Formal Methods: Model Checking and Other Applications

> Orna Grumberg Technion, Israel

Marktoberdorf 2017

Outline

- Model checking of finite-state systems
- Assisting in program development
 - Program repair
 - Program differencing

Modular Demand-Driven Analysis of Semantic Difference for Program Versions

Anna Trostanetski, Orna Grumberg, Daniel Kroening

(SAS 2017)

Program versions

Programs often change and evolve, raising the following interesting questions:

- Did the new version introduced new bugs or security vulnerabilities?
- Did the new version remove bugs or security vulnerabilities?
- More generally, how does the behavior of the program change?

Differences between program versions can be exploited for:

- Regression testing of new version w.r.t. old version, used as "golden model"
- Producing zero-day attacks on old version
- characterizing changes in the program's functionality

How Programs Change

Which procedures could be affected

Which procedures are affected

Main ideas (1)

- Modular analysis applied to one pair of procedures at a time
 - No inlining
- Only affected procedures are analyzed
- Over- and under-approximation of difference between procedures are computed

Main ideas (2)

- Procedures need not be fully analyzed:
 - Unanalyzed parts are abstraction using uninterpreted functions
 - Refinement is applied upon demand
- Anytime analysis:
 - Not necessarily terminates
 - Its partial results are meaningful
 - The longer it runs, the more precise its results are

Program representation

- Program is represented by a call graph
- Every procedure is represented by a Control Flow Graph (CFG)
- We are also given a matching function between procedures in the old and new versions

- A call graph is a directed graph:
 - Nodes represent procedures
 - It contains edge $\,p \rightarrow q$ if procedure p includes a call for procedure q
- A control flow graph (CFG) is a directed graph:
 - Nodes represent program instructions (assignments, conditions and procedure calls)
 - Edges represent possible flow of control

Example

Path characterization

- For a finite path π in CFG from entry node to exit node:
 - The reachability condition $R_{\pi}~$ is a First Order Logic Formula, which guarantees that control traverses π
 - The state transformation T_{π} is an n-tuple of expressions over program variables, describing the transformation on the variables' values along π

Both given in terms of variables at the entry node of π

• End of lecture 3

Example

Symbolic execution

- Input variables are given symbolic values
- Every execution path is explored individually (in some heuristic order)
- On every branch, a feasibility check is performed with a constraint solver

Symbolic execution

The symbolic execution we use consists of: For path π in procedure p

- $R_{\pi}(V_{p})$
- $T_{\pi}(V_p)$

where V_p denotes the input variables (the parameters) for procedure **p**

Computing symbolic execution

Given a finite path $\pi = l_1, ..., l_n$, R_{π}^i and T_{π}^i are the path condition and state transformation for path $l_1, ..., l_{i-1}$, respectively.

$$R_{\pi} = R_{\pi}^{n+1}$$
$$T_{\pi} = T_{\pi}^{n+1}$$

Computing symbolic execution

Iterative computation:

- Initialization:
 - For every $x \in V_p$, $T_{\pi}^1[x] = x$
 - $R_{\pi}^{1} = true$
- Assume R_{π}^{i} , T_{π}^{i} are already defined. R_{π}^{i+1} , T_{π}^{i+1} are defined according to the instruction at node *i*:

Computing symbolic execution

Instruction	R	Т	
Assignment $x \coloneqq e$	$R_{\pi}^{i+1} = R_{\pi}^{i}$	$\forall y \neq x \ T_{\pi}^{i+1}[y] := T_{\pi}^{i}[y]$	
		$T_{\pi}^{i+1}[x] := e[V_p \leftarrow T_{\pi}^i]$	
Test B	$R_{\pi}^{i+1} = R_{\pi}^{i} \wedge \tilde{B}$	$\forall x \ T_{\pi}^{i+1}[x] := \ T_{\pi}^{i}[x]$	
Procedure call $g(Y)$	Inlined		

Our goal:

- Compute procedure summary for individual procedures
 - using path summaries (R_{π}, T_{π})
- Compute difference summary for matching pairs of procedures

Procedure summary

• Procedure summary of procedure p is

Sum_p \subseteq { (R_{π}, T_{π}) | π is a finite path in p}

- The full set of path summaries often cannot be computed
 - And might not be needed

Example

Another goal:

- To compute path summaries without in-lining called procedures
- We suggest modular symbolic execution

Modular symbolic execution

- Path π of procedure p includes call g(Y) at location I_i
- $sum_g = \{ (r_1, t_1), \dots, (r_1, t_1) \}$ previously computed
- Instead of in-lining g we compute:

Modular symbolic execution

• $\mathbf{R}_{\pi}^{i+1} = \mathbf{R}_{\pi}^{i} \wedge \mathbf{V}_{j=1,..n} \mathbf{r}_{j}$

• $T_{\pi}^{i+1} = ITE(r_1, t_1, ..., ITE(r_n, t_n, error)..)$

Modular Symbolic Execution

$$\boldsymbol{R_{\pi}^{i+1}} = R_{\pi}^{i} \wedge \bigvee_{j=1}^{n} r_{j} \left[V_{g}^{\nu} \leftarrow T_{\pi}^{i}(Y) \right]$$

 $T_{\pi}^{i+1} = ITE(r_1[V_g^{\nu} \leftarrow T_{\pi}^i(Y)], t_1[V_g^{\nu} \leftarrow T_{\pi}^i(Y)], ...,$ $ITE(r_n[V_g^{\nu} \leftarrow T_{\pi}^i(Y)], t_n[V_g^{\nu} \leftarrow T_{\pi}^i(Y)], error)$

Can we do better?

- Use abstraction for the un-analyzed (uncovered) parts
- Later check if these parts are needed at all for the analysis of the full program (procedure main)
 If needed - refine

Abstraction

- Unanalyzed parts of a procedure is replaced by uninterpreted functions
- For matched procedures g_1, g_2 we have
 - A common uninterpreted function $UF_{g1,g2}$
 - Individual uninterpreted functions UF_{g1} and UF_{g2}

Abstract modular symbolic execution

For call $g_1(Y)$ with $sum_{g1} = \{ (r_1, t_1), ..., (r_n, t_n) \}$:

$$R_{\pi}^{i+1} = R_{\pi}^{i}$$

$$T_{\pi}^{i+1} = ITE(r_{1}, t_{1},...ITE(r_{n}, t_{n}, t_{n}$$

- For $g_2(Y)$ we use sum_{g^2} and UF_{g^2}

Full Difference Summary

Difference for a pair of procedures p_1 , p_2 is a triplet:

- changed: is the set of initial states for which both procedures terminate with different final states.
- termination_changed: is the set of initial states for which exactly one procedure terminates.
- unchanged: is the set of initial states for which both procedures either terminate with the same final states, or both do not terminate.

changed ∪ temination_changed ∪ unchanged

= input space

Example

Example

The full difference summary is: $changed \coloneqq \{3\}$ $terminate_changed \coloneqq \{2\}$ $unchanged \coloneqq \{c \mid (c < 2) \lor (c > 3)\}$

Difference Summary - computation

Full difference summary is incomputable!

Compute under-approximations of changed and unchanged, ignoring terminate_change:

■ computed_changed ⊆ changed

■ computed_unchanged ⊆ unchanged

Difference Summary - computation Difference Summary gives us:

- An under-approximation of the difference: *computed_changed*
- An over-approximation of the difference:
 may_change = ¬computed_unchanged

Computing difference summary

For each (r_1, t_1) in p_1 , (r_2, t_2) in p_2

- diffCond := $r_1 \wedge r_2 \wedge t_1 \neq t_2$
- If diffCond is SAT, add it to computed_changed
- eqCond := $r_1 \wedge r_2 \wedge t_1 = t_2$
- If eqCond is SAT, add it to computed_unchanged

Refinement

• Since we are using uninterpreted functions, the discovered difference may not be feasible:

 The following formula will be added to computed_changed_{p1,p2} (if SAT)

 $x=5 \land x' = UF_{abs1,abs2}(x) \land x'=0 \land 1 \neq -1$

- In order to check satisfiability, symbolic execution is applied to abs
 - Not necessarily on all paths

Refinement

- We run symbolic execution on abs on the path traversed by input 5.
- Now the difference summary is refined and we can check satisfiability again of

$$x = 5 \wedge x' = \left(x > 0? \ x: UF_{abs_1, abs_2}(x)\right) \wedge x' = 0,$$

which is now unsatisfiable meaning there is no difference

Overall Algorithm

Experimental Results -Equivalent Benchmarks

Benchmark	MDDiff	MDDiffRef	RVT	SymDiff
Const	0.545s	0.541s	4.06s	14.562s
Add	0.213s	0.2 <i>s</i>	3.85s	14.549s
Sub	0.258s	0.308s	5.01s	F
Comp	0.841s	0.539s	5.19s	F
LoopSub	0.847 <i>s</i>	1.179s	F	F
UnchLoop	F	2.838s	F	F
LoopMult2	1.666s	1.689s	F	F
LoopMult5	F	3.88s	F	F
LoopMult10	F	9.543s	F	F
LoopMult15	F	21.55s	F	F
LoopMult20	F	49.031s	F	F
LoopUnrch2	0.9s	0.941s	F	F
LoopUnrch5	1.131s	1.126s	F	F
LoopUnrch10	1.147s	1.168s	F	F
LoopUnrch15	1.132s	1.191s	F	F
LoopUnrch20	1.157s	1.215s	F	F 44

LoopMult Benchmark

```
void foo1(int a, int b) {
    int c=0;
    for (int i=1; i <= b;
    i++)
        c+=a;
}</pre>
```

void foo2(int a, int b) {
 int c=0;
 for (int i=1; i <= a;
 i++)
 c+=b;
 return c;
}</pre>

LoopMult Benchmark

LoopMult2

LoopMult5

int main(int x) {
 return
foo(2,2);
}

int main(int x) {
 if (x>=5 &&
 x<7) {
 return
foo(x,5);
 }
}</pre>

LoopUnrch Benchmark

```
void foo1(int a, int b)
{
    int c=0;
    if (a<0) {
        for (int i=1; i <=
        b; i++)
            c+=a;
        }
        return c;
}</pre>
```

```
void foo1(int a, int b)
{
    int c=0;
    if (a<0) {
        for (int i=1; i <=
        a; i++)
            c+=b;
        }
        return c;
}</pre>
```

Experimental Results - Non Equivalent Benchmarks

Benchmark	MDDiff	MDDiffRef
LoopSub	1.187s	2.426s
UnchLoop	F	8.053s
LoopMult2	3.01s	3.451s
LoopMult5	F	5.914s
LoopMult10	F	10.614s
LoopMult15	F	14.024s
LoopMult20	F	25.795s
LoopUnrch2	2.157s	2.338s
LoopUnrch5	2.609s	3.216s
LoopUnrch10	2.658s	3.481s
LoopUnrch15	2.835s	3.446s
LoopUnrch20	3.185s	3.342 <i>s</i>

Summary

We present a differential analysis method that is:

- Modular (analyzes each procedure independently of its current use)
- Incremental
- Computes over- and under-approximation of inputs that produce different behavior
- Introduces abstraction in the form of uninterpreted functions, and allows refinement upon demand

Thank you