3-Valued Abstraction
and Its Applications in Model Checking

Orna Grumberg
Technion, Israel

Summerschool at Marktoberdorf, 2009

Outline

* Introduction to Model Checking and
Abstraction

- Temporal logic and model checking

- Abstraction

- 3-Valued abstraction

- 3-Valued abstraction for compositional
verification

- 3-Valued abstraction in (Bounded) Model
Checking for hardware

Why (formal) verification?

safety-critical applications: Bugs are unacceptable!
- Air-traffic controllers
- Medical equipment
- Cars

Bugs found in later sfages of design are expensive, e.g.
Intel's Pentium bug in tloating-point division

Hardware and software systems grow in size and complexity:
Subtle errors are hard to find by testing

Pressure to reduce time-to-market

Automated tools for formal verification are needed

Formal Verification

Given
+ a model of a (hardware or software) system and
a formal specification
does the system model satisfy the specification?
Not decidable!

To enable automation, we restrict the problem to a
decidable one:

Finite-state reactive systems
Propositional femporal logics

Finite state systems - examples

» Hardware designs

» Controllers (elevator, traffic-light)

+ Communication protocols (when ignoring the
message content)

- High level (abstracted) description of non
finite state systems

Properties in temporal logic - examples

- mutual exclusion:
always —(cs; A ¢s,)

* non starvation:
always (request — eventually granted)

- communication protocols:
(— get-message) until send-message

Model Checking [Ec81,Qs82]

An efficient procedure that receives:
= A finite-state model describing a system
= A temporal logic formula describing a property

It returns
yes, if the system has the property
no + Counterexample, otherwise

Model Checking

= Emerging as an industrial standard tool for
verification of hardware designs: Intel,
IBM, Cadence, ...

= Recently applied successfully also for
software verification: SLAM (Microsoft),
Java PathFinder and SPIN (NASA), BLAST
(EPFL), CBMC (Oxford),...

Model of a system

Kripke structure / transition system

Propositional temporal logic

In Negation Normal Form
AP - a set of atomic propositions

Temporal operators:

6p @ @ @ @ °© o
Fp O O @ O °o o 0
Xp © @ O O o oo
pUq @ @ @ O o 0 o©

Path quantifiers: A for all path
E there exists a path

CTL/CTL*

+ CTL - Allows any combination of temporal
operators and path quantifiers

* CTL - a useful sub-logic of CTL*

ACTL / ACTL*

The universal fragments of CTL/CTL* with
only universal path quantifiers

Mutual Exclusion Example

» Two process mutual exclusion with shared semaphore
* Each process has three states
* Non-critical (N)
* Trying (T)
* Critical (C)
* Semaphore can be available (S;) or taken (S,)
* Initially both processes are in the Non-critical state and
the semaphore 1s available --- N, N, S,

N, - T N, - T,
T AS—> CaS, || ThAas—> Coas,
C, — N,A S, G, — N,A S,

Mutual Exclusion Example

M EAGEF (N, AN,AS,)

No matter where you are there is
always a way to get to the initial state

Main limitation

The state explosion problem:

Model checking is efficient in time but
suffers from high space requirements:

The number of states in the system model grows
exponentially with

» the number of variables
= the number of components in the system

Solutions to the state-explosion problem

Symbolic model checking:

The model is represented symbolically

- BDD-based model checking

+ SAT-based Bounded Model Checking (BMC)
+ SAT-based Unbounded Model Checking

Other solutions to the state explosion
problem

Small models replace the full, concrete model:
- Abstraction

- Compositional verification

* Partial order reduction

- Symmetry

Relations between small models and
concrete models

Equivalence strongly preserves CTL*

If M, = M, then for every CTL* formula o,
Ml=0 & M |=0

Bisimulation equivalence
M, = M,

i iy
e R

Both models satisfy the CTL formula:
EX(bAAXc)AEX(bAAXd)

Relations between small models and
concrete models

preorder weakly preserves ACTL*

If M, > M, then for every ACTL* formula o,
M= = M |=0

Simulation preorder
M1 < Mz

M, 1@ 1@ M,
4 2 4°
CYRRCY

%\Qb ¥ 5\&5

ACTL formula ¢ = AG (b > (AXc v AXd))
M l=o=>M =0

20

10

2-valued CounterExample-Guided

Abstraction Refinement (CEGAR)
[C6ILVO2]

21

Abstraction-Refinement

- Abstraction: removes or simplifies details
that are irrelevant to the property under
consideration, thus reducing # of states

* Refinement might be needed

22

11

Abstraction preserving ACTL/ACTL*

Existential Abstraction:

The abstract model is an over-approximation of the
concrete model:

- The abstract model has more behaviors
- But no concrete behavior is lost

Every ACTL/ACTL* property true in the abstract
model is also true in the concrete model

23

Existential Abstraction

Given an abstraction functionh: S - S,, the
concrete states are grouped and mapped into
abstract states :

24

12

Widely used Abstractions (S,, h)

= Localization reduction: each variable either keeps
its concrete behavior or is fully abstracted (has
free behavior) [Kurshan94]

= Predicate abstraction: concrete states are
grouped together according to the set of
predicates they satisfy [6597,5599]

= Data abstraction: the domain of each variable is

abstracted into a small abstract domain
[C6L94,LONG94]

25

Logic preservation Theorem

= Theorem M. < M,, therefore for every
ACTL* formula ¢,

Myl=0=> M= 0

= However, the reverse may not be valid.

26

13

Traffic Light Example

Property:

Abstraction function h

¢ =AG AF - (state=red) maps green, yellow to

go.

oo e

27
M4

Traffic Light Example (Cont)

If the abstract model invalidates a specification,
the actual model may still satisfy the specification.

 Property:
¢ =AG AF (state=red)

. MC |= (0) bUT MA/{/z (0]

= Spurious Counterexample:
(red,go go, ...)

28

14

The CEGAR Methodology

lMand(p

generate initial
abstraction

i 1MA MA |= ¢
model check
1 MA =9 1
. generate
Al counterexample Ta @@
A 1 TA A
T4 check spurious

is spurious | counterexample |Ta is not spurious
29

3-Valued Abstraction
for Full CTL*

30

Abstract Models for CTL*

- Two transition relations [LTss)

* Kripke Modal Transition System (KMTS)
* M= (S, Sy, Rmust, Rmay, L)

- Rmust: an under-approximation
- Rmay: an over-approximation
- Rmust € Rmay

31

Abstract Models for CTL* (cont.)

Labeling function :

. L: S— 2Literals

» Literals = AP u{-p | peAP}

+ At most one of pand —p is in L(s).

- Concrete: exactly one of p and —p is in L(s).
- KMTS: possibly none of them is in L(s).

32

16

Abstract Models for CTL* (cont.)

may: over
approximatio

must and may transitions: _———
(€E))

33

. tt, ff are
3-Valued Semantics

- Additional truth value: L (indefinite)

» Abstraction preserves both truth and
falsity

* (abstract) s, represents (concrete) s_:
- ¢pistrueins,= ¢ istrueins,
- ¢ isfalse ins, = ¢ is false in s,
- ¢ is Lins, = the value of ¢ in s, is unknown

[BG99]

34

definite

17

3-Valued Semantics

» Universal properties (Ay) :
- Truth is examined along a// may-successors
- Falsity is shown by a sing/e must-successor

- Existential properties (Ev) :
- Truth is shown by a sing/e must-successor
- Falsity is examined along a// may-successors

35

Compositional Verification and
3-Valued Abstraction Join Forces [S607]

36

18

We describe

* How to join forces of two popular solutions:
- Abstraction-Refinement
- Compositional reasoning

In order to obtain

+ fully automatic

+ compositional model checking
+ for the full p-calculus

37

Compositional Verification

The system is composed of M, | ... [M,

- "divide and conquer" approach: try to verify
each component separately

* Problem: usually impossible due to
dependencies

- a component is typically designed to satisfy its
requirements in specific environments (contexts)

=> More sophisticated schemes are needed

38

19

Assume-Guarantee (AG) paradigm

Introduces assumptions representing a component's

environment

M,

A

M,

|=¢

1. check if a component M, guarantees ¢ when it isa
part of a system satisfying assumption A.

2. discharge assumption: show that the remaining
components (the environment) satisfy A

Main challenge: How to construct assumptions?

39

Automatic Compositional Framework

* Previous work: based on the Assume-
Guarantee (AG) paradigm and on
assumption generation via learning, for
universal safety properties [C6P03, AMNOS5,

CCSTO05,..]

» Our approach: based on techniques from
3-valued model checking, applicable to the

full mu-calculus

40

20

General Idea

- View M, as a 3-valued abstraction MT of
M, | ... | M, and check each M,T separately
using a 3-valued semantics:

- tt and ff are definite: hold also in M, || ...|| M,
- L is indefinite: value in M,||...|| M, is unknown

- If no MT returned a definite result,
identify the parts which are indefinite
and compose only them

41

Composition of Models M, || M,
M1 = (APl,sl,sol,Rl,Ll), Mz = (APz,SZ,soz,RZ,LZ)

» Componhents synchronize on the joint labelling
of the states AP,nAP,

42

21

* 0= output
© i = input Example
* r = receive

R
T T

43

-, &
s

M, [M;:

22

» This composition is suitable for describing
hardware designs

+ Same ideas are applicable to other
synchronization models, e.g. Labeled
Transition Systems (LTS) that
synchronize on the joint actions and
interleave the local transitions

45

* 0= output
© 0= input Example

* r = receive
D e e
O(=i v 00) :
in all successors, input signal implies that

there exists a successor producing the
output signal

46

23

* 0= output
e i= /hpuf Example

* r = receive

M, [M;:

s112 Sp12
D(—|| A\ 00) '
in all successors, input signal implies that
there exists a successor producing the

output signal

a7

View M, as r
st

Transitions becot
(unshared) liter.

AN

M So ,,
/7 :
51_32 - Value of /np. 1known

- s, in M, T abstracts all states (s;, 1) in M, | M,

* Model check using 3-valued MC-based
[S603, 6LLS05, 6LLSO7] a8

stz Spt5

24

Model Checking

MC Graph:
SO F D(ﬁl A\ 00)

N

state of
the model

MlT sO 4

"

1l D(ﬂI v 9o)]](50) ?

formula that
we want to
evaluate in s,

49

Model Checking

MlT So "

"

MC Graph:

S FDﬂiVOO

[orfCivea]l 5y oq) ey
SgF =i v 00 Gl——uv()o

AN

rminal | \

sogF i || sgF%o| |sp i [s F 00
Terminal | ,' T = =~ - _-7 TN
| 4 PO - r _— y
SgF O S, FO0 SO
Terminal | Terminal | Terminal !

50

25

N

MlT: So ‘@ll
Model Checking) /7 <
Bottom-up coloring: 1,_ i

(=i v 00) o =
SO - =l v VO - . -7
~~. [[0(=iv 00)]i(so) = 2
SO}_ﬁiVOO 51|_—|iV<>O
/ \ rminal ! \
soF i || sgF%o| |sg i [s F00
) T = - — -7
Terminal | ! = ——— \
v =" - P
SgF O S, O SO
Terminal | Terminal | Terminal !

51

3-Valued Model Checking Results

- t+ and ff are definite:
hold in the concrete model as well

= Inour case: hold in M, | M,

* 1 isindefinite

= result on M, is indefinite

52

26

MzT: 1.0 ‘GII
Similarly for M,T:) TN
J_ Ve N

‘ro F O(=i v 00) T -7
t - LS~y Tt tt
toF =i v 0o F—iv 0o F =i v 00
tt/ L\ ff/ k‘ tt/ R
toF —if||tg - Qo] |t F T, - 00| [t, - —if|t, F 0o
’\\“~_ P | — -7
I \\>E”“—~_J._~ —————— //
|4 & " — ™. Il ~~'£ I’s
to -0 | t,Fo t, Fo
1 1 1

53

3-Valued Model Checking Results

* 1 onboth components
= Refinement is needed
= consider the composition

| But - only the parts of the abstract models
for which the model checking result is L
are identified and composed

54

27

Identify the indefinite parts:

« Construct ?-subgraph, top-down

- For each L-node keep only witnessing sons:
- v, 0 keep tt-sons + L-sons
- A, O: keep ff-sons + L-sons

Remaining sons suffice to determine result

Is this a real son in M,||M,? s; F 0o
’—’V PR

= \

ff =—" 1t g ff «

Sy ko s, o0 s;Fo

55

1.
Compose indefinite pc:lr"rsfO

M,T

1.

1 7

A

SO H D(ﬁl A\ 00)

1 S~

A

SOl_—|iV<>O

S1|——|iV00

-

Sq F i

L_/

N\

Sy F i

s F Qo

e

z

g
e

* Same subformula
+ Composable states

M,T

1

1’0 H D(ﬂl A\ 00)
L‘\\‘

‘|’1|——|iV00

N\

t, - 00
-

-

I

i

toFo

t,Fo

1 1

56

28

Product Graph:

M, M,
(50,1'0) H D(—|| \V4 OO)
All transitions are y
real transitions L(S1.T) F =i v 0o
Substantially (s,.1,) - 00
smaller than
full game-graph !
for M, (M, (s,1) o] tt

Terminal nodes are all colored t+ or ff

57

Color Product Graph:

M, M,

(sq.10) F O(=i v 00)

tt

All transitions are
real transitions

(s, t) F

—||V<>O

(s.,1;) - 0of tt

(s, t) o]t

Terminal nodes are all colored tt+ or ff

tt

58

29

Compositional Model Checking

For eachi=1,2:

- Lift M, to M,T

- Construct model checking graph for M.T
* Apply 3-valued coloring

If both results are indefinite:

* Construct ?-subgraphs

« Compose ?-subgraphs to obtain product graph
» Color product graph

59

Summary

* New ingredient to compositional model
checking: uses a MC graph to identify and
focus on the parts of the components
where their composition in necessary.

- orthogonal to the AG approach

- Automatic compositional abstraction-
refinement framework, which is
incremental.

- Applicable to the full mu-calculus.

60

30

More background:
SAT-Based Bounded Model Checking (BMC)
[BCCFZ99]

61

SAT-based model checking

* Translates the model and the specification to
a propositional formula

- Uses efficient tools for solving the
satisfiability problem

Since the satisfiability problem is NP-
complete, SAT solvers are based on
heuristics.

62

31

SAT tools

. Usin? heuristics, SAT tools can solve very large
problems fast.

* They can handle systems with thousands of
variables that create formulas with a few millions
variables.

GRASP (Silva, Sakallah)
Prover (Stalmark)
Chaff (Malik)

MiniSAT

63

Bounded model checking
for checking AGp

- Unwind the model for k levels, i.e.,
construct all computation of length k

- If a state satisfying —p is encountered,
then produce a counter example

The method is suitable for falsification, not
verification

64

32

Bounded model checking with SAT

* Construct a formula fy, , describing all possible
computations of M of length k

» Construct a formula f, expressing ¢p=EF-p
- Checkif f=fy, Af, issatisfiable

If f is satisfiable then M |- AGp
The satisfying assignment is a counterexample

Example - shift register

Shift register of 3 bits: <x,y, z>
Transition relation:
R(XIYIZIX’IY'IZ'): x’:y AN Y'=Z N Z':].

error

Initial condition:
I(x,y,z)= x=0vy=0v z=0

Specification: AG (x=0 v y=0 v z=0)

Propositional formula for k=2

fM = (XO=O V YO:O V ZO:O) VAN
(X1=Yo A Y1RZo A Z=1) A
(X27Y1 A Y2721 A Z,71)
fo = Vico.2 (x=l Ayl A z71)
Satisfying assignment: 101 011 111

This is a counter example!

67

3-Valued Abstraction in (Bounded) Model
Checking for Hardware [YFGLO9]

68

34

Motivation

* Increase capacity of (Bounded) Model
Checking

- By abstracting out parts of the model
- "Smart” abstraction

- Automatic or manual

* "Easy" abstraction

- Abstract out inputs or critical nodes

* Holy 6rail: Change the level of BMC

69

Abstraction in Model Checking

g
/

70

35

Localization reduction

Over-approximating abstraction:
Abstract model contains more behaviors

Property is true on abstract model =
Property is true on the concrete model

Property is false: counterexample might be
spurious

Refinement is needed (CEGAR)

71

* Finding cutpoints:
computationally expensive or needs human
expertise

* False negative results:
overhead in checking if counterexample is
spurious

72

36

3-Valued Abstraction
- Add a third value “X” (*Unknown”)

73

Introducing X (“Unknown")

* Property is true on abstract model —
Property is true on the concrete model

* Property is false on abstract model =
Property is false on the concrete model

* Property is X = needs refinement

74

37

3-Valued Abstraction
- Add a third value “X”

X |
X —
X ——1
X ———]
x_
X
X —— [X —
X—X

75

Outline

* Model Checking - Automata Approach
- Kripke Structures
- LTL
- Biichi Automata
- BMC

» 3-Valued Abstraction
+ 3-Valued BMC (X-BMC)

76

38

Kripke Structure

© M=(S,s,,R,L) over AP
* L:S—>(AP—{0,1}) L:S—{0,11*
- Can describe hardware circuits

=
] AP={a,b,c}
sfa ’

77

Biichi Automata

.B:(29Q9QO9p:a) pQXZ_)Q'Q weza)

+ Accepts y iff there is an accepting run for w
- Such that (¢ is met infinitely often

9 010,010,010,010...
£ 001,100,100,100...

78

39

Biichi Automata

o can be represented as a function F:OxIxN—Q
-q'=F(q,0,nd)

p(q,,110)={q,,4;}
F(qZJIIO:O):qZ
F(q2911091):q3

79

Bichi for LTL

* Given @=Ay build an automaton B_, for -y
©z={0,"

=g,

T=4y>90-90-9--

80

40

Model Checking

- Let E=MxB F=Sxa
* Reduce Model Checking to Emptiness of E

F\ R 2
mm@d‘

F={(110,q4,),(001,g,)}

81

Model Checking

* Fair Paths in E
SCC

O—~0—-0—-0-0

04
O—~0—~0—~0~Q~0—0—0~0

82

41

Bounded Model Checking (BMC)

» Build a propositional representation of E
- Describe paths of bounded length

0y O)= GIANR, 7,.7,)
@, T)= [N\ R, (3,7, fair
fain3,..5)=N (G,=v)nV a(7)) a

0.5, 5)=Q rD. N

BMC

- Check finite paths in E
BMC(M,P)
i« 0
while(true) {
if SAT (¢,) return false

inc(i)

42

3-Valued logic

* Ternary domain 0 ={0, 1, X}
- Xis "unknown" (not "don't care")

0l |X
X

Ho>
O|O0O[(0O|O

X o<
X|—=|O|O
_— | =] -
X| = | XX

x|x[°o]x

XHOH

- Ternary operators agree with Boolean operators on
Boolean values

85

3-Valued Abstraction
*+ Ternary domain O ={0, 1, X}

- X is "unknown" (not "don't care")

M =
=
= [M'|=P]=1 = [M]=P]=1
[M'|=P]=0 = [M|=P]=0
=
= X
M' ED
= O

86

43

3-Valued Kripke Structure

* M'=(S's',R' L") over AP

L':S'—){O,I,X}AP
SO S1
'® @ AP={a,b,c}
= O
c=0
3-Valued LTL
* Over AP
e P=Ay
nl=y €{0,1, X}

=1
[M'|=P]=< 0 3nx,|x]=y]=0
X otherwise

88

44

3-Valued Biichi

>={0,1, X}

3-Valued transition function F'for p
- I""OxZIxN—->Q

- Ternary variables and operators

~
@ 0 F'(q371 IXJ O):ql

89

3-Valued Model Checking

o
@*@ E'=M'%B'

{0,1} {0,1} {0,1} {0,1} {0,1} {0,1}
X X X X X X

* A short loop is a witness for a long concrete loop
- Lower the bound required for finding bugs

90

45

3-Valued Model Checking

R ey

{0,1} {0,1} {0,1} {0,1} {0,1}

» Checking might yield an "unknown" result.

91

XXX XX

XX

X-BMC

92

46

BMC - Reminder

(0;4(‘70---‘7,-)=[f(‘70)/\0/<\RM(vj.,vﬁl)
@ 7. 7)=] f(%)/\é}RB(VjJVH)A Jair
fair,¥,.-)=V (F,=7)AV a,(7)))

0<l<i I<j<i

93

X-BMC
* Create 3-Valued propositional formulae (dual rail)
BMC(M ', y) {
i<0

while(true) {
if SAT(gp 'jw = lAgp';Zl) return false
if SAT(¢p ';/[Vzl/\gp';:X) return X

inc(i)

}

94

47

X

Holy Grail - Revisited

N LT

N

11

7
16‘

o4

95
Experimental Results (exe cluster)
Model EXE Abs 1 Abs 2 Abs 3 Abs 4 Abs b
Latches 133K 132K 115K 108K 74K 71K
Gates 6.1M 6.0M 5.9M 5.8M 0.6M 0.5M
Property Result Run Time (s)
XBMC P1 fail 266 281 270 254 103 105
P2 pass 262 271 265 244 212 205
P3 fail 264 280 249 282 285 103
P4 pass 412 365 342 323 X X
P5 fail 278 267 262 264 110 108
P6 pass 654 640 631 615 587 552
BMC P1 fail M/0 M/0 M/0 12280 525 168
P2 pass M/0 M/0 M/0 479 411 235
P3 fail M/0 M/0 M/0 M/0 M/0 408
P4 F/N M/0 M/0 M/0 M/0 F/N F/N
P5 fail M/0 M/0 M/0 M/0 908 632
P6 pass M/0 M/0 M/0 M/0 2241 199
96

48

Conclusion

3-Valued Abstraction

- Models, specification and automata
— Automatic or manual abstraction

— Abstraction of inputs to the model

3-Valued Bounded Model Checking
— Enhanced performance
Increased capacity
— Reduced counterexample lengths
Insensitive to size of irrelevant parts of the model
Allows checking higher level models
* Change in methodology (1)
Unbounded Model Checking (Induction)

Automatic Refinement

97

Conclusion (Final)

We introduced 3-valued abstraction and
demonstrated its usefulness in two different
applications:

+ Compositional verification

* (Bounded) model checking for hardware

3-valued abstract models are:

* More precise

- Enable verification and falsification
- Avoid false negative results

98

49

Thank You

99

- BDDs:

R. E. Bryant, Graph-based Algorithms for Boolean
Function Manipulation, TEEE Transactions on
Computers, 1986

- BDD-based model checking:

J.R. Burch, E.M. Clarke K.L.gMcMiIIan, D.L. Dill, L.J.
Hwang, Symbolic Model Checking: 1020 States
and Beyond, LICS'90

* SAT-based Bounded model checking:

Symbolic model checking using SAT procedures
instead of BDDs, A. Biere, A. Cimatti, E. M. Clarke,
M. Fujita, Y. Zhu, DAC'99

100

50

- Existential abstraction + data

abstraction:

E. M. Clarke, O. Grumberg, D. E. Long,
Model Checking and Abstraction, TOPLAS,
1994,

- Localization reduction:

R. P. Kurshan, Computer-Aided Verification
of coordinating processes - the automata
theoretic approach, 1994

101

* Predicate abstraction:

S. Graf and H. Saidi, Construction of abstract
state graphs with PVS, CAV'97

H. Saidi and N. Shankar, Abstract and Model Check
while you Prove, CAV'99

- BDD-based CEGAR:

Clarke, Grumberg, Jha, Lu, Veith, Counterexample-
Guided Abstraction Refinement, CAV2000, JACM2003

102

51

+ 3-Valued Abstraction-Refinement:

S. Shoham and O. Grumberg, A Game-Based
Framework for CTL Counterexamples and
Abstraction-Refinement, CAV'03

+ 3-Valued BMC:

A. Yadgar, A. Flaisher, O. Grumberg, and M. Lifshits,
High Capacity (Bounded) Model Checking Using 3-
Valued Abstraction

103

52

