
1

Model Checking:
From BDDs to Interpolation

Orna Grumberg
Technion

Haifa, Israel

Summer school at Bayrischzell 2011 



2

Why (formal) verification?
• safety-critical applications: Bugs are unacceptable!

– Air-traffic controllers
– Medical equipment
– Cars

• Bugs found in later stages of design are expensive, e.g. 
Intel’s Pentium bug in floating-point division

• Hardware and software systems grow in size and complexity: 
Subtle errors are hard to find by testing

• Pressure to reduce time-to-market 

Automated tools for formal verification are needed



3

Formal Verification
Given 
• a model of a (hardware or software) system and 
• a formal specification
does the system model satisfy the specification?

Not decidable!

To enable automation, we restrict the problem to a 
decidable one:

• Finite-state reactive systems
• Propositional temporal logics



4

Finite state systems -
examples

• Hardware designs
• Controllers (elevator, traffic-light)
• Communication protocols (when ignoring the 

message content)
• High level (abstracted) description of non 

finite state systems



5

Properties in temporal logic -
examples

• mutual exclusion:
always ¬( cs1 ∧ cs2)

• non starvation:
always (request ⇒ eventually granted)

• communication protocols:
(¬ get-message) until send-message



6

Model Checking [CE81,QS82]

An efficient procedure that receives:
� A finite-state model describing a system
� A temporal logic formula describing a 

property

It returns 
yes, if the system has the property
no + Counterexample, otherwise 



7

Model Checking
� Emerging as an industrial standard tool for 

verification of hardware designs: Intel, 
IBM, Synopsis, …

� Recently applied successfully also for 
software verification: SLAM (Microsoft), 
Java PathFinder  and SPIN (NASA), BLAST 
(EPFL), CBMC (Oxford),…
� SLAM won the 2011 CAV award



8

Model of a system
Kripke structure / transition system

a,b a

ab,c

c

a,c a,bb



9

Temporal Logics

• Linear Time
– Every moment has a unique 

successor
– Infinite sequences (words)
– Linear Time Temporal Logic (LTL)

• Branching Time
– Every moment has several 

successors
– Infinite tree
– Computation Tree Logic (CTL)

• Temporal Logics
– Express properties of event orderings in time



10

Propositional temporal logic
In Negation Normal Form

AP – a set of atomic propositions

Temporal operators:

Gp

Fp

Xp

pUq

Path quantifiers: A for all path
E there exists a path



11

CTL/CTL*
• LTL – interpreted over infinite computation paths
• CTL – interpreted over infinite computation trees
• CTL* - Allows any combination of temporal 

operators and path quantifiers. Includes both LTL 
and CTL

ACTL / ACTL*

The universal fragments of CTL/CTL* with only 
universal path quantifiers



12

CTL formulas: Example 

• mutual exclusion:   AG ¬( cs1 ∧ cs2)

• non starvation:  AG( request ⇒ AF grant)

• “sanity” check: EF request



13

Model checking 

A basic operation: Image computation

Given a set of states Q, Image(Q) 
returns the set of successors of Q

Image(Q) = { s’ | ∃∃∃∃s [ R(s,s’) ∧∧∧∧Q(s)]}



14

Model checking AGq on M
• Iteratively compute the sets Sj of states 

reachable from an initial state in j steps

• At each iteration check whether Sj
contains a state satisfying ¬q.
– If so, declare a failure

• Terminate when all states were found.
Sk ⊆ ∪i=0,k-1Si

– Result: the set Reach of reachable states.



15

Model checking f = AG p
Given a model M= < S, I, R, L >

and a set Sp of states satisfying  q in M

procedure CheckAG (Sp )
Reach = ∅∅∅∅
S0 = I 
k = 0 
while Sk ⊄ Reach do

If Sk ∩∩∩∩ Sp ≠≠≠≠ ∅∅∅∅ return (M |≠ AGq)
Sk+1 = Image(Sk) 
Reach  = Reach ∪∪∪∪ Sk

k = k+1
end while

return( Reach, M |= AGp)



16

Model checking AGq

• Also called 
forward reachability analysis



17

Mutual Exclusion Example

N1  → T1

T1 ∧ S0 → C1 ∧ S1     

C1 → N1 ∧ S0

N2  → T2

T2 ∧ S0 → C2 ∧ S1

C2 → N2 ∧ S0

||

• Two process mutual exclusion with shared semaphore

• Each process has three states

• Non-critical (N)

• Trying (T)

• Critical (C)

• Semaphore can be available (S0) or taken (S1) 

• Initially both processes are in the Non-critical state and

the semaphore is available --- N1 N2 S0



18

Mutual Exclusion Example
N1N2S0

C1N2S1
T1T2S0

N1T2S0T1N2S0

N1C2S1

T1C2S1C1T2S1

M ╞AG ¬ (C1 ∧C2 )

The two processes are never in their 

critical states at the same time



19

Mutual Exclusion Example
N1N2S0

C1N2S1
T1T2S0

N1T2S0T1N2S0

N1C2S1

T1C2S1C1T2S1

M ╞AG ¬ (C1 ∧ C2 )

S0



20

Mutual Exclusion Example
N1N2S0

C1N2S1
T1T2S0

N1T2S0T1N2S0

N1C2S1

T1C2S1C1T2S1

M ╞AG ¬ (C1 ∧ C2 )

S1



21

Mutual Exclusion Example
N1N2S0

C1N2S1
T1T2S0

N1T2S0T1N2S0

N1C2S1

T1C2S1C1T2S1

M ╞AG ¬ (C1 ∧ C2 )

S2



22

Mutual Exclusion Example
N1N2S0

C1N2S1
T1T2S0

N1T2S0T1N2S0

N1C2S1

T1C2S1C1T2S1

M ╞AG ¬ (C1 ∧ C2 )

S3



23

Mutual Exclusion Example
N1N2S0

C1N2S1
T1T2S0

N1T2S0T1N2S0

N1C2S1

T1C2S1C1T2S1

M ╞AG ¬ (C1 ∧ C2 )

S4 ⊆ S0∪ … ∪S3



24

Main limitation:

The state explosion problem:
Model checking is efficient in time but 

suffers from high space requirements:

The number of states in the system model 
grows exponentially with 

� the number of variables
� the number of components in the system



25

Symbolic model checking

A solution to the state explosion problem which
uses Binary Decision Diagrams  ( BDDs )
to represent the model and sets of  states. 

• Suitable mainly for hardware
• Can handle systems with hundreds of Boolean 

variables



26

Binary decision diagrams 
(BDDs)

• Data structure for representing 
Boolean functions

• Often concise in memory
• Canonical representation
• Most Boolean operations on BDDs can 

be done in polynomial time in the BDD 
size



27

BDDs in model checking

• Every set A ⊆⊆⊆⊆ U can be represented by 
its characteristic function

1 if u∈A
fA(u) =       0 if u ∉ A

• If the elements of A are encoded by 
sequences over {0,1}n then fA is a Boolean
function and can be represented by a BDD



28

Representing a model with BDDs

• Assume that states in model M are 
encoded by {0,1}n and described by 
Boolean variables  v1...vn

• Reach, Sk can be represented  by BDDs 
over v1...vn

• R (a set of pairs of states (s,s’) ) 
can be represented by a BDD over 
v1...vn v1’...vn’



29

Example:  representing a model 
with BDDs

S = { s1, s2, s3 }
R = { (s1,s2), (s2,s2), (s3,s1) }

State encoding:
s1:  v1v2=00    s2:  v1v2=01   s3:  v1v2=11

For A = {s1, s2} the Boolean formula 
representing A:

fA(v1,v2) = (¬¬¬¬v1 ∧∧∧∧ ¬¬¬¬v2) ∨∨∨∨ (¬¬¬¬v1 ∧∧∧∧v2)  =  ¬¬¬¬v1



30

fR(v1, v2, v’1, v’2 ) =
(¬v1 ∧ ¬v2 ∧ ¬v’1 ∧v’2)  ∨
(¬v1 ∧ v2 ∧ ¬v’1 ∧v’2) ∨
(v1 ∧ v2 ∧ ¬v’1 ∧ ¬v’2 )

fA and fR can be represented by BDDs.



31

a
b

c

10

c

1 1

b
c

1 1

b

cc
b

0 11 0

a
b

cc

1 1 10

c c c

BDD for  f(a,b,c) = (a ∧∧∧∧ b ) ∨∨∨∨ c

Decision tree

a
b

c

10

BDD



32

State explosion problem (cont.)

• state of the art symbolic model 
checking can handle only systems with 
a few hundreds of Boolean variables

Other solutions for the state explosion 
problem are needed



33

SAT-based model checking
• Translates the model and the 

specification to a propositional formula
• Uses efficient tools for solving the 

satisfiability problem 

Since the satisfiability problem is NP-
complete, SAT solvers are based on 
heuristics.



34

SAT solvers

• Using heuristics, SAT tools can solve very 
large problems fast.

• They can handle systems with 1000 
variables that create formulas with a few 
thousands of variables.

GRASP (Silva, Sakallah)
Prover (Stalmark)
Chaff (Malik)
MiniSat, …



35

Model Checking:
From BDDs to Interpolation

Lecture 2

Orna Grumberg
Technion

Haifa, Israel

Summer school at Bayrischzell 2011 



36

SAT-based model checking

• Translate the model and the 
specification to a propositional formula

• Use efficient tools (SAT solvers) for 
solving the satisfiability problem 



37

Bounded model checking
for checking AGp

• Unwind the model for k levels, i.e., 
construct all computation of length k

• If a state satisfying ¬p is 
encountered, then produce 
a counterexample

The method is suitable for 
falsification, not verification



38

Bounded model checking with SAT

• Construct a formula fM,k describing all possible 
computations of M of length k

• Construct a formula fϕϕϕϕ,k expressing that  
ϕϕϕϕ=EF¬¬¬¬p holds within k computation steps

• Check whether  f = fM,k ∧∧∧∧ fϕϕϕϕ,k  is satisfiable

If f is satisfiable then  M |≠≠≠≠ AGp

The satisfying assignment is a counterexample



39

Example – shift register
Shift register of 3 bits:   <x, y, z>
Transition relation:
R(x,y,z,x’,y’,z’) =    x’=y  ∧ y’=z   ∧ z’=1

|____|
error

Initial condition:
I(x,y,z) =  x=0 ∨ y=0 ∨ z=0

Specification: AG ( x=0 ∨ y=0 ∨ z=0)



40

Propositional formula for k=2

fM = (x0=0 ∨ y0=0 ∨ z0=0) ∧
(x1=y0 ∧ y1=z0 ∧ z1=1) ∧
(x2=y1 ∧ y2=z1 ∧ z2=1)

fϕ = Vi=0,..2 (xi=1 ∧ yi=1 ∧ zi=1)

Satisfying assignment: 101  011  111

This is a counter example!



41

A remark

In order to describe a computation of 
length k by a propositional formula we 
need k copies of the state variables.

With BDDs we use only two copies of 
current and next states.



42

Bounded model checking

• Can handle LTL formulas, when 
interpreted over finite paths

• Can be used for verification by 
choosing k which is large enough so 
that every path of length k contains a 
cycle

• Using such a k is often not practical
due to the size of the model



43

BDDs versus SAT

• SAT-based tools are mainly useful 
for  bug finding while BDD-based 
tools are suitable for full verification

• some examples work better with 
BDDs and some with SAT.



44

Verification with SAT solvers



4545

Interpolation-Sequence 
Based Model Checking [VG09]

Inspired by:
• forward reachability analysis
Combines:
• Bounded Model Checking
• Interpolation-sequence

Obtains:
• SAT-based model checking algorithm for 

full verification



4646

……  
Sn

……  
Sn

S2S2S1S1INIT
BAD 
¬q

BAD 
¬q

Forward Reachability Analysis



4747

Forward reachability analysis

• Sj is the set of states reachable from 
some initial state in j steps

• termination when
– either a bad state satisfying ¬¬¬¬q is found
– or a fixpoint is reached:

Sj ⊆⊆⊆⊆ ∪i=0,j-1Si



4848

• Does the system have a counterexample 
of length k?

)(),(),(),()( 121100 kkk VqVVTVVTVVTVINIT ¬∧∧∧∧∧ −…

)()( 00 VqVINIT ¬∧

)(),()( 1100 VqVVTVINIT ¬∧∧

)(),(),()( 221100 VqVVTVVTVINIT ¬∧∧∧

.

.

.



4949

INIT

INIT I3I3

BAD 
¬q

I1I1 I2I2

S1 S2 S3



Interpolation

• If A ∧∧∧∧ B = false, there exists an interpolant I for (A,B) 
such that:

A ⇒⇒⇒⇒ I
I ∧∧∧∧ B = false

I refers only to common variables of 
A,B

(Craig,57)



Interpolation (cont.)

• Example: 
A = p ∧∧∧∧ q,   B = ¬¬¬¬q ∧∧∧∧ r,    I = q

• Interpolants from proofs
given a resolution refutation (proof of 

unsatisfiability) of A ∧∧∧∧ B, 

I can be derived in linear time.

(Pudlak,Krajicek,97)



5252

),()( 100 VVTVINIT ∧

• Given the following BMC formula ϕk

)(),(),( 121 kkk VqVVTVVT ¬∧∧∧ −…∧

A B

I

1V i.e B, andA  of iablescommon var over the is I

FBI

IA

≡∧

⇒



Interpolation in the context of 
model checking

• I is over V1
• A ⇒I

– I over-approximates the set S1

• I ∧ B ≡ F
– States in I cannot reach a bug in k-1 

steps 



5454

),()( 100 VVTVINIT ∧ )(),(),(),( 13221 kkk VqVVTVVTVVT ¬∧∧∧∧ −…∧

A1
A2 A3 Ak Ak+1

I
1

I
2

I
3

I
k-1

I
k

j1k1jj1j

1

10

V i.e ,A,,A and A,,A of iablescommon var over the is I

,

++

−

+

⇒∧

==

……

jjj

k

IAI

FITI

• The same BMC formula partitioned in a 
different manner:



5555

• Can easily be computed. For 1 ≤ j < n

– A = A1 ∧∧∧∧ … ∧∧∧∧ Aj

– B = Aj+1 ∧∧∧∧ … ∧∧∧∧ An

– Ij is the interpolant for the pair (A,B)



5656



5757

I1,1

)(),(),()( 221100 VqVVTVVTVINIT ¬∧∧∧

I1,2
I2,2

)(),()( 1100 VqVVTVINIT ¬∧∧

I1



5858

• A way to do reachability analysis using 
a SAT solver.

• Uses the original BMC loop and adds 
an inclusion check for full verification.

• Similar sets to those computed by 
Forward Reachability Analysis but over-
approximated.



5959

• Use BMC to search for bugs.

• Partition the checked BMC formula and 
extract the interpolation sequence

)(),(),(),()( 121100 NNN VqTVTVVTVVTVINIT ¬∧∧∧∧∧ −……

I1,N IN-1,NI2,N IN,N



6060

INIT S1

INIT

S2 S3

I1I1 I2I2 I3I3

BAD 
¬q

)(),(),(),()( 33221100 VqVVTVVTVVTVINIT ¬∧∧∧∧ )(),()( 1100 VqVVTVINIT ¬∧∧

I1,1I1,1

)(),(),()( 221100 VqVVTVVTVINIT ¬∧∧∧

I2,2I2,2I1,2I1,2

I1I1 I2I2

I3,3I3,3
I2,3I2,3I1,3I1,3



61

Model Checking:
From BDDs to Interpolation

Lecture 3

Orna Grumberg
Technion

Haifa, Israel

Summer school at Bayrischzell 2011 



62

Verification with SAT solvers



6363

• Uses BMC for bug finding

• Uses Interpolation-sequence for computing 
over-approximation of sets Sj of reachable 
states

• Uses SAT solver for inclusion check for 
full verification



6464

Always terminates
• either when BMC finds a bug:

M |≠ AGq

• or when all reachable states has been 
found: 
M |= AGq



6565

),()( 100 VVTVINIT ∧ )(),(),(),( 13221 kkk VqVVTVVTVVT ¬∧∧∧∧ −…∧

A1
A2 A3 Ak Ak+1

I
1

I
2

I
3

I
k-1

I
k

j1k1jj1j

1

10

V i.e ,A,,A and A,,A of iablescommon var over the is I

,

++

−

+

⇒∧

==

……

jjj

k

IAI

FITI

• The same BMC formula partitioned in a 
different manner:



6666

I1,1

)(),(),()( 221100 VqVVTVVTVINIT ¬∧∧∧

I1,2
I2,2

)(),()( 1100 VqVVTVINIT ¬∧∧

I1



6767

Checking if a “fixpoint” has been reached

• Ij ⇒⇒⇒⇒ Vk=1,j-1 Ik

• Similar to checking fixpoint in forward 
reachability analysis :
Sj ⊆⊆⊆⊆ Uk=1,j-1 Sk

• But here we check inclusion for every 2 ≤≤≤≤ j ≤≤≤≤ N
– No monotonicity because of the approximation

• “Fixpoint” is checked with a SAT solver



6868

INIT S1

INIT

S2 S3

I1I1 I2I2 I3I3

BAD 
¬q

)(),(),(),()( 33221100 VqVVTVVTVVTVINIT ¬∧∧∧∧ )(),()( 1100 VqVVTVINIT ¬∧∧

I1,1I1,1

)(),(),()( 221100 VqVVTVVTVINIT ¬∧∧∧

I2,2I2,2I1,2I1,2

I1I1 I2I2

I3,3I3,3
I2,3I2,3I1,3I1,3



6969

Notation:
If no counterexample of length N or less 

exists in M, then:

• Ij
k is the j-th element in the interpolation-

sequence extracted from the BMC-
partition of ϕk

• Ij = Λk=j,N Ij
k [Vj ← V]

• The reachability vector is:
Î = ( I1, I2, … , IN )



7070

function UpdateReachable( Î, Î k )
j=1
while (j < k ) do

Ij = Ij ∧ Ij
k

Î [j] = Ij

end while
Î [k] = Ik

k

end function



7171

function FixpointReached (Î ) // check Ij ⇒ Vk=1,j-1 Ik

j=2
while (j ≤ Î .length) do

R = Vk=1,j-1 Ik
α = Ij ∧ ¬R  // negation of Ij⇒R
if (SAT(α)==false) then return true
end if
j = j+1

end while
return false

end function



7272

Function ISB(M, f)    // f = AGq
k = 0
result = BMC (M, f, 0)
if (result == cex) then return cex
Î = φ // the reachability vector

while (true) do
k = k+1
result = BMC (M, f, k)
if (result==cex) then return cex
Î k = ( T, I1

k, … , Ik
k, F )

UpdateReachable (Î , Î k )
if ( FixpointReached (Î  ) == true) then

return true
end if

end while
end function



7373

Interpolation-Based Model 
Checking [McM03]



7474

• We can check several bounds with one formula
• Given a BMC formula with possibly several bad states

),()( 100 VVTVINIT ∧ ))(...)((),(),( 1121 kkk VqVqVVTVVT ¬∨∨¬∧∧∧ −…∧

A B

I

1V i.e B, andA  of iablescommon var over the is I

FBI

IA

≡∧

⇒



7575

• The interpolant represents an over-
approximation of reachable states after 
one transition.

• Also, there is no path of length k-1 or less
that can reach a bad state.



7676

I1

I2

)(),()( 1100 VqVVTVINIT ¬∧∧

)(),()( 11001 VqVVTVI ¬∧∧

)(),()( 11002 VqVVTVI ¬∧∧
BAD 
¬q



7777

I’1

))()((),(),()( 2121100 VqVqVVTVVTVINIT ¬∨¬∧∧∧

))()((),(),()(' 21211001 VqVqVVTVVTVI ¬∨¬∧∧∧

))()((),(),()(' 2121100 VqVqVVTVVTVIk ¬∨¬∧∧∧

.

.

.



7878

INIT S1

INIT

S2 S3

BAD 
¬q

))()((),(),()(' 21211002 VqVqVVTVVTVI ¬∨¬∧∧∧ ))()((),(),()( 2110100 VqVqVVTVVTVINIT ¬∨¬∧∧∧

I’1I’1

))()((),(),()(' 21211001 VqVqVVTVVTVI ¬∨¬∧∧∧

I’2I’2
I’3I’3



7979

• When calculating the interpolant for the i-
th iteration, for bound k the following 
holds:
– The interpolant represents an over-

approximation of reachable states after i
transitions.

– Also, it cannot reach a bad state in k-1+i steps 
or less.
• It is similar to Ii calculated in ISB after k+i iterations.



8080

Check the INIT states.
N = 1
Reachable = INIT
While (true)

while ( BMC(M,f,Reachable,1,N) == false )
I = getInterpolant();
if ( I ⇒ Reachable )

return true;
else

Reachable = Reachable ∨ I;
if (Reachable == INIT)

return false;
else

N++;



8181

• The computation itself is different.

– Uses basic interpolation.

– Successive calls to BMC for the same 

bound.

– Not incremental.

• The sets computed are different.

S1 I1I1J1J1



8282

• Experiments were conducted on two 
future CPU designs from Intel (two 
different architectures)



8383



8484



8585

Spec #Var
s

Bound

(Ours)

Bound

(M)

#Int

(Ours)

#Int

(M)

#BMC

(Ours)

#B
MC

(M)

Time 
[s]

(Ours)

Time [s]

(M)

F1 3406 16 15 136 80 16 80 970 5518

F2 1753 9 8 45 40 9 40 91 388

F3 1753 16 15 136 94 16 94 473 1901

F4 3406 6 5 21 13 6 13 68 208

F5 1761 2 1 3 2 2 2 5 4

F6 3972 3 1 6 3 3 3 19 14

F7 2197 3 1 6 3 3 3 2544 1340

F8 4894 5 1 15 3 5 3 635 101



8686

• False properties is always faster.

• True properties – results vary. Heavier 
properties favor ISB where the easier 
favor IB.

• Some properties cannot be verified by 
one method but can be verified by the 
other and vise-versa.



8787

• A new SAT-based method for 
unbounded model checking.
– BMC is used for falsification.
– Simulating forward reachability analysis 

for verification.
• Method was successfully applied to 

industrial sized systems.



88

End of lecture 3



89

Model checking:
• E.M. Clarke, A. Emerson, Synthesis of 

Synchronization Skeletons for Branching Time 
Temporal Logic, workshop on Logic of programs, 
1981

• J-P. Queille, J. Sifakis, Specification and 
Verification of Concurrent Systems in CESAR, 
international symposium on programming, 1982

• E.M. Clarke, O. Grumberg, D. Peled, 
Model Checking, MIT press, 1999



90

• BDDs:
R. E. Bryant, Graph-based Algorithms for 
Boolean Function Manipulation, IEEE 
transactions on Computers, 1986

• BDD-based model checking:
J.R. Burch, E.M. Clarke, K.L. McMillan, D.L. 
Dill, L.J. Hwang, Symbolic Model Checking: 
10^20 States and Beyond, LICS’90

• SAT-based Bounded model checking:
Symbolic model checking using SAT 
procedures instead of BDDs, A. Biere, A. 
Cimatti, E. M. Clarke, M. Fujita, Y. Zhu, 
DAC'99



91

• 3-Valued BMC:
A. Yadgar, A. Flaisher, O. Grumberg, and M. 
Lifshits, High Capacity (Bounded) Model 
Checking Using 3-Valued Abstraction

• A. Yadgar, New Approaches to Model 
Checking and to 3-valued abstraction and 
Refinement, Ph.d. Thesis, Technion, March 
2010



92

Interpolation based model checking:
• K. McMillan, Interpolation and SAT-Based 

Model Checking, CAV’03

• T. Henzinger, R. Jhala, R. Majumdar, 
K. McMillan,  Abstractions from Proofs, 
POPL’04

• Y. Vizel and O. Grumberg, Interpolation-
Sequence Based Model Checking, FMCAD’09



Exercise 1
Write 2 CTL formulas. 

1. f1 is true in a state iff
the state is the start of a path along 
which p holds at least twice

2. f2 is true in a state iff
the state is the start of a path along 
which p holds exactly twice


