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Abstract. This work focuses on data-parameterized abstract systems that ex-
tend standard modelling by allowing atomic propositions to be parameterized by
variables that range over some infinite domain. These variables may range over
process ids, message numbers, etc. Thus, abstract systems enable simple mod-
elling of infinite-state systems whose source of infinity is the data. We define and
study a simulation pre-order between abstract systems. The definition extends
the definition of standard simulation by referring also to variable assignments.
We define VCTL� – an extension of CTL� by variables, which is capable of speci-
fying properties of abstract systems. We show that VCTL� logically characterizes
the simulation pre-order between abstract systems. That is, that satisfaction of
VACTL�, namely the universal fragment of VCTL�, is preserved in simulating
abstract systems. For the second direction, we show that if an abstract system
A2 does not simulate an abstract system A1, then there exists a VACTL formula
that distinguishes A1 from A2. Finally, we present a game-theoretic approach
to simulation of abstract systems and show that the prover wins the game iff A2

simulates A1. Further, if A2 does not simulate A1, then the refuter wins the game
and his winning strategy corresponds to a VACTL formula that distinguishes A1

from A2. Thus, the many appealing practical advantages of simulation are lifted
to the setting of data-parameterized abstract systems.

1 Introduction

In system verification, we check that an implementation satisfies its specification. Both
the implementation and the specification describe the possible behaviors of the system
at different levels of abstraction. If we represent the implementation I and the specifi-
cation S using Kripke structures, then the formal relation that captures satisfaction in
the linear approach is trace containment: S trace-contains I iff it is possible to gener-
ate by S every (finite and infinite) sequence of observations that can be generated by
I. The notion of trace containment is logically characterized by linear temporal logics
such as LTL in the sense that S trace-contains I iff every LTL formula that holds in S
holds also in I. Unfortunately, it is difficult to check trace containment (complete for
PSPACE [29]). The formal relation that captures satisfaction in the branching approach
is tree containment: S tree-contains I iff it is possible to embed in the unrolling of S
every (finite and infinite) tree of observations that can be embedded in the unrolling of
I. The notion of tree containment is equivalent to the notion of simulation, as defined
by Milner [24]: S tree-contains I iff S simulates I; that is, we can relate each state of
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I to a state of S so that two related states i and s agree on their observations and every
successor of i is related to some successor of s [26].

Simulation has several theoretical and practical appealing properties. First, like trace
containment, simulation is robust: for universal branching temporal logics (where only
universal path quantification is allowed) such as ACTL and ACTL� (the universal frag-
ments of the computation tree logics CTL and CTL�), we have that S simulates I iff
every formula that holds in S holds also in I [2,15]. Second, unlike trace containment,
the definition of simulation is local, as the relation between two states is based only on
their successor states. As a result, simulation can be checked in polynomial time [7,1].
The locality advantage is so compelling as to make simulation useful also to researchers
that favor trace-based specification: in automatic verification, simulation is widely used
as an efficiently computable sufficient condition for trace containment [19]; in manual
verification, trace containment is most naturally proved by exhibiting local witnesses
such as simulation relations or refinement mappings (a restricted form of simulation
relations) [20,22,23,8].

In addition to the use of simulation in step-wise refinement, where a pre-order be-
tween an implementation and its specification is checked, simulation is helpful in cop-
ing with the state-explosion problem, as it enables the verification process to proceed
with respect to an over-approximation of the implementation: instead of verifying I,
we abstract some of its details and generate a (typically much smaller) system I ′ that
simulates I. Verification then proceeds with respect to I ′, either proving that it satisfies
the specification (in which case we can conclude that so does I) or not, in which case
the abstraction is refined [6].

Abstraction and simulation have turned out to be key methods in coping with the
state-explosion problem. In particular, by abstracting elements of the system that have
an infinite domain, one can verify infinite-state systems. Often, the source of infinity
in a system is data that range over an unbounded or infinite domain, such as content
of messages, process ids, etc. Traditional abstraction methods either hide the data or
abstract its value by finite-domain predicates [27]. In [12,13], we introduced abstract
systems, which finitely and naturally represent infinite-state systems in which the source
of infinity is data that range over an infinite domain. Formally, an abstract system is a fi-
nite Kripke structure whose atomic propositions are parameterized by variables ranging
over the infinite domain. A transition of the system may reset a subset of the variables,
freeing them of their previous assignment. The different concrete computation trees, or
concretizations, of an abstract system are obtained by legally assigning concrete domain
values to the variables along an unwinding of the abstract system.

For example, consider the system presented in Figure 1. It represents a simple com-
munication protocol, where the variable x represents the message id. The concretization
presented in Figure 1 is obtained by assigning values to x in a way that agrees with the
resets in the protocol: when the transition from the timeout state is taken, the message
is resent with the same message id. When the transition from the ack state is taken, x is
reset and may be reassigned, as reflected in the concretization.

Evidently, abstract systems are capable of describing communication protocols with
unboundedly many processes, systems with interleaved transactions each carrying a
unique id, buffers of messages with an infinite domain, and many more.
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Fig. 1. A simple communication protocol and a possible concretization

In this paper we combine the clean treatment of data over infinite domain with the
theoretical and practical advantages of simulation. We define simulation between ab-
stract systems, study its properties, and describe a logical characterization for it.

The challenge of specifying behaviors with an infinite component has led to the
development of various formalisms. One class of formalisms consists of variants of au-
tomata over infinite alphabets. Types of such automata include register automata [28],
which have a finite set of registers, each of which may contain a letter from the infinite
alphabet. Register automata have been extensively studied and may include features
like alternation, two-wayness, a nondeterministic change of the content of registers,
and further generalizations [25,18,13]. Pebble automata [25,30] place pebbles on the
input word in a stack-like manner, and in data automata [4,3], the infinite alphabet
consists of pairs – a letter from a finite alphabet and a data value from some infinite
domain. The finite alphabet is accessed directly and the data is accessed indirectly via
the equivalence relation it induces on the set of positions. Finally, closest to our abstract
systems are nondeterministic finite automata with variables [11].

The second class of formalisms consists of extensions of temporal logics. An exten-
sion in which atomic propositions are parameterized by a variable that ranges over the
set of processes ids was studied in [5,10]. These works are tailored for the setting of
parameterized systems, and are also restricted to systems in which (almost) all com-
ponents are identical. In Constraint LTL [9], atomic propositions may be constraints
like x < y, and formulas are interpreted over sequences of assignments of variables to
values in N or Z. Unlike our approach, the focus is on reasoning about sequences of
numerical values. In [21,16], LTL and CTL have been extended with a freeze quantifier,
which is used for storing values from an infinite domain in a register.

In [12], we introduced variable LTL (VLTL), a first-order extension of LTL. Like ab-
stract systems, VLTL uses atomic propositions parameterized with variables to describe
the behaviors of computations that may carry infinitely many values. For example, the
VLTL formula ψ = ∀x; G(send.x → Freceive.x) states that for every value d in the
domain, whenever a message with content d is sent, then a message with content d is
eventually received. In this work, we define the logic VCTL�, a first-order extension of
CTL�. Similarly to CTL�, the logic VCTL� has existential and universal path quantifi-
cation. Similarly to VLTL, it also has existential and universal quantification over vari-
ables. While VLTL is interpreted over infinite computations of abstract systems, VCTL�

is interpreted over their computation trees.
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As an example, consider a variable x that ranges over process ids. The VCTL� for-
mula ϕ1 = ∃x; AFAG¬idle.x states that there exists a process that is eventually not
idle along all paths. The formula ϕ2 = AF∃x; AG¬idle.x states that every path even-
tually reaches a point where there exists a process that is never idle from that point on
along all paths. The formulaϕ3 = AFA∃x; G¬idle.x states that along every path, from
some point on, there exists a process that is never idle. Finally,ϕ4 = AFAG∃x;¬idle.x
states that from some point on, in every step of every path, there exists a process that is
never idle. Note that the formulas are not equivalent, and they demonstrate the power of
the ability to nest the variable quantifiers within the formula.1 In particular, in ϕ3 (and
not in ϕ2) different paths may have different non-idle processes, and in ϕ4 (and not in
ϕ3), this may be a different process at each step.

Our goal is to define a simulation relation for abstract systems in a way that pre-
serves their behaviors. Preserving the behavior of the variables raises some challenges.
Consider two states q1 and q2 of abstract systems A1 and A2. In standard simulation,
q1 and q2 may be matched only if they agree on the labeling of the atomic propositions.
In the abstract systems setting, we need, in addition, to make sure that the variables that
parameterize these atomic propositions can be matched. For example, if q1 is labeled
by a.x1 and q2 is labeled by a.x2, where a is an atomic proposition and x1, x2 are vari-
ables, then a simulation that matches q1 with q2 must make sure that every value that
is assigned to x1 can also be assigned to x2. This latter condition is no longer local, as
the value assigned to an occurrence of x2 depends both on the history of the behavior
before reaching q2, and on the behavior of other states in which x2 occures. Thus, a
simulation relation between A1 and A2 must keep a memory component for the vari-
ables, and the challenge is to keep the definition of simulation as local as possible, with
the global elements being restricted to the variables only.

We manage tracking the behavior of the variables locally by adding a function that
maps the variables of A2 to the variables of A1 to each tuple in the simulation relation.
Thus, our simulation relation consists of triplets: a state of A1, a state of A2, and a
function over the variables. We present an algorithm for computing a maximal simula-
tion from A1 to A2. The function component may create a simulation relation of size
that is exponential in the number of variables. While this is worse than the polynomial
size of standard simulation, one should bear in mind that trace containment for abstract
systems is undecidable, as opposed to the PSPACE complexity of standard trace con-
tainment. We argue that our definition is indeed robust with respect to VACTL� – the
universal fragment of VCTL�. First, if A2 simulates A1, denoted A1 � A2, then every
VACTL� formula that is satisfied in A2 is also satisfied in A1. The second direction is
much harder, and we show that if A1 � A2, then we can construct a VACTL formula
that A2 satisfies, and A1 does not.

A simulation game for (non-abstract) systems A1 and A2 is played between two
players: a prover, who wishes to prove that A2 simulates A1, and a refuter, who wishes
to prove the contrary. In each round of the game, the refuter advances along A1 and
the prover advances along A2, aiming to match every move of the refuter by moving
to a state with the same label. A simulation relation from A1 to A2 induces a winning
strategy for the prover. Also, if A2 does not simulate A1, then a winning strategy for

1 In VLTL, variable quantification is restricted to appear only at the head of the formula.
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the refuter exists, and it induces an ACTL formula that holds only in A2. We define
a game-theoretic approach to simulation between abstract systems A1 and A2. As in
the standard setting, the game proceeds in rounds along both abstract systems, where
in every step the prover attempts to match the state it chooses in A2 with the state in
A1 chosen by the refuter. Here, however, matching refers also to the variables, and the
prover must make sure that the variables in the states it chooses can be assigned the
same values that can be assigned to the variables in the states that the refuter chooses.
As explained above, this property is not local, making the game more sophisticated:
While in the traditional setting the game proceeds along a single path in each system,
in our setting the refuter may split the game to continue temporarily along two different
paths – those along which he plans to force the prover to use inconsistent assignments.

As in the traditional setting, a simulation relation induces a winning strategy for
the prover. Also, if A2 does not simulate A1, then a winning strategy is induced by a
VACTL formula that holds only in A2. The need to refer to the variables makes the game
and its correctness proof complicated. In particular, in case the refuter wins thanks to
the inability of the prover to correctly handle the variables, the distinguishing formula
captures this by requirements that refer to variable assignments. The construction of
the formula relies on our algorithm for computing a simulation relation from A1 to
A2. The time complexity of our algorithm is exponential in the number of variables,
and accordingly, so is the depth of the formula. Still, the appealing properties of the
game in the traditional setting are preserved, in particular the fact that the players have
memoryless strategies.

In Section 7 we discuss directions for future research and the practical applications
of defining the simulation pre-order in the setting of abstract systems.

2 Preliminaries

Kripke Structures and Simulation. Let AP be a finite set of atomic propositions. A
Kripke structure is a tuple A = 〈Q, q0, AP,R, L〉, where Q is a finite set of states, q0

is an initial state, R ⊆ Q × Q is a total transition relation, and L : Q → 2AP maps
each state to the set of atomic propositions that hold in the state. We sometimes refer to
Kripke structures as systems.

Let A1 = 〈Q1, q
0
1 , AP,R1, L1〉 and A2 = 〈Q2, q

0
2 , AP,R2, L2〉 be two Kripke

structures over the same set of atomic propositions. A simulation [24] fromA1 to A2 is a
relation H ⊆ Q1×Q2 such that for every 〈q1, q2〉 ∈ H , we have that L1(q1) = L2(q2),
and for every 〈q1, q′1〉 ∈ R1 there exists 〈q2, q′2〉 ∈ R2 such that 〈q′1, q′2〉 ∈ H . If
〈q01 , q02〉 ∈ H , then we say that A2 simulates A1, denoted A1 � A2.

It is well known [14] that if A1 � A2, then for every ϕ ∈ ACTL�, if A2 |= ϕ then
A1 |= ϕ. If A1 � A2, then there exists an ACTL formula ϕ such that A2 |= ϕ and
A1 � ϕ. We call such a formula a distinguishing formula for A1 and A2.

A simulation game [17] for A1 and A2 is a protocol for two players: a proverP , who
wishes to prove that A1 � A2, and a refuter R, who wishes to prove that A1 � A2.
A position in the game is a pair 〈q1, q2〉 ∈ Q1 ×Q2, where q1 is the location of R and
q2 is the location of P . A play in the game starts in 〈q01 , q02〉. If L1(q

1
0) 
= L2(q

2
0), then

R wins. Otherwise, the play continues as follows. Let 〈q1, q2〉 be the current position.
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In each round, R chooses a transition 〈q1, q′1〉 ∈ R1, and P responds by choosing a
transition 〈q2, q′2〉 ∈ R2, such that L1(q

′
1) = L2(q

′
2). The play then continues from

position 〈q′1, q′2〉. Hence, a play in the game induces two paths, one in A1 and one in
A2. If at some point in the play, P is unable to respond with a suitable move, then R
wins. Otherwise, the play continues forever and P wins.

It holds that A1 � A2 iff P has a winning memoryless strategy in the game. Equiva-
lently, A1 � A2 iff R has a winning strategy. The latter corresponds to a distinguishing
formula for A1 and A2.

Abstract Systems. An abstract system is a tuple A = 〈Q, q0, AP,X,R, L, S〉, where
Q, q0, and R are as in Kripke structures, and

– X is a set of variables.
– AP is a set of atomic propositions that may be parameterized by variables from X .
– L : Q → 2AP∪(AP×X) maps each state to the set of atomic propositions that hold

in the state. We require that for every q ∈ Q and a ∈ AP , the set L(q) contains at
most one occurrence of a.

– S : R → 2X maps each transition to the set of variables that are reset along the
transition.

A concretization of A, which is a concrete computation tree of A, is obtained by
assigning values to the variables, as we explain next.

A Σ-labeled tree is a pair 〈T, l〉 where T = 〈V,E〉 is a directed tree with a set of
nodes V and a set of edges E, and l : V → Σ is a function that labels each node in the
tree by a letter from Σ.

Let 〈T, l〉 be the 2AP∪(AP×X)-labeled tree obtained by unwinding A from q0. For-
mally, T = 〈V,E〉 is such that V ⊆ Q∗, where q0 ∈ V is the root of T , and w · q · q′
is in V , for w ∈ Q� and q, q′ ∈ Q, iff w · q ∈ V and 〈q, q′〉 ∈ R, in which case
〈w · q, w · q · q′〉 ∈ E. Also, l(w · q) = L(q). Note that we can associate with each edge
in the tree the set of variables that are reset along it, namely these reset in the transition
in A that induces the edge.

Let D be an infinite domain. A D-concretization of A is an infinite 2AP∪(AP×D)-
labeled tree 〈T, lf〉 obtained from 〈T, l〉 by assigning values from D to the occurrences
of the variables in every node in T in a way that agrees with the resets along the tran-
sitions of A. That is, for every node s of T we assign a function fs : X → D. The
labeling lf (s) of s is obtained by replacing every variable x in l(s) by fs(x). The func-
tions fs satisfy the following property. Let s be a node in T , let x be a variable, and let
s′ be a node in the subtree rooted in s. If x is not reset along the path from s to s′, then
fs(x) = fs′(x). That is, all the occurrences of x in a subtree of T with root s that are
not reset along the path in the abstract system that leads from s to them, are assigned
the same d ∈ D in 〈T, lf〉. Note that the tree 〈T, lf 〉 is in fact an infinite state system
over AP ∪ (AP ×D).

3 VCTL�

In this section, we define variable CTL� (VCTL�, for short) – a first order extension
of CTL� that handles infinite data. Like abstract systems, VCTL� uses atomic
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propositions that are parameterized with variables. In addition, VCTL� uses quantifiers
over the variables that may be nested within the formula.

The syntax of VCTL� includes formulas of two types: state formulas and path formu-
las. Let X be a set of variables, and let AP be a set of atomic propositions that may be
parameterized by variables from X . A VCTL� state formula is p ∈ AP , a.x ∈ AP ×X ,
¬ϕ1, ϕ1 ∨ ϕ2, ∃x;ϕ1, or Eψ1, for VCTL� state formulas ϕ1 and ϕ2 and a VCTL� path
formula ψ1. A VCTL� path formula is ϕ1, ¬ψ1, ψ1 ∨ψ2, Xψ1, ψ1Uψ2, or ∃x;ψ1, for a
VCTL� state formula ϕ1 and VCTL� path formulas ψ1 and ψ2. Finally, VCTL� is the set
of all closed VCTL� state formulas.

We turn to define the semantics of VCTL�. Let A be an abstract system with a labeling
function L, let ϕ be a VCTL� formula. We say that A satisfies ϕ (denoted A � ϕ) if for
every infinite domainD, everyD-concretization of A satisfies ϕ. Thus, it is left to define
the semantics of VCTL� with respect to concretizations of abstract systems. As usual
with first order logic, since we define the semantics inductively over open formulas, we
define the semantics also w.r.t. an assignment t : X → D over the variables. For closed
formulas, the semantics is independent of an assignment to the variables.

Let 〈T, If 〉 be a D-concretization of A, let s be a node in T , and let π = s0, s1, s2, . . .
be an infinite path in T . We assume that 〈T, If 〉 is fixed and use s �t ϕ and π �t ψ to
indicate that s satisfies ϕ under the assignment t, and similarly for π and ψ. The relation
�t is defined inductively as follows. Consider a state formula ϕ.

– If ϕ ∈ AP or the outermost operator in ϕ is ¬, ∨, or E, then the definition is as in
CTL�.

– If ϕ = a.x ∈ AP ×X , then s �t ϕ iff a.d ∈ l(s) and t(x) = d.
– If ϕ = ∃x;ϕ1, then s �t ϕ iff there exists d ∈ D such that s �t[x←d] ϕ1.

Consider a path formula ψ.

– If ψ is a state formula or the outermost operator in ψ is ¬, X, or U, then the defini-
tion is as in CTL�.

– If ψ = ∃x;ψ1, then π, i �t ψ iff there exists d ∈ D such that π, i �t[x←d]ψ.

We use the usual abbreviations G (”always”) and F (“eventually”) for temporal opera-
tors, the path quantifier A (“for all paths”), and the ∀ quantifier over variables.

The logic VACTL� (universal VACTL�) is the fragment of VCTL� in which negation
is restricted to atomic propositions and only the A path quantifier is allowed. The logic
VACTL is the fragment of VACTL� in which temporal operators cannot be nested without
a path quantifier between them. These fragments join the previously defined fragment
VLTL [12], which is the set of all VCTL� formulas of the form Aψ, where ψ is a path
formula that does not contain path quantifiers and all its variable quantifiers are at the
head of the formula.

Remark 1. It is possible to augment the definition of abstract systems and VCTL� for-
mulas to include inequalities over the set of variables, say x1 
= x2. This restricts the
set of legal concretizations and possible assignments, respectively. It is easy to extend
our results to a setting with such an augmentation.
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4 Simulation of Abstract Systems

In this section we define a simulation pre-order between abstract systems. Let A1 =
〈Q1, q

0
1 , AP,X1, R1, L1, S1〉 and A2 = 〈Q2, q

0
2 , AP,X2, R2, L2, S2〉 be abstract sys-

tems over the same set of atomic propositions.
We want to define simulation in such a way that if A2 simulates A1, then every

behavior of A1 is exhibited in A2. In standard simulation, state q1 of system A1 may
be matched with state q2 of system A2 only if q1 and q2 are equally labeled. In abstract
systems, we need, in addition, to assure a match in the variables parameterizing the
atomic propositions in q1 and q2. If, for example, L1(q1) contains a.x1 and L2(q2)
contains a.x2, for a ∈ AP , x1 ∈ X1, and x2 ∈ X2, we want to match q1 with q2 only
if every value that can be assigned to x1 can also be assigned to x2. Accordingly, a
simulation relation H also indicates that when matching q1 with q2, the variable x2 in
q2 is matched with the variable x1 in q1.

Formally, a simulation relation H from A1 to A2 consists of triplets of type
〈q1, q2, f〉, where q1 is a state of A1, q2 is a state of A2, and f : X2 → X1 ∪ {,⊥} is
a function that maps the variables that parameterize atomic propositions that hold in q2
to the variables that parameterize atomic propositions that hold in q1, and also contains
information about previous and future matches. We elaborate, and explain the role of 
and ⊥, below.

We impose some restrictions on f that ensure that it matches the variables in a suit-
able way. We say that f is a match for q1 and q2 if L1(q1) is equal to the set obtained
from L2(q2) by replacing every x2 in q2 with f(x2). Note that in order for f to be a
match for q1 and q2, for every variable x2 ∈ X2 that appear in q2 it must hold that
f(x2) 
∈ {,⊥}. We require that if 〈q1, q2, f〉 ∈ H , then f is a match for q1 and q2.
That is, f must correctly match the variables locally.

Fig. 2. Cases A,B,C and D

However, locally matching the variables is not enough. Consider Case A presented
in Figure 2. The local match for q0 and p0 is x2 �→ x1. The variables x1 and x2 are not
reset in the transitions 〈q0, q1〉 and 〈p0, p1〉. Then H remembers that the value of x2 is
bound to the value of x1, by setting x2 �→ x1 also when matching q1 with p1.
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Next, consider Case B. Again, the local match for q0 and p0 is x2 �→ x1. Since x1

is reset in 〈q0, q1〉 and x2 is not reset in 〈p0, p1〉, then x2 cannot be matched with a
variable in p1, since it is still bound to the value x1 was assigned. Then H remembers
this when matching q1 with p1 by setting x2 �→ ⊥.

Now, consider Case C. Since x2 is not reset along both 〈p0, p1〉 and 〈p0, p2〉, it must
be mapped to the same variable both when matching q1 with p1, and when matching q2
with p2. The simulation sets x2 �→ x1 already when matching q0 with p0, even though
x1, x2 do not appear in these states, and remembers this assignment when moving from
p0 to its two different subtrees. This forces both occurences of x2 to be matched with
the same (unreset) variable x1.

Finally, consider Case D. The simulation must match x2 with x1 when matching q1
with p1. Unlike Case C, where both occurences of x2 must be equally matched, here
there is a single occurence of x2, which can therefore be freely matched. x1 is reset in
〈q0, q1〉, and so x2 cannot be mapped to x1 when matching q0 with p0 (unlike Case C).
On the other hand, x2 is not reset in 〈p0, p1〉, and so H must match x2 with a non-⊥
value when matching q0 with p0. H solves this by allowing x2 to remain “uncommitted”
when matching q0 with p0, by setting x2 �→ . To ensure that x2 occurs only once, H
sets x2 �→ ⊥ when matching q2 with p2, which means that x2 cannot occur along the
subtree from p2, unless it is reset.

We now formalize these ideas. Let f be a match for q1 and q2, and let 〈q1, q′1〉 ∈ R1

and 〈q2, q′2〉 ∈ R2. We say that a function f ′ : X2 → X1 ∪ {,⊥} is consistent with f
w.r.t 〈q1, q′1〉 and 〈q2, q′2〉 if f ′ is a match for q′1 and q′2, and

– If f(x2) ∈ X1 ∪ {⊥} and x2 /∈ S2(〈q2, q′2〉) and f(x2) /∈ S1(〈q1, q′1〉), then
f ′(x2) = f(x2). In particular, since ⊥ cannot be reset, if f(x2) = ⊥ and x2 /∈
S2(〈q2, q′2〉), then also f ′(x2) = ⊥. That is, if x2 �→ ⊥, then x2 must be reset
before it may be matched with a variable.

– If f(x2) = x1 for x1 ∈ X1 and x2 /∈ S2(〈q2, q′2〉) and x1 ∈ S1(〈q1, q′1〉) then
f ′(x2) = ⊥. That is, if x1 has been reset, then so must x2 before it appears again.

Let F be the set of functions from X2 to X1 ∪ {,⊥}. We say that H ⊆ (Q1 ×
Q2×F ) is a simulation from A1 to A2 if for every 〈q1, q2, f〉 ∈ H , the following holds.
Let 〈q1, q11〉, 〈q1, q21〉, . . . 〈q1, qk1 〉 be the transitions from q1. Then there exist transitions
〈q2, q12〉, 〈q2, q22〉, . . . 〈q2, qk2 〉 from q2 and functions f1, f2, . . . fk such that the follow-
ing simulation conditions hold.

1. f i is consistent with f w.r.t 〈q1, qi1〉 and 〈q2, qi2〉 for every 1 ≤ i ≤ k.
2. 〈q11 , q12 , f1〉, 〈q21 , q22 , f2〉, . . . 〈qk1 , qk2 , fk〉 ∈ H .
3. For every x2 ∈ X2, if f(x2) = , then there exists at most one 1 ≤ i ≤ k such

that x2 /∈ S2(〈q2, qi2〉) and f i(x2) 
= ⊥.

If there exists a function f0 that is a match for q01 and q02 such that 〈q01 , q02 , f0〉 ∈ H ,
then we say that A2 simulates A1, and denote A1 � A2.

Example 1. Consider the abstract systems A1 and A2 presented in Figure 3. It holds
thatA1 � A2 by a simulation relation {〈q0, p0, x �→ x1〉, 〈q1, p1, x �→ x2〉, 〈q2, p0, x �→
x2〉, 〈q3, p1, x �→ x1〉}. Notice that A2 uses not only fewer states, but also fewer vari-
ables.
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Fig. 3. The abstract systems A1 and A2

Computing a Simulation. We present an algorithm for computing a simulation re-
lation from A1 to A2. The algorithm starts with the set of tuples that can be locally
matched. Then, in every iteration, the tuples that violate one of the simulation condi-
tions are omitted. The algorithm terminates when a fixed point is reached.

Let H ⊆ Q1×Q2×F be a relation. Let 〈q1, q2, f〉 ∈ H , and let 〈q1, q11〉, 〈q1, q21〉, . . .
〈q1, qk1 〉 be the transitions from q1. We say that 〈q1, q2, f〉 is good w.r.t. H if there exist
transitions 〈q2, q12〉, 〈q2, q22〉, . . . 〈q2, qk2 〉 from q2 and functions f1, f2, . . . fk that meet
the simulation conditions w.r.t. H .

We define a sequence of relations H0, H1, . . . as follows. First, H0 is the set of all
tuples 〈q1, q2, f〉 such that q1 ∈ Q1, q2 ∈ Q2, and f is a match for q1, q2. Then, for
every i > 0, we define Hi = {〈q1, q2, f〉|〈q1, q2, f〉 is good w.r.t. Hi−1}. Notice that
H0 ⊇ H1 ⊇ H2 ⊇ . . ., and since H0 is finite, after finitely many i’s a fixed point H∗

is reached. Notice that H∗ is a simulation from A1 to A2. In fact, H∗ is a maximal
simulation from A1 to A2. Indeed, every simulation G satisfies G ⊆ H0, and it is easy
to show by induction that for every i, the relation G is contained in Hi.

The complexity of this algorithm is exponential in the number of variables. This is
not surprising, as there are pairs of abstract systems for which the size of a simulation
relation is exponential in the number of variables (recall that |F | = O(|X1||X2|)).

5 A Logical Characterization of Simulation

In this section, we show that VACTL� logically characterizes the simulation pre-order
for abstract systems. Formally, we prove the following.

Lemma 1. If A1 � A2, then for every ϕ ∈ VACTL�, if A2 � ϕ, then A1 � ϕ.

Lemma 1 follows from the following two properties. First, for an infinite domain
D, for every D-concretization A1 of A1 there exists a D-concretization A2 of A2, such
that A1 � A2 (by standard simulation). Second, standard simulation preserves VACTL�.
Lemma 1 then follows from the semantics of VACTL� w.r.t. abstract systems.

Secondly, we prove that if A1 � A2, then there exists a distinguishing VACTL for-
mula for A1 and A2: a formula that A2 satisfies, and A1 does not satisfy.

Theorem 1. If A1 � A2, then there exists ϕ ∈ VACTL, such that A2 � ϕ and A1 � ϕ.

The proof of Theorem 1 is constructive: ϕ is induced by the algorithm for com-
puting a simulation in Section 4. For every tuple 〈q1, q2, f〉 that is removed from Hi

for some i, we construct a semi-distinguishing formula, which, roughly speaking, is an
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open VACTL formula that distinguishes between q1 and q2 under the assumption that f
matches q1 with q2. As in the the standard setting, the distinguishing VACTL formula
uses only the AX operator, but also uses quantifiers over the variables that refer to
variable assignments.

Combining Lemma 1 and Theorem 1, we have the following.

Theorem 2. A1 � A2 iff for every ϕ ∈ VACTL�, it holds that if A2 � ϕ, then A1 � ϕ.

Thus, VACTL� offers a characterization of simulation of abstract systems, precisely
as ACTL� offers a characterization of simulation of Kripke structures.

Example 2. Consider the abstract systems A1 and A2 presented in Figure 4. The rela-
tion H0 is {〈q0, p0, x2 �→ x1〉,{〈q1, p1, x2 �→ x1〉, 〈q1, p1, x2 �→ ⊥〉,〈q1, p1, x2 �→ 〉,
〈q2, p2, x2 �→ x1〉}. When calculating H1, the tuple 〈q1, p1, x2 �→ ⊥〉 is removed
as it violates condition (2) of the simulation conditions. A semi-distinguishing for-
mula AXb.x2 for 〈q1, p1, x2 �→ ⊥〉 is calculated by the inconsistency of x2 �→ x1

in 〈q2, p2, x2 �→ x1〉 with x2 �→ ⊥. In H2, the tuple 〈q0, p0, x2 �→ x1〉 violates con-
dition (2), and a semi-distinguishing formula for it, which also distinguishes A1 from
A2, is ϕ = ∃x2; a.x2 ∧ AX( AXb.x2). Indeed, A2 |= ϕ, whereas A1 � ϕ.

Next, consider the abstract systems B1 and B2. The states q0 and p0 appear in H0

with the functions x2 �→ x1, x2 �→ x′
1, x2 �→ ⊥, x2 �→ . The function x2 �→ x1 can-

not match q2 with p2, and this contradiction ultimately creates the semi-distinguishing
formula ∃x2; AX(a.x2 ∨ AXb.x2) for 〈q0, p0, x2 �→ x1〉. Similarly, the functions
x2 �→ x′

1 and x2 �→ ⊥ contradict matching q1 with p1 and q2 with p2, respectively,
ultimately creating the semi-distinguishing formulas ∃x2; AX((∀x2¬a.x2)∨ a.x2) for
〈q0, q2, x2 �→ x′

1〉, and ∃x2; AX(a.x2 ∨ AXb.x2) for 〈q0, p0, x2 �→ ⊥〉.
Finally, the function x2 �→  succeeds in matching q1 and p1 by x2 �→ x1, and q2

and p2 by x2 �→ x′
1 or x2 �→ , but then condition (3) is violated. A semi-distinguishing

formula for 〈q0, p0, x2 �→ 〉 is ∃x2; AX(a.x2∨ AX(b.x2)∨(∀x2¬a.x2)∨∃x2; a.x2).
While B2 satisfies all these formulas, the abstract system B1 does not satisfy ∃x2;

AX(a.x2∨ AX(b.x2)).

6 A Game-Theoretic Approach to Simulation

We present a game-theoretic approach to simulation of abstract systems. As usual, the
game players are the prover P , who wishes to prove that A1 � A2, and the refuter R,
who wishes to prove that A1 � A2.

Recall that in the standard setting, in a game for systems A1 and A2, a game position
is a pair of states 〈q1, q2〉 where q1, q2 are states of A1 and A2, respectively, and R is in
location q1 and P is in location q2. A play continues along single paths in each system.

In abstract systems, the situation is a bit more complicated. First, in its every move,
P must choose both a state q2 and a function f that matches the variables of q1 and
q2. Therefore, the game positions are tuples of the form 〈q1, q2, f〉. For P to prove the
existence of simulation, f must be consistent w.r.t. the function it chose in its previous
move, and with the transitions both players took from the previous position. Second,
following a single path may not suffice for R to prove that there is no simulation. We
demonstrate these points below.
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Consider the systems A1 and A2 presented in Figure 4. It holds that A1 � A2,
since x1 is reset and can be assigned different values in q0 and q2, whereas x2 must be
assigned the same value in p0 and p2. Consider a possible play between P and R. The
refuter R must start at q0, and P must choose p0 and x2 �→ x1 to match q0 with p0.
Then, R continues to q1, and P must move to p1 and choose x2 �→ ⊥, since x1 is reset
along 〈q0, q1〉, and x2 is not reset along 〈p0, p1〉. Finally, R moves to q2, and P must
move to p2. To match q2 with p2, P must choose x2 �→ x1, but this is inconsistent with
the function x2 �→ ⊥ that P chose in its previous move, and R wins.

Next, consider the systems B1 and B2. It holds that B1 � B2, since x1 and x′
1 can be

assigned different values in B1, whereas both occurences of x2 in B2 must be equally
assigned. In the first round, P chooses a function f0 to match q0 with p0. Since the
labeling of p0, q0 is empty, f0 can match x2 with either x1, x

′
1,⊥ or . If f0(x2) = x1

(or f0(x2) = ⊥), then R can follow q0, q2, q3, forcing P to follow p0, p2, p3, and fail
finding a match for q3 and p3 that is consistent with x2 �→ x1 (or with x2 �→ ⊥).
Similarly, if f0(x2) = x′

1, then R follows q0, q1, and P must follow p0, p1, and fails to
match q1 and p1.

However, if f0(x2) = , then if R follows either q1 or q2, q3, then P can respond
with suitable functions x2 �→ x1 to match p1, or x2 �→ , x2 �→ x′

1 to match p2, p3
respectively. Thus, by following a single path, P may violate condition (3) of the sim-
ulation conditions, and (wrongly) win the game. We conclude that the game rules must
enforce condition (3). In this case, this means that P may not assign x2 non-⊥ values
along both q1 and q2.

To enforce condition (3), we allow R to continue to both q1 and q2 in the same move.
Then, to follow condition (3), P must choose x2 �→ ⊥ in either q1 or q2. Choosing
x2 �→ ⊥ in q1 causes P to fail in q1. If P chooses x2 �→ ⊥ in q2, then R can continue
from q2 to q3, again causing P to get stuck.

The same holds also for the systems C1 and C2. Consider the first round in a play and
the possible choices of P to match q0 with p0. The variable x2 must be matched with x1

when matching q1 with p1, and so P fails if it chooses x2 �→ ⊥. Also, since x1 is reset
in 〈q0, q1〉, and x2 is not reset in 〈p0, p1〉, then P fails if it chooses x2 �→ x1. Finally,
if P chooses x2 �→ , then R can split as in the case of B1 and B2, and cause P to get
stuck in either q1 or q3.

Fig. 4. The abstract systems A1 and A2, and B1 and B2, and C1 and C2
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Thus, as opposed to the classical setting, when there is no simulation, the inability to
locally match states is not enough to refute the existence of a simulation. Also, a single
path may not suffice to properly refute, and two paths are needed, as in the case of the
systems B1 and B2, and C1 and C2. Note that two paths suffice, since x2 may only be
assigned a non-⊥ value along one path, causing P to get stuck in the other, in case that
x2 appears in both paths without being reset.

Accordingly, we define the game such that R continues along a single path (mode
(a) in the game), but may, at any point, choose two states on two different paths split-
ting from its current location (mode (b) in the game). P then chooses matching states
and functions for both states. Then, R chooses along which of the two paths the play
continues from, and switches back to mode (a). P then responds accordingly.

We formally define the game. A play begins as follows.R starts from q01 , andP starts
from q02 and chooses some function f0 such that f0 is a match for q01 and q02 . Then, the
game continues in mode (a) according to the following rules.

Let the current position be 〈q1, q2, f〉. If the game is in mode (a),

1. R chooses a transition 〈q1, q′1〉 ∈ R1 and moves to q′1, or switches to mode (b),
2. If R hasn’t switched to mode (b), then P chooses a transition 〈q2, q′2〉 ∈ R2, and a

function f ′ that is consistent with f w.r.t. 〈q1, q′1〉 and 〈q2, q′2〉, and moves to q′2.

If the game is in mode (b),

1. R chooses two different transitions 〈q1, q′1〉, 〈q1, q′′1 〉 ∈ R1.
2. P chooses a transition 〈q2, q′2〉 and a function f ′ such that f ′ is consistent with f

w.r.t. 〈q1, q′1〉 and 〈q2, q′2〉, and dually a transition 〈q2, q′′2 〉 and a function f ′′ for
〈q1, q′′1 〉. Further, for every x2 ∈ X2 such that f(x2) = , either f ′(x2) = ⊥ or
f ′′(x2) = ⊥.

3. R chooses between the game positions 〈q′1, q′2, f ′〉 and 〈q′′1 , q′′2 , f ′′〉, and switches
to mode (a) from the chosen position.

Notice that a round does not exactly alternate between R and P ; from mode (a),
R can switch to mode (b) and continue to choose two transitions as described. Also,
after R chooses a single position at the last step of mode (b), it continues to choose a
transition in the first step in mode (a), as described.

If at some point P cannot continue according to the game rules, then R wins. Other-
wise, the play continues forever and P wins.

The simulation game indeed captures simulation of abstract systems: both players
have a winning strategy, according to the existence or lack thereof of a suitable simula-
tion from A1 to A2.

Theorem 3. P has a winning strategy in the simulation game for A1 and A2 iff A1 �
A2, and R has a winning strategy in the simulation game for A1 and A2 iff A1 � A2.

The winning strategy of P corresponds to a suitable simulation from A1 to A2,
whereas the winning strategy of R corresponds to a distinguishing VACTL formula for
A1 and A2. Despite the more complicated nature of the game, the winning strategies of
both players, just like in the standard setting, are memoryless.
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7 Discussion and Future Work

We have shown that the properties of standard simulation can be lifted to the setting of
abstract systems. In this section we describe further theoretical challenges of abstract
systems and simulation and their practical applications.

Consider a system S that describes the behavior of n processes. Typically, each pro-
cess is associated with a set of atomic propositions, parameterized with its id. For exam-
ple, it is common to see atomic propositions like try1, . . . , tryn and grant1, . . . , grantn.
Consider now the system S ′ obtained by uniting all “underlying” atomic propositions,
try and grant in our example, and parameterizing them by a variable that ranges over
the domain of processes ids. As another example, consider a system S in which mes-
sages from a list L = {l1, . . . , ln} of possible messages can be sent, and atomic propo-
sitions are parameterized by messages from L, say atomic propositions are send l1 , . . . ,
send ln and receive l1 , . . . , receive ln . Again, we can obtain a system S ′ that abstracts the
content of the messages and uses atomic propositions send and receive , parameterized
by variables that range over L. Note that the behavior of S with respect to the differ-
ent values of processes ids or messages may be different. thus S′ over-approximatesS.
Clearly, S ′ is also simpler than S.

It is straightforward to extend the definition of simulation to cases in which only the
simulating system is abstract, and to do it in such a way that S ′ simulates S. Essentially,
as noted above, S ′ includes all the behaviors with respect to all values of processes
ids or messages, and also abstracts their number. We can thus use S ′ not only for the
verification of S, but also, in case we abstract identical processes, for checking whether
the specification is sensitive to their number, and for generalizing the reasoning to an
arbitrary number of processes. We plan to formalize this method, namely define the
simulation relation, a refinement procedure, and the connection to other methods of
verification of parameterized systems.

The simulation pre-order defined here is the branching-time counterpart of trace con-
tainment, which is undecidable for abstract systems. In standard systems, the computa-
tional efficiency of the branching-time approach is carried over in the model-checking
problem for CTL. In [12,13] we studied the model-checking problem for VLTL and ab-
stract systems and pointed to useful fragments for which the complexity of the problem
is in PSPACE – as is LTL model checking. We plan to study the model-checking prob-
lem for VCTL and abstract systems, and check whether the advantage of the branching
approach is carried over also to this setting.
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