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Why (formal) verification?

safety-critical applications: Bugs are unacceptablel
- Air-traffic controllers

- Medical equipment

- Cars

Bugs found in later stages of design are expensive, e.g.
Intel's Pentium bug in floating-point division

Hardware and software systems grow in size and complexity:
Subtle errors are hard to find by ftesting

Pressure to reduce time-to-market

Automated tools for formal verification are needed



Formal Verification

Given

* a model of a (hardware or software) system and

» a formal specification

does the system model satisfy the specification?
Not decidable!

To enable automation, we restrict the problem to a
decidable one:

- Finite-state reactive systems
* Propositional temporal logics



Finite state systems -
examples

 Hardware designs
+ Controllers (elevator, traffic-light)

+ Communication protocols (when ighoring the
message content)

* High level (abstracted) description of non
finite state systems



Properties in temporal logic -
examples

- mutual exclusion:

always —( cs; A €s,)

* non starvation:

always (request = eventually granted)

- communication protocols:
(— get-message) until send-message



Model Checking [CE81,Q582]

An efficient procedure that receives:
« A finite-state model describing a system

= A temporal logic formula describing a
property

It returns
yes, if the system has the property
no + Counterexample, otherwise



Model Checking

» Emerging as an industrial standard tool for
verification of hardware designs: Intel,
IBM, Synopsis, ...

= Recently applied successfully also for
software verification: SLAM (Microsoft),
Java PathFinder and SPIN (NASA), BLAST
(EPFL), CBMC (Oxford),...

« SLAM won the 2011 CAV award



Model of a system

Kripke structure / transition system




Temporal Logics

* Temporal Logics

— Express properties of event orderings in time

» Linear Time * Branching Time
- Every moment has a unique - Every moment has several
successor successors
- Infinite sequences (words) - Infinite tree
- Linear Time Temporal Logic (LTL) - Computation Tree Logic (CTL)



Propositional temporal logic

In Negation Normal Form
AP - a set of atomic propositions

Temporal operators:

6p @ @ @ @ ¢ o o
Fp O O @ O o o ©
Xp O @ O O o o ©
Ug @ @ @ O o o o

Path quantifiers: A for all path
E there exists a path
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CTL/CTL*

+ LTL - interpreted over infinite computation paths
+ CTL - interpreted over infinite computation trees

+ CTL* - Allows any combination of temporal
operators and path quantifiers. Includes both LTL
and CTL

ACTL / ACTL*

The universal fragments of CTL/CTL* with only
universal path quantifiers
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CTL formulas: Example

- mutual exclusion: AG —( cs; A cs,)
* non starvation: AG( request = AF grant)

+ “sanity” check: EF request
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Model checking

A basic operation: Image computation

Given a set of states Q, Image(Q)
returns the set of successors of Q

Image(Q) ={s' | 3s [ R(s,s") AQ(s)]}
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- At each iteration check whether S

Model checking AGg on M

- Iteratively compute the sets S, of states
reachable from an initial state in j steps

contains a state satisfying —q. J
- If so, declare a failure

- Terminate when all states were found.

Sk C Yizo k19

- Result: the set Reach of reachable states.
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Model checking f = AG p

Givenamodel M= < S, I, R, L »
and a set S, of states satisfying q in M

procedure CheckAG (S, )
Reach = &
So=1I
k=0
while S, « Reach do
If Sy NS, # & return (M |# AGq)
Sk+1 = Image(sk)
Reach = Reach U S,
k = k+1
end while
return( Reach, M |= AGp)

15



Model checking AGq

+ Also called
forward reachability analysis
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Mutual Exclusion Example

e Two process mutual exclusion with shared semaphore
e Each process has three states
e Non-critical (N)
e Trying (T)
e Critical (C)
e Semaphore can be available (S,) or taken (S,)
e Initially both processes are in the Non-critical state and
the semaphore 1s available --- N; N, S,

N; —> T, N, —> T,
T ASy— C S, || T,aS,— C,ns,
C, —> N, A S, C2 —>N/\S
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Mutual Exclusion Example

M EAG — (C,AC,)

The two processes are never in their
critical states at the same time
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Mutual Exclusion Example

M EAG— (C1 A C2)

S



Mutual Exclusion Example

M EAG— (C1 A C2)

S



Mutual Exclusion Example

M EAG— (C1 A C2)

S)



Mutual Exclusion Example

M EAG— (C1 A C2)

S3



Mutual Exclusion Example

M EAG— (C1 A C2)

S, © SyuU ... US;
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Main limitation:

The state explosion problem:

Model checking is efficient in time but
suffers from high space requirements:

The number of states in the system model
grows exponentially with

= the number of variables
= the number of components in the system
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Symbolic model checking

A solution to the state explosion problem which
uses Binary Decision Diagrams ( BDDs )
to represent the model and sets of states.

» Suitable mainly for hardware

* Can handle systems with hundreds of Boolean
variables
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Binary decision diagrams
(BDDs)

* Data structure for representing
Boolean functions

+ Often concise in memory
» Canonical representation

* Most Boolean operations on BDDs can
be done in polynomial time in the BDD
size
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BDDs in model checking

- Every set A < U can be represented by
its characteristic function

1 ifucA

fu)= 10 ifugA

N~

* If the elements of A are encoded by
sequences over {0,1}" then f, is a Boolean
function and can be represented by a BDD
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Representing a model with BDDs

- Assume that states in model M are

encoded by {0,1}" and described by
Boolean variables v;...v,

* Reach, S, can be represented by BDDs
over vy...Vv,

* R (a set of pairs of states (s,s’) )
can be r'epr'esen’red by a BDD over
Vi...V, Vi ...V,
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Example: representing a model
with BDDs

S={s5, 53}
R = {(51,5,), (52,52), (53.51) }

State encoding:
st vqv,=00 s, vyv,=01  s3t vyv,=1l

For A = {s;, s,} the Boolean formula
representing A:
fA(VIIVZ) - (—|V1 VAN _IVZ) V (_IV1 /\V2) - —|V1
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fr(vy, v2, Vi, V)=
(Vi A =V, A 2V AV,) v
(—V{ A Vo A =V AV,) vV
(Vi AV, A=V A—V,)

f , and f, can be represented by BDDs.
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BDD for f(a,b,c) =(aaAb)vec
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State explosion problem (cont.)

+ state of the art symbolic model
checking can handle only systems with
a few hundreds of Boolean variables

Other solutions for the state explosion
problem are needed
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SAT-based model checking

* Translates the model and the
specification to a propositional formula

+ Uses efficient tools for solving the
satisfiability problem

Since the satisfiability problem is NP-
complete, SAT solvers are based on

heuristics.
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SAT solvers

» Using heuristics, SAT tools can solve very
large problems fast.

» They can handle systems with 1000
variables that create formulas with a few
thousands of variables.

GRASP (Silva, Sakallah)
Prover (Stalmark)
Chaff (Malik)

MiniSat, ..
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SAT-based model checking

 Translate the model and the
specification to a propositional formula

- Use efficient tools (SAT solvers) for
solving the satisfiability problem
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Bounded model checking
for checking AGp

- Unwind the model for k levels, i.e.,
construct all computation of length k

+ If a state satisfying —p is
encountered, then produce
a counterexample

The method is suitable for
falsification, not verification
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Bounded model checking with SAT

» Construct a formula fy , describing all possible
computations of M of length k

» Construct a formula f, , expressing that
¢=EF—p holds within k computation steps

* Check whether f = fy A f, x is satisfiable

If f is satisfiable then M |z AGp
The satisfying assignment is a counterexample
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Example - shift register

Shift register of 3 bits: <x,vy, z>
Transition relation:
R(xy.zxy.,zZ)= X=y A y=z A z=l

| |

error

Initial condition:
I(x,y,z) = x=0vy=0v z=0

Specification: AG ( x=0 v y=0 v z=0)
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Propositional formula for k=2

fm = (X0=0 v y5=0 v z5=0) A
(X1=Yo A Y1729 A Z=1) A
(X2=Y1 A Y2721 A 2571)

f(p = Vi:O,..Z (x=1 A Yi=l A z:=1)

Satisfying assignment: 101 011 111
This is a counter examplel
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A remark

In order to describe a computation of
length k by a propositional formula we
need k copies of the state variables.

With BDDs we use only two copies of
current and next states.
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Bounded model checking

- Can handle LTL formulas, when
interpreted over finite paths

» Can be used for verification by
choosing k which is large enough so
that every path of length k contains a
cycle

» Using such a k is often not practical
due to the size of the model
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BDDs versus SAT

+ SAT-based tools are mainly useful
for bug finding while BDD-based
tools are suitable for full verification

+ some examples work better with
BDDs and some with SAT.
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Verification with SAT solvers
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Interpolation-Sequence
Based Model Checking [VG09]

Inspired by:
+ forward reachability analysis
Combines:

» Bounded Model Checking
» Interpolation-sequence

Obtains:

+ SAT-based model checking algorithm for
full verification
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Forward Reachability Analysis

BAD
~q
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Forward reachability analysis

+ S s the set of states reachable from
some initial state in j steps

* fermination when
- either a bad state satisfying —q is found

- or a fixpoint is reached:
SjC Vi-0j-15
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Bounded Model Checking

* Does the s}ystem have a counterexample
of length k"

INIT(V,) A—q(V,))
INIT(V)) N T(V,,V,) A—q(V])
INIT(V,)) NT(V,,,V)) AT (V,,V,) A—q(V,)

INITV)ANTV,,VH)ATV,, VI A..ATV,_,V.)A—q(V,)
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. Craig,b7
Interpolation 9%
- If A A B-=false, there exists an interpolant I for (A,B)
such that:
A=1
I A B = false

I refers only fo common variables of
A,B



Interpolation (cont.)

+ Example:
A=panq, B=—qAr, I=gq

* Interpolants from proofs

given a resolution refutation (proof of
unsatisfiability) of A AB,
I can be derived in linear time.

(Pudlak,Krajicek,97)



Interpolation In The Context of
Model Checking

- Give/r\ the following BMC formula o*

A
‘ N \
INITV)YATV,,V) ATV V) Ao ATV, V) A—g(V,)

i

|

A=1
IANB=F

I1s over the common variables of A and B,1.e V,
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Interpolation in the context of
model checking

« T is over V1

« A1

- I over-approximates the set S,

- TAB=F

- States in I cannot reach a bug in k-1
steps



* The same BMC formula partitioned in a

different manner:

A1 A2 A3 Ak Ak+1

T e

([ A
INITV,)AT(V,,V) A TV VYATV,, V) Ao ATV, V) A—g(V,)

$§ 3 31 3

IZ I3 Ik-l Ik

ly=T,1,,=F
I, \NA =T,

[, is over the common variables of A ,...,A;and A A8V,
54
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\ L“Mg\,; ‘ DINCA [ /7))
|| \_/\_/_\_/A‘ \_/\_/\_/\_/\_7_\_/\_/ | W |

-

« Can easily be computed. For 1 <j<n
~AZ AL AL AA;
-B=Ajn . AA,
—I; is the interpolant for the pair (A,B)
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Interpolation-Sequence
Based Model Checking
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* A way to do reachability analysis using
a SAT solver.

» Uses the original BMC loop and adds
an inclusion check for full verification.

» Similar sets to those computed by
Forward Reachability Analysis but over-
approximated.
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» Use BMC to search for bugs.

* Partition the checked BMC formula and
extract the interpolation sequence

INIT(V)/\T(VO,V)AT(VI,V)/\ /\T(VN T, )/\—IQ(V )

NN



INIF (V) A T(%M)Mi@@%}il&‘@%) A=q(Vy)
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Verification with SAT solvers
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Combining Interpolation-Sequence
and BMC

Uses BMC for bug finding

* Uses Interpolation-sequence for computing
over-approximation of sets S; of reachable
states

- Uses SAT solver for inclusion check for
full verification
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Combining Interpolation-Sequence
and BMC

Always terminates

either when BMC finds a bug:
M |= AGq

or when all reachable states has been
found:
M |= AGq
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* The same BMC formula partitioned in a

different manner:

A1 A2 A3 Ak Ak+1

T e

([ A
INITV,)AT(V,,V) A TV VYATV,, V) Ao ATV, V) A—g(V,)

$§ 3 31 3

IZ I3 Ik-l Ik

ly=T,1,,=F
I, \NA =T,

[, is over the common variables of A ,...,A;and A A6V,
65

j+1,..0,
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Checking if a "fixpoint" has been reached

© L = Vi L

Similar to checking fixpoint in forward
reachability analysis :
S c Ukzl,j-l Sk

But here we check inclusion for every 2 < j< N

- No monotonicity because of the approximation

+ "Fixpoint" is checked with a SAT solver
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INIF (V) A T(%M)Mi@@%}il&‘@%) A=q(Vy)



Notation:

If no counterexample of length N or less
exists in M, then:

+ Ikis the j-th element in the interpolation-

sequence extracted from the BMC-

partition of ok
* IJ = Ak:j,N IJk [VJ < V]

+ The reachability vector is:
I = (Il, Iz, 'IN)
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function UpdateReachable( I, %)
J=1
while (j < k) do
IJ;\z L, AT
I[j]= Ij
end while
I'k]= Tk
end function
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function FixpointReached (f ) // check I, = Viey 1 I
=2
while (j < I .length) do
R= Vi1 Ik
o = I; A =R // negation of I,=R
if (SAT(a)==false) then return true
end if
J =i+
end while
return false
end function
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Function ISB(M, f) // f = AGq
k=0
result = BMC (M, f, 0)
if (result == cex) then return cex
I = ¢ // the reachability vector
while (true) do
k = k+1
result = BMC (M, f, k)
if (result==cex) then return cex
Ix=(T, Ik .., LK F)
UpdateReachable (£, %)
if ( FixpointReached (£ ) == true) then
return true
end if
end while
end function
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Interpolation-Based Model
Checking [McMO3]
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+ We can check several bounds with one formula
» Given a BMC formula with possibly several bad states

A B

N
[ : N h

INIT(V) ATV, ,VIANTV ,VION ATV, _VIA(=qg(V)Vv...v—q(V,))

i

|

A=1
IANB=F

I1s over the common variables of A and B,1.e V, 74



* The interpolant represents an over-
approximation of reachable states after
one transition.

* Also, there is no path of length 4-7or less
that can reach a bad state.
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INIT(V,) AT(Vy, V) A =g (V))

I1(V()) /\T(VoaV1) /é\_'Q(VJ

L,(V,)) AT (V,,V,) A—g(V,)
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INIT (V) /\T(VO,Vl)/i\T(VpVQ) A (=g (V) v —q(V;))

11'(V()) /\T(V()aV1) /\T(Vsz) N\ (_'Q(Vl) V_'Q(Vz))

Ik'(V()) /\T(V()aV1) /\T(Vsz) N\ (_'Q(Vl) \/—'Q(Vz))
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INIE" (Vo) AT (Vg V) AT (W, Vi) ) s —af @)
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* When calculating the interpolant for the i-
th iteration, for bound A the following
holds:

- The interpolant represents an over-
approximation of reachable states after /
transitions.

- Also, it cannot reach a bad state in A-7+/ steps
or less.

» It is similar to I, calculated in ISB after A+/ iterations.
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Check the INIT states.
N=1
Reachable = INIT
While (true)
while ( BMC(M,f ,Reachable,1,N) == false )
I = getInterpolant();
if (I = Reachable)
return true;
else
Reachable = Reachable v I;
if (Reachable == INIT)
return false;
else

N+
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* The computation itself is different.
— Uses basic interpolation.

— Successive calls to BMC for the same
bound.

—Not incremental.
* The sets computed are different.
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« Experiments were conducted on two
future CPU designs from Intel (two
different architectures)
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Experimental Results -
Falsification
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Experimental Results -

Verification

Interpolation-Sequence Based MC
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Experiments Results - Analysis

Spec | #Var | Bound | Bound | #Int | #Int | #BMC | #B

F, 3406 16 15 136 80 16 80 970 5518

F, 1753 9 8 45 40 9 40 91 388
Fs 1753 16 15 136 94 16 94 473 1901

F, 3406 6 3) 21 13 6 13 68 208
Fs 1761 2 1 3 2 2 2 5 4
Fe 3972 3 1 6 3 3 3 19 14
F, 2197 3 1 6 3 3 3 2544 1340
Fs 4894 5 1 15 3 5 3 635 101



 False properties is always faster.

* True properties — results vary. Heavier
properties favor ISB where the easier
favor IB.

* Some properties cannot be verified by
one method but can be verified by the
other and vise-versa.
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- A new SAT-based method for
unbounded model checking.

- BMC is used for falsification.

- Simulating forward reachability analysis
for verification.

* Method was successfully applied to
industrial sized systems.
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End of lecture 3
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Exercise 1
Write 2 CTL formulas.

1. f;is true in a state iff
the state is the start of a path along
which p holds at least twice

2. f, is true in a state iff
the state is the start of a path along
which p holds exactly twice



