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Outline

• Model checking of finite-state 
systems

• Assisting in program development
– Program repair

– Program differencing
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Why (formal) verification?
• safety-critical applications: Bugs are unacceptable!

– Air-traffic controllers
– Medical equipment
– Cars

• Bugs found in later stages of design are expensive

• Hardware and software systems grow in size and 
complexity: Subtle errors are hard to find by 
testing

• Pressure to reduce time-to-market 
Automated tools for formal verification are needed
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Formal Verification
Given 

• a model of a (hardware or software) system and 

• a formal specification

does the system model satisfy the specification?

Not decidable!

To enable automation, we restrict the problem to a 
decidable one:

• Finite-state reactive systems

• Propositional temporal logics
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Finite state systems -
examples

• Hardware designs

• Controllers (elevator, traffic-light)

• Communication protocols (when ignoring the 
message content)

• High level (abstracted) description of non 
finite state systems
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Properties in propositional temporal 
logic - examples

• mutual exclusion:
always ¬( cs1 ∧ cs2)

• non starvation:
always (request ⇒ eventually granted)

• communication protocols:
(¬ get-message) until send-message
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Model Checking [CE81,QS82]

An efficient procedure that receives:

� A finite-state model describing a system

� A temporal logic formula describing a 
property

It returns 

yes, if the system has the property

no + Counterexample, otherwise 
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Model of a system  
Kripke structure / transition system

a,b a

ab,c

c

a,c a,bb

Labeled by atomic propositions AP 
(critical section, variable value…)

Reactive 
Systems
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Temporal Logics

• Linear Time
– Every moment has a unique 

successor

– Infinite sequences (words)

– Linear Time Temporal Logic (LTL)

• Branching Time
– Every moment has several 

successors

– Infinite tree

– Computation Tree Logic (CTL)

• Temporal Logics
– Express properties of event orderings in time
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Propositional temporal logic

AP – a set of atomic propositions

Temporal operators:

Gp

Fp

Xp

pUq

Path quantifiers: A for all path

E there exists a path
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CTL formulas: Example 

• mutual exclusion:   AG ¬( cs1 ∧ cs2)

• EF( request ∧ AG ¬¬¬¬grant)

• “sanity” check: EF request
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Model checking AGp on M

• Iteratively compute the sets Sj of states 
reachable from an initial state in j steps

• At each iteration check whether Sj
contains a state satisfying ¬p
– If so, declare a failure

• Terminate when all states were found
Sk ⊆ ∪i=0,k-1Si

– A fixpoint has been reached



Mutual Exclusion Example

• Two processes with a joint Boolean signal 
sem

• Each process Pi has a variable vi describing 
its state:
– vi = N    Non critical

– vi = T    Trying

– vi = C    Critical



Mutual Exclusion Example
• Each process runs the following program:

Pi ::  while (true) {
if (vi == N)  vi = T;
else if (vi == T && sem)  { vi = C; sem = 0; 

}
else if (vi == C)  {vi = N; sem = 1; }

}

• The full program is: P1||P2  
 

• Initial state: (v1=N, v2=N, sem)
• The execution is interleaving

Atomic 

action



Mutual Exclusion Example

v1=N, v2=N, sem

v1=T, v2=N, sem v1=N, v2=T, sem

v1=C, v2=N, Õsem v1=N, v2=C, Õsemv1=T, v2=T, sem

v1=C, v2=T, Õsem v1=T, v2=C, Õsem



• We define atomic propositions: AP={C1,C2,T1,T2)

• A state is marked with Ti if vi=T

• A state is marked with Ci if vi=C

v1=N, v2=N, sem

v1=T, v2=N, sem v1=N, v2=T, sem

v1=C, v2=N, Õsem v1=N, v2=C, Õsemv1=T, v2=T, sem

v1=C, v2=T, Õsem v1=T, v2=C, ÕsemC1,T2

T1

C1



• Property 1: AGÕ(C1.C2)

C1,T2

T1

C1 T1,T2

T1,C2

C2

T2



• Property 1: AGÕ(C1.C2)

S0

C1,T2

T1

C1 T1,T2

T1,C2

C2

T2



• Property 1: AGÕ(C1.C2)

S1

C1,T2

T1

C1 T1,T2

T1,C2

C2

T2



• Property 1: AGÕ(C1.C2)

S2

C1,T2

T1

C1 T1,T2

T1,C2

C2

T2



• Property 1: AGÕ(C1.C2)

S3

C1,T2

T1

C1 T1,T2

T1,C2

C2

T2



• M ╞ AG ¬ (C1 ∧C2 )

S4 ` S04S14S24S3

C1,T2

T1

C1 T1,T2

T1,C2

C2

T2



• Property 2: AGÕ(T1.T2)

C1,T2

T1

C1 T1,T2

T1,C2

C2

T2



• Property 2: AGÕ(T1.T2)

C1,T2

T1

C1 T1,T2

T1,C2

C2
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• Property 2: AGÕ(T1.T2)

C1,T2

T1

C1 T1,T2

T1,C2

C2

T2



• M |≠ AG ¬ (T1 ∧T2 )

• A violating state has been found

C1,T2

T1

C1 T1,T2

T1,C2

C2

T2



• M |≠ AG ¬ (T1 ∧T2 )

Model checker returns a counterexample

C1,T2

T1

C1 T1,T2

T1,C2

C2

T2
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……  
Sn

……  
Sn

S2S2S1S1INIT
BAD 
¬p
BAD 
¬p

Forward Reachability Analysis
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• terminates when
– either a bad state satisfying ¬¬¬¬p is found

– or a fixpoint is reached: Sj ⊆⊆⊆⊆ ∪i=0,j-1Si



Main limitation

The state explosion problem:

Space and time requirements grow with 
the size of the model
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SAT-based model checking:
A solution for the state explosion problem

Main idea

• Translate the model and the specification to  
propositional formulas

• Use efficient tools (SAT solvers) for solving 
the satisfiability problem
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SAT-based model checking

Since the satisfiability problem is NP-
complete, SAT solvers are based on 
heuristics.
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• Given

– A finite system M

– A safety property AGp

– A bound k

• Determine

– Does M contain a counterexample to AGp of 
k transitions (or fewer) ?

Bounded model checking (BMC)
for checking AGp



Bounded Model Checking (BMC)
for checking AGp

• Unwind the model for k levels, i.e., 
construct all computations of length k

• If a state satisfying ¬p is encountered,  
produce a counterexample;
Otherwise, increase k

[BCCZ 99]
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Bounded Model Checking

Terminates 
• with a counterexample or 
• with time- or memory-out

The method is suitable for falsification, not 
verification
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BMC for checking AGp ( EF¬¬¬¬p )

Input to SAT-based BMC:

A system over variables V = {v1,…,vn}, where

• INIT(V) is a propositional formula representing 
the set of initial states

• R(V,V’) is a propositional formula representing the 
transition relation

A specification:

• ¬¬¬¬p(V) is a propositional formula representing the 
set of states satisfying ¬p 
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• If  (fMk ∧∧∧∧ fϕϕϕϕk )  is unsatisfiable:
M has no counterexample of length k

• If k = 2|V| then we can conclude M |= AGp
– Too big - not practical

• The method is suitable for refutation
– Bug finding
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BMC for checking ϕϕϕϕ= ¬¬¬¬AGp ≡≡≡≡ EF¬¬¬¬p

• fMk (V0,…,Vk) =
INIT(V0) ∧∧∧∧ R(V0,V1) ∧∧∧∧ … ∧∧∧∧ R(Vk-1,Vk)

• Uses k+1 copies of V = { v1, …,vn }

• Vi represents the state after i transitions
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BMC for checking ϕϕϕϕ=EF¬¬¬¬p

• To check if p is violated within k steps:

fϕϕϕϕk (V0,…,Vk) =
¬¬¬¬p(V0)  ∨ … ∨ ¬¬¬¬p(Vk)  = Vi=0…k ¬¬¬¬p(Vi) 
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• The iterative algorithm:

0 0 1 1 2 1( ) ( , ) ( , ) ( , ) ( )
k k k

INIT V R V V R V V R V V p V
−

∧ ∧ ∧ ∧ ∧¬…

0 0( ) ( )INIT V p V∧¬

0 0 1 1( ) ( , ) ( )INIT V R V V p V∧ ∧¬

0 0 1 1 2 2( ) ( , ) ( , ) ( )INIT V R V V R V V p V∧ ∧ ∧¬

.

.

.
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Example – shift register of 
<x,y,z>

The set of states: all valuations of <x,y,z>

Transition relation:
T(x,y,z,x’,y’,z’) =    x’=y  ∧ y’=z   ∧ z’=1

|____|
error

Initial condition:
INIT(x,y,z) =  x=0 ∨ y=0 ∨ z=0

Specification: AG ( x=0 ∨ y=0 ∨ z=0)
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Propositional formula for k=2

fM,2 = (x0=0 ∨ y0=0 ∨ z0=0) ∧

(x1=y0 ∧ y1=z0 ∧ z1=1) ∧

(x2=y1 ∧ y2=z1 ∧ z2=1)

fϕ,2 = Vi=0,..2 (xi=1 ∧ yi=1 ∧ zi=1)

Satisfying assignment: 101  011  111

This is a counterexample!

INIT =  x=0 ∨ y=0 ∨ z=0
R = x’=y  ∧ y’=z   ∧ z’=1

p = x=0 ∨ y=0 ∨ z=0



Verification with SAT solvers

Two successful methods for SAT-based 
verification are based on:

• Interpolation [McMillan 03]

• IC3 [Bradley 11]
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