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Corina S. Păsăreanu2, and Sharon Shoham3

1 Technion – Israel Institute of Technology,
Haifa, Israel

skaramt@gmail.com
2 CMU/NASA Ames Research Center,

Mountain View, USA
3 Tel Aviv University, Tel Aviv, Israel

Abstract. In this work we develop an automated circular reasoning
framework that is applicable to systems decomposed into multiple compo-
nents. Our framework uses a family of circular assume-guarantee rules for
which we give conditions for soundness and completeness. The assump-
tions used in the rules are initially approximate and their alphabets are
automatically refined based on the counterexamples obtained from model
checking the rule premises. A key feature of the framework is that the
compositional rules that are used change dynamically with each iteration
of the alphabet refinement, to only use assumptions that are relevant for
the current alphabet, resulting in a smaller number of assumptions and
smaller state spaces to analyze for each premise. Our preliminary eval-
uation of the proposed approach shows promising results compared to
2-way and monolithic verification.

1 Introduction

We present an automated assume-guarantee style compositional approach to
address the state explosion problem in model checking. Model checking [7] is a
well-known technique for automatically checking that software systems satisfy
desired properties. Despite its many successes, the technique suffers from the
state explosion problem, which refers to the worst-case exponential growth of a
program’s state space with the number of variables and concurrent components.
Compositional techniques have shown promise in addressing this problem, by
breaking-up the global verification of a system into the local, more manage-
able, verification of the system’s individual components. The environment for
each component, consisting of the other components, is replaced by a “small”
assumption, making each verification task easier. This is often referred to as
assume-guarantee reasoning [21,24].

Significant progress has been made on automating compositional reasoning
using learning and abstraction-refinement techniques [2–6,8,23]. Most of this
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work has been done in the context of applying a simple compositional assume-
guarantee rule, where components of a system are checked using assumptions
and properties which are related in an acyclic manner.

Another important category of assume-guarantee rules involves circular
reasoning and uses inductive arguments over time to ensure soundness
[1,15,18,19,21]. Circular rules have often been found to be more effective than non-
circular rules [13,14,18–20,25]. However, their applicability has been hindered by
the manual effort involved in defining assumptions, while automation remained a
challenge due to the more involved inductive reasoning and the mutual dependency
between assumptions.

Recent work [10] proposed an automated compositional technique for cir-
cular reasoning which has shown better scalability results compared with an
established learning-based method which implements acyclic reasoning [8]. This
circular technique is only applicable to a system decomposed into two compo-
nents (or two subsystems), thus limiting its applicability in practice. Further,
the constructed assumptions are defined over the full interface alphabet of the
components, thus causing a blowup in the sizes of the assumptions (and the
verification tasks) that is in many cases unnecessary.

We propose an automated circular assume-guarantee technique for reasoning
about systems decomposed into an arbitrary (but fixed) number of components.
We consider a synchronous composition, where components synchronize on the
common alphabet (shared actions), and interleave on the remaining actions. We
give a generic n-component circular rule which can be instantiated into a number
of circular rules that can be used for verification. The rule checks that a system
composed of M1, M2 .. Mn satisfies safety property P based on assumptions
gi (1 ≤ i ≤ n). The first n premises of the rule have the form Mi |= Gi � gi

and the last premise is Gn |= P (to be formally defined later). The first n
premises verify, for each gi, that it is a correct “guarantee” of Mi, based on a
set Gi of “assumptions” representing the guarantees of other components. The
last premise ensures that P holds under the assumptions.

We further devise an algorithm that automates the process of building the
assumptions gi based on SAT solving. The algorithm works for any rule that
can be derived from the generic rule. The assumption generation algorithm can
be viewed as a two layered counterexample-guided search, where the outer layer
searches for appropriate assumption alphabets, and the inner layer searches for
appropriate assumptions, given a set of alphabets for each of the assumptions.

In the inner layer, the search for assumptions with fixed alphabets is per-
formed similarly to [10]. The algorithm starts with approximate assumptions for
all components, and attempts to apply the rule. When the application fails, i.e.,
at least one of the premises of the rule does not hold, the algorithm uses the
counterexamples obtained from checking the failed premises to accumulate joint
constraints on behaviors (traces) that should or should not be exhibited by the
assumptions. These constraints reflect dependencies between assumptions of dif-
ferent components – which is essential for exploiting the circularity of the rule.
A SAT solver is then used to determine how to update the assumptions while
satisfying all the constraints.
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The inner search may return a set of minimal assumptions over the given
alphabets that satisfy the rule premises. In this case, we conclude that the prop-
erty holds and the overall algorithm terminates. Alternatively, the inner search
may return a counterexample in the form of a trace of the system over the partial
alphabet that violates the property. Since the alphabet is partial, the counterex-
ample is abstract : it might turn out to be infeasible (spurious) when considering
the full alphabet (which adds synchronization constraints). Feasibility of the
abstract counterexample is checked by the outer layer.

The outer layer employs an iterative refinement over the alphabets of the
assumptions. It starts with only a subset of the interface alphabet of the com-
ponents which is sufficient to guarantee soundness of the proof rule and it adds
actions to it only as needed. Actions to be added are discovered by analysis of
counterexamples obtained from the inner layer. The analysis attempts to extend
the counterexample to a trace over the full system alphabet. If the counterex-
ample is successfully extended (indicating a real error in the system), the overall
algorithm terminates. Otherwise, new actions are added to the alphabet and a
new iteration of the inner search begins. Intuitively these new actions are suf-
ficient for preventing the same counterexample to appear in future iterations.
Finally, either a concrete counterexample is found, or the property is verified via
a successful application of the rule.

A key feature of our approach is the interplay between the two layers of
the search, which manifests itself in two ways. First, the abstraction of the
alphabet gives rise to simplifications of the assume-guarantee rule. We show
that any rule can be simplified based on the inter-dependency induced by the
assumption alphabets. Namely, in each premise Mi |= Gi � gi, assumptions in
Gi that contain no common actions with either gi or with other assumptions in
Gi that share actions with gi can be safely eliminated from Gi, since they do
not affect the outcome of checking the premise. The last premise gets simplified
as well and the resulting rule becomes easier to check than the original rule.
As the alphabets change with each iteration of alphabet refinement, so do the
dependencies between assumptions. This leads to different simplifications of the
assume-guarantee rule in different iterations. Hence, even though the algorithm
searches assumptions for a fixed rule, the rules used by the inner search change
dynamically between different “outer” iterations.

The second interaction point between the two layers is in the constraints
on the assumptions accumulated by the assumption generation algorithm. In
each alphabet refinement step, some of these constraints are refined as well
according to the new alphabet and are re-used by the inner layer. This makes the
search for assumptions incremental, resulting in better running time and faster
convergence.

Our preliminary evaluation shows that circular compositional reasoning with
n-way decomposition, alphabet refinement and dynamic rule simplification can
significantly outperform both 2-way compositional and monolithic verification.

Related Work. While the literature on assume-guarantee reasoning is vast,
for space reason, we only discuss here some closely related work. Previous work
has proposed learning and abstraction-refinement techniques for automating the
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generation of assumptions [2–6,8,12,23]. This work has been done in the context
of applying simple compositional rules, where there is no circular dependency
between assumptions and no inductive reasoning involved. Our automatic alpha-
bet refinement uses the heuristics from previous work [11] which were developed
for non-circular reasoning. Note however that unlike [11] our approach is incre-
mental, i.e. it re-uses the results across refinement iterations. Further we employ
rule simplification based on the current alphabet which is new. N-way decompo-
sitions were handled in e.g. [23] by a recursive application of a non-circular rule.
Unlike our approach, that work is sensitive to the order in which the components
are analyzed and is not incremental. Our search for minimal assumptions using
SAT with an increasing bound is inspired by [12]. However there, a single (sepa-
rating) assumption is generated while we generate multiple mutually dependent
assumptions.

Circular rules have been studied extensively [1,15,18,19,21], however not for
full automation as we do here. The approach in [10] addresses assumption gen-
eration for 2-way circular reasoning, shown to perform better than non-circular
reasoning. We improve on it by providing N-way compositional reasoning and
incremental alphabet refinement. An interesting result [22] makes the connection
between circular and non-circular rules, using complex (auxiliary) assumptions
that use induction over time. Recent work [16] addresses synthesizing circular
compositional proofs based on logical abduction. A key difference is that they
refer to a decomposition of a sequential program, while we consider concurrent
systems. Similar to [16], the approach in [20] also employs a circular composi-
tional approach and uses different abstractions to discharge proof subgoals.

2 Preliminaries

We use Labeled Transition Systems (LTSs) to model the behavior of commu-
nicating components in a concurrent system. We briefly present here LTSs and
semantics of their operators following the presentation in [10]. Let Act be a set
of actions and let τ �∈ Act denote a special “local” action.

Definition 1. A Labeled Transition System (LTS) M is a quadruple
(Q,A, δ, q0) where Q is a finite set of states, A ⊆ Act denotes the alphabet
of M , δ ⊆ Q × (A ∪ {τ}) × Q is a transition relation, and q0 ∈ Q is the initial
state.

Throughout the paper we use αM to denote the alphabet of an LTS M .

Paths and Traces. A trace σ is a sequence of actions, not including τ . We use
σi to denote the prefix of σ of length i. A path in an LTS M is a sequence p =
q0, a0, q1, a1 · · · , an−1, qn of alternating states and actions of M , such that for
every k ∈ {0, . . . , n−1} we have (qk, ak, qk+1) ∈ δ. The trace of p is the sequence
of actions along p, obtained by removing from a0 · · · an−1 all occurrences of τ .
The set of traces obtained from all the paths in M forms the language of M ,
denoted L(M). Note that L(M) is prefix-closed.
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An LTS M = (Q,αM, δ, q0) is deterministic (denoted as DLTS) if it contains
no τ transitions and no transitions (q, a, q′), (q, a, q′′) ∈ δ such that q′ �= q′′. Any
LTS can be converted to a deterministic LTS that recognizes the same language.

Projections. For Σ ⊆ Act, projection σ↓Σ is the trace obtained by removing
from σ all actions a �∈ Σ. M↓Σ is defined as the LTS over alphabet Σ obtained
by renaming to τ all the actions that are not in Σ. Note that L(M↓Σ) = {σ↓Σ |
σ ∈ L(M)}.

Parallel Composition. Let M1 = (Q1, αM1, δ1, q01) and M2 =
(Q2, αM2, δ2, q02) be two LTSs. Then M1‖M2 is an LTS M = (Q,αM, δ, q0),
where Q = Q1 × Q2, q0 = (q01 , q02), αM = αM1 ∪ αM2, and δ is defined as
follows where a ∈ αM ∪ {τ}:

– if (q1, a, q′
1) ∈ δ1 for a �∈ αM2, then ((q1, q2), a, (q′

1, q2)) ∈ δ for every q2 ∈ Q2,
– if (q2, a, q′

2) ∈ δ2 for a �∈ αM1, then ((q1, q2), a, (q1, q′
2)) ∈ δ for every q1 ∈ Q1,

– if (q1, a, q′
1) ∈ δ1 and (q2, a, q′

2) ∈ δ2 for a �= τ , then ((q1, q2), a, (q′
1, q

′
2)) ∈ δ.

Lemma 1 [8]. For every t ∈ (αM1 ∪ . . . ∪ αMn)∗, t ∈ L(M1‖ . . . ‖Mn) if and
only if t↓αMi

∈ L(Mi) for every 1 ≤ i ≤ n.

We define the interface alphabet of a component (with respect to the rest of
the system) as follows.

Definition 2 (Interface Alphabet). For 1 ≤ i ≤ n, the interface alphabet of
Mi w.r.t. M1‖M2‖ · · · ‖Mn, denoted αJi, is: αJi = αMi ∩ ( ⋃{αMj | 1 ≤ j ≤
n, j �= i})

.

Intuitively, the interface alphabet of Mi contains all the actions that are
common between Mi and its environment.

Safety Properties. A safety property is specified as an LTS P . An LTS M over
αM ⊇ αP satisfies P , denoted M |= P , if for every σ ∈ L(M), σ↓αP ∈ L(P ). A
trace σ ∈ αM∗ is a counterexample for M |= P if σ ∈ L(M) but σ↓αP �∈ L(P ).

To check M |= P , the LTS of P is transformed into a deterministic LTS,
which is completed with a special “error state” π by adding transitions from
every state q in the deterministic LTS to π for all the missing outgoing actions
of q; the resulting LTS is called an error LTS, denoted by Perr. Checking M |= P
reduces to checking that π is not reachable in M‖Perr.

Assume-Guarantee Formulas. In the circular assume-guarantee reasoning
paradigm a formula has the form M |= A � P , where M , A and P are LTSs.
Intuitively M stands for a component, A for an assumption about M ’s environ-
ment (i.e. the rest of the components in the system), and P for a property that
is “guaranteed” by the component.

Definition 3. Let M,A and P be LTSs such that αP ⊆ αM . Then M |= A�P
holds if for every k ≥ 1 and for every σ ∈ (αM ∪ αA)∗ of length k such that
σ↓αM ∈ L(M), if σk−1↓αA ∈ L(A) then σ↓αP ∈ L(P ).
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Checking M |= A � P is done by building the LTS M‖A‖Perr and labeling
its states with (parameterized) propositions erra, where a ∈ αP . (sM , sA, sP )
is labeled by erra if sM has an outgoing transition in M labeled by a, but the
corresponding transition (labelled by a) leads to π in Perr. We then check if a
state labeled by erra is reachable or not in M‖A‖Perr [10].

Notations. For LTSs M and P and a finite nonempty set G = {g1, . . . , gk} of
LTSs, we use G |= P as a shorthand for g1‖ · · · ‖gn |= P , and M |= G � P as
a shorthand for M |= g1‖ . . . ‖gk � P . Moreover, if G = ∅, then M |= G � P
denotes M |= P . Given a set S of LTSs, we denote by αS their alphabet union,
i.e. αS =

⋃
M∈S αM .

3 Circular Reasoning with N-way Decomposition

In this section we introduce the family of circular assume-guarantee rules that
form the basis of our technique for proving that a system composed of a finite
number of components M1‖M2 . . . ‖Mn (n is fixed) satisfies a safety property
P . We use a set of n auxiliary properties G = {g1, g2 . . . gn}. Components and
properties are described by Labeled Transition Systems (LTSs) such that αP ⊆
n⋃

i=1

αMi; further, gi is the “guarantee” property for Mi, specified as an LTS over

alphabet αgi ⊆ αMi.
Instead of using a particular assume-guarantee rule, we propose to use a

generic rule that defines multiple assume-guarantee rules, all following the same
general pattern:

(Premise 1) M1 |= G1 � g1
(Premise 2) M2 |= G2 � g2

. . .
(Premise n) Mn |= Gn � gn

(Premise n+1) Gn+1 |= P
M1‖M2‖ · · · ‖Mn |= P

In each premise i, Gi represents the set of left-hand side assumptions to be
used in the premise and is defined such that Gi ⊆ G−{gi} for i < n+1, i.e. the
“guarantees” of the other components are used as “assumptions” when checking
Mi. Furthermore Gn+1 = G, i.e. all the assumptions are used in the last premise.
There are many rules that can be derived from the above pattern. For example,
one rule can be derived by requiring the maximal number of assumptions for each
premise, i.e. each Gi contains all the assumptions except gi (we use this rule in
our experiments). Another rule can be derived by requiring on the contrary a
minimal number of assumptions to be used in each premise. For instance, Gi

may contain only the assumptions that share actions with gi. In fact sets G1, ..
Gn can be chosen arbitrarily (possibly guided by domain knowledge), as long as
each Gi is a subset of G − {gi}.
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As an example, for n = 2, the instantiation G1 = {g2}, G2 = {g1} and
G3 = {g1, g2} gives rule CIRC-AG from [10].

One can use such rules to check the system in a compositional way: instead
of checking M1‖M2 . . . ‖Mn directly, which may be too expensive, we can check
each premise separately, which is potentially much cheaper. However coming
up manually with assumptions g1, g2, .. gn that are sufficient for proving or
disproving the property, and at the same time are small enough to enable efficient
verification is very difficult. The goal of our work is to derive the assumptions
automatically. Furthermore we aim to simplify the rule to eliminate unnecessary
assumptions and premises, to enable efficient verification.

Soundness and Completeness. We first argue the soundness and complete-
ness of any rule that can be obtained from the general rule. Let CIRC − AGN

denote a rule derived from the general rule, i.e. we fix the assumption sets G1,
G2, . . . , Gn, Gn+1 such that Gi ⊆ G − {gi} for i < n + 1 and Gn+1 = G.

Similarly to the 2-component rule used in [10] we need additional conditions
on the assumption alphabets to ensure soundness and completeness. Soundness
is ensured by requiring αgi ⊇ αMi ∩ αP for every 1 ≤ i ≤ n. Completeness
is ensured by considering assumptions over alphabets that include the interface
alphabets of the components, i.e. we require αgi ⊇ (αMi ∩ αP ) ∪ αJi for every
1 ≤ i ≤ n (we say that this is the completeness condition). We use αF (gi) to
denote (αMi ∩ αP ) ∪ αJi, i.e. the alphabet sufficient for completeness.

Theorem 1. Rule CIRC-AGN is sound if αgi ⊇ αMi ∩αP for every 1 ≤ i ≤ n.
It is complete if αgi ⊇ (αMi ∩ αP ) ∪ αJi for every 1 ≤ i ≤ n.

Intuitively, premises 1, . . . , n prove in a compositional and inductive manner
that every trace in the language of M1‖M2‖ · · · ‖Mn is also included in the
language of g1‖g2‖ · · · ‖gn while the last premise ensures that every trace in the
language of g1‖g2‖ · · · ‖gn is also in the language of P . Completeness stems from
the fact that M1,M2, . . . ,Mn (restricted to appropriate alphabets) can be used
for g1, g2, . . . , gn in a successful application of the rule.

Note that we can remove the completeness condition on the alphabets to
obtain rules that are sound but not necessarily complete. These rules would still
be useful in practice since the alphabet assumptions are smaller, and therefore
the assumptions necessary for the proof may be smaller as well and easier to
check. Furthermore, this would give us more opportunities to simplify the rules
by removing the assumptions that become irrelevant for the proof, due to the
smaller alphabets used. This simplification is described in the next section.

4 Alphabet-Based Simplification

At the heart of our automated approach is a method for simplifying the assume-
guarantee rules as dictated by the assumption alphabets. Specifically, when we
apply our technique, we fix an n-way rule, and an initial alphabet for each
assumption. The alphabets induce a simplification of the rule which makes the
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Algorithm 1 . Main algorithm for checking M1‖M2‖ . . . ‖Mn |= P using
CIRC-AGN

1: procedure ACR

2: Initialize: A = αP , C = ∅, k = n, IncTr = ∅
3: αgi

�
= A ∩ αMi, ∀1 ≤ i ≤ n // Initially αgi = αP ∩ αMi

4: while (true) do

5: repeat

6: (g1, g2, . . . , gn) =GenAssmp(C, k, A)

7: (C′, Result, IncTr′) =ApplyAG(g1, g2, . . . , gn) using S(CIRC-AGN )

8: C = C ∪ C′, k =
n∑

i=1
|gi|, IncTr = IncTr ∪ IncTr′

9: until (Result �= “continue”)

10: if (Result ==“false”(σ)) then // σ is a cex for M1↓αg1‖ . . . ‖Mn↓αgn |= P

11: (A, C, k, Result) =AlphaRefine(σ, A, IncTr)

12: if (Result == “false”) then return “false” // else continue to next iteration

13: else return “true”

rule easier to check (premises become simpler, and some premises become redun-
dant). When the alphabets are refined, the simplification of the rule changes
accordingly. Hence, essentially, the rule changes dynamically during the compo-
sitional verification.

We describe here this rule simplification. Let CIRC-AGN be an assume-
guarantee rule. Suppose that we fix the alphabets over which the assumptions are
defined, such that the rule is sound. These alphabets induce a natural simplifica-
tion of the rule as follows. We define assumptions of Gi that directly affect gi as
the assumptions that have common actions with Mi. This provides the basis of
an inductive definition, as other assumptions in Gi indirectly affect gi if they have
common actions with an assumption in Gi that (directly or indirectly) affects gi.

The dependency between assumptions can be computed statically, by build-
ing, for each premise i, a graph where vertices are the assumptions in Gi ∪ {gi},
and edges are common actions between them (except that edges of gi represent
common actions with Mi). The assumptions which are not connected to gi can
be safely eliminated from Gi since they cannot influence the outcome of checking
the premise.

We also define the set of assumptions from Gn+1 = {g1, . . . , gn} that affect
P (directly or indirectly) in a similar way. All the assumptions that do not share
actions with P (directly or indirectly) can be eliminated from the last premise.
Furthermore the removed assumptions become redundant and their premises are
removed altogether.

For a premise i, let S(Gi) denote the set of assumptions used in the premise
after simplification. The following lemma states that each simplified premise is
equivalent to the original one.

Lemma 2. Mi |= S(Gi) � gi iff Mi |= Gi � gi for i ≤ n. S(Gn+1) |= P iff
Gn+1 |= P .

It follows that we can use the simplified rule instead of the original rule, to
obtain the same results.
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Example 1. Consider the (last) premise of a rule that has the form g1||g2||g3 |=
P with αg1 = {a, b}, αg2 = {b}, αg3 = {c} and αP = {a, b}. Since assumption
g3 contains neither actions that participate in the parallel composition with g1
and g2 nor actions that appear in the property, we can safely remove it resulting
in a simplified premise g1||g2 |= P which is cheaper to check and results in faster
convergence of our algorithms, as explained later in the paper.

If, on the other hand, we consider the same rule with increased alphabets
αg1 = {a, b, d} and αg3 = {c, d}, then simplification will leave the last premise
unchanged.

Thus, for a given rule, and by varying the assumption alphabets, we can
obtain a family of sound rules using alphabet-based simplifications. If the alpha-
bets satisfy the completeness condition, the rules are complete as well.

5 Automated Circular Reasoning

In this section we provide an overview of our Automated Circular Reasoning
(ACR) algorithm for the compositional verification of a system composed of
M1, . . . ,Mn with respect to property P , where n is fixed. The pseudocode of the
algorithm appears in Algorithm1. ACR can be used with any rule that can be
derived from the general pattern described in Sect. 3. Let CIRC-AGN be such a
rule. The assumptions to be used in the rule are derived automatically using a
two layered approach which combines iterative assumption generation (the inner
layer) with automatic refinement over the assumption alphabets (the outer layer).
The two layers are closely intertwined.

The algorithm maintains in A the current assumption alphabet, where
αgi = A ∩ αMi, for 1 ≤ i ≤ n. In the following, we use A and αg1, . . . , αgn

interchangeably, as the former determines the latter. In addition, the algorithm
maintains a set of constraints C on the desired assumptions and a bound k,
which is the sum of the number of states in each assumption. The algorithm also
maintains a set IncTr of incremental traces, whose role will become clear in the
sequel.

Initially, we allow for each assumption to have a single state, hence k = n
for n assumptions. The assumption alphabets over which the assumptions are
derived are initialized as follows: A = αP , which means that αgi = αP ∩ αMi

for each 1 ≤ i ≤ n. These are the minimal sets needed to guarantee soundness.
The sets C and IncTr are both initialized to the empty set.

Iterative Assumption Generation. The inner layer of the algorithm builds
assumptions over alphabets αg1, . . . , αgn iteratively (in the “repeat ... until”
loop, lines 5–9) based on the collected constraints C and the bound k (proce-
dure GenAssmp). For the current assumptions g1, . . . , gn, the framework runs
model checking to check the premises of the (simplified) assume-guarantee rule
(see procedure ApplyAG). The result returned by ApplyAG is either “true”,
“continue” or “false” (together with a counterexample σ): “true” indicates that
all the premises of the rule hold, so ACR finishes returning that the property
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holds (since the rule is sound); “continue” means that the analysis was inconclu-
sive. Hence the inner loop continues its execution, with a new set of constraints
C ′ that is added to C, resulting in a refinement of the assumptions in the next
iteration. The third case (“false”) requires further analysis to determine if the
counterexample obtained for M1↓αg1‖ . . . ‖Mn↓αgn

|= P is real or if the assump-
tion alphabets need to be refined. This is explained in more detail below.

Alphabet Refinement. To reduce the complexity of the verification task, we
use alphabet refinement over the assumption alphabets. This is the role of the
outer layer of our algorithm (in the “while” loop, lines 4–13). Our motivation
is that even though completeness of the rule is only guaranteed for the “full”
assumption alphabets (i.e. αF (gi)), there may be smaller alphabets that are
enough to prove or disprove the property, and at the same time enable more effi-
cient verification. We aim to discover them iteratively starting with the minimal
alphabets that guarantee soundness and only enlarging them as needed.

As long as only subsets of the alphabets are used for the assumptions, coun-
terexamples that are found by the inner loop for M1↓αg1‖ . . . ‖Mn↓αgn

|= P
might not indicate a real error in M1‖ . . . ‖Mn, i.e. the counterexamples may
be “spurious”. Procedure AlphaRefine performs a counterexample analysis to
determine if a counterexample is real or not. In the former case, ACR termi-
nates and reports an error. In the latter case AlphaRefine uses heuristics to
add actions to A (and accordingly to αgi) that are guaranteed to avoid produc-
ing the same counterexample in subsequent iterations. AlphaRefine returns
“continue” with a new alphabet A, and ACR executes a new iteration.

A key novelty of our approach is that the assume-guarantee rules change
dynamically during alphabet refinement. With each update to A, rule CIRC-
AGN is simplified according to the procedure described in Sect. 4 and procedure
ApplyAG applies the simplified rule (denoted S(CIRC-AGN )). As the algorithm
progresses, the assumption alphabets change resulting in new simplifications
applied to the rule.

When alphabet refinement takes place, we need to restart the construction
of assumptions (in the inner loop) with a new set of assumptions that are built
over the new alphabets. We have optimized this step by re-using some of the con-
straints from the previous iteration. The set IncTr keeps track of the traces used
to derive the constraints. The refined constraints are used to initialize the gi’s
in the new iteration. Our incremental approach avoids getting and re-analyzing
traces that were already removed at previous iterations. Thus, it reduces the
number of iterations and improves runtime.

Theorem 2. (Correctness and Termination) The framework implemented by
ACR terminates and returns true if M1‖M2..‖Mn |= P and false otherwise.

Partial correctness holds since ACR returns true if and only if all premises
of CIRC-AGN hold, in which case correctness follows from the soundness of the
rule. Further, if ACR returns false, then this corresponds to σ being a coun-
terexample in M1↓αF (g1)‖..Mn↓αF (gn) (see AlphaRefine) which corresponds
to a real counterexample (Lemma 7).
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As for termination, ACR executes a new iteration of the inner loop if the
assumptions need to be refined (but the alphabet stays the same). For a given
A, there can only be finitely many iterations before “true” or “false” is obtained
from ApplyAG. This is shown similarly to [10]. A “true” result makes ACR
terminate, while a “false” result might lead to an alphabet refinement step (if
the counterexample does not extend to all actions). The result of refinement is
that more interface actions are added to A, and a new iteration of the outer loop
is executed. In the worst case, all interface actions are added (if no conclusive
reply is obtained before) in which case no more spurious counterexamples can
be obtained and the algorithm is guaranteed to terminate.

6 Iterative Construction of Assumptions over a Given
Alphabet

In this section we describe in detail the inner layer of ACR, which searches for
assumptions over a given alphabet. As we explain next, this can be understood as
a search for assumptions for an abstract system, where the abstraction is defined
by the alphabet.

Recall that A = αg1 ∪ .. ∪ αgn. The assumption alphabets induce a natural
abstraction over the system by projecting each component Mi to the alphabet
αgi, i.e. M1↓αg1‖M2↓αg2‖..Mn↓αgn

. This is an abstraction since Mi↓αgi
= Mi↓A

for every 1 ≤ i ≤ n, and L(M1‖M2‖..Mn)↓A ⊆ L(M1↓A‖M2↓A‖..Mn↓A) [8].
Further, note that since αGi, αgi ⊆ A, premises of the form Mi |= Gi �gi are

equivalent to Mi↓A |= Gi � gi. Intuitively this means that applying CIRC-AGN

with the alphabets restricted to A can be interpreted as a compositional analysis
of the abstracted system M1↓αg1‖M2↓αg2‖..Mn↓αgn

, which may be smaller and
therefore easier to analyze (i.e. may require smaller assumptions to be used in
the rule). Furthermore note that the rule is complete for this abstraction, since
the alphabets of the abstract components Mi↓αgi

are equal to the assumption
alphabets, ensuring that the alphabets satisfy the completeness condition in the
abstraction.

6.1 Assumption Generation in GenAssmp

Given a set of constraints C, a lower bound k on the total number of states
in

∑n
i=1 |gi|, and an alphabet sequence A, GenAssmp computes assumptions

g1, g2, · · · , gn over A that satisfy C. Assumptions are built as deterministic
LTSs. The implementation of GenAssmp is a natural generalization of previous
work [10] where it was used to generate two assumptions. Roughly speaking, for
each value of k starting from the given k, GenAssmp creates a SAT instance
SatEnck(C) that encodes the structure of the desired DLTSs g1, g2, · · · , gn (e.g.,
deterministic and prefix closed) with

∑n
i=1 |gi| ≤ k, as well as the requirement

that they satisfy the constraints in C. GenAssmp then searches for a satisfying
assignment and transforms the satisfying assignment into DLTSs g1, g2, · · · , gn

that satisfy all the constraints in C. The bound k is increased only when
SatEnck(C) is unsatisfiable, hence minimal DLTSs that satisfy C are obtained.
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The key difference in our encoding compared to [10] is the need to handle dis-
junctive constraints with up to n disjuncts (as opposed to 2 in [10]). While in [10]
each disjunctive constraint with 2 disjuncts is handled with a single “selector”
variable, we use log n selector variables to encode a disjunctive constraint with
n disjuncts.

6.2 ApplyAG Algorithm

Given assumptions g1, g2, . . . , gn, ApplyAG (see Algorithm 2) applies assume-
guarantee reasoning with the current circular rule simplified under the current
alphabets. This is done by model checking all premises of the rule (the order
does not matter).1 If all the premises are satisfied, then, since the rule is sound,
it follows that M1‖M2‖ · · · ‖Mn |= P holds (and the result “true” is returned
to the user). Otherwise, at least one of the premises does not hold and a coun-
terexample trace is found.

ApplyAG performs an analysis of the counterexample trace as described
below. The counterexample analysis is performed with respect to the projections
Mi↓αgi

.
The counterexample analysis may conclude that “M1↓αg1‖ . . . ‖Mn↓αgn

� |=
P”, indicating an error in the abstract system induced by the current alphabet, in
which case “false” is returned. Recall, however, that due to the abstraction this is
not necessarily an error in M1‖ . . . ‖Mn. If the analyzed trace does not correspond
to an error in the abstract system, we conclude that the counterexample is a
result of imprecise assumptions. We then compute a set of new constraints C on
the assumptions in order to avoid getting the same counterexample in subsequent
iterations and return “continue”.

Similar to [10] we use constraints to gather information about traces over the
current alphabet that need or need not be in the languages of the assumptions.
The constraints are of the form: +(σ, i) – meaning that σ should be in L(gi),
−(σ, i) – meaning that σ should not be in L(gi), or boolean combinations of
them, where σ ∈ αgi

∗.
The check for an error in the abstract system or for new constraints is per-

formed by ApplyAG directly (if last premise failed) or by UpdateConstraint

(if other premises failed). Essentially the counterexample indicates an error if it
corresponds to a trace in each Mi↓αgi

and furthermore it violates the prop-
erty. Since all assumptions whose alphabet affects P (directly or indirectly) are
in S(Gn+1), it suffices to check membership in Mi↓αgi

for every gi ∈ S(Gn+1)
when searching for an error. The formal justification is provided by the following
lemma:

Lemma 3. Let S(Gn+1) = {gi1 , . . . , gik
}. Then M1↓αg1‖ · · · ‖Mn↓αgn

|= P if
and only if Mii

↓αgi1
‖ · · · ‖Mik

↓αgik
|= P .

1 The check of the premise i is performed over the full alphabet of Mi in order to main-
tain the set IncTr which enables our incremental approach for alphabet refinement,
as explained in Sect. 7. In addition, it helps in detecting errors.
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Algorithm 2 . Applying S(CIRC-AGN ) with g1, g2, . . . gn, and constraint
updating.
1: procedure ApplyAG(g1, g2, . . . , gn)
2: for i ∈ IA do
3: if Mi � |= S(Gi) � gi then
4: Let σiai be a counterexample for Mi � |= S(Gi) � gi

5: return UpdateConstraints(i, σiai)

6: if S(Gn+1) � |= P then
7: Let σ be a counterexample
8: if (

∧

gi∈S(Gn+1)

(σ↓αgi ∈ L(Mi↓αgi)) then

9: return (∅, “false”, ∅) // “M1↓αg1‖M2↓αg2‖ . . . ‖Mn↓αgn � |= P”
10: else // Remove σ from one of gj ∈ S(Gn+1)
11: C = { ∨

gi∈S(Gn+1)

−(σ↓αgi , i)}
12: return (C, “continue”, ∅)

13: return (∅, “true”, ∅) // “M1‖M2‖ · · · ‖Mn |= P”

For a counterexample obtained for the last premise the checks are done at
line 8 in ApplyAG. If one of these checks fails, a new constraint is added to
make sure that the same trace will not be in g1‖ · · · ‖gn in the next iterations
(see line 11 in ApplyAg). However a similar check in UpdateConstraint is
more involved, and is described in the next subsection.

6.3 Assumption Refinement in UpdateConstraints

UpdateConstraint (Algorithm 3) gets a counterexample σa for one of the
inductive premises i where 1 ≤ i ≤ n and checks whether the trace corresponds to
an error (in the abstract system). If it does, then “false” is returned. Otherwise,
the counterexample analysis continues in order to decide which constraint(s)
need to be added to the set of constraints C in order to refine the assumptions
and avoid getting the same counterexample in subsequent iterations.

Trace Extension. The counterexample of premise i is over the alphabet αMi ∪
αS(Gi). However, in order to determine whether the trace corresponds to an
error and if not to determine which constraints to add, UpdateConstraint

needs to check membership of (projections) of this trace in other components
as well as in P . The first step taken by UpdateConstraints therefore calls
ExtendTrace to extend the counterexample trace to a trace over the alphabet
A such that its projection to αMi ∪ αS(Gi) remains unchanged. The algorithm
works correctly with any such extension, including the one that keeps the trace
unchanged. However, more sophisticated extension schemes can contribute to a
faster convergence of the algorithm.

Specifically, our implementation of ExtendTrace, presented in Algorithm 4,
employs a greedy extension algorithm that considers the LTSs whose alphabet is
(potentially) uncovered in an arbitrary order, and iteratively extends the trace by
simulating it on these LTSs one by one in that order. Whenever the simulation
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Algorithm 3. Computation of constraints based on a counterexample for Mi |=
S(Gi) � gi. We use σ↓ ∈ L(B) as a shorthand for σ↓αB ∈ L(B).

1: // σa is a counterexample for Mi |= S(Gi) � gi, i.e. σa↓ ∈ L(Mi), σ↓ ∈ L(gj) for every
gj ∈ S(Gi), σa↓ �∈ L(gi).

2: procedure UpdateConstraints(i, σa)

3: σa = ExtendTrace(σa, (αS(Gi) ∪ αMi), {Mj↓αgj | gj �∈ (S(Gi) ∪ {gi})} ∪ {P})
4: if (

∧

gj∈S(Gn+1),j �=i

(σa↓ ∈ L(Mj↓αgj )) and σa↓ �∈ L(P )) then

5: // σa↓ ∈ L(M1↓αg1‖ · · · ‖Mn↓αgn ) and σa↓ �∈ L(P )
6: return (∅, “false”,∅) // “M1↓αg1‖M2↓αg2‖ . . . ‖Mn↓αgn � |= P”

7: // Optimized constraints

8: for each G ∈ T (gi) do // G is a closed set
9: if (

∧

gj∈G,j �=i

(σa↓ ∈ L(Mj↓αgj )) then

10: // Add σa to all assumptions in G based on Lemma 4(1).
11: // Adding σa to gi ∈ G prevents getting σa as a cex to premise i in the future.

12: C =
⋃

gj∈G
{+(σa↓αgj , j)}

13: return (C, “continue”,∅)
14: if (

∧

gj∈G,j �=i
(σ↓ ∈ L(Mj↓αgj )) then

15: // Add σ to all assumptions in G based on Lemma 4(1).

16: // Since S(Gi) ⊆ G, we cannot remove σ from S(Gi), hence add σa to gi.

17: C =
⋃

gj∈G
{+(σ↓αgj , j)} ∪ {+(σa↓αgi , i)}

18: return (C, “continue”,∅)
19: if σa↓ �∈ L(P ) and σ↓ ∈ L(P ) then
20: // Remove σ from S(Gi) or (add σa to gi and remove it from S(Gn+1) \ {gi}).
21: // In the latter case, the removal of σa from S(Gn+1) \ {gi} is due to Lemma 4(2).

22: C = {( ∨

gj∈S(Gi)

(−(σ↓αgj , j)))∨

23: (+(σa↓αgi , i) ∧ (
∨

gj∈S(Gn+1)\{gi}
(−(σa↓αgj , j))))}

24: IncTr = {(σa, i, 22)}
25: return (C, “continue”,IncTr)

26: if σa↓ �∈ L(P ) and σ↓ �∈ L(P ) then
27: // Removal of σ from S(Gn+1) \ (S(Gi) ∪ {gi}) in line 30 is due to Lemma 4(2).

28: // Since LTSs are prefix-closed, the latter implies removal of σa from S(Gn+1)\{gi}.
29: C = {( ∨

gj∈S(Gi)

(−(σ↓αgj , j)))∨

30: (+(σa↓αgi , i) ∧ (
∨

gj∈S(Gn+1)\(S(Gi)∪{gi})
(−(σ↓αgj , j))))}

31: IncTr = {(σa, i, 29)}
32: return (C, “continue”,IncTr)

33: // Default constraint

34: C = {( ∨

gj∈S(Gi)

(−(σ↓αgj , j)) ∨ +(σa↓αgi , i))}

35: IncTr = {(σa, i, 34)}
36: return (C, “continue”,IncTr)
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Algorithm 4. Get trace σ over alphabet Σ and extend it to be over the alphabet
of all assumptions
1: procedure ExtendTrace(σ, Σ, N1, N2, · · · Nk)
2: for i = 1, . . . , k do
3: if (L(LTS(σ)‖Ni) �= ∅) then
4: σ = trace in LTS(σ)‖Ni

5: Σ = Σ ∪ αNi

6: return σ over the alphabet Σ ∪⋃n
i=1 αNi

succeeds, the trace and its alphabet are extended accordingly. When it fails, the
trace remains unchanged. Upon termination, the alphabet of the trace is extended
to include the full alphabet, even if the simulation on some of the LTSs failed. The
distinguishing feature of Algorithm4 compared to other extensions (e.g., random
extensions) is the fact that it tries to find an extension of the trace that is in the
language of the LTSs that it gets as input. It therefore increases the chances of
successful checks in UpdateConstraints.

The analysis and computation of constraints are performed on the extended
trace.

Default Constraints. If the (extended) counterexample trace corresponds to
an error in the abstract system (line 4), then UpdateConstraints returns
“false”. Otherwise, it computes a new set of constraints. The added constraints
are a crucial ingredient as they guide the search for assumptions. They should be
strong enough to eliminate the already seen counterexamples and allow progress
and convergence of the algorithm, but should not over-constrain the assumptions,
in order not to exclude viable assumptions.

Recall that the ith inductive premise in the simplified rule is of the form
Mi |= S(Gi) � gi, and a counterexample for it is a trace σa such that
σa↓ ∈ L(Mi), σ↓ ∈ L(gj) for every gj ∈ S(Gi) and σa↓ �∈ L(gi). The
default constraint to eliminate such a counterexample σa is the constraint
+(σa↓αgi

, i) ∨ ∨
j∈S(Gi)

−(σ↓αgj
, j) stating that the counterexample should be

added to gi or its prefix should be removed from S(Gi) (i.e., from at least one
of the assumptions in S(Gi)). Such a constraint is added in line 34. This spe-
cific constraint is also incremental, and the corresponding trace is therefore also
added to IncTr, along with an identifier of the premise by which it was added
and the line number in which the constraint was computed, in order to allow its
re-use after alphabet refinement.

Optimized Constraints. A key aspect in the assumptions refinement is our
ability to add stronger constraints, without over-constraining the assumptions.
This helps the overall algorithm converge faster since a stronger constraint
removes more irrelevant assumptions from the assumption space at once. Fur-
thermore, stronger constraints are easier for GenAssmp to solve, thus the overall
run-time of the algorithm is reduced.
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We come up with several properties of useful assumptions (i.e., assumptions
that can be successfully used in the rule) which enable the addition of stronger
constraints in several cases. These properties are nontrivial extensions of the
properties observed in [10] for the 2-component case.

For example, from the simplified rule we extract closed sets of assumptions.
A set G of assumptions is closed if gi ∈ G implies that S(Gi) ⊆ G. We show
that:

Lemma 4. Let g1, . . . , gn be LTS assumptions over alphabets αg1, . . . , αgn suc-
cessfully used in CIRC-AGN , and let S(·) denote the simplification of CIRC-
AGN with respect to the alphabets αg1, . . . , αgn. Then

1. if {gi1 , ..gim
} is a closed set, then Mi1‖Mi2‖ · · · ‖Mim

|= gi1‖gi2‖ · · · ‖gim
,

and
2. forall 1 ≤ i ≤ n, if {gi1 , ..gim

} = S(Gn+1) \ {gi}, then Mi‖gi1‖gi2 · · · ‖gim
|=

P .

We carefully select closed sets and scenarios in which it is beneficial to use
observation (1) for generation of constraints. Namely, we consider closed sets
which are the closures of some assumption, defined as follows.

Definition 4 (Closure). The closure of gk, denoted Cl(gk), is the smallest set
of assumptions G such that S(Gk) ⊆ G and for every gj ∈ G it holds that
S(Gj) ⊆ G as well.

The oset Cl(gk) includes all the assumptions in premise k (after simplifica-
tion), and for each of them includes all the assumptions in their premises etc.
Note that Cl(gk) is defined based on the simplified rule, and is a closed set.
For every assumption gi, we define the set of closures that it is part of, denoted
T (gi):

Definition 5. For every 1 ≤ i ≤ n, T (gi) = {Cl(gk) | gi ∈ Cl(gk), 1 ≤ k ≤ n}.
When UpdateConstraints (Algorithm 3) analyzes a counterexample σa

for premise i of (the simplified) CIRC-AGN , it considers all the closures
G = {gi1 , ..gim

} in T (gi) and checks whether σa↓αgj
∈ L(Mj↓αgj

) for every
gj ∈ G. If so, we add a constraint +(σa↓αgj

, j) for every j such that gj ∈ G
(see line 12) in order to ensure that (the projection of) σa is in gi1‖ · · · ‖gim

,
as follows from Lemma 4(1). Since gi ∈ G, the added constraints imply
+(σa↓αgi

, i)∨∨
j∈S(Gi)

−(σ↓αgj
, j), thus they suffice to eliminate the counterex-

ample and avoid the need for a disjunctive constraint.
Similar reasoning is performed in line 17 using σ. However, in this case, the

added constraints +(σ↓αgj
, j) for every j such that gj ∈ G refer to σ and do not

imply +(σa↓αgi
, i) ∨ ∨

j∈S(Gi)
−(σ↓αgj

, j). Still, the fact that gi ∈ G and G is a
closed set, ensures that S(Gi) ⊆ G, and hence

∨
j∈S(Gi)

−(σ↓αgj
, j) cannot hold.

Therefore, the disjunctive constraint is strengthened into +(σa↓αgi
, i), again

avoiding the disjunction (see line 17).
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Similarly, we use observation (2) to strengthen the +(σa↓αgi
, i) dis-

junct of the default constraint by adding specialized constraints of the form∨
gj∈S(Gn+1)\{gi}(−(σa↓αgj

, j)) in the case where σa↓αP �∈ L(P ) (line 22), with
an additional strengthening in line 29 for the case where also σ↓αP �∈ L(P ). These
specialized constraints are also incremental, hence the corresponding traces are
added to IncTr.

Progress and Termination of Assumption Refinement. The assumption
refinement continues until the assumptions satisfy all premises of the rule, or an
error is found (in the abstract system). The progress of the assumption refine-
ment is guaranteed by the following lemmas.

Lemma 5. Let σ be a counterexample of premise i of CIRC-AGN and let C be
the updated set of constraints. Then any LTSs g′

1, g
′
2, · · · , g′

n that satisfy the set
of constraints C will no longer exhibit σ as a counterexample for premise i of
CIRC-AGN .

We conclude that any sequence of LTSs g′
1, g

′
2, . . . , g

′
n that satisfies C is dif-

ferent from every previous sequence of LTSs considered by the algorithm.
The following lemma states that the added constraints do not over-constrain

the assumptions. It ensures that the “desired” assumptions that enable to verify
(1) or falsify (2) the property are always within reach.

Lemma 6. Let g1, . . . , gn be LTSs over αg1, . . . , αgn s.t. one of the following
holds:

1. g1, . . . , gn satisfy all premises of CIRC-AGN , or
2. gi = Mi↓αgi

for every 1 ≤ i ≤ n.

Then (g1, . . . , gn) satisfy every set of constraints C produced by ACR.

Due to the above lemmas, along with the completeness of the rule with
respect to the abstraction M1↓αg1‖M2↓αg2‖..Mn↓αgn

, the iterative construction
of the assumptions over A (lines 5–9 of Algorithm 1) is guaranteed to terminate
returning either minimal assumptions over A that satisfy the rule premises or a
counterexample for the abstract system. This is shown similarly to [10].

7 Alphabet Refinement

This section describes the outer layer of ACR, which iteratively searches for
an appropriate alphabet for the assumptions. Each iteration defines a different
alphabet A which restricts the alphabet of the assumptions. Initially A = αP ,
and therefore αgi = αP ∩ αMi. As long as A is a strict subset of αP ∪ ⋃n

i=1 αJi

(which means that αgi is a strict subset of (αMi∩αP )∪αJi), completeness is not
guaranteed with respect to M1‖ · · · ‖Mn. This also means that a counterexam-
ple obtained by the inner layer might be spurious. Hence, when an abstract
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Algorithm 5 . Alphabet Refinement
1: procedure AlphaRefine(σ, A, IncTr)

2: if (αgi = αF (gi) for every 1 ≤ i ≤ n) then
3: return (-,-,-,“false”)

4: for 1 ≤ i ≤ n do

5: let σi be a trace in L(LTS(σ↓αgi)‖Mi↓αF (gi)
)

6: if (Match(σ1, σ2, · · · , σn)) then

7: return (-,-,-,“false”)

8: // IncAlpha decides which new interface letters to add based on heuristics from 11.
9: A = A ∪ IncAlpha(σ1, σ2, · · · , σn)
10: k = n, C = ∅
11: for each (σ, i, type) ∈ IncTr do // Update constraints based on incremental traces

12: C = C ∪ RC(σ, i, type, A)

13: return (A, C, k,“continue”)

counterexample for M1↓αg1‖ · · · ‖Mn↓αgn
|= P is obtained, AlphaRefine

(Algorithm 5) is called to check if the counterexample can be extended to a
real counterexample. If it can not, AlphaRefine performs automatic alpha-
bet refinement using heuristics similar to previous work [11] developed for non-
circular assume-guarantee reasoning. Note however that a key difference from
previous work is that our alphabet refinement enables dynamic simplification of
the rule used for verification. Furthermore we improve upon [11] by providing a
procedure for re-using the results across refinement iterations.

In essence, a counterexample σ is real if σ↓αF (gi) ∈ L(Mi↓αF (gi)) and
σ↓αP �∈ L(P ). This is stated by the following lemma, extending the 2-component
case [10].

Lemma 7. If σ↓αF (gi) ∈ L(Mi↓αF (gi)) (for i = 1..n) and σ↓αP �∈ L(P ) then
M1‖M2‖..Mn � |= P . Moreover, σ can be extended into a full counterexample for
M1‖M2‖..Mn |= P .

AlphaRefine first checks if αgi = αF (gi), where αF (gi) is the alphabet
sufficient for completeness. If this is not the case, and also if we do not manage to
extend the counterexample to this alphabet, AlphaRefine chooses heuristically
new interface actions to be added to the alphabet A (and to αgi accordingly).
The heuristic uses backward refinement shown to work well in previous studies.
The counterexample σ is projected on all the components one by one with the
full alphabet of completeness. We then perform a backward analysis for every
two traces: the traces are scanned backward, from the end of each trace to the
beginning looking for the first action where the two traces disagree. The alphabet
A is refined by adding all these actions. The refined alphabet is used in the next
iteration of ACR. Procedure Match simply checks that all counterexamples
agree on common alphabets.
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Once the alphabet changes, the set of constraints C maintained by the algo-
rithm is no longer suitable and has to be emptied. A novel aspect of our approach
is that we identify certain constraints that can be refined and moved to the new
iteration (as described below).

7.1 Incremental Alphabet Refinement

Recall that constraints are computed based on counterexamples to premises of
the form Mi |= S(Gi) � gi. These are traces over αMi ∪ αS(Gi). While αS(Gi)
changes as the alphabet increases, αMi does not. A naive incremental approach
would therefore keep all these traces, and would regenerate constraints based
on them by the same counterexample analysis, but with the refined alphabet of
the assumptions. However, our goal is to avoid the overhead in analyzing the
counterexamples again.

Ideally, we would like to simply derive the same constraints by projecting
the counterexample traces on the new alphabet without any further checks.
However, this might introduce incorrect constraints that would over-constrain
the assumptions. The reason is that the correctness of an existing constraint relies
on checks such as σa↓αgj

∈ L(Mj↓αgj
) performed with respect to the previous

alphabet. The same checks might return different outcomes when conducted with
the refined alphabet, in which case the correctness of the (refined) constraint is
not guaranteed.

The key challenge to address when trying to re-use constraints is therefore
to make sure that the same checks are valid after alphabet refinement. To that
end, we identify a subset of the constraints for which this is the case. These
are constraints whose correctness relies on checks over σ↓αP , and checks such as
σ↓αgj

�∈ L(Mj↓αgj
), but no checks such as σ↓αgj

∈ L(Mj↓αgj
). The justification

for the re-use of such constraints stems from (i) the fact that αP is always a
subset of A, and hence checks over it remain unchanged, and (ii) the following
lemma:

Lemma 8. If σ↓αgj
�∈ L(Mj↓αgj

) then σ↓αg′
j

�∈ L(Mj↓αg′
j
) for any αg′

j ⊇ αgj.

For example, the constraints created in line 34 in Algorithm3 are incremental.
In order to re-use these constraints, we define an operator, RC (for Refined
Constraints) which receives the full trace over αMi ∪ αS(Gi) and an identifier
of the constraints in the form of a pair of the premise index and the line in the
algorithm in which the constraint was generated, referred to as the type of the
constraint.

The RC operator then re-constructs the corresponding constraints by con-
ducting projections according to the current alphabet, without re-performing
any of the checks. For example, RC(σ, i, 34,A) = {(

∨

gj∈S(Gi)

(−(σ↓αgj
, j)) ∨

+(σa↓αgi
, i))}.
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Table 1. Results of comparison of 2-way compositional verification with and with-
out alphabet refinement (2W-AR and 2W), n-way compositional verification with and
without alphabet refinement (NW-AR and NW) and monolithic verification (Mon).

Case 2W [T] 2W+AR [T] |g1| |g2| NW [T] NW+AR [T] |gmax| |gmin| Mon [T] |Sys‖Perr|
GasSt 3 26 2.187 3 3 40.053 17.434 3 1 0.01 1280

GasSt 4 48 6.87 3 3 72.135 22.274 3 1 0.008 10466

GasSt 5 309 27 3 3 127.802 21.008 3 1 0.128 80368

ClServ 9 248 25.5 10 2 6.08 3.297 2 2 0.09 14335

ClServ 10 815.6 69 11 2 7 5 2 2 0.026 34303

ClServ 11 – 307.6 12 2 11.883 6.675 2 2 0.063 80895

ClServ 12 – – – – 15.617 8.213 2 2 0.31 188415

MER 6 4 – – – – 132.958 9.422 3 2 33.931 5246875

MER 7 4 – – – – 769.61 23.894 3 2 – –

MER 8 4 – – – – 1611.072 54.568 3 2 – –

MER 4 5 – – – – 43.4 3.6 3 2 0.235 159192

MER 5 5 – – – – 91.5 5.9 3 2 6.5 2057616

MER 6 5 – – – – 200 11 3 2 500 23685696

MER 7 5 – – – – 1470.85 30.38 3 2 – –

MER 8 5 – – – – – 89.278 3 2 – –

Fig. 1. Assumptions generated for: server (left) and a client (right) for client-server
(11 clients) using n-way compositional verification with alphabet refinement

8 Evaluation

We implemented our approach in the LTSA (Labelled Transition System
Analyser) tool [17]. We use MiniSAT [9] for SAT solving. As an optimization we
made ACR return (at each iteration) k counterexamples for the n + 1 premises
where, k is n × ∑n

i=0 |gi|.
We evaluated our approach on the following examples [10,23]: Gas Station

(3 to 5 customers), Client Server (9 to 12 clients), and a NASA rover model:
MER (4 to 8 users competing for 4–5 resources). Experiments were performed on
a MacBook Pro with a 2.3 GHz Intel Core i7 CPU and with 16 GB RAM running
OS X 10.9.4 and a Suns JDK version 7. We compared n-way verification using
ACR with both 2-way ACR and monolithic verification.

Table 1 summarizes our results. We report the run time for: 2W (2-way ACR
without alphabet refinement), 2W+AR (2-way ACR with alphabet refinement),
NW (n-way ACR without alphabet refinement), NW+AR (n-way ACR with
alphabet refinement); |g1| and |g2| are the assumption sizes produced by 2W,
|gmax| and |gmin| are the sizes of the largest and smallest assumptions produced
by NW. For 2W, each system was decomposed into two sub-systems, according
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to some “best decomposition” obtained before [10,23]. Mon is the run time of
the monolithic classical algorithm and |Sys‖Perr| is the number of states for the
verification task, where Sys is the system M1‖M1..‖Mn. We put a limit of 1800 s
for each experiment; “–” indicates that the time for that case exceeds this limit.

The results show that NW is better than 2W, and generates smaller assump-
tions. For example, Fig. 1 illustrates the small assumptions generated for the
client-server example. Note that computing the “best” 2–way decomposition is
expensive (its cost is not reported here). In contrast NW simply uses the natural
decomposition of the system into its multiple components. Our results also show
that alphabet refinement with rule simplification always improves circular rea-
soning, both in terms of analysis time and assumption sizes. Furthermore Mon
performs better for small systems, but as the systems get larger n-way composi-
tional verification significantly outperforms it. These lead to cases such as MER
where, for large parameter values, Mon runs out of resources while NW+AR
succeeds in under 2 min.

9 Conclusion and Future Work

We presented an automatic technique for the compositional analysis of systems
decomposed into n components. The technique uses iterative assumption gen-
eration with incremental alphabet refinement and dynamic rule simplification.
Preliminary results show its promise in practice. In the future we plan to check
the rule premises in parallel to speed-up our approach. Further we plan to explore
abstraction-refinement and learning as alternatives to our SAT-based assump-
tion discovery.
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