two different route announcements originated by the

attacker. Let r be a BGP run in which the attacker sends to its neighbor A the

route announcement M1 and later the route announcement M2. No other route

announcements are sent from the attacker to A. In the final configuration of r, M1

has no effect on any of the routing choices for any node in the network. Thus, r is

equivalent to a similar run in which the attacker only sends M2 to its neighbor A.

Proof . Let M1 = 〈[∗, attacker], length1, LN1〉 and M2 = 〈[∗, attacker], length2, LN2〉.
Assume by negation that there exists a node x that its final configuration of the run r

is affected by M1. We will refer to all possible cases for the effect of M1 on the final

configuration of x:

• x is routing via M1 in its final configuration. Based on Lemma 3.12 it follows

that every node on a path from the attacker to x is routing via M1 in the final

configuration, including A which is the neighbor of the attacker. However, since

A received from the attacker the message M2 after M1, it could not have kept its

routing choice via M1. The update of M2 have replaced M1 in its RIB, and in

particular its chosen routing path could not have remained M1 once it was no

74

longer in its RIB. Thus, in the final configuration the routing choice of A is not

via M1, which contradicts the assumption that x is routing via M1 in the final

configuration.

• LN1 affects the routing choice of x. This means that x has received M1, rejected

this routing path, and following the rejection it has chosen to route via a different

neighbor. Let y be the neighbor that exported M1 to x. At the time of the export

y has chosen to route via M1. However, in the final configuration y could not

have kept this routing choice (as proved in the previous case above). Thus, y has

changed its routing choice after the export. One of the two options could be:

1. M2 was propagated and exported to y. In that case y would export M2 to x

(since it also exported M1 to x). In that case only LN2 could have an effect

on x and the effect of LN1 would be irrelevant.

2. M2 was not propagated to y due to an earlier loop. Let z be the node that

rejected M2 to prevent a routing loop. As a result, z had to invalidate the

route via the neighbor from which M2 was exported and to send a route

withdrawal to retract its previous routing choice via M1. In that case the

withdrawal would be propagated to y (to retract M1), and then y would

export the withdrawal to x. This also means that the previous effect of LN1

is overridden by the new withdrawal of y.

This means that y had either sent a withdrawal to x or had sent a new route

announcement to x. Thus, LN1 could not have had an effect on x afterwards.

Once it received the new message from y, only the new message could have an

effect on the routing choice of x.

�

The above proof can be generalized to any finite number of messages sent by the

attacker in a similar way. Thus, if during a BGP run the attacker sends a sequence of

messages M1, ...,Mk to the same neighbor A, only the last message Mk can have an

effect on the routing choices of the AS nodes. Thus, an attacker that can send up to one

message per each neighbor is equivalent to an attacker that can send any finite number

of messages per each neighbor.

3.6 Reductions and Abstractions

The goal of our reductions is to obtain a manageable sized fragment of the large network

which is suitable for identifying BGP traffic attacks or show their absence.

3.6.1 Self-contained Fragments

The extraction of a self-contained fragment is our main reduction that significantly

reduces the initial network, such as the full Internet topology. The reduction is based on

75

preserving the flow of announcements in the network during a BGP run. The following

is a central notion in our analysis of the flow. It directly follows from the export policy

(see Section 3.3).

Definition 3.15. A path π = (n1, . . . , nk) in N is valid if n1 is an originating node,

no node is repeated on π, and for every 1 < i < k, at least one of ni−1 and ni+1 is a

customer of ni. Further, no ni is an originating node except n1 and possibly nk.

Examples of valid paths in the network N of Figure 3.1 are (0, 5, 4, 6, 8) and

(0, 5, 4, 9, 3, 2, 1). Note that (0, 5, 4, 6, 8, 7) is not a valid path, since both 6 and 7

are not customers of 8. The following is a key observation about valid paths.

Lemma 3.16. Export actions can only be performed along valid paths for every BGP

run in a network N . Thus, for a regular node n and an action export(n, n′), the nodes

n, n′ are neighbors along a valid path in N .

Proof . In the first part we prove the lemma for export actions of route announcements.

Every export of a route announcement is a result of an original route announcement

originated by an originating node O. Thus, when a regular node k receives a route

announcement from its neighbor l, there exists an export path from O to l through

which the announcement was propagated.

Assume that an action export(n, n′) is performed in a BGP run with a route

announcement that was originated by O. We prove that n, n′ are neighbors along a

valid path which starts from O by induction on the distance of n from O along the

export path of the message that O originated.

Base: In the base case the distance is 1, which means that n is a neighbor of O.

According to the export policy of a regular node n, if it receives a route announcement

from O and it chooses to use it, it will export the route to its neighbor n′ if and only if

at least one of the nodes O or n′ are customers of n. This means that the path O,n, n′

is a valid path by definition.

Induction hypothesis: Assume the correctness for distance k.

Induction step: Let n be a node for which its distance on the export path from O is

k+ 1. Let n′′ be the neighbor of n′ on the export path, so that n′′ exported the message

originated by O to n. Based on the induction hypothesis, the export path from O to n′′

is a valid path. This is due to the fact that the distance of n′′ from O on the export

path is k. Since n is a regular node and since it exports the message originated by O to

its neighbor n′, it means that based on its export policy at least n′′ or n′ is a customer

of n. Thus, the suffix of n, n′ of the export path from O follows the condition of valid

paths. Therefore, the export action is indeed performed along a valid path, which is the

export path from O to n′.

Now we prove the lemma for export actions of route withdrawals. Note that based

on the model, none of the originating nodes originates a route withdrawal. Thus, when

76

a node receives a route withdrawal, there exists a withdrawal path along which the

withdrawal is propagated. Such a withdrawal path begins with a node that originates

a withdrawal invalidating its routing choice to prevent a routing loop. Thus, the first

node that originates a withdrawal along a withdrawal path is a node that received a

route announcement which contained itself on the announced path. Let p be a node

that receives a route announcements that it rejects due to a routing loop. Thus, based

on the proof above, there exists a valid path π from an originator O to p through which

the announcement was propagated to p. As a result, p originates a withdrawal. Let n

be a node that received a withdrawal that was originally created by p. We prove that

a withdrawal export from n to n′ is along a valid path from O via p to n′. As in the

previous proof, we prove by induction on the distance of n from p along the export path

of the withdrawal that p originated.

Base: In the base case the distance is 1, which means that n is a neighbor of p. We

know that there is a valid path from O to p through which a route announcement was

propagated to p. Then, p rejected the path from its neighbor p′ to prevent a routing

loop, invalidated its routing choice via p′ and sent a withdrawal based on its export

policy. n received the withdrawal from p, which means that either p′ or n is p′s customer.

Then, n invalidated its routing choice via p and exported a withdrawal to its neighbor

n′. This means that either p or n′ is a customer of n. Thus, after appending the nodes

n, n′ to the valid path from O to p, we get a valid path from O to n′. This means that

the export action of the withdrawal from n to n′ was indeed performed along a valid

path.

Induction hypothesis: Assume the correctness for distance k.

Induction step: Let n be a node for which its distance on the export path from

p is k + 1. Let n′′ be the neighbor of n on the export path, so that n′′ exported the

withdrawal originated by p to n. Based on the induction hypothesis, the export path

from p to n′′ is along a valid path. This is due to the fact that the distance of n′′ from

p on the export path is k. Since n is a regular node and since it exports the withdrawal

originated by p to its neighbor n′, it means that based on its export policy at least n′′

or n′ is a customer of n. Thus, the suffix of n, n′ of the export path from p follows the

condition of valid paths. Therefore, the export action is indeed performed along a valid

path.

�

Corollary 3.17. Let n be a regular node. If there is no valid path in N with edge from

node n to node n′ then there is no run in N along which export(n, n′) is performed.

Note, however, that the contrary is not true. There might be an edge (n, n′) on a

valid path but still no export(n, n′) is performed. This is due to the preference policy

of nodes.

We say that n cannot export to n′ if there is no run in which the action export(n, n′)

is performed.

77

Definition 3.18. Let N be a network and let S ⊆ Nodes be a subset of its nodes

that includes all originators of N . S is a self-contained fragment of N if for every

n ∈ (Nodes \ S), n cannot export to any n′ ∈ S. This means that nodes outside of S

cannot change routing decisions of nodes in S.

The following lemma describes the significance of self-contained fragments.

Lemma 3.19. Let N be a network and let S be a self-contained fragment of N . Then,

any traffic attack found on S can occur on N as well. Moreover, if we prove that a

traffic attack is not possible in S then the corresponding attack is not possible in N as

well.

Proof . Let N be a network and let S be a self-contained fragment of N . A traffic attack

is determined by the set of routing announcements that the attacker originates and by

the set of its neighbors for which the announcements are sent. Let K be a set of pairs

(π,E) where π is a routing announcement originated by the attacker and E is a subset

of the attacker’s neighbors to which π is sent. Thus, such a set K defines a traffic attack

on S. Let rK(S) be a run in S obtained by the attacker’s actions in K. Let rK(N) be a

corresponding run in N obtained by the same attacker’s actions in K. We show that for

each n ∈ S, chosen(n) in stable(rK(S)) is identical to its counterpart in stable(rK(N)).

Note that since the attacker and the destination nodes are in S, we can represent the

run rK(N) as a concatenation of runs: r1, r2. In the first part r1 only the procedures

of nodes within S are applied until stabilization within S (note that nodes in S can

export to nodes outside of S but such export actions have no effect on nodes in S

since the procedures of nodes in N \ S are not applied in this part of the run). In the

second part r2 the procedures of nodes within N are applied until stabilization within

N . Clearly, r1 is identical to rK(S), except for the export actions to nodes outside

of S within r1. At the end of r1 only the queues of nodes within N \ S may contain

messages. We can choose this specific interleaving for the run rK(N) since it has no

effect on the final configuration stable(rK(N)) (see Section 3.4.3). Therefore, it follows

that stable(r2) = stable(rK(N)).

Let n be some node in S, and let π be chosen(n) in stable(rK(S)) and π′ be

chosen(n) in stable(rK(N)). Assume by negation that π 6= π′. From the above it

follows that chosen(n) in stable(r1) is equal to π. Thus, during r2 there was an export

to n from one of is neighbors n′, such that following the export(n′, n), n had changed

its routing choice from π to some other route. Recall that in the initial configuration

of r2 only nodes within N \ S have messages in their queues. The queues of nodes

within S are empty and the originating nodes are in their terminating state (all the

originating nodes are within S). Since n is within S, it means that export(n′, n) was

along an export path which started from some node n′′ ∈ N \ S during r2. Based on

Lemma 3.16, export actions can only be performed along valid paths. Thus, it follows

that there is a valid path from some originating node O of the form: (O, ..., n′′, ..., n′, n).

78

The export actions on the path from O to n′′ were during the run r1 (n′′ ∈ N \ S had a

message in its queue at stable(r1)). The export actions on the path from n′′ to n via n′

were during the run r2. Note that n ∈ S and n′′ ∈ N \ S. This means that there was

an export from some node in N \ S to some node in S. However, this contradicts the

fact that S is a self-contained fragment of N . Thus, it follows that the assumption was

wrong and that in stable(r2) : chosen(n) = π. There could not have been an export

action from a node outside of S to a node in S, and therefore in r2 only nodes in N \ S
are activated. Therefore, any traffic attack found on S can occur on N as well.

�

The lemma implies that instead of searching a huge network N (such as the Internet)

we can identify a (relatively small) self-contained fragment, isolate it from the rest

of the network, and search for possible attacks on it. Assume an attacker (in S) can

attract traffic from a node n′ in S. Then since nodes outside of S do not send n′

alternative routing options, they cannot “convince” n′ to change its routing choice and

avoid the route through the attacker. Thus, a traffic attack which is successful in S is

also successful in N . Similarly, if a certain node is definitely not routing through the

attacker in S then the same holds in N as well.

The only attack that might be more successful on N than on S is the quantified

attack (see Section 3.4.4, specification 4) that requires a minimum number of attracted

nodes. This is because nodes outside of S may be attracted by an attacker in S, thus

increase the number of attracted nodes.

Fragment Importance

Following Lemma 3.19 , it should be noted that the fragment concept is of great impor-

tance for applying significant reductions on BGP networks. The set of announcements

that a node within the fragment can receive during any BGP run with an attacker within

the fragment on the whole Internet is equal to its counterpart on a similar run that

is applied to the fragment only. Therefore, the set of chosen routing paths within the

fragment is equal as well, due to the deterministic preference policy of each node. Thus,

the task of applying model checking on the whole Internet is reduced to applying it on

a self-contained fragment when searching for BGP traffic attacks with our suggested

specifications. Additionally, the fragment concept may be useful for other BGP-based

formal analyses that require substantial reductions on large networks.

Computing Self-contained Fragments

The algorithm for computing a self-contained fragment for given destination and attacker

nodes is given in Figure 3.2. Πn,c,O denotes the set of all nodes on valid paths from any

o ∈ O to n via c.

Given a network N = (Nodes, Links,Dest, Attacker), we describe the computation

of a set of nodes which forms a self-contained fragment. The resulting S includes Dest

79

1: function Fragment(N)
2: S = O ∪ neighbors(O)
3: while continue == True do
4: Sadd = ∅
5: for ∀n ∈ S and ∀c ∈ neighbors(n) : c 6∈ S ∪ Sadd do
6: Sadd = Sadd ∪Πn,c,O

7: end for
8: if S == S ∪ Sadd then
9: continue = False

10: else
11: S = S ∪ Sadd

12: end if
13: end while
14: Return (S)
15: end function

Figure 3.2: Algorithm for Computing a Self-Contained Fragment S of N .

and Attacker and excludes some of N ’s nodes that cannot export any announcement

to S.

Initially, only the set of originators O = {Dest,Attacker} and their neighbors are in

S (line 2). A node c outside of S is inserted to S if c is a neighbor of some n ∈ S, and c

is on a valid path from some originator in O to n (lines 5-6). The algorithm terminates

when for every c 6∈ S which is a neighbor of some n ∈ S, c is not on a valid path from

an originator to n and therefore (by Corollary 3.17) c cannot export to n.

Example for a Self-contained Fragment Extraction

Consider the 10-nodes-sized network, presented in part A of Figure 3.3. The grey node

48685 is the attacker. The yellow node 22561 is the destination. The thick lines in part

A represent the arrow direction of the customer-provider links. In practice the initial

network can be much larger. Applying the fragment extraction algorithm results in:

1. Initialization: Insert O and their neighbors. S = {22561, 48685, 209, 25934, 6677}

2. Add c = 3257, due to valid path : (o = 22561, 209, 3257, n = 6677)

3. Add c = 5580 , due to valid path : (o = 22561, 209, 5580, n = 25934)

The remaining nodes are not added. For example, 3303 does not appear on any

valid path in the original network, and is therefore dropped during the construction of a

self-contained fragment. After applying this phase we remain with 7 nodes as presented

in part B of Figure 3.3.

3.6.2 Definite Routing Choice

In this reduction we identify nodes that never route via the attacker. If for all runs of

BGP on a network N , a node n chooses to route through a specific path π originated

by Dest that does not pass through the attacker, then π is the definite routing choice

80

Figure 3.3: Fragment example

of n, denoted drc(n). We consider such nodes as safe, since they cannot be attracted

by the attacker.

For example, in Figure 3.1, drc(5) = [0] and drc(4) = [5, 0]. Node 5 is a neighbor

of Dest and its link to Dest is more preferred than its other link. Therefore, since

the announcement from Dest is guaranteed to be sent to 5, it will always prefer this

path regardless of other paths it might get from 4. For a similar reason, and since 5 is

guaranteed to export its path to 4, node 4 will always prefer the route via 5. On the

other hand, drc(9) is undefined since on different runs its choice of routing may change

as a result of the announcements sent by the attacker (which may change from run to

run).

drc(n), when defined, is chosen(n) in every run, regardless of the attacker’s actions.

Consequently, the export actions of n are also determined. We can therefore eliminate

such n from our network and initiate a BGP run from a configuration in which the

results of its export is already in the queues of the appropriate neighbors. This may

significantly reduce the network size to which model checking is applied.

Computing Trees of Valid Paths

For a given originating node n, the tree of all valid paths starting at n, denoted V alid(n),

can easily be constructed. Figure 3.4 presents the trees V alid(0) and V alid(1) of the

two originating nodes of the network of Figure 3.1.

The following procedure computes a tree of all valid paths in the network For each

originating node.

Algorithm ValidTree(N, o) (Figure 3.5) returns the tree To of all valid paths in

N , starting from the originating node o. The algorithm works iteratively, adding a

successor n′ to a node n 6∈ O on the tree if at least one of father(n) and n′ is a customer

of n. It further checks that n′ does not appear on path(o, n), which is the path in the

tree from the root o to n. Note that father(n) and path(o, n) are defined over To while

the notions of neighbor and customer are taken from N .

Figure 3.4 depicts the trees of valid paths originated from the destination node and

from the attacker in the BGP network of figure 3.1.

81

Figure 3.4: Valid paths trees example

Computing Potential Routing Options (PRO) for Nodes in N

The set of Potential Routing Options of a node n, denoted PRO(n), is the set of pairs

(n′, length) such that there is a valid path π = [n1, ..., nk] where n′ is a neighbor of n

on π and the path from n′ to the originator n1 is of length length. That is, for some i,

n′ = ni−1, n = ni and length = i− 1.

PRO(n) includes an over-approximation of the announcements originated by Dest,

that n may obtain from its neighbors on any BGP run. It also includes announcements

that are produced as a result of an attacker’s announcement, but those appear with

the shortest length only (see example below). For example, in the BGP network of

Figure 3.1, PRO(9) = (4, 3), (3, 3), (7, 2). The pair (4, 3) represents the following

valid path from Dest: (0, 5, 4). Since it is a valid path, a BGP run can potentially

contain export actions along the valid path (0, 5, 4, 9) (starting from the announcement

originated by Dest). In such a case, AS9 receives this route announcement (0, 5, 4)

from its neighbor AS4. Thus, the pair (4, 3) in PRO(9) represents the fact that AS9

can potentially receive a route announcement with length = 3 from its neighbor AS4.

The pair (3, 3) represents the following valid path from Attacker: (1, 2, 3). Since it is

a valid path, a BGP run can potentially contain export actions along the valid path

(1, 2, 3, 9) (starting from the announcement originated by Attacker). In such a case, AS9

receives a route announcement (∗, 1, 2, 3) from its neighbor AS3. Thus, the pair (3, 3)

in PRO(9) represents the fact that AS9 can potentially receive a route announcement

with minimal length: length = 3 from its neighbor AS3. Similarly, the pair (7, 2) in

82

1: function ValidTree(N , o)
2: Set o to be the root of To

3: Add neighbors(o) to be direct sons of o
4: for every unprocessed leaf n 6∈ O in the tree do
5: for every n′ ∈ neighbors(n), n′ not on path(o, n) do
6: if father(n) or n′ is a customer of n then
7: add n′ to be a direct son of n
8: end if
9: end for

10: end for
11: Return (To)
12: end function

Figure 3.5: Algorithm for computing the tree To of all valid paths in N from the
originating node o

1: function Pro(N)
2: for each originator node o do
3: To = ValidTree(N, o)
4: for every node n and its successor n′ on To do
5: add the pair 〈n, |path(o, n)|〉 to PRO(n′)
6: end for
7: end for
8: end function

Figure 3.6: Algorithm for computing PRO(n) for each node n on the tree To

PRO(9) represents the fact that AS9 can potentially receive a route announcement

with minimal length: length = 2 from its neighbor AS7 (the export actions are along

the valid path (1, 7, 9)). Note that,(3, 3) and (7, 2) represent paths from the attacker.

The attacker may also originate announcements with longer length. However, we do

not keep them in PRO since they are less attractive than those included in PRO. If

for all runs of N , n chooses to route though a specific (n′, length) ∈ PRO(n) which is

originated by Dest, then (n′, length) is the definite routing choice of n, denoted drc(n).

For example, in Figure 3.1, drc(5) = (0, 1) and drc(4) = (5, 2). On the other hand,

drc(9) is undefined since on different runs its choice of routing may change as a result

of the announcements sent by the attacker (which may change from run to run).

Once we have a set of trees for each originator, computing PRO is done by traversing

each of the trees from root to leaves and collect for each node the announcement that

can potentially be sent to it by its father on the trees. The Algorithm is presented in

Figure 3.6.

Computing Definite Routing Choices

For a node n, a routing path to Dest is definite if it is obtained from a neighbor that

definitely routes to Dest through the announced path, regardless of the attacker’s

behavior. Further, the announced path is preferred by n to all other potentially routing

options in its PRO(n). Note that, due to the non-deterministic behavior of the attacker,

83

1: function Drc(N)
2: for each node n in N do
3: Compute PRO(n); DRO(n) = ∅; drc(n) =⊥
4: end for
5: C = (neighbors(Dest) \O)
6: for each n ∈ C, add 〈Dest, 1〉 to DRO(n)
7: while C 6= ∅ do
8: Choose n from C
9: if ∃o ∈ DRO(n)(∀p ∈ PRO(n)[preferred(o, p)]) then

10: Let o be the most preferable
11: drc(n) = o
12: Add to C all nodes n′ 6∈ O s.t. n exports Update(o, n) to n′ and drc(n′) =⊥
13: end if
14: Remove n from C
15: end while
16: end function

Figure 3.7: Algorithm for computing drc(n) for n ∈ Nodes

some nodes may not choose the same path in all possible runs. In that case, their drc

remains undefined.

Algorithm Drc, depicted in Figure 3.7, accumulates in DRO(n) those drc(n1)

obtained from neighbors n1 of n. It then compares them to all routing option in

PRO(n). If a certain route o is preferable to all other (preferred(o, p) for all routes

p) then o becomes drc(n). The announcement o = 〈n1, length〉 is updated by n to be

Update(o, n) = 〈n, length + 1〉. Update(o, n) is inserted to DRO(n2) of all neighbors

n2 to which n exports drc(n), according to the BGP export policy.

Lemma 3.20. Let N be a network and S a self-contained fragment of N . Then for every

node n ∈ S, PRO(n) obtained by PRO(S) is equal to PRO(n) obtained by PRO(N).

Proof . The computation of PRO is based on the valid path trees. Let n be a node in

S. If the pair 〈n′, length〉 is added to PRO(n) during the computation on S, it means

that there is a valid path from some originator o in S to n via the neighbor n′. Since S

is contained within N , that valid path also exists in N . Therefore, the pair 〈n′, length〉
is also added to PRO(n) during the computation on N . In the other direction, let

〈n′, length〉 be a pair added to PRO(n) during the computation on N . Thus, there

is a valid path π from some originator o to n via the neighbor n′. Since n ∈ S and

based on the definition of a self contained fragment, all nodes on the valid path π are

in S. This is because there is no valid path from an originator to a node within S via

some node outside of S. Thus, the pair 〈n′, length〉 is also added to PRO(n) during

the computation on S (since the relevant valid path is within S). �

Lemma 3.21. Let N be a network and S a self-contained fragment of N . Then for every

node n ∈ S, drc(n) obtained by Drc(S) is equal to drc(n) obtained by Drc(N).

The lemma states that definite routing choices of n ∈ S cannot be changed by

n′ /∈ N \ S.

84

Proof . Let n be a node in N . Let A = drc(n) obtained by Drc(S), and let B = drc(n)

obtained by Drc(N). The computation of drc for every node n depends on the

computation of PRO. Since PRO(n) computed on N is equivalent to PRO(n) computed

on S, it follows that the computation of drc(n) is also equivalent for the network N

and its fragment S. �

Removal of Nodes With Definite Routing Choices

After the computation of definite routing choices, the network size can be reduced.

We remove the nodes with definite routing choices from the network, and add their

definite announcements to the queues of their neighbors based on their export policies.

Thus, the initial configuration of the network after the reduction is equivalent to the

configuration obtained after applying the procedures of Dest and the nodes with definite

routing choices from the initial configuration. Let r be a run that starts from the regular

initial configuration on a network without the reduction of definite routing choices. Let

r′ be the corresponding run (with similar attacker’s actions) on a reduced network that

starts from the corresponding initial configuration. Then stable(r) and stable(r′) are

equivalent.

3.6.3 Routing-preserving Path

Another source of reduction is the abstraction of routing-preserving paths.

A path π = (n1, . . . , nk) is routing-preserving if for every run r of N , in the final

(stable) configuration of r one of the two cases holds: either for all 1 < i ≤ k, ni chooses

to route through ni−1, or for all 1 ≤ i < k, ni chooses to route through ni+1.

Intuitively, for every run of the protocol, the nodes on a routing-preserving path

all agree on the same route to the destination. As a result, we can replace such a path

with a single node (an abstraction of the path) without changing the routing of other

nodes in the network. The protocol of an abstract node is adjusted such that it exports

announcements with lengths that match the number of nodes in the path it represents.

An example of a routing-preserving path in Figure 3.1 is (2, 3, 9).

To find routing-preserving sequences in the network, the following steps are applied

iteratively until no more abstractions can be found.

• For each regular node n1 with exactly two neighbors n2, n3 such that at least n2

is regular (not an originator), check if all conditions below hold:

1. n1 is a provider of n3

2. n1 is a customer of n2

3. For each potential routing next-hop n′ of n2 such that n′ 6= n1 , n2 is peer or

customer of n′.

4. n1, n2 /∈ LoopNodes

85

5. There is no link between n2 and n3.

• If the previous step satisfied all conditions, n1 is eliminated and can be represented

by n2. n2 is connected to n3 by the same link type. (That is, n2 is a provider of

n3).

In a single step of the abstraction, n2 becomes an abstract node that represents the

sequence of nodes n2, n1.

The abstraction is applicable only for nodes that are not in LoopNodes. Any node in

LoopNodes should remain concrete in the network topology and cannot be abstracted.

Thus, it is guaranteed that the abstracted nodes never reject route announcements

originated by the attacker. Note that if n1 is in LoopNodes, then there may be a case

where n1 does not agree with n2 on the chosen routing path to the destination. If n2

chooses to route via its neighbor n′ over the routing path 〈π, length, LN〉 such that

n1 ∈ LN , then n1 will reject this path and its routing choice will not be similar to the

choice of n2. Similarly, if n2 is in LoopNodes, then there may be a case where n2 does

not agree with n1 on the chosen routing path to the destination. If n1 chooses to route

via its neighbor n3 over the routing path 〈π, length, LN〉 such that n2 ∈ LN , then n2

will reject this path and its routing choice will not be similar to the choice of n1.

In the following we formally define the abstraction for a single step. It can be

generalized to a sequence of steps (where the abstract node can represent any finite

number of concrete nodes).

Definition 3.22. Let (n2, n1, n3) be a sequence of nodes in the network graph that

satisfies the above conditions. Then, (n2, n1) is a routing-preserving path. After the

abstraction step is applied, the node n2 is an abstract node that represents the concrete

sequence of nodes (n2, n1).

The protocol of the abstract node n2 is adjusted as follows:

• If n2 receives a routing update from n3 of the form 〈π, length, LN〉, then it stores

in its RIB the adjusted path 〈π, length+ 1, LN〉. That is, the length is increased

by 1 because in the concrete model the routing update is actually exported to n1

before it is exported from n1 to n2. If n2 chooses to use this routing update, it

exports the adjusted routing update with length: length+ 2.

• If n2 receives a routing update from another neighbor n′ that is not n3 of the form

〈π, length, LN〉, then it stores in its RIB the path 〈π, length, LN〉. If n2 chooses

to use this routing update, it exports to n3 the adjusted routing update with

length: length+ 2. That is, the length is increased by 1 because in the concrete

model the routing update is actually exported to n1 before it is exported from n1

to n3.

Correctness: Since n1 has two neighbors n2, n3, it may only route via n2 or n3.

Additionally, based on the export policy and the link types, it is guaranteed that n1

86

exports its routing choice to its other neighbor. That is, if n1 chooses a route via n2 it

exports it to n3. Additionally, if n1 chooses a route via n3 it exports it to n2. We will

show that in any case, the nodes of the abstracted sequence n2, n1 agree on the same

routing path to the destination:

• If the abstract node n2 routes via n3, it means that in the concrete network

the node n3 exports its routing path to n1. Since n1 is the provider of n3, it is

guaranteed that n3 chooses to route via this path and exports is to n2 (based on

the normal preference and export policies). Since n2 is the provider of n1 (and is

only peer or customer of its other neighbors), it is guaranteed that n2 chooses to

route via this path. Thus, in this case both n2, n1 agree on the same path to the

destination (which is via n3).

• If the abstract node n2 routes via n′ such that n′ 6= n3, it means that n2 exports

this path to n1 (since n2 is the provider of n1). It is guaranteed that n1 chooses

to route via n2. If n1 had another routing path it could choose, it would have

been via its other neighbor n3. However, if n1 could route via n3, then both n2

and n1 would choose this route (as shown in the previous case). Since in this case

n2 routes via another neighbor n′, it follows that n3 does not export any path

to n1. Thus, in this case both n2, n1 agree on the same path to the destination

(which is via n′).

• If the abstract node n2 has no routing path to the destination, it means that in

the concrete network n3 does not export a routing path to n1 and every neighbor

n′ of n2 does not export a routing path to n2. Thus, in this case both nodes n2, n1

do not have a routing path to the destination.

Therefore, in any case, the nodes of the abstracted sequence all agree on the same

routing path to the destination. In the final configuration, the nodes n2, n1 are attracted

by the attacker if and only if the abstract node n2 is attracted by the attacker. The

abstraction thus allows reducing the number of nodes in the network by adjusting the

protocol of the relevant nodes as described above.

3.6.4 Example of a Network Reduction

In this example we revisit the example from Section 3.6.1 where the fragment extraction

was demonstrated, and complete it with the additional reduction of definite routing

choices and the abstraction of a routing-preserving path.

To demonstrate the complete reduction process consider the 10-nodes-sized randomly

chosen sub-network from the Internet, presented in part A of figure 3.8. The grey node

48685 is the attacker. The yellow node 22561 is the destination. In practice the initial

network can be much larger.

• Applying fragments computation results in:

87

1. Initialization: Insert O and their neighbors.

S = {22561, 48685} ∪ {209, 25934, 6677}

2. Add c = 3257, due to valid path from o = 22561 to n = 6677 :

(22561, 209, 3257, 6677).

3. Add c = 5580 , due to valid path from o = 22561 to n = 25934 :

(22561, 209, 5580, 25934).

The remaining nodes are not added. For example, 3303 does not appear on any

valid path in the original network, and is therefore dropped during the construction

of a self-contained fragment. After applying this phase we remain with 7 nodes as

presented in part B of figure 3.8.

• The reduced network contains ASes with definite routing choices: 209 , 25934,

and 5580. These nodes cannot be attracted by the attacker in any case. Part C of

figure 3.8 shows the resulting network. The arrow represents the definite export

sent by 209 to 3257 on a peer link. The other removed nodes do not export their

definite routing choices to any remaining node.

• The nodes 3257, 6677 are a routing-preserving sequence and thus can be represented

by a single abstract node, as presented in the resulting network D of Figure 3.8.

Figure 3.8: Reductions example

88

Figure 3.9: The BGP-SA Method

3.7 The BGP-SA Method

Our suggested method, called BGP-SA, for BGP Security Analysis, uses reductions and

model checking to apply a formal analysis of BGP attraction attacks on a large network

topology. We use model checking to perform a systematic search for traffic attacks.

A systematic search is essential in order to reveal non-trivial attraction strategies on

topologies from the Internet. It has a major advantage over simple testing techniques

that randomly search for attacks. The model checker we use can perform full verification,

thus it can also prove that no traffic attack is possible under certain conditions.

The BGP-SA method is composed of several stages, as depicted in Figure 3.9. Below

we describe them in details.

Figure 3.10: Partition of Node Types in the Extracted
Fragment

89

3.7.1 Reducing the Network Topology

The input to the BGP-SA method consists of the full network topology, the chosen

attacker and destination ASN, and the chosen specification. Given this input, we first

extract a self-contained fragment and apply additional reductions and abstractions.

(see square 1 of Figure 3.9). The extraction and reduction algorithms are explained

in Section 3.6. The output is a reduced fragment that contains the nodes within the

extracted fragment S, without those for which drc is defined. (See Figure 3.10).

3.7.2 Simulating the Trivial Attack

Here we explain items 2-3 of Figure 3.9. Given a reduced fragment, we run a simulation

of the trivial attack on it. If the chosen specification is traffic attraction and if all the

nodes in the reduced fragment are trivially attracted, then the attacker cannot improve

its attraction results. If the chosen specification is traffic interception and if the trivial

attack satisfies the interception condition additionally to attracting all nodes in the

reduced fragment, then again the attacker cannot improve its attraction results.

In both cases it is considered a proof (denoted BT-proof for Best Trivial attraction

proof) that within the fragment the attacker does not have a strategy which is better

than the trivial one. When BT-proof is obtained, the analysis is terminated and model

checking is not needed. Otherwise, the nodes of interest for searching attraction scenarios

are the remaining nodes that are neither trivially attracted nor have a defined drc, as

presented in Figure 3.10.

3.7.3 Generating the C Model

Given the reduced fragment and the chosen specification, we generate a model written

in C on which the analysis is applied (see square 4 of Figure 3.9). Code 3.1- 3.3 depicts

a pseudo-code of the generated code in high level, and below we give more details of it.

• Code 3.1 describes the procedures that implement nodes in our model. AS Proc is

the procedure of a regular AS. Its path preference and export policy are as explained

in Section 3.3. The attacker has two procedures: Arbitrary Attacker Proc is

the procedure of an attacker that originates arbitrary path announcements and

sends them to arbitrary neighbors. Trivial Attacker Proc is the procedure of an

attacker that applies the trivial attack and announces itself as the destination to

all its neighbors. Dest Proc is the procedure of Dest, in which it announces itself

as the destination to all its neighbors.

• Code 3.2 describes the function implementing a BGP run in our model. The input

parameter of this function is the type of run: normal – where the attacker acts as

a regular AS, trivial – where the attacker applies the trivial attack, or arbitrary -

where the attacker acts arbitrarily. The function is composed of a loop, where

90

at each loop iteration each one of the AS procedures is activated once. A stable

configuration is achieved when no message is sent by any AS and all the queues

are empty. The function returns the routing results at the stable configuration

which include chosen(n) for each node n in the network, where chosen(n) is the

preferred route of n.

• Code 3.3 describes the main function in the model and the assertion statement

that implements the specification. The main function is composed of three calls to

the function BGP run, with the three types of run: normal, trivial, and arbitrary.

The routing results of the three runs are saved. Then, to implement the attraction

specification, a Boolean flag is set true if there exists some victim that is attracted

by the attacker only in the arbitrary run, and not in the normal and trivial runs.

The assertion requires that this Boolean flag is false. Therefore, if the assertion is

violated, the violating run represents a successful attraction attack. To implement

the interception specification, a constraint that the attacker has a routing path to

the real destination should be added.

Code 3.1: Node Procedures

AS Proc (){
check incoming announcement and s e t chosen path ;

i f (chosen path was changed)

export new chosen path ;

}
Arb i t ra ry Attacker Proc (){

Path p = nonde t e rmin i s t i c pa th () ;

Neighbors G = n o n d e t e r m i n i s t i c n e i g h b o r s () ;

f o r each (n in G)

send p to n ;

}
T r i v i a l A t t a ck e r P ro c (){

// a t t a c k e r pre tends to be de s t

Path p = <attacker >;

send p to a l l ne ighbors ;

}
Dest Proc (){

Path p = <dest >;

send p to a l l ne ighbors ;

}

91

Code 3.2: BGP Run

enum RunType {normal , t r i v i a l , a r b i t r a r y } ;

typedef Map<Node , Path>

Rout ing Resu l t s ;

Topology fragment ;

Rout ing Resu l t s BGP run(RunType type){
c l e a r AS s t a t e s ;

Dest Proc () ;

while (! s t a b l e s t a t e ()) {
for (AS in fragment){

i f (AS i s a t ta cke r and type == t r i v i a l)

T r i v i a l A t t a ck e r P ro c () ;

else i f (AS i s a t ta cke r and type == a r b i t r a r y)

Arb i t ra ry Attacker Proc () ;

else

AS Proc () ;

}
}
return rout ing r e s u l t s ; // chosen paths o f a l l nodes

}

Code 3.3: Main Function with Attraction Specification

Rout ing Resu l t s r e s u l t s [3] ;

int main (){
r e s u l t s [normal] = BGP run(normal) ;

r e s u l t s [t r i v i a l] = BGP run(t r i v i a l) ;

r e s u l t s [a r b i t r a r y] = BGP run(a r b i t r a r y) ;

bool isSomeVict imAttracted = f a l s e ;

for (AS in fragment){
i f (AS route s v ia a t tacke r in a r b i t r a r y run and not

in normal and t r i v i a l runs)

isSomeVict imAttracted = true ;

}
a s s e r t (! i sSomeVict imAttracted) ;

}

3.7.4 Applying Model Checking to the Implemented Model Using

ExpliSAT

Here we explain squares 5-7 of Figure 3.9. After the C code of the model is generated on

the fragment, we apply model checking using IBM’s model checking tool ExpliSAT [22].

92

The model checker systematically scans all possible execution paths of the C program.

If it finds a run that violates the assertion, it returns a counterexample that represents

a successful attack. If the model checker terminates without any counterexample, it is

considered a proof that our attacker cannot perform the specified attack on the fragment.

This is denoted as MC-proof.

3.8 Experimental Results

We applied our BGP-SA method on Internet fragments and used IBM’s model checking

tool ExpliSAT [22] to search for traffic attacks. The model checker can run on multiple

cores. The experiments were performed on a 64-cores machine with AMD Opteron(tm)

Processor 6376, 125GB RAM, and 64-bit Linux.

ExpliSAT Model Checker

ExpliSAT [22] verifies C programs containing assumptions and assertions. To use

ExpliSAT we implement our model in C. Our specifications are negated and added as

assertions on stable states. The model checker returns a counterexample if there is a

violating run, and it can also perform full verification and automatically prove that no

violating run is possible.

ExpliSAT combines explicit state model checking and SAT-based symbolic model

checking. It traverses every feasible execution path of the program, and uses a SAT

solver to verify assertions. It performs as many loop iterations as needed, and therefore

full verification is possible and no loop bounds are required.

Fragment size
(#nodes)

Reduced size
(#nodes)

Trivial attraction
(#nodes)

Specification Result
Time
(min)

Dest
ASN

Attacker
ASN

1 16 11 9 attraction BT proof - 31132 16987

2 17 6 4 attraction BT proof - 9314 7772

3 22 10 8 attraction BT proof - 11669 36291

4 29 9 5 attraction MC proof 1.5 29117 15137

5 15 13 10 attraction MC proof 1 12431 18491

6 36 18 7 attraction MC proof 17 19969 13537

7 69 27 17 attraction MC proof 340 8296 20091

8 15 13 invalid interception counterexample 0.1 12431 18491

9 28 10 invalid interception counterexample 0.5 19361 32977

10 80 48 invalid interception counterexample 13 9218 43571

11 81 31 invalid interception counterexample 9 37177 40473

12 114 30 invalid interception counterexample 18 36040 29386

13 71 68 65 interception N/A >12h 30894 1290

14 10 - 4 interception counterexample 0.1 - -

Table 3.1: Results of BGP-SA Application on Fragments Extracted from the Full
Internet Topology

3.8.1 Results on Internet Fragments

We performed experiments on self-contained fragments extracted from the full Internet

topology. The ASes links from the Internet are from [19] and are relevant to October

2014.

93

Table 3.1 presents the results of applying our method. The fragments in lines 1-13

are based on randomly chosen destination and attacker from the Internet, with the

exception of line 12 which is obtained by choosing the attacker and destination according

to a recent attack where Syria attracted traffic destined to Youtube [63]. Line 14 is

explained in Section 3.8.2. The first two columns specify the number of nodes in the

extracted self-contained fragment and in the reduced fragment. The third column

specifies the number of nodes attracted by the attacker on the trivial attack. The value

is invalid if the specification is interception and the trivial attack does not satisfy the

interception condition, by which the attacker should have an available routing path

to the destination. The specification we used for each instance appears on the fourth

column, and is either attraction or interception, which correspond to the specifications

defined in Section 3.4.4. Note that in the interception specification, if the trivial attack

fails to satisfy the interception condition, we only compare the attraction to the normal

outcome. The result column specifies any of the possible results that are described in

Section 3.7. The N/A result describes ExpiSAT runs that did not terminate. The last

two columns specify the chosen ASN from the Internet of the destination and attacker

nodes, from which the fragment was extracted.

We analyzed the normal outcome of BGP on each of the fragments and found that

normally the attacker could not achieve any attraction at all, or only attraction from

one or two nodes that were also trivially attracted. Therefore, we do not specify the

attraction of normal outcome in the table.

The experiments show that the reductions we apply are significant. The simple

BGP simulations of the trivial attack allow us to avoid applying model checking on

fragments in which the attacker manages to achieve optimal attraction results by the

trivial attack.

When we used ExpliSAT with the attraction specification, we got proofs that no

better attack strategy exists. It can be explained by the fact that the trivial attack

strategy can be considered most efficient in many cases. Consider for instance line 4 on

which we got a proof by ExpliSAT. It should be noted that 2 nodes in the fragment

are not trivially attracted and do not have definite routing choices, but still there is no

attack strategy capable of attracting traffic from them. Thus, these two nodes are also

considered safe, in addition to the nodes with definite routing choices.

For the interception instances in lines 8-12 the trivial attack failed to achieve the

interception goal and ExpliSAT found simple interception attacks. In line 10 for instance,

the attacker exported announcements to all its neighbors, such that one of its neighbors

appeared on the announced path and thus was rejected by it (as explained about AS

policy in Section 3.3). That neighbor allowed the attacker to have an available path to

the destination. The attacker managed to attract traffic from 3 nodes, where in the

trivial attack it managed to attract 4 nodes, but had no route to the destination. In

lines 8 and 9, the attacker simply did not export announcement to one of its 3 neighbors.

It achieved attraction of 1 nodes and 7 nodes, respectively. In the trivial attack it

94

managed to attract 16 nodes and 10 nodes, respectively. Line 12 was performed on a

fragment from a recent attack [63]. The fragment reduction was significant in this case.

We found that the trivial attack attracted 12 nodes but did not satisfy the interception

condition. The model checker found an attack strategy that achieved interception and

attracted 11 nodes. The attacker sent false announcements to 3 of its 4 neighbors in the

found interception attack. In line 13 the trivial attack achieved the interception goal.

ExpliSAT searched for a better interception strategy, but its run did not terminate.

3.8.2 Example Demonstrating Model Checking Advantages

Here we explain line 14 in the table. The network is taken from Figure 3.1. The network

is a variation of the one presented in [35], where the goal was to show a non-trivial

interception attack. We did not apply our reductions on this network topology.

In the normal outcome and trivial attack, the attacker fails to attract traffic from

AS8. In the attack strategy suggested in [35] the attacker avoids exporting its path to

AS2, and only exports it to AS7. The result is that AS7 chooses a shorter path directly

via the attacker, and as a result AS8 prefers this shorter path. Thus, the attacker

manages to apply traffic interception on AS8.

Line 14 of Table 3.1 specifies the experiment we performed on this topology with our

BGP model. ExpliSAT automatically found a counterexample with greater attraction.

It returned a counterexample in which the attacker exported announcements both to

AS7 and to AS2. The announcement exported to AS2 contained AS9 on the sent path.

Therefore, AS9 ignored that announcement, and did not export it to AS7. Thus, AS7

chose the shorter path via the attacker. Eventually, the attacker managed to achieve

attraction from AS8, AS2, and AS3. Note that with the strategy suggested by [35]

only AS8 is attracted. An alternative attack that could attract even more nodes to the

attacker is to export to AS2 an announcement that contains AS7 instead of AS9 on

the sent path. That way it can achieve attraction from AS9 as well.

From the above analysis we may conclude that by sending an announcement that

creates a loop an attacker can better control on where the propagation of some path

should be blocked in order to achieve better attraction results.

It should be noted that some versions of BGP are more secure [39] and may prevent

the attacker from sending paths that do not exist in the network. On such versions

the attacker cannot apply the loop strategy. Therefore, the loop strategy may have

an advantage over the no-export strategy only in the absence of certain BGP security

mechanisms.

Note that applying the fragment extraction and reductions would prevent from

getting the counterexample. However, by extending the specification and defining that

a scenario in which some node is routing via the attacker through a shorter path is

also considered a successful attack, we were able to find that counterexample on the

reduced topology as well. That shorter routing path can potentially attract more nodes

95

from outside the fragment. Given the counterexample, a simulation can be applied on

a larger topology. In our case, the counterexample reveals that the routing path of

AS7 via the attacker can be shortened with respect to its length in the trivial attack,

and a simulation of the found attack on the larger topology reveals that AS8 is a new

attracted node as a result.

3.9 Conclusion

In this work we propose a method to reveal possible attacks on Internet routing or prove

that certain attacks are not possible. We develop substantial reduction techniques that

enable to apply model checking in order to formally analyze BGP traffic attacks on the

Internet. The use of model checking has a major advantage due to the systematic search,

by which it can reveal unexpected or more sophisticated attacks. This is demonstrated

in Section 3.8.2, where during an experiment that was done to reconstruct a known

attack, the model checker automatically found a different attack strategy that achieved

better attraction results than expected.

One obvious implication of our work is a better understanding of the vulnerability of

the Internet to traffic attacks. Nonetheless, our suggested method can also be practical

and useful for a network operator to increase its resilience to such attacks. In some

cases a network operator may fear a traffic attack from potential attacking ASes. For

example, telecommunication companies may fear their traffic be attracted by ASes that

belong to adversary governments. Such governments can exploit these attacks in order

to eavesdrop on traffic of consumers of those telecommunication companies. In such

cases, the network operator can use our method in order to discover the identity of the

ASes which the attacking AS can not attract traffic from. Once these safe ASes are

known the network operator may form links to these ASes and prefer routes announced

by those ASes, thereby eliminating the chances to be attracted by the attacker.

In scenarios where the network operator cannot link or prefer routes announced by

safe ASes the network operator can use our method to choose to link to specific ASes

that will force the attacking AS to attract traffic from many ASes in order to attract

traffic from the network operator’s own AS. In such a case, the footprint of the attack

would be substantially increased and therefore the chances of attack being noticed and

stopped also increases. In such a way the network operator will be able to increase its

robustness to attacks.

3.9.1 Possible Directions for Extensions

Below we refer to several possible extensions of our method and modeling of BGP that

may allow capturing additional aspects in the security analysis:

• Modeling more secure BGP variants: We used a BGP variant without any val-

idation mechanisms of routing announcements. There exist more secure BGP

96

variants [35]. For example, with origin authentication it is verified that the last

AS node on an announced path indeed contains the target network using a trusted

database. Thus, if the attacker originates a false path where the last AS is not

Dest, the regular nodes will ignore this path. Another example for a more secure

variant is the Secure Origin BGP. In this version an announced path is validated to

physically exist in the AS level topology of the network, using a trusted database.

A more secure version is the Secure BGP variant, where path verification is used.

It guarantees that an AS A can announce a path to its neighbors only if A received

this path from one of its neighbors.

The model can be adjusted to reflect such secure variants by limiting the attacker

capabilities. Given a validation mechanism, we can limit the attacker to originate

routing announcements that are not ignored by regular nodes as a result of the

validation mechanism.

• Using additional specifications: In Section 3.4.4 we suggested several types of

specifications. It is possible to extend the analysis with some specifications that

we did not use and implement in our method. For example, the shorten-path

specification allows finding nodes within a fragment which can potentially attract

more traffic from the non-modeled nodes outside the fragment. The quantitative

specification allows finding scenarios where an attacker can achieve attraction

which is greater than some given bound.

• Modeling more than one attacker: We used a single attacker node in our analysis.

It can be extended to include multiple attacker nodes that can cooperate. The

analysis can be used to find whether a group of attackers may have more traffic

attraction capabilities with respect to the capabilities of each attacker separately.

97

98

Chapter 4

Formal Analysis of a Black Box

OSPF Implementation

4.1 Preliminaries

The Internet owes much of its success to open standards. These standards are being

developed in an iterative, rigorous and open process. They are a fruit of extensive

deliberations, trial implementations and testings. Furthermore, open standards are

thoroughly documented and freely available, so they can be readily scrutinize at any

time even after their creation. It is generally believed that open standards led to a more

robust and secure Internet.

In stark contrast to the open nature of Internet standards, the Internet infrastructure

predominantly relies on proprietary and closed-source devices, such as routers and

switches, made by large vendors like Cisco, Juniper and Huawei. A device’s vendor can

add, remove or alter the standardized functionality of a protocol as it sees fit, as long as

interoperability to other vendors’ implementations is preserved. In some cases, even this

interoperability is not entirely kept. It is not uncommon to have two network devices of

different vendors that cannot co-operate seamlessly (e.g., [31]). Possible motivations of

the vendors’ deviations from the standardized functionality vary ([8]): development cost

reduction, optimization of the protocol functions, or supplemental of features that add

value to the vendor’s customers. Additionally, inadvertent deviations may rise due to

misunderstanding of the standard or negligence to completely implement the standard.

Due to the closed-source nature of network devices the networking and security

community do not have clear visibility to these functional deviations. Identifying them is

crucial in order to assess their full impact on a network’s resiliency, efficiency and security.

To address this problem we leverage formal analysis methods that assist in identifying

deviations of a network protocol implementation from its standard. Our analysis is

black box, that is, can be conducted without requiring access to the implementation’s

source code or binary code. We only assume the ability to send packets to the device

and observe its external behavior. This behavior includes the packets sent by the device

99

and information that is explicitly available through its user interface. Due to the black

box analysis nature of our method, it can be readily applied to any network device with

minimal changes.

We propose to use a model-based testing approach [11, 66]. Generally speaking,

in this approach a reference model of a system under test (SUT) is formulated. The

model embodies the desired functionality for that system. Based on the model tests are

generated, usually automatically. Each test has a desired outcome as determined by

the model. The tests are then executed against the SUT and the resulting outcome is

compared to the desired result. In our case the model is formally defined according to

the standard of the protocol. The SUT is the network device’s implementation of the

protocol. A failed test indicates a deviation of the implementation from the standard.

We use concolic execution [34, 57] to systematically generate tests from our model.

Symbolic execution allows analyzing the execution paths of a program and generating

corresponding test cases. Concolic testing is a dynamic symbolic execution technique to

systematically generate tests along different execution paths of a program. It involves

concrete runs of the program over concrete input values alongside symbolic execution.

Each concrete execution is on a different path. The paths are explored systematically

and automatically until full coverage is achieved.

The model-based testing approach has been successfully employed to find bugs

in open source software. Moreover, there have been positive attempts to employ the

approach for finding bugs in open-source implementations of one-to-one network protocols

such as TCP and UDP [16]. However, many network protocols may involve multiple

participants. Examples of such protocols are routing protocols [50, 46], spanning tree

protocols [6], and VoIP protocols [28, 5]. Due to scalability issues the use of model-based

testing has been inhibited in the realm of these complex, multi-party protocols. The

functionality of such protocols depend on the dynamics between the participants, their

relative locations in the network, and the role each participant takes as part of the

protocol. Such protocols may expose parts of their functionality only in specific complex

interactions between the protocol’s participants. Therefore, the number of tests that

verify the protocol functionality may be prohibitively high.

To cope with the scalability issues of model-based testing of complex multi-party

protocols we propose practical optimizations that significantly reduce the number of

generated tests without loss of functionality cover of the model. Our main optimization

merges different tests that pass through a joint intermediate state. Namely, we merge

two long test scenarios that reach the same intermediate state into a single shorter test

scenario that starts from the intermediate joint state. This optimization is especially

useful for test scenarios in which multiple packets are sent. For example, consider two

non-identical sequences of packets, P1 and P2, that are sent during two test scenarios,

t1 and t2, respectively. Assume that the model ends up in the same final state following

each of the two tests. Therefore, a test having a sequence of packets of the form P1||P
(the sequence of packets in P1 followed by a sequence of packets in P) can be merged

100

with a test that has the sequence P2||P . The merged test shall have a sequence of

packets P and it should be executed from initial state that is identical to the intermediate

joint state of the original two tests.

The method we propose allowed us to implement the first practical tool to identify

deviations of black box implementations of one of the most complex multi-party protocols

on the Internet – the OSPF routing protocol [50]. The OSPF protocol is a widely used

intra-domain routing protocol which is deployed in many enterprise and ISP networks.

We searched for deviations in three versions of Cisco’s implementation of OSPF in IOS1.

The later version was released in 2016. In total, we found 7 significant deviations. Most

of them compromise the security and resiliency of the network. The deviations were

acknowledged by Cisco to exist in the versions we tested.

4.1.1 Background in Symbolic Execution

Symbolic execution [18] allows analyzing the execution paths of a program and generating

corresponding test cases. The input variables of the program are defined as symbolic

variables. Then, the program is symbolically run, where symbolic expressions represent

values of the program variables. On each execution path a path-constraint is obtained

by collecting all the symbolic expressions that correspond to conditional branches on

that path. The path-constraint is a quantifier-free first-order formula over the symbolic

variables. Its solutions form a set of concrete values of the input variables for which the

program runs via the same execution path. A test that covers this path is then derived

from this solution, containing concrete values of the input variables.

Concolic testing ([34, 57]) is a dynamic symbolic execution technique to systematically

generate tests along different execution paths of a program. It involves concrete runs of

the program over concrete input values alongside symbolic execution. Initially, some

random concrete input values are chosen. During a run of the program with this input,

symbolic constraints are gathered over the conditional branches of the current execution.

Thus, at the end of the run the symbolic path constraint is obtained. A constraint

solver is then used to construct the next concrete execution on a different path. This

can be achieved, for instance, by negating the last conjunct on the path-constraint not

already negated. A new solution for the variant of the path constraint with negations

should necessarily steer a new concrete execution over a different path. This process is

repeated systematically and automatically. Finally, the process terminates based on

some time limit, coverage criteria, or when full coverage is achieved.

4.1.2 OSPF Background

OSPF (Open Shortest Path First) is a widely used intra-domain routing protocol,

namely used within collections of networks, each of which is called an autonomous

1Cisco’s IOS is a software family that implements all networking and operating system functionality
in many of Cisco’s routers and switches.

101

system. We focus on the most popular version of the protocol – version 2 [50]. It is

used in many autonomous systems (AS) on the Internet.

A detailed background of the OSPF protocol is given in Section 2.7.1 of Chapter 2.

4.2 Black Box Analysis Procedures

Our goal is to find deviations of an OSPF implementation from the the protocol’s

standard functionality as defined in [50].

We use a model-based testing approach by modeling central parts of the OSPF

protocol based on its standard. We use a concolic testing tool, named mini-mc [1], to

generate test cases that cover our model’s execution paths. The constraint solver it uses

is z3 [2].

The OSPF model needs not be fully detailed. It may model parts of the protocol that

are relevant to the current analysis and may abstract away details that are irrelevant.

Thus, we may split the analysis according to several goals, each concentrating on a

specific part of the protocol.

4.2.1 The Method Flow

The method flow is depicted in Figure 4.1. Below we explain each numbered box on

that figure:

1. Given a fixed network topology the OSPF model produces a run of the protocol.

Each execution path of the model is represented by a concrete run that starts from

the standard initial state on the chosen topology. In the standard initial state

the LSDBs of all routers are complete and consistent, containing all the LSAs

originated by the routers in the network topology. The LSDBs correctly reflect

the network topology view when they are consistent. During the run concrete

LSAs are sent to the routers, and the run terminates in a stable state after no

LSAs are sent between any routers on the network.

The OSPF model is implemented in Python. The symbolic variables are determined

in advance. A description of the model and the symbolic variables is given in

Section 4.2.2.

2. Applying the concolic execution tool on our OSPF symbolic model generates a

test file for each execution path of the model. Each test file contains the sent

LSAs and the initial and final LSDBs content for all routers in the network. There

is a finite number of execution paths due to the finite domain of the symbolic

variables (explained in Section 4.2.2). Each execution path is finite and reaches a

stable state in which no LSAs are sent.

3. Each generated test file is executed on the SUT. The script activates the routers,

initializes them according to the model initial state, sends the LSAs from the

102

Figure 4.1: The flow of our method

input test file using Scapy [4], reads the LSDBs on the stable state and compares

them with the expected LSDBs from the test file (previously obtained from the

model). If any deviation is detected, it generates a report about the failed test. A

detailed description of the black box testing script is given in Section 4.2.3.

4. A failed test represents a deviation between the SUT’s OSPF implementation and

the OSPF standard. Note that a found deviation may pose a security vulnerability

in the SUT, but this may not necessarily be the case. It requires further analysis

to infer what kind of effect the deviation has on security or correctness of the

implementation. The analysis requires comparing the traces of all messages

exchanged between the routers during the run of the test, both on the model

and on the black box implementation. The model trace represents the expected

behavior based on the standard. Thus, comparing the model trace with the

implementation trace allows tracking and analyzing the different routers’ behavior

that causes the different final state.

In order to avoid repeating deviation reports that follow from the same deviation

and to find new deviations, we update the model, when possible, to reflect the found

deviation. Thus, the final states of the tests generated from the updated model are

reflecting the deviations that were already found on the tested implementation.

4.2.2 The OSPF Symbolic Model

We modeled the core parts of the OSPF protocol based on its standard and applied it

on a fixed network topology. The model includes the following core functions: the LSA

structure, the flooding procedure, fight-back mechanism, and the LSA purge procedure.

103

We leverage an OSPF model that we proposed in Chapter 2. The model was previ-

ously used in the context of model checking to find vulnerabilities. In this chapter we use

it to generate tests by choosing symbolic variables and applying concolic execution meth-

ods. We then apply the generated tests on black box OSPF implementations. We extend

the modeled functionalities of our OSPF model from Chapter 2 by adding the modeling

of LSA purge procedure when the sequence number reaches to MaxSequenceNum. In

the following, we will refer to our model as the OSPF reference model.

A run of the model simulates the protocol behavior, and returns the resulting LSDBs

of the routers given the input LSAs to be sent from an initial state.

Below we detail the main aspects of the OSPF reference model that we implemented

and used for the black box analysis.

The Modeled LSA Structure

An LSA in our model contains the following fields: LS type, Link State ID (LSID),

Advertising Router (AR), Sequence Number (SeqNum), LS age, and Links List. The

LS age is abstracted into a Boolean flag indicating whether it is MaxAge or not.

An LSA message contains the LSA itself, and in addition, the source and destination

fields.

State

A state in our model is the set of LSDBs of all routers and the state of the routers’

incoming queues. A state is considered stable when all routes’ queues are empty.

The Symbolic Variables

We used symbolic variables within the LSAs that are sent, and within the LSDBs of the

routers’ initial states. Below we detail the symbolic variables and their domains.

• Each sent LSA message has the following symbolic variables:

– Sequence number – the seqNum field is a number in the range [0,maxSeq],

where maxSeq is a predefined constant in the model.

– Destination – the destination field is one of the routers within the chosen

topology.

– Advertising Router – the AR field is the router ID of any router within the

network topology.

– LSID – the LSID field is the router ID of any router within the network

topology.

The symbolic LSA message is of the form:

〈type, src, dest, LSID,AR, seq, links, age〉

104

The remaining fields that are not symbolic are concretely assigned as follows:

– type = routerLSA

– links = [], i.e, an empty list of links

– src corresponds to dest: The src field is determined deterministically based

on the dest field. We know in advance based on the given topology through

which route the LSA arrives to its dest, and we have to set the src value to

be equal the router ID that is the neighbor of dest which forwards the LSA

to it. Otherwise, the dest router ignores that LSA.

– age = 0 (assigned as not MaxAge).

• The LSDBs initialization is based on the standard initial state. The sequence

numbers of the LSAs are symbolically initialized with additional symbolic variables.

Their range is [0, k], where k a predefined constant smaller than MaxSeqNum.

The Main Function

The main function of the model has input symbolic arguments as described above. The

run of the model starts with initialization of the LSDBs according to the standard initial

state. Afterwards, for each symbolic LSA, the LSA is sent to its destination and then a

loop is applied. On each loop iteration every router runs its procedure once.

The Router Procedure

When a router R receives an LSA, it checks if the LSA exists in its LSDB. If it

does not exist or is considered newer than the existing instance, the router floods the

LSA and updates its LSDB accordingly. If the LSA is self-originated, a fight-back is

triggered. If the sequenceNumber of the fight-back LSA reaches the MaxSeqNum, the

router originates an LSA with MaxSeqNum and MaxAge, and then a new LSA with

InitialSeqNum. The MaxAge LSA triggers the other routers to purge R’s LSA from

their LSDBs.

Interleaving

The model simulates the routers run sequentially, in a round-robin scheduling.

When a single LSA is sent, the interleaving does not affect the final state. As long as

only one ’external’ LSA is being sent among the routers, all interleaving of subsequent

LSAs result in the same final state. For multiple LSAs in the model we consider specific

interleaving on which every LSA is sent separately in specific order. After each LSA is

sent, the routers are activated until stabilization is achieved. Only then the next LSA is

sent, and so on. Thus, for every number of sent LSAs, we can expect that an actual

run on the SUT would terminate in a similar final state as in our model.

105

4.2.3 Black Box Testing of the Generated Tests

The black box testing script interacts with the SUT’s OSPF implementation. The

script’s input is the set of test files to run that was generated in the previous stage. For

each test file the script applies a corresponding test run on the SUT. The results of

the run are compared with the expected results that are specified in the test file. After

completing a run of a test file on the SUT and before applying a new run of another test

file, the routers are restarted to avoid side effects from previous runs on the following

runs. The output of the script is the list of failed tests for which the results of the

SUT’s run did not match the expected results obtained from the model.

Let (mInitialState,mLSAs,mFinalState) be the specified initial state, sent LSAs,

and final state within a test file obtained from the model. We detail below the significant

procedures applied in this stage by the black box testing script to allow the comparison

between the runs of the OSPF model and the SUT:

Initialization of the Routers

The initial state of the routers on the SUT when they are initially activated or after

being restarted is the standard initial state, on which the LSDBs of all routers are

complete and consistent, containing all of the LSAs originated by the routers in the

network topology. The LSDBs correctly reflect the network topology view when they

are consistent, and the routing tables of the routers are computed based on the LSDBs

content. The sequence numbers of the LSAs are arbitrary in the standard initial state

of the routers within the SUT.

Since mInitialState is the standard initial state, the contents of the LSAs and

routing tables of the routers within the SUT after restart should match the model

initial state as specified in the test file. However, the sequence numbers of LSAs within

mInitialState have concrete values in terms of the model domains, whereas the LSAs

of the routers on the SUT have arbitrary sequence numbers. We have to make sure

that the sequence numbers of the routers’ LSAs are consistent with those specified in

mInitialState. This is because the initial sequence numbers of the LSAs may have an

effect on the final state. Let mSeqA,mSeqB be the initial sequence numbers of two

routers A,B based on a test generated from the model, and let seqA, seqB be the initial

sequence numbers of the two routers on the SUT. It is expected that on the SUT the

initial state would match as follows: seqA− seqB = mSeqA −mSeqB.

The OSPF implementation does not allow to manually set the sequence numbers

of the routers’ LSAs. Therefore, we artificially apply such initialization by sending

each router a self-originated LSA of its own. For instance, if routers A and B have the

following initial sequence numbers in mInitialState: mSeqA = 2,mSeqB = 0, and the

arbitrary initial state of the routers’ LSAs in the SUT contains the following sequence

numbers: SeqA = 0x80000005, SeqB = 0x8000000F , then we send to A an LSA with

seq = 0x80000012, and to B an LSA with seq = 0x80000010. Thus, finally after the

106

fight back, we have a state with SeqA = 0x80000013, SeqB = 0x80000011 that matches

the initial state of the model.

Sending the Symbolic LSA

To send the LSA from the test file, we take into account the concrete values of the

symbolic variables within the generated tests. We use Scapy to generate a corresponding

LSA packet to be sent on the SUT. The sequence number of the LSA to be sent is

based on the initial sequence number of the initial mathcing LSA on the SUT and of the

sequence number of the sent LSA as specified in the test file. For example, consider a case

where mLSAs contains a sent LSA with the fields:AR = 1, LSID = 1, seqNum = 3.

This means that on the test from the model, an LSA was sent on behalf of R1 with

seqNum = 3. In order to translate it to an LSA to be sent on the SUT, we need to

consider the following values: let mSeq1 = 1 be the initial sequence number of R1’s

LSA on mInitialState, and let Seq1 = 0x80000005 be the initial sequence number of

R1’s LSA on the SUT after applying the initialization process in the previous stage.

Then, the sequence number of the LSA to be sent on behalf of R1 on the SUT would be

Seq1 + (seqNum−mSeq1), or in that specific case: 0x80000005 + (3− 1) = 0x80000007.

Comparison of Matching States

To compare the final LSDBs from the model and from the test run on the SUT, we check

that for each LSA in the model LSDB there is a matching LSA in the SUT’s LSDB and

vice versa. LSAs are considered matching if the following fields are matching: LS type,

LSID, AR, Links. The links list is considered matching if for every link in the SUT

there is a matching link in the model and vice versa. The sequence numbers specified in

the final state of the generated test file are given as symbolic expressions in terms of the

symbolic input variables. Thus, if the test file states that the final expected sequence of

the LSA of R1 is symbR1Initial + 1, then we check that the matching LSA from the

SUT’s concrete run has a sequence number that is larger by 1 from the initial sequence

number of R1’s LSA at the initialization process. Note that a symbolic expression of a

final sequence number in the model test file can be a function of symbolic variables that

refer to sequence numbers within the sent LSAs, or of symbolic variables that refer to

the sequence numbers within the initial LSAs of the routers.

4.2.4 Extending the Method to Multiple LSAs

In this section we describe our extension to the method above with multiple LSAs.

The naive approach to generate tests with more than one LSA would be to use

several instances of symbolic LSAs in the model. However, the disadvantage is that

the number of symbolic variables is multiplied in the number of symbolic LSAs. This

may result in the path-explosion problem due to the exponential growth in the number

107

of program paths to execute. We observed this problem when we initially tried this

approach on our experiments (see Section 4.3.3).

We noticed that the above approach may result in generation of many redundant

similar tests along different execution paths. Let P1 be the set of all model paths with

one LSA, starting from the standard initial state as described in the previous section.

Let P2 be the set of all model paths with two LSAs, starting from the same standard

initial state. Let P1(S) be the set of all model paths within P1 that are terminating in

the model state S. We note that all symbolic executions of the model that start from

the same model state are equivalent, regardless of the prefix path leading to that state.

Thus, instead of exploring similar execution paths from each final state of each path in

P1(S), we can apply it only once by using the model state S as the initial state, and by

using only one symbolic LSA from that state.

We suggest the following approaches to apply our method on multiple LSAs more

efficiently:

• Systematically Increasing Depth of Explored Paths: a pseudo code de-

scribing the systematic extension is given in Figure 4.2. RIS is the set of reachable

states from which exploration via concolic execution has not been applied yet.

ERS is the set of explored reachable states from which the exploration of concolic

execution has already been applied. For each reachable state we also keep a

sequence of corresponding LSAs from which the reachable state is obtained. For

example, consider the pair (S, (LSA1, LSA2)), where S is a reachable state and

(LSA1, LSA2) are the corresponding LSAs. The notation means that if a run of

the model starts from the standard initial state and these LSAs are sent one by

one, eventually the final state observed on the model is S.

In line 1 of Figure 4.2 we initialize the set of reachable initial states with the

standard initial state. In line 2 we initialize the set of explored reachable states

with the empty set. K represents the current depth of the generated tests. It is

initialized to 1, since on the first iteration we generate tests with a single LSA sent

from the standard initial state. In each loop iteration for a new depth, lines 6-10

are applied. In line 6 we apply our method from the previous section on every

state in RIS with a single symbolic LSA. The generated tests are kept and sent

to the black box testing script. In order to initialize the SUT based on the new

initial state, we adjust the initialization process in the black box testing script.

The adjustment requires sending the corresponding sequence of LSAs that are

kept with the reachable state, as part of the initialization. Afterwards, in line 7,

we analyze the generated tests from the previous stage. For each generated tests

with K LSAs we detect its final state. The set of all reachable states (and their

corresponding LSA sequences) from the generated tests are kept in RS. In line

8, we add to the set of explored reachable states the set of the reachable states

from which the method was applied on the current iteration. Then, in line 9, the

108

1. RIS = {standard}
2. ERS = φ
3. K = 1
4. while (K < bound)
5. {
6. generated-tests = applyMethod(RIS)
7. RS = extract-reachable-states(generated-tests)
8. ERS = ERS ∪RIS
9. RIS = RS \ ERS
10. K = K + 1
11. }

Figure 4.2: Systematic extension algorithm

set of reachable states from which exploration of depth K + 1 should be applied,

is updated, by removing the set of all explored reachable states from the set of

the detected reachable states of the last iteration. Finally, K is increased by 1

towards the next iteration.

We should note that each reachable state may actually have multiple sequences

of LSAs leading to it in our model. We choose to use one representative of LSA

sequence out of all possible sequences.

• Arbitrary Number of LSAs: In this approach we use a reachable initial state

that may require an arbitrary number of LSAs, and then apply concolic execution

with a single symbolic LSA. The arbitrary reachable initial state may be achieved

by random simulation of the protocol with arbirary number of LSAs, starting from

the standard initial state. This process requires adjustment of the initialization

process in the black box script as well. The sequence of LSAs leading to the

new reachable initial state should be provided. Let (S, (LSA1, LSA2, ..., LSAk))

be the reachable state and its corresponding LSA sequence. Let F1, F2, ..., Fn

be the set of test files generated from concolic execution with S assigned as the

model initial state and with a single symbolic LSA. When running the generated

tests on the SUT, we should adjust the initialization by sending the sequence of

initializing LSAs (LSA1, LSA2, ..., LSAk). Then, we should compare the state of

the routers on the SUT with the given model state S and make sure that they are

matching. Only then we can send the LSA from the generated test file Fi, and

finally compare the final states of the SUT and the test file.

4.3 Evaluation

In this section we describe an evaluation of our method against Cisco’s IOS implementa-

tion of the OSPF protocol. IOS is a family of software used on most Cisco’s routers and

109

switches. It includes operating system functions as well as various networking functions

including routing.

Our focus in this section is on Cisco’s implementation, nonetheless our method can

be similarly and quite easily applied to other OSPF implementations as well. To adapt

our tool to a different implementation one would need only to change the commands

issued to fetch the LSDB and routing table and parse their output as needed.

Although the deviations we found in the Cisco implementation is of interest by

themselves, our main aim in this section is to verify that indeed the method we propose is

efficient and practical for finding protocol deviations even in complex network standards.

4.3.1 Testbed

To test Cisco’s OSPF implementation we used alternately two network simulation

software: GNS3 [3] and VIRL [53]. Both software suites allow to simulate a network of

multiple routers, each running an emulation of an actual IOS image (identical to the

images used in real Cisco routers).

Throughout the evaluation we simulated the topologies depicted in Figure 4.3

(Topology 1) and in Figure 4.4 (Topology 2). Both topologies consist of the two link

types we model: point-to-point and transit networks. Topology 2 is based on Topology

1 while adding extra links to introduce cycles in the topology graph. Topology cycles

allow the same LSA to be received via more than one link, thereby exposing more

functionality details in the LSA flooding procedure. However, note that the two chosen

topologies are simple. Each contains only 5 routers and 5 or 7 links. This is with

the explicit intention of showing the power of our method with regard to functionality

coverage. The extensive coverage allows to unearth protocol deviations even in simple

topologies that may seemingly do not expose the full complexity of the protocol.

We emulated the routers in those topologies using images of three stable IOS versions

as detailed in Table 4.1. These versions were evaluated due to the large time gap between

their release dates – 5 years in total. This time gap leads us to assume that the there are

non-negligible changes in the code base between the three versions, even though the core

functionality of the OSPF standard remained the same during this time period. The

changes may be due to new proprietary features, optimizations of protocol functions or

bug fixes. These changes in the code base allowed us to verify that our method indeed is

capable of identifying different deviations in the different versions of the same vendor’s

implementation.

As noted above, during each test we crafted and sent packets using the Scapy

software. The packets are received by the emulated network through the network

interface of the entity called ’cloud 1’ (see Figures 4.3 and 4.4).

The outcome of each test is the contents of the LSDB and the routing table of every

router in the network. We extract this information by connecting to each router using

a Telnet session and issuing the relevant CLI commands. In Cisco these commands

110

IOS Version Release date

15.1(4)M, release software (fc1) Mar. 2011

15.2(4)S7, release software (fc4) Apr. 2015

15.6(2)T, release software (fc4) Mar. 2016

Table 4.1: Cisco’s IOS versions tested for deviations

Figure 4.3: Topology 1

are ’show ip route’ to fetch a router’s routing table, and ’show ip ospf database

[router|network]’ to fetch the Router-LSAs or Network-LSAs, respectively, of a

router’s LSDB. We then parse the output of such commands and compare it to the

expected results. Every test is preceded by a reset of all routers using the ’reload’

command.

4.3.2 Results With a Single LSA

Initially we applied our method with a single symbolic LSA. Table 4.2 summarizes the

number of generated tests per each topology and model version. Note that the number

of generated tests is reduced in versions 15.2, 15.6 compared to version 15.1. This is

due to a fix applied in the newer versions, for which the model was updated. Thus, the

Topology IOS veresion # Generated tests # Found deviations

Topology 1 15.1 395 7

Topology 1 15.2, 15.6 94 3

Topology 2 15.2, 15.6 104 2

Table 4.2: A summary of the number of generated tests and found deviations per each
topology and IOS version with a single symbolic LSA

111

Figure 4.4: Topology 2

Table 4.3: Summary of found deviations on the three IOS versions, categorized by types

Deviation category 15.1 15.2, 15.6

Harmed Routing {1,2,3,4,5,6} {1,4}
Affected Stability {4,5,6} {4}
Non-vulnerability {7} {7}

number of model paths was reduced on the updated model that reflected the applied fix.

We found 7 deviations in version 15.1 with Topology 1. We consider 6 of them as

security vulnerabilities. 3 of them were also reproduced in versions 15.2 and 15.6 with

Topology 1, and the others were fixed in that version. In Topology 2 we tested the

implementation of versions 15.2 and 15.6, and no new deviations were found. Two of

the found deviations (1,4) were reproduced on this topology.

Table 4.3 categorizes the found deviations into several types according to the versions

on which they were observed. We should note that the deviations in the category that

affected stability included routers’ behaviors on which two routers repeatedly sent similar

LSAs to each other for many iterations.

Below is the detailed list of the found deviations and their description.

1. Rogue LSA With Maximum Sequence Number:

• Description: A false LSA having the maximum sequence number was sent

by unicast to a router R on behalf of R itself. The router originated an LSA

with MaxSeqNum and MaxAge. However, it unexpectedly did not originate

its LSA with InitialSeqNum. The routing tables of the other routers were

affected due to that missing LSA of R.

• Comments: This deviation is topology-dependent. The same behavior was

112

observed on the corresponding tests of R0, R1, and R2 (with dest = LSID =

AR = R0 or R2), but on routers R3 and R4 the expected behavior was

observed on Topology 1. However, on Topology 2, the same behavior was

observed on all routers.

• Impact: This gap allows an attacker to send a spoofed LSA that persistently

harms the routing in the network.

• Status: This deviation was acknowledged by Cisco. We found it in all IOS

versions we tested.

2. Inconsistent LSA With LSID 6= AR Poisons LSDBs and Routing Tables:

• Description: A false inconsistent LSA with LSID 6= AR was sent to a

router R, where the LSID was equal to R’s ID. The false LSA unexpectedly

replaced the correct LSA of R on its own LSDB and on other routers’ LSDBs

as well. The routing tables of these routers were re-calculated based on that

false LSA, and consequently no OSPF-derived route existed in their routing

tables

• Sent LSA:

〈src = R0, dest = R1, LSID = R1, AR = R4, seq = n, links = []〉

• Detailed Description: The false LSA sent to R1 had an LSID with R1’s

ID and Advertising Router with R4’s ID. In the initial state the sequence

number of R4’s LSA is less than n. In the final state the LSA originated by

R1 is unexpectedly replaced with the sent LSA at the LSDBs of R1, R2, R3.

Thus, these LSDBs remain poisoned at the end of this test. This is not in

accordance with the OSPF specification which says that an LSA is identified

by the fields LSID,AR, and type. The sent LSA should not have replaced

the LSA of R1 since their AR values are different. R4 responds with a

fight-back since the sent LSA contains AR = R4. Thus, its LSA’s sequence

number is increased and its value is n+ 1 on the final state for all routers’

LSDBs.

• Impact: This deviation allows an attacker to send a spoofed LSA that

persistently harms the routing in the network.

• Status: This deviation was already known and was published in [52]. We

found it in version 15.1, and it was fixed in versions 15.2, 15.6.

3. Inconsistent LSA With Lower Sequence Number Causes a ’Fight-Back’:

• Description: A false inconsistent LSA with LSID 6= AR was sent to a

router R, with LSID = R and AR = R′. An unexpected fight-back LSA

was originated by R′, even though the sent LSA had lower sequence number

than its own LSA. This is not in accordance with the OSPF specification

113

which says that a new LSA (a fight-back) should be sent in response to a

self-originating false LSA only if that false LSA is newer than the current

LSA (see Sec. 13.1 in the RFC).

• Sent LSA:

〈src = R0, dest = R1, LSID = R1, AR = R2, seq = n, links = []〉

• Detailed Description: A false LSA having LSID = R1 and AR = R2 was

sent to R1 from Cloud 1. This LSA has a sequence number n that was larger

than the seq of R1s’ initial LSA, but smaller than the seq of R2’s initial LSA.

R1 floods the false LSA to all its neighbors including R2. R2 initially sends

a fight-back LSA with a seq smaller than the seq of its own LSA currently

installed in its DB (it simply sent an LSA that has a seq increased by 1

compared to the seq of the false LSA). This is not in accordance with the

OSPF specification which says that a new LSA (a fight-back) should be sent

in response to a self-originating false LSA only if that false LSA is newer

than the current LSA (see Sec. 13.1 in the RFC). This is not the case in our

test. As noted, the false LSA had a sequence number that is smaller than

that of the current LSA. Eventually, R2 originates a new fight-back LSA

with a seq that is increased by 1 compared to the LSA installed in its DB

only after R1 sends to R2 the LSA with the updated seq.

• Impact: The impact is similar to the one described in the previous deviation,

since the final state on both scenarios is similar. This scenario describes an

additional deviation with respect to the previous one, but it has no additional

effect on the calculated routing tables.

• Status: We are not aware of any report of this deviation in version 15.1.

Due to the fix mentioned in the previous deviation, we did not reproduce

this deviation on the later version, as expected.

4. Incorrect MaxAge LSA origination during fight-back:

• Description:2 A false LSA having the maximum sequence number was sent

on behalf of some router R to another router R′. The origination of the

MaxAge LSA by R′ deviates from the specification of the protocol. In some

cases this can result in non-stability of the routers, where R keeps sending

the false LSA and R′ keeps sending the MaxAge LSA.

• Impact: This deviation allows an attacker to send a spoofed LSA that

disrupts the routing in the network.

• Status: This deviation was acknowledged by Cisco. We found it in all IOS

versions we tested.

2 Further details cannot be given here since at the time of the thesis publication Cisco has not issued
a patch yet.

114

5. Inconsistent Fight Back Response:

• Description: A false LSA with LSID 6= AR was sent to a router R. One of

the routers originated a fight-back response. Then, unexpectedly, its neighbor

kept re-sending to that router the original false LSA, and the other router

kept sending a new fight-back response with incremented sequence number.

This behavior was repeated for many such iterations until stabilization. In

addition, the following message showed up in the console: ”Detected router

with duplicate router ID ” (with RID of the router that originated the

fight-back).

• Sent LSA:

〈src = R1, dest = R3, LSID = R0, AR = R4, seq = 0x7, links = []〉

• Detailed Description: A false LSA having LSID=R0 and Advertising

Router=R4 was sent to R3 from Cloud 1. It is sent with seq = 0x7. The

false LSA is then flooded from R3 to R4. R4 replies with a fight-back having

seq=0x8. In response, R3 sends to R4 the LSA with the updated seq=0x9,

which is larger than the seq of the fightback (it was the initial sequence num

of R4). Then, R4 sends an updated LSA with seq=0xA. Until this point

the behavior is as previously described on gap 3 (R4 should not have sent

a fight-back since the LSA sequence number was less than its own LSA).

Then, R3 unexpectedly re-sends to R4 the original (false) LSA with seq=0x7.

Eventually, R4 sends an updated LSA with seq=0xB. This behavior goes on

repeatedly, and for each such iteration R4 eventually sends an LSA with seq

increased by 1. The last packet sent by R4 has a seq=0x16, and then there

is a stable state. Additionally, the following message shows up: ”Detected

router with duplicate router ID” with the ID of R4.

• Comments: The gap was only observed on several specific tests from all

tests for which the failure was related to deviation #3.

• Impact: The observed behavior includes the behavior described on deviations

#2 and #3, but also affects the stability of the routers. It was observed on

specific routers within the topology on several specific combinations of values

for the LSA fields.

• Status: Since deviation #3 was fixed after version 15.1, this deviation was

not observed on the later version.

6. Inconsistent Fight Back Response for MaxSeq-1

• Description: A false LSA with LSID 6= AR and seq = MaxSeq − 1

was sent to a router R. One of the routers originated fight-back with

seq = MaxSeq and age = MaxAge. Consequently, its neighbor kept sending

the original false LSA over and over again, and it took many such iterations

115

until stabilization. Additionally, the following message showed up in the

console: ”Detected router with duplicate router ID” (with RID of the router

that originated the fight-back).

• Sent LSA:

〈src = R1, dest = R4, LSID = R0, AR = R4, seq = MaxSeq−1, links = []〉

• Detailed Description: We send a false LSA having LSID=R0 and Ad-

vertising Router=R4 to R4. The LSA had a seq=MaxSeq-1. R4 responds

with a fight-back having seq=MaxSeq and age=MaxAge. However, R3 keeps

sending the false LSA having seq=MaxSeq-1 over and over again, and it

takes many iterations till stable state is achieved. Additionally, the following

message shows up: ”Detected router with duplicate router ID” with ID of

R4.

• Comments: The gap was only observed on several specific tests from all

tests that match to deviation #2, with seqNum = maxSeq-1.

• Impact: The observed behavior includes the behavior observed on deviation

2, but also affects the stability of the routers.

• Status: Since deviation #2 was fixed on later versions, this deviation was

not observed on later versions as well.

7. Re-flooding of LSA Arriving from DR by Unicast:

• Description: A fake LSA on behalf of R1 was sent to R3 by unicast on

Topology 1. The LSA is (unexpetedly) flooded by R3 to R4 and then to R1,

resulting in a fight-back originated by R1. On the modeled behavior R3 does

not re-flood the sent LSA, since it is received from the designated router R1.

• Sent LSA:

〈src = R1, dest = R3, LSID = R1, AR = R1, seq = n, links = []〉

• Detailed Description: The above LSA is sent to R3. R3 receives it by

unicast from R1. On the observed behavior, R3 floods the LSA by unicast

to R4, and then R4 floods the LSA by unicast to R1. This results in a

fight-back LSA that R1 originates. On the modeled behavior, R3 does

not flood the sent LSA since it was sent from R1 which is the Designated

Router. The RFC mentions the following: ”If the new LSA was received

on this interface, and it was received from either the Designated Router

or the Backup Designated Router, chances are that all the neighbors have

received the LSA already. Therefore, examine the next interface.” Thus,

our model follows the RFC instructions. However, based on the RFC, the

flooding from the DR within a broadcast network is always expected to be

by broadcast and not unicast: ”The only packets not sent as unicasts are on

broadcast networks; on these networks Hello packets are sent to the multicast

116

Topology IOS veresion # Unique reachable states (depth 1)

Topology 1 15.1 107

Topology 1 15.2, 15.6 9

Table 4.4: A summary of the analysis for generating tests of depth 2

destination AllSPFRouters, the Designated Router and its Backup send

both Link State Update Packets and Link State Acknowledgment Packets

to the multicast address AllSPFRouters, while all other routers send both

their Link State Update and Link State Acknowledgment Packets to the

multicast address AllDRouters.”. The RFC assumes this is always true and

does not contain any instruction to verify that. Thus, we infer that Cisco’s

implementation verifies whether the LSA packet sent from the DR was indeed

flooded by multicast and not unicast as expected. If it is sent by unicast,

they add the additional re-flooding as described on the observed behavior, to

make sure that neighbors receive the LSA.

• Impact: This deviation demonstrates improved security of the implementa-

tion with respect to our model which is based on the standard. The final

state on our model results in a poisoned LSDB of R3 with a fake LSA by

R1, whereas on Cisco’s implementation it is prevented by a fightback due to

the re-flooding of the unicast LSA. The standard does not refer to the case

on which a router receives an LSA from the designated router by unicast (as

in our test), and assumes it is always sent by mulitcast from a designated

router.

• Status: We found this deviation in all IOS versions we tested for Topology

1. Since it is not a security vulnerability we have not brought it to Cisco’s

attention so we have no confirmation from them on this deviation.

4.3.3 Results With Multiple LSAs

In the second stage we extended our analysis for multiple LSAs in Topology 1. We

initially tried to generate tests by directly using two symbolic LSAs. However, this

resulted in the generation of thousands of test files, where the concolic execution process

did not terminate its run. This can be referred as the path-explosion problem.

We therefore applied our extended method for dealing with multiple LSAs, as

detailed in Section 4.2.4. We analyzed the reachable states of the generated tests from

the previous stage (with a single LSA). As specified in Table 4.4, for version 15.1 we

identified 107 new reachable states out of 395 generated tests. For versions 15.2 and

15.6, we identified only 9 new reachable states out of 95 generated tests.

We partially applied the analysis of depth 2, for two new reachable states, on all

IOS versions.

117

The new reachable states that we chose are:

1. The LSDBs of all routers contain a spoofed LSA of R0 with an empty list of links.

2. The LSDB of R1 contains its own LSA with MaxSeqNum, and the other routers’

LSDBs are missing the LSA of R1.

The generated tests contained two sent LSAs, where the first LSA is leading to

one of the above chosen reachable states. We did not find any new deviations on this

analysis. However, we did observe test failures that were related to the previously found

deviation #1 specified in the previous section. For instance, the following scenario was

observed:

• Sent LSA #1: an LSA with MaxSeqNum was sent on behalf of R to R.

• Sent LSA #2: an LSA with MaxSeqNum was sent on behalf of another router R′

to R.

• Final state: On Cisco’s implementation, in the final state both LSAs of R and R′

were initialized with InitialSeqNum on all routers’ LSDBs.

The expected final state from the model was that only the LSA of R′ would be initialized,

and the LSA of R would remain unchanged (i.e., with MaxSeqNum on R’s LSDB and

missing from the other routers’ LSDBs, as described on deviation#1). This scenario

demonstrates that the second LSA unexpectedly affected the state of the routers w.r.t.

a different LSA of another router (R) as well. The result was that R completed its

expected procedure only after the second LSA was sent. This new observed behavior

can be described as a more complete view of deviation#1 that was initially found in

the 1-depth analysis. Increasing the depth of the analysis has the potential to reveal

additional consequences of previously found deviation, as demonstrated in this case.

4.4 Advantages and Limitations of Our Method

The method we use allows focusing on specific protocol functionality on which an

exhaustive testing can be applied for any implementation of the protocol, and black

box in particular. It can be used to test various implementations of different versions

and vendors, using the same model and the same set of tests, per each chosen network

topology. Since the test generation is systematic and exhaustive with high coverage,

it is very effective in finding deviations of a protocol from its standard. The effective-

ness is demonstrated by the large number of deviations that we found on an OSPF

implementation with a single symbolic LSA and a standard initial state.

Further, our tool can be easily adapted to search for deviation in a different vendor’s

implementation. One should only adapt the commands required to fetch LSDB and

routing table from the routers and parse them as needed. Adapting our method to a

118

different network protocol is also straightforward, however it requires a new reference

model and adjustments of the black box testing script, including the comparison method.

In Section 4.5 we present some previous work related to black box analysis. Many

past works used the approach of automatic model inference. In our use case of comparing

black box implementations with the standard of the protocol this approach would require

to apply such inference for every new version that needs to be tested. Then, specific

predefined properties would have to be tested on the inferred models. In our appraoch

a reference model has to be implemented once, and its generated tests can be directly

applied on every new implementation version, without inference process. It should also

be noted that even though our method requires knowledge of the protocol and manual

abstractions, it may also be required for the inference method. The inference process

may require non-trivial abstractions to enable inferring a certain part of the protocol

in the form of a regular automaton with some abstracted alphabet. This abstraction

process is non-trivial and requires knowledge of the protocol.

The limitations of our approach include the manual implementation of a reference

model, the manual decision of symbolic variables and implementation of a protocol-

specific black box testing script.

Furthermore, as for all black box analysis methods our method can not guarantee full

coverage of the implementation code. The generated tests only provide high coverage of

the model. Therefore, our method is not geared towards finding software vulnerabilities

in corner cases that stem from buffer overflow, race conditions and the like.

Additionally, despite our optimizations as the number of sent messages is increased

or the topology size is larger, the number of symbolic variables and their domains may

grow and lead to the path explosion problem. In this work, we do not explore the

topology size limit of our method, nonetheless we have shown in previous section that

large topologies are not necessarily needed to expose non-trivial deviations.

4.5 Related Work

4.5.1 Formal Black Box Analysis

There are some past works that used model based approaches for black box analysis. For

example, in [71], a black box analysis was applied on networked applications for fault

detection by analyzing traces of system calls. A network model component was used to

derive a global ordering of the system calls by simulating syscalls. The analysis was

then used to find deviations from expected network semantics on certain points in the

ordered execution. In [16] a technique for rigorous protocol specification is developed

and applied on the TCP and UDP protocols. The specification is written as operational

semantics definition in higher order logic. A specification-based testing approach is used

to test some implementations. It is based on capturing SUT traces and using a checker,

written above HOL, that performs symbolic evaluation of the rigorous specification

119

along the captured traces. In [12] a black box approach was used by modeling real-time

embedded systems environment in UML. They proposed some heuristics for test case

generation by investigating selection mechanisms of test cases. They focused on random

testing, adaptive random testing and search-based testing.

Apart from the model based approach, some other past works ([29, 36, 21]) ap-

proached the black box analysis task using active learning algorithms ([10, 58]) to

automatically infer a model of the black box system in the form of an automaton. In

[29] the inference algorithm was used to learn an automaton model for a fragment of

the TCP protocol on two different implementations. The inferred models were then

compared to obtain fingerprinting of these implementations. It should be noted that an

abstraction of the TCP packets was used in the learning process. Thus, applying the

method to a black box implementation still requires some knowledge of the protocol

itself. [21] used similar inference methods to learn models of botnet Command and

Control protocols. To analyze the inferred model, they defined certain properties to

check on the inferred state-machine. In [36] a black box implementation of the MSN

Instant Messaging Protocol is automatically inferred. A fuzz testing technique is used to

analyze the inferred model and to search for inputs that can crash the implementation.

4.5.2 Symbolic Execution

Symbolic execution is a very effective and common technique for test generation. It is

used to analyze protocols (e.g. [60],[59],[9]) mostly when the implementation is white

box with available source code. For example, in [59], an analysis that uses symbolic

execution is applied directly on the source code of network protocol implementations,

such as DHCP and Zeroconf. It is used to test the protocol implementation against its

specification. The specification from an RFC document is translated into a specification

in a rule-based language. The input packets generated from the tests are then used to

detect violations of the specified rules.

4.5.3 OSPF Analysis

There have been several works that analyzed the OSPF standard itself for security

vulnerabilities [52, 61, 37]. A few of these works have used a formal model of the OSPF

standard as in this work. However, these works have used the model in a formal analysis

process to identify security issues in the model, namely they identify states in which

the model has an undesirable property from a security point of view. In contrast, we

use the formal model as a benchmark to test implementations. Thereby allowing us

to find security issues in specific implementations of the standard rather than in the

standard itself.

Few earlier works have also addressed deviations in OSPF implementations. In

Ref. [69, 70, 68] the authors identify some deviations in OSPF implementations. All of

the identified deviations relate to incorrectly wrapping of the LS sequence number field,

120

thereby potentially causing false LSAs to remain in the LSADB. The deviations found

in these works are a result of an ad-hoc manual analysis.

4.6 Conclusions

In this chapter we developed and implemented a black box method to find deviations

of a closed-source protocol implementation from its standard. We used a model based

approach on which we modeled core parts of the protocol’s standard and used it as a

reference model. We have shown that the method is efficient and practical for finding

deviations for complex multi-party protocols. We have done so by applying the method

to the OSPF protocol – a complex and widely used routing protocol. We tested three

versions of Cisco’s implementation and found different deviations in each. The method

uses concolic execution to generate tests with high coverage, and thus it allowed us

to find 7 significant deviations of the tested implementations even in relatively simple

topology. Most of the deviations we found also pose security vulnerabilities.

121

122

Chapter 5

Conclusions

In this work we developed several methods of a systematic and automatic search for

attacks within common Internet routing protocols. We used methods and tools of formal

verification, such as model checking and model based testing. We built models for the

BGP and OSPF protocols, and developed unique abstraction techniques to cope with

scalability issues.

Initially, we focused on a search for built-in vulnerabilities in the OSPF protocol.

We started by modeling OSPF on (concrete) networks with a fixed number of routers in

a specific topology. By using the model checking tool CBMC, we found several simple

attacks on OSPF. In order to search for attacks in a family of networks with varied sizes

and topologies, we defined the concept of an abstract network which represents such a

family. The attacks we have found on abstract networks revealed security vulnerabilities

in the OSPF protocol, which can harm routing in huge networks with complex topologies.

Finding such attacks directly on the huge networks is practically impossible.

Next, we searched for non-trivial traffic attraction scenarios in the BGP protocol

over the entire Internet topology. We used model checking to perform exhaustive search

for attraction attacks on BGP. We developed a method which extracts and reduces

fragments from the Internet. In order to apply model checking, we modeled the BGP

protocol and also modeled an attacker with predefined capabilities. Our specifications

allowed revealing different types of attraction attacks. Using a model checking tool we

identified attacks as well as showed that certain attraction scenarios were impossible on

the Internet under the modeled attacker capabilities

Finally, we proposed a formal black box method to unearth non-standard protocol

deviations in closed-source network devices. The method relies only on the ability to

test the targeted protocol implementation and observe its output. We used a model-

based testing approach, which relies on a formal model of the protocol. We developed

piratical optimizations to allow reducing the number of generated tests without loss of

functionality cover of the model. We evaluated our method against the OSPF protocol

and searched for deviations in the OSPF implementation of Cisco. Our evaluation

identified numerous significant deviations. Some of them can be abused to compromise

123

the security of a network. The deviations were confirmed by Cisco.

Beyond the above results, our models and methods can be extended to further

search for vulnerabilities in the OSPF and BGP protocols. Such extensions may include

additional functionality modeling, other attack types and specifications, and more

security mechanisms that may limit the attacker capabilities. The abstraction techniques

and methodologies can be useful for finding security vulnerabilities in other protocols

as well. We believe that our work is an important step in developing methodologies

that take advantage of formal verification methods for finding security vulnerabilities in

network protocols.

124

Bibliography

[1] https://github.com/xiw/mini-mc.

[2] https://github.com/Z3Prover/z3.

[3] Graphical network emulator. http://www.gns3.net.

[4] Scapy. http://www.secdev.org/projects/scapy/.

[5] H.323 : Packet-based multimedia communications systems. Recommendation

H.323 (12/09), 2009.

[6] IEEE standard for local and metropolitan area networks–media access control

(MAC) bridges and virtual bridged local area networks. IEEE Std 802.1Q-

2016, 2016.

[7] P. Abdulla. Regular model checking. STTT, 14(2), 2012.

[8] Paul Adamczyk, Munawar Hafiz, and Ralph E Johnson. Non-compliant and

proud: A case study of http compliance. 2008.

[9] Saswat Anand, Mayur Naik, Mary Jean Harrold, and Hongseok Yang. Au-

tomated concolic testing of smartphone apps. In Proceedings of the ACM

SIGSOFT 20th International Symposium on the Foundations of Software

Engineering, page 59. ACM, 2012.

[10] Dana Angluin. Learning regular sets from queries and counterexamples.

Information and computation, 75(2):87–106, 1987.

[11] Larry Apfelbaum and John Doyle. Model based testing. In Software Quality

Week Conference, pages 296–300, 1997.

[12] Andrea Arcuri, Muhammad Zohaib Iqbal, and Lionel Briand. Black-box

system testing of real-time embedded systems using random and search-based

testing. In IFIP International Conference on Testing Software and Systems,

pages 95–110. Springer, 2010.

[13] Matvey Arye, Rob Harrison, and Richard Wang. The next 10,000 bgp gadgets.

125

https://github.com/xiw/mini-mc
https://github.com/Z3Prover/z3
http://www.secdev.org/projects/scapy/

[14] Matvey Arye, Rob Harrison, Richard Wang, Pamela Zave, and Jennifer

Rexford. Toward a lightweight model of bgp safety. Proc. of WRiPE, 2011.

[15] Hitesh Ballani, Paul Francis, and Xinyang Zhang. A study of prefix hi-

jacking and interception in the internet. In ACM SIGCOMM Computer

Communication Review, volume 37, pages 265–276. ACM, 2007.

[16] Steve Bishop, Matthew Fairbairn, Michael Norrish, Peter Sewell, Michael

Smith, and Keith Wansbrough. Rigorous specification and conformance

testing techniques for network protocols, as applied to tcp, udp, and sockets.

In ACM SIGCOMM Computer Communication Review, volume 35, pages

265–276. ACM, 2005.

[17] Alexandra Boldyreva and Robert Lychev. Provable security of s-bgp and other

path vector protocols: model, analysis and extensions. In ACM Conference

on Computer and Communications Security, pages 541–552, 2012.

[18] Cristian Cadar and Koushik Sen. Symbolic execution for software testing:

three decades later. Communications of the ACM, 56(2):82–90, 2013.

[19] CAIDA. Inferred AS Relationships Dataset. http://data.caida.org/

datasets/as-relationships/serial-1/20141001.as-rel.txt.bz2, Oc-

tober 2014.

[20] R. Callon. Use of OSI IS-IS for routing in TCP/IP and dual environments.

IETF RFC 1195, December 1990.

[21] Chia Yuan Cho, Eui Chul Richard Shin, Dawn Song, et al. Inference and

analysis of formal models of botnet command and control protocols. In

Proceedings of the 17th ACM conference on Computer and communications

security, pages 426–439. ACM, 2010.

[22] Hana Chockler, Dmitry Pidan, and Sitvanit Ruah. Improving representative

computation in ExpliSAT. In Haifa Verification Conference (HVC), LNCS

8244, Haifa, Israel, 2013.

[23] Edmund Clarke, Daniel Kroening, and Flavio Lerda. A tool for checking

ANSI-C programs. In Kurt Jensen and Andreas Podelski, editors, Tools and

Algorithms for the Construction and Analysis of Systems, volume 2988, pages

168–176. 2004.

[24] Edmund M Clarke, Orna Grumberg, and Doron Peled. Model checking. MIT

press, 1999.

[25] E.M. Clarke, D. Kroening, and F. Lerda. A tool for checking ANSI-C

programs. TACAS’04.

126

http://data.caida.org/datasets/as-relationships/serial-1/20141001.as-rel.txt.bz2
http://data.caida.org/datasets/as-relationships/serial-1/20141001.as-rel.txt.bz2

[26] N.S. Niklas Een. Minsat 2.0 - http://minisat.se/minisat.html 2008.

[27] E. A. Emerson and V. Kahlon. Exact and efficient verification of parameterized

cache coherence protocols. In CHARME, 2003.

[28] J. Rosenberg et. al. Sip: Session initiation protocol. IETF RFC 3261, June

2002.

[29] Paul Fiterău-Broştean, Ramon Janssen, and Frits Vaandrager. Learning

fragments of the tcp network protocol. In International Workshop on Formal

Methods for Industrial Critical Systems, pages 78–93. Springer, 2014.

[30] B. Fortz. On the evaluation of the reliability of OSPF routing in IP networks.

Technical report, Institut dadministration et de gestion, 2001.

[31] Graham Francis. The sip survey 2015. https://www.thesipschool.com/

files/TheSIPSurvey2015.pdf, November 2015.

[32] Lixin Gao and Jennifer Rexford. Stable internet routing without global

coordination. IEEE/ACM Transactions on Networking (TON), 9(6):681–692,

2001.

[33] S. German and P. Sistla. Reasoning about systems with many processes. J.

ACM, 39(3), 1992.

[34] Patrice Godefroid, Nils Klarlund, and Koushik Sen. Dart: directed automated

random testing. In ACM Sigplan Notices, volume 40, pages 213–223. ACM,

2005.

[35] Sharon Goldberg, Michael Schapira, Peter Hummon, and Jennifer Rexford.

How secure are secure interdomain routing protocols? Computer Networks,

70:260–287, 2014.

[36] Yating Hsu, Guoqiang Shu, and David Lee. A model-based approach to

security flaw detection of network protocol implementations. In Network

Protocols, 2008. ICNP 2008. IEEE International Conference on, pages 114–

123. IEEE, 2008.

[37] E. Jones and O. Le Moigne. OSPF security vulnerabilities analysis. Internet-

Draft draft-ietf-rpsec-ospf-vuln-02, IETF, June 2006.

[38] Josh Karlin, Stephanie Forrest, and Jennifer Rexford. Pretty good bgp:

Improving bgp by cautiously adopting routes. In Proceedings of the 2006

IEEE International Conference on Network Protocols, pages 290–299. IEEE,

2006.

127

https://www.thesipschool.com/files/TheSIPSurvey2015.pdf
https://www.thesipschool.com/files/TheSIPSurvey2015.pdf

[39] Stephen Kent, Charles Lynn, Joanne Mikkelson, and Karen Seo. Secure border

gateway protocol (s-bgp. IEEE Journal on Selected Areas in Communications,

18:103–116, 2000.

[40] Y. Kesten, O. Maler, M. Marcus, A. Pnueli, and E. Shahar. Symbolic model

checking with rich ssertional languages. In CAV, volume 1254 of LNCS, Haifa,

Israel, 1997.

[41] Jing Liu, Xinming Ye, Jun Zhang, and Jun Li. Security verification of 802.11i

4-way handshake protocol. In Communications, 2008.

[42] Robert Lychev, Sharon Goldberg, and Michael Schapira. Network-

destabilizing attacks. arXiv preprint arXiv:1203.1681, 2012.

[43] Doug Madory. Sprint, Windstream: Latest ISPs to hijack foreign

networks. http://research.dyn.com/2014/09/latest-isps-to-hijack/,

September 2014.

[44] Doug Madory. The Vast World of Fraudulent Routing. http://research.

dyn.com/2015/01/vast-world-of-fraudulent-routing/, January 2015.

[45] S. U. R. Malik, S. K. Srinivasan, S. U. Khan, and L. Wang. A methodology

for OSPF routing protocol verification. In 12th International Conference on

Scalable Computing and Communications (ScalCom), 2012.

[46] G. Malkin. RIP version 2. IETF RFC 2453, November 1998.

[47] P. Matousek, J. Ráb, O. Rysavy, and M. Svéda. A formal model for network-

wide security analysis. In Engineering of Computer Based Systems, 2008.

[48] John C. Mitchell, Mark Mitchell, and Ulrich Stern. Automated analysis of

cryptographic protocols using Murphi. In IEEE Symposium on Security and

Privacy, pages 141–151, 1997.

[49] John C. Mitchell, Arnab Roy, Paul Rowe, and Andre Scedrov. Analysis of

EAP-GPSK authentication protocol. In ACNS, 2008.

[50] J. Moy. OSPF version 2. IETF RFC 2328, April 1998.

[51] G. Nakibly, D. Gonikman, A. Kirshon, and D. Boneh. Persistent OSPF

attacks. In NDSS, 2012.

[52] Gabi Nakibly, Adi Sosnovich, Eitan Menahem, Ariel Waizel, and Yuval Elovici.

OSPF vulnerability to persistent poisoning attacks: A systematic analysis. In

Proceedings of the 30th Annual Computer Security Applications Conference,

pages 336–345. ACM, 2014.

128

http://research.dyn.com/2014/09/latest-isps-to-hijack/
http://research.dyn.com/2015/01/vast-world-of-fraudulent-routing/
http://research.dyn.com/2015/01/vast-world-of-fraudulent-routing/

[53] Joel Obstfeld, Simon Knight, Ed Kern, Qiang Sheng Wang, Tom Bryan, and

Dan Bourque. Virl: the virtual internet routing lab. In ACM SIGCOMM

Computer Communication Review, volume 44, pages 577–578, 2014.

[54] Y. Rekhter, T. Li, and S. Hares. A border gateway protocol 4 (bgp-4). IETF

RFC 4271, January 2006.

[55] Yiqing Ren, Wenchao Zhou, Anduo Wang, Limin Jia, Alexander JT Gurney,

Boon Thau Loo, and Jennifer Rexford. Fsr: formal analysis and implemen-

tation toolkit for safe inter-domain routing. In ACM SIGCOMM Computer

Communication Review, volume 41, pages 440–441. ACM, 2011.

[56] M. Saksena, O. Wibling, and B. Jonsson. Graph grammar modeling and

verification of ad hoc routing protocols. In TACAS, 2008.

[57] Koushik Sen and Gul Agha. Cute and jcute: Concolic unit testing and explicit

path model-checking tools. In International Conference on Computer Aided

Verification, pages 419–423. Springer, 2006.

[58] Muzammil Shahbaz and Roland Groz. Inferring mealy machines. In Interna-

tional Symposium on Formal Methods, pages 207–222. Springer, 2009.

[59] JaeSeung Song, Cristian Cadar, and Peter Pietzuch. Symbexnet: testing

network protocol implementations with symbolic execution and rule-based

specifications. IEEE Transactions on Software Engineering, 40(7):695–709,

2014.

[60] JaeSeung Song, Tiejun Ma, Cristian Cadar, and Peter Pietzuch. Rule-based

verification of network protocol implementations using symbolic execution.

In Computer Communications and Networks (ICCCN), 2011 Proceedings of

20th International Conference on, pages 1–8. IEEE, 2011.

[61] Adi Sosnovich, Orna Grumberg, and Gabi Nakibly. Finding security vulnera-

bilities in a network protocol using parameterized systems. In Computer Aided

Verification - 25th International Conference, CAV 2013, Saint Petersburg,

Russia, July 13-19, 2013. Proceedings, pages 724–739, 2013.

[62] Adi Sosnovich, Orna Grumberg, and Gabi Nakibly. Analyzing internet

routing security using model checking. In Logic for Programming, Artificial

Intelligence, and Reasoning - 20th International Conference, LPAR-20 2015,

Suva, Fiji, November 24-28, 2015, Proceedings, pages 112–129, 2015.

[63] Andree Toonk. BGP hijack incident by Syrian Telecom-

munications Establishment. http://www.bgpmon.net/

bgp-hijack-incident-by-syrian-telecommunications-establishment/,

December 2014.

129

http://www.bgpmon.net/bgp-hijack-incident-by-syrian-telecommunications-establishment/
http://www.bgpmon.net/bgp-hijack-incident-by-syrian-telecommunications-establishment/

[64] Andree Toonk. Hijack event today by Indosat. http://www.bgpmon.net/

hijack-event-today-by-indosat/, April 2014.

[65] Andree Toonk. The Canadian Bitcoin Hijack. http://www.bgpmon.net/

the-canadian-bitcoin-hijack/, August 2014.

[66] Mark Utting, Alexander Pretschner, and Bruno Legeard. A taxonomy of

model-based testing approaches. Software Testing, Verification and Reliability,

22(5):297–312, 2012.

[67] Pierre-Antoine Vervier, Olivier Thonnard, and Marc Dacier. Mind your

blocks: On the stealthiness of malicious BGP hijacks. 2015.

[68] Brain Vetter, Feiyi Wang, and Shyhtsun Felix Wu. An experimental study

of insider attacks for ospf routing protocol. In Network Protocols, 1997.

Proceedings., 1997 International Conference on, pages 293–300. IEEE, 1997.

[69] Feiyi Wang, Brian Vetter, and Shyhtsun Felix Wu. Secure routing protocols:

Theory and practice. Technical report, North Carolina State University, May

1997.

[70] S. F. Wu and et. al. JiNao: Design and implementation of a scalable intrusion

detection system for the OSPF routing protocol. ACM Transactions on

Computer Systems, 2, 1999.

[71] Yanyan Zhuang, Eleni Gessiou, Steven Portzer, Fraida Fund, Monzur Muham-

mad, Ivan Beschastnikh, and Justin Cappos. Netcheck: Network diagnoses

from blackbox traces. In 11th USENIX Symposium on Networked Systems

Design and Implementation (NSDI 14), pages 115–128, 2014.

130

http://www.bgpmon.net/hijack-event-today-by-indosat/
http://www.bgpmon.net/hijack-event-today-by-indosat/
http://www.bgpmon.net/the-canadian-bitcoin-hijack/
http://www.bgpmon.net/the-canadian-bitcoin-hijack/

הממודלות. התוקף יכולות

מציאת לצורך שחורה קופסה שהוא פרוטוקול מימוש של לאנליזה פורמלית שיטה מציעים אנו לבסוף,

התנהגות את לבחון האפשרות על רק מסתמכים אנו הפרוטוקול. של התקן לבין המימוש בין חריגות

שיטה מודל. מבוססי טסטים ביצוע בגישת משתמשים אנו שלו. הפלט ואת הפרוטוקול של המימוש

פרקטיות אופטימיזציות מפתחים אנו כן כמו הנדון. הפרוטוקול של פורמלי מודל על מבוססת זו

המותאמות פונקציונליות, כיסוי איבוד ללא המודל מתוך הנוצרים הטסטים מספר הקטנת לצורך

שהוא ,CISCO של המימוש את ובוחנים OSPF פרוטוקול על השיטה את מיישמים אנו רשת. לפרוטוקולי

מימוש בין משמעותיים הבדלים למצוא מאפשרת השיטה האינטרנט. ברשת בשימוש ביותר הנפוץ

על להשפיע לתוקף לאפשר ויכולים במימוש אבטחה חולשות מהווים אשר שלו התקן לבין הפרוטקול

ברשת. הניתוב

ii

תקציר

אוטונומית. רשת מכונה כזו קבוצה כל קשירות. לקבוצות מחולקים באינטרנט והרשתות הנתבים

המכונה ,BORDER GATEWAY PROTOCOL פרוטוקול רמות. בשתי פועל באינטרנט מידע חבילות של ניתוב

האינטרנט. ברשת יועברו מידע חבילות אוטונומיות רשתות אילו דרך הקובע ניתוב פרוטוקול הוא ,BGP

מסלולי את הקובע מאוד נפוץ פרוטוקול הוא ,OSPF המכונה ,OPEN SHORTEST PATH FIRST פרוטוקול

אלו ניתוב בפרוטוקולי התקפה ואסטרטגיות אבטחה חולשות מציאת אוטונומית. רשת בתוך הניתוב

להפריע יכולות ניתוב פרוטוקולי על התקפות האינטרנט. באבטחת וחשובה מורכבת משימה היא

ליעדן. מלהגיע מידע מחבילות ולמנוע ברשת לניתוב

פורמליים. למפרטים ביחס מערכות של נכונות להוכיח כדי במקור פותחו פורמלי אימות שיטות

אשר יעיל מאלגוריתם מורכבת מודל בדיקת פורמלי. אימות של נפוצה מאוד שיטה היא מודל בדיקת

במידה לא. או המפרט את מספקת המערכת האם קובע פורמלי, ומפרט מערכת של מודל בהינתן

מפתחים אנו זו, בתזה המערכת. של רצויה לא התנהגות בצורת נגדית דוגמא מחזיר האלגוריתם ולא,

ניתוב פרוטוקולי של ואוטומטי שיטתי באופן אבטחה חולשות למציאת אנליזה לביצוע שיטות מספר

פורמלי. אימות של וכלים בשיטות משתמשים אנו כך לצורך האינטרנט. ברשת

מודל. בדיקת בעזרת OSPF פרוטוקול של בתקן מובנות חולשות למציאת אנליזה מפתחים אנו תחילה,

באופן למצוא כדי מודל לבדיקת בכלי ומשתמשים שלו התקן פי על מהפרוטוקול חלקים ממדלים אנו

לזיהוי מפרט הגדרת באמצעות פשוטות. רשת טופולוגיות על בפרוטוקול מובנות חולשות אוטומטי

מחפש מודל לבדיקת הכלי נתבים, של הניתוב טבלאות על ממושך באופן להשפיע שיכולות התקפות

יותר. כלליות רשת לטופולוגיות האנליזה את מרחיבים אנו מכן לאחר במודל. כאלו התנהגויות אחר

במקרה (התקפה נגדית דוגמה למציאת מתאימה אשר פרמטריות לרשתות חדשה שיטה מפתחים אנו

ליישום שניתנות כלליות התקפות למצוא מאפשרת השיטה רשתות. של במשפחה רשת כל על שלנו)

רשתות. של משפחות על

תעבורה, משיכת בהתקפות מתמקדים אנו .BGP על התקפות למציאת אנליזה מפתחים אנו בהמשך,

למטרות דרכו עודפת תעבורה השגת לצורך מזויפים נתיבים פרסומי לשלוח יכול תוקף בהן אשר

בבדיקת משתמשים אנו דרכו. בחבילות המועבר המידע להשגת או מלקוחות, הרווח הגדלת כגון

לצורך שיטות דורש הדבר תעבורה. למשיכת התקפה אסטרטגיות אחר שיטתי חיפוש לביצוע מודל

מרשת חלקים לזיהוי סטטיות שיטות מציעים אנו האינטרנט. רשת כמו גדולה רשת עם התמודדות

ממדלים אנו מודל, בדיקת ביצוע לשם המודל. בדיקת ביצוע לפני להתמקד, ניתן שבהם האינטרנט

לחשוף מאפשרים מציעים שאנו המפרטים מראש. מוגדרות יכולות עם תוקף בנוכחות BGP מ חלקים

התקפות מזהים אנו מודל לבדיקת בכלי שימוש באמצעות תעבורה. משיכת התקפות של שונים סוגים

תחת אפשריים אינם תעבורה למשיכת מהתרחישים שחלק מראים וכן האינטרנט רשת על אפשריות

i

המחשב. למדעי בפקולטה גרימברג, ארנה פרופסור של בהנחייתה בוצע המחקר

תודות

הנחיה של שנים על תודה גרימברג. ארנה פרופ׳ שלי, למנחה הכנה תודתי את להביע ברצוני ראשית,

תחת איתך לעבוד ההזדמנות על תודה אסירת אני התזה. וכתיבת המחקר ביצוע במהלך ותמיכה

שיתוף של שנים על תודה נקיבלי. גבי לדר׳ הכנה תודתי גם להביע ברצוני כן, כמו שלך. ההנחיה

על תודה שפירא. מיכאל לפרופ׳ להודות ארצה בנוסף המחקר. במהלך והעזרה ההשראה ועל פעולה,

וההערות. הרעיונות העזרה, ההשראה,

ובחיי המחקר שנות במהלך והעידוד התמיכה על ולבעלי, להוריי למשפחתי: להודות ארצה לבסוף,

כללי. באופן

על סייבר אבטחת ולימוד למחקר בתכנית ברלין ר. ומלווין ל. רנדי ולמלגת לטכניון מודה אני

בהשתלמותי. הנדיבה הכספית התמיכה

רשת בפרוטוקולי אבטחה חולשות מציאת
פורמלי לאימות בשיטות שימוש תוך

מחקר על חיבור

התואר לקבלת הדרישות של חלקי מילוי לשם

לפילוסופיה דוקטור

סוסנוביץ עדי

לישראל טכנולוגי מכון — הטכניון לסנט הוגש

2017 ינואר חיפה התשע״ז טבת

רשת בפרוטוקולי אבטחה חולשות מציאת
פורמלי לאימות בשיטות שימוש תוך

סוסנוביץ עדי

	List of Figures
	Abstract
	Abbreviations and Notations
	1 Introduction
	2 Finding Vulnerabilities in OSPF Using Model Checking
	2.1 Perliminaries
	2.2 Related Work
	2.3 The OSPF Protocol
	2.3.1 OSPF Basics
	2.3.2 Threat Model

	2.4 Modeling OSPF
	2.4.1 The Concrete Model
	2.4.2 Formal Model for OSPF
	2.4.3 Specification
	2.4.4 Experimental Data
	2.4.5 Example of Attacks on OSPF

	2.5 An Abstract Network and Its Matching Concrete Networks
	2.5.1 Abstract Topology
	2.5.2 Matching Abstract and Concrete Topologies
	2.5.3 Global Abstract States
	2.5.4 Matching Abstract and Concrete states
	2.5.5 Abstract Transitions and Their Matching Concrete Transitions
	2.5.6 Examples of OSPF Attacks in the Abstract Model

	2.6 Correctness of the Abstract Model
	2.6.1 Flooding and Fight Back Destinations
	2.6.2 Correctness Proof

	2.7 Extension of the Concrete Model
	2.7.1 Extended OSPF Basics
	2.7.2 Extension Goals
	2.7.3 Extended OSPF Modeling
	2.7.4 Results

	2.8 Conclusion

	3 Analyzing BGP Traffic Attraction Attacks Using Model Checking
	3.1 Preliminaries
	3.2 Related Work
	3.3 BGP Background
	3.4 BGP Modeling
	3.4.1 Model simplifications
	3.4.2 Threat Model
	3.4.3 The BGP Model
	3.4.4 Attack Definitions and Specifications

	3.5 Attacker Model Simplifications
	3.5.1 Abstraction of Paths Originated By the Attacker
	3.5.2 Reducing the Number of Messages Originated By the Attacker

	3.6 Reductions and Abstractions
	3.6.1 Self-contained Fragments
	3.6.2 Definite Routing Choice
	3.6.3 Routing-preserving Path
	3.6.4 Example of a Network Reduction

	3.7 The BGP-SA Method
	3.7.1 Reducing the Network Topology
	3.7.2 Simulating the Trivial Attack
	3.7.3 Generating the C Model
	3.7.4 Applying Model Checking to the Implemented Model Using ExpliSAT

	3.8 Experimental Results
	3.8.1 Results on Internet Fragments
	3.8.2 Example Demonstrating Model Checking Advantages

	3.9 Conclusion
	3.9.1 Possible Directions for Extensions

	4 Formal Analysis of a Black Box OSPF Implementation
	4.1 Preliminaries
	4.1.1 Background in Symbolic Execution
	4.1.2 OSPF Background

	4.2 Black Box Analysis Procedures
	4.2.1 The Method Flow
	4.2.2 The OSPF Symbolic Model
	4.2.3 Black Box Testing of the Generated Tests
	4.2.4 Extending the Method to Multiple LSAs

	4.3 Evaluation
	4.3.1 Testbed
	4.3.2 Results With a Single LSA
	4.3.3 Results With Multiple LSAs

	4.4 Advantages and Limitations of Our Method
	4.5 Related Work
	4.5.1 Formal Black Box Analysis
	4.5.2 Symbolic Execution
	4.5.3 OSPF Analysis

	4.6 Conclusions

	5 Conclusions
	Bibliography
	Hebrew Abstract

