
Automated Circular Assume-Guarantee Reasoning

Karam Abd Elkader1, Orna Grumberg1, Corina S. Păsăreanu2, and Sharon Shoham3(�)

1 Technion – Israel Institute of Technology, Haifa, Israel
2 CMU/NASA Ames Research Center, USA

3 The Academic College of Tel aviv Yaffo, Tel Aviv, Israel
sharon.shoham@gmail.com

Abstract. Compositional verification techniques aim to decompose the verifica-
tion of a large system into the more manageable verification of its components.
In recent years, compositional techniques have gained significant successes fol-
lowing a breakthrough in the ability to automate assume-guarantee reasoning.
However, automation is still restricted to simple acyclic assume-guarantee rules.

In this work, we focus on automating circular assume-guarantee reasoning
in which the verification of individual components mutually depends on each
other. We use a sound and complete circular assume-guarantee rule and we de-
scribe how to automatically build the assumptions needed for using the rule. Our
algorithm accumulates joint constraints on the assumptions based on (spurious)
counterexamples obtained from checking the premises of the rule, and uses a SAT
solver to synthesize minimal assumptions that satisfy these constraints.

We implemented our approach and compared it with an established learning-
based method that uses an acyclic rule. In all cases, the assumptions generated
for the circular rule were significantly smaller, leading to smaller verification
problems. Further, on larger examples, we obtained a significant speedup as well.

1 Introduction

Compositional verification techniques aim to break up the global verification of a pro-
gram into local, more manageable, verification of its individual components. The envi-
ronment for each component, consisting of the other program’s components, is replaced
by a “small” assumption, making each verification task easier. This style of reasoning
is often referred to as Assume-Guarantee (AG) reasoning [17,20].

Progress has been made on automating compositional reasoning using learning and
abstraction-refinement techniques for iterative building of the necessary assumptions
[7,19,3,4,2,5,6]. This work has been done mostly in the context of applying a simple
compositional assume-guarantee rule, where assumptions and properties are related in
an acyclic manner. For example, in a two component program, suppose component M1

guarantees property P under assumption A on its environment. Further suppose that
M2 unconditionally guarantees A. Then it follows that the composition M1||M2 also
satisfies P (denoted here as rule NonCIRC-AG).

However, there is another important category of rules that involve circular reason-
ing. These rules use inductive arguments, over time, formulas to be checked, or both,
e.g. [17,14,15,1], which makes automation challenging. Circular assume-guarantee rules
have been successfully used in scaling model checking, and have often been found to

c© Springer International Publishing Switzerland 2015
N. Bjørner and F. de Boer (Eds.): FM 2015, LNCS 9109, pp. 23–39, 2015.
DOI: 10.1007/978-3-319-19249-9_3

24 K. Abd Elkader et al.

be more effective than non-circular rules [14,15,16,21,12,11]. Further, they could natu-
rally exploit the inherent circular dependency exhibited by the verified systems, but their
applicability has been hindered by the manual effort involved in defining assumptions.

In this work we propose a novel circular compositional verification technique that
is fully automated. The technique uses the following assume-guarantee circular rule
CIRC-AG, for proving that M1||M2 |= P , based on assumptions g1 and g2. Compo-
nents, properties and assumptions are Labeled Transition Systems (LTSs).

(Premise 1) M1 |= g2 � g1
(Premise 2) M2 |= g1 � g2
(Premise 3) g1||g2 |= P

M1||M2 |= P

Similar rules have been studied before [15,18,9]. The rule is both sound and complete.
Premises 1 and 2 of the rule use inductive arguments to ensure soundness and have the
form M |= A�P , which means that for every trace σ of size k, if σ is in the language of
M , and its prefix of size k−1 is in the language of A then σ is also in the language of P .
Intuitively, premises 1 and 2 prove, in a compositional and inductive manner, that every
trace in the language of M1||M2 is also included in the language of g1||g2. Premise 3
ensures that every trace in the language of g1||g2 is also included in the language of P ,
thus the consequence of the rule is obtained. Completeness of the rule stems from the
fact that M1 and M2 (restricted to appropriate alphabets) can be used for g1 and g2 in a
successful application of the rule.

Coming up manually with assumptions g1 and g2 that are small and also satisfy the
premises of the rule is difficult. We propose an algorithm, Automated Circular Reason-
ing (ACR), for the automated generation of the assumptions. In ACR the assumptions
are initially approximate and are iteratively refined based on counterexamples obtained
from checking the rule premises and found to be spurious (i.e. do not indicate real
errors). Refinement is performed using a SAT solver over a set of constraints that de-
termine how the assumptions should be refined in order to avoid producing the same
counterexample in subsequent iterations. The algorithm is guaranteed to terminate, re-
turning either minimal assumptions that satisfy the rule premises (meaning that the
property holds) or a real counterexample (indicating a property violation).

Our search for minimal assumptions using SAT is inspired by [10]. However, in [10]
a single (separating) assumption is generated, with the goal of automating non-circular
reasoning. ACR, on the other hand, searches for two mutually dependent assumptions
to be used with circular reasoning. Finding such assumptions poses unusual challenges
since they need to be generated in a tightly related manner. We achieve this by con-
straining the assumption refinement with boolean combinations of requirements that
certain traces must or must not be included in the language of the updated assumptions.
For example, we may require “trace σ1 must not be in g1 or trace σ2 must be in g2”.
The SAT encoding of this constraint makes sure that at least one of its disjuncts will be
satisfied. Solving the constraints for increasing number of states in |g1|+ |g2|, yields the
minimal candidate assumptions to be used in the next iteration of ACR. We establish
the correctness of our ACR algorithm (proofs are omitted due to space constraints).

To the best of our knowledge, our work is the first to fully automate circular assume-
guarantee reasoning. We implemented our algorithm and compared it with an established

Automated Circular Assume-Guarantee Reasoning 25

learning-based method that uses the acyclic rule NonCIRC-AG [7]. Our experiments
indicate that the assumptions generated using the circular rule can be much smaller,
leading to smaller verification problems, both in the number of explored states and the
analysis time.

2 Preliminaries

Let Act be the universal set of observable actions and let τ denote a local action, unob-
servable to a component’s environment.

Definition 1. A Labeled Transition System (LTS) M is a quadruple (Q,αM, δ, q0)
where Q is a finite set of states, αM ⊆ Act is a finite set of observable actions called
the alphabet of M , δ ⊆ Q× (αM ∪ τ) ×Q is a transition relation, and q0 ∈ Q is the
initial state.

M is nondeterministic if it contains a τ transition or if there exist (q, a, q′), (q, a, q′′) ∈
δ such that q′ �= q′′. Otherwise, M is deterministic (denoted as DLTS). We write
δ(q, a) =⊥ if there is no q′ such that (q, a, q′) ∈ δ. For a DLTS, we write δ(q, a) = q′

to denote that (q, a, q′) ∈ δ.

Note. A non-deterministic LTS can be converted to a deterministic LTS that accepts the
same language. However the deterministic LTS might have exponentially many more
states than the non-deterministic LTS.

Paths and Traces. A trace σ is a sequence of observable actions. We use σi to denote
the prefix of σ of length i. A path in an LTS M = (Q,αM, δ, q0) is a sequence p =
q0, a0, q1, a1 · · · , an−1, qn of alternating states and observable or unobservable actions
of M , such that for every k ∈ {0, . . . , n− 1} we have (qk, ak, qk+1) ∈ δ. The trace of
p is the sequence b0b1 · · · bl of actions along p, obtained by removing from a0 · · · an−1

all occurrences of τ . The set of all traces of paths in M is called the language of M ,
denoted L(M). A trace σ is accepted by M if σ ∈ L(M). Note that L(M) is prefix-
closed and that the empty trace, denoted by ε, is accepted by any LTS.

Projections. For Σ ⊆ Act, we use σ↓Σ to denote the trace obtained by removing
from σ all occurrences of actions a �∈ Σ. M↓Σ is defined to be the LTS over alphabet
Σ obtained by renaming to τ all the transitions labeled with actions that are not in Σ.
Note that L(M↓Σ) = {σ↓Σ | σ ∈ L(M)}.

Parallel Composition. Given two LTSs M1 and M2 over alphabet αM1 and αM2,
respectively, their interface alphabet αI consists of their common alphabet. That is,
αI = αM1 ∩αM2. The parallel composition operator || is a commutative and associa-
tive operator that combines the behavior of two components by synchronizing on the
actions in their interface and interleaving the remaining actions.

Let M1 = (Q1, αM1, δ1, q01) and M2 = (Q2, αM2, δ2, q02) be two LTSs. Then
M1||M2 is an LTS M = (Q,αM, δ, q0), where Q = Q1 × Q2, q0 = (q01 , q02),
αM = αM1 ∪ αM2, and δ is defined as follows where a ∈ αM ∪ {τ}:

26 K. Abd Elkader et al.

– if (q1, a, q′1) ∈ δ1 for a �∈ αM2, then ((q1, q2), a, (q
′
1, q2)) ∈ δ for every q2 ∈ Q2,

– if (q2, a, q′2) ∈ δ2 for a �∈ αM1, then ((q1, q2), a, (q1, q
′
2)) ∈ δ for every q1 ∈ Q1,

– if (q1, a, q′1) ∈ δ1 and (q2, a, q
′
2) ∈ δ2 for a �= τ , then ((q1, q2), a, (q

′
1, q

′
2)) ∈ δ.

Lemma 1. [7] For every t ∈ (αM1 ∪ αM2)
∗, t ∈ L(M1||M2) if and only if t↓αM1 ∈

L(M1) and t↓αM2 ∈ L(M2).

Example 1. Consider the example in Figure 1. This is a variation of the example of [7]
modified to illustrate circular dependencies. LTSs In and Out have interface alphabet
{send, ack}. Their composition In||Out is an LTS where the transition from state 0 to
1 in component In (labeled with ack) never takes place, since there is no corresponding
matching transition in component Out. Similarly the transition from state 2 to 3 in
component Out (labeled with send) never takes place. As a result, In||Out simply
repeats the trace 〈in, send, out, ack〉.
Properties and Satisfiability. A safety property is defined as an LTS P , whose lan-
guage L(P) defines the set of acceptable behaviors over the alphabet αP of P . An LTS
M over αM ⊇ αP satisfies P , denoted M |= P , if ∀σ ∈ L(M).σ↓αP ∈ L(P). To
check a safety property P , its LTS is transformed into a deterministic LTS, which is
also completed by adding an error state π and adding transitions from every state q in
the deterministic LTS into π for all the missing outgoing actions of q; the resulting LTS
is called an error LTS, denoted by Perr. Checking that M |= P is done by checking
that π is not reachable in M ||Perr.

A trace σ ∈ αM∗ is a counterexample for M |= P if σ ∈ L(M) but σ↓αP �∈ L(P).
The Order LTS from Figure 1 depicts a safety property satisfied by In||Out. Note

that neither In, nor Out, satisfy this property individually. For example, the trace
〈in, send, ack, ack〉 of In is a counterexample for In |= Order.

In Out Order

Fig. 1. LTSs describing the In and Out components and the Order property

3 Circular Assume-Guarantee Reasoning

In this section we formally establish the soundness and completeness of the circular
rule CIRC-AG introduced in Section 1 (proofs are omitted due to space constraints).
We start by defining inductive properties. CIRC-AG uses formulas of the form M |=
A � P , where M is a component, P is a property, and A is an assumption about M ’s
environment. To ensure soundness of the circular rule the assume-guarantee formula is
defined using induction over finite traces.

Automated Circular Assume-Guarantee Reasoning 27

Definition 2. Let M,A and P be LTSs over αM,αA and αP respectively, such that
αP ⊆ αM . We say that M |= A � P holds if ∀k ≥ 1 ∀σ ∈ (αM ∪ αA)∗ of length k
such that σ↓αM ∈ L(M), if σk−1↓αA ∈ L(A) then σ↓αP ∈ L(P).

Intuitively, the formula states that if a trace in M satisfies the assumption A up to
step k − 1, it should guarantee P up to step k. As an example consider the LTSs
In from Figure 1 and g1 and g2 from Figure 2. Then In |= g2 � g1. On the other
hand, In �|= g1 � g2 since the trace σ = 〈in, send, ack, ack〉 ∈ L(In) is such that
σk−1↓αg1 = 〈send, ack〉 ∈ L(g1), but σ↓αg2 = 〈send, ack, ack〉 �∈ L(g2). σ is there-
fore a counterexample for In |= g1 � g2.

Definition 3. A trace σ ∈ (αM∪αA)∗ of length k is a counterexample for M |= A�P
if σ↓αM ∈ L(M) and σk−1↓αA ∈ L(A) but σ↓αP �∈ L(P).

Soundness and Completeness of Rule CIRC-AG. To establish the soundness of rule
CIRC-AG we have the following requirements. M1,M2 and P are LTSs where αP ⊆
αM1 ∪ αM2. Moreover, g1, g2 are LTSs, used as assumptions in the rule, such that
αM1 ∩ αP ⊆ αg1 and αM2 ∩ αP ⊆ αg2.

The following lemmas include several observations that are useful both in the sound-
ness and completeness proofs and in the algorithm for automatic generation of assump-
tions g1 and g2, needed for the rule.

Lemma 2. Let g1 and g2 be LTS assumptions successfully used in CIRC-AG, such that
αMi ∩ αP ⊆ αgi. Then (1) M1||M2 |= g1||g2. (2) M1||g2 |= P and M2||g1 |= P .

Lemma 3. Let M1,M2, P be LTSs over αM1, αM2, αP respectively. Let αg1 ⊇ αI ∪
(αM1 ∩ αP) and αg2 ⊇ αI ∪ (αM2 ∩ αP). Then M1||M2 |= P if and only if
M1↓αg1 ||M2↓αg2 |= P .

Theorem 1. The Rule CIRC-AG is sound and complete.

Soundness states that if there exist LTS assumptions g1 and g2 that satisfy all premises
of CIRC-AG, then M1||M2 |= P . This result follows from Lemma 2, Item (1). Com-
pleteness states that if M1||M2 |= P holds we can always find g1 and g2 such that
the premises of the rule hold. Indeed completeness is established by showing that if
M1||M2 |= P , then g1 = M1↓αg1 and g2 = M2↓αg2 where αg1 = αM1∩(αM2∪αP)
and αg2 = αM2 ∩ (αM1 ∪ αP), satisfy the premises of the rule.

Example 2. Consider our running example (Figure 1), and consider the assumptions
g1 and g2 depicted in Figure 2, over alphabet αg1 = αIn ∩ (αOut ∪ αOrder) and
αg2 = αOut ∩ (αIn ∪ αOrder). In both cases αgi = {send, ack}. As stated above,
In |= g2 � g1. Similarly, Out |= g1 � g2. Moreover, g1||g2 |= Order. It follows that
In||Out |= Order can be verified using CIRC-AG with g1 and g2 as assumptions.

4 Automatic Reasoning with CIRC-AG

We describe an iterative algorithm to automate the application of rule CIRC-AG by
automating the assumption generation.

28 K. Abd Elkader et al.

Fig. 2. LTSs describing the assumptions g1 and g2 generated by ACR, and the assumption A
generated with L*. αg1 = αg2 = αA = {send, ack}

Checking Inductive Properties. We first introduce a simple algorithm that checks if
an inductive property of the form M |= A � P , where αP ⊆ αM , holds and if it does
not, it returns a counterexample. To do so, we consider the LTS M ||A||Perr. We label
its states by (parameterized) propositions erra, where a ∈ αP . (sM , sA, sP) is labeled
by erra if sM has an outgoing transition in M labeled by a, but the corresponding
transition (labelled by a) leads to π in Perr. We then check if a state q labeled by erra
is reachable in M ||A||Perr. If so, then the algorithm returns the trace of a path from q0
to q extended with action a as a counterexample. Intuitively, such a path to q represents
a trace in M that satisfies A (because it is a trace in M ||A) such that if we extend it by
a we get a trace in M violating P .

Overview of the Main Algorithm. We propose an iterative algorithm to automate
the application of the rule CIRC-AG by automating the assumption generation. Pre-
vious work used approximate iterative techniques based on automata learning or ab-
straction refinement to automate the assumption generation in the context of acyclic
rules [7,19,3,4,2,5,6]. A different approach [10] used a SAT solver over a set of con-
straints encoding how the assumptions should be updated to find minimal assumptions;
the method was shown to work well in practice, in the context of the same acyclic
rule. We follow the latter approach here and we adapt it to reasoning for cyclic rules
and checking inductive assume-guarantee properties. As mentioned, this is challenging
due to the mutual dependencies between the two assumptions that we need to generate.
We achieve this by constraining the assumptions with boolean combinations of require-
ments that certain traces must or must not be included in the language of the updated
assumptions.

Algorithm 1 describes our Automated Circular Reasoning (ACR) algorithm for
checking M1||M2 |= P using the rule CIRC-AG.

We fix the alphabet of the assumptions g1 and g2 to be αg1 = αM1 ∩ (αM2 ∪ αP)
and αg2 = αM2 ∩ (αM1 ∪ αP). By the completeness proof of the rule, this suffices.

ACR maintains a set C of membership constraints on g1 and g2. At each iteration
it calls GENASSMP (described in Section 6) to synthesize, using a SAT solver, new
minimal assumptions g1 and g2 that satisfy all the constraints in C. GENASSMP also
receives as input a parameter k which provides a lower bound on the total number of
states in the assumptions we look for. This avoids searching for smaller assumptions
that cannot satisfy C. The algorithm then invokes APPLYAG (described in Section 5) to
check the three premises of rule CIRC-AG using the obtained assumptions g1 and g2.
APPLYAG may return a conclusive result: either “M1||M2 |= P ” or “M1||M2 �|= P ”,

Automated Circular Assume-Guarantee Reasoning 29

Algorithm 1. Main algorithm for automating rule CIRC-AG for checking M1||M2 |=
P
1: procedure ACR(M1,M2, P)
2: Initialize: C = ∅, k = 2
3: repeat
4: (g1, g2) =GENASSMP(C,k)
5: (C′, Result) =APPLYAG(M1,M2, P, g1, g2)
6: C = C ∪ C′, k = |g1|+ |g2|
7: until (Result �= “continue”)
8: return Result
9: end procedure

in which case ACR terminates. If no conclusive result is obtained, it means that g1 and
g2 do not satisfy the premises of the rule. Further, the counterexamples demonstrating
the falsification of the premises are not suitable for concluding M1||M2 �|= P , i.e. they
are spurious. In this case APPLYAG returns “continue” together with new membership
constraints that determine how the assumptions should be refined. The new constraints
are added to C. Note that since the set C of constraints is monotonically increasing, any
new pair (g′1, g

′
2) that satisfies it also satisfies previous sets of constraints. The previous

set was satisfied by assumptions whose total size is |g1| + |g2| but not smaller. Thus,
we should start our search for new (g′1, g

′
2) from k = |g1|+ |g2| number of states. k is

updated accordingly (line 6).

Example 3. The assumptions g1 and g2 from Figure 2 used to verify In||Out |= Order
with CIRC-AG were obtained by ACR in the 7th iteration. The LTS A from Figure 2
describes the assumption obtained with the algorithm of [7], which is based on acyclic
rule NonCIRC-AG and uses L∗ for assumption generation. Notice that both g1 and g2
are smaller than A (and our experiments show that they can be much smaller in prac-
tice). The reason is that, after a successful application of CIRC-AG, g1||g2 overapprox-
imates M1||M2. This means that each gi overapproximates the part of Mi restricted to
the composition with the other component. For example g1 does not include the traces
leading to state 1 from In since they do not participate in the composition. Similarly g2
does not include the traces leading to state 3 in Out. In contrast, for the acyclic rule, the
assumption A has to overapproximate M2 (Out) as a whole. Therefore, CIRC-AG can
result in substantially smaller assumptions, as also demonstrated by our experiments.

Membership Constraints. Membership constraints are used by our algorithm to gather
information about traces that need to be in L(gi) or must not be in L(gi), for i = 1, 2.
Thus they allow us to encode dependencies between the languages of the two assump-
tions L(g1) and L(g2). The constraints are defined by formulas with a special syntax
and semantics, as defined below.

Definition 4. Membership constraints formulas over (αg1, αg2) are defined inductively
as follows: For every σ1 ∈ αg∗1 and σ2 ∈ αg∗2 the formulas +(σ1, 1), −(σ1, 1),
+(σ2, 2), −(σ2, 2) are atomic membership constraints formulas. Further, if c1 and c2
are membership constraints formulas, then so are (c1 ∧ c2) and (c1 ∨ c2).

30 K. Abd Elkader et al.

Given a membership constraints formula c, Strings(c, i) is the set of prefixes of all
σ ∈ αgi

∗ such that +(σ, i) or −(σ, i) is an atomic formula in c.

Definition 5. Let c be a membership constraints formula over (αg1, αg2), and let A1

andA2 be two LTSs. The satisfaction of c by (A1, A2) is defined inductively. (A1, A2) |=
c if and only if αA1 = αg1 and αA2 = αg2, and:

– if c is an atomic formula of the form +(σ, i) then σ ∈ L(Ai).
– if c is an atomic formula of the form −(σ, i) then σ �∈ L(Ai).
– if c is of the form (c1 ∧ c2) then (A1, A2) |= c1 and (A1, A2) |= c2 .
– if c is of the form (c1 ∨ c2) then (A1, A2) |= c1 or (A1, A2) |= c2.

For a set C of membership constraints formulas over (αg1, αg2), we say that A1 and
A2 satisfy C if and only if for every c ∈ C, (A1, A2) |= c.

For example, a membership constraint of the form +(σ1, 1)∨−(σ2, 2) requires that
σ1 ∈ L(g1) or σ2 �∈ L(g2) (or both).

5 APPLYAG Algorithm

Given assumptions g1,g2, APPLYAG (see Algorithm 2) applies assume-guarantee rea-
soning by checking the three premises of rule CIRC-AG using g1 and g2. In the algo-
rithm we check premises 1, 2, 3 in this order but in fact the order of the checks does not
matter and the checks can be done in parallel. If all three premises are satisfied, then,
since the rule is sound, it follows that M1||M2 |= P holds (and this is returned to the
user). Otherwise, at least one of the premises does not hold. Hence a counterexample σ
for (at least) one of the premises is found. APPLYAG then checks if the counterexam-
ple indicates a real violation for M1||M2 |= P , as described below. If this is the case,
then APPLYAG returns M1||M2 �|= P . Otherwise APPLYAG uses the counterexample
to compute a set of new membership constraints C and returns “continue” (note that in
the first two cases an empty constraint set is returned).

Notation. For readability, in APPLYAG (and UPDATECONSTRAINTS) we use σ↓ ∈
L(A) and σ↓ �∈ L(A) as a shorthand for σ↓αA ∈ L(A) and σ↓αA �∈ L(A), respectively.

Checking Validity of a Counterexample. Given a counterexample σ for one of the
premises of the CIRC-AG rule, APPLYAG checks if σ can be extended into a trace in
L(M1||M2) which does not satisfy P . This check is performed either by APPLYAG
directly (if premise 3 fails: in lines 9-16 of APPLYAG) or by algorithm UPDATECON-
STRAINTS (if one of the first two premises fails). In essence, a counterexample σ is real
if σ↓αg1 ∈ L(M1↓αg1), σ↓αg2 ∈ L(M2↓αg2) and σ↓αP �∈ L(P). This is also stated by
the following lemma, which follows from Lemma 1 and Lemma 3.

Lemma 4. If σ↓αg1 ∈ L(M1↓αg1), σ↓αg2 ∈ L(M2↓αg2) and σ↓αP �∈ L(P), then
M1||M2 �|= P . Moreover, σ can be extended into a counterexample for M1||M2 |= P .

Automated Circular Assume-Guarantee Reasoning 31

For example, in line 9 of Algorithm 2, σ ∈ (αg1 ∪ αg2)
∗ is a counterexample for

premise 3, hence σ↓αP �∈ L(P). It therefore suffices to check if σ↓αg1 ∈ L(M1↓αg1)
and σ↓αg2 ∈ L(M2↓αg2) in order to conclude that a real counterexample exists (line 11).
Similarly, in Algorithm 3, σa ∈ (αMi ∪ αgj)

∗ is a counterexample for premise i for
i ∈ {1, 2}, hence σa↓αMi ∈ L(Mi), and since αgi ⊆ αMi, also σa↓αgi ∈ L(Mi↓αgi).
In line 3, the algorithm then checks if, in addition, σa↓αgj ∈ L(Mj↓αgj) and σa↓αP �∈
L(P). If these conditions hold then by Lemma 4 the counterexample is real (line 5).

Computation of New Membership Constraints based on Counterexamples. When
the counterexample found for one of the premises does not produce a real counterex-
ample for M1||M2 |= P , then APPLYAG (or UPDATECONSTRAINTS) analyzes the
counterexample and computes new membership constraints to refine the assumptions.
In essence, these constraints encode whether the counterexample trace (or a restriction
of it) should be added to or removed from the languages of the two assumptions such
that future checks will not produce the same counterexample again.

If premise 3 does not hold, i.e. g1||g2 �|= P and the reported counterexample σ is
found not to be real then it should be removed from L(g1) or from L(g2) (in this way
the trace will no longer be present in the composition g1||g2 for the assumptions com-
puted in subsequent iterations). Therefore in line 14, APPLYAG adds the corresponding
constraint (−(σ↓αg1 , 1) ∨ −(σ↓αg2 , 2)) to C.

If either premise 1 or 2 does not hold, i.e. Mi �|= gj �gi, then the analysis of the coun-
terexample σiai (for i=1 or 2) and the addition of constraints (if needed) are performed
by UPDATECONSTRAINTS (see Algorithm 3). Specifically, in this case σiai should be
added to L(gi) or its prefix σi should be removed from L(gj) (where j �= i). In both
cases, this ensures that checking Mi �|= gj � gi in subsequent iterations will no longer
produce the same counterexample (see Definition 2).

We add this constraint in line 11 of Algorithm 3, where C is updated with
(−(σ↓αgj , j)∨+(σa↓αgi , i). Although this simple refinement would work for all cases,
note that Algorithm 3, uses a more involved refinement. The reason is that we exploit
the properties stated in Lemma 2, Items (1) and (2), to detect more elaborate constraints;
using the lemma and analyzing both σ and σa allows us to accelerate the refinement
process.

For example, in line 18, the subconstraint +(σa↓αgi , i) is conjoined with
−(σa↓αgj , j). This is because Lemma 2, Item (2) establishes that Mi||gj |= P is a nec-
essary condition for a successful application of CIRC-AG. Therefore since σa↓αgi ∈
L(Mi↓αgi) and σa↓αP �∈ L(P), then σa↓αgj must not be in L(gj). Explanations of
other cases appear as comments in the pseudocode. Note that there are more cases that
we do not show in order to simplify the presentation.

Example 4. Consider the LTSs from Figure 3, produced in the 6th iteration of ACR.
When trying to apply CIRC-AG with these assumptions, APPLYAG obtains the trace
〈send, out, send〉 as a counterexample for Out |= g

(6)
1 � g

(6)
2 (premise 2). Since

〈send, out, send〉↓αg1 �∈ L(In↓αg1), the counterexample turns out to be spurious, and
after checking the additional conditions in UPDATECONSTRAINTS, −(〈send〉, 1) ∨
(+(〈send, send〉, 2) ∧ −(〈send, send〉, 1)) is produced in line 18 as a membership
constraint in order to eliminate it in the following iterations.

32 K. Abd Elkader et al.

Algorithm 2. Applying CIRC-AG with g1 and g2, and constraint updating
1: procedure APPLYAG(M1,M2, P, g1, g2)
2: if M1 �|= g2 � g1 then
3: Let σ1a1 be a counterexample for M1 �|= g2 � g1
4: return UPDATECONSTRAINTS(1,2,M1,M2, P, σ1a1)
5: else if M2 �|= g1 � g2 then
6: Let σ2a2 be a counterexample for M2 �|= g1 � g2
7: return UPDATECONSTRAINTS(2,1,M2,M1, P, σ2a2)
8: else if g1||g2 �|= P then
9: Let σ be a counterexample for g1||g2 �|= P

10: if (σ↓ ∈ L(M1 ↓ αg1) && σ ↓∈ L(M2 ↓ αg2)) then
11: return (∅, “M1||M2 �|= P ”)
12: else // σ �∈ L(M1↓αg1 ||M2↓αg2), σ↓ �∈ L(P)
13: // Remove σ from g1 or remove σ from g2
14: C = {(−(σ↓αg1 , 1) ∨ −(σ↓αg2 , 2))}
15: return (C, “continue”)
16: end if
17: else
18: return (∅, “M1||M2 |= P ”)
19: end if
20: end procedure

g
(6)
1 g

(6)
2

Fig. 3. LTSs produced in the 6th iteration of ACR

In the following we state the progress of assumption refinement based on spurious
counterexamples.

Lemma 5. Let σ be a spurious counterexample obtained for premise i ∈ {1, 2, 3} of
CIRC-AG with respect to assumptions g1, g2 and let C be the updated set of constraints.
Then any pair of LTSs g′1 and g′2 such that (g′1, g

′
2) |= C will no longer exhibit σ as a

counterexample for premise i of CIRC-AG.

Corollary 1. Any pair of LTSs g′1 and g′2 such that (g′1, g′2) |= C is different from every
previous pair of LTSs considered by the algorithm.

The following two lemmas state that the added membership constraints do not over-
constrain the assumptions. They ensure that the “desired” assumptions that enable to
verify (Lemma 6) or falsify (Lemma 7) the property are always within reach.

Lemma 6. SupposeM1||M2 |= P and let g1 and g2 be LTSs that satisfy the premises of
rule CIRC-AG. Then (g1, g2) satisfy every set of constraints C produced by APPLYAG.

Lemma 7. Let g1 = M1↓αg1 and g2 = M2↓αg2 . Then (g1, g2) satisfy every set of
constraints C produced by APPLYAG.

Automated Circular Assume-Guarantee Reasoning 33

Algorithm 3. Computation of constraints based on a counterexample for Mi |= gj � gi

1: // σa is a counterexample for Mi |= gj � gi, i.e. σa↓ ∈ L(Mi), σ↓ ∈ L(gj), σa↓ �∈ L(gi)
2: procedure UPDATECONSTRAINTS(i,j,Mi,Mj , P, σa)
3: if σa↓ ∈ L(Mj↓αgj) and σa↓ �∈ L(P) then
4: // σa↓ ∈ L(Mi↓αgi ||Mj↓αgj) and σa↓ �∈ L(P)
5: return (∅, “Mi||Mj �|= P ”)

6: if σa↓ ∈ L(Mj↓αgj) and σa↓ ∈ L(P) then
7: // Add σa to both gi and gj to ensure M1↓αg1 ||M2↓αg2 |= g1||g2 (Lemma 2 (1))
8: C = {+(σa↓αgi , i),+(σa↓αgj , j)}
9: if σa↓ �∈ L(Mj↓αgj) and σ↓ �∈ L(Mj↓αgj) and σa↓ ∈ L(P) then

10: // Remove σ from gj or add σa to gi
11: C = {(−(σ↓αgj , j) ∨+(σa↓αgi , i)}
12: if σa↓ �∈ L(Mj↓αgj) and σ↓ �∈ L(Mj↓αgj) and σa↓ �∈ L(P) and σ↓ �∈ L(P) then
13: // Remove σ from gj (Because of Lemma 2 (2))
14: C = {−(σ↓αgj , j)}
15: if σa↓ �∈ L(Mj↓αgj) and σ↓ �∈ L(Mj↓αgj) and σa↓ �∈ L(P) and σ↓ ∈ L(P) then
16: // Remove σ from gj or (add σa to gi and remove it from gj)
17: // In the latter case removal of σa from gj is due to Lemma 2 (2)
18: C = {(−(σ↓αgj , j) ∨ (+(σa↓αgi , i) ∧ −(σa↓αgj , j)))}
19: return (C, “continue”)
20: end procedure

6 GENASSMP Algorithm
Given a set of membership constraints C, and a lower bound k on the total number
of states in |g1| + |g2|, we compute assumptions g1 and g2 that satisfy C. Similarly to
previous work [10] we build assumptions as deterministic LTSs (even though APPLYAG
is not restricted to deterministic LTSs). Technically, for each value of k starting from
the given k, GENASSMP encodes the structure of the desired DLTSs g1 and g2 with
|g1|+ |g2| ≤ k, as well as the membership constraints, as a SAT instance SatEnck(C).
It then searches for a satisfying assignment and obtains DLTSs g1 and g2 based on
this assignment. k is increased only when SatEnck(C) is unsatisfiable, hence minimal
DLTSs that satisfy C are obtained.

We use the following encoding of the problem of finding whether there are DLTSs
g1 and g2 with k states in total such that (g1, g2) |= C.

Variables used for Encoding the LTSs Structure. Let n = �log2(k + 2)�. We use
boolean vectors of length n to encode the states of g1 and g2, where for each of them
we add a special “error” state. For each 0 ≤ m ≤ k + 1 we use m to denote the n-bit
vector that represents the number m. We fix the vector 0 to represent the error state of
g1, and the vector k + 1 to represent the error state of g2. We explicitly add the error
states in order to distinguish between traces that are rejected by the DLTS and traces
for which the behavior is unspecified. For every i ∈ {1, 2}:

34 K. Abd Elkader et al.

– Let Si include the prefixes of all traces over αgi which are constrained in C with
respect to i. That is, Si =

⋃
c∈C Strings(c, i).

– For every σ ∈ Si, we introduce a set of boolean variables V ar(σ, i) = {vj(σ,i) | 0 ≤
j ≤ n − 1}. We denote by v(σ,i) the vector (v0(σ,i) · · · vn−1

(σ,i)) of boolean variables.
v(σ,i) represents the state of gi reached when traversing σ.

We define Vgi =
⋃

σ∈Si
V ar(σ, i). In addition to Vg1 and Vg2 , we introduce a set Vaux

of boolean variables which consist of the following variables:

– To guarantee that the LTSs we produce are indeed deterministic, we add a set of
boolean variables which are used to enumerate the (non error) states in the DLTSs.
For this we use k × |αg1 ∪ αg2| vectors of boolean variables, each of size n: For
every 1 ≤ m ≤ k and a ∈ (αg1 ∪ αg2), we introduce a set of boolean vari-
ables V ar(m, a) = {uj

(m,a) | 0 ≤ j ≤ n − 1}. We denote by u(m,a) the vector

(u0
(m,a) · · ·un−1

(m,a)) of boolean variables. u(m,a) represents the state (of either g1 or
g2) reached from state m after seeing action a.

– To guarantee that the states of the DLTSs are disjoint, we introduce another vector
u = (u0 · · ·un−1) of boolean variables, used to represent the number l such that
all states of g1 are smaller or equal l and all states of g2 are larger than l.

Variables used for Encoding Membership Constraints. For every disjunctive mem-
bership constraint formula c ∈ C we introduce a boolean “selector” variable enc that
determines which of the disjuncts of c must be satisfied (the other disjunct might be sat-
isfied as well). Technically, let Enc = {enc | c ∈ C}, and let A = Enc∪{¬enc | enc ∈
Enc} ∪ {true}. We define θaddg1 , θremg1 : S1 → 2A and θaddg2 , θremg2 : S2 → 2A such that
for every σ ∈ Si, θaddgi (σ) and θremgi (σ) are the smallest sets such that true ∈ θaddg1 (ε)

and true ∈ θaddg2 (ε), and for every c ∈ C:

– if c = (−(σ↓αgi , i) ∨ −(σ↓αgj , j)) then enc ∈ θremgi (σ↓αgi) and ¬enc ∈ θremgj (σ↓αgj).

– if c = +(σ↓αgi , i) then true ∈ θaddgi (σ↓αgi).
– if c = −(σ↓αgi , i) then true ∈ θremgi (σ↓αgi).
– if c = (−(σ↓αgj , j)∨+(σa↓αgi , i)) then enc ∈ θremgj (σ↓αgj) and ¬enc ∈ θaddgi (σa↓αgi).
– if c = (−(σ↓αgj , j) ∨ (+(σa↓αgi , i)∧−(σa↓αgj , j))) then enc ∈ θremgj (σ↓αgj), ¬enc ∈

θaddgi (σa↓αgi) and ¬enc ∈ θremgj (σa↓αgj).

Intuitively, if at least one of the literals in θaddgi (σ) is satisfied then σ must be added
to the language of gi, and similarly for θremgi (σ) with removal. These sets are therefore
interpreted as disjunctions. Formally, let Bool(A) be the set of boolean formulas over
A. For θacgi : Si → 2A (where ac ∈ {rem, add}), we define θ̃acgi : Si → Bool(A) as

follows: θ̃acgi (σ) =

{
false θacgi (σ) = ∅∨
θacgi (σ) otherwise

SAT Constraints. SatEnck(C) is a set of constraints (with the meaning of conjunc-
tion) over the variables Enc ∪ Vg1 ∪ Vg2 ∪ Vaux defined as follows:

Automated Circular Assume-Guarantee Reasoning 35

– Encoding the LTSs structures into SAT constraints:
1. For every trace σ1 ∈ S1 we add the constraint v(σ1,1) ≤ u, and for every trace

σ2 ∈ S2 we add the constraint u < v(σ2,2) (separating states of the DLTSs).
We also add a constraint 1 ≤ u ≤ k − 1 to restrict the range of u.

2. For every σ ∈ S2 we add the following constraint v(σ,2) ≤ k + 1 (every trace
is mapped to a valid state in the DLTSs).

3. For every i ∈ {1, 2}, every trace σ ∈ Si, every action a ∈ αgi such that
σa ∈ Si, and for every 1 ≤ m ≤ k, we add the following constraint: (v(σ,i) =
m ⇒ v(σa,i) = u(m,a) (the DLTSs are deterministic).

4. For every trace σ ∈ S1 and action a ∈ αg1, if σa ∈ S1 then we add the
following constraint: v(σ,1) = 0 ⇒ v(σa,1) = 0 (the error state of g1 is a sink
state; DLTSs are prefix closed).

5. For every string σ ∈ S2 and action a ∈ αg2, if σa ∈ S2 then we add the
following constraint: v(σ,2) = k + 1 ⇒ v(σa,2) = k + 1 (the error state of g2
is a sink state; DLTSs are prefix closed).

– Encoding the membership constraints formulas into SAT constraints:
6. For every trace σ ∈ S1 we add the constraint: θ̃remg1 (σ) ⇒ v(σ,1) = 0.

7. For every trace σ ∈ S2 we add the constraint: θ̃remg2 (σ) ⇒ v(σ,2) = k + 1.

8. For every trace σ ∈ S1 we add the constraint: θ̃addg1 (σ) ⇒ v(σ,1) �= 0.

9. For every trace σ ∈ S2 we add the constraint: θ̃addg2 (σ) ⇒ v(σ,2) �= k + 1.

Note that the implications in constraints 6-9 guarantee that a trace is accepted by
gi (leads to a non-error state) whenever it is required to be added to gi (as encoded
by θaddgi (σ↓αgi)). However, it may be accepted also in other cases, provided it is not
required to be removed by other constraints. The same holds for removal of traces.

Lemma 8. SatEnck(C) is satisfiable if and only if there exist DLTSs g1 and g2 that
satisfy C such that |g1|+ |g2| = k.

Due to Lemma 7 which ensures that (the nondeterministic) LTSs M1↓αg1 andM2↓αg2
satisfy C, we get the following corollary, which ensures termination of GENASSMP:

Corollary 2. At every iteration of ACR, there exists k ≤ O(2|M1| + 2|M2|) where
SatEnck(C) is satisfiable.

In fact, since the minimal k is found, minimal assumptions that satisfy C are ob-
tained. In particular, together with Lemma 6, this ensures that when M1||M2 |= P ,
then minimal assumptions for which CIRC-AG is applicable are eventually obtained.

From SAT Assignment to LTS Assumptions. Given a satisfying assignment ψ to
SatEnck(C), we use ψ to generate assumptions g1 and g2 that satisfy C.

First, we extract DLTSs A1(ψ) and A2(ψ) extended with error states: Ai(ψ) =
(Qi, αgi, δi, q

i
0, πi) where Qi = {m ∈ {0, 1}n | ∃σ ∈ Si such that ψ(v(σ,i)) = m},

qi0 = ψ(v(ε,i)), π1 = 0, π2 = k + 1, and δi(m, a) = m′ if there exists σ ∈ Si such that
ψ(v(σ,i)) = m∧ σa ∈ Si ∧ψ(v(σa,i)) = m′, and otherwise δi(m, a) = ⊥ (undefined).

36 K. Abd Elkader et al.

Note that δi is deterministic and it is well defined, since constraint 3 of SatEnck(C)
ensures that if there exist σ, σ′ ∈ Si such that ψ(v(σ,i)) = ψ(v(σ′,i)) and both σa and
σ′a are in Si, then also ψ(v(σa,i)) = ψ(v(σ′a,i)). Further, by constraint 1, Q1∩Q2 = ∅.

A1(ψ) and A2(ψ) can be thought of as error LTSs, except that they might be in-
complete: δi is a partial function. As in an error LTS, traces leading to an error state in
Ai(ψ) are rejected. Traces for which δi is undefined are unspecified (recall that such
traces do not exist in an error LTS, which is complete, and in a DLTS, in contrast, such
traces are rejected). The latter represent traces that do not affect the satisfaction of C.

We transform A1(ψ) and A2(ψ) into (complete) error LTSs by extending δi to to-
tal functions. Since unspecified traces do not affect satisfaction of C, any completion
results in DLTSs that satisfy C. In practice, if δi(m, a) = ⊥, we define δi(m, a) = m.

To obtain DLTSs, we remove the error states. We denote the result by LTS(Ai(ψ)).

Lemma 9. Let g1 = LTS(A1(ψ)) and g2 = LTS(A2(ψ)), where ψ satisfies
SatEnck(C). Then g1 and g2 are DLTSs such that (1) (g1, g2) |= C and (2) |g1| +
|g2| ≤ k.

Example 5. Consider the 7th (and final) iteration of ACR. Since the assumptions from
the 6th iteration (Figure 3) have a total of 3 states, the search performed by GENASSMP

at the 7th iteration starts with k = 3, and since SatEnc3(C) is unsatisfiable, k is
increased to 4, yielding (the final) g1 and g2 with a total of 4 states (Figure 2). Note that
(g1, g2) indeed satisfy the membership constraint −(〈send〉, 1)∨(+(〈send, send〉, 2)∧
−(〈send, send〉, 1)) ∈ C from the previous iteration (due to the right disjunct). In
particular, they do not exhibit the counterexample from Example 4.

7 Correctness, Termination and Minimality

In this section we argue that our main algorithm ACR is correct, it terminates and
produces minimal assumptions.

Theorem 2 (Correctness and Termination). Given components M1 and M2, and
property P , ACR terminates and returns “M1||M2 |= P” if P holds on M1||M2 and
“M1||M2 �|= P”, otherwise.

Proof (sketch). ACR returns “M1||M2 |= P ” if and only if all premises of CIRC-
AG hold, in which case correctness follows from the soundness of CIRC-AG. On the
other hand, if ACR returns “M1||M2 �|= P ”, then correctness is ensured by Lemma 4.
It remains to prove that ACR terminates. First, Corollary 2 ensures that at every itera-
tion of ACR, SatEnck(C) is satisfiable for some k = O(2|M1| + 2|M2|). Therefore,
each iteration terminates. Moreover, by Corollary 1, the pair of DLTSs generated at
each iteration is different from all pairs considered in previous iterations, which ensures
progress of ACR. Finally, by Lemma 7, g1 = M1↓αg1 and g2 = M2↓αg2 always sat-
isfy C. Therefore ACR terminates at the latest when g1 = M1↓αg1 and g2 = M2↓αg2 ,
in which case premises 1 and 2 of CIRC-AG necessarily hold and premise 3 amounts
to M1↓αg1 ||M2↓αg2 |= P , hence either all premises hold or a real counterexample is
obtained. ��

Automated Circular Assume-Guarantee Reasoning 37

Theorem 3 (Minimality). If M1||M2 |= P then ACR terminates with DLTSs g1 and
g2 whose total number of states is minimal among all pairs of DLTSs that satisfy the
CIRC-AG rule.

Proof (sketch). Termination follows from Theorem 2. Let n be the minimal total num-
ber of states of DLTSs that satisfy rule CIRC-AG. By Lemma 6, the corresponding
DLTSs satisfy C at any iteration of ACR. Therefore by Lemma 8, SatEncn(C) is sat-
isfiable at any iteration and in particular in the last one, where Lemma 9 ensures that the
obtained DLTSs g1 = LTS(A1(ψ)), g2 = LTS(A2(ψ)) are such that |g1|+ |g2| ≤ n.

��

8 Evaluation and Concluding Remarks

We implemented ACR in the LTSA (Labelled Transition System Analyser) tool [13];
we use MiniSAT [8] for SAT solving. We optimized our implementation to perform
incremental SAT encoding using the ability of MiniSAT to solve CNF formulas un-
der a set of unit clause assumptions. We also made ACR return (at each iteration) k
counterexamples for the three premises where, k is |g1|+ |g2|.

We compared ACR with learning-based assume guarantee reasoning (based on rule
NonCIRC-AG), on the following examples [19]: Gas Station (3 to 5 customers), Chiron
– a model of a GUI (2 to 5 event handlers), Client Server – a client-server application (6
to 9 clients), and a NASA rover model: MER (2 to 4 users competing for two common
resources). We used the same two-way decompositions reported in previous experi-
ments. Experiments were performed on a MacBook Pro with a 2.3 GHz Intel Core i7
CPU and with 16 GB RAM running OS X 10.9.4 and a Suns JDK version 7.

Table 1 summarizes our results. For both approaches, we report the analysis time (in
seconds) and the assumption sizes. Measuring memory is unreliable due to the garbage
collection and the interfacing with MiniSAT via native method calls (our measurements
indicate that memory consumption is stable and does not increase dramatically for
larger cases). We instead report the maximum numbers of states observed for check-
ing the premises of the two rules. We put a limit of 1800 seconds for each experiment;
“–” indicates that the time for that case exceeds this limit.

In all the experiments ACR generates smaller assumptions and in the majority of
cases this results in smaller analysis time and state space explored. For larger cases the
assumptions generated by ACR are significantly smaller. For the Gas Station, ACR sig-
nificantly outperforms learning in terms of analysis time and states explored, while for
all other cases the two approaches are comparable, at smaller sizes. However at larger
configurations (Client Server 8 and 9, MER 4) ACR again significantly outperforms the
learning-based approach. In all but one case (Chiron 5) the smaller assumptions gener-
ated with ACR lead to smaller state spaces for checking the rule premises. Case Chiron
5 is still comparable in terms of running time but it may indicate that the two-way de-
composition that we used (found to be optimal for learning in previous studies) may not
be optimal for ACR. We plan to investigate this further in future work.

Future Work. ACR can be optimized in many ways. Currently we are checking the
three premises one after the other at each iteration and get k different counterexam-
ples for each one of them. We can check them in parallel on different machines. We

38 K. Abd Elkader et al.

Table 1. Comparison of ACR (rule CIRC-AG) and learning (rule NonCIRC-AG). Best results are
shown in bold.

Case ACR Time |g1| |g2| Premise1 Premise2 Premise3 L∗ Time |A| Premise1 Premise2

GasSt 3 26 3 3 2588 1093 6 – >351 >8243 >4045
GasSt 4 48 3 3 19503 2196 4 – >381 >165836 >47360
GasSt 5 309 3 3 132608 6995 6 – >207 >560000 >61058
Chiron 2 1.257 2 2 134 204 5 0.5 9 256 198
Chiron 3 2.013 2 2 341 2244 5 2.121 25 492 2736
Chiron 4 3.149 2 2 449 6681 5 6.341 45 860 18370
Chiron 5 34 2 2 1152 258456 5 33 122 2101 138537
ClServ 6 11 7 2 256 16 10 8 256 256 2505
ClServ 7 33 8 2 576 17 10 33 576 576 6455
ClServ 8 53 9 2 1280 17 9 138 1280 1280 16199
ClServ 9 249.839 10 2 2816 23 14 725 2816 2816 39769
MER 2 4.397 5 2 30 147 6 4.54 46 313 79
MER 3 35 7 2 83 1198 13 50 274 3146 250
MER 4 1220.649 9 2 97 7109 9 – >1210 >128883 >549

further plan to investigate alphabet refinement and generalization to n-way decompo-
sitions (for n > 2) – both these techniques significantly enhanced the performance of
compositional acyclic techniques [19]. For the n-way decompositions we can either
consider a recursive application of our current approach to the system decomposed in
two components, each decomposed in two sub-components etc. or a more involved ap-
proach that synthesizes directly n assumptions, one for each component. We leave this
for future work. We also plan to explore learning and abstraction-refinement for dis-
covering suitable assumptions. Although these techniques might not guarantee minimal
assumptions, they can be less computationally demanding than our current approach.

Acknowledgements. This research was partially supported by BSF grant no. 2012259 and NSF
grant no. 1329278.

References

1. Alur, R., Henzinger, T.A.: Reactive modules. Formal Methods in System Design 15(1), 7–48
(1999)

2. Alur, R., Madhusudan, P., Nam, W.: Symbolic compositional verification by learning assump-
tions. In: Etessami, K., Rajamani, S.K. (eds.) CAV 2005. LNCS, vol. 3576, pp. 548–562.
Springer, Heidelberg (2005)

3. Gheorghiu Bobaru, M., Păsăreanu, C.S., Giannakopoulou, D.: Automated assume-guarantee
reasoning by abstraction refinement. In: Gupta, A., Malik, S. (eds.) CAV 2008. LNCS,
vol. 5123, pp. 135–148. Springer, Heidelberg (2008)

4. Chaki, S., Clarke, E., Sinha, N., Thati, P.: Automated assume-guarantee reasoning for sim-
ulation conformance. In: Etessami, K., Rajamani, S.K. (eds.) CAV 2005. LNCS, vol. 3576,
pp. 534–547. Springer, Heidelberg (2005)

5. Chen, Y.-F., Clarke, E.M., Farzan, A., Tsai, M.-H., Tsay, Y.-K., Wang, B.-Y.: Automated
assume-guarantee reasoning through implicit learning. In: Touili, T., Cook, B., Jackson, P.
(eds.) CAV 2010. LNCS, vol. 6174, pp. 511–526. Springer, Heidelberg (2010)

Automated Circular Assume-Guarantee Reasoning 39

6. Chen, Y.-F., Farzan, A., Clarke, E.M., Tsay, Y.-K., Wang, B.-Y.: Learning minimal separating
DFA’s for compositional verification. In: Kowalewski, S., Philippou, A. (eds.) TACAS 2009.
LNCS, vol. 5505, pp. 31–45. Springer, Heidelberg (2009)

7. Cobleigh, J.M., Giannakopoulou, D., Păsăreanu, C.S.: Learning assumptions for composi-
tional verification. In: Garavel, H., Hatcliff, J. (eds.) TACAS 2003. LNCS, vol. 2619, pp.
331–346. Springer, Heidelberg (2003)

8. Een, N., S̈orensson, N.: The minisat, http://minisat.se
9. Graf, S., Passerone, R., Quinton, S.: Contract-based reasoning for component systems with

rich interactions. In: Sangiovanni-Vincentelli, A., Zeng, H., Di Natale, M., Marwedel, P.
(eds.) Embedded Systems Development. Embedded Systems, vol. 20, pp. 139–154. Springer,
New York (2014)

10. Gupta, A., McMillan, K.L., Fu, Z.: Automated assumption generation for compositional ver-
ification. Formal Methods in System Design 32(3), 285–301 (2008)

11. Henzinger, T.A., Liu, X., Qadeer, S., Rajamani, S.K.: Formal specification and verification
of a dataflow processor array. In: ICCAD, pp. 494–499 (1999)

12. Henzinger, T.A., Qadeer, S., Rajamani, S.K.: You assume, we guarantee: Methodology and
case studies. In: Hu, A.J., Vardi, M.Y. (eds.) CAV 1998. LNCS, vol. 1427, pp. 440–451.
Springer, Heidelberg (1998)

13. Magee, J., Kramer, J.: Concurrency: State Models and Java Programs. John Wiley & Sons
(1999)

14. McMillan, K.L.: Verification of an implementation of Tomasulo’s algorithm by composi-
tional model checking. In: Hu, A.J., Vardi, M.Y. (eds.) CAV 1998. LNCS, vol. 1427, pp.
110–121. Springer, Heidelberg (1998)

15. McMillan, K.L.: Circular compositional reasoning about liveness. In: Pierre, L., Kropf, T.
(eds.) CHARME 1999. LNCS, vol. 1703, pp. 342–346. Springer, Heidelberg (1999)

16. McMillan, K.L.: Verification of infinite state systems by compositional model checking.
In: Pierre, L., Kropf, T. (eds.) CHARME 1999. LNCS, vol. 1703, pp. 219–237. Springer,
Heidelberg (1999)

17. Misra, J., Chandy, K.M.: Proofs of networks of processes. IEEE Trans. Software Eng. 7(4),
417–426 (1981)

18. Namjoshi, K.S., Trefler, R.J.: On the competeness of compositional reasoning. In: Emerson,
E.A., Sistla, A.P. (eds.) CAV 2000. LNCS, vol. 1855, pp. 139–153. Springer, Heidelberg
(2000)

19. Pasareanu, C.S., Giannakopoulou, D., Bobaru, M.G., Cobleigh, J.M., Barringer, H.: Learning
to divide and conquer: applying the L* algorithm to automate assume-guarantee reasoning.
Formal Methods in System Design 32(3), 175–205 (2008)

20. Pnueli, A.: In transition from global to modular temporal reasoning about programs. In:
Logics and Models of Concurrent Systems. NATO ASI Series (1985)

21. Rushby, J.: Formal verification of mcmillan’s compositional assume-guarantee rule. In: CSL
Technical Report, SRI (2001)

http://minisat.se

	Automated Circular Assume-Guarantee Reasoning
	1 Introduction
	2 Preliminaries
	3 Circular Assume-Guarantee Reasoning
	4 Automatic Reasoning with CIRC-AG
	5 ApplyAG Algorithm
	6 GENASSMP Algorithm
	7 Correctness, Termination and Minimality
	8 Evaluation and Concluding Remarks

