3-Valued Abstraction and Its Applications in Model Checking

Orna Grumberg Technion, Israel

Summerschool at Marktoberdorf, 2009

1

Outline

- Introduction to Model Checking and Abstraction
 - Temporal logic and model checking
 - Abstraction
 - 3-Valued abstraction
- 3-Valued abstraction for compositional verification
- 3-Valued abstraction in (Bounded) Model Checking for hardware

Why (formal) verification?

- safety-critical applications: Bugs are unacceptable!
 - Air-traffic controllers
 - Medical equipment
 - Cars
- Bugs found in later stages of design are expensive, e.g. Intel's Pentium bug in floating-point division
- Hardware and software systems grow in size and complexity:
 Subtle errors are hard to find by testing
- · Pressure to reduce time-to-market

Automated tools for formal verification are needed

3

Formal Verification

Given

- · a model of a (hardware or software) system and
- · a formal specification

does the system model satisfy the specification? Not decidable!

To enable automation, we restrict the problem to a decidable one:

- Finite-state reactive systems
- · Propositional temporal logics

Finite state systems - examples

- · Hardware designs
- Controllers (elevator, traffic-light)
- Communication protocols (when ignoring the message content)
- High level (abstracted) description of non finite state systems

5

Properties in temporal logic - examples

- mutual exclusion:
 always ¬(cs₁ ∧ cs₂)
- non starvation:
 always (request ⇒ eventually granted)
- communication protocols:
 (¬ get-message) until send-message

Model Checking [EC81,QS82]

An efficient procedure that receives:

- A finite-state model describing a system
- A temporal logic formula describing a property

It returns

yes, if the system has the property

no + Counterexample, otherwise

7

Model Checking

- Emerging as an industrial standard tool for verification of hardware designs: Intel, IBM, Cadence, ...
- Recently applied successfully also for software verification: SLAM (Microsoft), Java PathFinder and SPIN (NASA), BLAST (EPFL), CBMC (Oxford),...

Propositional temporal logic

In Negation Normal Form

AP - a set of atomic propositions

Temporal operators:

Path quantifiers: A for all path

E there exists a path

CTL/CTL*

- CTL* Allows any combination of temporal operators and path quantifiers
- · CTL a useful sub-logic of CTL*

ACTL / ACTL*

The universal fragments of CTL/CTL* with only universal path quantifiers

11

Mutual Exclusion Example

- Two process mutual exclusion with shared semaphore
- Each process has three states
 - Non-critical (N)
 - Trying (T)
 - Critical (C)
- Semaphore can be available (S_0) or taken (S_1)
- Initially both processes are in the Non-critical state and the semaphore is available --- $N_1 N_2 S_0$

$$\begin{array}{c|cccc} N_1 & \rightarrow & T_1 \\ T_1 \wedge S_0 \rightarrow & C_1 \wedge S_1 \\ C_1 & \rightarrow & N_1 \wedge S_0 \end{array} \quad \left| \begin{array}{c} N_2 & \rightarrow & T_2 \\ T_2 \wedge S_0 \rightarrow & C_2 \wedge S_1 \\ C_2 & \rightarrow & N_2 \wedge S_0 \end{array} \right.$$

Mutual Exclusion Example

 $M \models AG EF (N_1 \wedge N_2 \wedge S_0)$

No matter where you are there is always a way to get to the initial state

13

Main limitation

The state explosion problem:

Model checking is efficient in time but suffers from high space requirements:

The number of states in the system model grows exponentially with

- the number of variables
- the number of components in the system

Solutions to the state-explosion problem

Symbolic model checking:

The model is represented symbolically

- · BDD-based model checking
- SAT-based Bounded Model Checking (BMC)
- · SAT-based Unbounded Model Checking

15

Other solutions to the state explosion problem

Small models replace the full, concrete model:

- · Abstraction
- · Compositional verification
- Partial order reduction
- Symmetry

Relations between small models and concrete models

Equivalence strongly preserves CTL*

If $M_1 \equiv M_2$ then for every CTL* formula ϕ , $M_1 \mid = \phi \iff M_2 \mid = \phi$

17

Bisimulation equivalence

$$M_1 \equiv M_2$$

Both models satisfy the CTL formula:

$$EX~(b \land AXc~) \land \text{EX (b} \land \text{AXd)}$$

Relations between small models and concrete models

preorder weakly preserves ACTL*

If $M_2 \ge M_1$ then for every ACTL* formula ϕ , $M_2 \mid = \phi \implies M_1 \mid = \phi$

19

Simulation preorder

$$M_1 \leq M_2$$

ACTL formula
$$\phi$$
 = AG (b \rightarrow (AXc $_{\lor}$ AXd))
$$\mbox{M}_{2} \mid \mbox{=} \phi \Rightarrow \mbox{M}_{1} \mid \mbox{=} \phi$$

2-valued CounterExample-Guided Abstraction Refinement (CEGAR) [CGJLV02]

21

Abstraction-Refinement

- Abstraction: removes or simplifies details that are irrelevant to the property under consideration, thus reducing # of states
- · Refinement might be needed

Abstraction preserving ACTL/ACTL*

Existential Abstraction:

The abstract model is an **over-approximation** of the concrete model:

- The abstract model has more behaviors
- But no concrete behavior is lost
- Every ACTL/ACTL* property true in the abstract model is also true in the concrete model

23

Existential Abstraction

Given an abstraction function $h:S\to S_A$, the concrete states are grouped and mapped into abstract states:

Widely used Abstractions (S_h, h)

- Localization reduction: each variable either keeps its concrete behavior or is fully abstracted (has free behavior) [Kurshan94]
- Predicate abstraction: concrete states are grouped together according to the set of predicates they satisfy [6597,5599]
- Data abstraction: the domain of each variable is abstracted into a small abstract domain [CGL94,LONG94]

25

Logic preservation Theorem

• Theorem $M_C \le M_A$, therefore for every $ACTL^*$ formula φ ,

$$M_A \mid = \phi \Rightarrow M_C \mid = \phi$$

However, the reverse may not be valid.

Traffic Light Example (Cont)

If the abstract model invalidates a specification, the actual model may still satisfy the specification.

- $M_C \mid = \varphi$ but $M_A \not = \varphi$
- Spurious Counterexample: ⟨red,go,go, ...⟩

3-Valued Abstraction for Full CTL*

Abstract Models for CTL*

- Two transition relations [LT88]
- Kripke Modal Transition System (KMTS)
- $M = (S, S_0, Rmust, Rmay, L)$
 - Rmust: an under-approximation
 - Rmay: an over-approximation
 - Rmust ⊆ Rmay

31

Abstract Models for CTL* (cont.)

Labeling function:

- L: $S \rightarrow 2^{\text{Literals}}$
- Literals = $AP \cup \{\neg p \mid p \in AP\}$
- At most one of p and $\neg p$ is in L(s).
 - Concrete: exactly one of p and $\neg p$ is in L(s).
 - KMTS: possibly none of them is in L(s).

3-Valued Semantics

tt, ff are definite

- · Additional truth value: \(\perp \) (indefinite)
- Abstraction preserves both truth and falsity
- (abstract) s_a represents (concrete) s_c :
 - φ is **true** in $s_α ⇒ φ$ is **true** in s_c
 - ϕ is false in $s_a \Rightarrow \phi$ is false in s_c
 - ϕ is \bot in \textbf{s}_{a} \Rightarrow the value of ϕ in \textbf{s}_{c} is unknown

[BG99]

3-Valued Semantics

- Universal properties (\mathbf{A}_{Ψ}) :
 - Truth is examined along all may-successors
 - Falsity is shown by a single must-successor
- Existential properties ($\mathbf{E}\psi$) :
 - Truth is shown by a single must-successor
 - Falsity is examined along all may-successors

35

Compositional Verification and 3-Valued Abstraction Join Forces [5607]

We describe

- · How to join forces of two popular solutions:
 - · Abstraction-Refinement
 - · Compositional reasoning

In order to obtain

- fully automatic
- · compositional model checking
- for the full μ -calculus

37

Compositional Verification

The system is composed of $M_1 \parallel ... \parallel M_n$

- "divide and conquer" approach: try to verify each component separately
- Problem: usually impossible due to dependencies
 - a component is typically designed to satisfy its requirements in *specific* environments (contexts)
- → More sophisticated schemes are needed

Assume-Guarantee (AG) paradigm

Introduces assumptions representing a component's environment

$$\mathbf{M}_1$$
 \mathbf{M}_2 $\mathbf{I} = \varphi$

- 1. check if a component M_1 guarantees φ when it is a part of a system satisfying assumption A.
- 2. discharge assumption: show that the remaining components (the environment) satisfy A

Main challenge: How to construct assumptions?

3

Automatic Compositional Framework

- Previous work: based on the Assume-Guarantee (AG) paradigm and on assumption generation via learning, for universal safety properties [CGP03, AMN05, CCST05,...]
- Our approach: based on techniques from 3-valued model checking, applicable to the full mu-calculus

General Idea

- View M_i as a 3-valued abstraction $M_i \uparrow$ of $M_1 \parallel ... \parallel M_n$ and check each $M_i \uparrow$ separately using a 3-valued semantics:
 - tt and ff are definite: hold also in $M_1 \parallel ... \parallel M_n$
 - \perp is indefinite: value in $M_1 \parallel ... \parallel M_n$ is unknown
- If no M_i returned a definite result,
 identify the parts which are indefinite
 and compose only them

41

Composition of Models $M_1 \parallel M_2$

$$M_1 = (AP_1, S_1, S_1^0, R_1, L_1), M_2 = (AP_2, S_2, S_2^0, R_2, L_2)$$

• Components synchronize on the joint labelling of the states $AP_1 \cap AP_2$

- This composition is suitable for describing hardware designs
- Same ideas are applicable to other synchronization models, e.g. Labeled Transition Systems (LTS) that synchronize on the joint actions and interleave the local transitions

45

3-Valued Model Checking Results

- tt and ff are definite:
 hold in the concrete model as well
 - \rightarrow In our case: hold in $M_1 \parallel M_2$
- ⊥ is indefinite
- \rightarrow result on M_1 is indefinite

3-Valued Model Checking Results

- \perp on both components
 - ⇒ Refinement is needed
- → consider the composition
- ! But only the parts of the abstract models for which the model checking result is \bot are identified and composed

Identify the indefinite parts:

- · Construct ?-subgraph, top-down
- For each \perp -node keep only witnessing sons:
 - v, ◊: keep tt-sons + ⊥-sons
 - \wedge , \square : keep ff-sons + ⊥-sons

Remaining sons suffice to determine result

Compositional Model Checking

For each i = 1,2:

- · Lift M, to M, 1
- · Construct model checking graph for Mit
- · Apply 3-valued coloring

If both results are indefinite:

- · Construct ?-subgraphs
- · Compose ?-subgraphs to obtain product graph
- · Color product graph

59

Summary

- New ingredient to compositional model checking: uses a MC graph to identify and focus on the parts of the components where their composition in necessary.
 - orthogonal to the AG approach
- Automatic compositional abstractionrefinement framework, which is incremental.
- · Applicable to the full mu-calculus.

More background:
SAT-Based Bounded Model Checking (BMC)
[BCCFZ99]

61

SAT-based model checking

- Translates the model and the specification to a propositional formula
- Uses efficient tools for solving the satisfiability problem

Since the satisfiability problem is NP-complete, SAT solvers are based on heuristics.

SAT tools

- Using heuristics, SAT tools can solve very large problems fast.
- They can handle systems with thousands of variables that create formulas with a few millions variables.

GRASP (Silva, Sakallah)
Prover (Stalmark)
Chaff (Malik)
MiniSAT

63

Bounded model checking for checking AGp

- Unwind the model for k levels, i.e., construct all computation of length k
- If a state satisfying ¬p is encountered, then produce a counter example

The method is suitable for **falsification**, not verification

Bounded model checking with SAT

- Construct a formula $f_{M,k}$ describing all possible computations of M of length k
- · Construct a formula f_{ϕ} expressing $\phi\text{=}\text{EF}\text{--}p$
- Check if $\,f$ = $f_{M,k} \wedge f_{\phi}\,$ is satisfiable

If f is satisfiable then $M \neq AGp$

The satisfying assignment is a counterexample

65

Example - shift register

Shift register of 3 bits: $\langle x, y, z \rangle$

Transition relation:

$$R(x,y,z,x',y',z') = x'=y \wedge y'=z \wedge z'=1$$

$$|\underline{\qquad}|$$
error

Initial condition:

$$I(x,y,z) = x=0 \lor y=0 \lor z=0$$

Specification: AG ($x=0 \lor y=0 \lor z=0$)

Propositional formula for k=2

$$f_M = (x_0=0 \lor y_0=0 \lor z_0=0) \land (x_1=y_0 \land y_1=z_0 \land z_1=1) \land (x_2=y_1 \land y_2=z_1 \land z_2=1)$$

$$f_{\varphi} = V_{i=0,..2} (x_i=1 \wedge y_i=1 \wedge z_i=1)$$

Satisfying assignment: 101 011 111

This is a counter example!

67

3-Valued Abstraction in (Bounded) Model Checking for Hardware [YFGL09]

Motivation

- Increase capacity of (Bounded) Model Checking
 - By abstracting out parts of the model
- "Smart" abstraction
 - Automatic or manual
- · "Easy" abstraction
 - Abstract out inputs or critical nodes
- · Holy Grail: Change the level of BMC

Localization reduction

Over-approximating abstraction:
Abstract model contains more behaviors

- * Property is true on abstract model \Rightarrow Property is true on the concrete model
- Property is false: counterexample might be spurious
- · Refinement is needed (CEGAR)

71

- Finding cutpoints: computationally expensive or needs human expertise
- False negative results: overhead in checking if counterexample is spurious

Introducing X ("Unknown")

- Property is true on abstract model \Rightarrow Property is true on the concrete model
- Property is false on abstract model \Rightarrow Property is false on the concrete model
- Property is $X \Rightarrow$ needs refinement

Outline

- · Model Checking Automata Approach
 - Kripke Structures
 - LTL
 - Büchi Automata
 - BMC
- 3-Valued Abstraction
- 3-Valued BMC (X-BMC)

Kripke Structure

- $M = (S, s_0, R, L)$ over AP
- $L:S \to (AP \to \{0,1\})$ $L:S \to \{0,1\}^{AP}$
- · Can describe hardware circuits

77

Büchi Automata

$$B = (\Sigma, Q, q_0, \rho, \alpha)$$
 $\rho: Q \times \Sigma \to 2^Q$ $w \in \Sigma^{\omega}$

• Accepts w iff there is an accepting run for w - Such that α is met infinitely often

- $\Sigma = \{0,1\}^{\{a,b,c\}}, \quad \alpha = \{q_3\}$
- a=1 a=1 0 100,100,010,110,010,110,010,110...
 - **2** 010,010,010,010...
 - **X** 001,100,100,100...

Büchi Automata

• ρ can be represented as a function $F:Q\times\Sigma\times N\to Q$ • $q'=F(q,\sigma,nd)$

$$\rho(q_2,110)=\{q_2,q_3\}$$

$$F(q_2,110,0)=q_2$$

$$F(q_2,110,1)=q_3$$

79

Büchi for LTL

- Given $\varphi = A \psi$, build an automaton $B_{\neg \psi}$ for $\neg \psi$
- $\Sigma = \{0,1\}^{AP}$

$$P = AFc$$

$$\alpha = \{q_0\}$$

$$\pi = q_0, q_0, q_0, q_0...$$

Model Checking

• Let $E=M\times B$

$$F = S \times \alpha$$

· Reduce Model Checking to Emptiness of E

Model Checking

· Fair Paths in E

Bounded Model Checking (BMC)

- · Build a propositional representation of E

- Describe paths of bounded length
$$\varphi_{\!\scriptscriptstyle M}^{\scriptscriptstyle i}(\overline{v}_{\!\scriptscriptstyle 0}...\overline{v}_{\!\scriptscriptstyle i})\!=\! \boldsymbol{I}_{\scriptscriptstyle 0}^{\scriptscriptstyle M}(\overline{v}_{\!\scriptscriptstyle 0})\!\wedge\! \bigwedge_{\scriptscriptstyle 0\leq j< i}^{}\! R_{\!\scriptscriptstyle M}(\overline{v}_{\!\scriptscriptstyle j},\overline{v}_{\!\scriptscriptstyle j+1})$$

$$\varphi_{B}^{i}(\overline{v}_{0}...\overline{v}_{i}) = I_{0}^{B}(\overline{v}_{0}) \wedge \bigwedge_{0 \leq j \leq i} R_{B}(\overline{v}_{j}, \overline{v}_{j+1}) \wedge fair_{i}$$

$$fair_{i}(\overline{v}_{0}...\overline{v}_{i}) = \bigvee_{0 \leq l < i} ((\overline{v}_{l} = v_{i}) \wedge \bigvee_{l \leq j \leq i} \alpha_{E}(\overline{v}_{j}))$$

$$\varphi_i(\overline{v}_0...\overline{v}_i) = \varphi_M^i \wedge \varphi_B^i$$

BMC

· Check finite paths in E

```
BMC(M, P)
   i \leftarrow 0
   while(true) {
      if SAT (\varphi_i) return false
      inc(i)
```

3-Valued logic

- Ternary domain $D = \{0, 1, X\}$
 - X is "unknown" (not "don't care")

0	1	X	
1	0	X	

\land	0	1	X	
0	0	0	0	
1	0	1	X	
X	0	X	X	

V	0	1	X	
0	0	1	X	
1	1	1	1	
X	X	1	X	

- Ternary operators agree with Boolean operators on Boolean values

85

3-Valued Abstraction

- Ternary domain $D = \{0, 1, X\}$
 - X is "unknown" (not "don't care")

$$[M'|=P]=1 \Rightarrow [M|=P]=1$$

 $[M'|=P]=0 \Rightarrow [M|=P]=0$

3-Valued Kripke Structure

- $M' = (S', s'_0 R', L')$ over AP
- $L':S' \to \{0,1,X\}^{AP}$

87

3-Valued LTL

- Over AP
- $P = A\psi$

$$\pi|=\psi\in\{0,1,X\}$$

$$[M'|=P] = \begin{cases} 1 & \forall \pi, [\pi|=\psi]=1 \\ 0 & \exists \pi, [\pi|=\psi]=0 \\ X & otherwise \end{cases}$$

3-Valued Büchi

- $\Sigma = \{0,1,X\}^{AP}$
- 3-Valued transition function F'for ho
 - $F': Q \times \Sigma \times N \rightarrow Q$
 - Ternary variables and operators

89

3-Valued Model Checking

- · A short loop is a witness for a long concrete loop
 - Lower the bound required for finding bugs

3-Valued Model Checking

· Checking might yield an "unknown" result.

BMC - Reminder

$$\varphi_{M}^{i}(\overline{v}_{0}...\overline{v}_{i}) = I_{0}^{M}(\overline{v}_{0}) \wedge \bigwedge_{0 \leq j < i}^{N} R_{M}(\overline{v}_{j}, \overline{v}_{j+1})$$

$$\varphi_{B}^{i}(\overline{v}_{0}...\overline{v}_{i}) = I_{0}^{B}(\overline{v}_{0}) \wedge \bigwedge_{0 \leq j < i}^{N} R_{B}(\overline{v}_{j}, \overline{v}_{j+1}) \wedge fair_{i}$$

$$fair_{i}(\overline{v}_{0}...\overline{v}_{i}) = \bigvee_{0 \leq l < i}^{N} ((\overline{v}_{l} = \overline{v}_{j}) \wedge \bigvee_{l \leq j < i}^{N} \alpha_{E}(\overline{v}_{j}))$$

93

X-BMC

• Create 3-Valued propositional formulae (dual rail)

```
BMC(M',\psi) {
i \leftarrow 0

while(true) {

if SAT(\varphi_{M'}^{i} = 1 \land \varphi_{B}^{i} = 1) return false

if SAT(\varphi_{M'}^{i} = 1 \land \varphi_{B}^{i} = X) return X

inc(i)
}
```


Experimental Results (EXE Cluster)

		Model	EXE	Abs 1	Abs 2	Abs 3	Abs 4	Abs 5
		# Latches	133K	132K	115K	108K	74K	71K
		# Gates	6.1M	6.0M	5.9M	5.8M	0.6M	0.5M
	Property	Result	Run Time (s)					
XBMC	P1	fail	266	281	270	254	103	105
	P2	pass	262	271	265	244	212	205
	Р3	fail	264	280	249	282	285	103
	P4	pass	412	365	342	323	Х	Х
	P5	fail	278	267	252	264	110	108
	P6	pass	654	640	631	615	587	552
ВМС	P1	fail	M/O	M/O	M/O	12280	525	168
	P2	pass	M/O	M/O	M/O	479	411	235
	Р3	fail	M/O	M/O	M/O	M/O	M/O	408
	P4	F/N	M/O	M/O	M/O	M/O	F/N	F/N
	P5	fail	M/O	M/O	M/O	M/O	908	632
	P6	pass	M/O	M/O	M/O	M/O	22 41	199

Conclusion

- 3-Valued Abstraction
 - Models, specification and automata
 - Automatic or manual abstraction
 - Abstraction of inputs to the model
- 3-Valued Bounded Model Checking
 - Enhanced performance
 - Increased capacity
 - Reduced counterexample lengths
 - Insensitive to size of irrelevant parts of the model
 - Allows checking higher level models
 - Change in methodology (!)
- Unbounded Model Checking (Induction)
- · Automatic Refinement

97

Conclusion (Final)

We introduced 3-valued abstraction and demonstrated its usefulness in two different applications:

- · Compositional verification
- · (Bounded) model checking for hardware

3-valued abstract models are:

- · More precise
- · Enable verification and falsification
- · Avoid false negative results

Thank You

99

- · BDDs:
 - R. E. Bryant, Graph-based Algorithms for Boolean Function Manipulation, IEEE transactions on Computers, 1986
- BDD-based model checking:

 J.R. Burch, E.M. Clarke, K.L. McMillan, D.L. Dill, L.J.
 Hwang, Symbolic Model Checking: 10^20 States and Beyond, LICS'90
- SAT-based Bounded model checking:
 Symbolic model checking using SAT procedures instead of BDDs, A. Biere, A. Cimatti, E. M. Clarke, M. Fujita, Y. Zhu, DAC'99

• Existential abstraction + data abstraction:

E. M. Clarke, O. Grumberg, D. E. Long, Model Checking and Abstraction, TOPLAS, 1994.

· Localization reduction:

R. P. Kurshan, Computer-Aided Verification of coordinating processes - the automata theoretic approach, 1994

101

· Predicate abstraction:

S. Graf and H. Saidi, Construction of abstract state graphs with PVS, CAV'97

H. Saidi and N. Shankar, Abstract and Model Check while you Prove, CAV'99

· BDD-based CEGAR:

Clarke, Grumberg, Jha, Lu, Veith, Counterexample-Guided Abstraction Refinement, CAV2000, JACM2003

- 3-Valued Abstraction-Refinement:
 S. Shoham and O. Grumberg, A Game-Based Framework for CTL Counterexamples and Abstraction-Refinement, CAV'03
- 3-Valued BMC:
 A. Yadgar, A. Flaisher, O. Grumberg, and M. Lifshits,
 High Capacity (Bounded) Model Checking Using 3 Valued Abstraction