Formal Methods: Model Checking and Other Applications

Orna Grumberg Technion, Israel

Marktoberdorf 2017

Outline

 Model checking of finite-state systems

- · Assisting in program development
 - Program repair
 - Program differencing

Modular Demand-Driven Analysis of Semantic Difference for Program Versions

Anna Trostanetski, Orna Grumberg, Daniel Kroening

(SAS 2017)

Program versions

Programs often change and evolve, raising the following interesting questions:

- Did the new version introduced new bugs or security vulnerabilities?
- Did the new version remove bugs or security vulnerabilities?
- More generally, how does the behavior of the program change?

Differences between program versions can be exploited for:

- Regression testing of new version w.r.t. old version, used as "golden model"
- Producing zero-day attacks on old version
- characterizing changes in the program's functionality

How Programs Change

Changes are small, programs are large

Can our work be O(change) instead of O(program)?

Which procedures could be affected

Which procedures are affected

Main ideas (1)

- Modular analysis applied to one pair of procedures at a time
 - No inlining
- Only affected procedures are analyzed
- Over- and under-approximation of difference between procedures are computed

Main ideas (2)

- Procedures need not be fully analyzed:
 - Unanalyzed parts are abstraction using uninterpreted functions
 - Refinement is applied upon demand
- Anytime analysis:
 - Not necessarily terminates
 - Its partial results are meaningful
 - The longer it runs, the more precise its results are

Program representation

- Program is represented by a call graph
- Every procedure is represented by a Control Flow Graph (CFG)
- We are also given a matching function between procedures in the old and new versions

- A call graph is a directed graph:
 - Nodes represent procedures
 - It contains edge $p \rightarrow q$ if procedure p includes a call for procedure q
- A control flow graph (CFG) is a directed graph:
 - Nodes represent program instructions
 (assignments, conditions and procedure calls)
 - Edges represent possible flow of control

```
void p(int& x) {
   if (x < 0) {
      x=-1;
      return;
   X--;
   if (x >= 1) {
      x = x + 1;
      return;
   } else
      while (x == 1);
   x=0;
```


Path characterization

- For a finite path π in CFG from entry node to exit node:
 - The reachability condition R_π is a First Order Logic Formula, which guarantees that control traverses π
 - The state transformation T_π is an n-tuple of expressions over program variables, describing the transformation on the variables' values along π

Both given in terms of variables at the entry node of π

• End of lecture 3

$$T_{\pi}(\mathbf{x}) = (\mathbf{x})$$

$$R_{\pi}(x,y) = x \ge 0 \land x-1 \ge 1$$

$$T_{\pi}(x,y) = (x-1,x)$$

Symbolic execution

- Input variables are given symbolic values
- Every execution path is explored individually (in some heuristic order)
- On every branch, a feasibility check is performed with a constraint solver

Symbolic execution

The symbolic execution we use consists of: For path π in procedure p

- $\cdot R_{\pi}(V_{p})$
- Τ_π(V_p)

where V_p denotes the input variables (the parameters) for procedure p

Computing symbolic execution

Given a finite path $\pi=l_1,\ldots,l_n$, R^i_π and T^i_π are the path condition and state transformation for path l_1,\ldots,l_{i-1} , respectively.

$$R_{\pi} = R_{\pi}^{n+1}$$
$$T_{\pi} = T_{\pi}^{n+1}$$

Computing symbolic execution

Iterative computation:

- Initialization:
 - For every $x \in V_p$, $T_{\pi}^1[x] = x$
 - $-R_{\pi}^{1}=true$
- Assume R_{π}^{i} , T_{π}^{i} are already defined. R_{π}^{i+1} , T_{π}^{i+1} are defined according to the instruction at node i:

Computing symbolic execution

Instruction	R	Т
Assignment $x \coloneqq e$	$R_{\pi}^{i+1} = R_{\pi}^i$	$\forall y \neq x \ T_{\pi}^{i+1}[y] := T_{\pi}^{i}[y]$
		$T_{\pi}^{i+1}[x] := e[V_p \leftarrow T_{\pi}^i]$
Test B	$R_{\pi}^{i+1} = R_{\pi}^{i} \wedge \tilde{B}$	$\forall x \ T_{\pi}^{i+1}[x] := T_{\pi}^{i}[x]$
Procedure call $g(Y)$		Inlined

Our goal:

- Compute procedure summary for individual procedures
 - using path summaries (R_{π}, T_{π})
- Compute difference summary for matching pairs of procedures

Procedure summary

· Procedure summary of procedure p is

$$Sum_p \subseteq \{ (R_\pi, T_\pi) \mid \pi \text{ is a finite path in p} \}$$

- The full set of path summaries often cannot be computed
 - And might not be needed

T F x < 0A possible summary for procedure p: x := x-1x = -1 $sum_p = \{(x<0,-1), (x\ge2,x)\}$ T F Its uncovered part is x >= 1 $x \ge 0 \land x < 2$ x=x+1x == 1F x=0

Another goal:

- To compute path summaries without in-lining called procedures
- We suggest modular symbolic execution

Modular symbolic execution

- Path π of procedure p includes call g(Y) at location I_i
- $sum_g = \{ (r_1,t_1),..., (r_1,t_1) \}$ previously computed
- Instead of in-lining g we compute:

Modular symbolic execution

•
$$R_{\pi}^{i+1} = R_{\pi}^{i} \wedge V_{j=1,..n} r_{j}$$

•
$$T_{\pi}^{i+1} = ITE(r_1, t_1, ..., ITE(r_n, t_n, error)..)$$

Modular Symbolic Execution

$$\mathbf{R}_{\pi}^{i+1} = R_{\pi}^{i} \wedge \bigvee_{j=1}^{n} r_{j} \left[V_{g}^{v} \leftarrow T_{\pi}^{i}(Y) \right]$$

$$T_{\pi}^{i+1} = ITE(r_1[V_g^v \leftarrow T_{\pi}^i(Y)], t_1[V_g^v \leftarrow T_{\pi}^i(Y)], ...,$$

$$ITE(r_n[V_a^v \leftarrow T_{\pi}^i(Y)], t_n[V_a^v \leftarrow T_{\pi}^i(Y)], error)$$

Can we do better?

- Use abstraction for the un-analyzed (uncovered) parts
- Later check if these parts are needed at all for the analysis of the full program (procedure main)
 - If needed refine

Abstraction

- Unanalyzed parts of a procedure is replaced by uninterpreted functions
- For matched procedures g_1,g_2 we have
 - A common uninterpreted function $UF_{q1,q2}$
 - Individual uninterpreted functions UF_{q1} and UF_{q2}

Abstract modular symbolic execution

```
For call g_1(Y) with sum_{g1} = \{ (r_1,t_1),..., (r_n,t_n) \}:
R_{\pi}^{i+1} = R_{\pi}^{i}
T_{\pi}^{i+1} = ITE(r_1, t_1,...ITE(r_n, t_n, t_n, t_n))
ITE(computed\_unchanged, UF_{q1,q2}, UF_{g1}))
```

- For $g_2(Y)$ we use sum_{g2} and UF_{g2}

Full Difference Summary

Difference for a pair of procedures p_1 , p_2 is a triplet:

- changed: is the set of initial states for which both procedures terminate with different final states.
- termination_changed: is the set of initial states for which exactly one procedure terminates.
- unchanged: is the set of initial states for which both procedures either terminate with the same final states, or both do not terminate.

changed ∪ temination_changed ∪ unchanged
= input space

```
void p1(int& x) {
                                             void p2(int& x) {
   if (x < 0)
                                                if (x < 0)
     x = -1;
                                                   x = -1;
  X--;
                                                X--;
   if (x >= 1)
                                                if (x > 2)
      x=x+1;
                                                    x=x+1;
      return;
                                                    return;
   else
                                                else
      while (x == 1);
                                                   while (x == 1);
   x=0;
                                                 x=0;
```

The full difference summary is:

$$changed := \{3\}$$

terminate_change $d := \{2\}$

unchange
$$d := \{c \mid (c < 2) \lor (c > 3)\}$$

Difference Summary - computation

Full difference summary is incomputable!

Compute under-approximations of changed and unchanged, ignoring terminate_change:

- $computed_changed \subseteq changed$
- $computed_unchanged \subseteq unchanged$

Difference Summary - computation Difference Summary gives us:

- An under-approximation of the difference: computed_changed
- An over-approximation of the difference:
 may_change = ¬computed_unchanged

Computing difference summary

For each (r_1,t_1) in p_1 , (r_2,t_2) in p_2

- diffCond := $r_1 \wedge r_2 \wedge t_1 \neq t_2$
- If diffCond is SAT, add it to computed_changed
- eqCond := $r_1 \wedge r_2 \wedge t_1 = t_2$
- If eqCond is SAT, add it to computed_unchanged

Refinement

• Since we are using uninterpreted functions, the discovered difference may not be feasible:

```
void p1(int& x) {
  if (x == 5) {
    abs1(x);
    if (x==0)
        x = 1;
  }
}
void p2(int& x) {
  if (x == 5) {
    abs2(x);
    if (x==0)
        x = -1;
  }
}
```

 The following formula will be added to computed_changed_{p1,p2} (if SAT)

$$x=5 \land x' = UF_{abs1,abs2}(x) \land x'=0 \land 1\neq -1$$

- In order to check satisfiability, symbolic execution is applied to abs
 - Not necessarily on all paths

Refinement

- We run symbolic execution on abs on the path traversed by input 5.
- Now the difference summary is refined and we can check satisfiability again of

$$x = 5 \wedge x' = (x > 0? \ x: UF_{abs_1,abs_2}(x)) \wedge x' = 0,$$

which is now unsatisfiable meaning there is no difference

Overall Algorithm

Experimental Results -Equivalent Benchmarks

Benchmark	MDDiff	MDDiffRef	RVT	SymDiff
Const	0.545s	0.541s	4.06s	14.562s
Add	0.213 <i>s</i>	0.2s	3.85 <i>s</i>	14.549s
Sub	0.258 <i>s</i>	0.308s	5.01 <i>s</i>	F
Comp	0.841 <i>s</i>	0.539 <i>s</i>	5.19 <i>s</i>	F
LoopSub	0.847 <i>s</i>	1.179s	F	F
UnchLoop	F	2.838 <i>s</i>	F	F
LoopMult2	1.666s	1.689s	F	F
LoopMult5	F	3.88 <i>s</i>	F	F
LoopMult10	F	9.543 <i>s</i>	F	F
LoopMult15	F	21.55s	F	F
LoopMult20	F	49.031s	F	F
LoopUnrch2	0.9s	0.941s	F	F
LoopUnrch5	1.131s	1.126 <i>s</i>	F	F
LoopUnrch10	1.147 <i>s</i>	1.168 <i>s</i>	F	F
LoopUnrch15	1.132s	1.191s	F	F
LoopUnrch20	1.157 <i>s</i>	1.215s	F	F 44

LoopMult Benchmark

```
void foo1(int a, int b) {
   int c=0;
   for (int i=1; i <= b;
   i++)
        c+=a;

return c;
}</pre>
```

```
void foo2(int a, int b) {
   int c=0;
   for (int i=1; i <= a;
   i++)
        c+=b;
   return c;
}</pre>
```

LoopMult Benchmark

LoopMult2

```
int main(int x) {
   return
foo(2,2);
}
```

LoopMult5

```
int main(int x) {
    if (x>=5 &&
    x<7) {
      return
    foo(x,5);
    }
}</pre>
```

LoopUnrch Benchmark

```
void foo1(int a, int b)
{
    int c=0;
    if (a<0) {
        for (int i=1; i <=
        b; i++)
            c+=a;
    }
    return c;
}</pre>
```

Experimental Results - Non Equivalent Benchmarks

Benchmark	MDDiff	MDDiffRef
LoopSub	1.187 <i>s</i>	2.426s
UnchLoop	F	8.053 <i>s</i>
LoopMult2	3.01s	3.451s
LoopMult5	F	5.914s
LoopMult10	F	10.614s
LoopMult15	F	14.024s
LoopMult20	F	25.795s
LoopUnrch2	2.157s	2.338s
LoopUnrch5	2.609s	3.216s
LoopUnrch10	2.658 <i>s</i>	3.481s
LoopUnrch15	2.835 <i>s</i>	3.446s
LoopUnrch20	3.185s	3.342s

Summary

We present a differential analysis method that is:

- Modular (analyzes each procedure independently of its current use)
- Incremental
- Computes over- and under-approximation of inputs that produce different behavior
- Introduces abstraction in the form of uninterpreted functions, and allows refinement upon demand

Thank you