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Abstract. This work presents a novel approach for applying abstraction
and refinement in the verification of behavioral UML models.

The Unified Modeling Language (UML) is a widely accepted mod-
eling language for embedded and safety critical systems. As such the
correct behavior of systems represented as UML models is crucial. Model
checking is a successful automated verification technique for checking
whether a system satisfies a desired property. Nevertheless, its applica-
bility is often impeded by its high time and memory requirements. A suc-
cessful approach to avoiding this limitation is CounterExample-Guided
Abstraction-Refinement (CEGAR). We propose a CEGAR-like approach
for UML systems. We present a model-to-model transformation that gen-
erates an abstract UML system from a given concrete one, and formally
prove that our transformation creates an over-approximation.

The abstract system is often much smaller, thus model checking is
easier. Because the abstraction creates an over-approximation we are
guaranteed that if the abstract model satisfies the property then so does
the concrete one. If not, we check whether the resulting abstract coun-
terexample is spurious. In case it is, we automatically refine the abstract
system, in order to obtain a more precise abstraction.

1 Introduction

This work presents a novel approach for applying abstraction and refinement
for the verification of behavioral UML models. The Unified Modeling Language
(UML) [2] is a widely accepted modeling language that can be used to specify and
construct systems. It provides means to represent a system in terms of classes and
their relationships, and to describe the systems’ internal structure and behavior.
UML has been developed as a standard object-oriented modeling language by the
Object Management Group (OMG) [11]. It is becoming the dominant modeling
language for embedded and safety critical systems. As such, the correct behavior
of systems represented as UML models is crucial and verification techniques
applicable to such models are required.

Model checking [6] is a successful automated verification technique for checking
whether a given system satisfies a desired property. It traverses all of the system
behaviors, and either confirms that the system is correct w.r.t. the checked prop-
erty, or provides a counterexample (CEX) that demonstrates an erroneous behav-
ior. Model checking is widely recognized as an important approach to increasing
reliability of hardware and software systems and is vastly used in industry.
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Unfortunately, the applicability of model checking is impeded by its high time
and memory requirements. One of the most successful approaches for fighting
these problems is abstraction, where some of the system details are hidden. This
results in an over-approximated system that has more behaviors and less states
than the concrete (original) system. The abstract system has the feature that
if a property holds on the abstract system, then it also holds on the concrete
system. However, if the property does not hold, then nothing can be concluded of
the concrete system. CounterExample-Guided Abstraction Refinement (CEGAR)
approach [4] provides an automatic and iterative framework for abstraction and
refinement, where the refinement is based on a spurious CEX. When model
checking returns an abstract CEX, a matching concrete CEX is searched. If
there exists one, then a real bug on the concrete system is found. Otherwise, the
CEX is spurious and a refinement is needed. During refinement, more details
are added to the abstract system, in order to eliminate the spurious CEX.

In this paper we focus on behavioral systems that rely on UML state machines.
UML state machines are a standard graphical language for modeling the behav-
ior of event-driven software components. We propose a CEGAR-like framework
for verifying such systems. We present a model-to-model transformation that
generates an abstract system from a given concrete one. Our transformation is
done on the UML level, thus resulting in a new UML behavioral system which is
an over-approximation of the original system. We adapt the CEGAR approach
to our UML framework, and apply refinement if needed. Our refinement is also
performed as a model-to-model transformation. It is important to note that by
defining abstraction and refinement in terms of model-to-model transformation,
we avoid the translation to lower level representation (such as Kripke structures).
This is highly beneficial to the user, since both the property, the abstraction, and
the abstract CEX are given on the UML level and are therefore more meaningful.

Our abstraction is obtained by abstracting some (or all) of the state machines
in the concrete system. When abstracting a state machine, we over-approximate
its interface behavior w.r.t. the rest of the system. In the context of behav-
ioral UML systems, the interface includes the events generated/consumed and
the (non-private) variables. We thus abstract part of the system’s variables,
and maintain an abstract view of the events generated by the abstracted state
machines. In particular, the abstract state machines may change the number
and order of the generated events. Further, abstracted variables are assigned
the “don’t-know” value. Our abstraction does not necessarily replace an entire
state machine. Rather, it enables abstracting different parts of a state machine
whose behavior is irrelevant to the checked property. We present our abstraction
construction in section 4.

We show that the abstract system is an over-approximation by proving that
for every concrete system computation there exists an abstract system compu-
tation that “behaves similarly”. This is formally defined and proved in section 5.
To formalize the notion of system computation, we present in section 3 a for-
mal semantics for behavioral UML systems that rely on state machines. Works
such as [7,10,15] also give formal semantics to state machines, however they all
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differ from our semantics: e.g. [7] defines the semantics on flat state machines
and present a translation from hierarchical to flat state machines, whereas we
maintain the hierarchical structure of the state machines. [10] define the seman-
tics of a single state machine. Thus it neither addresses the semantics of the full
system, nor the communication between state machines. [15] addresses the com-
munication of state machines, however their notion of run-to-completion step
does not enable context switches during a run-to-completion step. Our formal
semantics is defined for a system, possibly multi-threaded, where the atomicity
level is a transition execution (formally defined later).

Our CEGAR framework is suitable for verifying LTLx, which is the Linear-
time Temporal Logic (LTL)[22] without the next-time operator. Also, we assume
the existence of a model checker for behavioral UML systems. Extensive work
has been done in the last years to provide such model checkers by translating the
system into an input language of some model checker. [3,5] present translation
of state machines to SMV. Several works [18,14,21,1,8] translate state machines
to PROMELA, which is the input language of the model checker SPIN. A ver-
ification environment for UML behavioral models was developed in the context
of the European research project OMEGA [20], and works such as [25,19] apply
different methods for model checking these models. [12,16] translate a UML be-
havioral model to C code, and apply bounded model checking via CBMC. We
add the special value “don’t-know” to the domain of the variables. This results
in a 3-valued semantics for UML systems, as shown in section 4. To model check
abstract systems we need a 3-valued model checker. Extending a model checker
to support the 3-valued semantics (e.g., [27,13]) is straightforward.

Many works such as [26,28,24,9,23] address semantic refinement of state ma-
chines, which is adding details to a partially defined state machine while pre-
serving behavior of the original (abstracted) model. Though we also address an
abstraction-refinement relation between state machines, these works are very dif-
ferent from ours. These works look at manual refinement as part of the modeling
process, whereas we are suggesting an automatic abstraction and refinement, and
our goal is improving scalability of the verification tool. Moreover, these works
handle a single state machine level, where we consider a system which includes
possibly many state machines that interact with each other. To the best of our
knowledge, this is the first work that addresses the abstraction for a behavioral
UML system at the UML level.

2 Preliminaries - UML Behavioral Systems

Behavioral UML systems include objects (instances of classes) that process
events. Event processing is defined by state machines, which include complex
features such as hierarchy, concurrency and communication. UML objects com-
municate by sending each other events (asynchronous messages) that are kept
in event queues (EQs). Every object is associated with a single EQ, and several
objects can be associated with the same EQ. In a multi-threaded system there
are several EQs, one for each thread. Each thread executes a never-ending loop,
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taking an event from its EQ, and dispatching it to the target object. The target
object makes a run-to-completion (RTC) step, where it processes the event and
continues execution until it cannot continue anymore. RTCs are composed of a
series of steps, formally defined later. Only when the target object finishes its
RTC, the thread dispatches the next event available in its EQ. Steps of different
threads are interleaved. Next we formally define state machines, UML systems,
and the set of behaviors associated with them. The following definitions closely
follow the UML2 standard.

2.1 UML State Machines

We first define the following notions: EV = EVenv ∪ EVsys is a fixed set of
events, where EVsys includes events sent by a state machine in the system.
EVenv includes events which are considered to be sent by the “environment” of
the system. An event e is a pair (type(e), trgt(e)), where type(e) denotes the
event name (or type), and trgt(e) denotes the state machine to which the event
was sent (formally defined later). V is a fixed set of variables over finite domains.

We use a running example to present state machines and behavioral UML
systems. Fig. 1 describes the state machine of class DB. A state machine is a
tuple SM = (S,R,Ω, init, TR, L) where S and R are sets of states and regions
respectively. We assume TOP ∈ R. States are graphically represented as squares.
Ω : S ∪ R → S ∪ R ∪ {ε} represents the hierarchical structure of states and
regions: for every s ∈ S, Ω(s) ∈ R, Ω(TOP ) = ε and for every other r ∈ R,
Ω(r) ∈ S. E.g., in Fig 1, Ω(Working) = Ω(V acation) = TOP . The transitive
closure of Ω is irreflexive and induces a partial order. u′ ∈ Ω+(u) if u′ contains u
(possibly transitively). This is denoted u�u′. Two different regions r1, r2 ∈ R are
orthogonal, denoted ORTH(r1, r2), if Ω(r1) = Ω(r2). Regions are graphically
represented only if they are orthogonal. Orthogonal regions are denoted by a
dashed line. E.g., state Working contains two orthogonal regions. init ⊆ S is
a set of initial states, s.t. there is one initial state in each region. Initial states
are marked with a transition with no source state. TR is a set of transitions.
Each t ∈ TR connects a single source state, denoted src(t), with a single target
state, denoted trgt(t). L is a function that labels each transition t with a trigger
(trig(t)), a guard (grd(t)), and an action (act(t)). A trigger is a type of an event
from EV . ε ∈ EV represents no trigger. A guard is a Boolean expression over V .
An action is a sequence of statements in some programming language where skip
is an empty statement. Actions can include “GEN(e)” statements, representing
a generation of an event. In the graphical representation, a transition t is labeled
with tr[g]/a where tr = trig(t), g = grd(t) and a = act(t). If tr = ε, g = true
or a = skip they are omitted from the representation. We assume there exists
a macro GEN({e1, ..., eh}), representing a generation of one of the events from
{e1, ..., eh} non-deterministically. Given an action act, by abuse of notation we
write GEN(e) ∈ act iff GEN(e) is one of the statements in act. modif(act)
denotes the set of variables that may be modified on act (are in the left hand
side of an assignment statement). By abuse of notation, modif(t) denotes the
set of variables that may be modified by act(t).
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Fig. 1. DB State Machine

Let SM be a state machine, a state machine configuration (SM-conf) is a
tuple c = (ω, ρ) where ρ ∈ type(EV ) ∪ {ε} holds the type of an event currently
dispatched to SM and not yet consumed, and ω ⊆ S is the set of currently
active states. ω always contains a single state s s.t. Ω(s) = TOP . It also has the
property that for every s ∈ ω and for every r ∈ R s.t. Ω(r) = s there exists a
single s′ ∈ S s.t. Ω(s′) = r and s′ ∈ ω.

From here on, we assume the following restrictions on SM :
(1) An action includes at most one “GEN(e)”. In addition, an action that in-
cludes “GEN(e)” is a non-branching sequence of statements. If either one of
these restrictions does not hold, then SM can be preprocessed s.t. the transition
is replaced with a series of states and transitions, each executing part of the
original action.
(2) SM does not include the following complex UML syntactic features: history,
cross-hierarchy transitions, fork, join, entry and exit actions. It is straightfor-
ward to eliminate these features, at the expense of additional states, transitions
and variables. Note that the hierarchical structure of the state machines is main-
tained, thus avoiding the exponential blow-up incurred by flattening.

2.2 Systems

Next we define UML systems and their behavior. UML2 places no restrictions on
the implementation of the EQ and neither do we. A finite sequence q = (e1, ..., el)
of events ei ∈ EV represents the EQ at a particular point in time. We assume
functions top(q), pop(q) and push(q, e) are defined in the usual way.

A system is a tuple Γ = (SM1, ..., SMn, Q1, ..., Qm, thrd, V ) s.t. SM1, ..., SMn

are state machines, Q1, ..., Qm (m ≤ n) are EQs (one for each thread), thrd :
{1, ..., n} → {1, ...,m} assigns each SMi to a thread, and V is a collection of
variables over finite domains. A system configuration (Γ -conf) is a tuple C =
(c1, ..., cn, q1, ..., qm, id1, ..., idm, σ) s.t. ci is a SM-conf of SMi, qj is the contents
ofQj, idj ∈ {0, ..., n} is the id of the SM associated with thread j that is currently
executing a RTC (idj = 0 means that all SMs of thread j are inactive), and σ
is a legal assignment to all variables in V .
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From now on we fix a given system Γ = (SM1, ..., SMn, Q1, ..., Qm, thrd, V ).
We use c for SM-confs and C for Γ -confs. We use k as a superscript to range
over steps in time, making cki the SM-conf of SMi at time k. For every e ∈ EV ,
we define trgt(e) ∈ {0, ..., n} to give the index of the SM that is the target of e.
trgt(e) = 0 means the event is sent to the environment of Γ .

A transition t ∈ TRi can be executed in C if SMi is currently executing
a RTC, and t is enabled in C, denoted enabled(t, C). t is enabled in C if the
source state is active (src(t) ∈ ωi), the trigger is the currently dispatched event
(ρi = trig(t)) or no trigger on t if ρi = ε, the guard is satisfied under the
current variable assignment, and all transitions from states s s.t. s � src(t) are
not enabled. When t executes, SMi moves to c′i = (ω′

i, ρ
′
i), denoted dest(ci, t),

where ρ′i = ε (an event is consumed once). ω′ is obtained by removing from ω
src(t) and states contained in it and then adding trgt(t) and states contained in
it, based on init.

Let C be a Γ -conf, SMi be a state machine in Γ , and let s1, s2 ∈ Si

and t, t1, ..., ty ∈ TRi. We use the following notations. Qpush(t, (q1, ..., qm)) =
(q′1, ..., q

′
m) denotes the effect of executing t on the different EQs of the system: if

for some event e, GEN(e) ∈ act(t), then executing t pushes e to the relevant EQ
(to Qthrd(trgt(e))). The rest of the EQs remain unchanged. act(t)(σ,C) = σ′ rep-
resents the effect of executing the assignments in act(t) on the valuation σ of C,
which results in a new assignment, σ′. States are orthogonal iff they are contained
(possibly transitively) in orthogonal regions. maxORTH((t1, ..., ty), C) = true
iff (t1, ..., ty) is a maximal set of enabled orthogonal transitions. t1, ..., ty are or-
thogonal iff their sources are pairwise orthogonal. In Fig 1, the transition from
ChkSeasn to ChkDiscnt is orthogonal to the transition from ChngSeasn to Done.

The function apply defines the effect of executing a sequence of transitions
on a Γ -conf C. apply((t1, ..., ty), C) = C′ represents the effect of executing t1
on C followed by t2 on the result etc. until executing ty, which results in C′ =
(c1, ..., c

′
i, ..., cn, q

′
1, ..., q

′
m, id1, ..., idm, σ

′) where: c′i = dest(...dest(ci, t1)..., ty),
q′1, ..., q′m = Qpush(ty, ...Qpush(t1, (q1, ..., qm))), σ′ = act(ty)(...act(t1)(σ,C), C).

3 System Computations

Def. 1 (System Computations). A computation of a system Γ is a maximal
sequence π = C0, step0, C1, step1, ... s.t.: (1) each Ck is a Γ -conf, (2) each step

Ck stepk

−−−→ Ck+1 can be generated by one of the inference rules detailed below,
and (3) each stepk is a pair (thidk, tk) where thidk ∈ {1, ...,m} represents the
id of the thread executing the step (tk is described in the inference rules).

We now define the set of inference rules describing C
step−−→ C′. We specify

only the parts of C′ that change w.r.t. C due to step.

Initialization. In the initial configuration C0 all EQs are empty, and each SMi

is inactive (for every j, id0j = 0) and is in its initial state (for every c0i , ρ
0
i = ε

and ω0
i = {s ∈ Si|s ∈ initi ∧ ∀s′ ∈ Si.s� s′ → s′ ∈ initi}).



Verifying Behavioral UML Systems via CEGAR 145

Dispatch. An event can be dispatched from thread j’s EQ only if the previous
RTC on thread j ended and the EQ is not empty.

DISP (j, e) :
idj = 0 qj 	= φ top(qj) = e trgt(e) = l

id′j = l q′j = pop(qj) c′l = (ωl, type(e))

Transition. UML2 defines a single case where transitions are executed simul-
taneously, when the transitions are in orthogonal regions and all simultane-
ously consume an event (on the first step of a RTC). Since it is not clear
how to define simultaneous execution, we define an interleaved execution of
these transitions. Only after all transitions have executed, the next step is
enabled.

TRANS(j, (t1, ..., ty)) :

idj = l > 0 t1, ..., ty ∈ TRl

ρl 	= ε→ (maxORTH((t1, ..., ty), C) = true)
ρl = ε→ (y = 1 ∧ enabled(t1, C))

C′ = apply((t1, ..., ty), C)

EndRTC. If the currently running state machine on thread j has no enabled
transitions, then the RTC is complete.

EndRTC(j, ε) :
idj = l > 0 ∀t ∈ TRl.enabled(t, C) = false

id′j = 0 c′l = (ωl, ε)

ENV. The behavior of the environment is not precisely described in the UML
standard. We assume the most general definition, where the environment
may insert events into the EQs at any step.

ENV (j, e) :
e ∈ EVenv thrd(trgt(e)) = j

q′j = push(qj, e)

Intuitively, a computation is a series of steps that follow the RTC semantics
per-thread, where RTCs of different threads are interleaved.

4 Abstracting a Behavioral UML System

4.1 Abstracting a State Machine

Let SM be a concrete state machine. The abstraction of SM is defined w.r.t. a
collection A = {A1, ..., Ak}, where for every i, the abstraction set Ai is a set of
states from S s.t. for every s, s′ ∈ Ai, Ω(s) = Ω(s′). Intuitively, our abstraction
replaces every Ai (and all states contained in Ai) with a different construct that
ignores the details of Ai and maintains an over-approximated behavior of the
events generated by Ai. For simplicity, from here on we assume the collection
contains a single abstraction set A. A description of the framework for any
collection size is available in [17].
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Fig. 2. Δ(A): The abstraction construct created for A

We add the value don′t − know, denoted ⊥, to the domain of all variables
in V , where ⊥ represents any value in the domain. The semantics of boolean
operations is extended to 3-valued logic in the usual way: ⊥ ∧ false = false,
⊥∧true = ⊥ and ¬⊥ = ⊥. An expression is evaluated to ⊥ if one of its arguments
is ⊥. For simplicity of presentation, we enable trig(t) to be a set of triggers. I.e.
trig(t) = {e1, ..., eq} ∪ ε, and enabled(t, C) = true if one of the events from
trig(t) matches ρ.

Next, we define several notions that are concrete and are defined w.r.t. A:
• S(A) = {s ∈ S|∃s′ ∈ A.(s� s′)} are the abstracted states.
• R(A) = {r ∈ R|∃s ∈ A.(r � s)} are the abstracted regions.
• TR(A) = {t ∈ TR|src(t), trgt(t) ∈ S(A)} are the abstracted transitions.
• EV (A) = {e ∈ EV |∃t ∈ TR(A).(GEN(e) ∈ act(t))}
• Trig(A) = {tr|∃t ∈ TR(A).(trig(t) = tr)} \ {ε}
• V (A) = {v ∈ V |∃t ∈ TR(A).(v ∈ modif(t))}
• GRDV (A) = {v ∈ V |∃t ∈ TR(A).(trig(t) = ε ∧ v ∈ grd(t))}

We require the following restrictions on A of SMi:
(1) For every v ∈ GRDV (A), if v can be modified by several SMs in Γ , then all
these SMs are assigned to the same thread. This is needed for correctness of the
construction (details in [17]).
(2) There are no loops without triggers within S(A). Further, there are no self
loops without a trigger on states containing S(A). This is needed to enable static
analysis described next.

In order to explain our abstraction we introduce the notion of an A-round.
Let π be a computation on the concrete system Γ , an A-round is a maximal,
possibly non-consecutive, sequence of steps, stepi1 , ..., stepid from π, s.t. all the
steps are part of a single RTC, every step executes a transition from TR(A), and
the SM remains in an abstracted state throughout the A-round. I.e., for every
j ∈ {i1, i1 + 1, ..., id}: ωj ∩ S(A) 	= φ. Due to the above requirement (2), we can
easily apply static analysis in order to determine the maximal number of events
that can be generated by any single A-round. We denote this number by f .

Given an abstraction set A, our abstraction replaces S(A), R(A) and TR(A)
with a new construct, referred to asΔ(A), demonstrated in Fig. 2. Δ(A) includes
an initial state astrt and a final state aend. Every A-round over states from S(A)
is represented by a computation from astrt to aend. Δ(A) includes computations
that can generate any sequence of size 0 to f events from EV (A). Also, all the
variables that can be modified in the A-round are given the value ⊥.
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An A-round whose first transition consumes an event, is represented by a
computation that starts with transition τ1 from astrt to a1, which can consume
any single event from Trig(A). The guard ⊥ on τ1 and τ2 represents a non-
deterministic choice between “true” or “false”. If the first transition on an A-
round does not consume an event, it will be represented by transition τ2, which
is not marked with a trigger. Since Δ(A) contains a loop of transitions without
triggers we must ensure that all RTCs through Δ(A) are finite. We introduce
a new Boolean variable cg. A trace on Δ(A) can be initiated without a trigger
only if cg is 1. Δ(A) then sets cg to 0 on the transitions exiting astrt.

When cg is set to 1 it signals that it is possible to execute an A-round that does
not consume an event. Such a situation abstracts a concrete execution in which
the RTC that includes the A-round starts at a state that is not abstracted and
continues within the abstraction. The situation can also occur if an abstracted
transition becomes enabled due to some variable change. I.e., execution of some
transition t, which is either orthogonal to A or is in a different state machine,
and t modifies a variable v ∈ GRDV (A).

If by static analysis we can conclude that the first transition of every A-round
consumes an event, then cg is redundant (and τ2 can be removed). All the A-
rounds are then represented by computations that start by traversing τ1.

We now formally define our abstract state machines. Given SM =
(S,R,Ω, init, TR, L) and an abstraction set A ⊆ S, SM(A) =
(SA, RA, ΩA, initA, TRA, LA) is the abstraction of SM w.r.t. A. We denote func-
tions over the abstraction (src, trgt, trig, grd, and act) with a superscript A.

• SA = (S \ S(A)) ∪ {astrt, a1, ..., af+1, aend} and RA = (R \R(A))
• For every s ∈ (SA ∩ S) ∪RA: ΩA(s) = Ω(s).
For every s ∈ {astrt, a1, ..., af+1, aend}: ΩA(s) = Ω(s′) for some s′ ∈ A.

• initA = init ∩ SA or initA = (init ∩ SA) ∪ {astrt} if ∃s ∈ A s.t. s ∈ init
• TRA = (TR \ TR(A)) ∪ {τ1, ..., τ2f+4}.
The srcA, trgtA, trigA, grdA and actA functions are redefined as follows:

Transitions τ1, ..., τ2f+4 are defined according to Fig. 2. Every transition t ∈
TR \ TR(A) has a representation (matching transition) in SM(A). Note that
for every such transition, at least one of src(t) and trgt(t) are not abstracted.
If src(t) or trgt(t) are abstracted, then srcA(t) or trgtA(t) respectively are in
Δ(A). The handling of cg is added to the relevant actions, as discussed above.
In the following we present only the values of srcA, trgtA, trigA grdA and actA

that change in SM(A) w.r.t. SM . For every t ∈ TR \ TR(A):
1. trgt(t) ∈ S(A) (the target of t is abstracted): we define trgtA(t) = astrt.

If there exists an abstracted transition from trgt(t) whose trigger is ε then
actA(t) = act(t); cg = 1 (otherwise, actA(t) = act(t)).
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2. src(t) ∈ S(A) (the source of t is abstracted): we define srcA(t) = astrt,
actA(t) = cg = 0; act(t) and grdA(t) = grd(t)&⊥. We add ⊥ to the guard in
order to ensure that executions of possibly enabled transitions from states
containing the abstraction remain (possibly) enabled.

3. Otherwise (neither src(t) nor trgt(t) are abstracted):
Case a: A � trgt(t). If an execution of t results in a new ω that includes
an abstracted state s ∈ S(A), and there exists an abstracted transition from
s whose trigger is ε. Then: actA(t) = act(t); cg = 1 (otherwise, actA(t) =
act(t)).
Case b: src(t) and astrt are contained in orthogonal regions (t can be ex-
ecuted orthogonally to the abstraction). Then: actA(t) = act(t) with the
following modifications: If ∃v ∈ GRDV (A) s.t. v ∈ modif(t) then cg = 1 is
added to actA(t). In addition, if SM is in an abstracted state, then variables
that can be modified by abstracted transitions should remain ⊥. For that,
every assignment x = e in act(t), if x ∈ V (A) then x = e is replaced with:
“if (isIn(A)) x = ⊥; else x = e;” in actA(t). The current state is checked
using the macro isIn(U), that checks whether a certain state from U is
active.

Fig. 3 shows the state machine created by abstracting the DB state machine
(Fig. 1) with A = {Working, V acation}. Note that in this state machine, by
static analysis we can conclude that every A-round first consumes an event, and
therefore we do not need the cg flag and transition τ2. Also, on every A-round
no more than one event can be generated, therefore f = 1.

4.2 Abstracting a System

Next we define an abstract system. This is a system in which some of the state
machines are abstract. For SMi and an abstraction set Ai, SM

A
i denotes the

abstraction of SMi w.r.t. Ai. We denote the cg variable in SMA
i as cgi.

Def. 2. Let Γ and Γ ′ be two systems, each with n SMs and m EQs. We say
that Γ ′ is an abstraction of Γ , denoted ΓA, if the following holds. (1) For i ∈
{1, ..., n}, SM ′

i = SMi or SM ′
i = SMA

i , (2) thrd = thrd′, (3) V ′ = V ∪
{cgi|SM ′

i = SMA
i }, and (4) for every i, j ∈ {1, ..., n} s.t. i 	= j, and for every

t ∈ TR′
j: if there exists a variable v ∈ GRDV (Ai) and v ∈ modif(t) then cgi = 1

is added to act′(t).

Recall that setting cgi to 1 on SMA
i signals that it is possible to execute an

A-round on SMi without consuming an event. Req. (4) in Def. 2 handles the case
where a guard of an abstracted transition of SMi may change by a transition t
of SMj . It ensures that cgi is set to 1 on such transitions of TR′

j .
Adding the value ⊥ to the domain of all variables in V affects the cases when

a transition is enabled, since now grd(t)(σ) ∈ {true, false,⊥}. Intuitively, if
grd(t)(σ) = ⊥ then we assume it can be either true or false. We thus consider
both cases in the analysis. Therefore, enabled(t, C) = true iff t can be enabled
w.r.t. C (grd(t)(σ) ∈ {true,⊥}) and all transitions t′ from states contained in
src(t) can be not enabled (grd(t′)(σ) ∈ {false,⊥}). Note that when enabling
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3-valued semantics, a transition may be enabled, even though lower level tran-
sitions may be enabled as well.

5 Correctness of the Abstraction

In this section we prove that ΓA is an over-approximation of Γ by showing that
every computation of Γ has a “matching” computation in ΓA.

Def. 3 (Abstraction of SM-conf). Let c = (ω, ρ) and cA = (ωA, ρA) be SM-
confs of SM and SMA respectively. cA abstracts c, denoted c  cA, if ρ = ρA, and
c, cA agree on the joint states: ω 	= ωA iff ω \ ωA ⊆ S(A) and ωA \ ω ⊆ Δ(A).

Def. 4 (Abstraction of Γ -conf). Let C and C′ be two Γ -confs of Γ and ΓA

respectively. We say that C′ abstracts C, denoted C  C′, if the Γ -confs agree
on the EQs and id elements, and the SM-confs and σ′ of ΓA are abstraction
of the matching elements in Γ : for j ∈ {1, ...,m}, qj = q′j and idj = id′j, for
i ∈ {1, ..., n}, ci  c′i, and for every v ∈ V either σ(v) = σ′(v) or σ′(v) = ⊥.

We now define stuttering computation inclusion, which is an extension of
stuttering-trace inclusion ([6]) to system computations. For simplicity of pre-
sentation, we assume that computations are infinite. However, all the results
presented hold for finite computations as well. Intuitively, there exists stutter-
ing inclusion between π and π′ if they can be partitioned into infinitely many
finite intervals, s.t. every configuration in the kth interval of π′ abstracts every
configuration in the kth interval of π.

Def. 5 (Stuttering Computation Inclusion). Let π = C0, step0, C1, step1, ...
and π′ = C′0, step′0, C′1, step′1, ... be two computations over Γ and ΓA respec-
tively. There exists a stuttering computation inclusion between π and π′, denoted
π s π

′, if there are two infinite sequences of integers 0 = i0 < i1 < ... and
0 = i′0 < i′1 < ... s.t. for every k ≥ 0:
For every j ∈ {ik, ..., (ik+1)−1} and for every j′ ∈ {i′k, ..., (i′k+1)−1}: Cj  C′j′

Fig. 4 illustrates two computations where π s π
′. Def. 4 implies that steps of

type DISP , ENV and EndRTC cannot be steps within an interval, due to the
effect of these steps on Γ -conf. For example, in Fig. 4, C6  C′5. Assume step6 =
EndRTC(j, ε), then by the definition of EndRTC step, the value of idj changes
from C6 to C7. Since Γ -conf abstraction requires equality of the id elements, then
clearly C7 	 C′5. Thus C6 and C7 cannot be in the same interval. For a similar
reason, a step of type DISP , ENV or EndRTC on π implies a step of the same
type on π′, and vice versa. Steps of type TRANS that are either the first step in
a RTC or a step that generates events are also steps that cannot be part of an
interval, due to the effect of these steps on the ρ elements and the EQs.

An immediate consequence of the above is that an interval can be of size
greater than one only if the steps in the interval are TRANS steps that are
neither a first step in a RTC nor a step generating an event. Recall that Def. 4
requires a correlation between the current states of the state machines. It can
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C ’ 5 ,� ’ : :

C 0 ,� : : step1 , step3 , C 7 ,  … .s t e p 0 , C 1 ,

i n t .  1

C 2 , s t e p 2 , C 3 ,

i n t .  2

step6,C 6 ,C 4 , s t e p 4 , C 5 ,

i n t .  3
s t e p 5 ,

… .

C ’ 0 , C ’ 2 , step’2, step'3,s t e p ' 0 , C ’ 1 , s t e p ' 1 , C ’ 3 , C ’ 4 , s t e p ’ 4 , step’5, C ’ 6 … .

Fig. 4. Stuttering Computation Inclusion

therefore be shown that if stepi = TRANS(j, (t)) is a step between two config-
urations in the same interval, then one the following holds: (1) If stepi ∈ π then
t is an abstracted transition, (2) If stepi ∈ π′ then t ∈ Δ(A).

We extend the notion of stuttering inclusion to systems, and say that there
exists a stuttering inclusion between Γ and ΓA, denoted Γ s Γ

A, if for each
computation π of Γ from an initial configuration Cinit, there exists a computa-
tion π′ of ΓA from an initial configuration C′

init s.t. π s π
′.

The following theorem captures the relation between Γ and ΓA, stating that
there exists stuttering inclusion between Γ and ΓA.

Theorem 6. If ΓA is an abstraction of Γ then Γ s Γ
A.

Every system Γ can be viewed as a Kripke structureK, where the K-states are
the set of Γ -confs, and there exists a K-transition (C,C′) iff C′ is reachable from
C within a single step. Thus, every computation of Γ corresponds to a trace inK.
Let Γ be a system, and let Aψ be an LTL formula, where the atomic propositions
are predicates over Γ . Then Γ |= Aψ iff for every computation π of Γ from an
initial configuration, π |= ψ. By preservation of LTLx over stuttering-traces
inclusion we conclude:

Corollary 7. Let Γ and ΓA be two systems, s.t. Γ s Γ
A, and let Aψ be an

LTLx formula over joint elements of Γ and ΓA. If ΓA |= Aψ then Γ |= Aψ.

Due to the stuttering-inclusion, ΓA preserves LTLx and not LTL. It is impor-
tant to note that since Γ itself is a multi-threaded system, properties of interest
are commonly defined without the next-time operator.

The proof of Theorem 6 is available in [17]. We give here an intuitive ex-
planation to why for every π of Γ from Cinit, there exists π′ of ΓA from C′

init

s.t. π s π
′. For every step executed on Γ that does not include execution of

an abstracted transition it is possible to execute the same step on ΓA. More
specifically, for every transition t executed on Γ , if t has a matching transition
ta in ΓA, then ta can be executed on π′. For every step of type ENV , DISP
and EndRTC on π it is possible to execute the same step on π′. This holds since
matching configurations Cr and C′p of π and π′ respectively agree on their joint
elements, and σ′p might assign ⊥ to variables. Thus, if a transition t is enabled,
then its matching transition ta can be enabled.

For execution of abstracted transitions on Γ , every A-round χ on some con-
crete state machine SMi can be matched to a trace from astrt to aend on SMA

i .
The matching is as follows: every transition t that is traversed on χ and where t
generates an event (GEN(e) ∈ act(t)) matches a transition from ai to ai+1 (for
some i). Every transition t that is traversed on χ and where t does not generate
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or consume an event, matches an interval of length one on π′ (ΓA does not ex-
ecute a matching step). Since χ can generate at most f events, then indeed we
can match the transitions as described. All variables that can be modified on
χ are given the value ⊥ upon execution of the first transition in Δ(A) (transi-
tions from astrt to a1). This value is maintained in the variables throughout the
traversal on Δ(A).

6 Using Abstraction

We now present the applicability of our abstraction framework by an example.
Consider a system Γ describing a travel agent (of class Agent) that books flights
and communicates with both airline databases (of classDB) and clients. Assume
Γ includes n different DB objects, where the behavior of each DB is defined
in Fig. 1. The single Agent object in Γ communicates with clients (modeled as
the environment) and with all of the DBs. The Agent behavior is as follows:
upon receiving a flight request from a client, it requests a price offer from all
DBs by sending them event evGetPrc. After getting an answer from the DBs
(via evRetPrc), it chooses an offer, reserves the flight from the relevant DB (via
evAprvF lt) and rejects the offers from the rest of the DB (via evDenyF lt).

Assume now we create an abstract system ΓA, where the DBs are abstracted
as in Fig. 3 (the Agent remains concrete). If Agent state machine includes x
states, then Γ has (12∗n+x) states, whereas ΓA has (4∗n+x) states. Moreover,
ΓA does not include the pieces of code in the actions of the transitions of DBs,
which may be complicated. E.g., the method calcPrc() is not part of the abstract
state machine of DB, and this method might include complex computations.

Assume we want to verify the property describing that on all computations
of Γ , if Agent orders a flight from some DB, then all the DBs returned an
answer to the Agent before the Agent chooses an offer. For this property it is
enough to consider only the interface of the DBs. The property is not affected,
for example, by the calculation of a price by the DBs. It is an outcome only of
the information that every DB can consume an event evGetPrc, and can send
an event evRetPrc. We can therefore verify the property on ΓA. If the property
holds, then we can conclude that Γ also satisfies the property.

Consider another property: we want to verify that due to a single request from
the client, space decreases by at most 1. Clearly, when verifying the property on
ΓA, the result is ⊥, since ΓA abstracts the variable space. This means that we
cannot conclude whether or not the property holds on Γ by model checking ΓA.
However, it might be possible to refine ΓA, and create a different abstraction
Γ ′A for which this property can be verified. Following, in section 7 we present
how to refine an abstract system when the verification does not succeed.

7 Refinement

Once we have an abstract system ΓA, we model check our LTLx property Aψ
over the abstract system. Since variables in ΓA can have the value ⊥, then
(ΓA |= Aψ) ∈ {true, false,⊥}. If (ΓA |= Aψ) = true, then from Theorem 6 the
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property holds on Γ as well. If (ΓA |= Aψ) ∈ {false,⊥} then due to ΓA being
an over-approximation we cannot determine whether or not the property holds
on Γ . Typical model checkers provide the user with a CEX in case verification
does not succeed. A CEX πA on ΓA is either a finite computation or a lasso
computation s.t. either (πA |= ψ) = false or (πA |= ψ) = ⊥.

Next we present a CEGAR-like algorithm for refining ΓA based on πA. The
refinement step suggests how to create a new abstract system Γ ′A, where one or
more of the abstracted states of Γ are removed from the abstraction sets. Since
the concrete system Γ is finite, the CEGAR algorithm ultimately terminates
and returns a correct result.

If (πA |= ψ) = ⊥ then we cannot determine the value of the property. If (πA |=
ψ) = false, then this CEX might be spurious. In both cases we search for a
computation π on Γ s.t. π s π

A. Given πA, we inductively construct π w.r.t. πA.
Note that if the concrete model enables non-determinism, then there might be
more than one matching concrete CEXs. In this case, all the matching concrete
CEXs are simultaneously constructed. Intuitively, the construction of π follows
the steps of πA, maintaining the stuttering inclusion. During the construction, if
for some prefix of πA: C′0, step′0, ..., step′p−1, C′p it is not possible to extend any
of the matching concrete computations based on step′p, then πA is a spurious
CEX and we should refine the system. Detailed description of the construction of
π is presented in [17]. There are three cases where we cannot extend a concrete
computation π = C0, step0, ..., Cr (Cr  C′p) based on step′p: (1) step′p is an
EndRTC step on SM ′

l but there exists an enabled transition in TRl w.r.t. C
r.

(2) step′p is a TRANS step on SM ′
l that executes a transition ta 	∈Δ(A), and

the concrete transition t that matches ta is not enabled. (3) step′p is a TRANS
step on SM ′

l that executes a transition ta ∈Δ(A) that generates an event e, and
there is no enabled concrete transition t ∈ TR(A) where GEN(e) ∈ act(t).

We call the configuration C′p ∈ πA from which we cannot extend a matching
concrete computation failure-conf. Following, we distinguish between two reasons
that can cause a failure-conf, and show how to refine the system in each case.

Case 1: step′p executes a transition that does not have a matching behavior in
Γ . E.g., when step′p = TRANS(j, (ta)), id′pj = l, and the concrete t that matches
ta is not enabled since src(t) 	∈ ωr

l . This is possible only if src(t) ∈ S(A) and
trgt(t) 	∈ S(A). Another example for such a failure is when ΓA generates an
event e as part of the action of ta, but e cannot be generated from Cr on any
possible step. This can happen only if ta ∈ Δ(A). In both cases we refine by
removing a state s ∈ S(A) s.t. s ∈ ωr

l from the abstraction.

Case 2: There exists v ∈ V for which σ′p(v) = ⊥ and the value of σr(v) causes
the failure-conf. For example, when step′p = TRANS(j, (ta)) and the concrete
t that matches ta is not enabled since grd(t)(σr) = false. Since Cr  C′p and
grd(ta) = grd(t), then clearly grd(ta)(σ

′p) = ⊥ and for some v, σ′p(v) = ⊥ and
v affects the value of grd(ta). We refine ΓA to obtain a concrete value on v:
We trace πA back to find the variable that gave v the value ⊥. The only place
where a variable is initially assigned the value ⊥ is a transition from astrt to a1
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in some Δ(Ai). Thus, the tracing back of πA terminates at C′α s.t. astrt ∈ ωα
i .

We find the matching Γ -conf Cβ in π s.t. Cβ  C′α, and refine the model by
removing from the abstraction a state s ∈ S(Ai) s.t. s ∈ ωβ

i .
If we are able to construct π s.t. π  πA, then one of the following holds: (a)

If (πA |= ψ) = false then no need to check π. By construction, π 	|= ψ, and we
can conclude that Γ 	|= Aψ, (b) If (πA |= ψ) = ⊥ then we check π w.r.t. ψ. If
π 	|= ψ then again π is a concrete CEX and we conclude that Γ 	|= Aψ. Otherwise
(π |= ψ), the abstraction is too coarse and we need to refine. Notice that in the
latter case, since (πA |= ψ) = ⊥ then there exists v ∈ V which affects the value
of ψ, and v has the value ⊥. We then refine ΓA in order to have a concrete value
on v, as described above (Case 2).

Consider the example system presented in section 6, and consider a prop-
erty that addresses the variable space. Recall that under the abstraction pre-
sented for this example, such a property is evaluated to ⊥, since the variable
space is abstracted. During the refinement, state WaitForDB is suggested for
refinement, and is removed from the abstraction. We can then create a re-
fined system Γ ′A, where DB objects are abstracted w.r.t. a new abstraction
set A′ = {Idle, PriceProcessor, UpdateDB}. The property can then be verified
on Γ ′A, and we can conclude that it holds on the concrete system.

8 Conclusion

In this work we presented a CEGAR-like method for abstraction and refinement
of behavioral UML systems. It is important to note that our framework is com-
pletely automatic. An initial abstraction can be one that abstracts entire state
machines, based on the given property. We presented a basic and automatic re-
finement method. Heuristics can be applied during the refinement stage in order
to converge in less iterations. For example, when refining due to a variable v
whose value is ⊥, we can refine by adding all abstracted transitions that modify
v (or v’s cone-of-influence). Note, however, that there always exists a tradeoff
between quick convergence and the growth in size of the abstract system.
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