Model Checking: From BDDs to Interpolation

Orna Grumberg Technion Haifa, Israel

Summer school at Bayrischzell 2011

Why (formal) verification?

- safety-critical applications: Bugs are unacceptable!
 - Air-traffic controllers
 - Medical equipment
 - Cars
- Bugs found in later stages of design are expensive, e.g. Intel's Pentium bug in floating-point division
- Hardware and software systems grow in size and complexity: Subtle errors are hard to find by testing
- Pressure to reduce time-to-market

Automated tools for formal verification are needed

Formal Verification

Given

- a model of a (hardware or software) system and
- a formal specification

does the system model satisfy the specification? Not decidable!

To enable automation, we restrict the problem to a decidable one:

- Finite-state reactive systems
- Propositional temporal logics

Finite state systems examples

- Hardware designs
- Controllers (elevator, traffic-light)
- Communication protocols (when ignoring the message content)
- High level (abstracted) description of non finite state systems

Properties in temporal logic examples

- mutual exclusion: always ¬(cs₁ ∧ cs₂)
- non starvation:
 always (request => eventually granted)
- communication protocols:
 (¬ get-message) until send-message

Model Checking [CE81,QS82]

An efficient procedure that receives:

- A finite-state model describing a system
- A temporal logic formula describing a property

It returns

yes, if the system has the property

no + Counterexample, otherwise

Model Checking

- Emerging as an industrial standard tool for verification of hardware designs: Intel, IBM, Synopsis, ...
- Recently applied successfully also for software verification: SLAM (Microsoft), Java PathFinder and SPIN (NASA), BLAST (EPFL), CBMC (Oxford),...
 - SLAM won the 2011 CAV award

Model of a system Kripke structure / transition system

Temporal Logics

Temporal Logics

- Express properties of event orderings in time

- Linear Time
 - Every moment has a unique successor
 - Infinite sequences (words)
 - Linear Time Temporal Logic (LTL)

- Branching Time
 - Every moment has several successors
 - Infinite tree
 - Computation Tree Logic (CTL)

Propositional temporal logic

In Negation Normal Form AP - a set of atomic propositions

Path quantifiers: A for all path E there exists a path

CTL/CTL*

- LTL interpreted over infinite computation paths
- CTL interpreted over infinite computation trees
- CTL* Allows any combination of temporal operators and path quantifiers. Includes both LTL and CTL

ACTL / ACTL*

The **universal** fragments of CTL/CTL* with only universal path quantifiers

CTL formulas: Example

- mutual exclusion: $AG \neg (cs_1 \land cs_2)$
- non starvation: $AG(request \Rightarrow AF grant)$
- "sanity" check: EF request

Model checking

A basic operation: Image computation

Given a set of states Q, Image(Q) returns the set of successors of Q

 $Image(Q) = \{ s' \mid \exists s [R(s,s') \land Q(s)] \}$

Model checking AGq on M

- Iteratively compute the sets S_j of states reachable from an initial state in j steps
- At each iteration check whether S_j contains a state satisfying $\neg q$.

- If so, declare a failure

- Terminate when all states were found. $S_k \subseteq \cup_{i=0,k-1} S_i$
 - Result: the set Reach of reachable states.

```
Model checking f = AG p
Given a model M= < S, I, R, L >
and a set S<sub>p</sub> of states satisfying q in M
```

```
procedure CheckAG (S_p)
   Reach = \emptyset
   S_0 = I
   \mathbf{k} = \mathbf{0}
   while S_k \not\subset \text{Reach do}
        If S_k \cap S_p \neq \emptyset return (M \neq AGq)
        S_{k+1} = Image(S_k)
        Reach = Reach \cup S<sub>k</sub>
        k = k+1
   end while
return( Reach, M |= AGp)
```

Model checking AGq

 Also called forward reachability analysis

- Two process mutual exclusion with shared semaphore
- Each process has three states
 - Non-critical (N)
 - Trying (T)
 - Critical (C)
- Semaphore can be available (S_0) or taken (S_1)
- Initially both processes are in the Non-critical state and the semaphore is available --- $N_1 N_2 S_0$

$$\begin{array}{ccccccc} N_1 & \to & T_1 & & N_2 & \to & T_2 \\ T_1 \wedge S_0 & \to & C_1 \wedge S_1 & \prod & T_2 \wedge S_0 & \to & C_2 \wedge S_1 \\ C_1 & \to & N_1 \wedge S_0 & & C_2 & \to & N_2 \wedge S_0 \end{array}$$

 $M \models AG \neg (C_1 \land C_2)$

The two processes are never in their critical states at the same time

 $M \models AG \neg (C1 \land C2)$ $S_4 \subseteq S_0 \cup \ldots \cup S_3$

Main limitation:

The state explosion problem: Model checking is efficient in time but suffers from high space requirements:

The number of states in the system model grows exponentially with

- the number of variables
- the number of components in the system

Symbolic model checking

A solution to the state explosion problem which uses Binary Decision Diagrams (BDDs) to represent the model and sets of states.

- Suitable mainly for hardware
- Can handle systems with hundreds of Boolean variables

Binary decision diagrams (BDDs)

- Data structure for representing Boolean functions
- Often concise in memory
- · Canonical representation
- Most Boolean operations on BDDs can be done in polynomial time in the BDD size

BDDs in model checking

- Every set $A \subseteq U$ can be represented by its characteristic function $\int_{A}^{I} if u \in A$ $f_{A}(u) = 0 \quad if u \notin A$
- If the elements of A are encoded by sequences over {0,1}ⁿ then f_A is a Boolean function and can be represented by a BDD

Representing a model with BDDs

- Assume that states in model M are encoded by {0,1}ⁿ and described by Boolean variables v₁...v_n
- Reach, S_k can be represented by BDDs over $v_1 \dots v_n$
- R (a set of pairs of states (s,s')) can be represented by a BDD over v₁...v_n v₁'...v_n'

Example: representing a model with BDDs

 $S = \{ s_1, s_2, s_3 \}$ R = { (s_1, s_2), (s_2, s_2), (s_3, s_1) }

State encoding: $s_1: v_1v_2=00 \quad s_2: v_1v_2=01 \quad s_3: v_1v_2=11$

For $A = \{s_1, s_2\}$ the Boolean formula representing A: $f_A(v_1, v_2) = (\neg v_1 \land \neg v_2) \lor (\neg v_1 \land v_2) = \neg v_1$

$$f_{R}(v_{1}, v_{2}, v'_{1}, v'_{2}) = (\neg v_{1} \land \neg v_{2} \land \neg v'_{1} \land v'_{2}) \lor (\neg v_{1} \land v_{2} \land \neg v'_{1} \land v'_{2}) \lor (\neg v_{1} \land v_{2} \land \neg v'_{1} \land v'_{2}) \lor (v_{1} \land v_{2} \land \neg v'_{1} \land \neg v'_{2})$$

 f_A and f_R can be represented by BDDs.

State explosion problem (cont.)

 state of the art symbolic model checking can handle only systems with a few hundreds of Boolean variables

Other solutions for the state explosion problem are needed

SAT-based model checking

- Translates the model and the specification to a propositional formula
- Uses efficient tools for solving the satisfiability problem

Since the satisfiability problem is NPcomplete, SAT solvers are based on heuristics.

SAT solvers

- Using heuristics, SAT tools can solve very large problems fast.
- They can handle systems with 1000 variables that create formulas with a few thousands of variables.

GRASP (Silva, Sakallah) Prover (Stalmark) Chaff (Malik) MiniSat, ...

Model Checking: From BDDs to Interpolation

Lecture 2

Orna Grumberg Technion Haifa, Israel

Summer school at Bayrischzell 2011

SAT-based model checking

- Translate the model and the specification to a propositional formula
- Use efficient tools (SAT solvers) for solving the satisfiability problem

Bounded model checking for checking AGp

- Unwind the model for k levels, i.e., construct all computation of length k
- If a state satisfying ¬p is encountered, then produce a counterexample

The method is suitable for **falsification**, not verification

Bounded model checking with SAT

- Construct a formula $\mathbf{f}_{M,k}$ describing all possible computations of M of length k
- Construct a formula $f_{\phi,k}$ expressing that $\phi=EF_{-}p$ holds within k computation steps
- Check whether $f = f_{M,k} \wedge f_{\phi,k}$ is satisfiable

If f is satisfiable then $M \neq AGp$ The satisfying assignment is a counterexample

Example - shift register

Shift register of 3 bits: <x, y, z> Transition relation: $R(x,y,z,x',y',z') = x'=y \land y'=z \land z'=1$ $|____|$ error

Initial condition: $I(x,y,z) = x=0 \lor y=0 \lor z=0$

Specification: AG ($x=0 \lor y=0 \lor z=0$)

Propositional formula for k=2

$$f_{M} = (x_{0}=0 \lor y_{0}=0 \lor z_{0}=0) \land (x_{1}=y_{0} \land y_{1}=z_{0} \land z_{1}=1) \land (x_{2}=y_{1} \land y_{2}=z_{1} \land z_{2}=1)$$

$$f_{\phi} = V_{i=0,..2} (x_i = 1 \land y_i = 1 \land z_i = 1)$$

Satisfying assignment: 101 011 111 This is a counter example!

A remark

In order to describe a computation of length k by a propositional formula we need k copies of the state variables.
With BDDs we use only two copies of current and next states.

Bounded model checking

- Can handle LTL formulas, when interpreted over finite paths
- Can be used for verification by choosing k which is large enough so that every path of length k contains a cycle
- Using such a k is often not practical due to the size of the model

BDDs versus SAT

- SAT-based tools are mainly useful for bug finding while BDD-based tools are suitable for full verification
- some examples work better with BDDs and some with SAT.

Verification with SAT solvers

Interpolation-Sequence Based Model Checking [VG09]

Inspired by:

- forward reachability analysis
 Combines:
- Bounded Model Checking
- Interpolation-sequence

Obtains:

 SAT-based model checking algorithm for full verification

Forward Reachability Analysis

Forward reachability analysis

- S_j is the set of states reachable from some initial state in j steps
- termination when
 - either a bad state satisfying $\neg q$ is found
 - or a fixpoint is reached:

 $\boldsymbol{S}_{j} \subseteq \cup_{i=0,j-1} \boldsymbol{S}_{i}$

Bounded Model Checking

 Does the system have a counterexample of length k?

 $INIT(V_0) \land \neg q(V_0)$

 $INIT(V_0) \wedge T(V_0, V_1) \wedge \neg q(V_1)$

 $INIT(V_0) \wedge T(V_0, V_1) \wedge T(V_1, V_2) \wedge \neg q(V_2)$

A Bit of Intuition

Interpolation (Craig, 57)

If A \(\Lambda\) B = false, there exists an interpolant I for (A,B) such that:

$\begin{array}{l} \textbf{A}\Rightarrow \textbf{I}\\ \textbf{I}\wedge \textbf{B}=\textbf{false}\\ \textbf{I} \text{ refers only to common variables of}\\ \textbf{A},\textbf{B} \end{array}$

Interpolation (cont.)

• Example:

 $A = p \land q$, $B = \neg q \land r$, I = q

 Interpolants from proofs given a resolution refutation (proof of unsatisfiability) of A B,
 I can be derived in linear time.

(Pudlak,Krajicek,97)

Interpolation In The Context of Model Checking

I is over the common variables of A and B, i.e V_1

Interpolation in the context of model checking

- I is over V_1
- A ⇒I
 - I over-approximates the set S_1
- $I \wedge B \equiv F$
 - States in I cannot reach a bug in k-1 steps

Interpolation-Sequence

The same BMC formula partitioned in a different manner:

 I_{j} is over the common variables of A_{1},\ldots,A_{j} and $A_{j+1},\ldots,A_{k+1},$ i.e V_{j}

Interpolation-Sequence (2)

- Can easily be computed. For $1 \le j < n$
 - $-A = A_1 \wedge ... \wedge A_j$

$$-\mathsf{B}=\mathsf{A}_{j+1}\wedge \ldots \wedge \mathsf{A}_{n}$$

 $-I_j$ is the interpolant for the pair (A,B)

Interpolation-Sequence Based Model Checking

Using Interpolation-Sequence

Combining Interpolation-Sequence and BMC

- A way to do reachability analysis using a SAT solver.
- Uses the original BMC loop and adds an inclusion check for full verification.
- Similar sets to those computed by Forward Reachability Analysis but overapproximated.

Computing Reachable States with a SAT Solver

- Use BMC to search for bugs.
- Partition the checked BMC formula and extract the interpolation sequence

$$INIT(V_0) \wedge T(V_0, V_1) \wedge T(V_1, V_2) \wedge \dots \wedge T(V_{N-1}, T_N) \wedge \neg q(V_N)$$

The Analogy to Forward Reachability Analysis

Model Checking: From BDDs to Interpolation

Lecture 3

Orna Grumberg Technion Haifa, Israel

Summer school at Bayrischzell 2011

Verification with SAT solvers

Combining Interpolation-Sequence and BMC

- Uses BMC for bug finding
- Uses Interpolation-sequence for computing over-approximation of sets S_j of reachable states
- Uses SAT solver for inclusion check for full verification

Combining Interpolation-Sequence and BMC

Always terminates

- either when BMC finds a bug: $M \neq AGq$
- or when all reachable states has been found: M |= AGq

Interpolation-Sequence

The same BMC formula partitioned in a different manner:

 I_{j} is over the common variables of A_{1},\ldots,A_{j} and $A_{j+1},\ldots,A_{k+1}, \underset{65}{i.e}\ V_{j}$

Using Interpolation-Sequence

Checking if a "fixpoint" has been reached

- $\boldsymbol{\cdot} \ \boldsymbol{I}_{j} \Rightarrow \boldsymbol{V}_{k=1,j-1} \ \boldsymbol{I}_{k}$
- Similar to checking fixpoint in forward reachability analysis : $S_j \subseteq U_{k=1,j-1} \ S_k$
- But here we check inclusion for every $2 \le j \le N$
 - No monotonicity because of the approximation
- "Fixpoint" is checked with a SAT solver

The Analogy to Forward Reachability Analysis

Notation:

If no counterexample of length N or less exists in M, then:

- $I_j{}^k$ is the j-th element in the interpolation-sequence extracted from the BMC-partition of ϕ^k
- $\mathbf{I}_{j} = \Lambda_{k=j,N} \mathbf{I}_{j}^{k} [V^{j} \leftarrow V]$
- The reachability vector is: $\hat{I} = (I_1, I_2, ..., I_N)$

function UpdateReachable(\hat{I}, \hat{I}^{k}) j=1 while (j < k) do $\mathbf{I}_{j} = \mathbf{I}_{j} \wedge \mathbf{I}_{j}^{k}$ $\hat{\mathcal{I}}[j] = \mathbf{I}_{j}$ end while $\hat{I}[k] = I_k^k$ end function

function FixpointReached $(\hat{I}) // \text{check } I_i \Rightarrow V_{k=1,i-1} I_k$ j=2 while $(j \leq \hat{I}.length)$ do $\mathbf{R} = \mathbf{V}_{k=1, j-1} \mathbf{I}_{k}$ $\alpha = I_i \land \neg R$ // negation of $I_i \Rightarrow R$ if $(SAT(\alpha) = false)$ then return true end if j = j+1 end while return false end function

```
Function ISB(M, f) //f = AGq
   k = 0
   result = BMC(M, f, 0)
   if (result == cex) then return cex
   \hat{I} = \phi // the reachability vector
   while (true) do
        k = k+1
        result = BMC(M, f, k)
        if (result==cex) then return cex
        \hat{I}^{k} = (T, I_{1}^{k}, ..., I_{k}^{k}, F)
        UpdateReachable (\hat{I}, \hat{I}^k)
        if (FixpointReached (\hat{I}) == true) then
                 return true
        end if
   end while
end function
```

Interpolation-Based Model Checking [McM03]

Interpolation In The Context of Model Checking

- We can check several bounds with one formula
- Given a BMC formula with possibly several bad states

74

I is over the common variables of A and B, i.e V_1

Interpolation In The Context of Model Checking

- The interpolant represents an overapproximation of reachable states after one transition.
- Also, there is no path of length k-1 or less that can reach a bad state.

Using Interpolation

Using Interpolation (2)

$INIT(V_0) \wedge T(V_0, V_1) \wedge T(V_1, V_2) \wedge (\neg q(V_1) \vee \neg q(V_2))$

 $I_1'(V_0) \wedge T(V_0, V_1) \wedge T(V_1, V_2) \wedge (\neg q(V_1) \vee \neg q(V_2))$

 $I_{k}'(V_{0}) \wedge T(V_{0}, V_{1}) \wedge T(V_{1}, V_{2}) \wedge (\neg q(V_{1}) \vee \neg q(V_{2}))$

The Analogy to Forward Reachability Analysis

 $INII_{2}'(V_{0}) \wedge T(V_{0}, V_{1}) \wedge T((V_{0}, V_{2})) \wedge ((-\iota q((W_{11}))) \otimes -\iota q((W_{22})))))$

78

Charectaristics

- When calculating the interpolant for the ith iteration, for bound k the following holds:
 - The interpolant represents an overapproximation of reachable states after *i* transitions.
 - Also, it cannot reach a bad state in *k-1+i* steps or less.
 - It is similar to I_i calculated in ISB after k+i iterations.

Algorithm

```
Check the INIT states.
N = 1
Reachable = INIT
While (true)
  while (BMC(M,f,Reachable,1,N) == false)
       I = getInterpolant();
       if ( I \Rightarrow Reachable )
               return true;
       else
               Reachable = Reachable \vee I;
   if (Reachable == INIT)
       return false:
  else
       N++;
```

McMillan's Method

- The computation itself is different.
 - Uses basic interpolation.
 - Successive calls to BMC for the same bound.
 - Not incremental.
- The sets computed are different.

Experimental Results

 Experiments were conducted on two future CPU designs from Intel (two different architectures)

Experimental Results -Falsification

83

Experimental Results -Verification

84

Experiments Results - Analysis

	Spec	#Var s	Bound (Ours)	Bound (M)	#Int (Ours)	#Int (M)	#BMC (Ours)	#B MC (m)	Time [s] (Curs)	Time [s] (M)
\langle	F ₁	3406	16	15	136	80	16	80	970	5518
	F_2	1753	9	8	45	40	9	40	91	388
	F ₃	1753	16	15	136	94	16	94	473	1901
	F_4	3406	6	5	21	13	6	13	68	208
	F ₅	1761	2	1	3	2	2	2	5	4
	F ₆	3972	3	1	6	3	3	3	19	14
	F ₇	2197	3	1	6	3	3	3	2544	1340
	F ₈	4894	5	1	15	3	5	3	635	101

Analysis

- False properties is always faster.
- True properties results vary. Heavier properties favor ISB where the easier favor IB.
- Some properties cannot be verified by one method but can be verified by the other and vise-versa.

Conclusions

- A new SAT-based method for unbounded model checking.
 - BMC is used for falsification.
 - Simulating forward reachability analysis for verification.
- Method was successfully applied to industrial sized systems.

End of lecture 3

Model checking:

- E.M. Clarke, A. Emerson, Synthesis of Synchronization Skeletons for Branching Time Temporal Logic, workshop on Logic of programs, 1981
- J-P. Queille, J. Sifakis, Specification and Verification of Concurrent Systems in CESAR, international symposium on programming, 1982
- E.M. Clarke, O. Grumberg, D. Peled, Model Checking, MIT press, 1999

- BDDs: R. E. Bryant, Graph-based Algorithms for Boolean Function Manipulation, IEEE transactions on Computers, 1986
- BDD-based model checking: J.R. Burch, E.M. Clarke, K.L. McMillan, D.L. Dill, L.J. Hwang, Symbolic Model Checking: 10²⁰ States and Beyond, LICS'90
- SAT-based Bounded model checking: Symbolic model checking using SAT procedures instead of BDDs, A. Biere, A. Cimatti, E. M. Clarke, M. Fujita, Y. Zhu, DAC'99

• 3-Valued BMC:

A. Yadgar, A. Flaisher, O. Grumberg, and M. Lifshits, High Capacity (Bounded) Model Checking Using 3-Valued Abstraction

 A. Yadgar, New Approaches to Model Checking and to 3-valued abstraction and Refinement, Ph.d. Thesis, Technion, March 2010 Interpolation based model checking:

- K. McMillan, Interpolation and SAT-Based Model Checking, CAV'03
- T. Henzinger, R. Jhala, R. Majumdar, K. McMillan, Abstractions from Proofs, POPL'04
- Y. Vizel and O. Grumberg, Interpolation-Sequence Based Model Checking, FMCAD'09

Exercise 1

Write 2 CTL formulas.

1. f_1 is true in a state iff the state is the start of a path along which p holds at least twice

2. f_2 is true in a state iff the state is the start of a path along which p holds exactly twice