
Formal Methods:
Model Checking and Other Applications

Orna Grumberg

Technion, Israel

Marktoberdorf 2017

1

Outline

• Model checking of finite-state
systems

• Assisting in program development
– Program repair

– Program differencing

2

Modular Demand-Driven Analysis
of Semantic Difference
for Program Versions

3

Anna Trostanetski, Orna Grumberg,
Daniel Kroening

(SAS 2017)

Program versions
Programs often change and evolve, raising
the following interesting questions:

� Did the new version introduced new bugs or
security vulnerabilities?

� Did the new version remove bugs or security
vulnerabilities?

� More generally, how does the behavior of the
program change?

4

Differences between program versions
can be exploited for:

• Regression testing of new version w.r.t.
old version, used as “golden model”

• Producing zero-day attacks on old version

• characterizing changes in the program’s
functionality

5

How Programs Change

Changes are small,
programs are large

6

Can our work be

O(change) instead of

O(program)?

Call graph

Which procedures could be affected

7

Which procedures are affected

8

Main ideas (1)

• Modular analysis applied to one pair of procedures
at a time

– No inlining

• Only affected procedures are analyzed

• Over- and under-approximation of difference
between procedures are computed

9

Main ideas (2)

• Procedures need not be fully analyzed:
– Unanalyzed parts are abstraction using uninterpreted
functions

– Refinement is applied upon demand

• Anytime analysis:
– Not necessarily terminates

– Its partial results are meaningful

– The longer it runs, the more precise its results are

10

Program representation

� Program is represented by a call graph

� Every procedure is represented by a
Control Flow Graph (CFG)

� We are also given a matching function
between procedures in the old and new
versions

11

• A call graph is a directed graph:
• Nodes represent procedures

• It contains edge p → q if procedure p includes a
call for procedure q

• A control flow graph (CFG) is a directed
graph:

• Nodes represent program instructions
(assignments, conditions and procedure calls)

• Edges represent possible flow of control

12

Example

13

void p(int& x) {

if (x < 0) {

x= -1;

return;

}

x--;

if (x >= 1) {

x= x+1;

return;

} else

while (x == 1);

x=0;

}
x = 0

x >= 1

x = -1

x = x+1

x < 0

F

F T

T

x := x-1

x == 1
T

F

Path characterization
• For a finite path ππππ in CFG from entry node
to exit node:
– The reachability condition Rππππ is a First Order
Logic Formula, which guarantees that control
traverses π

– The state transformation Tππππ is an
n-tuple of expressions over program variables,
describing the transformation on the variables’
values along π

Both given in terms of variables at the entry node of ππππ

14

• End of lecture 3

15

Example

16

x = 0

x >= 1

x = -1

x= x+1

x < 0

F

F T

T

x := x-1

x == 1
T

F

Example

17

Rπ(x) = x ≥ 0 ∧ x-1≥1

Tπ(x) = (x)

x = 0

x >= 1

x = -1

x := x+1

x < 0

F

F T

T

x := x-1

x == 1
T

F

Example

18

x = 0

x >= 1

x = -1

y = x+1

x < 0

F

F T

T

x := x-1

x == 1
T

F

Rπ(x,y) =

x ≥ 0 ∧ x-1 ≥ 1

Tπ(x,y) = (x-1,x)

Symbolic execution

• Input variables are given symbolic values

• Every execution path is explored
individually (in some heuristic order)

• On every branch, a feasibility check is
performed with a constraint solver

19

Symbolic execution

The symbolic execution we use consists of:

For path π in procedure p

• Rππππ(Vp)

• Tππππ(Vp)

where Vp denotes the input variables (the
parameters) for procedure p

20

Computing symbolic execution

21

Computing symbolic execution

22

Computing symbolic execution

23

Our goal:
• Compute procedure summary for individual
procedures

– using path summaries (Rππππ,Tππππ)

• Compute difference summary for
matching pairs of procedures

24

Procedure summary

• Procedure summary of procedure p is

Sump ⊆ { (Rπ ,Tπ) | π is a finite path in p}

• The full set of path summaries often
cannot be computed
– And might not be needed

25

Example

26

x=0

x >= 1

x = -1

x=x+1

x < 0

F

F T

T

x := x-1

x == 1
T

F

A possible summary

for procedure p:

sump = {(x<0,-1), (x≥2,x)}

Its uncovered part is

x≥0 ∧ x<2

Another goal:

• To compute path summaries without
in-lining called procedures

• We suggest modular symbolic
execution

27

Modular symbolic execution

• Path π of procedure p includes call
g(Y) at location li

• sumg = { (r1,t1),…, (r1,t1)} previously
computed

• Instead of in-lining g we compute:

28

Modular symbolic execution

• Rπi+1 = Rπi ∧ Vj=1,..n rj

• Tπ
i+1 = ITE(r1,t1,…,ITE(rn,tn,error)..)

29

Modular Symbolic Execution

30

Can we do better?

• Use abstraction for the un-analyzed
(uncovered) parts

• Later check if these parts are
needed at all for the analysis of the
full program (procedure main)
– If needed - refine

31

Abstraction

• Unanalyzed parts of a procedure is
replaced by uninterpreted functions

• For matched procedures g1,g2 we have

– A common uninterpreted function
UFg1,g2

– Individual uninterpreted functions
UFg1 and UFg2

32

Abstract modular symbolic
execution

For call g1(Y) with

sumg1 = { (r1,t1),…, (rn,tn)}:

Rπi+1 = Rπi

Tπ
i+1 = ITE(r1, t1,…ITE(rn, tn,

ITE(computed_unchanged, UFg1,g2, UFg1))

– For g2(Y) we use sumg2 and UFg2
33

Full Difference Summary

34

Example

35

void p1(int& x) {

if (x < 0)

x = -1;

x--;

if (x >= 1)

x=x+1;

return;

else

while (x ==1);

x=0;

}

void p2(int& x) {

if (x < 0)

x = -1;

x--;

if (x > 2)

x=x+1;

return;

else

while (x == 1);

x=0;

}

Example

36

Difference Summary - computation

37

Difference Summary - computation

38

Computing difference summary

For each (r1,t1) in p1, (r2,t2) in p2
• diffCond := r1 ∧ r2∧t1 ≠ t2
• If diffCond is SAT, add it to
computed_changed

• eqCond := r1 ∧ r2∧t1 = t2
• If eqCond is SAT, add it to
computed_unchanged

39

Refinement
• Since we are using uninterpreted functions, the
discovered difference may not be feasible:

40

void p1(int& x) {

if (x == 5) {

abs1(x);

if (x==0)

x = 1;

}

}

void p2(int& x) {

if (x == 5) {

abs2(x);

if (x==0)

x = -1;

}

}

abs1=abs2=abs

• The following formula will be added to
computed_changedp1,p2 (if SAT)

x=5 ∧ x’ = UFabs1,abs2(x) ∧ x’=0 ∧ 1≠-1

• In order to check satisfiability,
symbolic execution is applied to abs
– Not necessarily on all paths

41

Refinement

42

Overall Algorithm

43

Experimental Results –
Equivalent Benchmarks

Benchmark MDDiff MDDiffRef RVT SymDiff
Const 0.545s 0.541s 4.06s 14.562s
Add 0.213s 0.2s 3.85s 14.549s
Sub 0.258s 0.308s 5.01s F
Comp 0.841s 0.539s 5.19s F

LoopSub 0.847s 1.179s F F
UnchLoop F 2.838s F F
LoopMult2 1.666s 1.689s F F
LoopMult5 F 3.88s F F
LoopMult10 F 9.543s F F
LoopMult15 F 21.55s F F
LoopMult20 F 49.031s F F
LoopUnrch2 0.9s 0.941s F F
LoopUnrch5 1.131s 1.126s F F
LoopUnrch10 1.147s 1.168s F F
LoopUnrch15 1.132s 1.191s F F
LoopUnrch20 1.157s 1.215s F F 44

LoopMult Benchmark

45

void foo1(int a, int b) {

int c=0;

for (int i=1; i <= b;

i++)

c+=a;

return c;

}

void foo2(int a, int b) {

int c=0;

for (int i=1; i <= a;

i++)

c+=b;

return c;

}

LoopMult Benchmark

46

int main(int x) {

return

foo(2,2);

}

int main(int x) {

if (x>=5 &&

x<7) {

return

foo(x,5);

}

}

LoopMult2 LoopMult5

LoopUnrch Benchmark

47

void foo1(int a, int b)

{

int c=0;

if (a<0) {

for (int i=1; i <=

b; i++)

c+=a;

}

return c;

}

void foo1(int a, int b)

{

int c=0;

if (a<0) {

for (int i=1; i <=

a; i++)

c+=b;

}

return c;

}

Experimental Results – Non
Equivalent Benchmarks

Benchmark MDDiff MDDiffRef

LoopSub 1.187s 2.426s

UnchLoop F 8.053s

LoopMult2 3.01s 3.451s

LoopMult5 F 5.914s

LoopMult10 F 10.614s

LoopMult15 F 14.024s

LoopMult20 F 25.795s

LoopUnrch2 2.157s 2.338s

LoopUnrch5 2.609s 3.216s

LoopUnrch10 2.658s 3.481s

LoopUnrch15 2.835s 3.446s

LoopUnrch20 3.185s 3.342s

48

Summary

We present a differential analysis method that is:

� Modular (analyzes each procedure independently
of its current use)

� Incremental

� Computes over- and under-approximation of inputs
that produce different behavior

� Introduces abstraction in the form of
uninterpreted functions, and allows refinement
upon demand

49

Thank you

50

