
Finding Security Vulnerabilities in a Network Protocol
Using Parameterized Systems

Adi Sosnovich1, Orna Grumberg1, and Gabi Nakibly2

1 Computer Science Department, Technion, Haifa, Israel
{sadisos,orna}@cs.technion.ac.il

2 National EW Research and Simulation Center, Rafael, Haifa, Israel
gabin@rafael.co.il

Abstract. This paper presents a novel approach to automatically finding security
vulnerabilities in the routing protocol OSPF – the most widely used protocol
for Internet routing. We start by modeling OSPF on (concrete) networks with a
fixed number of routers in a specific topology. By using the model checking tool
CBMC, we found several simple, previously unpublished attacks on OSPF.

In order to search for attacks in a family of networks with varied sizes and
topologies, we define the concept of an abstract network which represents such a
family. The abstract network A has the property that if there is an attack on A then
there is a corresponding attack on each of the (concrete) networks represented
by A.

The attacks we have found on abstract networks reveal security vulnerabilities
in the OSPF protocol, which can harm routing in huge networks with complex
topologies. Finding such attacks directly on the huge networks is practically im-
possible. Abstraction is therefore essential. Further, abstraction enables showing
that the attacks are general. That is, they are applicable in a large (even infinite)
number of networks. This indicates that the attacks exploit fundamental vulnera-
bilities, which are applicable to many configurations of the network.

1 Introduction

This paper presents a novel approach to automatically finding security vulnerabilities
in the routing protocol Open Shortest Path First (OSPF) [14]. OSPF is the most widely
used protocol for Internet routing, thus finding vulnerabilities which are inherent to
the design of the protocol is significant for Internet security. Manually identifying vul-
nerabilities in a complex protocol such as OSPF is a hard task which requires deep
understanding and close acquaintance with the protocol.

We propose to find vulnerabilities automatically by using model checking tech-
niques. In order to use model checking for our purpose we build a model for the protocol
when running on a given network topology; we include in the model an attacker with
predefined capabilities; and we specify the absence of a state in which an attack suc-
ceeds (to be defined later). If the model checker finds a state violating the specification,
it returns a counterexample leading to that state. The counterexample being a run of the
protocol is, in fact, an attack on the protocol.

A high level description of the OSPF protocol is given below. OSPF runs on each
router in a network of routers. Its goal is to distribute the full network topology to all

N. Sharygina and H. Veith (Eds.): CAV 2013, LNCS 8044, pp. 724–739, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Finding Security Vulnerabilities in a Network Protocol 725

routers. The routers send each other messages describing their partial view of the net-
work topology. When a router gets a message from its neighbor, it updates its database
accordingly and floods the message on to all of its other neighbors. OSPF includes a
mechanism for fighting against possible attacks. If a router gets a message in its own
name that it did not originate, then the router initiates a “fight back” message in order
to correct the topology view of all other routers.

We start by modeling (concrete) networks with a fixed number of routers in a specific
topology, where each router runs the OSPF protocol. The attacker is one of the routers
running the same protocol, except that it can also send fake messages in the name of
other routers, and can ignore messages sent to it. A state of the model consists of the
databases and message queues of all routers in the network. We say that an attack suc-
ceeds in a state if (at least) one of the routers has a fake message in its database, and
no router has a message waiting to be sent. This means that no fight back is going to
change the fake topology view of this router. Thus, the attack is persistent.

We ran the model checking tool CBMC [2] on several topologies. We note that the
OSPF protocol is quite elaborate. Further, the size of the database of each router is
proportional to the size of the network. We therefore limited the topology sizes in or-
der to fit in the model checker capacity. Nevertheless, we have found several simple,
previously unpublished attacks. We also found a more subtle attack which was already
published. The vulnerabilities revealed by the attacks we found are known and accepted
by OSPF experts.

The limitation of the approach described so far is clear. It can only check a specific
and small network topology which may expose only a part of the protocol’s function-
ality. In order to allow for a good coverage of the protocol’s functionality many other
specific topologies need to be checked, taking more time and computing resources.

We therefore develop an approach which can search for attacks in a parameterized
network, consisting of a family of networks with varied sizes and topologies. We define
an abstract network, that represents such a family. The abstract network A has the
property that if there is an attack on A then there is a corresponding attack on each of
the (concrete) networks represented by A. An abstract network allows to reveal security
vulnerabilities in the OSPF protocol, which can harm routing in huge networks with
complex topologies. Finding such attacks directly on the huge networks is practically
impossible. Abstraction is therefore essential.

The abstraction is defined on all levels of the model: We define an abstract topol-
ogy which represents a family of concrete topologies. An abstract state represents a set
of concrete states. The correspondence between abstract transitions and their concrete
counterpart is more subtle. Each abstract transition represents a set of finite concrete
runs, one in each of the concrete topologies represented by A. As a result, our abstract
model is unusual: It under-approximates each member in a family of concrete models.
That is, every run of the abstract model has a corresponding run in each of the concrete
models represented by it. This is an important characteristics of our abstraction as it
allows us to find general attacks on an abstract network which are manifested in each
of the concrete models it represents. Thus, these attacks are applicable in a large (even
infinite) number of networks. This indicates that they exploit fundamental vulnerabili-
ties, which are applicable to many configurations of the network. This is in contrast to

726 A. Sosnovich, O. Grumberg, and G. Nakibly

finding a specific attack that is only applicable for a single perhaps marginal network
configuration.

In this part, we have found attacks on abstract networks manually. However, our
abstract model can be implemented for instance in C to be used with CBMC, similarly
to our implementation of the concrete model.

It should be noted that in principle, more attacks could be found on a concrete system
that belongs to a family. However, in this work we are interested in finding general
attacks, that are robust to changes in the topology. These are usually the first attacks a
network operator would like to know with regard to its network.

We emphasize that the contributions of this work go beyond the security analysis of
OSPF. The abstract concept and definition can be beneficial for finding security vulner-
abilities in other protocols as well.
To summarize, the contributions of this work are:

– We analyzed the OSPF routing protocol and automatically found attacks on it.
– We found general attacks which are applicable to families of networks and demon-

strated security vulnerabilities in the OSPF protocol.
– We developed a novel technique for parameterized networks which is suitable for

finding a counterexample (in our case an attack) on each member of the family.
– This work is a first step towards finding security vulnerabilities in other distributed

network protocols.

1.1 Related Work

There are a few works that present a security analysis of the OSPF protocol. Most such
works (e.g., [17,18,7,15]) focus on LSA falsification attacks. Only two past works ([7]
and [15]) present OSPF attacks with a persistent effect while evading a fight-back. This
low number of works stands in contrast to the centrality of OSPF to Internet routing.
This can be partially explained by the difficulty to do a manual and thorough security
analysis of complex distributed network protocols.

There are some works that propose a security analysis of the design of network pro-
tocols based on model checking (e.g., [12,13,9]) . All past works check a given network
configuration with a predetermined set of participants. In particular, some works (e.g.,
[11,5,10]) analyzed the security of OSPF and other routing protocols, while considering
only a given network model. As other distributed network protocols the functionality of
a routing protocol is highly dependent of the number of participants in the protocol and
the network topology. Hence, current works that employ model checking for distributed
network protocols may not cover the entire protocol’s functionality.

Reasoning about families of systems, also known as parameterized systems, is a
known research area (e.g. [6,8,4,16,1]). Most works present an abstract model which
over-approximates all members in the family and is used to verify that they all sat-
isfy a given property. We, on the other hand, define an abstract model which under-
approximates each member in the family. Our abstract model is therefore most suitable
for finding attacks on all members. To the best of our knowledge, no similar reasoning
has been applied before to parameterized systems.

Finding Security Vulnerabilities in a Network Protocol 727

2 Modeling OSPF

2.1 OSPF Basics

The Internet is clustered into sets of connected networks and routers called Autonomous
Systems (AS). Each AS is administered by a single authority, such as a large organiza-
tion, or an Internet service provider. Within each AS a routing protocol is run. Its aim is
to allow routers to construct their routing tables, while dynamically adapting to changes
in the AS topology. Open Shortest Path First (OSPF) [14] is currently used within most
ASes on the Internet. It was developed and standardized by the IETF organization.

Each OSPF router composes a list of all its links to neighboring routers and their
costs. This list is termed Link State Advertisement (LSA). Each LSA is flooded through-
out the AS. Every router compiles a database of the LSAs from all routers in the AS,
thus having a complete view of the AS topology. This allows a router to calculate the
least cost paths between it and every other router in the AS. As a result, the router’s
routing table is formed.

A new instance of each LSA is advertised periodically every 30 minutes, by default.
Every LSA has a sequence number which is incremented with every new advertised
instance. A more recent LSA instance with a higher sequence number will always take
precedence over an older instance with a lower sequence number. An LSA includes
the following fields: a) src - the router which just sent the LSA; b) dest - the router to
which the LSA is destined; c) orig - the router which first advertised the LSA; d) seq -
sequence number.

Two routers in the AS may be connected over a point-to-point link. A subset of two
or more routers may be connected over a transit network. One router in every transit
network is selected to act as a designated router. During the flooding of an LSA each
router sends the LSA to all its neighbors (except the neighbor from which the LSA was
received). To alleviate flooding load this rule has an exception: a non-designated router
may flood an LSA over a transit network only to the designated router of that network.
The designated router will send it to all the other routers in that transit network. Note
that a router will only receive an LSA from one of its neighbors. An LSA having a src
that is not one of the router’s neighbors will be dropped.

A common goal for an OSPF attacker is to advertise a fake LSA on behalf of some
other router in the AS. Such an attack changes the view other routers have of the AS
topology and consequently changes their routing tables. The primary measure by which
OSPF defends against such attacks is the “fight-back” mechanism. Once a victim router
receives an instance of its own LSA which is newer than the last instance it originated,
it immediately advertises a newer instance of the LSA with a higher sequence num-
ber which cancels out the false one. This mechanism prevents most OSPF attacks from
persistently falsifying an LSA of another router. Another defense measure is the authen-
tication of LSAs using a secret key shared by the routers of the autonomous system. An
outside router that does not know the shared secret can not send LSAs to routers inside
the autonomous system.

728 A. Sosnovich, O. Grumberg, and G. Nakibly

2.2 The Concrete Model

In the following we present the concrete model for OSPF we used to find attacks. We
note that our model is a simplified version of the real OSPF.

Our model assumes as a starting point a stable routing state in the AS. Namely, all the
routers advertised their LSAs and calculated their routing tables. In particular, no LSA
flooding is in progress or about to start. The LSA databases of all routers are complete
and identical. Without loss of generality we assume that the sequence numbers of all
the LSAs that have been advertised are 0. In addition, designated routers for all transit
networks have been selected. The model is composed of three entities: (AS) topology
which models a concrete topology of the AS, Router which models a legitimate router
inside the AS; Attacker which models a malicious router inside the AS.

Autonomous System Topology Model. We denote the concrete topology by Tc =
(R,S,E,DRc), where R is the set of routers, S ⊆ 2R is the set of transit networks,
which we refer to as sub-network, E ⊆ R × R is a set of undirected edges, each
representing a point-to-point link between two routers, and DRc : S → R maps sub-
networks to their designated routers. For simplicity of presentation we assume that each
router belongs to at least one sub-network. We emphasize that the routers forming a sub-
network are directly connected to each other as if they were forming a clique. Nonethe-
less, those connections are not part of the set E which only includes point-to-point
links. Figure 1 depicts an example of a topology.

Fig. 1. The concrete topology TC . The
dashed circles marked as si are sub-
networks, the circles ri are routers, and
lines connecting routers are edges. Bold cir-
cles represent designated routers.

Fig. 2. Abstract topology TA (see Sec-
tion 3). The circles marked as sri repre-
sent singleton routers; the triangle ar1 rep-
resents an abstract router; the circle sn1

represents an abstract sub-network; and the
double circles sti represent sub-topologies.
The bold circle represents a designated
router (i.e., sr2 is the designated router in
the sub-network sn1).

Router Model. The router model executes the standard functionality of the protocol.
We model only part of the functionality defined by the OSPF standard since a large
model might be infeasible for model checking. Nonetheless, our model captures the
protocol’s essential operations which any attack must exploit. For example, flooding by

Finding Security Vulnerabilities in a Network Protocol 729

its very nature must be exploited by any attack that aims to advertise false LSAs. The
functionality we modeled includes: (1) LSA message structure. (2) Flooding procedure.
(3) Designated router logic. (4) Fight-back mechanism.

We do not model the actual contents of each LSA, i.e. the list of advertised links and
their costs, because the LSA content has no material affect on the attack technique used
to advertise a fake LSA. Figure 3 gives a high level overview of the router procedure.

if (r.Q not empty)
{
m = pop-head(r.Q)
if (m.dest �= r)

send m according to r’s routing table
else //m.dest is r
{

if (m is newer than the copy in r.DB)
{

if (m.orig == r)
fight-back

else
update r.DB and flood m

}
else

ignore m
}

}
Fig. 3. A sketch of the router r procedure. r.Q
denotes r’s incoming message queue. A message
m = (src, dest, orig, seq). r.DB denotes the
set of LSA instances currently installed in r’s
database.

Attacker Model. In our work we
assume that an attacker is one of
the routers of the autonomous system.
Other routers treat the attacker as a
legitimate router. The attacker is free
from the protocol’s standard and is able
to ignore incoming messages and to
originate messages arbitrarily. In par-
ticular, an attacker may originate fake
LSAs on behalf of other routers in
the topology. The model indicates such
LSAs by a special isFake flag, which is
not part of the OSPF standard, and le-
gitimate routers do not make use of it.
This flag allows us to easily define the
specifications for the model (see sec-
tion 2.4). Note that since the attacker
has control of a legitimate router, the at-
tacker knows the secret key used to au-
thenticate the LSA messages.

Another important capability of the
attacker is sending an LSA to a non-
neighbor destination through several
links without being opened on the way.
Thus, the intermediate routers will not
process the message. We call this uni-
cast sending. This is a trivial capability
that is inherent to any IP network. Every router (malicious or benign) can send mes-
sages directly to remote routers. However, regular routers following the OSPF protocol
do not use this capability when flooding LSA messages.

2.3 Formal Model for OSPF

The formal model we use for OSPF is a finite state machine with global states and
transitions. In order to obtain a finite model suitable for model checking, we impose
a predefined bound SB on the sequence number of messages, and a predefined bound
K on the queue size of each router. It should be noted that in real OSPF such bounds

730 A. Sosnovich, O. Grumberg, and G. Nakibly

exist as well. The queue of each router consists of up to K messages of the form m =
(src, dest, orig, seq, isFake), taken from the message domain M = R × R × R ×
{0, ..., SB}×{T, F}. The database of router r, r.DB : R → {0, . . . , SB}×{T, F},
includes for each router r′ the sequence number of the last message that was originated
by r′ and reached r , and the value of the flag isFake indicating whether this message
was in fact originated by the attacker and not by r′. A global state σ = {r.DB |r ∈ R}∪
{r.Q |r ∈ R} consists of a database and a message queue for each of the routers in the
topology, including the attacker.

An r-transition between two global states corresponds to an application of the router
r procedure (which is either the procedure given in Figure 3 if r is a regular router,
or the attacker’s procedure if r is the attacker). Note that an r-transition may change,
in addition to the queue and the database of r, the queues of some of its neighbors. A
run of the model consists of a sequence of global states σ1, . . . σn, such that for each i,
a router r from R is chosen nondeterministically, and an r-transition is applied to σi,
resulting in σi+1.

2.4 Specification

Our aim is to discover attacks on OSPF that allow an attacker to persistently falsify
LSAs of legitimate routers. Our specification for the absence of a successful persistent
attack requires that each state will satisfy at least one of the following two conditions:

1. No router has a fake LSA in its database.
2. At least one message resides in a router’s queue.

The first condition verifies that the attacker has not fooled another router to install a
fake LSA. The second condition relates to the attack’s persistency. If not all the routers’
queues are empty then the router whose LSA has been falsified might still fight back and
revert the effect of the attack. Note that a state which violates the specification defines
the outcome of a successful persistent attack regardless of a specific attack technique.

A model checker will search for a violation of the specification. When found, it will
return a counterexample in the form of a run of the model which leads to a violating
state. This run is actually an attack on OSPF.

2.5 Experimental Data

Table 1. For CNF formulas encoding topologies of
different sizes, the number of variables and clauses
in millions and the solving time in hours

#Routers #Variables #Clauses Time

5 8M 21M 3.17h
6 17M 40M 7.07h
7 23M 55M 12.87h

We have implemented in C our
concrete model of OSPF, which is a
simplified version of the protocol. The
implementation is a rather small C
program with a few hundreds of code
lines. To find counterexamples, i.e. at-
tacks, for which the above specifica-
tion does not hold we use CBMC,
a bounded model checker tool [2].
CBMC can check if a C program sat-
isfies a specification along bounded

Finding Security Vulnerabilities in a Network Protocol 731

runs. In our model, we bounded the number of cycles by 8, such that in each cycle
any of the routers (including the attacker) can run their procedure once. In order to have
a finite model which is rather small, we used a bound of K = 4 for the queue size, and
a bound of SB = 8 for possible sequence numbers.

All our experiments were conducted on Intel Xeon X5650 with 32GB of memory.
Table 1 details for several different network topologies of different sizes, the number of
variables and clauses in the CNF formula generated by CBMC, and the time it took to
solve the formula using the solver MiniSAT2 [3] .

2.6 Example of Attacks on OSPF

As mentioned before, when an attack is found the model checker CBMC outputs a path
of global concrete states ending with a state that violates the specification. Figure 4
depicts an example of a topology with three sub-networks: {r1, r2}, {r3, r4}, and {r0}.
r1 and r4 act as designated routers. The router r0 is attached to r1 and r4 using point-
to-point links. In this topology r3 is the attacker. Note that although there are no edges
between routers in the same sub-network, they are considered directly connected.

Fig. 4. A concrete topology

In the following we describe several attacks
we found using the above concrete model hav-
ing the topology depicted in Fig. 4. The first two
attacks are simple albeit previously unpublished.
The state explosion problem of the model check-
ing impedes finding more complex attacks which
may only be exhibited on larger topologies.

Recall that our model is a simplified version
of the real OSPF. As the OSPF standard is given
in an English manuscript, we cannot formally prove that our model is an under-
approximation of the real OSPF. However, an OSPF expert validated that attacks found
in our model are also valid in the full OSPF protocol.

Attack #1. The attacker (r3) originates a fake LSA on behalf of r4 directly to r2 (using
unicast sending), while falsifying the source to be r1. The fields of the fake LSA are:
src = r1, dest = r2, orig = r4, seq = 1, and isFake = true. r2 receives this LSA
while considering it to be a valid LSA sent by r1. Since the sequence number of the
attacker’s LSA is larger than that of the LSA instance installed in r2’s database, r2
installs the attacker’s LSA in its database. Since r2 received the message from r1, it
does not flood it back to it. Since r2 has no other links no further messages are sent in
the topology. Hence, the specification of our model is violated.

Attack #2. The following attack relies on the fact that the routers’ queues are bounded.
Note that any real-life router must bound its queue size that is dependent on the size
of memory space in the router. The attacker continuously sends the following message
many times: (src = r3, dest = r4, orig = r0, seq = 1, isFake = true). The num-
ber of sent copies should be larger than the bound on the size of the routers’ queues.

732 A. Sosnovich, O. Grumberg, and G. Nakibly

The messages are received by r4 which floods the first message to r0. r0 then origi-
nates a fight-back message m′ with seq = 2. Since the queue of r4 is full, m′ will be
discarded leaving r4 with the fake message installed in the database. All subsequent
fake messages flooded to r0 will not trigger fight-back, since their sequence number
(1) is smaller than that of the last message originated by r0 (m′ with seq = 2). We
note that the OSPF standard makes use of a reliable delivery of messages by leveraging
acknowledgment messages. Hence a real router retransmits a message until it receives
an acknowledgment. Our model does not include this functionality. Nonetheless, this
attack would still be feasible in real life if the attacker continued sending messages to
keep r4’s queue full.

Attack #3. The following attack was first described in [15]. The attacker sends the
following two LSA messages: m1 = (src = r3, dest = r4, orig = r1, seq = 1,
isFake = true) and m2 = (src = r3, dest = r4, orig = r1, seq = 2, isFake = true).
First, m1 is received and installed by r4. Then, r4 floods it to r0. Afterward, m2 is
received by r4. Since it has a higher sequence number than m1, m2 supersedes it in
r4’s database. m2 is also flooded to r0. r0 processes and sends both messages to r1,
while m2 is the last to be installed in its database. Once r1 receives m1 it immediately
originates a fight-back message m3 with seq = 2 and floods it to all its neighbors.
r1 then receives m2. Since m2 and m3 have equal sequence number (2), m2 is not
considered newer than m3, hence r1 does not send another fight-back message and
ignores m2. Once r0 receives m3, it does not consider it newer than m2 which is
currently installed in its database. Hence, it ignores m3. Since r4 installed the fake
message m2 and no more messages are waiting to be sent the specification of our model
is violated.

3 An Abstract Network and Its Matching Concrete Networks

In the previous section we showed how attacks can be found on concrete models. Due
to the state explosion problem, the models that can be handled are very small in size
and hence restricted in their topologies. We would like to extend our search for attacks
to larger and more complex topologies. Further, we are interested in general attacks,
which are insensitive to most of the topology’s details and therefore can be applied in a
family of topologies.

In order to achieve that, we define an abstract model which can represent a fam-
ily of concrete models. The models in the family are similar in some aspects of their
topologies but may differ in many other aspects.

The abstract model consists of an abstract topology which includes abstract com-
ponents representing a large number of routers and sub-networks, and of an abstract
protocol which is an adjustment of OSPF to the abstract components.

We define several level of abstract components. The most abstract component is
the sub-topology, which represents any number of concrete sub-networks. The edges
between the sub-topology and the rest of the topology are not abstracted. As a re-
sult, routers within the sub-topology which are connected to these edges remain un-
abstracted as well. These routers are called singleton routers. The concrete routers they

Finding Security Vulnerabilities in a Network Protocol 733

represent are called visible. All other routers within the sub-topology and the edges
among them are fully abstracted, and are referred to as invisible.

Another abstract component is the abstract router which represents a set of concrete
routers, all contained within the same sub-network, and have no edges outside of the
sub-network. An abstract sub-network consists of a set of abstract routers and a set of
singleton routers. As with sub-topologies, the singleton routers in a sub-network are un-
abstracted. They represent a single concrete router whose edges are un-abstracted too.
We require that each singleton router belongs to either a sub-topology or a nonempty
set of abstract sub-networks.

The intuition behind the definition of an abstract topology is as follows. The un-
abstracted routers are those that may participate in an attack. The others are needed
to form a topology that brings unabstracted routers to manifest more of their OSPF
functionality and thus to possibly expose more security vulnerabilities. Moreover, ab-
stracted routers allow to show that a found attack is general and applicable to a family
of topologies.

Clearly, the attacker is always an (un-abstracted) singleton router. Moreover, the mes-
sages sent by the attacker are un-abstracted as well. That is, their originator, source, and
destination fields refer to singleton routers.

We impose some constraints on abstract sub-topologies, to guarantee that for every
abstract transition and every concrete topology represented by the abstract topology,
there can be found a corresponding finite concrete run.

For a sub-topology st, recall that each singleton router in st represents a single con-
crete visible router. We require that in the part of the concrete topology which is rep-
resented by st, each of its visible routers must belong to a different sub-network. Also,
visible routers in st may not be directly connected to each other, but should be con-
nected to at least one invisible router. Further, the invisible routers in st form a strongly
connected component. These constraints guarantee that if a message is flooded to st by
a singleton router r, then there is a concrete run along which the message is opened by
all invisible routers prior to being opened by any other singleton router.

While these constraints seem quite restrictive, our abstract topologies still represent
a large variety of topologies of different sizes. As shown in Section 5, some nontrivial
attacks were found on them. Many of these constraints can be removed for the price of
much more complex definitions and correctness proof. We choose to present a simpler
version here, and to demonstrate its usability.

3.1 Abstract Topology

Formally, an abstract topology is denoted by TA = (SR, ST,AR, SN,EA, DRA)
where, SR is a set of abstract singleton routers, ST ⊆ 2SR is a set of sub-topologies,
AR is a set of abstract routers, SN ⊆ 2AR∪SR is a set of abstract sub-networks, and
EA ⊆ SR×SR is a set of undirected edges, each representing a point-to-point link be-
tween two abstract singleton routers. Finally, DRA : SN → SR is a function that maps
sub-networks to their designated router, which must be from SR. Figure 2 presents an
abstract topology. Note that, similarly to the concrete case, connections between routers
within the same sub-network are not depicted in the figure.

734 A. Sosnovich, O. Grumberg, and G. Nakibly

3.2 Matching Abstract and Concrete Topologies

Next we define a matching relation between abstract and concrete topologies. The
matching relation adhere to the intuitive explanation given above. Let TA = (SR, ST,
AR, SN,EA, DRA) be an abstract topology and TC = (R,S,E,DRC) be a concrete
topology. A relation

H ⊆ (SR×R) ∪ (
AR × 2R

) ∪ (SN × S) ∪ (
ST × 2S

) ∪ (EA × E) .

is a matching relation between TA and TC if it satisfies the following constraints:

– H restricted to each one of its domains is a 1-1 function. For instance,H∩(SR×R)
is a 1-1 function. By abuse of notation we refer to it as H : SR → R.

– A sub-topology st represents a set of concrete sub-networks S′. Each singleton
router in st is matched to a concrete router in a sub-network in S′. Different single-
ton routers in st are matched to routers in different sub-networks in S′.

– An abstract sub-network sn represents a concrete sub-network s such that each
singleton router in sn is matched to a router in s, and each abstract router in sn is
matched to a set of routers in s. Every router in s has a matched component in sn.

– Each concrete sub-network is matched to either an abstract sub-network or a sub-
topology.

– There is an abstract edge between two singleton routers if and only if there is a
concrete edge between their matched routers.

For example, the relation H , given below, is a matching relation between TA from
Figure 2 and TC from Figure 1.

– H ∩ (SR×R) = {(sr1, r8) , (sr2, r9) , (sr3, r11) , (sr4, r18) , (sr5, r12) ,
(sr6, r2)}

– H ∩ (
AR× 2R

)
= {(ar1, {r7, r10})}

– H ∩ (SN × S) = {(sn1, s3)}
– H ∩ (

ST × 2S
)
= {(st1, {s1, s2}) , (st2, {s4, s5, s6, s7})}

– H ∩ (EA × E) = {((sr1, sr6) , (r8, r2)) , ((sr4, sr3) , (r18, r11)) ,
((sr2, sr5) , (r9, r12))}

3.3 Global Abstract States

Let TA be an abstract topology and let AC = ST ∪AR∪SR be the set of components
in the abstract topology. The message domain in the abstract model is M = AC ×
AC × ORIGS × {0, ..., SB} × {T, F}, where ORIGS ⊆ SR is a predefined set of
originators which can be used by the attacker in its messages. Abstract messages consist
of the same fields as concrete messages.

An abstract state is defined by σA = {ac.DB |ac ∈ AC }∪{ac.Q |ac ∈ AR ∪ SR},
where for every component ac ∈ AC, the structure of its database is identical to that of
a concrete component, ac.DB : ORIGS → {0, ..., SB} × {T, F}, except that here
it is only defined for the subset ORIGS ⊆ SR. In addition, for every ac ∈ AR ∪ SR,
ac.Q is a queue of up to K messages. The database is restricted to ORIGS since in

Finding Security Vulnerabilities in a Network Protocol 735

our setting (see section 2.2) only the attacker originates messages, and those messages
have orig ∈ ORIGS. Thus, there is no need for ac.DB to contain entries of other
originators.

Note that, we do not define a queue for sub-topologies st, since flooding within st
is always described as a single abstract transition. Each singleton router in st has a
queue. Thus, a queue for st would have represented the queues of all invisible routers,
matched to st. However, the queues of all invisible routers are empty whenever the
abstract transition begins or ends. Thus, there is no need to represent their content.

3.4 Matching Abstract and Concrete States

Let TA and TC be an abstract and concrete topologies and let H be their matching
relation. In order to define a matching between abstract and concrete states, we first
define a matching between abstract and concrete databases and queues.

We use h to denote a function that matches abstract databases, messages, queues,
and global states to sets of their concrete counterparts.

1. An abstract database DBA matches a concrete database DBC , denoted DBC ∈
h(DBA), if for each o ∈ ORIGS, the entry for o in DBA is identical to the entry
of H(o) in DBC .

2. An abstract message m and a concrete message m′ match, denoted m′ ∈ h (m) , if
m′.src ∈ H (m.src), m′.dest ∈ H (m.dest), m′.orig = H (m.orig), m′.seq =
m.seq, and m′.isFake = m.isFake.
Since orig is a singleton router and since seq and IsFake are un-abstracted, they
have a single matching.

3. An abstract queue matches a concrete queue if
(a) For a singleton router sr, each message m in its queue is matched with a se-

quence of (one or more) concrete messages in h(m).
The reason for matching more than one concrete message with m is that an
abstract transition may add only one message to the queue. On the other hand,
the concrete run that correspond to this transition consists of several concrete
transitions, each of which may add a matching message to the queue. This
is because, when sr is part of a sub-topology st, then the invisible routers
represented by st may flood the message several times to sr, via different paths
in the sub-topology.

(b) For an abstract router ar, its queue represents the queues of all concrete routers
matched with ar. Here the sizes of the queues are identical since a message re-
ceived by ar corresponds to single messages received by each r in H(ar) from
the designated router. No other messages are sent among routers in H(ar).

We can now define matching of abstract and concrete states. σC ∈ h (σA) if the follow-
ing conditions holds

1. ∀ac ∈ AR∪SR [∀r ∈ H (ac) (r.Q ∈ h (ac.Q))]. That is, queues of matching com-
ponents must match.

2. ∀ac ∈ SR ∪ ST ∪ AR [∀r ∈ H (ac) (r.DB ∈ h (ac.DB))]. That is, databases of
matching components must match.

736 A. Sosnovich, O. Grumberg, and G. Nakibly

3.5 Abstract Transitions and Their Matching Concrete Transitions

Similarly to the concrete model, an abstract transition between two global abstract
states corresponds to an application of the procedure of one of the abstract components.
The abstract model includes procedures for a singleton router, an abstract router, and
an attacker. Our model does not include a procedure for a sub-topology. Instead, its
behavior is defined as part of the procedure of singleton routers included in it.

A high-level description of the procedure of a singleton router sr is given in Figure 5.
It is similar to the procedure of a concrete router, except that it does not handle mes-
sages whose destination is not sr. This is because in the abstract model such messages
are sent by unicast directly to their destination. The singleton router procedure can per-
form either flooding or fight back. Figure 6 describes the flooding procedure performed
by a singleton router (as part of its procedure). FDA(sr,m.src) returns the flooding
destinations, i.e. set of abstract components to which sr floods a message m obtained
from component src. The fight back procedure is similar, except that FDA is replaced
by the fight back destinations, FBDA. The statement ac1.Q′ = ac1.Q � {msr→ac1}
performs an update of ac1’s queue. The resulting queue, ac1.Q′, is obtained by con-
catenating the old queue ac1.Q with a message which is identical to m, except that its
src is sr and its destination is ac1.

The procedure of an abstract router is simpler. It only installs a message from its
queue in its database and does not perform flood or fight back. This is because it is part
of a single abstract sub-network, and is not connected by any edges.

An ac-abstract transition corresponds to a single application of the procedure for
abstract component ac. This transition may represent either a single concrete transition
or a sequence of concrete transitions (i.e., a concrete run), depending on the type of
ac and on the message content. Below we detail a few non-trivial cases where abstract
transitions correspond to a concrete run. For every concrete topology TC represented
by an abstract topology TA and for every abstract transition in TA, a corresponding
concrete run as detailed below can be found in TC .

Case 1. Consider an abstract transition in which a singleton router sr floods a message
m, where sr is within a sub-topology st, and st belongs to the flooding destinations
of sr. In such a case, the concrete run represented by the abstract transition includes,
in addition to the flooding done by sr, the flooding applied by the invisible routers in
H(st). By the end of this run, all invisible routers within st have already removed m
from their queue, updated their databases (if their databases were less updated), and
flooded m further to the rest of the visible routers in H(st).

Case 2. Consider an abstract transition in which a singleton router sr in a sub-topology
st floods a message m, where m.src = st. This abstract transition represents a concrete
run in which H(sr) floodsm. In addition, invisible routers in H(st), which are included
in the flooding destinations of H(sr), remove m from their queue and ignore it.

Case 3. Consider an abstract transition in which the attacker sends a message m by uni-
cast to a destination which is not one of its neighbors. That is, the message m is added

Finding Security Vulnerabilities in a Network Protocol 737

to the queue of its destination. This abstract transition represents a sequence of concrete
transitions in which each router on the routing path which is not the destination, sends
the message according to its routing table, without opening the message.

Case 4. Abstract transition taken by an abstract router ar represents a sequence of
similar concrete transitions taken by each of the concrete routers represented by ar
exactly once.

singleton router procedure(sr)
if (sr.Q not empty)
{
m = pop-head(Q)

if (m is newer than the copy in sr.DB)
{

if (m.orig == sr)
fight back(sr,m)

else
update sr.DB and flood(sr,m)

}
else

ignore m
}

}

Fig. 5. Procedure of a singleton router

flood(sr,m)
For each
ac1 ∈ FDA (sr,m.src) ∩ (AR ∪ SR))
{

ac1.Q
′ = ac1.Q � {msr→ac1}

}
For each st ∈ FDA (sr,m.src) ∩ ST
{

if (st.DB[m.orig].seq < m.seq)
{
st.DB′[m.orig] = (m.seq,m.isFake)
For each sr1 ∈ FDA (st, sr)

sr1.Q
′ = sr1.Q � {mst→sr1}

}
}

Fig. 6. flooding procedure of a singleton
router sr, where m is the message to flood

4 Correctness of the Algorithm

Theorem 1. Let TA and TC be an abstract and concrete topologies and let H be their
matching relation. Then, for each finite abstract run σ1, . . . σn, there exists a corre-
sponding finite concrete run σ′

1, . . . σ
′
k, such that σ′

1 ∈ h(σ1) and σ′
k ∈ h(σn).

Corollary 1. An abstract attack found on an abstract topology TA, has a correspond-
ing attack on each matching topology TC .

Proof Sketch

– We show that for each abstract transition, there is a concrete finite run, such that
the initial and final states of the transition and of the run are matching.

– An abstract attack is an abstract run for which the final state violates our specifi-
cation. A concrete state matching an abstract state which violates the specification,
also violates the specification. Thus, the corresponding paths are concrete attacks.

– The proof is based on the matching relation H and on the function h, defined in
section 3.

738 A. Sosnovich, O. Grumberg, and G. Nakibly

5 Examples of Attacks on OSPF in the Abstract Model

In this section we describe a few attacks, found on different abstract models which we
picked manually.

Attack #1. This attack has been found on the abstract topology TA, presented in Fig-
ure 2. The attacker is sr2. The set of predefined originators is ORIGS = {sr1}. The
attacker originates a fake message on behalf of sr1: m = (src = sr2, dest = sr5,
orig = sr1, seq = 1, isFake = T). sr5 receives this message while considering it
to be a valid message, sent by sr2. Since the sequence number of m is larger than that
of the message instance installed in sr5’s database, sr5 installs m in its database, and
floods it. The fake message will be flooded and installed in the databases of st2, sr4,
and sr3. When m is installed by sr3, it will be flooded to the attacker sr2, since sr2
is the designated router of the sub-network sn1. The attacker will choose to ignore m,
thus preventing this message from being flooded to sr1, and avoiding fight back. Since
no more messages are waiting to be sent, the specification is violated.

Fig. 7. Abstract topology on which attack
#2 is described

Fig. 8. Abstract topology on which attack
#3 is described

Attack #2. TA is the abstract topology presented in Figure 7. The at-
tacker is sr3. The set of predefined originators is ORIGS = {sr1}.
The attacker originates a fake message on behalf of sr1: m =
(src = sr1, dest = sr2, orig = sr1, seq = 1, isFake = T), which is sent by
unicast to sr2. sr2 installs the fake message in its database and floods it only to the
sub-topology st2 due to the flooding rules of OSPF. Therefore, in the final state the
queues of all abstract components are empty, and the databases of sr2 and st2 are
installed with the fake message. Thus, the specification is violated.

Attack #3. TA is the abstract topology presented in Figure 8. The attacker is sr3. The
set of predefined originators is ORIGS = {sr2}. The attacker sends the following two
LSAs (using unicast sending): m1 = (src = sr3, dest = sr2, orig = sr2, seq = 1,
isFake = T) andm2 = (src = sr4, dest = sr5, orig = sr2, seq = 2, isFake = T).
As a result, sr2 sends a fight back message m3 with orig = sr2, seq = 2, isFake =
F , but sr5 opens m3 after it has already installed m2 in its database, and will thus
ignore the fight back message and will remain with the fake message.

Finding Security Vulnerabilities in a Network Protocol 739

6 Directions for Future Research

An important direction for future research is to generalize the method for finding gen-
eral attacks applicable to families of network topologies to other network protocols, in
particular routing protocols. Another direction is to develop a methodology for deciding
which abstract networks to check, and to automate the abstraction process. Additional
direction is to extend the abstraction mechanism for finding attacks which are applicable
to a sub-family rather than the whole family, to enable finding more possible attacks.

Acknowledgement. We Thank Manfred Grumberg for initiating the project. This re-
search was conducted as part of the KABARNIT consortium, with the support of the
MAGNET founds.

References

1. Abdulla, P.: Regular model checking. STTT 14(2) (2012)
2. Clarke, E., Kroning, D., Lerda, F.: A tool for checking ANSI-C programs. In: Jensen, K.,

Podelski, A. (eds.) TACAS 2004. LNCS, vol. 2988, pp. 168–176. Springer, Heidelberg (2004)
3. Niklas Een, N.S.: Minsat 2.0 - (2008), http://minisat.se/minisat.html
4. Emerson, E.A., Kahlon, V.: Exact and efficient verification of parameterized cache coherence

protocols. In: Geist, D., Tronci, E. (eds.) CHARME 2003. LNCS, vol. 2860, pp. 247–262.
Springer, Heidelberg (2003)

5. Fortz, B.: On the evaluation of the reliability of OSPF routing in IP networks. Technical
report, Institut dadministration et de gestion (2001)

6. German, S., Sistla, P.: Reasoning about systems with many processes. J. ACM 39(3) (1992)
7. Jones, E., Le Moigne, O.: OSPF security vulnerabilities analysis. Internet-Draft draft-ietf-

rpsec-ospf-vuln-02, IETF (June 2006)
8. Kesten, Y., Maler, O., Marcus, M., Pnueli, A., Shahar, E.: Symbolic model checking with

rich ssertional languages. In: Grumberg, O. (ed.) CAV 1997. LNCS, vol. 1254, pp. 424–435.
Springer, Heidelberg (1997)

9. Liu, J., Ye, X., Zhang, J., Li, J.: Security verification of 802.11i 4-way handshake protocol.
In: Communications (2008)

10. Malik, S.U.R., Srinivasan, S.K., Khan, S.U., Wang, L.: A methodology for OSPF routing
protocol verification. In: 12th International Conference on Scalable Computing and Commu-
nications (ScalCom) (2012)

11. Matousek, P., Ráb, J., Rysavy, O., Svéda, M.: A formal model for network-wide security
analysis. In: Engineering of Computer Based Systems (2008)

12. John, C.: Mitchell, Mark Mitchell, and Ulrich Stern. Automated analysis of cryptographic
protocols using Murphi. In: IEEE Symposium on Security and Privacy, pp. 141–151 (1997)

13. Mitchell, J.C., Roy, A., Rowe, P., Scedrov, A.: Analysis of EAP-GPSK Authentication Proto-
col. In: Bellovin, S.M., Gennaro, R., Keromytis, A.D., Yung, M. (eds.) ACNS 2008. LNCS,
vol. 5037, pp. 309–327. Springer, Heidelberg (2008)

14. Moy, J.: OSPF version 2. IETF RFC 2328 (April 1998)
15. Nakibly, G., Gonikman, D., Kirshon, A., Boneh, D.: Persistent OSPF attacks. In: NDSS

(2012)
16. Saksena, M., Wibling, O., Jonsson, B.: Graph grammar modeling and verification of ad hoc

routing protocols. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963,
pp. 18–32. Springer, Heidelberg (2008)

17. Wang, F., Vetter, B., Wu, S.F.: Secure routing protocols: Theory and practice. Technical re-
port, North Carolina State University (May 1997)

18. Wu, S.F., et al.: JiNao: Design and implementation of a scalable intrusion detection system
for the OSPF routing protocol. ACM Transactions on Computer Systems 2 (1999)

http://minisat.se/minisat.html

	Finding Security Vulnerabilities in a Network Protocol Using Parameterized Systems
	1 Introduction
	1.1 RelatedWork

	2 Modeling OSPF
	2.1 OSPF Basics
	2.2 The Concrete Model
	2.3 FormalModel for OSPF
	2.4 Specification
	2.5 Experimental Data
	2.6 Example of Attacks on OSPF

	3 An Abstract Network and Its Matching Concrete Networks
	3.1 Abstract Topology
	3.2 Matching Abstract and Concrete Topologies
	3.3 Global Abstract States
	3.4 Matching Abstract and Concrete States
	3.5 Abstract Transitions and Their Matching Concrete Transitions

	4 Correctness of the Algorithm
	5 Examples of Attacks on OSPF in the Abstract Model
	6 Directions for Future Research
	References

