Model Checking:
 From BDDs to Interpolation

Orna Grumberg
Technion
Haifa, Israel

Summer school at Bayrischzell 2011

Why (formal) verification?

- safety-critical applications: Bugs are unacceptable!
- Air-traffic controllers
- Medical equipment
- Cars
- Bugs found in later stages of design are expensive, e.g. Intel's Pentium bug in floating-point division
- Hardware and software systems grow in size and complexity: Subtle errors are hard to find by testing
- Pressure to reduce time-to-market

Automated tools for formal verification are needed

Formal Verification

Given

- a model of a (hardware or software) system and
- a formal specification does the system model satisfy the specification?

Not decidable!

To enable automation, we restrict the problem to a decidable one:

- Finite-state reactive systems
- Propositional temporal logics

Finite state systems examples

- Hardware designs
- Controllers (elevator, traffic-light)
- Communication protocols (when ignoring the message content)
- High level (abstracted) description of non finite state systems

Properties in temporal logic examples

- mutual exclusion: always $\neg\left(\mathrm{Cs}_{1} \wedge \mathrm{Cs}_{2}\right)$
- non starvation:
always (request \Rightarrow eventually granted)
- communication protocols:
(\neg get-message) until send-message

Model Checking [CE81,Q582]

An efficient procedure that receives:

- A finite-state model describing a system
- A temporal logic formula describing a property

It returns
yes, if the system has the property
no + Counterexample, otherwise

Model Checking

- Emerging as an industrial standard tool for verification of hardware designs: Intel, IBM, Synopsis, ...
- Recently applied successfully also for software verification: SLAM (Microsoft), Java PathFinder and SPIN (NASA), BLAST (EPFL), CBMC (Oxford),...
- SLAM won the 2011 CAV award

Model of a system

Kripke structure / transition system

Temporal Logics

- Temporal Logics
- Express properties of event orderings in time
- Linear Time
- Every moment has a unique successor
- Infinite sequences (words)
- Linear Time Temporal Logic (LTL)

- Branching Time
- Every moment has several successors
- Infinite tree
- Computation Tree Logic (CTL)

Propositional temporal logic

In Negation Normal Form
AP - a set of atomic propositions
Temporal operators:

Path quantifiers: A for all path
E there exists a path

CTL/CTL*

- LTL - interpreted over infinite computation paths
- CTL - interpreted over infinite computation trees
- CTL* - Allows any combination of temporal operators and path quantifiers. Includes both LTL and CTL

ACTL / ACTL*

The universal fragments of CTL/CTL* with only universal path quantifiers

CTL formulas: Example

- mutual exclusion: $\quad \mathbf{A G} \neg\left(c s_{1} \wedge C s_{2}\right)$
- non starvation: $A G$ (request $\Rightarrow A F$ grant)
- "sanity" check: EF request

Model checking

A basic operation: Image computation

Given a set of states Q, Image(Q) returns the set of successors of Q
$\operatorname{Image}(Q)=\left\{s^{\prime} \mid \exists s\left[R\left(s, s^{\prime}\right) \wedge Q(s)\right]\right\}$

Model checking AGq on M

- Iteratively compute the sets S_{j} of states reachable from an initial state in j steps
- At each iteration check whether S_{j} contains a state satisfying $\neg q$.
- If so, declare a failure
- Terminate when all states were found.

$$
S_{k} \subseteq \cup_{i=0, k-1} S_{i}
$$

- Result: the set Reach of reachable states.

Model checking f = AG p

Given a model $M=$ < S, I, R, L > and a set S_{p} of states satisfying \boldsymbol{q} in M
procedure CheckAG $\left(S_{p}\right)$
Reach $=\varnothing$
$\mathrm{S}_{0}=\mathrm{I}$
$\mathrm{k}=0$
while $S_{k} \not \subset$ Reach do

$$
\begin{aligned}
& \text { If } S_{k} \cap S_{p} \neq \varnothing \text { return }(M \mid \neq A G q) \\
& S_{k+1}=\operatorname{Image}\left(S_{k}\right) \\
& \text { Reach }=\operatorname{Reach} \cup S_{k} \\
& k=k+1 \\
& \text { end while } \\
& \text { return (Reach, } M \mid=A G p)
\end{aligned}
$$

Model checking AGq

- Also called forward reachability analysis

Mutual Exclusion Example

- Two process mutual exclusion with shared semaphore
- Each process has three states
- Non-critical (N)
- Trying (T)
- Critical (C)
- Semaphore can be available $\left(\mathrm{S}_{0}\right)$ or taken $\left(\mathrm{S}_{1}\right)$
- Initially both processes are in the Non-critical state and the semaphore is available --- $\mathrm{N}_{1} \mathrm{~N}_{2} \mathrm{~S}_{0}$

$$
\begin{aligned}
& \mathrm{N}_{1} \rightarrow \mathrm{~T}_{1} \\
& \mathrm{~T}_{1} \wedge \mathrm{~S}_{0} \rightarrow \mathrm{C}_{1} \wedge \mathrm{~S}_{1} \\
& \mathrm{C}_{1} \quad \rightarrow \mathrm{~N}_{1} \wedge \mathrm{~S}_{0}
\end{aligned} \quad \begin{aligned}
& \mathrm{N}_{2} \rightarrow \mathrm{~T}_{2} \\
& \mathrm{~T}_{2} \wedge \mathrm{~S}_{0} \rightarrow \mathrm{C}_{2} \wedge \mathrm{~S}_{1} \\
& \hline \mathrm{~N}_{2} \wedge \mathrm{~S}_{0}
\end{aligned}
$$

Mutual Exclusion Example

$$
\mathrm{M} \neq \mathrm{AG} \neg\left(\mathrm{C}_{1} \wedge \mathrm{C}_{2}\right)
$$

The two processes are never in their critical states at the same time

Mutual Exclusion Example

$$
\mathrm{M} \vDash \mathrm{AG} \neg(\mathrm{C} 1 \wedge \mathrm{C} 2)
$$

$$
\mathrm{S}_{0}
$$

Mutual Exclusion Example

$$
\mathrm{M} \vDash \mathrm{AG} \neg(\mathrm{C} 1 \wedge \mathrm{C} 2)
$$

$$
S_{1}
$$

Mutual Exclusion Example

$$
\mathrm{m} \vDash \mathrm{AG} \neg(\mathrm{C} 1 \wedge \mathrm{C} 2)
$$

$$
\mathrm{S}_{2}
$$

Mutual Exclusion Example

$$
\mathrm{M} \vDash \mathrm{AG} \neg(\mathrm{C} 1 \wedge \mathrm{C} 2)
$$

$$
\mathrm{S}_{3}
$$

Mutual Exclusion Example

$$
\begin{gathered}
\mathrm{M}=\mathrm{AG} \neg(\mathrm{C} 1 \wedge \mathrm{C} 2) \\
\mathrm{S}_{4} \subseteq \mathrm{~S}_{0} \cup \ldots \cup \mathrm{~S}_{3}
\end{gathered}
$$

Main limitation:

The state explosion problem:
Model checking is efficient in time but suffers from high space requirements:

The number of states in the system model grows exponentially with

- the number of variables
- the number of components in the system

Symbolic model checking

A solution to the state explosion problem which uses Binary Decision Diagrams (BDDs)
to represent the model and sets of states.

- Suitable mainly for hardware
- Can handle systems with hundreds of Boolean variables

Binary decision diagrams (BDDs)

- Data structure for representing Boolean functions
- Often concise in memory
- Canonical representation
- Most Boolean operations on BDDs can be done in polynomial time in the BDD size

BDDs in model checking

- Every set $\boldsymbol{A} \subseteq \mathbf{U}$ can be represented by its characteristic function
$f_{A}(u)= \begin{cases}1 & \text { if } u \in A \\ 0 & \text { if } u \notin A\end{cases}$
- If the elements of A are encoded by sequences over $\{0,1\}^{n}$ then f_{A} is a Boolean function and can be represented by a BDD

Representing a model with BDDs

- Assume that states in model M are encoded by $\{0,1\}^{n}$ and described by Boolean variables $\mathbf{v}_{1} \ldots \mathbf{v}_{\mathrm{n}}$
- Reach, \mathbf{S}_{k} can be represented by BDDs over $\mathbf{v}_{1} \ldots \mathbf{v}_{\mathrm{n}}$
- \mathbf{R} (a set of pairs of states (s, s^{\prime})) can be represented by a BDD over $v_{1} \ldots v_{n} v_{1}^{\prime} \ldots v_{n}{ }^{\prime}$

Example: representing a model with BDDs

$S=\left\{s_{1}, s_{2}, s_{3}\right\}$
$R=\left\{\left(s_{1}, s_{2}\right),\left(s_{2}, s_{2}\right),\left(s_{3}, s_{1}\right)\right\}$

State encoding:
$s_{1}: v_{1} v_{2}=00 \quad s_{2}: v_{1} v_{2}=01 \quad s_{3}: v_{1} v_{2}=11$
For $A=\left\{s_{1}, s_{2}\right\}$ the Boolean formula representing A :
$f_{A}\left(v_{1}, v_{2}\right)=\left(\neg v_{1} \wedge \neg v_{2}\right) \vee\left(\neg v_{1} \wedge v_{2}\right)=\neg v_{1}$
$f_{R}\left(v_{1}, v_{2}, v_{1}^{\prime}, v_{2}^{\prime}\right)=$
$\left(\neg v_{1} \wedge \neg v_{2} \wedge \neg v_{1}^{\prime} \wedge v_{2}^{\prime}\right) \vee$
$\left(\neg v_{1} \wedge v_{2} \wedge \neg v_{1}^{\prime} \wedge v_{2}^{\prime}\right) \vee$
$\left(v_{1} \wedge v_{2} \wedge \neg v_{1}^{\prime} \wedge \neg v_{2}^{\prime}\right)$
f_{A} and f_{R} can be represented by GDs.

BDD for $f(a, b, c)=(a \wedge b) \vee c$

State explosion problem (cont.)

- state of the art symbolic model checking can handle only systems with a few hundreds of Boolean variables

Other solutions for the state explosion problem are needed

SAT-based model checking

- Translates the model and the specification to a propositional formula
- Uses efficient tools for solving the satisfiability problem

Since the satisfiability problem is NPcomplete, SAT solvers are based on heuristics.

SAT solvers

- Using heuristics, SAT tools can solve very large problems fast.
- They can handle systems with 1000 variables that create formulas with a few thousands of variables.

GRASP (Silva, Sakallah)
Prover (Stalmark)
Chaff (Malik)
MiniSat, ...

Model Checking: From BDDs to Interpolation

Lecture 2

Orna Grumberg
Technion
Haifa, Israel

Summer school at Bayrischzell 2011

SAT-based model checking

- Translate the model and the specification to a propositional formula
- Use efficient tools (SAT solvers) for solving the satisfiability problem

Bounded model checking for checking AGp

- Unwind the model for k levels, i.e., construct all computation of length k
- If a state satisfying $\neg p$ is encountered, then produce a counterexample

The method is suitable for falsification, not verification

Bounded model checking with SAT

- Construct a formula $f_{M, k}$ describing all possible computations of M of length k
- Construct a formula $f_{\varphi, k}$ expressing that $\varphi=E F \neg p$ holds within k computation steps
- Check whether $f=f_{M, k} \wedge f_{\varphi, k}$ is satisfiable

If f is satisfiable then $M \mid \neq A G p$
The satisfying assignment is a counterexample

Example - shift register

Shift register of 3 bits: <x,y,z>
Transition relation:
$R\left(x, y, z, x^{\prime}, y^{\prime}, z^{\prime}\right)=x^{\prime}=y \wedge y^{\prime}=z \wedge z^{\prime}=1$

Initial condition:
$I(x, y, z)=x=0 \vee y=0 \vee z=0$
Specification: $A G(x=0 \vee y=0 \vee z=0)$

Propositional formula for $k=2$

$$
\begin{aligned}
f_{M}= & \left(x_{0}=0 \vee y_{0}=0 \vee z_{0}=0\right) \wedge \\
& \left(x_{1}=y_{0} \wedge y_{1}=z_{0} \wedge z_{1}=1\right) \wedge \\
& \left(x_{2}=y_{1} \wedge y_{2}=z_{1} \wedge z_{2}=1\right) \\
f_{\varphi}= & V_{i=0, \ldots 2}\left(x_{i}=1 \wedge y_{i}=1 \wedge z_{i}=1\right)
\end{aligned}
$$

Satisfying assignment: 101011111
This is a counter example!

A remark

In order to describe a computation of length k by a propositional formula we need k copies of the state variables.
With BDDs we use only two copies of current and next states.

Bounded model checking

- Can handle LTL formulas, when interpreted over finite paths
- Can be used for verification by choosing k which is large enough so that every path of length k contains a cycle
- Using such a k is often not practical due to the size of the model

BDDs versus SAT

- SAT-based tools are mainly useful for bug finding while BDD-based tools are suitable for full verification
- some examples work better with BDDs and some with SAT.

Verification with SAT solvers

Interpolation-Sequence Based Model Checking [VG09]

Inspired by:

- forward reachability analysis

Combines:

- Bounded Model Checking
- Interpolation-sequence

Obtains:

- SAT-based model checking algorithm for full verification

Forward Reachability Analysis

Forward reachability analysis

- S_{j} is the set of states reachable from some initial state in j steps
- termination when
- either a bad state satisfying $\neg q$ is found
- or a fixpoint is reached:

$$
S_{j} \subseteq \cup_{i=0, j-1} S_{i}
$$

Bounded Model Checking

- Does the system have a counterexample of length k ?
$\operatorname{INIT}\left(V_{0}\right) \wedge \neg q\left(V_{0}\right)$
$\operatorname{INIT}\left(V_{0}\right) \wedge T\left(V_{0}, V_{1}\right) \wedge \neg q\left(V_{1}\right)$
$\operatorname{INIT}\left(V_{0}\right) \wedge T\left(V_{0}, V_{1}\right) \wedge T\left(V_{1}, V_{2}\right) \wedge \neg q\left(V_{2}\right)$
$\operatorname{INIT}\left(V_{0}\right) \wedge T\left(V_{0}, V_{1}\right) \wedge T\left(V_{1}, V_{2}\right) \wedge \ldots \wedge T\left(V_{k-1}, V_{k}\right) \wedge \neg q\left(V_{k}\right)$

A Bit of Intuition

$$
\sum_{\substack{B A D \\-q}}^{M}
$$

INIT

Interpolation

- If $A \wedge B=$ false, there exists an interpolant I for (A, B) such that:

$$
\begin{gathered}
A \Rightarrow I \\
I \wedge B=\text { false } \\
\text { I refers only to common variables of } \\
A, B
\end{gathered}
$$

Interpolation (cont.)

- Example:

$$
A=p \wedge q, \quad B=\neg q \wedge r, \quad I=q
$$

- Interpolants from proofs given a resolution refutation (proof of unsatisfiability) of $A \wedge B$, I can be derived in linear time.
(Pudlak,Krajicek, 97)

Interpolation In The Context of Model Checking

- Given the following $B M C_{B}$ formula φ^{k}

I is over the common var iables of A and B, i.e V_{1}

Interpolation in the context of model checking

- I is over V_{1}
- $A \Rightarrow I$
- I over-approximates the set S_{1}
- $I \wedge B \equiv F$
- States in I cannot reach a bug in $\mathrm{k}-1$ steps

Interpolation=Sequence

- The same BMC formula partitioned in a different manner:

I_{j} is over the common variables of A_{1}, \ldots, A_{j} and A_{j+1}, \ldots, A_{k+1}, i.e. $V_{j 4}$

Interpolation-Sequence (2)

- Can easily be computed. For $1 \leq \mathrm{j}<\mathrm{n}$
$-A=A_{1} \wedge \ldots \wedge A_{j}$
$-B=A_{j+1} \wedge \ldots \wedge A_{n}$
$-\mathrm{I}_{\mathrm{j}}$ is the interpolant for the pair (A, B)

Interpolation-Sequence Based Model Checking

Using Interpolation-Sequence

Combining Interpolation= Sequence and BMC

- A way to do reachability analysis using a SAT solver.
- Uses the original BMC loop and adds an inclusion check for full verification.
- Similar sets to those computed by Forward Reachability Analysis but overapproximated.

Computing Reachable States with a SAT Solver

- Use BMC to search for bugs.
- Partition the checked BMC formula and extract the interpolation sequence

The Anallogy to Forward Reachabillity Analysis

Model Checking: From BDDs to Interpolation

Lecture 3

Orna Grumberg
Technion
Haifa, Israel

Summer school at Bayrischzell 2011

Verification with SAT solvers

Combining Interpolation-Sequence and BMC

- Uses BMC for bug finding
- Uses Interpolation-sequence for computing over-approximation of sets S_{j} of reachable states
- Uses SAT solver for inclusion check for full verification

Combining Interpolation-Sequence and BMC

Always terminates

- either when BMC finds a bug: $M \mid \neq A G q$
- or when all reachable states has been found:
$M \mid=A G q$

Interpolation=Sequence

- The same BMC formula partitioned in a different manner:

I_{j} is over the common variables of A_{1}, \ldots, A_{j} and A_{j+1}, \ldots, A_{k+1}, i.e. $V_{j 5}$

Using Interpolation-Sequence

Checking if a "fixpoint" has been reached

- $I_{j} \Rightarrow V_{k=1, j-1} I_{k}$
- Similar to checking fixpoint in forward reachability analysis:
$\mathrm{S}_{\mathrm{j}} \subseteq \mathrm{U}_{\mathrm{k}=1, \mathrm{j}-1} \mathrm{~S}_{\mathrm{k}}$
- But here we check inclusion for every $2 \leq \mathrm{j} \leq \mathrm{N}$
- No monotonicity because of the approximation
- "Fixpoint" is checked with a SAT solver

The Anallogy to Forward Reachabillity Analysis

Notation:

If no counterexample of length N or less exists in M, then:

- $I_{j}{ }^{k}$ is the j-th element in the interpolationsequence extracted from the BMCpartition of φ^{k}
- $I_{j}=\Lambda_{k=j, N} I_{j}{ }^{k}\left[V^{j} \leftarrow V\right]$
- The reachability vector is:
$\hat{I}=\left(I_{1}, I_{2}, \ldots, I_{N}\right)$
function UpdateReachable (\hat{I}, \hat{I}^{k})
$\mathrm{j}=1$ while (j < k) do
$I_{j}=I_{j} \wedge I_{j}{ }^{k}$
$\hat{I}[j]=I_{j}$
end while
$\hat{I}[k]=I_{k}{ }^{k}$
end function
function FixpointReached $(\hat{I}) / /$ check $I_{j} \Rightarrow V_{k=1, j-1} I_{k}$
$j=2$
while ($\mathrm{j} \leq \hat{I}$.length) do

$$
R=V_{k=1, j-1} I_{k}
$$

$\alpha=I_{j} \wedge \neg R / /$ negation of $I_{j} \Rightarrow R$ if (SAT $(\alpha)==$ false) then return true end if
$j=j+1$
end while
return false
end function

```
Function \(\operatorname{ISB}(M, f) \quad / / f=A G q\)
    \(\mathrm{k}=0\)
    result \(=B M C(M, f, 0)\)
    if (result == cex) then return cex
    \(\hat{I}=\phi / /\) the reachability vector
    while (true) do
        \(k=k+1\)
            result \(=\) BMC ( \(M, f, k\) )
            if (result==cex) then return cex
            \(\hat{I}^{k}=\left(T, I_{1}{ }^{k}, \ldots, I_{k}{ }^{k}, F\right)\)
            UpdateReachable ( \(\hat{I}, \hat{I}^{k}\) )
            if ( FixpointReached \((\hat{I})==\) true) then
                return true
            end if
    end while
end function
```


Interpolation-Based Model Checking [McMO3]

Interpolation In The Context of Model Checking

- We can check several bounds with one formula
- Given a BMC formula with possibly several bad states

I is over the common variables of A and B, i.e V_{1}

Interpolation In The Context of Model Checking

- The interpolant represents an overapproximation of reachable states after one transition.
- Also, there is no path of length k-1 or less that can reach a bad state.

Using Interpolation

Using Interpolation (2)

$$
I_{1}^{\prime}\left(V_{0}\right) \wedge T\left(V_{0}, V_{1}\right) \wedge T\left(V_{1}, V_{2}\right) \wedge\left(\neg q\left(V_{1}\right) \vee \neg q\left(V_{2}\right)\right)
$$

$$
I_{k}^{\prime}\left(V_{0}\right) \wedge T\left(V_{0}, V_{1}\right) \wedge T\left(V_{1}, V_{2}\right) \wedge\left(\neg q\left(V_{1}\right) \vee \neg q\left(V_{2}\right)\right)
$$

The Anallogy to Forward Reachabillity Analysis

INIT

Charectaristics

- When calculating the interpolant for the ith iteration, for bound k the following holds:
- The interpolant represents an overapproximation of reachable states after i transitions.
- Also, it cannot reach a bad state in k-1+isteps or less.
- It is similar to I_{i} calculated in ISB after $k+i$ iterations.

Algorithm

Check the INIT states.

$\mathrm{N}=1$

Reachable $=$ INIT
While (true)
while ($B M C(M, f$, Reachable, $1, N)==$ false)
I = getInterpolant();
if ($I \Rightarrow$ Reachable)
return true;
else
Reachable $=$ Reachable $\vee I$;
if (Reachable $=$ INIT)
return false;
else
N++;

|McMillan's Method

- The computation itself is different.
- Uses basic interpolation.
- Successive calls to BMC for the same bound.
- Not incremental.
- The sets computed are different.

Experimental Results

- Experiments were conducted on two future CPU designs from Intel (two different architectures)

Experimental Results Falsification

Experimental Results Verification

Experiments Results - Analysis

Spec	\#Var	Bound	Bound	\#Int	\#Int	\#BMC	\#B	Time	Time [s] (M)
	s	(Ours)	(M)	(Ours)	(M)	(Ours)	MC	[s]	
							(in)	(Oums)	
F_{1}	3406	16	15	136	80	16	80	970	5518
F_{2}	1753	9	8	45	40	9	40	91	388
F_{3}	1753	16	15	136	94	16	94	473	1901
F_{4}	3406	6	5	21	13	6	13	68	208
F_{5}	1761	2	1	3	2	2	2	5	4
F_{6}	3972	3	1	6	3	3	3	19	14
F_{7}	2197	3	1	6	3	3	3	2544	1340
F_{8}	4894	5	1	15	3	5	3	635	101

Analysis

- False properties is always faster.
- True properties - results vary. Heavier properties favor ISB where the easier favor IB.
- Some properties cannot be verified by one method but can be verified by the other and vise-versa.

Conclusions

- A new SAT-based method for unbounded model checking.
- BMC is used for falsification.
- Simulating forward reachability analysis for verification.
- Method was successfully applied to industrial sized systems.

End of lecture 3

Model checking:

- E.M. Clarke, A. Emerson, Synthesis of Synchronization Skeletons for Branching Time Temporal Logic, workshop on Logic of programs, 1981
- J-P. Queille, J. Sifakis, Specification and Verification of Concurrent Systems in CESAR, international symposium on programming, 1982
- E.M. Clarke, O. Grumberg, D. Peled, Model Checking, MIT press, 1999
- BDDs:
R. E. Bryant, Graph-based Algorithms for Boolean Function Manipulation, IEEE transactions on Computers, 1986
- BDD-based model checking: J.R. Burch, E.M. Clarke, K.L. McMillan, D.L. Dill, L.J. Hwang, Symbolic Model Checking: 10^20 States and Beyond, LICS'90
- SAT-based Bounded model checking: Symbolic model checking using SAT procedures instead of BDDs, A. Biere, A. Cimatti, E. M. Clarke, M. Fujita, Y. Zhu, DAC'99
- 3-Valued BMC:
A. Yadgar, A. Flaisher, O. Grumberg, and M. Lifshits, High Capacity (Bounded) Model Checking Using 3-Valued Abstraction
- A. Yadgar, New Approaches to Model Checking and to 3-valued abstraction and Refinement, Ph.d. Thesis, Technion, March 2010

Interpolation based model checking:

- K. McMillan, Interpolation and SAT-Based Model Checking, CAV'03
- T. Henzinger, R. Jhala, R. Majumdar, K. McMillan, Abstractions from Proofs, POPL'04
- Y. Vizel and O. Grumberg, InterpolationSequence Based Model Checking, FMCAD'09

Exercise 1

Write 2 CTL formulas.

1. f_{1} is true in a state iff the state is the start of a path along which p holds at least twice
2. f_{2} is true in a state iff the state is the start of a path along which p holds exactly twice
