
An Automata-Theoretic Approach to Reasoning
about Parameterized Systems and Specifications

Orna Grumberg1, Orna Kupferman2, and Sarai Sheinvald2

1 Department of Computer Science, The Technion, Haifa 32000, Israel
2 School of Computer Science and Engineering, Hebrew University, Jerusalem 91904, Israel

Abstract. We introduce generalized register automata (GRAs) and study their
properties and applications in reasoning about systems and specifications over
infinite domains. We show that GRAs can capture both VLTL – a logic that ex-
tends LTL with variables over infinite domains, and abstract systems – finite state
systems whose atomic propositions are parameterized by variable over infinite
domains. VLTL and abstract systems naturally model and specify infinite-state
systems in which the source of infinity is the data domain (c.f., range of pro-
cesses id, context of messages). Thus, GRAs suggest an automata-theoretic ap-
proach for reasoning about such systems. We demonstrate the usefulness of the
approach by pushing forward the known border of decidability for the model-
checking problem in this setting. From a theoretical point of view, GRAs extend
register automata and are related to other formalisms for defining languages over
infinite alphabets.

1 Introduction

In model checking, we verify that a system has a desired behavior by checking that
a mathematical model of the system satisfies a formal specification of the behavior.
Traditionally, the system is modeled by a Kripke structure – a finite-state system whose
states are labeled by a finite set of atomic propositions. The specification is a temporal-
logic formula over the same set of atomic propositions [3].

When the system is defined over a large data domain or contains many components,
its size becomes large or even infinite, and model checking may become intractable.
Moreover, standard temporal logic may not be sufficiently expressive for specifying
properties of such systems.

In [7], we introduced a novel approach for model checking systems and specifica-
tions that suffer from the size problem described above. Our approach extended both
the specification formalism and the system model with atomic propositions that are
parameterized by variables ranging over some (possibly infinite) domain. We studied
the model-checking problem in this setting. While we showed that model checking
in the general case is undecidable, we have managed to find interesting fragments of
our systems and specification formalisms for which model checking is decidable. Our
methods were based on reducing the problem to standard LTL model checking. The
reduction was found helpful in some cases, but lacks a rigorous theoretical treatment.

D. Van Hung and M. Ogawa (Eds.): ATVA 2013, LNCS 8172, pp. 397–411, 2013.
c© Springer International Publishing Switzerland 2013

398 O. Grumberg, O. Kupferman, and S. Sheinvald

In particular, [7] left open the challenge of developing an automata-theoretic approach
for this setting.

In this paper we introduce generalized register automata (GRAs), a new formalism
for defining languages over infinite alphabets. GRAs can naturally model both the sys-
tems and specifications of [7]. We define GRAs, study their properties, and show how
they not only provide a unified theoretical basis to the results in [7], but also enable
strengthening and extending the results there.

We first elaborate on the setting in [7]. In an abstract system, our extension of
a Kripke structure, every state is labeled by a set of atomic propositions. Some of
the atomic propositions may be parameterized by variables that range over an un-
bounded or an infinite domain. The system also contains constraints on the possible
assignments to the variables, and may reset their value during its execution. The con-
crete computations of an abstract system are induced by paths of the abstract system
in which variables are assigned concrete values in a way consistent with the con-
straints and the resets along the path. For instance, if a path of the abstract system
starts with {send .x}, {rec.x}, {send .x}, and x is a variable over N that is reset be-
tween the second and third state, then a concrete computation induced by the path may
start with {send .3}, {rec.3}, {send.5}. Evidently, abstract systems are capable of de-
scribing communication protocols with unboundedly many processes, systems with in-
terleaved transactions each carrying a unique id, buffers of messages with an infinite
domain, and many more.

Our specification formalism, Variable LTL (VLTLs), also uses atomic proposi-
tions parameterized by variables. For example, the VLTL formula ∀x.G (send.x →
F receive.x) states that for every value d in the domain, whenever a message with con-
tent d is sent, then a message with content d is eventually received. As another example,
the formula ∃x.G F¬idle .x ∧ G F¬idle .x states that in each computation, there exists
at least one process that is both idle and not idle infinitely often. Note that if the do-
main of messages or process id’s is infinite or unknown in advance, then there exist no
equivalent LTL formulas for these VLTL formulas.

As described above, in [7] we solved the VLTL model-checking problem for some
fragments of the (undecidable) general setting. Our goal here is to suggest an automata-
theoretic approach to the problem, hopefully pushing the boundaries of decidable
fragments. In the automata-theoretic approach to model checking [15], we represent
systems and their specifications by automata on infinite words. Questions such as model
checking and satisfiability are then reduced to questions about automata and their lan-
guages. Traditional automata are too weak for modeling abstract systems or VLTL for-
mulas, and a formalism that can handle infinite alphabets is needed.

A classical formalism for defining languages with an infinite alphabet is that of reg-
ister automata [8,9]. A nondeterministic register automaton comprises a state machine
and a finite set of registers that may store values of the infinite domain. In a transition,
the register automaton either guesses some value and stores it in one of the registers (an
ε-transition), or advances on the input word if the content of register in the transition
matches the next input letter.

An Automata-Theoretic Approach to Reasoning about Parameterized Systems 399

Our formalism of GRA extends register automata in a way that enables easy mod-
eling of abstract systems and VLTL formulas.1 Essentially, this involves features that
mimic the conjunctions and disjunctions in the logic (that is, the transition function of
GRAs is alternating), features that mimic the existential and universal quantification of
variables (that is, GRAs have two types of ε-transitions, one – ε∃, which guesses and
assigns a single value to a register, and one – ε∀, which assigns all possible values to a
register by splitting the run, creating a different copy for every such value), features that
mimic the constraints on the variable values (by adding constraints on the content of the
registers), and features that make it possible to complement a given GRA by dualization
(by closing the components of a transition, namely the branching mode and guards, to
dualization).

We formally define GRAs and study their theoretical properties. We show that GRAs
are closed under the Boolean operations. Unsurprisingly, their universality and empti-
ness problems are generally undecidable, yet we point to the fragment in which the
GRAs have only a single register, for which nonemptiness is decidable.

We compare GRAs with the formalisms of register automata and data automata [9,2].
We show that GRAs are strictly more expressive than register automata. We describe a
translation from deterministic data automata to GRAs and show that there are languages
that are accepted by GRAs and not by (nondeterministic) data automata.

We describe a translation of abstract systems and VLTL formulas to GRAs. The
translation of a VLTL formula to an equivalent GRA resembles the translation of LTL
formulas to nondeterministic Büchi automata [15]. The quantifiers in the formula are
handled by a sequence of ε∃ (for ∃ quantifiers) and ε∀ transitions (for ∀ quantifiers).

In [7], we showed that model checking is undecidable already for VLTL formu-
las with two ∃ quantifiers, and is decidable for formulas with only ∀ quantifiers. The
translation to GRA enables us to complete the picture and show that for the safe frag-
ment of VLTL, model checking of formulas of type ∀x1; ∀x2; . . .∀xk; ∃xϕ is decid-
able. This is a useful fragment, as it captures specifications of the form “for every
environment, there exists a value that satisfies ϕ”. As an example, consider the for-
mula ∀x1; ∃x2;G ((¬idle.x1) → X (¬idle.x2)), with x1 �= x2. This formula states
that if there exists some non-idle process, then it will be immediately followed by a
different non-idle process, thus ensuring that there is an infinite sequence of non-idle
processes. Another example is the formula ∀x1; ∃x2;G (((¬req.x1) ∧ X req.x1) →
Xnew process.x2), stating that whenever a request with new content is sent, a new
process with a new process id is envoked. Dually, the satisfiability of formulas of the
type ∃x1; ∃x2; . . .∃xk; ∀xϕ is also decidable. For formulas of the type ∃x1; ∀x2;ϕ,
model checking is again undecidable.

Our upper-bound proofs rely on a reduction to the nonemptiness problem for multi-
counter machines. The model-checking complexity in these cases is then non-
elementary. Finding a lower bound has the same flavor as finding a lower bound for the
nonemptiness of data automata [2], which also uses multi-counter machines to show
the decidability of nonemptiness, and is a problem that is still open.

1 We study GRA on finite words. Extending the definition to infinite words is easy and the
technical difficulties are orthogonal to these that the setting of infinite alphabets involves. Thus,
the results here are restricted to the safe fragment of VLTL.

400 O. Grumberg, O. Kupferman, and S. Sheinvald

Related Work. There are quite a few different models and variants of automata over
infinite alphabets, differing in their expressive power and decidable properties. A major
motivation for such models origins from formal reasoning about XML [13].

Register automata were first introduced in [8]. These were extended in [9] to include
ε-transitions. In [6], we studied VFA, a sub-type of nondeterministic register automata
that can be represented by finite automata and has fragments that are closed under the
Boolean operations.

Several types of alternating register automata (ARA) have been studied, differing
in their expressive power. In [12], the state machine has universal and existential states.
The run on a universal state splits into all possible configurations that may follow the
current configuration. [12] also studies the two-way model. In [5], the automaton is
single-register, and is enriched with the actions guess (an ε-transition) and spread
(creating new threads of the run with all data values that appear with some state, starting
from another state). For this model, nonemptiness is decidable. In [4], the authors study
the relations between LTL with the freeze quantifier (an extension of LTL that is equiped
with a register) and single-register alternating register automata.

Another type of automata over infinite alphabets are data automata [2]. Data au-
tomata are defined over alphabets of the typeΣ×D, whereΣ is finite andD is infinite.
Intuitively, Σ is accessed directly, while D can only be tested for equality, and is used
for inducing an equivalence relation on the set of positions. Technically, a data automa-
ton consists of two components. The first is a letter-to-letter transducer that runs on the
projection of the input word on Σ and generates words over yet another alphabet Γ .
The second is a finite automaton that runs on subwords (determined by the equivalence
classes) of the word over Γ generated by the transducer. Data automata turn out to be a
very expressive model for which nonemptiness is decidable (albeit non-elementary).
[10] and [17] study weaker versions of data automata, for which nonemptiness is
elementary.

Data automata too have several extensions. Such an extension is class automata [1],
which were defined for the purpose of studying of XPath. A class automaton behaves
almost similarly to a data automaton, but the automaton component processes the entire
word that is produced by the transducer (as opposed to processing a subword of it), and
it takes special transitions when it reads letters of the class it handles. This modifica-
tion makes nonemptiness undecidable for this type. Other models limit the structure of
the automaton component of class automata [16], or add counters to the different data
values [11] to achieve decidable emptiness.

A third type are pebble automata and their variants. A pebble automaton [12] places
pebbles on the input word in a stack-like manner. The transitions of a pebble automaton
compare the letter in the input with the letters in positions marked by the pebbles.
Several variants of this model have been studied. For example, [12] studies alternating
and two-way pebble automata, and [14] introduces top-view weak pebble automata.

These formalisms are insufficient for our purposes of studying of VLTL and abstract
systems – both in terms of expressive power, and in terms of easiness of translation.
Our formalism of GRA is designed specifically to deal with this setting, and offers a
clean and natural translation and suitable decidable fragments.

An Automata-Theoretic Approach to Reasoning about Parameterized Systems 401

2 Preliminaries

Automata on Data Words. Data words are words over an infinite alphabet Σ × D,
where Σ is a finite set to which we refer to as labels, and D is an infinite set to which
we refer to as data.

A nondeterministic register automaton on data words (NRA) A comprises an al-
phabet Σ × D, a set r = {r1, r2, . . . rk} of registers that can contain a value of D
each, an initial register assignment r# ∈ (D ∪ {#})k where # /∈ D, a set of states
Q, an initial state q0 ∈ Q, a set of accepting states F ⊆ Q, and a transition relation
δ ⊆ Q× (Σ ∪ {ε})× [k]×Q, where [k] = {1, 2, . . . , k}.

A run on an input word w overΣ×D begins at state q0, and ri is assigned r#(i) for
1 ≤ i ≤ k. Intuitively, when A is in state q and the next input letter is 〈a, d〉, if it takes
a transition labeled 〈ε, i〉, then it nondeterministically stores some value in register ri
that is different from the contents of the rest of the registers, and does not advance on
the input word. A transition labeled 〈a, i〉 may be taken if the content of the register ri
is d, in which case A also advances to the next input letter.

The word w is accepted by A if there exists a run on w that advances along all of
w and reaches an accepting state. The language of A, denoted L(A), is the set of all
words accepted by A.

Data automata [2] are another formalism that handles data words. A data automaton
C is a tuple 〈Σ × D,Γ,A,B〉, where A is a letter-to-letter transducer whose input
alphabet is Σ and output alphabet is Γ , and B is an NFA over Γ .

To explain the way a data automaton operates, we begin with some terms and nota-
tions. Consider a word w = 〈a1, d1〉〈a2, d2〉 . . . 〈an, dn〉 over Σ ×D. The string pro-
jection of w is the word a1a2 . . . an. A class in w is a maximal set of indices for which
the letters in w in these indices share the same data value. For example, in the data word
〈a, 1〉〈b, 1〉〈b, 2〉〈c, 1〉〈a, 2〉, there are two different classes: {1, 2, 4} and {3, 5}. Every
class induces a class word, a word overΣ that is formed by concatenating the labels of
the matching letters of the class in the order in which they appear in w. In the example,
the two class words are abc and ba.

Consider a word w = 〈a1, d1〉〈a2, d2〉 . . . 〈an, dn〉 over Σ × D. A run of C on w
consists of two parts. First, the transducer A runs on the string projection of w and
outputs a word γ1γ2 . . . γn over Γ . If it rejects then the run is rejecting. Otherwise, the
automaton B runs on every class word of 〈γ1, d1〉〈γ2, d2〉 . . . 〈γn, dn〉. If B accepts all
the class words then the run is accepting, otherwise it is rejecting.

The class of data automata contains the class of register automata, and the emptiness
problem for data automata is decidable. However, data automata are not closed under
complementation [2].

Abstract Systems and VLTL. In [7], we introduced variable LTL (VLTL) and abstract
systems. For both, the standard formalism of Kripke structures and LTL formulas is
extended with a set of variables that enables the computations of the Kripke structure to
carry values over some infinite domain D, and the formulas to express properties with
respect to these values. More specifically, the standard finite set of atomic propositions
AP over which both the systems and the formulas are defined is extended by a finite

402 O. Grumberg, O. Kupferman, and S. Sheinvald

set of parameterized atomic propositions T . The propositions of T are parameterized
by variables from a finite set X . These variables are assigned values from D.

An abstract system S is a finite Kripke structure over AP ∪ (T × X). In every
transition of S, a subset X ′ of X may be reset, meaning that the varibles of X ′ may
change their value in the next step. The system S also includes an inequality set E
over X . Having xi �= xj ∈ E means that in every point of the computation, the value
assigned to xi must be different from the value that is assigned to xj . It holds that for
every system S there exists an equivalent system S′ over the same set of variables such
that the inequality set S′ is the full inequality set {xi �= xj |xi, xj ∈ X}. A computation
π of S is then an infinite word over 2AP∪(T×D), induced by some infinite path w (over
2AP∪(T×X)) of S. The D values in πi are obtained by the assignment to the variables
in wi. These values comply both with E and with the resets that w traverses – the value
of a variable does not change as long as it has not been reset.

A VLTL formula is a pair 〈ϕ,E〉, where ϕ = Q1x1;Q2x2; . . . Qkxk;ψ, whereQi ∈
{∀, ∃} and xi is a variable in X for every 1 ≤ i ≤ k, where ψ is an LTL formula over
AP ∪ (T ×X), and E is an inequality set over the variables. The semantics of VLTL
is with respect to computations over 2AP∪(T×D) and assignments to the variables of
ϕ. Intuitively, a computation π satisfies a formula ∃x;ψ (denoted π |= ∃x;ψ) if there
exists some value d that may (w.r.t. E) be assigned to x such that π |= ψ[x← d] in the
LTL sense. Similarly, π satisfies ∀x;ψ if for every value d that may be assigned to x, it
holds that π |= ψ[x← d]. For the formal definition, see [7].

We say that a system S satisfies a VLTL formula 〈ϕ,E〉 (denoted S |= 〈ϕ,E〉), if
every computation of S satisfies 〈ϕ,E〉. The model-checking problem for VLTL and
abstract systems is then to decide, given S and 〈ϕ,E〉, whether S |= 〈ϕ,E〉. In [7],
we showed that this problem is generally undecidable, already for formulas of the type
∃x1; ∃x2;ψ, where ψ is quantifier free. We showed, however, that model checking is
decidable when there are no resets in the system. Further, model checking is decidable
also in the case where the VLTL formula contains only ∀ quantifiers.

3 Generalized Register Automata

We present a generalization of register automata, called generalized register automata
(GRA), that allows alternation and dualization of the conditions on the transition. The
following details are generalized.

– Recall that in an 〈ε, i〉 transition, if the automaton stores some value in register ri,
then it must be different from the values in all other registers. We generalize this
idea by labeling every ε-transition by a Boolean formula over inequalities between
the registers (to which we also refer as a guard). For the run to continue along an ε
transition, the register assignment must satisfy the guard condition.

– Recall that in an 〈ε, i〉 transition, the automaton nondeterministically stores some
value in register ri. We can view this as follows: The run is accepting if there
exists some value that is stored in ri, such that the rest of the run is accepting. We
generalize this notion by defining two types of ε-transitions: in an 〈ε∃, i〉-transition,
the run is accepting if there exists some legal (w.r.t. the guard condition) value that

An Automata-Theoretic Approach to Reasoning about Parameterized Systems 403

is stored in ri, such that the rest of the run is accepting. in an 〈ε∀, i〉 transition, the
run is accepting if for every value that is stored in ri, the rest of the run is accepting.

– In the definition of register automaton, the state machine component is nondeter-
ministic. We generalize this by allowing the state machine to be alternating.

Formally, a generalized register automaton (GRA) is a tuple

〈Σ ×D,#, r, r#, Q, q0, δ, F 〉,
where

– Σ ×D is the input alphabet, where Σ is finite and D is infinite,
– r = {r(1), r(2), . . . r(k)} is a finite set of registers,
– # /∈ Σ marks an empty register,
– r# ∈ (Σ ∪ {#})k is the initial register assignment,
– Q is a finite set of states,
– q0 is the initial state,
– F ⊆ Q is a set of accepting states, and
– δ ⊆ (Q×Σ×B+(Q× [k]))∪(Q×{ε∃, ε∀}×B+(Q×G(r)× [k])) whereG(r) is

the set of guards over inequalities over {r(1), r(2), . . . , r(k)}, and B+ stands for
the set of positive Boolean formulas 2.

We describe a run of a GRA on an input word w. Since GRAs are alternating, a run
on w is a tree. Each node of the tree holds the following information: the current state,
the current register configuration, and the current position in the input word. The root
of the tree is labeled 〈q0, r#, 1〉.

The sons of a node x labeled 〈q, 〈d(1) . . . d(k)〉, i〉 are determined by the type of
transition that is taken from x: an ε-transition (an ε∃-transition or ε∀-transition), or a
transition that advances on the input word. We describe how the run continues from x
for each of these transitions.

In the case of an ε∃ transition, suppose that 〈q1, g1, k1〉, 〈q2, g2, k2〉, . . . 〈qp, gp, kp〉
is a satisfying set for δ(q, ε∃). Then from x, the run can continue by splitting into the
son nodes x1, x2, . . . xp. These sons are all located in position i in w (that is, they do
not advance on the input word). A branch that leads from x to a son xj assigns a value
to register kj in a way that agrees with gj , and moves to state qj . Therefore, xj is
labeled 〈qj , 〈dj(1), dj(2) . . . dj(k)〉, i〉, where 〈dj(1), dj(2) . . . dj(k)〉 satisfies gj , and
may differ from 〈d(1) . . . d(k)〉 only in the register kj .

In the case of an ε∀ transition, again suppose that 〈q1, g1, k1〉, . . . 〈qp, gp, kp〉 is a sat-
isfying set for δ(q, ε∀). Then from x, the run continues by splitting into infinitely many
son nodes, all located in position i on w. For every 〈qj , gj, kj〉, the run branches over
all values that can be stored in register kj and satisfy gj . Thus, for every 〈qj , gj, kj〉, for
every value d that can be stored in register kj in a way that satisfies gj , the node x has a
son labeled qj , in position i, whose register assignment is identical to that of x, except
for register kj , which stores the value d.

2 The full definition of GRA also includes the classification of the transitions to “may” and
“must” transitions, which allows easy dualization and complementation. For simplicity, and
since we do not use these features in our results, we omit them from the definition.

404 O. Grumberg, O. Kupferman, and S. Sheinvald

Finally, for a transition that advances on the input word, suppose that 〈q1, k1〉, . . .
〈qp, kp〉 is a satisfying set for δ(q, σ), and that wi = 〈a, d〉. Then from x, the run can
continue by splitting into the son nodes x1, x2, . . . xp. These sons are all located in
position i+1 in w (that is, they advance one letter on the input word), and their register
configuration is identical to the register configuration of x. A branch that leads from x
to a son xj must hold the value d in its register kj .

In the representation of δ, the registers to be read or written to are paired with the
state the transition leads to. This is essential for alternation. However, to make δ more
convenient to read, for the rest of the paper we represent it similarly to the transition
of NRA whenever possible. Also, in most cases we discuss the guards are uniform
throughout the GRA, and so we omit the guards from the representation, noting them
elsewhere. For example, we represent a transition 〈q, ε∃, 〈s, r1 �= r2, 1〉 ∨ 〈t, r1 �=
r2, 2〉〉, as two transitions from q; one labeled 〈ε∃, 1〉 leading to s, and one labeled
〈ε∃, 2〉 leading to t. Similarly, we represent a transition 〈q, a, 〈s, 1〉〉 as a transition from
q labeled 〈a, 1〉, leading to s.

Example 1. Figure 1 displays the three types of transitions. In (a), an ε∃ transition
is followed from q with a satisfying set 〈s, 2〉, 〈t, 2〉, and 〈t, 3〉 (we omit the guard
conditions, that state that the assignment to all registers must be different). The tree
branches accordingly: the leftmost and middle sons are in states s and t, respectively,
reassigning the second register (the middle son reassigns it with the same value it held
before), and the rightmost son is in state t and reassigns the third register.

In (b), an ε∀ transition is followed from q with a satisfying set 〈s, 2〉, and again we
omit the guard condition. Then the run branches into all possible assignments to the
second register, in each path moving to state s.

In (c), the input letter 〈a, 4〉 is read on a transition from q with a satisfying set 〈s, 1〉
and 〈t, 2〉. Then the run splits to two son nodes s and t, where the path to s reads the
value 4 from the first register, and the path to t reads 4 from the second register.

For convenience, we label the edges by the transitions, represented as a transition for
NRA, as we have explained above.

Fig. 1. The three types of transitions (a), (b) and (c)

An Automata-Theoretic Approach to Reasoning about Parameterized Systems 405

The run tree is accepting if the leaves of all paths of the tree that have read all of w
are in an accepting state. Notice that the ε-transitions may result in infinite paths that do
not advance on the word. Since the definition of acceptance only considers the leaves,
these paths are ignored when deciding acceptance. A word w is accepted by a GRA A
if A has an accepting run tree on w 3.

Example 2. Consider the GRAA seen in Figure 2. In every transition ofA, the guard is
r1 �= r2, and we omit this detail from Figure 2 for the easiness of reading. The language
ofA is the set of all nonempty words over {a} ×D in which no data value is repeated.
Every run of A first splits over all values stored in r1. Then, in every copy, as long as
the next input value is different from r1, the run continues by storing and reading the
next value in r2. The value in r1 may only be read once and then cannot be read again
from state s. Notice that all copies that do not have a value of the input word in their r1
stay and accept from state r. Figure 2 also includes an accepting run tree on the word
〈a, 3〉〈a, 4〉.

Fig. 2. The GRA A and an accepting run on the word 〈a, 3〉〈a, 4〉

Since GRAs are a generalization of nondeterministic register automata, we have that
every NRA has an equivalent GRA.

Given two GRAs A and B with sets of registers rA and rB , respectively, we can
easily construct GRAsA∪B andA∩B for the languagesL(A)∪L(B) andL(A)∩L(B),
respectively, as follows. For both constructions, the set r of registers is a concatenation
of rA and rB, and the state machine is the union of the state machines ofA and B, with
the addition of a single new initial state q0. The transition for q0 in A∪B and in A∩B
is defined δ(q0) = δA(qA0)∨δB(qB0) and δ(q0) = δA(qA0)∧δB(qB0), respectively, where

3 We could define Büchi acceptance conditions for infinite words as well in the standard way,
in which a run tree is accepting if all of its paths that infinitely often advance on the input
word, infinitely often traverse some accepting state. As we have mentioned, in this paper we
concentrate on finite words.

406 O. Grumberg, O. Kupferman, and S. Sheinvald

qA0 and δA are the initial state and transition function ofA, and similarly for qB0 and δB.
That is, the construction for the union and intersection is the standard construction for
alternating automata, and the set of registers is obtained by simply concatenating the
sets of registers for both automata.

We can reduce PCP (Post’s correspondence problem) to both the universality prob-
lem and the nonemptiness problem for GRA, and so they are both undecidable. How-
ever, given a word w and a GRA A, it is decidable whether A accepts w. To see why,
notice that the precise identity of the data values that do not appear in w and are as-
signed to the registers during a run does not matter. What matters are only the equality
relations between them. Then, we can show that a run tree of A on w can be simulated
by using a bounded number of values (that depends on the the number of different val-
ues in w and the number of registers in A), without using ε∀-transitions. Further, we
can also bound the number of consecutive ε-transitions in every path, and so it suffices
to check trees of bounded width and bounded length to decide whether w ∈ L(A).

Finally, we can show that for the single-register fragment of GRA, the nonemptiness
problem is decidable. The next theorem sums up the closure and decidability properties
of GRA.

Theorem 1. 1. GRAs are closed under union and intersection.
2. The membership problem for GRAs is decidable.
3. The nonemptiness and universality problems for GRAs are undecidable.
4. The nonemptiness problem for GRAs with a single register is decidable.

We now proceed to compare data automata to GRA. A deterministic data automaton
C can be translated to an equivalent GRA with two registers r1, r2 as follows. Using
an ε∀-transition on r1, the GRA splits into infinitely many copies. Each copy checks a
different class of the input word, where the class is determined by its content of r1, and
simulates a simultaneous run on both the transducer and the automaton components of
C; upon reading a letter, if the data is not the class it needs to check, then the copy only
advances on the transducer (using r2 to guess and advance on this data). If the data is
the content of r1, then the copy advances along both the transducer and the automaton.
The copy accepts if both the transducer and the automaton reach an accepting state.

In [2], the authors point to a language that cannot be accepted by a data automaton.
This language can be accepted by a GRA with three counters. Roughly speaking, a GRA
can accept languages of words of the form w#w, and data automata cannot. Therefore,
data automata are not stronger than GRA. We leave the precise comparison with data
automata open.

Theorem 2. 1. Every deterministic data automaton has an equivalent GRA.
2. Data automata are not more expressive than GRA.

4 From VLTL and Abstract Systems to GRA

In this section, we show how to translate VLTL formulas and abstract systems to GRAs.
Then, we use these constructions to find fragments of VLTL for which the satisfiability
and model checking problems are decidable.

An Automata-Theoretic Approach to Reasoning about Parameterized Systems 407

Since GRAs are capable of expressing a single value in every letter, we cannot di-
rectly express computations in which more than one value appears at a time, and we
first concentrate on a restricted type of computations that include a single value in ev-
ery state. Then, we show how to encode unrestricted computations with restricted ones.

A computation π over 2AP∪(T×D) is called restricted if πi contains at most one data
value for every i.

Let S be an abstract system with k variables and the full inequality set, in which
every state contains at most one variable. It is easy to see that this is a sufficient and
necessary condition for S to have only restricted computations. An equivalent GRA
AS is obtained from the structure of S by using k registers, where register ri holds
the data value assigned to the variable xi. Resets are translated to ε∃ transitions, and
the inequality set is reflected in the guard conditions. All states of AS are accepting.
Clearly, L(A) is exactly the set of all concrete computations of S.

Given a VLTL formula 〈ϕ = Q1x1;Q2x2; . . . Qkxk;ψ,E〉, where Qi ∈ {∃, ∀}
for every i, where E is an inequality set over the set of variables and where ψ is an
LTL formula over AP ∪ (T ×X), we construct a GRA Aϕ with k + 1 registers over
2(AP∪T) ×D, whose language is exactly the set of restricted computations that satisfy
ϕ. A letter 〈s, d〉 represents a set of atomic propositions s ∈ 2AP∪T , such that the
parameterized atomic propositions in s all carry the same value d.

For simplicity, we assume that E states that the value of all variables must be differ-
ent. A generalE can then be handled by the guards in the transitions, requiring that if a
set of variables appears in a transition, then they all must carry the same value.

Intuitively, the construction ofAϕ relies on the Vardi-Wolper construction for ψ. The
variables are handled by a set of k + 1 registers, and the quantifiers are translated to an
ε∃-transition for an ∃ quantifier, and to an ε∀-transition for a ∀ quantifier.

Thus, the run begins by following a sequence of states and transitions matching the
sequence of quantifiers in ϕ; for every 1 ≤ i ≤ k, an occurence of ∃xi is translated
to an 〈ε∃, i〉-transition, and an occurence of ∀xi is translated to an 〈ε∀, i〉-transition.
The inequality set is reflected in the transitions within this sequence, that makes sure
that the values stored in registers r1 through rk satisfy E. Since we assume that E is
the full inequality set, this means that in every copy, every register contains a different
value from the other registers. Once the values are stored, in every copy of the run, the
registers r1 through rk are fixed, while register rk+1 handles values in the computation
that do not appear in any of the registers.

The NRA component ofAϕ then behaves as the automaton for ψ with the following
changes.

– Every state may change the value of rk+1 to some value different from the values
in the rest of the registers, by following self loops labeled 〈ε∃, k + 1〉.

– Recall that we allow only a single value to appear in every step. However, in the
Vardi-Wolper construction the labeling is over 2AP∪(T×X). We therefore restrict
the labels to those that contain a single variable of X .
Now, consider a transition labeled by a set that contains no variables at all (that is,
its set of atomic propositions is A ⊆ AP). This means that a.x is set to false for
every a ∈ T and x ∈ X . This can hold if either a does not hold in this step for any
value, or if a holds with a value that is different from the values that are assigned

408 O. Grumberg, O. Kupferman, and S. Sheinvald

to the variables in X . The register rk+1 may hold this value. Therefore, for every
B ⊆ T , we add to this transition the label 〈A ∪B, k + 1〉.

The following theorem summarizes this discussion.

Theorem 3. 1. For every abstract system S with restricted computations there exists
a GRA AS such that L(AS) is the set of computations of S.

2. For every VLTL formula ϕ there exists a GRA Aϕ such that L(Aϕ) is the set of
restricted computations that satisfy ϕ.

We handle unrestricted computations by encoding the content of a single state by
a sequence of letters, each carrying a single value. The alphabet is 2AP ∪ (T × D)4.
Intuitively, a letter of type 〈t, d〉 represents t.d appearing in the state, and a letter in
2AP represents the set of unparameterized atomic propositions in the state. A sequence
that matches a state first lists the unparameterized atomic propositions, and then lists
the parameterized atomic propositions, one by one. Thus, when translating an abstract
system or a VLTL formula overX = {x1, x2, . . . xk} to a GRA, each label is translated
to a sequence of labels in 2AP ∪ (T × [k]) (or 2AP ∪ (T × [k+1]) for a VLTL formula).

For model checking purposes, we make sure that: (a) both the system GRA and the
VLTL GRA have a uniform representation of each label, which is done listing the con-
tent of each state according to some predefined order < on T , and (b) the VLTL GRA
is reverse-deterministic (a property that is essential for the decidability of the construc-
tion in Theorem 6 below). This is achieved by changing the alphabet of the VLTL GRA
to 2AP∪(T×X) × 2AP ∪ T × [k + 1], where a letter in 2AP∪(T×X), representing the
original label, follows every sequence. When applying the construction in the proof of
Theorem 6, we may ignore the letters in 2AP∪(T×X) for the purposes of the intersection
with the abstract system, but consider them for the transition relation.

Example 3. Let s = {a.x1, b.x1, c.x2, d} be a state in an abstract system, or a labeling
of a transition in the Vardi-Wolper construction for some LTL formula over a set of
atomic propositions. Then for the order a < b < c, for the case of the abstract system
the translation of s to a GRA leads to the sequence of transitions {d}〈a, 1〉〈b, 1〉〈c, 2〉.
In the case of a VLTL formula, this sequence is followed by the letter {a.x1, b.x1, c.x2}.

We now turn to use the translation of VLTL and abstract systems to GRAs in order
identify a new fragment of VLTL for which model checking is decidable. For this, we
turn to study a type of GRAs that is relevant for the translation. We define this type of
GRA, and show that for GRAs that are a translation of VLTL formulas, nonemptiness is
decidable. Further, we prove that this type is also decidable when considering an unary
alphabet.

Consider a GRAA = 〈Σ×D,#, 〈r1, r2, r3, . . . rk〉, 〈#,#, . . .#〉, Q, q0, δ, F 〉with
the following attributes:

– The guard condition is always the full inequality set.

4 We present the alphabet this way to emphasize that the value attached to the letter in 2AP does
not matter.

An Automata-Theoretic Approach to Reasoning about Parameterized Systems 409

– From q0 exits a sequence of states S that assign values to r3, r4, . . . rk with ε∃
transitions, followed by a state sk from which there is an ε∀ transition that splits
over all allowed values in r1.

– From sk, the GRAA behaves as an NRA without returning to the states of S, sk or
q0.

– The content of the registers r1 and r3 . . . rk does not change after the initial assign-
ment,

– Every state of the NRA component has a self loop labeled 〈ε∃, 2〉. So in each step
of a run, r2 may change its content.

We denote GRAs of this type single-split GRAs. Recall that both the translation of a
deterministic data automaton to a GRA and the GRA of Example 2 yield a single-split
GRA with two registers, that is, the ε∀ transition is taken from the intial state, and from
there on the different copies continue their runs as runs of NRA. Moreover, notice that
for VLTL formulas of the type ∃x1; ∃x2; . . .∃xk; ∀x;ϕ with a full inequality set, their
translation to GRA also yields a single-split GRA with k + 2 registers.

Theorem 4. The nonemptiness problem for single-split GRAs is undecidable.

Nevertheless, there are sub-types of single-split GRAs for which nonemptiness is
decidable. The first type are two-register single-split GRAs over an unary alphabet, that
is, when |Σ| = 1 .

A second type are reverse-deterministic single-split GRAs. An automaton is reverse-
deterministic if by reversing its transitions we get a determinisic automaton. A single-
split GRA is reverse-deterministic if its NRA component is reverse-deterministic with
respect to the labeling of its edges (neglecting 〈ε∃, 2〉-transitions, that are in self-loops).

A third type of GRAs whose nonemptiness is decidable are GRAs for the intersection
of a reverse-deterministic single-split GRA with an NRA.

For both reverse-deterministic single-split GRAs and for their intersection with
NRAs, their decidable nonemptiness is essential for our purpose of studying decision
problems for VLTL and abstract systems.

Theorem 5. The nonemptiness problems for single-split GRAs over an unary alphabet,
for reverse-deterministic single-split GRAs, and for the interesection of an NRA and a
reverse-deterministic single-split GRA are decidable.

Proof: (sketch) For all these types of GRA, we reduce their nonemptiness problem
to the nonemptiness problem for multi-counter machines, for which nonemptiness is
known to be decidable. Multi-counter machines comprise a state machine and a set
of counters. Upon reading a letter, the machine advances on the state machine and
increments or decrements some counter. The machine cannot perform zero-checks on
the counter, and the run is stuck when it attempts to decrement a counter whose value
is zero.

Given a GRAA of one of these types, the state machine of the multi-counter machine
M simulates simultaneous runs on all copies of A after the ε∀ split. Every state keeps
the set of states of A in which the various copies are located, and each such state q is
paired with a counter that keeps the number of copies that are currently in q. The runs

410 O. Grumberg, O. Kupferman, and S. Sheinvald

that do not handle a value that is included in the input word all behave similarly, and
therefore it suffices to keep a single copy for all of them. Therefore, it suffices to track
a finite number of copies. The counters are updated according to the transition relation
of A. The run accepts iff all nonempty counters are paired with accepting states.

The challenge in these constructions is to correctly update the counters. In general,
since multi-counter machines do not allow zero checks on the counters, it is impossible
to unite the content of two counters if the value they hold is unknown. Therefore, if in
some transition of the GRA, two different states q and q′ may move to the same state
state s, updating the counters is impossible. However, we can show that for these three
types of GRA, updating the counters is possible.

A single-split GRA over an unary alphabet can be reconstructed in such a way that
in every step, the content of two counters is united only if the value of one of them is
1. In case of a reverse-deterministic GRA, no two counters have to be unified during
the run.

For the intersection of a reverse-deterministic single-split GRA with an NRA, the
challenge in the construction is to ensure that the progress of the single-split GRA
agrees with the register assignment in the NRA. To achieve this, some of the states in
the single-split GRA are paired with registers of the NRA. When a state q is paired
with ri, this means that one of the copies that is currently in q in the single-split GRA
handles the value that is assigned to register ri in the NRA. When the NRA reassigns
a register ri, a new state may be paired with ri. Thus, the run progresses legally along
both automata.

Consider a VLTL formula ψ = 〈α,E〉 where α = ∃x1; ∃x2; . . . ∃xk; ∀x;ϕ, and E
is the full inequality set. Recall from Theorem 3 that ψ can be translated to a single-
split GRAAψ. Since the Vardi-Wolper construction forϕ yields a reverse-deterministic
automaton, we have that Aψ is a reverse-deterministic single-split GRA. We can check
the satisfiability of ψ for finite computations by checking the nonemptiness of Aψ.
According to Theorem 5, this is decidable.

Similarly, recall from Theorem 3 that an abstract system with restricted computa-
tions can be translated to an NRA. Given a system and a VLTL formula, we can then
decide the model checking problem by checking the nonemptiness of the intersection
of the two matching GRAs – for the system, and for the negation of the formula. Con-
sider a VLTL formula ψ′ = 〈β,E〉 where β = ∀x1; ∀x2; . . .∀xk; ∃x;ϕ and E is the
full inequality set. Then the negation of β is ∃x1; ∃x2; . . . ∃xk; ∀x;¬ϕ, again yield-
ing a reverse-deterministic single-split GRA A¬ψ′ for ¬ψ′. According to Theorem 5,
it is decidable whether the intersection of A¬ψ′ with an NRA representing the system
is nonempty, proving the decidability of the model-checking problem for this type of
VLTL formulas. Therefore, we have the following.

Theorem 6. Let ψ = 〈α,E〉, where α = ∃x1; ∃x2; . . . ∃xk; ∀x;ϕ, for a safety formula
ϕ, and where E is the full inequality set.

1. It is decidable whether ψ is satisfiable.
2. Let S be an abstract system with restricted computations. It is decidable whether S

satisfies ¬ψ.

An Automata-Theoretic Approach to Reasoning about Parameterized Systems 411

5 Discussion
GRAs offer an automata-theoretic approach to VLTL. By reasoning about GRAs, we
can work towards closing the gap between the decidable and undecidable fragments
and provide a full classification of the model-checking problem for VLTL. Indeed, the
proof of undecidability of model checking of VLTL formulas with two ∃ quantifiers [7]
can be altered to show the undecidability of satisfiability of VLTL formulas with two ∀
quantifiers, of satisfiability of VLTL formulas with a ∀ followed by an ∃ quantifier, and
of model checking of VLTL formulas with an ∃ followed by a ∀ quantifier. Thus, the
fragments considered in Theorem 6 complete the picture for the case of safety VLTL
formulas. Here, we proved them to be decidable for the safe fragment of LTL. We are
optimistic about an extension of our results here to the setting of infinite words and
computations, which would lead to further decidable fragments. Finally, GRAs could
also provide a framework for studying other formalisms that deal with infinite alphabets,
such as XML and its related languages.

References

1. Bojanczyk, M., Lasota, S.: An extension of data automata that captures xpath. Logical Meth-
ods in Computer Science 8(1) (2012)

2. Bojanczyk, M., Muscholl, A., Schwentick, T., Segoufin, L., David, C.: Two-variable logic on
words with data. In: LICS, pp. 7–16. IEEE Computer Society (2006)

3. Clarke, E.M., Grumberg, O., Peled, D.: Model Checking. MIT Press (1999)
4. Demri, S., Lazic, R.: LTL with the freeze quantifier and register automata. ACM Trans.

Comput. Log. 10(3) (2009)
5. Figueira, D.: Alternating register automata on finite words and trees. LMCS 8(1) (2012)
6. Grumberg, O., Kupferman, O., Sheinvald, S.: Variable automata over infinite alphabets. In:

Dediu, A.-H., Fernau, H., Martı́n-Vide, C. (eds.) LATA 2010. LNCS, vol. 6031, pp. 561–572.
Springer, Heidelberg (2010)

7. Grumberg, O., Kupferman, O., Sheinvald, S.: Model checking systems and specifications
with parameterized atomic propositions. In: Chakraborty, S., Mukund, M. (eds.) ATVA 2012.
LNCS, vol. 7561, pp. 122–136. Springer, Heidelberg (2012)

8. Kaminski, M., Francez, N.: Finite-memory automata. TCS 134(2), 329–363 (1994)
9. Kaminski, M., Zeitlin, D.: Finite-memory automata with non-deterministic reassignment.

Int. J. Found. Comput. Sci. 21(5), 741–760 (2010)
10. Kara, A., Schwentick, T., Tan, T.: Feasible automata for two-variable logic with successor

on data words. In: Dediu, A.-H., Martı́n-Vide, C. (eds.) LATA 2012. LNCS, vol. 7183, pp.
351–362. Springer, Heidelberg (2012)

11. Manuel, A., Ramanujam, R.: Class counting automata on datawords. Int. J. Found. Comput.
Sci. 22(4), 863–882 (2011)

12. Neven, F., Schwentick, T., Vianu, V.: Towards regular languages over infinite alphabets. In:
Sgall, J., Pultr, A., Kolman, P. (eds.) MFCS 2001. LNCS, vol. 2136, pp. 560–572. Springer,
Heidelberg (2001)

13. Segoufin, L.: Automata and logics for words and trees over an infinite alphabet. In: Ésik, Z.
(ed.) CSL 2006. LNCS, vol. 4207, pp. 41–57. Springer, Heidelberg (2006)

14. Tan, T.: Pebble Automata for Data Languages: Separation, Decidability, and Undecidability.
PhD thesis, Technion - Computer Science Department (2009)

15. Vardi, M.Y., Wolper, P.: Reasoning about infinite computations. Information and Computa-
tion 115(1), 1–37 (1994)

16. Wu, Z.: A decidable extension of data automata. In: GandALF, pp. 116–130 (2011)
17. Wu, Z.: Commutative data automata. In: CSL, pp. 528–542 (2012)

	An Automata-Theoretic Approach to Reasoning about Parameterized Systems and Specifications
	1 Introduction
	2 Preliminaries
	3 Generalized Register Automata
	4 From VLTL and Abstract Systems to GRA
	5 Discussion
	References

