
Intertwined Forward-Backward Reachability Analysis
Using Interpolants

Yakir Vizel1, Orna Grumberg1, and Sharon Shoham2

1 Computer Science Department, The Technion, Haifa, Israel
2 School of Computer Science, Academic College of Tel Aviv-Yaffo

Abstract. In this work we develop a novel SAT-based verification approach which
is based on interpolation. The novelty of our approach is in extracting interpolants
in both forward and backward manner and exploiting them for an intertwined ap-
proximated forward and backward reachability analysis. Our approach is also
mostly local and avoids unrolling of the checked model as much as possible.
This results in an efficient and complete SAT-based verification algorithm.

We implemented our algorithm and compared it with both McMillan’s
interpolation-based algorithm and with IC3, on real-life industrial designs as well
as on examples from the HWMCC’11 benchmark. In many cases, our algorithm
outperformed both methods.

1 Introduction

In this work we develop a novel SAT-based verification approach based on interpolation.
The novelty of our approach is in extracting interpolants in both forward and backward
manner and exploiting them for an intertwined approximated forward and backward
reachability analysis. Our approach is also mostly local and avoids unrolling of the
checked model as much as possible. This results in an efficient and complete SAT-based
algorithm.

SAT-based model checking is a highly successful approach for the verification of
real-life designs from both hardware and software domains. In its early days SAT-
based model checking was used mostly for bug hunting. The introduction of inter-
polation [7] enabled an efficient complete algorithm, referred to as Interpolation-based
model checking (ITP) [11].

ITP uses interpolation to extract an over-approximation of a set of reachable states
from a proof of unsatisfiability, generated by a SAT-solver. This fact enables to perform
a SAT-based reachability analysis. The set of reachable states computed by the reacha-
bility analysis is used by ITP to check if a system M satisfies a safety propertyAGp.

In [1] an alternative SAT-based algorithm, called IC3, is introduced. Similarly to
ITP, IC3 also computes over-approximations of sets of reachable states. However, ITP
unrolls the model in order to obtain more precise approximations. In many cases, this
is a bottleneck of the approach. IC3, on the other hand, improves the precision of the
approximations by performing many local checks that do not require unrolling.

Both ITP and IC3 compute over-approximations of the sets of states obtained by a
forward reachability analysis. The forward analysis starts from the initial states of M ,

N. Piterman and S. Smolka (Eds.): TACAS 2013, LNCS 7795, pp. 308–323, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



Intertwined Forward-Backward Reachability Analysis Using Interpolants 309

and iteratively computes predecessors while making sure that no bad state violating p
is reached. Verification based on reachability can also be performed in a dual manner
using a backward reachability analysis. The backward analysis starts from the states
satisfying ¬p and iteratively computes ancestors while making sure that no initial state
is reached.

Traditionally, BDD-based verification methods [6] use both forward and backward
analyses [3,13], while SAT-based methods mainly implement the forward one. Recently,
a few works considered backward analysis in the context of SAT as well (e.g. [2,8]).
Most such works use forward and backward analyses independently of each other, or
use a weak combination of the two, such as replacing the role of the initial states in the
backward analysis by the reachable states computed by a forward analysis.

In this work we propose an interpolation-based verification method that applies
mostly local checks and avoids unrolling of the model as much as possible. Our ap-
proach combines approximated forward and backward analyses in a tight and inter-
twined way, and uses each of them to enhance the precision of the other. Thus, the tight
combination of the two analyses replaces unrolling in enhancing the precision of the
computed over-approximated sets of states.

Our work uses the observation that a single SAT check entails information both about
states reachable from the initial states (via post-image operations) and about states that
reach the bad-states (via pre-image operations). We exemplify this observation by ex-
amining the propositional formula INIT(V ) ∧ TR(V, V ′) ∧ ¬p(V ′) where INIT and ¬p
describe the sets of initial states and bad states, respectively, and TR(V, V ′) describes
the transition relation. If this formula is satisfiable, then there exists a path of length
one from the initial states to the bad states. If it is unsatisfiable, then all states reachable
from the initial states in one transition are a subset of p. This fact is often used in for-
ward reachability. We now note that the unsatisfiability of this formula can be used in
backward reachability as well. This can be done by interpreting it as “all states that can
reach the bad states in one transition are disjoint from the initial states”.

We exploit this dual observation by extracting two different interpolants from the
unsatisfiabe formula INIT(V )∧ TR(V, V ′)∧¬p(V ′). The forward interpolant (the one
used in ITP) provides an over-approximation of the post-image of INIT which is disjoint
from ¬p. The backward interpolant, computed for the same formula when it is read
backward, from right to left, provides an over-approximation of the pre-image of ¬p
which is disjoint from INIT.

We use the above observation as a key element in traversing the state space in a dual
fashion, both forward from the initial states and backwards from the bad states.

Our algorithm, Dual Approximated Reachability (DAR), computes a Forward Reach-
ability Sequence F̄ = 〈F0, F1, . . .〉, and a Backward Reachability Sequence B̄ =
〈B0, B1, . . .〉. The set Fi represents an over-approximation of the set of states which
are reachable from INIT in exactly i transitions. Further, Fi is disjoint from ¬p. Sim-
ilarly, Bi represents an over-approximation of the set of states that can reach ¬p in
exactly i transitions, and it is also disjoint from INIT. Thus, the existence of either F̄ or
B̄ of length n ensures that no counterexample of length n exists in M .



310 Y. Vizel, O. Grumberg, and S. Shoham

The goal of DAR is to gradually strengthen (make more precise) and extend F̄ and
B̄, until a counterexample is found or until one of F̄ or B̄ reaches a fixpoint, that is, no
new states are found when the sequence is further extended. To do this, DAR employs
local strengthening phases, assisted by a global strengthening phase, when needed. Only
the global strengthening involves unrolling. Thus, the number of unrolling applications
is limited. In addition, the depth of the unrolling is also limited.

Initially, F̄ = 〈F0〉 and B̄ = 〈B0〉, where F0 = INIT and B0 = ¬p. At iteration
n, we define the sequence Π = 〈 INIT, F1 ∧ Bn, F2 ∧ Bn−1, . . . , Fn ∧ B1, ¬p 〉.
Π represents an over-approximation of the set of all possible paths from INIT to ¬p of
length n + 1 in M . That is, Π over-approximates the set of all counterexamples in M
of length n+ 1. DAR attempts to show that Π represents no counterexample.

The local strengthening phase checks whether there are in fact transitions between
every two consecutive sets in Π . It turns out that this can be done by applying local
checks of the form Fi(V ) ∧ TR(V, V ′) ∧ Bn−i(V

′). If such a formula is unsatisfiable,
then no transition exists from Fi ∧ Bn−i+1 to its successor along Π , thus no coun-
terexample of length n + 1 exists. This can also be understood by observing that the
unsatisfiability of Fi(V )∧ TR(V, V ′)∧Bn−i(V

′) means that the states reachable from
the initial states in i transitions cannot reach Bn−i in one transition. Since Bn−i in-
cludes all states reaching ¬p in n − i transitions, no counterexample of length n + 1
exists.

In this case, the forward interpolant of Fi(V ) ∧ TR(V, V ′) ∧ Bn−i(V
′) is used to

strengthen Fi+1 while the backward interpolant strengthens Bn−i+1. Strengthening is
now propagated along F̄ and B̄. This reflects the fact that the components of one se-
quence are strengthened based on the components of the other everywhere along the
sequences, making the analyses closely intertwined. Next, F̄ and B̄ are extended by
initializing Fn+1 to be the forward interpolant of Fn(V ) ∧ TR(V, V ′) ∧ B0(V

′) and
Bn+1 to be the backward interpolant of F0(V ) ∧ TR(V, V ′) ∧Bn(V

′).
The global strengthening phase is applied when Fi(V ) ∧ TR(V, V ′) ∧ Bn−i(V

′) is
satisfiable for all i. This implies that a transition exists between every two consecu-
tive sets in Π , making local reasoning insufficient. We therefore gradually unroll the
model M and check whether the states in Fi ∧ Bn−i+1 are unreachable from INIT
via i transitions of M . Once we find such an i, the unrolling can stop. We are certain
that no counterexample of length n + 1 exists. We strengthen F̄ up to depth i using
an interpolation-sequence [10], and return to the local strengthening phase for further
strengthening and for extending F̄ and B̄ to length n+ 1.

We implemented our DAR algorithm and compared it to both ITP and IC3, on real-
life industrial designs as well as examples from the HWMCC’11 benchmark. In many
cases, our algorithm outperformed both methods. We noticed that the number of iter-
ations where global strengthening was needed, as well as the depth of the unrolling in
the global strengthening phase is often smaller relative to the length of F̄ and B̄. This
reflects the fact that our use of unrolling is limited.

To summarize, the novelty of our approach is twofold. It suggests a SAT-based in-
tertwined forward-backward reachability analysis. Further, the reachability analysis is
interpolation-based. Yet, it is mostly local and avoids unrolling as much as possible.



Intertwined Forward-Backward Reachability Analysis Using Interpolants 311

1.1 Related Work

Several works use interpolation in the context of model checking. Interpolation-based
model checking (ITP) was initially introduced in [11]. Similarly to ITP, DAR also uses
interpolation to compute over-approximated sets of reachable states. However, ITP
computes interpolants based on an unrolled formula and increases unrolling to make
the over-approximation more precise. DAR, on the other hand, mostly avoids unrolling
and uses backward and forward interpolants from local checks for strengthening. In
addition, ITP restarts when it finds a spurious counterexample, increasing the depth
of unrolling. In contrast, DAR keeps strengthening the computed over-approximations
from previous iterations. In [2] improvements for ITP are suggested. They implement
a backward-traversal using interpolants. Unlike our method, their backward traversal is
an adaptation of ITP and is not tightly integrated with the forward traversal.

The work in [8] is also based on ITP in the sense of computing interpolants based on
unrolling of the model, where the depth of unrolling increases in each iteration. Their
work integrates the use of forward and backward analyses: in each iteration the result
of the backward analysis is used to restrict the initial states and the result of the forward
analysis is used to restrict the bad states. Our approach, on the other hand, uses the
result of the forward analysis to strengthen all intermediate sets of B̄. Similarly the
result of the backward analysis stregthens F̄ .

Interpolation-sequence, which extends the notion of an interpolant for a sequence of
formulas has been proposed and used for model checking [10,12,14,4]. DAR makes a
similar use of interpolation-sequence in its global strengthening phase. In contrast to
the other methods, interpolation-sequence is not a key element of DAR since it is only
applied occasionally. Further, it is applied to a restricted depth of unrolling.

The introduction of IC3 [1] suggested a different way to compute information about
reachable states. Unlike interpolation-based approaches IC3 requires no unrolling and
is based on inductive reasoning. The main difference between DAR and IC3 is in the
way they strengthen the over-approximated sets of states. IC3 finds a state that can reach
¬p and if it concludes that this state is not reachable, it tries to generalize this fact and
removes more than just one state. DAR on the other hand finds an over-approximation
of all states that can reach ¬p, rather than a single state. It then tries to prove that the
entire set is unreachable. Also, when DAR fails to strengthen using local reasoning, it
applies a limited unrolling in the global phase. On the other hand, IC3 can fall into state
enumeration if generalization is not successful.

2 Preliminaries

Let V be a set of boolean variables. For v ∈ V , v′ is used to denote the value of v after
one time unit. The set of these variables is denoted by V ′. In the general case V i is used
to denote the variables in V after i time units (thus, V 0 = V ). For a formula η over
V i, we denote by η[V i ← V j ] the formula obtained from η when for each v ∈ V , vi

is replaced with vj . We use η(V i) or simply η〈i〉 to denote η[V ← V i]. In particular,
η′ = η[V ← V ′]. We will use L(η) to denote the variables appearing in η. From now
on, all formulas we refer to are propositional formulas, unless stated otherwise.



312 Y. Vizel, O. Grumberg, and S. Shoham

Definition 1. A finite transition system is a triple M = (V, INIT,TR) where V is a set
of boolean variables, INIT(V ) is a formula over V , describing the initial states, and
TR(V, V ′) is a formula over V and the next-state variables V ′, describing the transition
relation.

An assignment s assigning values from {0, 1} to V defines a state in M . A formula
over V represents a set of states which consists of all the satisfying assignments of the
formula. We refer to a formula η over V as a set of states and therefore use the notation
s ∈ η for states represented by η. Similarly, a formula η over V, V ′ represents a set of
pairs of states, and we write (s, s′) ∈ η for pairs in the set.

A path of length n inM is a sequence of states π = s0, . . . , sn s.t. s0 ∈ INIT and for
all 0 ≤ i < n, (si, si+1) ∈ TR. Let AGp be a safety property, where p is a formula over
V . A path π = s0, . . . , sn in M is a counterexample of length n for AGp if sn |= ¬p.

Let Q be a formula over V . The post-image of Q w.r.t. M is the set of all states
reachable from Q in one transition, defined by the formula ∃V [Q(V ) ∧ TR(V, V ′)]
(note that this formula is defined over V ′). The pre-image of Q w.r.t. M is the set of all
states that can reach Q in one transition, defined by ∃V ′[TR(V, V ′) ∧Q(V ′)].

Definition 2. Let M be a transition system and ϕ and ψ formulas over V . The formula
ΓM (ϕ, ψ) = ϕ(V ) ∧ TR(V, V ′) ∧ ψ(V ′) is a local reachability check w.r.t. M , ϕ, ψ.

WheneverM is clear from the context we omit M and write Γ (ϕ, ψ).
Let (φ−, φ+) be a pair of formulas. If φ− ∧φ+ is unsatisfiable, then by [7] we know

that there exists an interpolant, defined as follows.

Definition 3 (Interpolant). Let φ− ∧ φ+ ≡ ⊥ be an unsatisfiable formula. An inter-
polant for φ−∧φ+, denoted I(φ−, φ+), is a formula I s.t. (i) φ− ⇒ I , (ii) I∧φ+ ≡ ⊥,
and (iii) L(I) ⊆ L(φ−) ∩ L(φ+).
A similar property holds for conjunctions of more than 2 formulas [10,14]:

Definition 4 (Interpolation-Sequence). Let 〈A1, . . . , An〉 be a sequence of formu-
las s.t.

∧n
i=1Ai ≡ ⊥. An interpolation-sequence for 〈A1, . . . , An〉 is a sequence

〈I0, I1, . . . , In〉 of formulas s.t.: (i) I0 ≡ � and In ≡ ⊥, (ii) For every 0 ≤ j < n,
Ij ∧ Aj+1 ⇒ Ij+1, and (iii) For every 0 < j < n, L(Ij) ⊆ L(A1, . . . , Aj) ∩
L(Aj+1, . . . , An).

3 Using Interpolants for Forward and Backward Analysis

3.1 Forward and Backward Interpolants

Interpolation is typically used in model checking in order to compute over-approximated
sets of reachable states [11,12,14].

Let R and Q be propositional formulas over V representing sets of states, and let
TR(V, V ′) be a transition relation. Suppose we would like to know if the post image of
R is disjoint fromQ. This property can be checked by checking the formula Γ (R,Q) =
R(V ) ∧ TR(V, V ′) ∧Q(V ′) for unsatisfiability. If the formula is unsatisfiable then the



Intertwined Forward-Backward Reachability Analysis Using Interpolants 313

answer is yes, meaning that Q is not reachable from R in one step. Moreover, consider
φ− = R(V ) ∧ TR(V, V ′) and φ+ = Q(V ′). An interpolant I = I(φ−, φ+) satisfies
R(V ) ∧ TR(V, V ′)⇒ I(V ′) and I(V ′) ∧Q(V ′) ≡ ⊥. Therefore, I represents an over
approximation of the post-image of R, and it is also disjoint from Q.

The unsatisfiability of the formulaΓ (R,Q) = R(V )∧TR(V, V ′)∧Q(V ′) can also be
interpreted in a different manner, shedding light on the pre-image ofQ. More precisely,
the unsatisfiability of the formula states that the pre-image ofQ is disjoint fromR. This
view leads to a different way of using interpolation in this setting. For the backward
interpretation, we now define φ− = TR(V, V ′) ∧ Q(V ′) and φ+ = R(V ). Again,
since φ− ∧φ+ is unsatisfiable, an interpolant I exists. Formally TR(V, V ′)∧Q(V ′)⇒
I(V ), therefore I is an over-approximation of the pre-image of Q. Moreover, I ∧ R is
unsatisfiable and therefore I is disjoint from R.

We conclude that interpolation gives us a way to approximate both post-image and
pre-image computations. Formally, we define forward and backward interpolants:

Definition 5 (Forward and Backward Interpolants). Let R and Q be propositional
formulas over V s.t. Γ (R,Q) ≡ ⊥. The forward interpolant of Γ (R,Q), denoted
FI(R,Q), is I(R(V ) ∧ TR(V, V ′), Q(V ′))[V ′ ← V ]. The backward interpolant of
Γ (R,Q), denoted BI(R,Q), is I(TR(V, V ′) ∧Q(V ′), R(V )).

Note that I(R(V )∧ TR(V, V ′), Q(V ′)) is defined over V ′. Therefore, we substitute V ′

for V in the definition of a forward interpolant. As explained above:

Lemma 1. FI(R,Q) over-approximates the post-image of R, and is disjoint from Q.
Similarly, BI(R,Q) over-approximates the pre-image of Q, and is disjoint from R.

3.2 Forward and Backward Reachability Sequences

Our model checking algorithm for safety properties, described in Sec. 4, uses forward
and backward interpolants for the computation of over-approximated sets of forward
and backward reachable states. Technically, we consider both forward and backward
reachability approximations:

Definition 6. A Forward Reachability Sequence (FRS) of length n w.r.t.M and a prop-
erty AGp is a sequence F̄[n] = 〈F0, F1, . . . , Fn〉 of sets of states s.t.

– F0 = INIT
– Fi(V ) ∧ TR(V, V ′)⇒ Fi+1(V

′) for 0 ≤ i < n

– Fi ⇒ p for 0 ≤ i ≤ n.

Definition 7. A Backward Reachability Sequence (BRS) of length n w.r.t. M and a
property AGp is a sequence B̄[n] = 〈B0, B1, . . . , Bn〉 of sets of states s.t.

– B0 = ¬p.
– Bi+1(V )⇐ TR(V, V ′) ∧Bi(V

′) for 0 < i ≤ n.
– Bi ⇒ ¬INIT for 0 ≤ i ≤ n.



314 Y. Vizel, O. Grumberg, and S. Shoham

1: function DAR(M ,p)
2: if INIT ∧ ¬p == SAT then
3: return cex
4: end if
5: F̄ = 〈F0 = INIT〉, B̄ = 〈B0 = ¬p〉
6: n = 0
7: while !F̄ .FIXPOINT()∧!B̄.FIXPOINT() do
8: if LOCSTRENGTHEN(F̄ , B̄, n) == false then
9: if GLBSTRENGTHEN(F̄ , B̄, n) == false then

10: return cex
11: end if
12: end if
13: n = n+ 1
14: end while
15: return Verified
16: end function

Fig. 1. Dual Approximated Reachability

When n is clear from the context, we simply use F̄ and B̄. The second condition in
Def. 6 (Def. 7) states that Fi+1 (Bi+1) is an over-approximation of the post(pre)-image
of Fi (Bi) w.r.t. M . We conclude that Fi over-approximates the set of states reachable
from INIT in i steps, and Bi over-approximates the set of states reaching a violation of
p in i steps. The following properties hold for FRS and BRS:

Lemma 2. A FRS (BRS) of length n exists iff there is no counterexample of length≤ n.

Definition 8 (Fixpoint). A FRS F̄[n] is at fixpoint if there is 0 < k ≤ n s.t. Fk ⇒
∨k−1

i=0 Fi. Similarly, a BRS B̄[n] is at fixpoint if there is 0 < k ≤ n s.t. Bk ⇒
∨k−1

i=0 Bi.

Lemma 3. Given a FRS F̄ and a BRS B̄, if F̄ or B̄ is at fixpoint then M |= AGp.

Note that a fixpoint in one of the sequences suffices to conclude that M |= AGp.

4 Dual Approximated Reachability

In this section we describe our Dual Approximated Reachability (DAR) algorithm for
model checking safety properties. DAR computes over-approximated sets of reachable
states for both forward and backward reachability analysis by means of a FRS and a
BRS, using interpolants. The computations are intertwined where each of them is used
to make the other tighter. DAR avoids unrolling of the transition system unless it is
really needed.

Technically, DAR computes a FRS F̄ and a BRS B̄ and gradually extends them until
either a counterexample is found or a fixpoint is reached on either F̄ or B̄. Since the
state-space of M is finite, one of the above is bound to happen, which ensures that:

Theorem 1. Given a model M and a safety property ϕ = AGp, DAR always termi-
nates. Moreover, M |= ϕ if and only if DAR returns “Verified”.

We now describe DAR in detail. The pseudocode of DAR appears in Fig. 1.



Intertwined Forward-Backward Reachability Analysis Using Interpolants 315

Initialization of DAR (lines 2-5) starts by checking the formula INIT∧¬p. If this for-
mula is unsatisfiable, the initial states ofM satisfy the property. If not, a counterexample
exists. In the former case, DAR initializes F̄ = 〈F0 = INIT〉 and B̄ = 〈B0 = ¬p〉.
Clearly F̄ and B̄ are FRS and BRS, respectively.

The iterative part of DAR (lines 8-13) then gradually extends and strengthens F̄
and B̄ s.t. they remain a FRS and a BRS respectively. As ensured by Lemma 2, this
is possible as long as no counterexample of the corresponding length exists. In the
following, we describe a single iteration of DAR, strengthening and extending F̄ and
B̄, or reporting a counterexample.

4.1 First Iteration of DAR

Let us first present the first iteration of DAR. Recall that initially F̄ = 〈F0 = INIT〉 and
B̄ = 〈B0 = ¬p〉. DAR then checks the formula F0 ∧ TR ∧ B′

0 = INIT ∧ TR ∧ ¬p′ for
satisfiability. In case this formula is satisfiable a counterexample of length one exists.
Otherwise, the unsatisfiability of INIT∧TR∧¬p′ entails information both about the post-
image of INIT and about the pre-image of ¬p. Accordingly, we extend F̄ with F1 =
FI(F0, B0) and B̄ with B1 = BI(F0, B0). Due to the properties of the interpolants, the
sequences F̄ = 〈F0, F1〉 and B̄ = 〈B0, B1〉 are FRS and BRS respectively.

4.2 General Iteration of DAR

Let us now discuss a general iteration n+1. Consider the FRS F̄[n] = 〈F0, F1, . . . , Fn〉
and the BRS B̄[n] = 〈B0, B1, . . . Bn〉 obtained at iteration n. The goal of iteration n+1
is to check if a counterexample of length n+1 exists, and if not, extend these sequences
to length n+ 1 s.t. they remain a FRS and a BRS.

The combination of F̄[n] and B̄[n] provides an approximate description of all possible
counterexamples of length n + 1 in M . Namely, recall that Fi over-approximates the
set of all states reachable from INIT in i steps. Similarly, Bj over-approximates the set
of all states that can reach ¬p in j steps. Their intersection, Fi ∧ Bj therefore over-
approximates the set of all states that are both reachable from INIT in i steps and can
reach ¬p in j steps. These are states that appear in the i-th step of a counterexample of
length i+ j. In particular, when we align F̄ and B̄ one against the other, conjoining Fi

with Bn−i+1, we obtain an over-approximation of the set of all states that appear in the
i-th step of a counterexample of length n+ 1. The sequence

Π(F̄[n], B̄[n]) = 〈INIT, F1 ∧Bn, F2 ∧Bn−1, . . . , Fn ∧B1,¬p〉

therefore over-approximates the set of all counterexamples of length n+ 1.
We refer to the sequenceΠ(F̄[n], B̄[n]) as an approximated Counterexample (aCEX).

Whenever clear from the context we write Π and refer to the i-th element in the se-
quence as Πi. A sequence of states s0, . . . , sn+1 in M matches Π if for every 0 ≤ i ≤
n+ 1, si ∈ Πi. Formally, Π has the following property.

Lemma 4. Let π = s0, . . . , sn+1 be a counterexample in M . Then, π matches Π .



316 Y. Vizel, O. Grumberg, and S. Shoham

By Lemma 4, checking if a counterexample exists amounts to checking if some path
matchesΠ . Such a path is necessarily a counterexample of length n+ 1. If such a path
exists, we say that Π is valid.

DAR first attempts to check for (in)validity of the aCEX using local checks in a local
strengthening phase. If this fails, DAR moves on to the global strengthening phase that
applies global checks. In both phases, if the invalidity of the aCEX is established, the
FRS and BRS are strengthened and extended into a FRS and a BRS of length n + 1.
Otherwise, the aCEX is found to be valid and a counterexample of length n + 1 is
obtained in the process.

Local Strengthening Phase. The local strengthening phase aims at checking if Π is
locally invalid, which provides a sufficient condition for its invalidity.

Definition 9. Π is locally invalid if there exists 0 ≤ i ≤ n s.t. Γ (Πi, Πi+1) ≡ ⊥.

Lemma 5. If Π is locally invalid, then it is also invalid.

In order to check if Π is locally invalid, we use the following observation.

Lemma 6. Let F̄[n] be a FRS, B̄[n] be a BRS, and 1 ≤ i ≤ n. Then Γ (Fi ∧
Bn−i+1, Fi+1 ∧ Bn−i) ≡ Γ (Fi, Bn−i). Similarly, Γ (INIT, F1 ∧ Bn) ≡ Γ (F0, Bn),
and Γ (Fn ∧ B1,¬p) ≡ Γ (Fn, B0). We conclude that for every 0 ≤ i ≤ n,
Γ (Πi, Πi+1) ≡ ⊥ iff Γ (Fi, Bn−i) ≡ ⊥.

Lemma 6 follows from the property of a FRS, where Fi∧TR⇒ F ′
i+1, and the property

of a BRS, whereBn−i+1 ⇐ TR∧B′
n−i. Lemma 6 implies that if there exists 0 ≤ i ≤ n

s.t. Γ (Fi, Bn−i) ≡ ⊥, then the aCEX is locally invalid and hence invalid. This can also
be understood intuitively, as the above means that the (over-approximated) set of states
reachable from INIT in i steps and the (over-approximated) set of states that can reach
¬p in n − i steps are not reachable from one another in one step. This means that
altogether ¬p is not reachable from INIT in i + (n − i) + 1 = n+ 1 steps, and hence
no counterexample of length n+ 1 exists.

In the local strengthening phase, DAR therefore searches for an index 0 ≤ i ≤ n
s.t. Γ (Fi, Bn−i) ≡ ⊥. It starts by checking the formula Γ (Fn, B0), setting i = n. In
case it is satisfiable, DAR starts to iteratively go backwards along F̄ and B̄ decreasing
i by 1. The traversal continues until either Γ (Fi, Bn−i) turns out to be unsatisfiable for
some 0 ≤ i ≤ n or until Γ (F0, Bn) is found to be satisfiable.

If an index i is found s.t. Γ (Fi, Bn−i) ≡ ⊥, then the aCEX is locally invalid and by
Lemma 5 we conclude that no counterexample of length n+1 exists. Moreover, in this
case, the FRS and BRS are locally and gradually strengthened and extended as follows.

Iterative Local Strengthening: Iterative local strengthening is reached when it is already
known that no counterexample of length n+1 exists. Thus, as Lemma 2 ensures, there
exist a FRS and BRS of length n+1. However, F̄[n] and B̄[n] cannot necessarily be ex-
tended immediately. For example, if Γ (Fn, B0) = Fn(V )∧ TR(V, V ′)∧¬p(V ′) �≡ ⊥,
then no Fn+1 can be obtained s.t. Fn(V ) ∧ TR(V, V ′) ⇒ Fn+1(V

′) and in addition
Fn+1 ⇒ p. On the other hand, if Γ (Fn, B0) ≡ ⊥ then Fn+1 can be initialized using



Intertwined Forward-Backward Reachability Analysis Using Interpolants 317

FI(Fn, B0) while maintaining the properties of a FRS (similarly to the initialization
of F1). Dually, if Γ (F0, Bn) �≡ ⊥, then no extension of B̄[n] is possible, while if
Γ (F0, Bn) ≡ ⊥, we can set Bn+1 = BI(F0, Bn). We therefore first strengthen the
components of F̄[n] and B̄[n] until Γ (Fn, B0) ≡ ⊥ and Γ (F0, Bn) ≡ ⊥, which is a
necessary and sufficient condition for extending F̄ and B̄.

Recall that Γ (Fi, Bn−i) ≡ ⊥ for some 0 ≤ i ≤ n. This means that even though the
components of F̄[n] and B̄[n] may not be precise enough to enable their extension, they
are precise enough at least in one place that allowed us to conclude that no counterex-
ample of length n + 1 exists. DAR uses this “local” precision to strengthen the entire
sequences, as described below.

In order to simplify the references to the indices, we replace the use of i and n − i
by 0 ≤ i, j ≤ n s.t. i + j = n. Therefore Γ (Fi, Bj) ≡ ⊥ for some 0 ≤ i, j ≤ n s.t.
i + j = n. This ensures that there exists a forward interpolant FI(Fi, Bj), as well as a
backward interpolant BI(Fi, Bj). We can therefore perform a local strengthening step
updating Fi+1 and Bj+1:

Definition 10. Let F̄[n] be a FRS and B̄[n] be a BRS s.t. Γ (Fi, Bj) ≡ ⊥ for some
0 ≤ i, j ≤ n s.t. i + j = n. A forward strengthening step at (i, j) strengthens F̄[n]: If
i < n, Fi+1 = Fi+1 ∧ FI(Fi, Bj). A backward strengthening step at (i, j) strengthens
B̄[n]: If j < n, Bj+1 = Bj+1 ∧ BI(Fi, Bj).

We refer to i, j < n since Fn+1 and Bn+1 are not yet defined and therefore cannot
be updated. The strengthening propagates the unsatisfiability of Γ (Fi, Bj) one step
forward and one step backward while maintaining the properties of a FRS and a BRS:

Lemma 7. Let F̄[n] and B̄[n] be the result of a forward or backward strengthening step
at (i, j) s.t. i+ j = n. Then F̄[n] and B̄[n] remain FRS and BRS resp. In addition:

– For a forward strengthening step, if i < n, Γ (Fi+1, Bj−1) ≡ ⊥.
– For a backward strengthening step, if j < n, Γ (Fi−1, Bj+1) ≡ ⊥.

Lemma 7 implies that if Γ (Fi, Bj) ≡ ⊥ for some 0 ≤ i, j ≤ n s.t. i + j = n, then by
iterating the forward and backward strengthening steps, we can eventually ensure that
Γ (Fi, Bj) ≡ ⊥ for every 0 ≤ i, j ≤ n s.t. i+ j = n, and in particular for i = 0, j = n
and i = n, j = 0. Thus, we apply an iterative local strengthening starting from (i, j):

Definition 11 (Iterative Local Strengthening). Let 0 ≤ i, j ≤ n be indices s.t. i+j =
n and Γ (Fi, Bj) ≡ ⊥. Iterative local strengthening from (i, j) performs:

1. Forward strengthening steps starting at (i, j), proceeding forward while increasing
i and decreasing j until (n− 1, 1) (strengthening Fi+1, . . . , Fn), and

2. Backward strengthening steps starting at (i, j), proceeding backward while in-
creasing j and decreasing i until (1, n− 1) (strengtheningBj+1, . . . , Bn), and

3. Finally, once Γ (Fn, B0) ≡ ⊥, Fn+1 is initialized by FI(Fn, B0). Similarly, once
Γ (F0, Bn) ≡ ⊥, Bn+1 is initialized by BI(F0, Bn).

Lemma 8. Let 0 ≤ i, j ≤ n be indices s.t. i + j = n and Γ (Fi, Bj) ≡ ⊥. Iterative
local strengthening from (i, j) terminates with a FRS and a BRS of length n+ 1.

Iterative local strengthening uses the BRS for the strengthening of the FRS and vice
versa, demonstrating how each of them is used to make the other over-approximation
tighter. The complete local strengthening procedure is described in Fig. 2.



318 Y. Vizel, O. Grumberg, and S. Shoham

17: function LOCSTRENGTHEN(F̄, B̄, n)
18: i = FINDSTRENGTHEN(F̄ , B̄, n)
19: if i == −1 then
20: // No local strengthening
21: // point was found
22: //Move to GLBSTRENGTHEN

23: return false
24: else
25: ITERLS(F̄ , B̄, n, i, n− i)
26: return true
27: end if
28: end function

(a) Local Strengthening

29: function ITERLS(F̄ , B̄, n, i, j)
30: while i < n do
31: Fi+1 = Fi+1 ∧ FI(Fi, Bn−i)
32: i = i+ 1
33: end while
34: F̄ .ADD(FI(Fn, B0))
35: while j < n do
36: Bj+1 = Bj+1∧BI(Fn−j , Bj)
37: j = j + 1
38: end while
39: B̄.ADD(BI(F0, Bn))
40: end function

(b) Iterative Local Strengthening

Fig. 2. Local strengthening procedures

Global Strengthening Phase. We now consider the case where Γ (Fi, Bn−i) �≡ ⊥ for
every 0 ≤ i ≤ n in F̄[n] and B̄[n]. By Lemma 6, this means that there is a real transition
between every pair of consecutive sets in the aCEX Π , making local strengthening
inapplicable since the aCEX is not locally invalid. Clearly this does not imply that
the aCEX is valid, and further checks are needed. We therefore turn to examine the
(in)validity of the aCEX in a more global manner.

Similarly to the principle used in CEGAR [5] for an abstract counterexample, here
too, if the aCEX Π is invalid, there exists a minimal index i ≤ n + 1 representing
the minimal prefix of the aCEX that has no matching path in M . We therefore wish to
search for such an index, if it exists. The search starts from the prefixΠ0, Π1, Π2 (since
〈Π0, Π1〉 is necessarily valid) and extends it gradually. In the i-th step (starting from
i = 2), the goal is to check if Π0∧TR∧Π ′

1∧TR∧Π ′′
2 . . .∧TR∧Π〈i〉

i (*) is satisfiable,
meaning that a matching path to the prefix Π0, . . . , Πi exists in M .

Recall that for i ≤ n, (*) is actually the formula INIT ∧ TR ∧ (F1 ∧ Bn)
′ ∧ TR ∧

(F2 ∧Bn−1)
′′ ∧ . . . ∧ TR ∧ (Fi ∧Bn−i+1)

〈i〉. For i = n+ 1 the last conjunct consists
of B0 only (without an F̄ -component). In fact, since in a FRS Fj ∧ TR ⇒ F ′

j+1, then
removing all F̄ components except for the first (INIT) results in an equivalent formula.
Similarly, since in a BRS Bj+1 ⇐ TR ∧ B′

j , removing all B̄ components but the last
(Bn−i+1) again results in an equivalent formula. This simplifies the formula as follows.

Lemma 9. For every 2 ≤ i ≤ n+ 1: Π0 ∧ TR ∧Π ′
1 ∧ TR ∧Π ′′

2 ∧ . . . ∧ TR ∧Π〈i〉
i is

equivalent to INIT ∧ TR ∧ TR ∧ . . . ∧ TR ∧B〈i〉
n−i+1.

DAR therefore checks formulas of the form INIT∧TR∧. . .∧TR∧B〈i〉
n−i+1 starting from

i = 2. It keeps on adding transitions until either the formula becomes unsatisfiable, or
until i = n+ 1 is reached (ending with B0 = ¬p). If the formula is still satisfiable for
i = n+ 1, a counterexample is found and DAR terminates.

If for some 2 ≤ i ≤ n+1, INIT∧TR∧. . .∧TR∧B〈i〉
n−i+1 turns out to be unsatisfiable,

making the aCEX invalid, then first F̄[n] is strengthened:



Intertwined Forward-Backward Reachability Analysis Using Interpolants 319

41: function GLBSTRENGTHEN(F̄, B̄, n)
42: for i = 2 → n+ 1 do // n = 0 does not go into the loop
43: if INIT ∧ TR . . . ∧ TR ∧B

〈i〉
n−i+1 == UNSAT then

44: Ī = GETINTERPOLATIONSEQ()
45: for j = 1 → min{i, n} do
46: Fj = Fj ∧ Ij
47: end for
48: ITERLS(F̄ , B̄, n, i− 1, n− i+ 1)
49: return true
50: end if
51: end for
52: return false // counterexample
53: end function

Fig. 3. Global strengthening procedure

Definition 12. Let INIT ∧ TR ∧ . . . ∧ TR ∧ B〈i〉
n−i+1 ≡ ⊥ for some 2 ≤ i ≤ n + 1,

and let 〈I0, I1, . . . , Ii+1〉 be an interpolation-sequence for 〈A1 = INIT ∧ TR, A2 =

TR, . . . , Ai = TR, Ai+1 = B
〈i〉
n−i+1〉. A global strengthening step at index i strengthens

Fj for every 1 ≤ j ≤ min{i, n} by setting Fj = Fj ∧ Ij .

The condition 1 ≤ j ≤ min{i, n} ensures that if i = n+1, strengthening is applied only
up to Fn since Fn+1 is not yet defined1. The following Lemma, along with Lemma 6
ensures that after a global strengthening step, the strengthened aCEX is locally invalid.

Lemma 10. Let F̄[n] be the result of a global strengthening step at index 2 ≤ i ≤ n+1.
Then F̄[n] remains a FRS. In addition, Γ (Fi−1, Bn−i+1) ≡ ⊥.

DAR now uses iterative local strengthening from (i−1, n−i+1) (Def. 11) to strengthen
Fi, . . . , Fn and Bn−i+2, . . . , Bn

2, as well as initialize Fn+1 and Bn+1. The complete
global strengthening procedure is described in Fig. 3.

5 Experimental Results

To implement DAR we collaborated with Jasper Design Automation3. We measured
the efficiency of DAR by comparing it against two top-tier methods: ITP and IC3. We
used Jasper’s formal verification platform in order to implement DAR, ITP and IC3.

1 If a global strengthening step is performed at i = n+1, then Fn+1 can be initialized to In+1.
2 Note that instead of performing a local strengthening of B̄ as part of the iterative local

strengthening, an interpolation-sequence 〈J0, J1, . . . , Ji+1〉 for 〈A1 = TR ∧ B
〈i+1〉
n−i , A2 =

TR, . . . Ai = TR, Ai+1 = INIT〉 can be used to strengthen Bn−i+1, . . . , Bn by setting
Bn−i+j = Bn−i+j ∧ Jj for 1 ≤ j ≤ i, and to initialize Bn+1 to Ji+1. In this case, iter-
ative local strengthening will be performed only forward, updating F̄ only. For simplicity of
the presentation, we use iterative local strengthening both forward and backward instead of
using an interpolation-sequence for the backward update.

3 An EDA company: http://www.jasper-da.com

http://www.jasper-da.com


320 Y. Vizel, O. Grumberg, and S. Shoham

Table 1. Parameters of the experiments. Name: name of the property; �Vars: number of state
variables in the cone of influence; Status: true - verified property, false - indicates a counterexam-
ple; D: convergence depth representing the number of over-approximated sets of states computed
when the algorithm converges (for ITP, the number of sets computed for the last bound used, and
for DAR, the length of F̄ and B̄); MaxU: maximum unrolling used during verification; �GS: num-
ber of times Global Strengthening is used in DAR; GSR: ratio between iterations using global
strengthening to the total number of iterations; Time[s]: time in seconds. Minimal runtime ap-
pears in boldface. Properties above the full line are from real industrial designs. The rest are from
HWMCC’11.

IC3 ITP DAR
Name �Vars Status D Time[s] D MaxU Time[s] D MaxU �GS GSR Time[s]
Ind1 11854 true 46 799 41 28 1138 49 35 21 0.42 303
Ind2 11854 true 44 701 41 28 1148 49 35 18 0.36 326
Ind3 11866 true 11 82 5 2 19.1 11 8 4 0.33 29.9
Ind4 11877 true NA TO 33 12 307 36 30 18 0.48 194
Ind5 11871 false NA TO NA 20 88 19 20 10 0.5 77
Ind6 11843 false NA TO NA 19 77 18 19 9 0.47 70
Ind7 1247 true 6 1.5 3 2 2 17 5 9 0.5 56.3
Ind8 1247 true 7 7.8 17 23 1250 NA NA NA NA TO
Ind9 449 true 337 78 NA NA TO 45 12 22 0.48 327
Ind10 331 true 458 305 NA NA TO 26 11 15 0.56 33.9
Ind11 330 true 419 132 NA NA TO 38 12 19 0.49 113
Ind12 450 true 22 32.5 NA NA TO NA NA NA NA TO
Ind13 3837 false NA TO NA 68 369 67 68 33 0.48 305
Ind14 3837 false NA TO NA 69 487 68 69 25 0.36 269
Ind15 3836 true 6 42 4 2 2.3 70 64 32 0.45 243
Ind16 11860 true 9 32.5 5 2 11.4 33 32 16 0.47 144
Ind17 11878 true 14 68 7 4 18.4 11 8 4 0.33 29.5
Ind18 3836 true NA TO 6 17 27.3 15 6 6 0.37 10

intel007 1307 true 5 53.5 NA NA TO NA NA NA NA TO
intel018 491 true NA TO 57 35 695 78 51 33 0.42 64
intel019 510 true NA TO 52 35 515 96 57 43 0.44 310
intel023 358 true NA TO NA NA TO 86 53 35 0.4 66
intel026 492 true 53 47.1 50 35 21.9 70 51 34 0.48 27.8

Collaborating with Jasper allowed us to experiment with various real-life industrial
designs and properties from various major semiconductor companies.

Our implementations use known optimizations for the checked methods (e.g. [2,9])
and are comparable to other optimized implementations available online. For DAR we
used some basic procedures to simplify the computed interpolants when possible. Our
implementation of DAR is preliminary and can be further optimized.

For the experiments we used 37 real safety properties from real industrial hardware
designs. The timeout was set to 1800 seconds and experiments were conducted on sys-
tems with Intel Xeon X5660 running at 2.8GHz and 24GB of main memory.

Table 1 shows different parameters for all three algorithms on various industrial ex-
amples. Time and convergence depth are presented for all three, whereas maximum un-
rolling is presented only for ITP and DAR (IC3 does not use unrolling). For DAR we
also present 	GS and GSR that refer to global strengthening (using unrolling) and indi-
cate the number, and ratio, of iterations where local strengthening was insufficient.



Intertwined Forward-Backward Reachability Analysis Using Interpolants 321

(a) Runtime DAR vs. IC3. (b) Runtime DAR vs. ITP.

Fig. 4. Y-axis represents DAR’s runtime in seconds. X-axis represents runtime in seconds for the
compared algorithm (IC3 or ITP). Points below the diagonal are in favor of DAR.

Examining the results shows that the use of unrolling in DAR is indeed limited and
that local strengthening plays a major part during verification, with GSR < 0.5 in
most cases, indicating that local strengthening is often sufficient. Moreover, even when
unrolling is used, its depth is usually smaller compared to the convergence depth, as
indicated by maximum unrolling. Note that the maximum unrolling provides an upper
bound on the unrolling, and the actual unrolling can be smaller in some global strength-
ening phases. For falsified properties (counterexample exists) unrolling is necessarily
applied up to the length of the counterexample in the last iteration. Yet, in many cases
local strengthening is still sufficient in previous iterations.

Another conclusion from the table is that a lower depth of convergence does not
necessarily translate to a better runtime. We can see that in many cases, while ITP con-
verges with less computed sets it takes more time than DAR. This is not surprising since
the number of computed sets presented for ITP considers only the sets computed in the
last bound that was used, disregarding sets from previous bounds. The same can be seen
with regards to IC3. While IC3 converges at a lower depth (on some cases), it still does
not necessarily perform better. This is mainly due to the different effort invested by each
algorithm in the strengthening and addition of a new over-approximated set.

Fig. 4 shows a runtime comparison between DAR and IC3 (Fig. 4a) and ITP (Fig. 4b)
on all 37 industrial examples, including those from Table 1. In 19 out of 37 cases,
DAR outperforms ITP, and in 25 out of 37 cases it outperforms IC3. In 18 out of 37
cases DAR outperforms both methods. DAR could not solve only 5 cases, whereas ITP
and IC3 failed to solve 7 and 12 cases respectively. The overall performance, when
summarized, is in favor of DAR with 36% improvement in run time when compared to
ITP and 52% improvement when compared to IC3.

Cases where DAR outperforms ITP can be explained by the following factors. First,
DAR avoids unrolling when not needed, therefore its SAT calls are simpler. Second,
DAR uses over-approximated sets computed in early iterations and strengthens them
as needed, while ITP does not re-use sets that were computed for lower bounds and
restarts its computation when a spurious counterexample is encountered. Cases where
DAR outperforms IC3 are typically when DAR’s strengthening is more efficient than
IC3’s inductive generalization, requiring less computation power at each iteration.



322 Y. Vizel, O. Grumberg, and S. Shoham

Since DAR relies heavily on interpolants, the cases where DAR performs worse than
IC3 are usually those where the interpolants grow large and contain redundancies. This
is also true when comparing to ITP. Since DAR computes more interpolants than ITP
and also accumulates them, it is more sensitive to the size of the computed interpolants.

We also used the HWMCC’11 benchmark in our experiments. While there are a lot
of cases where all methods perform the same, there are also examples where DAR out-
performs both IC3 and ITP (some are shown at the bottom of Table 1). The benchmark
also includes examples where IC3 or ITP perform better than DAR. The majority of
these cases are simple and solved in a few seconds.

6 Conclusions

We present DAR, a complete SAT-based model checking algorithm that uses both for-
ward and backward interpolants to traverses the state space in a mostly local manner.

The experimental results show that DAR performs well on many industrial designs,
and in many cases outperforms the successful ITP and IC3 algorithms. These results are
very encouraging, especially since our implementation of DAR can be optimized much
further. For example, the local checks applied in the local strengthening phase are inde-
pendent of each other, which makes DAR most suitable for a parallel implementation.

Our experiments were conducted on hardware designs. However, DAR is not re-
stricted to hardware. It will be interesting to see how it performs on software systems.

Another possible direction for future work refers to an integration of DAR with lazy
abstraction [15]. The fact that DAR maintains over-approximations of sets of states
reachable from INIT or ¬p in exactly i steps, rather than in at most i steps, enables
more flexibility in the choice of abstraction used at each time frame.

References

1. Bradley, A.R.: SAT-Based Model Checking without Unrolling. In: Jhala, R., Schmidt, D.
(eds.) VMCAI 2011. LNCS, vol. 6538, pp. 70–87. Springer, Heidelberg (2011)

2. Cabodi, G., Murciano, M., Nocco, S., Quer, S.: Stepping forward with interpolants in un-
bounded model checking. In: ICCAD, pp. 772–778 (2006)

3. Cabodi, G., Nocco, S., Quer, S.: Mixing Forward and Backward Traversals in Guided-
Prioritized BDD-Based Verification. In: Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS,
vol. 2404, pp. 471–484. Springer, Heidelberg (2002)

4. Cabodi, G., Nocco, S., Quer, S.: Interpolation sequences revisited. In: DATE (2011)
5. Clarke, E., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-guided abstraction re-

finement for symbolic model checking. JACM (2003)
6. Clarke, E.C., Grumberg, O., Peled, D.: Model Checking. MIT Press (1999)
7. Craig, W.: Linear reasoning. A new form of the herbrand-gentzen theorem. J. Symb.

Log. 22(3) (1957)
8. D’Silva, V., Purandare, M., Kroening, D.: Approximation Refinement for Interpolation-

Based Model Checking. In: Logozzo, F., Peled, D.A., Zuck, L.D. (eds.) VMCAI 2008.
LNCS, vol. 4905, pp. 68–82. Springer, Heidelberg (2008)

9. Een, N., Mishchenko, A., Brayton, R.: Efficient implementation of property directed reacha-
bility. In: FMCAD (2011)



Intertwined Forward-Backward Reachability Analysis Using Interpolants 323

10. Jhala, R., McMillan, K.L.: Interpolant-Based Transition Relation Approximation. In: Etes-
sami, K., Rajamani, S.K. (eds.) CAV 2005. LNCS, vol. 3576, pp. 39–51. Springer, Heidelberg
(2005)

11. McMillan, K.L.: Interpolation and SAT-Based Model Checking. In: Hunt Jr., W.A., Somenzi,
F. (eds.) CAV 2003. LNCS, vol. 2725, pp. 1–13. Springer, Heidelberg (2003)

12. McMillan, K.L.: Lazy Abstraction with Interpolants. In: Ball, T., Jones, R.B. (eds.) CAV
2006. LNCS, vol. 4144, pp. 123–136. Springer, Heidelberg (2006)

13. Stangier, C., Sidle, T.: Invariant Checking Combining Forward and Backward Traversal.
In: Hu, A.J., Martin, A.K. (eds.) FMCAD 2004. LNCS, vol. 3312, pp. 414–429. Springer,
Heidelberg (2004)

14. Vizel, Y., Grumberg, O.: Interpolation-sequence based model checking. In: FMCAD (2009)
15. Vizel, Y., Grumberg, O., Shoham, S.: Lazy abstraction and SAT-based reachability in hard-

ware model checking. In: FMCAD (2012)


	Intertwined Forward-Backward Reachability Analysis Using Interpolants
	Introduction
	Related Work

	Preliminaries
	Using Interpolants for Forward and Backward Analysis
	Forward and Backward Interpolants
	Forward and Backward Reachability Sequences

	Dual Approximated Reachability
	First Iteration of DAR
	General Iteration of DAR

	Experimental Results
	Conclusions
	References





