
Modular Demand-Driven Analysis
of Semantic Difference for Program Versions?

Anna Trostanetski1, Orna Grumberg1, and Daniel Kroening2

1 Technion – Israel Institute of Technology
{annat,orna}@cs.technion.ac.il
2 University of Oxford, Oxford, UK

kroening@cs.ox.ac.uk

Abstract. In this work we present a modular and demand-driven anal-
ysis of the semantic difference between program versions. Our analysis
characterizes initial states for which final states in the program versions
differ. It also characterizes states for which the final states are identical.
Such characterizations are useful for regression verification, for reveal-
ing security vulnerabilities and for identifying changes in the program’s
functionality.
Syntactic changes in program versions are often small and local and
may apply to procedures that are deep in the call graph. Our approach
analyses only those parts of the programs that are affected by the changes.
Moreover, the analysis is modular, processing a single pair of procedures
at a time. Called procedures are not inlined. Rather, their previously
computed summaries and difference summaries are used. For efficiency,
procedure summaries and difference summaries can be abstracted and
may be refined on demand.
We have compared our method to well established tools and observed
speedups of one order of magnitude and more. Furthermore, in many
cases our tool proves equivalence or finds differences while the others fail
to do so.

1 Introduction

In this work we present a modular and demand-driven algorithm for computing the
semantic difference between two closely-related, syntactically similar imperative
programs. The need to identify semantic difference often arises when a new
(patched) program version is built on top of an old one. The difference between
the versions can be used for:

– Regression testing, which checks whether the new version introduces security
bugs or errors. The old version is considered to be a correct, “golden model”
for the new, less-tested version [30].

– Revealing security vulnerabilities that were eliminated by the new version [11].
This information can be used to produce attacks against the old version.

? Supported by the ERC project 280053 (CPROVER), the H2020 FET OPEN 712689
SC2 and the Prof. A. Pazy Research Foundation.

2 Modular Demand-Driven Analysis of Semantic Difference

– More generally, identifying and characterizing changes in the program’s
functionality [24].

Semantic difference has been widely studied, and a wide range of techniques have
been suggested [11, 14–16, 20, 23–26]. We aim at enhancing the scalability and
precision of existing techniques by exploiting the modular structure of programs
and avoiding unnecessary analysis.

We consider two program versions, consisting of (matched) procedure calls,
arranged in call graphs. Some of the matched procedures are known to be syn-
tactically different while the others are identical. Often, the changes between
versions are small and limited to procedures deep inside the call graph (Fig. 1).
In such cases, it would be helpful to know how these changes affect the program
as a whole, without analysing the full program. To achieve this, we first compute
a difference summary between syntactically different procedures p1, p2 (modified
procedures). Next, we analyse the procedures that call them, using the difference
summary for p1, p2 computed before. No inlining of called procedures is applied.
We also avoid analysing procedures that are not affected by the modified proce-
dures. As a result, the required work may be significantly smaller than analysing
the full program.

Our work is therefore particularly beneficial when applied to programs that
are syntactically similar. While applicable to programs that are very different
from each other, our technique would yield less savings in those cases.

P1 P2

q1

p1

q2

p2

Fig. 1: Call graphs of two program versions P1, P2, where their syntactic differences
are local to the procedures p1, p2, and the bodies of procedures q1, q2 are identical

Our approach is guided by the following ideas. First, the analysis is modular.
That is, it is applied to one pair of procedures at a time, thus it is confined
to small parts of the program. Called procedures are not inlined. Rather, their
previously computed summaries and difference summary are used. We note that
any block of code can be treated as a procedure, not only those defined as
procedures by the programmer. It is beneficial to choose the smallest possible
blocks that were modified between versions, and identify them as “procedures”.

Second, the analysis is restricted to only those pairs of procedures whose
difference affects the behavior of the full programs.

Third, we provide both under- and over-approximations of the input-output
differences between procedures, which can be strengthened on demand.

Modular Demand-Driven Analysis of Semantic Difference 3

Finally, procedures need not be fully analysed. Unanalysed parts are abstracted
and replaced with uninterpreted functions. The abstracted parts are refined upon
demand if calling procedures need a more precise summary of the called procedures
for their own summary.

Our analysis is not guaranteed to terminate. Yet it is an anytime analysis.
That is, its partial results are meaningful. Furthermore, the longer it runs, the
more precise its results are.

In our analysis we do not assume that loops are bounded. We are able to
prove equivalence or provide an under- and over-approximation of the difference
for unbounded behaviors of the programs. We are also able to handle recursive
procedures.

We implemented our method and applied it to computing the semantic
difference between program versions. We compared it to well established tools
and observed speedups of one order of magnitude and more. Furthermore, in
many cases our tool proves equivalence or finds differences while the others failed
to do so.

Our Approach in Detail

We now describe our method in more detail. Our analysis starts by choosing a
pair of matched procedures p1 in program P1 and p2 in program P2 that are
syntactically different.

The basic block of our analysis is a (partial) procedure summary sumpi

with i ∈ {1, 2} for each procedure pi. The summary is obtained using symbolic
execution. It includes path summarizations (Rπ, Tπ) for a subset of the finite
paths π of pi, where Rπ is the reachability condition for π to be traversed and
Tπ is the state transformation mapping initial states to final states when π is
executed.

Next, we compute a (partial) difference summary (C(p1, p2), U(p1, p2)) for
p1, p2, where C(p1, p2) is a set of initial states for which p1 and p2 terminate
with different final states. U(p1, p2) is a set of initial states for which p1 and
p2 terminate with identical final states. Both sets are under-approximations.
However, the complement of U(p1, p2), denoted ¬U(p1, p2), also provides an
over-approximation of the set of initial states for which the procedures are
different.

Note that procedure summaries and difference summaries are both partial.
This is because their computation in full is usually infeasible. More importantly,
their full summaries are often unnecessary for computing the difference summary
between programs P1, P2.

If U(p1, p2) ≡ true we can conclude that no differences are propagated from
p1, p2 to their callers. Their callers will not be further analysed then. Otherwise,
we can proceed to analysing pairs of procedures q1, q2 that include calls to p1,
p2, respectively. As mentioned before, for building their procedure summaries
and difference summary, we use the already computed summaries of p1, p2. For
the sake of modularity, we develop a new notion of modular symbolic execu-

4 Modular Demand-Driven Analysis of Semantic Difference

tion. We formalize the definitions of symbolic execution and modular symbolic
execution, and show the connections between the two.

The analysis terminates when we can fully identify the initial states of P1,
P2 for which the programs agree/disagree on their final states. Alternatively, we
can stop when a predefined threshold is reached. In this case the sets C(p1, p2)
and U(p1, p2) of initial states are guaranteed to represent disagreement and
agreement, respectively.

Side results of our analysis are the difference summaries computed for matched
procedures in P1, P2, that can be reused if the procedures are called by other
programs.

The main contributions of this work are:

– We present a modular and demand-driven algorithm for computing semantic
difference between closely related programs.

– Our algorithm is unique in that it provides both under- and over-approxi-
mations of the differences between program versions.

– We introduce abstraction-refinement into the analysis process so that a
tradeoff between the amount of computation and the obtained precision will
be manageable.

– We develop a new notion of modular symbolic execution.

2 Preliminaries

We start by defining some basic notions of programs and procedures.

Definition 1. Let P be a program, containing the set of procedures Π = {p1, . . . ,
pn}. The call graph for P is a directed graph with Π as nodes, and there exists
an edge from pi to pj if and only if procedure pi calls procedure pj.
The procedure p1 is a special procedure in the program’s call graph that acts as
an entry point of the program; it is also referred to as the main procedure in the
program P , denoted mainP .

Next we formalize the notions of variables and states of procedures.

– The visible variables of a procedure p are the variables that represent the
arguments to the procedure and its return values, denoted V vp .

– The hidden variables of a procedure p are the local variables used by the
procedure, denoted V hp .

– The variables of a procedure p are both its visible and hidden variables,
denoted Vp (Vp = V vp ∪ V hp).

– A state σp is a valuation of the procedure’s variables, σp = {v 7→ c|v ∈
Vp, c ∈ Dv}, where Dv is the (possibly infinite) domain of variable v.

– A visible state is the projection of a state to the visible variables.

Without loss of generality we assume that programs have no global variables,
since those could be passed as arguments and return values along the entire
program. We also assume, without loss of generality, that all program inputs

Modular Demand-Driven Analysis of Semantic Difference 5

are given to the main procedure at the beginning. The programs we analyze
are deterministic, meaning that given a visible state of the main procedure at
the beginning of an execution (an initial state), the execution of the program
(finite or infinite) is fixed, and for a finite execution the visible state at the end
of the execution is fixed (called final state). The same applies to individual
procedures as well.

In our work, a program is represented by its call graph, and each procedure
p is represented by its control flow graph CFGp (also known as a flow program
in [10]), defined below.

Definition 2. Let p be a procedure with variables Vp. The Control Flow Graph
(CFG) for p is a directed graph CFGp, in which the nodes represent instructions
in p and the edges represent possible flow of control from one instruction to its
successor(s) in the procedure code. Instructions include:

– Assignment: x = e, where x is a variable in Vp and e is an expression over Vp.
An assignment node has one outgoing edge.

– Procedure call: g(Y), where Y ⊆ Vp and the values of variables in Y are
assigned to the visible variables of procedure g.3 The variables in Y are
assigned with the values of the visible variables of g at the end of the execution
of g. A call node has one outgoing edge, to the instruction in p following the
return of procedure g.

– Test: B(Vp), where B(Vp) is a Boolean expression over Vp; a test node has
two outgoing edges, one marked with T, and the other with F.

A CFG contains one node with no incoming edges, called the entry node, and
one node with no outgoing edges, called the exit node.

Definition 3. Given CFGp of procedure p, a path π = l1, l2, . . . is a sequence
of nodes (finite or infinite) in the graph CFGp, such that:

1. For all i there exists an edge from li to li+1 in CFGp.
2. l1 is the entry node of p.

The path π is maximal if it is either infinite or it is finite and ends in the exit
node of p.

We assume that each procedure performs a transformation on the values of
the visible variables, and has no additional side-effects. Procedure p terminates
on a visible state σvp if the path traversed in p from σvp is finite and maximal.
A program terminates on a visible state σvmain if its main procedure terminates.

The following semantic characteristics are associated with finite paths, simi-
larly to the definitions for flow programs in [10]. The characteristics are given
(for a path in a procedure p) in terms of quantifier-free First-Order Logic (FOL),
defined over the set V vp of visible variables.

3 We assume that Y = {y1, . . . , yn} and V v
g = {v1, . . . , vn}, yi is assigned to vi at the

entry node, and vi is assigned to yi at the exit node.

6 Modular Demand-Driven Analysis of Semantic Difference

Definition 4. Let π be a finite path in procedure p.

– The Reachability Condition of π, denoted Rπ(V vp), is a condition on the
visible states at the beginning of π, which guarantees that the control will
traverse π.

– The State Transformation of π, denoted Tπ(V vp), describes the final state
of π, obtained if control traverses π starting with some valuation σvp of V vp .

Tπ(V vp) is given by |V vp | expressions over V vp , one for each variable x in V vp . The
expression for x describes the effect of the path on x in terms of the values of V vp
at the beginning of π. Let Tπ(V vp) = (f1, . . . , f|V v

p |) and Tπ′(V vp) = (f ′1, . . . , f
′
|V v

p |
)

be two state transformations. Then, Tπ(V vp) = Tπ′(V vp) if and only if, for every
1 ≤ i ≤ |V vp |, fi = f ′i .

1 void p1 (int& x) {
2 i f (x < 0) {
3 x = −1;
4 return ;
5 }
6 i f (x >= 2)
7 return ;
8 while (x == 2)
9 x = 2 ;

10 x = 3 ;
11 }

1 void p2 (int& x) {
2 i f (x < 0) {
3 x = −1;
4 return ;
5 }
6 i f (x > 4)
7 return ;
8 while (x == 2)
9 x = 2 ;

10 x = 3 ;
11 }

Fig. 2: Examples of procedure versions

Example 1. Consider procedure p1 in Figure 2. Its only visible variable is x, used
as both input and output. Consider the paths that correspond to the following
line numbers: α = (2, 3, 4) and β = (2, 6, 7). Then,

Rα(x) = x < 0 Rβ(x) = ((¬(x < 0)) ∧ x ≥ 2) ≡ x ≥ 2

Tα(x) = (−1) Tβ(x) = (x)

A path π is called feasible if Rπ is satisfiable, meaning that there exists
an input that traverses the path π. Note that, in p1 from Figure 2, the path
(2, 6, 8, 9) is not feasible.

2.1 Symbolic Execution

Symbolic execution [7, 17] (path-based) is an alternative representation of a
procedure execution that aims at systematically traversing the entire path space
of a given procedure. All visible variables are assigned with symbolic values
in place of concrete ones. Then every path is explored individually (in some
heuristic order), checking for its feasibility using a constraint solver. During the
execution, a symbolic state T and symbolic path constraint R are maintained.

Modular Demand-Driven Analysis of Semantic Difference 7

The symbolic state maps procedure variables to symbolic expressions (and is
naturally extended to map expressions over procedure variables), and the path
constraint is a quantifier-free FOL formula over symbolic values.

Given a finite path π = l1, . . . , ln, we use symbolic execution to compute the
reachability condition Rπ(V vp) and state transformation Tπ(V vp). The computation

is performed in stages, where for every 1 ≤ i ≤ n + 1, Riπ(Vp) and T iπ(Vp) are
the path condition and state transformation for path l1, . . . , li−1, respectively.
Initialization:

– For every x ∈ Vp, T 1
π (Vp)[x] = x.

– R1
π(Vp) = true.

Assume Riπ(Vp) and T iπ(Vp) are already defined. Ri+1
π (Vp) and T i+1

π (Vp) are then
defined according to the instruction at node i:

– Assignment x = e: Ri+1
π (Vp) := Riπ(Vp), T

i+1
π (Vp)[x] := e[Vp ← T iπ(Vp)] and

∀y 6= x, T i+1
π (Vp)[y] := T iπ(Vp)[y]

– Procedure call g(Y): The procedure g is in-lined with the necessary renaming
and symbolic execution continues along a path in g, returning to p when (if)
g terminates.4

– Test B(Vp): T
i+1
π (Vp) := T iπ(Vp), and

Ri+1
π (Vp) :=

{
Riπ(Vp) ∧B[Vp ← T iπ(Vp)] if the edge li → li+1 is marked T
Riπ(Vp) ∧ ¬B[Vp ← T iπ(Vp)] otherwise

As a result, when we reach the last node ln of a finite path π we get:

Rπ(V vp) = Rn+1
π (Vp)

Tπ(V vp) = Tn+1
π (Vp) ↓V v

p

5

As symbolic execution explores the program one path at a time, we start by
summarizing single paths, and then extend to procedures.

Definition 5. Given a finite maximal path π in p, a Path Summary (also
known as a partition-effect pair in [25]) is the pair (Rπ(V vp), Tπ(V vp)).

Definition 6. A Procedure Summary (also known as a symbolic summary
in [25]), for a procedure p, is a set of path summaries

sump ⊆ {(Rπ(V vp), Tπ(V vp)) |π is a finite maximal path in CFGp}.

4 Current values of Y are assigned to the visible variables of g, and assigned back at
termination of g.

5 Since we assume that all inputs are given through visible variables, and therefore no
hidden variable is used before it is initialized, V h

p will not appear in Rn+1
π (Vp) and

Tn+1
π (Vp) ↓V v

p
.

8 Modular Demand-Driven Analysis of Semantic Difference

Note that for a given CFG the reachability conditions of any pair of different
maximal paths are disjoint, meaning that for every initial state at most one finite
maximal path is traversed in the CFG. Thus, a procedure summary partitions the
set of initial states into disjoint finite paths, and describes the effect of the proce-
dure p on each path separately. This observation will be useful when procedure
summaries are used to compute difference summaries between procedures.

Unfortunately, it is not always possible to cover all paths in symbolic execution
due to the path explosion problem (even if all feasible paths are finite, their
number may be very large or even infinite). Therefore we allow for a given
summary sump not to cover all possible paths, meaning

∨
(r,t)∈sump

r may not

be valid (
∨

(r,t)∈sump
r 6≡ true).

Definition 7. Given a procedure summary sump, the Uncovered Part of sump

is ¬
∨

(r,t)∈sump
r.

For all inputs that satisfy the uncovered part of the summary nothing is
promised: the procedure p might not terminate on such inputs, or terminate
with unknown outputs. A summary for which the uncovered part is unsatisfiable
(
∨

(r,t)∈sump
r ≡ true) is called a full summary. Note that a full summary only

exists for procedures that halt on every input.

Example 2. We return to p1 from Figure 2. Any subset of the set {(x < 0,−1),
(x ≥ 0 ∧ x ≥ 2, x), (x ≥ 0 ∧ x < 2, 3)} is a summary for p1. For the summary

sump1 = {(x < 0,−1), (x ≥ 0 ∧ x ≥ 2, x)},

the uncovered part is characterized by x ≥ 0 ∧ x < 2.

2.2 Equivalence

We modify the notions of equivalence from [13] to characterize the set of visible
states under which procedures are equivalent, even if they might not be equivalent
for every initial state. Let p1 and p2 be two procedures with visible variables V vp1
and V vp2 , respectively. Since their sets of visible variables might be different, we
take the union V vp1 ∪V

v
p2 as their set of visible variables V vp . Any valuation of this

set can be viewed as a visible state of both procedures.

Definition 8. State-Equivalences
Let σvp be a visible state for p1 and p2.

– p1 and p2 are partially equivalent for σvp if and only if the following holds:
If p1 and p2 both terminate on σvp , then they terminate with the same final
state.

– p1 and p2 mutually terminate for σvp if and only if the following holds: p1

terminates on σvp if and only if p2 terminates on σvp .
– p1 and p2 are fully equivalent for σvp if and only if p1 and p2 are partially

equivalent for σvp and mutually terminate for σvp .

Modular Demand-Driven Analysis of Semantic Difference 9

3 Modular Symbolic Execution

A major component of our analysis is the modular symbolic execution, which
analyses one procedure at a time while avoiding inlining of called procedures. This
prevents unnecessary execution of previously explored paths in called procedures.
Assume procedure p calls procedure g. Also assume that a procedure summary
for g is given by: sumg = {(r1, t1), . . . , (rn, tn)}.

Modular symbolic execution is defined as symbolic execution for assignment
and test instructions (see Section 2.1). For procedure call instruction g(Y) (where
Y ⊆ Vp) it is defined as follows. For given Riπ(Vp) and T iπ(Vp):

Ri+1
π = Riπ ∧ (

∨
(r,t)∈sumg

r(T iπ[Y])) (1)

∀x 6∈ Y. T i+1
π [x] = T iπ[x] (2)

∀yj ∈ Y. T i+1
π [yj] = ITE (r1(T iπ[Y])6, t1j (T

i
π[Y]), ITE (r2(T iπ[Y]), t2j (T

i
π[Y]),

ITE (. . . , ITE (rn(T iπ[Y]), tnj (T iπ[Y]),UK) . . .))),

where:

– ITE (b, e1, e2) is an expression that returns e1 if the condition b holds and
returns e2, otherwise. It is similar to the conditional operator (?:) in some
programming languages.

– tkj refers to the jth element (for yj) of the path transformation tk.
– UK represents the value that is given if no path condition from sumg is

satisfied. That it, UK is returned when an unexplored path is traversed. Note,
however, that since we added (

∨
(r,t)∈sumg

r(T iπ[Y]) to the path condition Riπ,

a path that satisfies Ri+1
π will never return UK . Thus, UK is just a place

holder.

Modular symbolic execution, as defined here, restricts the analysis of proce-
dure p to paths along which g is called with inputs traversing paths in g that
have already been analyzed. For other paths, the reachability condition will be
unsatisfiable. In Section 6.1 we define an abstraction, which replaces unexplored
paths by uninterpreted functions. Thus, the analysis of p may include unexplored
(abstracted) paths of g. If the analysis reveals that the unexplored paths are
essential in order to determine difference or similarity on the level of p, then
refinement is applied by symbolically analysing more of g’s paths.

We prove in [29] the connection between modular symbolic execution and
regular symbolic execution on the in-lined version of the program. Intuitively,
as long as the paths taken in called procedures are covered by the summaries of
the called procedures, the following holds: Assume that a path π in p includes a
call to procedure g. Then π corresponds to a set of paths in the in-lined version,
each of which executing a different path in g, more formally:

6 We use r(T iπ[Y]) to indicate that every vk ∈ V v
g is replaced by the expression T iπ[yk].

10 Modular Demand-Driven Analysis of Semantic Difference

– For every path πin in the in-lined version of p there is a corresponding path
π in p such that:
• Rπin → Rπ
• Rπin → Tπin = Tπ

– For every path π in p, there are paths πin1 , . . . , π
in
n in the in-lined version of

p such that:
• Rπ ↔

∨n
i=1Rπin

i

• ∀i ∈ [n]. Rπin
i
→ Tπin

i
= Tπ

4 Difference Summary

Throughout the rest of the paper, we refer to a syntactically different pair of
procedures as modified , and to a semantically different pair of procedures (not
fully equivalent for every state) as affected . Note that a modified procedure is
not necessarily affected. Further, an affected procedure is not necessarily modified,
but must call (transitively) a modified and affected procedure.

Our main goal is, given two program versions, to evaluate the difference and
similarity between them. For that purpose we define the notion of difference
summary, in an attempt to capture the semantic difference and similarity between
the programs. A difference summary is defined for procedures and extends to
programs, by computing the difference summary for the main procedures in the
programs.

We start by defining the notion of full difference summary, which precisely
captures the difference and similarity between the behaviors of two given proce-
dures. In this section we give all definitions in terms of sets of states that might
be infinite.

Definition 9. A Full Difference Summary for two procedures p1 and p2 is
a triplet

∆Fullp1,p2 = (chp1,p2 , unchp1,p2 , termin chp1,p2)

where,

– chp1,p2 is the set of visible states for which both procedures terminate with
different final states.

– unchp1,p2 is the set of visible states for which both procedures either terminate
with the same final states, or both do not terminate.

– termin chp1,p2 is the set of visible states for which exactly one procedure
terminates.

Note that chp1,p2 ∪unchp1,p2 ∪ termin chp1,p2 covers the entire visible state space.
The three sets are related to the state equivalence notions of Definition 8 as
follows.

– chp1,p2 is the set of the visible states that violate partial equivalence. It only
captures differences between terminating paths.

– termin chp1,p2 is the set of visible states that violate mutual termination.

Modular Demand-Driven Analysis of Semantic Difference 11

– unchp1,p2 is the set of visible states for which the procedures are fully equiv-
alent.

Example 3. Consider the procedures in Figure 2. The full difference summary
for this pair of procedures is:

chp1,p2 = {{x 7→ 4}}
unchp1,p2 = {{x 7→ c} | c 6= 2 ∧ c 6= 4}

termin chp1,p2 = {{x 7→ 2}}

For input 2 the old version p1 does not change x, while the new version p2 reaches
an infinite loop, and therefore 2 is in termin chp1,p2 . For input 3, although the
paths taken in the two versions are different, the final value of x is the same (3),
and therefore 3 is in unchp1,p2 . For input 4, p1 does not change x, while p2
changes x to 3, and therefore 4 is in chp1,p2 .

The full difference summary and any of its three components are generally
incomputable, since they require halting information. We therefore suggest to
under-approximate the desired sets. In the next section we present an algorithm
that computes under-approximated sets and can also strengthen them. The
strengthening extends the sets with additional states, thus bringing the computed
summary “closer” to the full difference summary.

Definition 10. Given two procedures p1, p2, their Difference Summary

∆p1,p2 = (C(p1, p2), U(p1, p2))

consists of two sets of states where

– C(p1, p2) ⊆ chp1,p2 .
– U(p1, p2) ⊆ unchp1,p2 .

A difference summary gives us both an under-approximation and an over-
approximation of the difference between procedures, given by C(p1, p2) and
¬U(p1, p2)7, respectively.

The algorithm presented in the next section is based on the notion of path
difference, presented below. Recall that for a given path π, its path summary is
the pair (Rπ, Tπ) (see Definition 5).

Definition 11. Let p1 and p2 be two procedures with the same visible variables
V vp1 = V vp2 = V vp , and let π1 and π2 be finite paths in CFGp1 and CFGp2 ,
respectively. Then the Path Difference of π1 and π2 is a triplet (d, Tπ1 , Tπ2),
where d is defined as follows:

d(V vp)↔ (Rπ1
(V vp) ∧Rπ2

(V vp) ∧ ¬(Tπ1
(V vp) = Tπ2

(V vp))).

7 We use ¬ for set complement with respect to the state space.

12 Modular Demand-Driven Analysis of Semantic Difference

We call d the condition of the path difference. Note that d implies the reachability
conditions of both paths, meaning that for any visible state σ that satisfies d,
path π1 is traversed from σ in CFGp1 and path π2 is traversed from σ in CFGp2 .
Moreover, when starting from σ, the final state of π1 will be different from the
final state of π2 (at least for one of the variables in V vp). If d is satisfiable we say
that π1 and π2 show difference .

5 Computing Difference Summaries

5.1 Call Graph Traversal

Assume we are given two program versions, each consisting of one main procedure
and many other procedures that call each other. Assume also a matching function,
which associates procedures in one program with procedures in the other, based on
names (added and removed procedures are matched to the empty procedure). Our
objective is to efficiently compute difference summaries for matching procedures
in the programs. We are particularly interested in the difference of their main
procedures. This goal will be achieved gradually, where precision of the resulting
summaries increases, as computation proceeds. In this section we replace the sets
of states describing difference summaries by their characteristic functions, in the
form of FOL formulas.

As mentioned before, any block of code can be treated as a procedure, not
only those defined as procedures by the programmer.

Our main algorithm DiffSummarize, presented in Algorithm 1, provides an
overview of our method. The algorithm does not assume that the call graph is
cycle-free, and therefore is suitable for recursive programs as well.

For each pair of matched procedures, the algorithm computes a Difference
summary Diff[(p1, p2)], which is a pair of C(p1, p2) and U(p1, p2). Sum is a
mapping from all procedures to their current summary.

The algorithm computes a set workSet, which includes all pairs of procedures
for which Diff should be computed. The set workSet is initialized with all modified
procedures, and all their callers (lines 3–8), as those are the only procedures
suspected to be affected. We initially trivially under-approximate Diff for the
procedures in workSet by (false, false) (line 10). We can also safely conclude that
all other procedures are not affected (line 14).

Next we analyse all pairs of procedures in workSet (lines 17–31), where the
order is chosen heuristically. Given procedures p1 and p2, if they are syntactically
identical, and all called procedures have already been proven to be unaffected
(line 19) – we can conclude that p1, p2 are also unaffected. Otherwise, we compute
sump1 and sump2 by running ModularSymbolicExecution (presented in
Section 3) on the code of each procedure separately, up to a certain bound (chosen
heuristically).

Since it is possible to visit a pair of procedures p1, p2 multiple times we
keep the computed summaries in Sum[p1] and Sum[p2], and re-use them when
re-analyzing the procedures to avoid recomputing path summaries of paths that

Modular Demand-Driven Analysis of Semantic Difference 13

have already been visited. We then call algorithm ConstructProcDiffSum
(explained in Section 5.2) for computing a difference summary for p1 and p2.

Each time a difference summary changes (line 27), we need to re-analyse all
its callers to check how this newly learned information propagates (line 29).

Algorithm DiffSummarize is modular. It handles each pair of procedures
separately, without ever considering the full program and without inlining called
procedures.

As mentioned before, Algorithm DiffSummarize is not guaranteed to termi-
nate. Yet it is an anytime algorithm. That is, its partial results are meaningful.
Furthermore, the longer it runs, the more precise its results are.

Algorithm 1 DiffSummarize(P1, P2)

Input: Two program versions P1, P2

Output: Difference Summary and a set of Path Difference Summaries for each pair of matching
procedures, including mainP1

,mainP2

1: match = ComputeProcedureMatching(P1, P2)
2: FoundDiff[(p1, p2)] = ∅, for each (p1, p2) ∈ match
3: workSet := ∅
4: newWorkSet:= {(p1, p2) ∈ match : p1 different syntactically from p2}
5: while newWorkSet 6= workSet do
6: workSet := newWorkSet
7: newWorkSet := workSet ∪ {(q1, q2) ∈ match : ∃(p1, p2) ∈ workSet s.t. q1 calls p1 or q2 calls

p2}
8: end while
9: for each (p1, p2) ∈workSet do
10: Diff[(p1, p2)] := (false, false)
11: Sum[p1]:=∅, Sum[p2]:=∅
12: end for
13: for each (p1, p2) ∈ match\workSet do
14: Diff[(p1, p2)] := (false, true)
15: Sum[p1]:=∅, Sum[p2]:=∅
16: end for
17: while workSet6= ∅ do
18: (p1, p2) := chooseNext(workSet) . heuristic order
19: if p1, p2 are syntactically identical and for all (g1, g2) ∈ match s.t. p1 calls g1 or p2 calls g2,

Diff[(g1, g2)]=(*,true) then
20: newDiff := (false,true)
21: else
22: Sum[p1] := ModularSymbolicExecution(p1,Sum)
23: Sum[p2] := ModularSymbolicExecution(p2,Sum)
24: (newDiff,newFoundDiff) :=ConstProcDiffSum(Sum[p1],Sum[p2],Diff[(p1, p2)])
25: FoundDiff[(p1, p2)]:=FoundDiff[(p1, p2)] ∪ newFoundDiff
26: end if
27: if Diff[(p1, p2)] 6= newDiff then
28: Diff[(p1, p2)] := newDiff
29: workSet := workSet ∪ {(q1, q2) ∈ match : q1 calls p1 or q2 calls p2}
30: end if
31: end while
32: return (Diff, FoundDiff)

5.2 Computing the Difference Summaries for a Pair of Procedures

Algorithm ConstProcDiffSum (presented in Algorithm 2) accepts as input
procedure summaries sump1 , sump2 and also the current difference summary of

14 Modular Demand-Driven Analysis of Semantic Difference

Algorithm 2 ConstProcDiffSum(sump1 , sump2 ,oldDiff)

Input: Procedure summaries sump1
, sump2

of procedures p1, p2, respectively, and oldDiff, previ-
ously computed ∆p1,p2

Output: updated ∆p1,p2 , found diff p1,p2

1: (C(p1, p2), U(p1, p2)) := oldDiff
2: found diff p1,p2

= ∅
3: for each (r1, t1) in sump1

do

4: for each (r2, t2) in sump2
do

5: diffCond := r1 ∧ r2 ∧ t1 6= t2
6: if diffCond is SAT then
7: C(p1, p2):=C(p1, p2)∨ diffCond
8: found diff p1,p2

:= found diff p1,p2
∪{(diffCond, t1, t2)}

9: end if
10: eqCond := r1 ∧ r2 ∧ t1 = t2
11: if eqCond is SAT then
12: U(p1, p2):= U(p1, p2)∨ eqCond
13: end if
14: end for
15: end for
16: return ((C(p1, p2), U(p1, p2)), found diff p1,p2

)

p1, p2. It returns an updated difference summary ∆p1,p2 . In addition, it returns
the set found diff p1,p2of path differences, for every pair of paths in the two
procedure summaries, which shows difference.

The construction of diffCond in line 5 ensures that (diffCond ,t1, t2) is a
valid path difference. We add diffCond to C(p1, p2) (line 7), and (diffCond ,t1, t2)
to found diff p1,p2(line 8). Thus, we not only know under which conditions the
procedures show difference, but also maintain the difference itself (by means of
t1 and t2).

The construction of eqCond in line 10 ensures that for all states that satisfy
it the final states of both procedures are identical, as required by the definition of
U(p1, p2). The satisfiability checks in lines 6,11 are an optimization that ensures
we do not complicate the computed formulas unnecessarily with unsatisfiable
formulas.

We avoid recomputing previously computed path differences. For simplicity,
we do not show it in the algorithm.

6 Abstraction and Refinement

6.1 Abstraction

In Section 3 we show how to define symbolic execution modularly. There, we
restrict ourselves to procedure calls with previously analyzed inputs. However,
full analysis of each procedure is usually not feasible and often not needed for
difference analysis at the program level. In this section we show how partial
analysis can be used better.

We abstract the unexplored behaviors of the called procedures by means
of uninterpreted functions [18]. A demand-driven refinement is applied to the
abstraction when greater precision is needed.

Modular Demand-Driven Analysis of Semantic Difference 15

We modify the definition of Modular symbolic execution for procedure call
instruction g(Y) in the following manner:

– First, we now allow the symbolic execution of p to consider paths along which
p calls g with inputs for which g traverses an unexplored path. To do so, we
change the definition from Equation (1) to Ri+1

π = Riπ.
– Second, to deal with the lack of knowledge of the output of g, we introduce a

set of uninterpreted functions UF g = {UF j
g | 1 ≤ j ≤ |V vg |} 8. The uninter-

preted function UF j
g(T

i
π[Y]) replaces UK in T i+1

π [yj] (Equation (2)), where
yj ∈ Y is the j-th parameter to g.

We can now improve the precision of Si+1[yj] if we exploit not only the
summaries of g1 and g2 but also their difference summaries. In particular,
we can use the fact that U(g1, g2) characterizes the inputs for which g1 and
g2 behave the same. We thus introduce three sets of uninterpreted functions:
UF g1 ,UF g2 ,UF g1,g2 .

We now revisit Equation (2) of the modular symbolic execution for procedure
call g1(Y), where we replace UK in T i+1

π [yj] with

ITE (U(g1, g2)(T iπ[Y]),UF j
g1,g2(T iπ[Y]),UF j

g1(T iπ[Y])).

Similarly, for a procedure call g2(Y) we replace UK with

ITE (U(g1, g2)(T iπ[Y]),UF j
g1,g2(T iπ[Y]),UF j

g2(T iπ[Y])).

The set UF g1,g2 includes common uninterpreted functions, representing our
knowledge of equivalence between g1 and g2 when called with inputs T iπ[Y], even
though their behavior in this case is unknown. In some cases this could be enough
to prove the equivalence of the calling procedures p1, p2. The sets UF g1 and UF g2

are separate uninterpreted functions, which give us no additional information on
the differences or similarities of g1, g2.

Example 4. Consider again procedures p1, p2 in Figure 2. Let their procedure
summaries be

sump1(x) = {(x < 0,−1), (x ≥ 2, x)}
sump2(x) = {(x < 0,−1), (x > 4, x)}

and their difference summary be ∆p1,p2 = (false, x < 2 ∨ x > 4). When symbolic
execution of a procedure g reaches a procedure call p1(a), where a is a variable
of the calling procedure g, we will perform:

Ri+1
π =Riπ

∀yj 6= a. T i+1
π [yj] =T iπ[yj]

T i+1
π [a] = ITE (T iπ[a] < 0,−1, ITE (T iπ[a] ≥ 2, T iπ[a],

ITE (T iπ[a] < 2 ∨ T iπ[a] > 4,UFx
p1,p2(T iπ[a]),UFx

p1(T iπ[a]))).

8 An obvious optimization is to use the previous symbolic state for visible variables of
p that are only used by g as inputs but are not changed in g. However, for simplicity
of discussion we will not go into those details.

16 Modular Demand-Driven Analysis of Semantic Difference

6.2 Refinement

Using the described abstraction, the computed Rπ, Tπ may contain symbols of
uninterpreted functions, and therefore so could diffCond = r1 ∧ r2 ∧ t1 6= t2 and
eqCond = r1∧ r2∧ t1 = t2 (lines 5, 10 in Algorithm ConstProcDiffSum). As a
result, C(p1, p2) and U(p1, p2) may include constraints that are spurious, that
is, constraints that do not represent real differences or similarities between p1

and p2. This could occur due to the abstraction introduced by the uninterpreted
functions. Thus, before adding diffCond to C(p1, p2) or eqCond to U(p1, p2), we
need to check whether it is spurious. To address spuriousness, we may then need
to apply refinement by further analysing unexplored parts of the procedures.
This includes procedures that are known to be identical in both versions, since
their behavior may affect the reachability or the final states, as demonstrated by
the example below.

1 void f 1 (int& x) {
2 i f (x == 5) {
3 abs (x) ;
4 i f (x == 0) {
5 x = 0 ;
6 return ;
7 }
8 }
9 }

1 void f 2 (int& x) {
2 i f (x == 5) {
3 abs (x) ;
4 i f (x == 0) {
5 x = 1 ;
6 return ;
7 }
8 }
9 }

1 void abs (int& x) {
2 i f (x >= 1)
3 return ;
4 else
5 x = −x ;
6 }

Fig. 3: Procedure versions in need of refinement

Example 5. To conclude that the procedures in Figure 3 are equivalent, we need
to know that abs(5) cannot be zero. Therefore, we need to analyse abs, even
though it was not changed or affected.

We use the technique introduced in [4]: Let ϕ be a formula we wish to add
to either C(p1, p2) or U(p1, p2) (ϕ ∈ {diffCond , eqCond}) such that ϕ includes
symbols of uninterpreted functions. Before being added, it should be checked for
spuriousness.

For every k ∈ {1, 2}, assume procedure pk calls procedure gk(Yk) at location
lik on the single path π′ from pk, described by ϕ. For every k ∈ {1, 2} apply
symbolic execution up to a certain limit on gk with the pre-condition

ϕ ∧ ¬

 ∨
(r,t)∈sumgk

r
(
T ik−1
π′ [Yk]

) ∧ V vg = T ik−1
π′ [Yk].

When the reachability checks are performed with this precondition, only new
paths reachable from this call in pk are explored. For every such new path π, add
(Rπ, Tπ) to sumgk , replace the old sumgk with the new sumgk in ϕ and check for
satisfiability again. As a result, we either find a real difference or similarity, or
eliminate all the spurious path differences that involve the explored path π in gk.

Modular Demand-Driven Analysis of Semantic Difference 17

The refinement suggested above can be extended in a straightforward manner to
any number of function calls along a path.

Example 6. Consider again the procedures in Figure 3. Assume that the current
summaries of abs1=abs2=abs are empty, but it is known that both versions
are identical (unmodified syntactically). We get (using symbolic execution and
Algorithm 2) the diffCond for p1 and p2:

diffCond =

[
x = 5 ∧

(
ITE (true,UFabs1,abs2(x),UFabs1(x)) = 0

)
∧

x = 5 ∧
(

ITE (true,UFabs1,abs2(x),UFabs2(x)) = 0
)
∧ 0 6= 1

]
≡
[
x = 5 ∧UFabs1,abs2(x) = 0

]
Next we use x = 5 as a pre-condition, and perform symbolic execution, updating

the summary for abs: (x ≥ 1, x). Now diffCond is:[
x = 5 ∧

(
ITE

(
x ≥ 1, x, ITE(true,UFabs1,abs2(x),UFabs1(x))

)
= 0

)
∧

x = 5 ∧
(

ITE
(
x ≥ 1, x, ITE (true,UFabs1,abs2(x),UFabs2(x))

)
= 0

)
∧ 0 6= 1

]

≡

[
x = 5 ∧

(
ITE

(
x ≥ 1, x,UFabs1,abs2(x)

)
= 0

)]
≡ x = 5 ∧ x = 0

which is now unsatisfiable. We thus managed to eliminate a spurious difference
without computing the full summary of abs.

Once a difference summary is computed, we can choose whether to refine the
difference by exploring more paths in the individual procedures; or, if diffCond or
eqCond contains uninterpreted functions, to explore in a demand driven manner
the procedures summarized by the uninterpreted functions; or continue the
analysis in a calling procedure, where possibly the unknown parts of the current
procedures will not be reachable. In Section 8 we describe the results on our
benchmarks in two extreme modes: running refinement always immediately when
needed (ModDiffRef), and always delaying the refinement (ModDiff).

7 Related Work

A formal definition of equivalence between programs is given in [13]. We extend
these definitions to obtain a finer-grained characterization of the differences.

We extend the path-wise symbolic summaries and deltas given in [25], and show
how to use them in modular symbolic execution, while abstracting unknown parts.

The SymDiff [20] tool and the Regression Verification Tool (RVT) [14] both
check for partial equivalence between pairs of procedures in a program, while
abstracting procedure calls (after transforming loops into recursive calls). Unlike

18 Modular Demand-Driven Analysis of Semantic Difference

our tool, both SymDiff and RVT are only capable of proving equivalences,
not disproving them. In [16], a work that has similar ideas to ours, conditional
equivalence is used to characterize differences with SymDiff. The algorithm
presented in [16] is able to deal with loops and recursion; however, the algorithm
is not fully implemented in SymDiff. Our tool is capable of dealing soundly
with loops, and as our experiments show, is often able to produce full difference
summaries for programs with unbounded loops. We also provide a finer-grained
result, by characterizing the inputs for which there are (no) semantic differences.

Both SymDiff and RVT lack refinement, which often causes them to fail
at proving equivalence, as shown by our experiments in Section 8. Both tools
are, however, capable of proving equivalence between programs (using, among
others, invariants and proof rules) that cannot be handled by our method. Our
techniques can be seen as an orthogonal improvement. SymDiff also has a
mode that infers common invariants, as descried in [21], but it failed to infer the
required invariants for our examples.

Under-constrained symbolic execution, meaning symbolic execution of a
procedure that is not the entry point of the program is presented in [27, 28],
where it is used to improve scalability while using the old version as a golden
model. The algorithm presented in [27,28] does not provide any guarantees on
its result, and it does not attempt to propagate found differences to inputs of
the programs. By contrast, our algorithm does not stop after analysing only
the syntactically modified procedures, but continues to their calling procedures.
On the other hand, procedures that do not call modified procedures (transitively)
are immediately marked as equivalent. Thus, we avoid unnecessary work. In [27],
the new program version is checked, while assuming that the old version is correct.
We do not use such assumptions, as we are interested in all differences: new bugs,
bug fixes, and functional differences such as new features.

In [5, 26] summaries and symbolic execution are also used to compute dif-
ferences. The technique there leverages a light-weight static analysis to help
guide symbolic execution only to potentially differing paths. In [6], symbolic
execution is applied simultaneously on both versions, with the purpose of guiding
symbolic execution to changed paths. Both techniques, however, lack modularity
and abstractions. A possible direction for new research would be to integrate our
approach with one of the two.

Our approach is similar to the compositional symbolic execution presented
in [4, 12], that is applied to single programs. However, the analysis in [4, 12]
is top-down while ours works bottom-up, starting from syntactically different
procedures, proceeding to calling procedures only as long as they are affected by
the difference of previously analyzed procedures. The analysis stops as soon as
unaffected procedures are reached.

Our algorithm is unique in that it provides both an under- and over-approxi-
mations of the differences, while all the described methods have no guarantees or
only provide one of the two.

Modular Demand-Driven Analysis of Semantic Difference 19

8 Experimental Results

We implemented the algorithm presented in section 5 with the abstractions from
Section 6 on top of the CProver framework (version 787889a), which also forms
the foundation of the verification tools CBMC [8], SatAbs [9], Impact [22] and
Wolverine [19]. The implementation is available online [2]. Since we analyse
programs at the level of an intermediate language (goto-language, the intermediate
language used in the CProver framework), we can support any language that can
be translated to this language (currently Java and C). We report results for two
variants of our tool – without refinement (ModDiff for Modular Demand-driven
Difference), and with refinement (ModDiffRef). The unwinding limit is set to
5 in both variants.
SymDiff and RVT: We compared our results to two well established tools,
SymDiff and RVT. For SymDiff, we used the smack [3] tool to translate the C
programs into the Boogie language, and then passed the generated Boogie files
to the latest available online version of SymDiff.

8.1 Benchmarks and Results

Benchmark ModDiff ModDiffRef RVT SymDiff

Const 0.545s 0.541s 4.06s 14.562s

Add 0.213s 0.2s 3.85s 14.549s

Sub 0.258s 0.308s 5.01s F

Comp 0.841s 0.539s 5.19s F

LoopSub 0.847s 1.179s F F

UnchLoop F 2.838s F F

LoopMult2 1.666s 1.689s F F

LoopMult5 F 3.88s F F

LoopMult10 F 9.543s F F

LoopMult15 F 21.55s F F

LoopMult20 F 49.031s F F

LoopUnrch2 0.9s 0.941s F F

LoopUnrch5 1.131s 1.126s F F

LoopUnrch10 1.147s 1.168s F F

LoopUnrch15 1.132s 1.191s F F

LoopUnrch20 1.157s 1.215s F F

(a) Semantically equivalent

Benchmark ModDiff MDDiffRef

LoopSub 1.187s 2.426s

UnchLoop F 8.053s

LoopMult2 3.01s 3.451s

LoopMult5 F 5.914s

LoopMult10 F 10.614s

LoopMult15 F 14.024s

LoopMult20 F 25.795s

LoopUnrch2 2.157s 2.338s

LoopUnrch5 2.609s 3.216s

LoopUnrch10 2.658s 3.481s

LoopUnrch15 2.835s 3.446s

LoopUnrch20 3.185s 3.342s

(b) Semantically different

Table 1: Experimental results. Numbers are time in seconds, F indicates a failure
to prove equivalence in (a), and that the difference summary of main was not
full (some differences were not found) in (b).

We analysed 28 C benchmarks, where each benchmark includes a pair of
syntactically similar versions. Our benchmarks are available online [1]. Our
benchmarks were chosen to demonstrate some of the benefits of our technique, as
explained below. A total of 16 benchmarks are semantically equivalent (Table 1a),
while some benchmarks contain semantically different procedures. When using

20 Modular Demand-Driven Analysis of Semantic Difference

refinement, our algorithm was able to prove all equivalences between programs
but not between all procedures (although some were actually equivalent). RVT’s
refinement is limited to loop unrolling, and its summaries are limited as well.
Thus, it cannot prove equivalence of ancestors of recursive procedures or loops
that are semantically different. Also, if it fails to prove equivalence of seman-
tically equivalent recursive procedures or loops, it cannot succeed in proving
equivalence of their ancestors. As previously mentioned, RVT can sometimes
prove equivalence when our tool cannot. The latest available version of SymDiff
failed to prove most examples, possibly also for lack of refinement.

8.2 Analysis

We now explain in detail the benefit of our method on specific benchmarks. The
LoopUnrch benchmarks illustrate the advantages of summaries. Our tool analyses
foo1 and foo2 from Figure 4c, finds a condition under which those procedures
are different (for example inputs −1,1), and a condition under which they are
equivalent (a ≥ 0). In all versions of this benchmark, foo1 and foo2 are called with
positive (increasing) values of a (and b), and hence the loop is never performed.
We are able to prove equivalence efficiently in all versions, both with and without
refinement.

The LoopMult benchmarks illustrate the advantages of refinement. Our tool
analyses foo1 and foo2 from Figure 4a, finds a condition under which those
procedures are different (for example inputs 1,−1), and a condition under which
they are equivalent. We also summarise all behaviors that correspond to unwinding
of the loop 5 times. This unwinding is sufficient when the procedures are calls with
inputs 2,2 (benchmark LoopMult2, the first main from Figure 4b), and therefore
both MD-Diff and MD-DiffRef are able to prove equivalence quickly. This
unwinding is, however, not sufficient for benchmark LoopMult5 (the second main
from Figure 4b). Thus, MD-Diff is not able to prove equivalence (the summary
of foo1/2 does not cover the necessary paths), while MD-DiffRef analyses the
missing paths (where 5 ≤ a < 7∧ b = 5), and is able to prove equivalence. As the
index of the LoopMult benchmark increases, the length of the required paths and
their number increases, and the analysis takes more time, accordingly, but only
necessary paths are explored.

The remaining 12 benchmarks are not equivalent, and our algorithm is able
to find inputs for which they differ (presented in Table 1b). Since both SymDiff
and RVT are only capable of proving equivalences, not disproving them, we did
not compare to those tools.

9 Conclusion

We developed a modular and demand-driven method for finding semantic differ-
ences and similarities between program versions. It is able to soundly analyse
programs with loops and guide the analysis towards “interesting” paths. Our
method is based on (partially abstracted) procedure summarizations, which can

Modular Demand-Driven Analysis of Semantic Difference 21

int foo1 (int a , int b) {
int c=0;
for (int i =1; i<=b ; ++i)

c+=a ;
return c ;

}

int foo2 (int a , int b) {
int c=0;
for (int i =1; i<=a ; ++i)

c+=b ;
return c ;

}

(a) procedures foo1 and foo2 in
LoopMult benchmarks

int main (int x ,
char∗argv []) {

//LoopMult2
return f oo (2 , 2) ;

}

int main (int x ,
char∗argv []) {

//LoopMult5
i f (x>=5 && x<7)

return f oo (x , 5) ;
return 0 ;

}

(b) main functions of
LoopMult2 and Loop-
Mult5

int foo1 (int a , int b) {
int c=0;
i f (a<0) {

for (int i =1;
i<=b;++ i)

c+=a ;
}
return c ;

}

int foo2 (int a , int b) {
int c=0;
i f (a<0) {

for (int i =1;
i<=a;++ i)

c+=b ;
}
return c ;

}

(c) procedures foo1 and foo2
in LoopUnrch benchmarks

Fig. 4: LoopMult and LoopUnrch benchmarks

be refined on demand. Our experimental results demonstrate the advantage of
our approach due to these features.

References

1. ModDiff benchmarks, https://github.com/AnnaTrost/ModDiff/tree/master/

benchmarks

2. ModDiff tool, https://github.com/AnnaTrost/ModDiff
3. SMACK software verifier and verification toolchain,

https://github.com/smackers/smack

4. Anand, S., Godefroid, P., Tillmann, N.: Demand-driven compositional symbolic
execution. In: Tools and Algorithms for the Construction and Analysis of Systems,
pp. 367–381. LNCS, Springer (2008)

5. Backes, J.D., Person, S., Rungta, N., Tkachuk, O.: Regression verification using
impact summaries. In: Model Checking Software (SPIN). LNCS, vol. 7976, pp.
99–116. Springer (2013)

6. Cadar, C., Palikareva, H.: Shadow symbolic execution for better testing of evolving
software. In: Companion Proceedings of the 36th International Conference on
Software Engineering. pp. 432–435. ACM (2014)

7. Cadar, C., Sen, K.: Symbolic execution for software testing: three decades later.
Communications of the ACM 56(2), 82–90 (2013)

8. Clarke, E., Kroening, D., Lerda, F.: A tool for checking ANSI-C programs. In: Tools
and Algorithms for the Construction and Analysis of Systems. pp. 168–176. LNCS,
Springer (2004)

9. Clarke, E., Kroening, D., Sharygina, N., Yorav, K.: SATABS: SAT-based predicate
abstraction for ANSI-C. In: Tools and Algorithms for the Construction and Analysis
of Systems. pp. 570–574. LNCS, Springer (2005)

10. Francez, N.: Program verification. Addison-Wesley Longman (1992)

22 Modular Demand-Driven Analysis of Semantic Difference

11. Gao, D., Reiter, M.K., Song, D.: BinHunt: Automatically finding semantic dif-
ferences in binary programs. In: Information and Communications Security, pp.
238–255. LNCS, Springer (2008)

12. Godefroid, P.: Compositional dynamic test generation. In: ACM SigPlan Notices.
vol. 42, pp. 47–54. ACM (2007)

13. Godlin, B., Strichman, O.: Inference rules for proving the equivalence of recursive
procedures. Acta Informatica 45(6), 403–439 (2008)

14. Godlin, B., Strichman, O.: Regression verification. In: Proceedings of the 46th
Annual Design Automation Conference. pp. 466–471. ACM (2009)

15. Godlin, B., Strichman, O.: Regression verification: proving the equivalence of similar
programs. Software Testing, Verification and Reliability 23(3), 241–258 (2013)

16. Kawaguchi, M., Lahiri, S.K., Rebelo, H.: Conditional equivalence. Tech. Rep. MSR-
TR-2010–119 (2010)

17. King, J.C.: Symbolic execution and program testing. Communications of the ACM
19(7), 385–394 (1976)

18. Kroening, D., Strichman, O.: Equality logic and uninterpreted functions. In: Decision
Procedures, pp. 59–80. Springer (2008)

19. Kroening, D., Weissenbacher, G.: Interpolation-based software verification with
WOLVERINE. In: Computer Aided Verification. pp. 573–578. LNCS, Springer
(2011)

20. Lahiri, S.K., Hawblitzel, C., Kawaguchi, M., Rebêlo, H.: SYMDIFF: A language-
agnostic semantic diff tool for imperative programs. In: Computer Aided Verification.
pp. 712–717. LNCS, Springer (2012)

21. Lahiri, S.K., McMillan, K.L., Sharma, R., Hawblitzel, C.: Differential assertion
checking. In: Proceedings of the 2013 9th Joint Meeting on Foundations of Software
Engineering. pp. 345–355. ACM (2013)

22. McMillan, K.L.: Lazy abstraction with interpolants. In: Computer Aided Verification.
pp. 123–136. LNCS, Springer (2006)

23. Partush, N., Yahav, E.: Abstract semantic differencing for numerical programs. In:
Static Analysis, pp. 238–258. LNCS, Springer (2013)

24. Partush, N., Yahav, E.: Abstract semantic differencing via speculative correlation.
In: ACM SIGPLAN Notices. vol. 49, pp. 811–828. ACM (2014)

25. Person, S., Dwyer, M.B., Elbaum, S., Pasareanu, C.S.: Differential symbolic execu-
tion. In: Foundations of Software Engineering. pp. 226–237. ACM (2008)

26. Person, S., Yang, G., Rungta, N., Khurshid, S.: Directed incremental symbolic
execution. In: ACM SIGPLAN Notices. vol. 46, pp. 504–515. ACM (2011)

27. Ramos, D.A., Engler, D.: Under-constrained symbolic execution: correctness check-
ing for real code. In: 24th USENIX Security Symposium. pp. 49–64 (2015)

28. Ramos, D.A., Engler, D.R.: Practical, low-effort equivalence verification of real
code. In: Computer Aided Verification. pp. 669–685. LNCS, Springer (2011)

29. Trostanetski, A., Grumberg, O., Kroening, D.: Modular demand-driven analysis of
semantic difference for program versions. Tech. Rep. CS-2017-02, http://www.cs.
technion.ac.il/users/wwwb/cgi-bin/tr-info.cgi/2017/CS/CS-2017-02

30. Wong, W.E., Horgan, J.R., London, S., Agrawal, H.: A study of effective regression
testing in practice. In: Software Reliability Engineering, 1997. Proceedings., The
Eighth International Symposium on. pp. 264–274. IEEE (1997)

