
An Automata-Theoretic Approach to Modeling
Systems and Specifications over Infinite Data

Hadar Frenkel1(B), Orna Grumberg1, and Sarai Sheinvald2

1 Department of Computer Science, The Technion, Haifa, Israel
hfrenkel@cs.technion.ac.il

2 Department of Software Engineering, ORT Braude Academic College,

Karmiel, Israel

Abstract. Data-parameterized systems model finite state systems over
an infinite data domain. VLTL is an extension of LTL that uses
variables in order to specify properties of computations over infinite
data, and as such VLTL is suitable for specifying properties of data-
parameterized systems. We present Alternating Variable Büchi Word
Automata (AVBWs), a new model of automata over infinite alphabets,
capable of modeling a significant fragment of VLTL. While alternat-
ing and non-deterministic Büchi automata over finite alphabets have
the same expressive power, we show that this is not the case for infi-
nite data domains, as we prove that AVBWs are strictly stronger than
the previously defined Non-deterministic Variable Büchi Word Automata
(NVBWs). However, while the emptiness problem is easy for NVBWs,
it is undecidable for AVBWs. We present an algorithm for translating
AVBWs to NVBWs in cases where such a translation is possible. Addi-
tionally, we characterize the structure of AVBWs that can be translated
to NVBWs with our algorithm, and identify fragments of VLTL for which
a direct NVBW construction exists. Since the emptiness problem is cru-
cial in the automata-theoretic approach to model checking, our results
give rise to a model-checking algorithm for a rich fragment of VLTL and
systems over infinite data domains.

1 Introduction

Infinite data domains become increasingly relevant and wide-spread in real-life
systems, and are integral in communication systems, e-commerce systems, large
databases and more. Systems over infinite data domains were studied in several
contexts and especially in the context of datalog systems [4] and XML docu-
ments [5,7], that are the standard of web documents.

Temporal logic, particularly LTL, is widely used for specifying properties of
ongoing systems. However, LTL is unable to specify computations that handle
infinite data. Consider, for example, a system of processes and a scheduler. If
the set of processes is finite and known in advance, we can express and verify
properties such as “every process is eventually active”. However, if the system
is dynamic, in which new processes can log in and out, and the total number of
processes is unbounded, LTL is unable to express such a property.
c© Springer International Publishing AG 2017
C. Barrett et al. (Eds.): NFM 2017, LNCS 10227, pp. 1–18, 2017.
DOI: 10.1007/978-3-319-57288-8 1

2 H. Frenkel et al.

VLTL (LTL with variables) [11] extends LTL with variables that range over
an infinite domain, making it a natural logic for specifying ongoing systems
over infinite data domains. For the example above, a VLTL formula can be
ϕ1 = ∀x : G (loggedIn(x) → F (active(x))), where x ranges over the process
IDs. Thus, the formula specifies that for every process ID, once it is logged in,
it will eventually be active. Notice that this formula now specifies this prop-
erty for an unbounded number of processes. As another example, the formula
ϕ2 = G∃x(send(x)∧F receive(x)), where x ranges over the message contents (or
message IDs), specifies that in every step of the computation, some message is
sent, and this particular message is eventually received. Using variables enables
handling infinitely many messages along a single computation.

In the automata-theoretic approach to model checking [18,19], both the system
and the specification are modeled by automata whose languages match the set of
computations of the system and the set of satisfying computations of the formula.
Model-checking is then reduced to reasoning about these automata. For ongoing
systems, automata over infinite words, particularly nondeterministic and alter-
nating Büchi automata (NBWs and ABWs, respectively) are used [18]. Thus,
for ongoing systems with infinite data and VLTL, a similar model is needed,
capable of handling infinite alphabets. In [10,11], the authors suggested non-
deterministic variable Büchi word automata (NVBWs), a model that augments
NBWs with variables, and used it to construct a model-checking algorithm for a
fragment of VLTL that is limited to ∃-quantifiers that appear only at the head
of the formula.

The emptiness problem for NVBWs is NLOGSPACE-complete. Since the
emptiness problem is crucial for model checking, NVBWs are an attractive
model. However, they are quite weak. For example, NVBWs are unable to model
the formula ϕ2 above.

In this work, we present a new model for VLTL specifications, namely alter-
nating variable Büchi word automata (AVBWs). These are an extension of
NVBWs, which we prove to be stronger and able to express a much richer frag-
ment of VLTL. Specifically, we show that AVBWs are able to express the entire
fragment of ∃∗-VLTL, which is a fragment of VLTL with only ∃-quantifiers,
whose position in the formula is unrestricted.

We now elaborate more on NVBWs and AVBWs. As mentioned, an NVBW
A uses variables that range over an infinite alphabet Γ. A run of A on a word
w assigns values to the variables in a way that matches the letters in w. For
example, if a letter a.8 occurs in w, then a run of A may read a.x, where x is
assigned 8. In addition, the variables may be reset at designated states along
the run, and so a.x can be later used for reading another letter a.5, provided
that x has been reset. Resetting then allows reading an unbounded number
of letters using a fixed set of variables. Another component of NVBWs is an
inequality set E , that allows restricting variables from being assigned with the
same value. Our new model of AVBWs extends NVBWs by adding alternation.
An alternating automaton may split its run and continue reading the input along
several different paths simultaneously, all of which must accept.

An Automata-Theoretic Approach to Modeling Systems and Specifications 3

There is a well-known translation from LTL to ABW [18]. Thus, AVBWs
are a natural candidate for modeling VLTL. Indeed, as we show, AVBWs are
able to express all ∃∗-VLTL, following a translation that is just as natural as
the LTL to ABW translation. Existential quantifiers (anywhere) in the formula
are translated to corresponding resets in the automaton. Moreover, unlike the
finite alphabet case, in which NBWs and ABWs are equally expressive, in the
infinite alphabet case alternation proves to be not only syntactically stronger
but also semantically stronger, as we show that AVBWs are more expressive
than NVBWs.

As we have noted, our goal is to provide a model which is suitable for a
model-checking algorithm for VLTL, and that such a model should be easily
tested for emptiness. However, we show that the strength of AVBWs comes with
a price, and their emptiness problem is unfortunately undecidable. To keep the
advantage of ease of translation of VLTL to AVBWs, as well as the ease of using
NVBWs for model-checking purposes, we would then like to translate AVBWs
to NVBWs, in cases where such a translation is possible. This allows us to enjoy
the benefit of both models, and gives rise to a model-checking algorithm that is
able to handle a richer fragment of VLTL than the one previously studied.

We present such a translation algorithm, inspired by the construction of [14].
As noted, such a translation is not always possible. Moreover, we show that there
is no algorithm that is both sound and complete, even if we restrict completeness
to require returning “no translation possible”. Our algorithm is then sound but
incomplete, and we present an example for which it will not halt. However, we
give a characterization for AVBWs for which our algorithm does halt, relying
on the graphical structure of the underlying automaton. The essence of the
characterization is that translatable AVBWs do not have a cycle that contains
a reset action which leads to an accepting state. Consider once again ϕ2 =
G∃x(send .x ∧ F receive.x). Here, we keep sending messages that must arrive
eventually. However, there is no bound on when they will arrive. Since this is a
global requirement, there must be some cycle that verifies it, and such cycles are
exactly the ones that prevent the run of the translation algorithm from halting.

The importance of our algorithm and structural characterization is a twofold:
(1) given an AVBW A, one does not need to know the semantics of A in order
to know if it is translatable, and to automatically translate A to an equivalent
NVBW; and (2) Given a general ∃∗-VLTL formula, one can easily construct an
equivalent AVBW A, use our characterization to check whether it is translatable,
and continue with the NVBW that our translation outputs.

In addition to the results above, we also study fragments of ∃∗-VLTL that
have a direct construction to NVBWs, making them an “easy” case for modeling
and model checking.

Related Work. Other models of automata over infinite alphabets have been
defined and studied. In [13] the authors define register automata over infinite
alphabets, and study their decidability properties. [16] use register automata
as well as pebble automata to reason about first order logic and monadic sec-
ond order logic, and to describe XML documents. [3] limit the number of

4 H. Frenkel et al.

variables and use extended first order logic to reason about both XML and
some verification properties. In [4] the authors model infinite state systems as
well as infinite data domains, in order to express some extension of monadic first
order logic. Our model is closer to finite automata over infinite words than the
models above, making it easier to understand. Moreover, due to their similar-
ity to ABWs, we were able to construct a natural translation of ∃∗-VLTL to
AVBWs, inspired by [18]. We then translate AVBWs to NVBWs. Our construc-
tion is consistent with [14] which provides an algorithm for translating ABWs
to NBWs. However, in our case additional manipulations are needed in order to
handle the variables and track their possible assignments.

The notion of LTL over infinite data domains was studied also in the field of
runtime verification (RV) [1,2,8]. Specifically, in [1], the authors suggest a model
of quantified automata with variables, in order to capture traces of computations
with different data values. The purpose in RV is to check whether a single given
trace satisfies the specification. Moreover, the traces under inspection are finite
traces. This comes into play in [1] where the authors use the specific data values
that appear on such a trace in order to evaluate satisfiability. In [2] the authors
suggest a 3-valued semantics in order to capture the uncertainty derived from
the fact that traces are finite. Our work approaches infinite data domains in
a different manner. Since we want to capture both infinite data domains and
infinite traces, we need a much more expressive model, and this is where AVBWs
come into play.

2 Preliminaries

Given a finite set of directions D, a D-tree T is a set T ⊆ D∗. The root of T
is the empty word ε. A node x of T is a word over D that describes the path
from the root of T to x. That is, for a word d = d1, d2, · · · , dn there is a path in
the tree π = ε, d1, d1d2, · · · , d1d2 · · · dn such that every word d′di is a successor
of the previous word d′. For a word w · x ∈ D∗ where w ∈ D∗ and x ∈ D, if
w · x ∈ T then w ∈ T , i.e. the tree is prefix closed. A successor of a node w ∈ T
is of the form w · x for x ∈ D.

Given a set L, an L-labeled D-tree is a pair 〈T, f〉 where T is a D-tree, and
f : T → L is a labeling function that labels each node in T by an element of L.

A non-deterministic Büchi automaton over infinite words (NBW) [6] is a
tuple B = 〈Σ, Q, q0, δ, α〉 where Σ is a finite alphabet; Q is a finite set of states;
q0 ∈ Q is the initial state; α ⊆ Q is a set of accepting states; and δ : Q×Σ → 2Q

is the transition function. For a word ρ ∈ Σω, we denote by ρi the letter of ρ in
position i.

A run of B on a word ρ ∈ Σω is an infinite sequence of states q0, q1, q2, · · · ∈
Qω, that is consistent with δ, i.e., q0 is the initial state and ∀i > 0 : qi ∈
δ(qi−1, ρi). A run of B is accepting if it visits some state of α infinitely often.
We say that B accepts a word ρ if there exists an accepting run of B on ρ. The
language of B, denoted L(B), is the set of words accepted by B.

An alternating Büchi automaton over infinite words (ABW) [15] is a tuple
BA = 〈Σ, Q, q0, δ, α〉 where Σ, Q, q0 and α are as in NBW. The transition relation

An Automata-Theoretic Approach to Modeling Systems and Specifications 5

is δ : Q×Σ → B+(Q), where B+(Q) is the set of positive boolean formulas over
the set of states, i.e. formulas that include only the boolean operators ∧ and ∨1.
For example, if δ(q, a) = (q1 ∧ q2) ∨ q3, then, by reading a from q, the ABW
BA moves to either both q1 and q2, or to q3. We assume that δ is given in a
disjunctive normal form (DNF).

A run of an ABW is a Q-labeled Q-tree. Disjunctions are equivalent to non-
deterministic choices, and so every disjunct induces a tree. A conjunction induces
a split to two or more successors. For example, δ(q, a) = (q1 ∧ q2) ∨ q3 induces
two trees. In the first, q has two successors, q1 and q2. In the second tree the only
successor of q is q3. A run is accepting if every infinite path in the corresponding
tree visits a state from α infinitely often, and every finite path ends with true .
The notions of acceptance and language are as in NBWs.

We say that an automaton (either NBW or ABW) is a labeled automaton if
its definition also includes a labeling function L : Q → L for its states, where
L is a set of labels. We use this notion to conveniently define variable automata
later on.

We assume that the reader is familiar with the syntax and semantics of LTL.
Variable LTL, or VLTL, as defined in [11], extends LTL by augmenting

atomic propositions with variables. Let AP be a set of parameterized atomic
propositions, let X be a finite set of variables, and let x̄ be a vector of variables.
Then, the formulas in VLTL are over AP × X, thus allowing the propositions
to carry data from an infinite data domain. We inductively define the syntax
of VLTL.

– For every a ∈ AP and x ∈ X the formulas a.x and ¬a.x are VLTL formulas2.
– For a VLTL formula ϕ(x̄) and x ∈ X, the formulas ∃xϕ(x̄) and ∀xϕ(x̄)

are in VLTL.
– If ϕ1(x̄) and ϕ2(x̄) are VLTL formulas, then so are ϕ1(x̄)∨ϕ2(x̄); ϕ1(x̄)∧ϕ2(x̄);
Xϕ(x̄); Fϕ1(x̄); Gϕ1(x̄); ϕ1(x̄)Uϕ2(x̄); and ϕ1(x̄)Vϕ2(x̄), where V is the
release operator, which is the dual operator of U .

Given an alphabet Γ, an assignment θ : X → Γ, and a word ρ ∈ (2AP×Γ)ω, we
denote ρ �θ ϕ(x̄) if ρ � ϕ(x̄)[x̄←θ(x̄)] under the standard semantics of LTL. For
example, for ρ = {p.1}ω it holds that ρ �θ G p.x for θ(x) = 1.

We denote ρ �θ ∃xϕ(x̄) if there exists an assignment x ← d to the variable x
such that ρ �θ ϕ(x̄)[x←d], where �θ is as defined before. We denote ρ �θ ∀xϕ(x̄)
if for every assignment x ← d to the variable x, it holds that ρ �θ ϕ(x̄)[x←d].

We say that a formula ϕ is closed if every occurrence of a variable in ϕ is
under the scope of a quantifier. Notice that the satisfaction of closed formulas
is independent of specific assignments. For a closed formula ϕ over x̄, we then
write ρ � ϕ(x̄).

The logic ∃∗-VLTL is the set of all closed VLTL formulas in negation normal
form (NNF) that only use the ∃-quantifier. Note that the ∃-quantifier may appear

1 In particular, the negation operator is not included.
2 The semantics of ¬a.x is regarding a specific value. I.e., if x = d then a.d does not

hold, but a.d′ for d �= d′ may hold.

6 H. Frenkel et al.

anywhere in the formula. The logic ∃∗
pnf -VLTL is the set of all ∃∗-VLTL formulas

in prenex normal form, i.e., ∃-quantifiers appear only at the beginning of the
formula.

The language of a formula ϕ, denoted L(ϕ), is the set of computations that
satisfy ϕ.

We now define non-deterministic variable Büchi automata over infinite words
(NVBWs). Our definition is tailored to model VLTL formulas, and thus is slightly
different from the definition in [10]. Specifically, the alphabet consists of subsets
of AP × X, where AP is a finite set of parameterized atomic propositions.

An NVBW is a tuple A = 〈B,Γ,E 〉, where B = 〈2AP×X , Q, q0, δ, reset , α〉
is a labeled NBW, X is a finite set of variables, reset : Q → 2X is a labeling
function that labels each state q with the set of variables that are reset at q, the
set E ⊆ {xi �= xj |xi, xj ∈ X} is an inequality set over X, and Γ is an infinite
alphabet.

A run of an NVBW A = 〈B,Γ,E 〉 on a word ρ ∈ (2AP×Γ)ω, where ρ =
ρ1ρ2 · · · is a pair 〈π, r〉 where π = (q0, q1, q2, · · ·), is an infinite sequence of
states, and r = (r0, r1, · · ·) is a sequence of mappings ri : X → Γ such that:

1. There exists a word z ∈ (2AP×X)ω such that ∀i : ri(zi) = ρi and π is a run
of B on z. We say that z is a symbolic word that is consistent on 〈π, r〉 with
the concrete word ρ.

2. The run respects the reset actions: for every i ∈ N, x ∈ X, if x /∈ reset (qi)
then ri(x) = ri+1(x).

3. The run respects E : for every i ∈ N and for every inequality (xm �= xl) ∈ E
it holds that ri(xl) �= ri(xm).

A run 〈π, r〉 on ρ is accepting if π is an accepting run of B on a symbolic word
z that corresponds to ρ on 〈π, r〉, i.e. π visits α infinitely often. The notion of
acceptance and language are as in NBWs.

Intuitively, a run of an NVBW A on a word ρ assigns each occurrence of a
variable a letter from Γ. A variable can “forget” its value only if a reset action
occurred. The inequality set E prevents from certain variables to be assigned
with the same value.

We say that an NVBW A expresses a formula ϕ if L(A) = L(ϕ).

Example 1. Consider the concrete word ρ = {send .1}, ({send .2, rec.1}, {send .1,
rec.2})ω. In an NVBW A, a corresponding symbolic word can be z = {send .x1},
({send .x2, rec.x1}, {send .x1, rec.x2})ω. If A includes reset actions for x1 and
x2 in every even state in some path of A, then another concrete word consis-
tent with z can be ρ′ = {send .1}, {send .2, rec.1}, {send .3, rec.4}, {send .4, rec.3},
{send .5, rec.6}, · · · , since the values of x1 and x2 can change at every even state.

3 Variable Automata: Non-determinism Vs. Alternation

In Sect. 5 we show that NVBWs are useful for model checking in our setting,
since they have good decidability properties. In particular, there is a polyno-
mial construction for intersection of NVBWs, and their emptiness problem is

An Automata-Theoretic Approach to Modeling Systems and Specifications 7

NLOGSPACE-complete [10]. In Sect. 4 we describe a translation of ∃∗
pnf -VLTL

formulas to NVBWs. We now show that NVBWs are too weak to express all
VLTL formulas, or even all ∃∗-VLTL formulas. It follows that ∃∗-VLTL is strictly
more expressive than ∃∗

pnf -VLTL. Nevertheless, we use NVBWs for model check-
ing at least for some fragments of ∃∗-VLTL.

Before discussing the properties of variable automata, we first give some moti-
vation for their definition, as given in Sect. 2. In particular, we give motivation
for the reset labeling function and for E , the inequity set.

Example 2. We begin with resets. Consider the ∃∗-VLTL formula ϕ1 =
G∃x(a.x). One possible computation satisfying ϕ1 is ρ = a.1, a.2, a.3, · · · . No
NVBW with a finite number of variables can read ρ, unless some variable is
reassigned. The reset action allows these reassignments.

Example 3. To see the necessity of the inequality set E , consider the ∃∗-VLTL
formula ϕ2 = ∃x(G¬a.x). We can use a variable x to store a value that never
appears along the computation with a. Imposing inequality restrictions on x
with all other variables makes sure that the value assigned to x does not appear
along the computation via assignments to other variables. Note that if the logic
does not allow negations at all, the inequality set is not needed.

3.1 NVBWs Are Not Expressive Enough for ∃∗-VLTL

We first show that NVBWs cannot express every ∃∗-VLTL formula.

Lemma 1. The formula ϕG ∃ = G∃x(b.x ∧ F a.x) cannot be expressed by an
NVBW.

Proof. Consider the following word ρ over AP = {a, b} and Γ = N.

ρ = {a.1, b.1}, {a.2, b.2}, {a.2, b.3}, {a.3, b.4}, .., {a.4, b.8}.., {a.(k + 1), b.2k}, · · ·
i.e., b.(i) occurs in ρi, and a.(i+1) occurs for the first time in ρ2i and continues

until ρ2i+1−1.
It is easy to see that ρ satisfies ϕG ∃ since at step t for x = t we have that b.t
holds, and at some point in the future, specifically at step 2t−1, the proposition
a.t will hold.

Assume, by way of contradiction, that A is an NVBW with m variables that
expresses ϕG ∃. Then over a sub-word with more than m values for b, one variable
must be reset and used for two different values. We can then create a different
computation in which the value that was “forgotten” never appears with a, thus
not satisfying ϕG ∃, but accepted by A, a contradiction. �

Not only ∃-quantifiers are problematic for NVBWs. NVBWs cannot handle
∀-quantifiers, even in PNF. The proof of the following Lemma is almost identical
to the proof of Lemma 1.

Lemma 2. The formula ϕ = ∀x : G (a.x → F b.x) cannot be expressed by an
NVBW.

8 H. Frenkel et al.

3.2 Alternating Variable Büchi Automata

In Sect. 3.1 we have shown that NVBWs are not expressive enough, even when
considering only the fragment of ∃∗-VLTL. We now introduce alternating vari-
able Büchi automata over infinite words (AVBW), and show that they can
express all of ∃∗-VLTL. We study their expressibility and decidability properties.

Definition 1. An AVBW is a tuple A = 〈BA,Γ,E 〉 where BA = 〈2AP×X , Q, q0,
δ, reset , α〉 is a labeled ABW, X is a finite set of variables, reset : Q → 2X is
a labeling function that labels every state q with the set of variables that are
reset at q, the set E is an inequality set, and Γ is an infinite alphabet. We only
allow words in which a proposition a.γ for γ ∈ Γ appears at most once in every
computation step, i.e., no word can contain both a.γ and a.γ′ for γ �= γ′ at the
same position.

A run of an AVBW A on a word ρ ∈ (2AP×Γ)ω is a pair 〈T, r〉 where T is a
Q-labeled Q-tree and r labels each node t of T by a function rt : X → Γ such
that:

1. The root of T is labeled with q0.
2. For each path π on T there exists a symbolic word zπ ∈ (2AP×X)ω such that

rπi
((zπ)i) = ρi.

3. The run respects δ: for each node t ∈ T labeled by q of depth i on path π, the
successors of t are labeled by q1, · · · , qt iff one of the conjuncts in δ(q, (zπ)i)
is exactly

∧
j=1..t qj .

4. The run respects the reset actions: if t′ is a child node of t labeled by q and
x /∈ reset (q), then rt(x) = rt′(x).

5. The run respects E : for every (xi �= xj) ∈ E and for every node t ∈ T it
holds that rt(xi) �= rt(xj).

Intuitively, much like in NVBWs, the variables in every node in the run tree
are assigned values in a way that respects the resets and the inequality set.

A run 〈T, r〉 on ρ is accepting if every infinite path π is labeled infinitely often
with states in α. The notion of acceptance and language are as usual. Note that
the same variable can be assigned different values on different paths.

Just like ABWs, AVBWs are naturally closed under union and intersection.
However, unlike ABWs, they are not closed under complementation. We prove
this in Sect. 3.4.

3.3 AVBWs Can Express All of ∃∗-VLTL

We now show that AVBWs can express ∃∗-VLTL. Together with Lemma 1, we
reach the following surprising theorem.

Theorem 1. AVBWs are strictly more expressive than NVBWs.

This is in contrast to the finite alphabet case, where there are known algo-
rithms for translating ABWs to NBWs [14].

An Automata-Theoretic Approach to Modeling Systems and Specifications 9

Theorem 2. Every ∃∗-VLTL ϕ formula can be expressed by an AVBW Aϕ.

We start with an example AVBW for ϕG ∃ = G∃x(b.x∧F a.x) from Lemma 1.

Example 4. Let A = 〈B,N, ∅〉 where B = 〈2AP×{x1,x2,x3}, {q0, q1}, q0, δ, reset ,
{q0}〉.
– reset(q0) = {x1, x2}, reset(q1) = {x2, x3}
– δ(q0, {b.x1}) = δ(q0, {a.x2, b.x1}) = q0 ∧ q1

δ(q0, {b.x1, a.x1}) = true
δ(q1, {b.x2}) = δ(q1, {a.x2}) = δ(q1, {a.x2, b.x3}) = q1

δ(q1, {a.x1}) = δ(q1, {a.x1, b.x2}) = true

Intuitively, q0 makes sure that at each step there is some value with which b
holds. The run then splits to both q0 and q1. The state q1 waits for a with the
same value as was seen in q0 (since x1 is not reset along this path, it must be the
same value), and uses x2, x3 to ignore other values that are attached to a, b. The
state q0 continues to read values of b (which again splits the run), while using
x2 to ignore values assigned to a. See Fig. 1 for a graphic representation of A.

We now proceed to the proof of Theorem 2.

Proof. Let ϕ be an ∃∗-VLTL formula. We present an explicit construction
of Aϕ, based on the construction of [18] and by using resets to handle the
∃-quantifiers, and inequalities to handle negations. First, we rename the vari-
ables in ϕ and get an equivalent formula ϕ′, where each existential quantifier
bounds a variable with a different name. For example, if ϕ = ∃x(a.xU ∃x(b.x))
then ϕ′ = ∃x1(a.x1 U∃x2(b.x2)). Let sub(ϕ) denote all sub-formulas of ϕ and let
var(ϕ) denote the set of variables that appear in ϕ.

Let Aϕ = 〈B,Γ,E 〉 where B = 〈2AP×X , Q, q0 = ϕ′, δ, reset , α〉 and where

– X = var(ϕ′) ∪ {xp|p ∈ AP}

Fig. 1. The AVBW A described in Example 4 and an example of a run. The double
arch between transitions represents an “and” in δ.

10 H. Frenkel et al.

– Q = sub(ϕ′)
– ∀q ∈ Q : {xp|p ∈ AP} ⊆ reset(q) and, for q = ∃x1, · · · ,∃xnη, we have

{x1, · · · , xn} ⊆ reset(q).
– E = {x �= x′|x′ ∈ X,∃a : ¬a.x ∈ sub(ϕ′)}.
– α consists of all states of the form η Vψ.

The set of states Q consists of all sub-formulas of ϕ′. Intuitively, at every
given point there is an assignment to the variables, that may change via resets.
If an accepting run of A on ρ visits a state ψ, then the suffix of ρ that is read
from ψ satisfies ψ under the current assignment to the variables. The set of
variables X consists of all variables in ϕ′, as well as a variable xp for every
atomic proposition p ∈ AP . The additional variables enable the run to read and
ignore currently irrelevant inputs. For example, for ϕ = ∃xF (b.x∧a.x), we want
to read (and ignore) values of a and b until a.γ ∧ b.γ occurs with some γ.

Let A be a subset of AP × X (recall that B is defined over the alphabet
2AP×X). We define δ as follows.

– δ(a.x,A) = true if a.x ∈ A and δ(a.x,A) = false if a.x /∈ A
– δ(¬a.x,A) = true if a.x /∈ A and δ(¬a.x,A) = false if a.x ∈ A
– δ(η ∧ ψ,A) = δ(η,A) ∧ δ(ψ,A).
– δ(η ∨ ψ,A) = δ(η,A) ∨ δ(ψ,A)
– δ(X η,A) = η
– δ(ηUψ,A) = δ(ψ,A) ∨ (δ(η,A) ∧ ηUψ)
– δ(η Vψ,A) = δ(η ∧ ψ,A) ∨ (δ(ψ,A) ∧ η Vψ)
– δ(∃xη,A) = δ(η,A)

Note that since we only use formulas in NNF, we define δ for both “and”
and “or”, as well as for U (until) and V (release) operators.

Correctness. It can be shown that a word ρ is accepted from a state ψ with a
variable assignment r iff ρ |=r ψ. We elaborate on how the construction handles
the ∃-quantifier and negations.

The ∃-quantifier is handled by resetting the variables under its scope. Indeed,
according to the semantics of ∃, for ψ of the form ∃x : ψ′, the suffix of ρ holds if
ψ′ holds for some assignment to x. Resetting x allows the run to correctly assign
x in a way that satisfies ψ′. Notice also that from this point on, due to the
∃ quantifier, the previous value assigned to x may be forgotten.

Recall that we only allow negations on atomic propositions. We handle these
negations with inequalities. If ¬a.x is a sub-formula of ϕ, then we do not want
the value assigned to x to appear with a when reading a from state ¬a.x. Thus,
all variables that a can occur with from state ¬a.x must be assigned different
values from the value currently assigned to x. We express this restriction with
the inequality set E . �

An Automata-Theoretic Approach to Modeling Systems and Specifications 11

3.4 AVBWs Are Not Complementable

As mentioned before, unlike ABWs, AVBWs are not complementable. To prove
this, we show that ∀∗-VLTL cannot generally be expressed by AVBWs. Since
negating an ∃∗-VLTL formula produces a ∀∗-VLTL formula, the result follows.

Theorem 3. There is no AVBW that expresses ϕ∀ = ∀xF a.x.

Proof. Obviously, if the alphabet is not countable, then it cannot be enumerated
by a computation. However, the claim holds also for countable alphabets. Assume
by way of contradiction that there exists an AVBW A that expresses ϕ∀ for
Γ = N. Then A accepts w = a.0a.1a.2 · · · . Since the variables are not sensitive
to their precise contents but only to inequalities among the values, it is easy to
see that the accepting run of A on w can also be used to read w1 = a.1a.2 · · · ,
in which the value 0 never occurs. �
The negation of the above ϕ∀ is in ∃∗-VLTL, thus there is an AVBW that
expresses it.

Corollary 1. AVBWs are not complementable.

Corollary 2. ∀∗-VLTL is not expressible by AVBWs.

3.5 Variable Automata: From AVBW to NVBW

The emptiness problem for NVBWs is NLOGSPACE-complete [10]. In the con-
text of model checking, this is an important property. We now show that for
AVBWs, the emptiness problem is undecidable.

Lemma 3. The emptiness problem for AVBWs is undecidable.

Proof. According to [17], the satisfiability problem for ∃∗-VLTL is undecidable.
The satisfiability of a formula ϕ is equivalent to the nonemptiness of an automa-
ton that expresses ϕ. Since we have showed that every ∃∗-VLTL formula can be
expressed by an AVBW, the proof follows. �
Since the emptiness problem for NVBWs is easy, we are motivated to translate
AVBWs to NVBWs in order to model check properties that are expressed by
AVBWs. In particular, it will enable us to model check ∃∗-VLTL properties. This,
however, is not possible in general since AVBWs are strictly more expressive than
NVBWs (Theorem 1).

In this section we present an incomplete algorithm, which translates an inter-
esting subset of AVBWs to equivalent NVBWs. We later give a structural char-
acterization for AVBWs that can be translated by our algorithm to NVBWs.

3.5.1 From AVBW to NVBW
Our algorithm is inspired by the construction of [14] for translating ABW to
NBW. In [14] the states of the NBW are of the form 〈S,O〉 where S is the set

12 H. Frenkel et al.

of the states the ABW is currently at, and O is the set of states from paths
that “owe” a visit to an accepting state. While running the NBW on a word ρ,
accepting states are removed from O, until O = ∅. Thus, when O = ∅, all paths
have visited an accepting state at least once. Now, O is again set to be S, and a
new round begins. The accepting states of the NBW are states of the form 〈S, ∅〉.

Here, we wish to translate an AVBW A to an NVBW A′. For simplicity, we
assume that E = ∅. The changes for the case where E �= ∅ are described later.

In our case, the variables make the translation harder, and as shown before,
even impossible in some cases. In addition to S,O we must also remember which
variables are currently in use, and might hold values from previous states. In our
translation, the states of the NVBW are tuples containing S,O and the sets of
variables in use. Since AVBWs allow different paths to assign different values to
the same variable, the translation to an NVBW must allocate a new variable for
each such assignment. We also need to release variables that were reset in the
AVBW, in order to reuse them in the NVBW to avoid defining infinitely many
variables. Since we need to know which variables are in use at each step of a run
of A, we dynamically allocate both the states and the transitions of A′.

Thus, δ′, the transition function of A′, is defined dynamically during the run
of our algorithm, as do the states of A′. Moreover, since each path may allocate
different values to the same variable, it might be the case that the same variable
holds infinitely many values (from different paths). Such a variable induces an
unbounded number of variables in A′. Our algorithm halts when no new states
are created, and since the fresh variables are part of the created states, creating
infinitely many such variables causes our algorithm not to halt. Therefore, the
algorithm is incomplete.

Algorithm AVBWtoNVBW: Let A = 〈BA,Γ,E 〉 be an AVBW, where BA =
〈2X , Q, q0, δ, reset , α〉. For simplicity we assume that BA is defined over the
alphabet 2X instead of 2AP×X . Recall that we assume that δ(q,X ′) is in
DNF for all q ∈ Q,X ′ ⊆ X. Let A′ = 〈B′,Γ,E ′〉 be an NVBW where
B′ = 〈2Z , Q′, q′

0, δ
′, reset ′, α′〉, and3:

– Z = {zi|i = 0..k} is the set of variables. k can be finite or infinite, according
to the translation. If |Z| < ∞ then the AVBW is translatable to an NVBW.

– Q′ ⊆ 2Q×2X×Z × 2Q×2X×Z

. The states of A′ are pairs 〈S,O〉. Each of S,O
is a set of pairs of type 〈q, fq〉 where q ∈ Q, and fq : X → Z is a mapping
from the variables of A to the variables of A′. At each state we need to know
how many different values can be assigned to a variable x ∈ X by A, and
create variables zi ∈ Z accordingly, in order to keep track of the different
values of x.

– q′
0 = 〈{(q0, ∅)}, ∅〉. The initial state of A′ is the initial state of A with no

additional mappings.
– α′ = 2Q×2X×Z × ∅. The accepting states of A′ are states for which O = ∅, i.e.,

all paths in A have visited an accepting state.

3 Comments to the algorithm are given in gray.

An Automata-Theoretic Approach to Modeling Systems and Specifications 13

1. Preprocessing: For each q ∈ Q: if there is no accepting state or true reachable
from q then replace q with false. This is in order to remove loops that may
prevent halting, but, in fact, are redundant since they do not lead to an
accepting state.

2. Initiation: set S = {〈q0, ∅〉}, O = ∅, Qnew = {〈S,O〉}, Qold = ∅, vars = ∅, Z =
∅. The purpose of S,O is as explained above; Qnew, Qold keep track of the
changes in the states that the algorithm creates, in order to halt when no
new states are created; vars holds variables of Z that are currently in use.

3. We iteratively define δ′(〈S,O〉,X ′) for 〈S,O〉 ∈ Qnew, as long as new states
are created, i.e. while Qnew �⊆ Qold

(a) Set: S′ = O′ = ∅, Z ′ = ∅, Zreset = ∅. The purpose of Zreset is to reset fresh
variables, in order to reduce the number of states; at each step, Z ′ holds
the variables in Z which label the current edge (and are the image of
the variables in X which label the corresponding edges in A). The group
Zreset is initialized at every iteration of the algorithm.

(b) Qold = Qold ∪ {〈S,O〉}
(c) Qnew = Qnew \ {〈S,O〉}
(d) For each 〈q, fq〉 ∈ S and X ′ ⊆ X, let Pq ⊆ Q be a minimal set of states

with Pq � δ(q,X ′).
i. Create a state 〈p, fp〉 for each p ∈ Pq. The function fp is initialized

to fp(x) = fq(x) for x /∈ reset(p). I.e., every successor state p of q
remembers the same assignments to variables as in q, but releases the
assignments to variables that were reset in p.

ii. For x ∈ X ′ with x ∈ dom(fq), update Z ′ = Z ′ ∪ {fq(x)}
iii For each x ∈ X ′ with x /∈ dom(fq), let i ∈ N be the minimal index

for which zi /∈ vars.
A. Add to fp the mapping fp(x) = zi if x /∈ reset(p).
B. Update vars = vars ∪ {zi}, Z ′ = Z ′ ∪ {zi}, Zreset = Zreset ∪ {zi},

Z = Z ∪{zi}. zi may already be in Z, if it was introduced earlier.
iv. Define SPq

= {〈p, fp〉}p∈Pq

v. If O �= ∅: define OPq
= SPq

if 〈q, fq〉 ∈ O. I.e., add to O′ only succes-
sors states of states from O.

vi. If O = ∅: define OPq
= SPq

(e) Define S′ =
⋃

〈q,fq〉∈S SPq
, O′ = (

⋃
〈q,fq〉∈O OPq

) \ {〈p, fp〉}p∈α

(f) Add {zi|zi ∈ Zreset} to the reset function of previous state, 〈S,O〉. I.e.,
reset ′(〈S,O〉) = reset ′(〈S,O〉) ∪ {zi|zi ∈ Zreset}.

(g) Define 〈S′, O′〉 ∈ δ′(〈S,O〉, Z ′)
(h) Update Qnew = Qnew ∪ {〈S′, O′〉}
(i) If for zi ∈ vars it holds that for all 〈S,O〉 ∈ Qnew , for all 〈p, fp〉 ∈ S we

have zi /∈ range(fq), then:
i. vars = vars \ {zi}.
ii. add zi to reset ′(〈S′, O′〉)

Here we release variables of Z that are no longer in use. The way to do
so is to reset them, thus A′ can assign them a new value, and to delete
them from vars so they can be in use in following transitions.

4. Set Q′ = Qold

14 H. Frenkel et al.

To handle cases where E �= ∅, instead of mapping x to any unmapped vari-
able zi ∈ Z, each variable x may be mapped only to a unique set {zxi

}i∈Ix .
Then, we define E ′ = {zxi

�= zx′
j
|i ∈ Ix, j ∈ Ix′ , (x �= x′) ∈ E}. Notice that this

does not change the cardinality of Z.

3.5.2 A Structural Characterization of Translatable AVBWs
In order to define a structural characterization, we wish to refer to an AVBW A
as a directed graph GA whose nodes are the states of A. There is an edge from
q to q′ iff q′ is in δ(q,A) for some A ⊆ X. For example, if δ(q, x) = q1 ∨ (q2 ∧ q3)
then there are edges from q to q1, q2 and q3.

Definition 2. An x-cycle in an AVBW A is a cycle q0, q1, · · · , qk, qk+1 where
qk+1 = q0, of states in GA such that:

1. For all 1 ≤ i ≤ k + 1 it holds that qi is in δ(qi−1, A) for some A ⊆ X.
2. There exists 1 ≤ i ≤ k +1 such that qi is in δ(qi−1, A) for A ⊆ X and x ∈ A.

i.e. there is an edge from one state to another on the cycle, labeled x.

Theorem 4. Assume the preprocessing of stage 1 in the algorithm has been
applied, resulting in an AVBW A. Algorithm AVBWtoNVBW halts on A and
returns an equivalent NVBW iff for every x-cycle C in GA one of the following
holds:

1. For every q on C it holds that x /∈ reset(q).
2. For every state q on a path from the initial state to C with q1 ∧ q2 ∈ δ(q,A)

for x ∈ A, such that q1 is on the cycle C and q2 leads to an accepting state,
it holds that every x-cycle C′ �= C on a path from q2 to an accepting state
contains a state q′ with x ∈ reset(q′).

Proof. First, notice that Algorithm AVBWtoNVBW halts iff Z is of a finite size,
i.e., the number of variables it produces is finite.

For the first direction we show that running AVBWtoNVBW on an AVBW A
with the above properties results in an NVBW with Z of a finite size. In each of
the two cases, we can bound the distance between two reset actions for the same
variable, or between a reset action and an accepting state, along every possible
run. This, since we can bound the length of the longest path from a state on an
x-cycle to an accepting state. Thus all variables in X induce a finite number of
variables in Z.

For the other direction, since 1–2 do not hold, there exists a state q that leads
both to an x-cycle C on which x is reset, and to an x-cycle C′ with no reset(x),
on a way to an accepting state. While running our algorithm, a new mapping
x → zi is introduced at every visit to reset(x) on C. At the same time, zi cannot
be removed from vars, because of the visits to C′, which does not reset x, and
thus its value must be kept. Therefore, the algorithm continuously creates new
assignments x → zj for j �= i. Thus vars contains an unbounded set of variables.
The fact that there is a path to an accepting state is needed in order for this
cycle to “survive” the preprocessing. �

An Automata-Theoretic Approach to Modeling Systems and Specifications 15

3.5.3 Completeness and Soundness
As we mentioned before, no translation algorithm from AVBWs to NVBWs can
be both sound and complete, and have a full characterization of inputs for which
the algorithm halts. We now prove this claim.

Theorem 5. There is no algorithm E that translates AVBWs into NVBWs such
that all the following hold.

1. Completeness - for every A that has an equivalent NVBW, E(A) halts and
returns such an equivalent NVBW.

2. Soundness - If E(A) halts and returns an NVBW A′, then A′ is equivalent to A.
3. There is a full characterization of AVBWs for which E halts.

Proof. As we have shown in Lemma 3, the emptiness problem of AVBWs is unde-
cidable. Assume there is a translation algorithm E as described in Theorem 5.
Then consider the following procedure. Given an AVBW A, if E halts, check if
E(A) is empty. If E does not halt on input A, we know it in advance due to
the full characterization. Moreover, we know that L(A) is not empty (otherwise,
since E is complete, E would halt on A, since there is an NVBW for the empty
language). Hence, a translation algorithm as described in Theorem 5 gives us a
procedure to decide the emptiness problem for AVBWs, a contradiction. �

For our algorithm, we have shown a full characterization for halting. Now
we prove that our algorithm is sound, and demonstrate its incompleteness by
an example of an AVBW for the empty language, for which our algorithm does
not halt.

Theorem 6. Algorithm AVBWtoNVBW is sound.

Proof. First we show that the definition of E ′ is correct. Indeed, every (zxi
�=

zx′
j
) ∈ E ′ is derived from (x �= x′) ∈ E , and each zxi

is induced from only one
variable, x ∈ X. Therefore, E ′ preserves exactly the inequalities of E . Now,
reset ′ is defined according to reset such that if zi is induced from x, and x is
reset in a state q then zi is reset in states that include q. Therefore reset ′ allows
fresh values only when reset does. The correctness of the rest of the construction
follows from the correctness of [14] and from the explanations in the body of the
algorithm. �
Example 5. Incompleteness of the algorithm Let A = 〈B,Γ, ∅〉 where B =
〈{a.x, b.x}, {q0, q1}, q0, δ, reset , {q0}〉 and reset(q0) = {x}, reset(q1) = ∅. The
definition of δ is: δ(q0, {a.x}) = q0 ∧ q1, δ(q1, {a.x}) = q1, δ(q1, {b.x}) = true.
The language of A is empty, since in order to reach an accepting state on the
path from q1, the input must be exactly {b.i} for some i ∈ Γ, but the cycle of
q0 only allows to read {a.j}, without any b.i. Although there is an NVBW for
the empty language, our algorithm does not halt on A: it keeps allocating new
variables to x, thus new states are created and the algorithm does not reach a
fixed point.

16 H. Frenkel et al.

4 Fragments of ∃∗-VLTL Expressible by NVBWs

We now present several sub-fragments of ∃∗-VLTL with a direct NVBW
construction.

We can construct an NVBW for ∃∗-VLTL formula in prenex normal form,
denoted ∃∗

pnf -VLTL. The construction relies on the fact that variables cannot
change values throughout the run. Since every ∃∗

pnf -VLTL formula is expressible
with an NVBW, together with Lemma 1, we have the following corollary.

Corollary 3. ∃∗-VLTL is stronger than ∃∗
pnf -VLTL.4.

Another easy fragment is ∃∗-(X ,F)-VLTL, which is ∃∗-VLTL with only the
X ,F temporal operators, similar to the definitions of [9]. ∃ and X ,F are inter-
changeable. Thus, every ∃∗-(X ,F)-VLTL formula is equivalent to an ∃∗

pnf -VLTL,
which has a direct construction to an NVBW.

A direct construction from VLTL to NVBWs exists also for ∃∗-VLTL for-
mulas in which all quantifiers are either at the beginning of the formula, or
adjacent to a parameterized atomic proposition. This extends the construction
for ∃∗

pnf -VLTL by adding resets to some of the states.

5 Model Checking in Practice

The model-checking problem over infinite data domains asks whether an NVBW
AM accepts a computation that satisfies an ∃∗-VLTL formula ϕ, which specifies
“bad” behaviors. If ϕ is one of the types mentioned in Sect. 4, we can build an
equivalent NVBW Aϕ for ϕ. For a general ϕ, we build an equivalent AVBW A
according to Sect. 3.3 and if the structure of A agrees with the structural con-
ditions of Theorem 4, we translate A to an equivalent NVBW Aϕ according to
Sect. 3.5.1. Now, if Aϕ exists, the intersection Aϕ ∩ AM includes all computa-
tions of AM that are also computations of Aϕ. Checking the emptiness of the
intersection decides whether AM has a “bad” behavior that satisfies ϕ.

6 Conclusions and Future Work

We defined AVBWs, a new model of automata over infinite alphabets that
describes all ∃∗-VLTL formulas. We showed that AVBWs, unlike ABWs, are
not complementable and are stronger than NVBWs. Nevertheless, we presented
an algorithm for translating AVBWs to NVBWs when possible, in order to
preform model checking. Moreover, we defined a structural characterization of
translatable AVBWs. Finally, we presented the full process of model checking a
model M given as an NVBW against an ∃∗-VLTL formula. A natural extension
of our work is to use the techniques presented in this paper in order to preform
model checking for VCTL [12] formulas as well.
4 In [17] the authors conjecture without proof that the formula G∃x : a.x does not

have an equivalent in PNF. In Lemma 1 we showed G∃x(b.x ∧ F a.x) does not have
an equivalent NVBW, thus it does not have an equivalent ∃∗

pnf -VLTL formula. This
is a different formula from G ∃x : a.x, but the conclusion remains the same.

An Automata-Theoretic Approach to Modeling Systems and Specifications 17

References

1. Barringer, H., Falcone, Y., Havelund, K., Reger, G., Rydeheard, D.: Quantified
event automata: towards expressive and efficient runtime monitors. In: Gian-
nakopoulou, D., Méry, D. (eds.) FM 2012. LNCS, vol. 7436, pp. 68–84. Springer,
Heidelberg (2012). doi:10.1007/978-3-642-32759-9 9

2. Bauer, A., Leucker, M., Schallhart, C.: Runtime verification for LTL and TLTL.
ACM Trans. Softw. Eng. Methodol. 20(4), 14:1–14:64 (2011)

3. Bojańczyk, M., Muscholl, A., Schwentick, T., Segoufin, L., David, C.: Two-variable
logic on words with data. In: 21st IEEE Symposium on Logic in Computer Science
(LICS 2006), 12–15, Seattle, WA, USA, Proceedings, pp. 7–16. IEEE Computer
Society, 2006, August 2006

4. Bouajjani, A., Habermehl, P., Jurski, Y., Sighireanu, M.: Rewriting systems with
data. In: Csuhaj-Varjú, E., Ésik, Z. (eds.) FCT 2007. LNCS, vol. 4639, pp. 1–22.
Springer, Heidelberg (2007). doi:10.1007/978-3-540-74240-1 1

5. Brambilla, M., Ceri, S., Comai, S., Fraternali, P., Manolescu, I.: Specification and
design of workflow-driven hypertexts. J. Web Eng. 1(2), 163–182 (2003)

6. J. R. Buechi. On a decision method in restricted second-order arithmetic. In Inter-
national Congress on Logic, Methodology, and Philosophy of Science, pp. 1–11.
Stanford University Press, (1962)

7. Ceri, S., Matera, M., Rizzo, F., Demaldé, V.: Designing data-intensive web appli-
cations for content accessibility using web marts. Commun. ACM 50(4), 55–61
(2007)

8. Colin, S., Mariani, L.: Run-time verification. In: Broy, M., Jonsson, B., Katoen,
J.-P., Leucker, M., Pretschner, A. (eds.) Model-Based Testing of Reactive Sys-
tems. LNCS, vol. 3472, pp. 525–555. Springer, Heidelberg (2005). doi:10.1007/
11498490 24

9. Emerson, E.A., Halpern, J.Y.: “sometimes” and “not never” revisited: on branching
versus linear time temporal logic. J. ACM 33(1), 151–178 (1986)

10. Grumberg, O., Kupferman, O., Sheinvald, S.: Variable Automata over Infi-
nite Alphabets. In: Dediu, A.-H., Fernau, H., Mart́ın-Vide, C. (eds.) LATA
2010. LNCS, vol. 6031, pp. 561–572. Springer, Heidelberg (2010). doi:10.1007/
978-3-642-13089-2 47

11. Grumberg, O., Kupferman, O., Sheinvald, S.: Model checking systems and specifi-
cations with parameterized atomic propositions. In: Chakraborty, S., Mukund, M.
(eds.) ATVA 2012. LNCS, pp. 122–136. Springer, Heidelberg (2012). doi:10.1007/
978-3-642-33386-6 11

12. Grumberg, O., Kupferman, O., Sheinvald, S.: A game-theoretic approach to
simulation of data-parameterized systems. In: Cassez, F., Raskin, J.-F. (eds.)
ATVA 2014. LNCS, vol. 8837, pp. 348–363. Springer, Cham (2014). doi:10.1007/
978-3-319-11936-6 25

13. Kaminski, M., Francez, N.: Finite-memory automata. Theor. Comput. Sci. 134(2),
329–363 (1994)

14. Miyano, S., Hayashi, T.: Alternating finite automata on omega-words. Theor. Com-
put. Sci. 32, 321–330 (1984)

15. Muller, D., Schupp, P.E.: Alternating automata on infinite objects, determinacy
and Rabin’s theorem. In: Nivat, M., Perrin, D. (eds.) LITP 1984. LNCS, vol. 192,
pp. 99–107. Springer, Heidelberg (1985). doi:10.1007/3-540-15641-0 27

16. Neven, F., Schwentick, T., Vianu, V.: Towards regular languages over infinite alpha-
bets. In: Sgall, J., Pultr, A., Kolman, P. (eds.) MFCS 2001. LNCS, vol. 2136, pp.
560–572. Springer, Heidelberg (2001). doi:10.1007/3-540-44683-4 49

http://dx.doi.org/10.1007/978-3-642-32759-9_9
http://dx.doi.org/10.1007/978-3-540-74240-1_1
http://dx.doi.org/10.1007/11498490_24
http://dx.doi.org/10.1007/11498490_24
http://dx.doi.org/10.1007/978-3-642-13089-2_47
http://dx.doi.org/10.1007/978-3-642-13089-2_47
http://dx.doi.org/10.1007/978-3-642-33386-6_11
http://dx.doi.org/10.1007/978-3-642-33386-6_11
http://dx.doi.org/10.1007/978-3-319-11936-6_25
http://dx.doi.org/10.1007/978-3-319-11936-6_25
http://dx.doi.org/10.1007/3-540-15641-0_27
http://dx.doi.org/10.1007/3-540-44683-4_49

18 H. Frenkel et al.

17. Song, F., Wu, Z.: Extending temporal logics with data variable quantifications.
In: Raman, V., Suresh, S.P. (eds.) 34th International Conference on Foundation of
Software Technology and Theoretical Computer Science, FSTTCS 15–17, 2014,
New Delhi, India, vol. 29 of LIPIcs, pp. 253–265. Schloss Dagstuhl - Leibniz-
Zentrum fuer Informatik, 2014, December 2014

18. Vardi, M.Y.: An automata-theoretic approach to linear temporal logic. In: Moller,
F., Birtwistle, G. (eds.) Logics for Concurrency. LNCS, vol. 1043, pp. 238–266.
Springer, Heidelberg (1996). doi:10.1007/3-540-60915-6 6

19. Vardi, M.Y., Wolper, P.: An automata-theoretic approach to automatic program
verification (preliminary report). In: Proceedings of the Symposium on Logic in
Computer Science (LICS 1986), Cambridge, Massachusetts, USA, June 16–18, pp.
332–344. IEEE Computer Society (1986)

http://dx.doi.org/10.1007/3-540-60915-6_6

	An Automata-Theoretic Approach to Modeling Systems and Specifications over Infinite Data
	1 Introduction
	2 Preliminaries
	3 Variable Automata: Non-determinism Vs. Alternation
	3.1 NVBWs Are Not Expressive Enough for *-VLTL
	3.2 Alternating Variable Büchi Automata
	3.3 AVBWs Can Express All of *-VLTL
	3.4 AVBWs Are Not Complementable
	3.5 Variable Automata: From AVBW to NVBW

	4 Fragments of *-VLTL Expressible by NVBWs
	5 Model Checking in Practice
	6 Conclusions and Future Work
	References

