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Outline

• Model checking of finite-state 
systems

• Assisting in program development
– Program repair

– Program differencing
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Program versions
Programs often change and evolve, raising 
the following interesting questions:

� Did the new version introduced new bugs or 
security vulnerabilities?

� Did the new version remove bugs or security 
vulnerabilities?

� More generally, how does the behavior of the 
program change?
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Differences between program versions 
can be exploited for:

• Regression testing of new version w.r.t. 
old version, used as “golden model”

• Producing zero-day attacks on old version

• characterizing changes in the program’s 
functionality
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How Programs Change

Changes are small, 
programs are large
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Can our work be 

O(change) instead of 

O(program)?

Call graph



Which procedures could be affected
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Which procedures are affected
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Main ideas (1)

• Modular analysis applied to one pair of procedures 
at a time

– No inlining

• Only affected procedures are analyzed

• Over- and under-approximation of difference 
between procedures are computed
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Main ideas (2)

• Procedures need not be fully analyzed: 
– Unanalyzed parts are abstraction using uninterpreted
functions 

– Refinement is applied upon demand

• Anytime analysis:
– Not necessarily terminates

– Its partial results are meaningful

– The longer it runs, the more precise its results are
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Program representation

� Program is represented by a call graph

� Every procedure is represented by a 
Control Flow Graph (CFG)

� We are also given a matching function 
between procedures in the old and new 
versions
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• A call graph is a directed graph:
• Nodes represent procedures

• It contains edge p → q if procedure p includes a 
call for procedure q

• A control flow graph (CFG) is a directed 
graph:

• Nodes represent program instructions 
(assignments, conditions and procedure calls) 

• Edges represent possible flow of control
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Example
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void p(int& x) {

if (x < 0) {

x= -1;

return;

}

x--; 

if (x >= 1) {

x= x+1;

return;

} else

while ( x == 1);

x=0;

}
x = 0

x >= 1

x = -1

x = x+1

x < 0

F

F T

T

x := x-1

x == 1
T

F



Path characterization
• For a finite path ππππ in CFG from entry node 
to exit node:
– The reachability condition Rππππ is a First Order 
Logic Formula, which guarantees that control 
traverses π

– The state transformation Tππππ is an 
n-tuple of expressions over program variables, 
describing the transformation on the variables’ 
values along π

Both given in terms of variables at the entry node of ππππ
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• End of lecture 3
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Example
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Example
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Rπ(x) = x ≥ 0 ∧ x-1≥1

Tπ(x) = (x)

x = 0

x >= 1

x = -1

x := x+1

x < 0
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Example
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x = 0

x >= 1

x = -1

y = x+1

x < 0

F

F T

T

x := x-1

x == 1
T

F

Rπ(x,y) = 

x ≥ 0 ∧ x-1 ≥ 1

Tπ(x,y) = (x-1,x)



Symbolic execution

• Input variables are given symbolic values

• Every execution path is explored 
individually (in some heuristic order)

• On every branch, a feasibility check is 
performed with a constraint solver
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Symbolic execution

The symbolic execution we use consists of:

For path π in procedure p

• Rππππ(Vp)

• Tππππ(Vp)

where Vp denotes the input variables (the 
parameters) for procedure p
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Computing symbolic execution
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Computing symbolic execution
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Computing symbolic execution
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Our goal:
• Compute procedure summary for individual 
procedures

– using path summaries (Rππππ,Tππππ )

• Compute difference summary for
matching pairs of procedures
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Procedure summary

• Procedure summary of procedure p is

Sump ⊆ { (Rπ ,Tπ) | π is a finite path in p}

• The full set of path summaries often 
cannot be computed
– And might not be needed
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Example
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x=0

x >= 1

x = -1

x=x+1

x < 0

F
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T

x := x-1

x == 1
T

F

A possible summary

for procedure p:

sump = {(x<0,-1), (x≥2,x)}

Its uncovered part is

x≥0 ∧ x<2



Another goal:

• To compute path summaries without 
in-lining called procedures

• We suggest modular symbolic 
execution 
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Modular symbolic execution

• Path π of procedure p includes call 
g(Y) at location li

• sumg = { (r1,t1),…, (r1,t1)}  previously 
computed

• Instead of in-lining g we compute:  
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Modular symbolic execution

• Rπi+1 = Rπi   ∧ Vj=1,..n rj

• Tπ
i+1 = ITE(r1,t1,…,ITE(rn,tn,error)..)
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Modular Symbolic Execution
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Can we do better?

• Use abstraction for the un-analyzed 
(uncovered) parts

• Later check if these parts are 
needed at all for the analysis of the 
full program (procedure main)
– If needed - refine
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Abstraction

• Unanalyzed parts of a procedure is 
replaced by uninterpreted functions

• For matched procedures g1,g2 we have

– A common uninterpreted function 
UFg1,g2

– Individual uninterpreted functions
UFg1 and UFg2
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Abstract modular symbolic 
execution

For call g1(Y) with

sumg1 = { (r1,t1),…, (rn,tn)}:

Rπi+1  = Rπi

Tπ
i+1  = ITE(r1, t1,…ITE(rn, tn,

ITE(computed_unchanged, UFg1,g2, UFg1))

– For g2(Y) we use sumg2 and UFg2
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Full Difference Summary
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Example
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void p1(int& x) {

if (x < 0)

x = -1;

x--; 

if (x >= 1)

x=x+1;

return;

else

while ( x ==1);

x=0;

}

void p2(int& x) {

if (x < 0)

x = -1;

x--; 

if (x > 2)

x=x+1;

return;

else

while ( x == 1);

x=0;

}



Example
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Difference Summary - computation
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Difference Summary - computation
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Computing difference summary

For each (r1,t1) in p1, (r2,t2) in p2
• diffCond := r1 ∧ r2∧t1 ≠ t2
• If diffCond is SAT, add it to 
computed_changed

• eqCond := r1 ∧ r2∧t1 = t2
• If eqCond is SAT, add it to 
computed_unchanged
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Refinement
• Since we are using uninterpreted functions, the 
discovered difference may not be feasible:
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void p1(int& x) {

if (x == 5) {

abs1(x);

if (x==0)

x = 1;

} 

}

void p2(int& x) {

if (x == 5) {

abs2(x);

if (x==0)

x = -1;

} 

}

abs1=abs2=abs



• The following formula will be added to 
computed_changedp1,p2 (if SAT)

x=5 ∧ x’ = UFabs1,abs2(x) ∧ x’=0 ∧ 1≠-1

• In order to check satisfiability, 
symbolic execution is applied to abs
– Not necessarily on all paths
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Refinement
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Overall Algorithm
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Experimental Results –
Equivalent Benchmarks

Benchmark MDDiff MDDiffRef RVT SymDiff
Const 0.545s 0.541s 4.06s 14.562s
Add 0.213s 0.2s 3.85s 14.549s
Sub 0.258s 0.308s 5.01s F
Comp 0.841s 0.539s 5.19s F

LoopSub 0.847s 1.179s F F
UnchLoop F 2.838s F F
LoopMult2 1.666s 1.689s F F
LoopMult5 F 3.88s F F
LoopMult10 F 9.543s F F
LoopMult15 F 21.55s F F
LoopMult20 F 49.031s F F
LoopUnrch2 0.9s 0.941s F F
LoopUnrch5 1.131s 1.126s F F
LoopUnrch10 1.147s 1.168s F F
LoopUnrch15 1.132s 1.191s F F
LoopUnrch20 1.157s 1.215s F F 44



LoopMult Benchmark
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void foo1(int a, int b) {

int c=0;

for (int i=1; i <= b; 

i++) 

c+=a;

return c;

}

void foo2(int a, int b) {

int c=0;

for (int i=1; i <= a; 

i++) 

c+=b;

return c;

}



LoopMult Benchmark
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int main(int x) {

return 

foo(2,2);

}

int main(int x) {

if (x>=5 && 

x<7) {

return 

foo(x,5);

}

}

LoopMult2 LoopMult5



LoopUnrch Benchmark
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void foo1(int a, int b) 

{

int c=0;

if (a<0) {

for (int i=1; i <= 

b; i++) 

c+=a;

}

return c;

}

void foo1(int a, int b) 

{

int c=0;

if (a<0) {

for (int i=1; i <= 

a; i++) 

c+=b;

}

return c;

}



Experimental Results – Non 
Equivalent Benchmarks

Benchmark MDDiff MDDiffRef

LoopSub 1.187s 2.426s

UnchLoop F 8.053s

LoopMult2 3.01s 3.451s

LoopMult5 F 5.914s

LoopMult10 F 10.614s

LoopMult15 F 14.024s

LoopMult20 F 25.795s

LoopUnrch2 2.157s 2.338s

LoopUnrch5 2.609s 3.216s

LoopUnrch10 2.658s 3.481s

LoopUnrch15 2.835s 3.446s

LoopUnrch20 3.185s 3.342s
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Summary

We present a differential analysis method that is:

� Modular (analyzes each procedure independently 
of its current use)

� Incremental

� Computes over- and under-approximation of inputs 
that produce different behavior

� Introduces abstraction in the form of 
uninterpreted functions, and allows refinement 
upon demand

49



Thank you
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