Formal Methods:
 Model Checking and Other Applications

Orna Grumberg
Technion, Israel

Marktoberdorf 2017

Outline

- Model checking of finite-state systems
- Assisting in program development
- Program repair
- Program differencing

Modular Demand-Driven Analysis of Semantic Difference for Program Versions

Anna Trostanetski, Orna Grumberg,
Daniel Kroening
(SAS 2017)

Program versions

Programs often change and evolve, raising the following interesting questions:

- Did the new version introduced new bugs or security vulnerabilities?
- Did the new version remove bugs or security vulnerabilities?
- More generally, how does the behavior of the program change?

Differences between program versions can be exploited for:

- Regression testing of new version w.r.t. old version, used as "golden model"
- Producing zero-day attacks on old version
- characterizing changes in the program's functionality

How Programs Change

Call graph
Changes are small, programs are large

Can our work be
O (change) instead of O(program)?

Which procedures could be affected

Which procedures are affected

Main ideas (1)

- Modular analysis applied to one pair of procedures at a time
- No inlining
- Only affected procedures are analyzed
- Over- and under-approximation of difference between procedures are computed

Main ideas (2)

- Procedures need not be fully analyzed:
- Unanalyzed parts are abstraction using uninterpreted functions
- Refinement is applied upon demand
- Anytime analysis:
- Not necessarily terminates
- Its partial results are meaningful
- The longer it runs, the more precise its results are

Program representation

- Program is represented by a call graph
- Every procedure is represented by a Control Flow Graph (CFG)
- We are also given a matching function between procedures in the old and new versions
- A call graph is a directed graph:
- Nodes represent procedures
- It contains edge $p \rightarrow q$ if procedure p includes a call for procedure q
- A control flow graph (CFG) is a directed graph:
- Nodes represent program instructions (assignments, conditions and procedure calls)
- Edges represent possible flow of control

Example

```
void p(int& x) {
    if (x<0) {
        x=-1;
        return;
    }
    x--;
    if (x>=1) {
        x= x+1;
    return;
    } else
        while ( }\textrm{x}==1\mathrm{ );
    x=0;
}
```


Path characterization

- For a finite path π in CFG from entry node to exit node:
- The reachability condition R_{π} is a First Order Logic Formula, which guarantees that control traverses π
- The state transformation T_{π} is an n-tuple of expressions over program variables, describing the transformation on the variables' values along π
Both given in terms of variables at the entry node of π
- End of lecture 3

Example

Example

Example

$$
\begin{aligned}
& \mathrm{R}_{\pi}(\mathrm{x}, \mathrm{y})= \\
& \mathrm{x} \geq 0 \wedge \mathrm{x}-1 \geq 1 \\
& \mathrm{~T}_{\pi}(\mathrm{x}, \mathrm{y})=(\mathrm{x}-1, \mathrm{x})
\end{aligned}
$$

Symbolic execution

- Input variables are given symbolic values
- Every execution path is explored individually (in some heuristic order)
- On every branch, a feasibility check is performed with a constraint solver

Symbolic execution

The symbolic execution we use consists of:
For path π in procedure p

- $R_{\pi}\left(V_{p}\right)$
- $T_{\pi}\left(V_{p}\right)$
where V_{p} denotes the input variables (the parameters) for procedure p

Computing symbolic execution

Given a finite path $\pi=l_{1}, \ldots, l_{n}$,
R_{π}^{i} and T_{π}^{i} are the path condition and state transformation for path l_{1}, \ldots, l_{i-1}, respectively.

$$
\begin{aligned}
& R_{\pi}=R_{\pi}^{n+1} \\
& T_{\pi}=T_{\pi}^{n+1}
\end{aligned}
$$

Computing symbolic execution

Iterative computation:

- Initialization:
- For every $x \in V_{p}, T_{\pi}^{1}[x]=x$
- $R_{\pi}^{1}=$ true
- Assume R_{π}^{i}, T_{π}^{i} are already defined. $R_{\pi}^{i+1}, T_{\pi}^{i+1}$ are defined according to the instruction at node i :

Computing symbolic execution

Instruction
Assignment $x:=e \quad R_{\pi}^{i+1}=R_{\pi}^{i} \quad \forall y \neq x T_{\pi}^{i+1}[y]:=T_{\pi}^{i}[y]$

$$
\begin{gathered}
\forall y \neq x T_{\pi}^{i+1}[y]:=T_{\pi}^{i}[y] \\
T_{\pi}^{i+1}[x]:=e\left[V_{p} \leftarrow T_{\pi}^{i}\right]
\end{gathered}
$$

Test $B \quad R_{\pi}^{i+1}=R_{\pi}^{i} \wedge \tilde{B}$

$$
\forall x T_{\pi}^{i+1}[x]:=T_{\pi}^{i}[x]
$$

Procedure call $g(Y)$
Inlined

Our goal:

- Compute procedure summary for individual procedures
- using path summaries $\left(R_{\pi}, T_{\pi}\right)$
- Compute difference summary for matching pairs of procedures

Procedure summary

- Procedure summary of procedure p is

Sum $_{p} \subseteq\left\{\left(R_{\pi}, T_{\pi}\right) \mid \pi\right.$ is a finite path in $\left.p\right\}$

- The full set of path summaries often cannot be computed
- And might not be needed

Example

A possible summary for procedure p :
$\operatorname{sum}_{p}=\{(x<0,-1),(x \geq 2, x)\}$

Another goal:

- To compute path summaries without in-lining called procedures
- We suggest modular symbolic execution

Modular symbolic execution

- Path π of procedure p includes call $g(Y)$ at location I_{i}
- $\operatorname{sum}_{g}=\left\{\left(r_{1}, t_{1}\right), \ldots,\left(r_{1}, t_{1}\right)\right\}$ previously computed
- Instead of in-lining g we compute:

Modular symbolic execution

$$
\begin{aligned}
& \text { - } R_{\pi}^{i+1}=R_{\pi}^{i} \wedge V_{j=1, . . n} r_{j} \\
& \text { - } T_{\pi}^{i+1}=\operatorname{ITE}\left(r_{1}, t_{1}, \ldots, \operatorname{ITE}\left(r_{n}, t_{n}, \text { error }\right) . .\right)
\end{aligned}
$$

Modular Symbolic Execution

$$
R_{\pi}^{i+1}=R_{\pi}^{i} \wedge \bigvee_{j=1}^{n} r_{j}\left[V_{g}^{v} \leftarrow T_{\pi}^{i}(Y)\right]
$$

$$
\boldsymbol{T}_{\pi}^{i+1}=\boldsymbol{I T E}\left(\boldsymbol{r}_{1}\left[V_{g}^{v} \leftarrow T_{\pi}^{i}(Y)\right], \boldsymbol{t}_{1}\left[V_{g}^{v} \leftarrow T_{\pi}^{i}(Y)\right], \ldots\right.
$$

$$
\boldsymbol{I T E}\left(\boldsymbol{r}_{n}\left[V_{g}^{v} \leftarrow T_{\pi}^{i}(Y)\right], \boldsymbol{t}_{n}\left[V_{g}^{v} \leftarrow T_{\pi}^{i}(Y)\right], \text { error }\right)
$$

Can we do better?

- Use abstraction for the un-analyzed (uncovered) parts
- Later check if these parts are needed at all for the analysis of the full program (procedure main)
- If needed - refine

Abstraction

- Unanalyzed parts of a procedure is replaced by uninterpreted functions
- For matched procedures g_{1}, g_{2} we have
- A common uninterpreted function $U_{g 1, g 2}$
- Individual uninterpreted functions $U F_{g 1}$ and $U F_{g 2}$

Abstract modular symbolic execution

For call $g_{1}(Y)$ with
$\operatorname{sum}_{g 1}=\left\{\left(r_{1}, t_{1}\right), \ldots,\left(r_{n}, t_{n}\right)\right\}$:
$R_{\pi}^{i+1}=R_{\pi}^{i}$
$T_{\pi}^{i+1}=\operatorname{ITE}\left(r_{1}, t_{1}, \ldots \operatorname{ITE}\left(r_{n}, t_{n}\right.\right.$, ITE(computed_unchanged, $\left.U F_{g 1, g 2}, ~ U F_{g 1}\right)$)

- For $g_{2}(Y)$ we use sumg g_{2} and $U F_{g 2}$

Full Difference Summary

Difference for a pair of procedures p_{1}, p_{2} is a triplet:

- changed: is the set of initial states for which both procedures terminate with different final states.
- termination_changed: is the set of initial states for which exactly one procedure terminates.
- unchanged: is the set of initial states for which both procedures either terminate with the same final states, or both do not terminate.

$$
\begin{gathered}
\text { changed } \cup \text { temination_changed } \cup \text { unchanged } \\
=\text { input space }
\end{gathered}
$$

Example

Example

The full difference summary is:

$$
\begin{gathered}
\text { changed }:=\{3\} \\
\text { terminate_changed }:=\{2\} \\
\text { unchanged }:=\{c \mid(c<2) \vee(c>3)\}
\end{gathered}
$$

Difference Summary - computation

Full difference summary is incomputable!
Compute under-approximations of changed and unchanged, ignoring terminate_change:

- computed_changed \subseteq changed
- computed_unchanged \subseteq unchanged

Difference Summary - computation
 Difference Summary gives us:

- An under-approximation of the difference: computed_changed
- An over-approximation of the difference:

$$
\text { may_change }=\neg \text { computed_unchanged }
$$

Computing difference summary

For each $\left(r_{1}, t_{1}\right)$ in $p_{1},\left(r_{2}, t_{2}\right)$ in p_{2}

- diffCond := $r_{1} \wedge r_{2} \wedge \dagger_{1} \neq \dagger_{2}$
- If diffCond is SAT, add it to computed_changed
- eqCond $:=r_{1} \wedge r_{2} \wedge t_{1}=t_{2}$
- If eqCond is SAT, add it to computed_unchanged

Refinement

- Since we are using uninterpreted functions, the discovered difference may not be feasible:

- The following formula will be added to computed_changed $_{\text {p1,p2 }}$ (if SAT)

$$
x=5 \wedge x^{\prime}=U F_{a b s 1, a b s 2}(x) \wedge x^{\prime}=0 \wedge 1 \neq-1
$$

- In order to check satisfiability, symbolic execution is applied to abs
- Not necessarily on all paths

Refinement

- We run symbolic execution on abs on the path traversed by input 5 .
- Now the difference summary is refined and we can check satisfiability again of

$$
x=5 \wedge x^{\prime}=\left(x>\mathbf{0} ? \boldsymbol{x}: \boldsymbol{U} \boldsymbol{F}_{\boldsymbol{a b s}_{1}, a b s_{2}}(\boldsymbol{x})\right) \wedge x^{\prime}=0
$$

which is now unsatisfiable meaning there is no difference

Overall Algorithm

Experimental Results Equivalent Benchmarks

Benchmark	MDDiff	MDDiffRef	RVT	SymDiff
Const	0.545 s	0.541 s	4.06 s	14.562 s
Add	0.213 s	0.2 s	3.85 s	14.549 s
Sub	0.258 s	0.308 s	5.01 s	F
Comp	0.841 s	0.539 s	5.19 s	F
LoopSub	0.847 s	1.179 s	F	F
UnchLoop	F	2.838 s	F	F
LoopMult2	1.666 s	1.689 s	F	F
LoopMult5	F	3.88 s	F	F
LoopMult10	F	9.543 s	F	F
LoopMult15	F	21.55 s	F	F
LoopMult20	F	49.031 s	F	F
LoopUnrch2	0.9 s	0.941 s	F	F
LoopUnrch5	1.131 s	1.126 s	F	F
LoopUnrch10	1.147 s	1.168 s	F	F
LoopUnrch15	1.132 s	1.191 s	F	F
LoopUnrch20	1.157 s	1.215 s	F	F

LoopMult Benchmark

```
void fool(int a, int b) {
    int c=0;
    for (int i=1; i <= b;
i++)
    c+=a;
    return c;
}
```

```
void foo2(int a, int b) {
    int c=0;
    for (int i=1; i <= a;
i++)
    c+=b;
    return c;
}
```


LoopMult Benchmark

LoopMult2
int main(int x) \{
return
foo(2,2);
\}

LoopMult5

LoopUnrch Benchmark

```
void foo1(int a, int b)
{
    int c=0;
    if (a<0) {
        for (int i=1; i <=
b; i++)
        c+=a;
    }
    return c;
}
```

```
void fool(int a, int b)
{
    int c=0;
    if (a<0) {
        for (int i=1; i <=
a;i++)
        c+=b;
    }
    return c;
}
```


Experimental Results - Non Equivalent Benchmarks

Benchmark	MDDiff	MDDiffRef
LoopSub	1.187 s	2.426 s
UnchLoop	F	8.053 s
LoopMult2	3.01 s	3.451 s
LoopMult5	F	5.914 s
LoopMult10	F	10.614 s
LoopMult15	F	14.024 s
LoopMult20	F	25.795 s
LoopUnrch2	2.157 s	2.338 s
LoopUnrch5	2.609 s	3.216 s
LoopUnrch10	2.658 s	3.481 s
LoopUnrch15	2.835 s	3.446 s
LoopUnrch20	3.185 s	3.342 s

Summary

We present a differential analysis method that is:

- Modular (analyzes each procedure independently of its current use)
- Incremental
- Computes over- and under-approximation of inputs that produce different behavior
- Introduces abstraction in the form of uninterpreted functions, and allows refinement upon demand

Thank you

