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Why (formal) Verification?
Computers are everywhere

4

Why (formal) verification?
• safety-critical applications: Bugs are unacceptable!

– Air-traffic controllers
– Medical equipment
– Cars

• Bugs found in later stages of design are expensive

• Hardware and software systems grow in size and complexity: 
Subtle errors are hard to find by testing

• Pressure to reduce time-to-market 

Automated tools for formal verification are needed
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Formal Verification
Given 

• a model of a (hardware or software) system and 

• a formal specification

does the system model satisfy the specification?

Not decidable!

To enable automation, we restrict the problem to a 
decidable one:

• Finite-state reactive systems

• Propositional temporal logics

6

Finite state systems -
examples

• Hardware designs

• Controllers (elevator, traffic-light)

• Communication protocols (when ignoring the 
message content)

• High level (abstracted) description of non 
finite state systems



4

7

Properties in propositional temporal 
logic - examples

• mutual exclusion:
always ¬( cs1 ∧ cs2)

• non starvation:
always (request ⇒ eventually granted)

• communication protocols:
(¬ get-message) until send-message

8

Model Checking [CE81,QS82]

An efficient procedure that receives:

� A finite-state model describing a system

� A temporal logic formula describing a 
property

It returns 

yes, if the system has the property

no + Counterexample, otherwise 
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Model of a system
Kripke structure / transition system

a,b a

ab,c

c

a,c a,bb
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Temporal Logics

• Linear Time
– Every moment has a unique 

successor

– Infinite sequences (words)

– Linear Time Temporal Logic (LTL)

• Branching Time
– Every moment has several 

successors

– Infinite tree

– Computation Tree Logic (CTL)

• Temporal Logics
– Express properties of event orderings in time
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Propositional temporal logic

AP – a set of atomic propositions

Temporal operators:

Gp

Fp

Xp

pUq

Path quantifiers: A for all path

E there exists a path

12

CTL formulas: Example 

• mutual exclusion:   AG ¬( cs1 ∧ cs2)

• non starvation:  AG( request ⇒ AF grant)

• “sanity” check: EF request
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Example to demonstrate:
• Building a model from a program

• Properties

• Model checking

13

Mutual Exclusion Example

• Two processes with a joint Boolean signal 
sem

• Each process Pi has a variable vi describing 
its state:
– vi = N    Non critical

– vi = T    Trying

– vi = C    Critical
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Mutual Exclusion Example

• Each process runs the following program:
Pi ::  while (true) {

if (vi == N)  vi = T;

else if (vi == T && sem)  { vi = C; sem = 0; }

else if (vi == C)  {vi = N; sem = 1; }

}

• The full program is: P1||P2   

• Initial state: (v1=N, v2=N, sem)

• The execution is interleaving

Atomic 
action

Mutual Exclusion Example

v1=N, v2=N, sem

v1=T, v2=N, sem v1=N, v2=T, sem

v1=C, v2=N, Õsem v1=N, v2=C, Õsemv1=T, v2=T, sem

v1=C, v2=T, Õsem v1=T, v2=C, Õsem
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• We define atomic propositions: AP={C1,C2,T1,T2)

• A state is marked with Ti if vi=T

• A state is marked with Ci if vi=C

v1=N, v2=N, sem

v1=T, v2=N, sem v1=N, v2=T, sem

v1=C, v2=N, Õsem v1=N, v2=C, Õsemv1=T, v2=T, sem

v1=C, v2=T, Õsem v1=T, v2=C, ÕsemC1,T2

T1

C1

• Property 1: AGÕ(C1.C2)

C1,T2

T1

C1 T1,T2

T1,C2

C2

T2
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• Property 1: AGÕ(C1.C2)

S0

C1,T2

T1

C1 T1,T2

T1,C2

C2

T2

• Property 1: AGÕ(C1.C2)

S1

C1,T2

T1

C1 T1,T2

T1,C2

C2

T2
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• Property 1: AGÕ(C1.C2)

S2

C1,T2

T1

C1 T1,T2

T1,C2

C2

T2

• Property 1: AGÕ(C1.C2)

S3

C1,T2

T1

C1 T1,T2

T1,C2

C2

T2
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• M ╞ AG ¬ (C1 ∧C2 )

S4 ` S04S14S24S3

C1,T2

T1

C1 T1,T2

T1,C2

C2

T2

• Property 2: AGÕ(T1.T2)

C1,T2

T1

C1 T1,T2

T1,C2

C2

T2
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• Property 2: AGÕ(T1.T2)

C1,T2

T1

C1 T1,T2

T1,C2

C2

T2

• Property 2: AGÕ(T1.T2)

C1,T2

T1

C1 T1,T2

T1,C2

C2

T2
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• M |≠ AG ¬ (T1 ∧T2 )

• A violating state has been found

C1,T2

T1

C1 T1,T2

T1,C2

C2

T2

• M |≠ AG ¬ (T1 ∧T2 )

Model checker returns a counterexample

C1,T2

T1

C1 T1,T2

T1,C2

C2

T2
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Main Limitation of Model Checking:

The state explosion problem

• The number of states in the system 
model grows exponentially with 
− the number of variables

− the number of components in the system

• A solution to state explosion problem: 
Compositional Verification

30

Learning Assumptions for 
Compositional Verification

J. M. Cobleigh, D. Giannakopoulou and 
C. S. Pasareanu
TACAS 2003
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Compositional Verification

• Inputs: 
– composite system M1║M2

– property P

• Goal: check if M1║M2 ~~~~ P 

First attempt: Divide and Conquer

32

M1 ║ M2 ⊨ P

• try to verify each component separately

• usually inapplicable due to dependencies

– a component is typically designed to 
satisfy its requirements in specific
environments (contexts)
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Assume-Guarantee (AG) Paradigm

• Introduces assumptions representing a 
component’s environment

Instead of: Does component satisfy property?

Ask: Under assumption A on its environment, 
does the component guarantee the property?

34

Assume-Guarantee (AG) Paradigm

Notation: <A> M <P>

<A> M <P> is true if 
whenever M is part of a system satisfying 
the assumption A, then the system also 
satisfies (guarantee) P
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Useful AG Rule

1. check if a component M1 guarantees P when 
it is a part of a system satisfying 
assumption A

M1 ║ M2 ~~~~ P

A <A> �� <P>

<true> ��||��	<P>

36

Useful AG Rule for Safety 
Properties

1. check if a component M1 guarantees P when it 
is a part of a system satisfying assumption A

2. discharge assumption: show that the remaining 

component M2 (the environment) satisfies A.

M1 ║ M2 ~~~~ P

A <A> �� <P>

<true> �� <A>

<true> ��||��	<P>
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Outline

• Motivation  

• Setting

• Automatic Generation of Assumptions 
for the AG Rule 

• Learning algorithm 

• Assume-Guarantee with Learning

• Example

√√√√
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Labeled Transition Systems (LTS)

LTS M = (Q, q0, ααααM, δδδδ)
• Q : finite non-empty set of states

• q0 ∈∈∈∈ Q : initial state

• ααααM : alphabet of M
• δδδδ ⊆⊆⊆⊆ Q x (αM ∪∪∪∪ {τ}) x Q : transition relation

Observable actions
Internal action

in

0 1 2

send

ack
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Labeled Transition Systems (LTS)

in

0 1 2

send

ack

Trace of an LTS M : finite sequence of 
observable actions that M can perform 
starting at the initial state

L(M) = the Language of M : the set of all 
traces of M

Traces:
<in>, <in, send>,…

40

Parallel Composition M1║M2

• Components synchronize on common observable
actions (communication) 

• The remaining actions are interleaved

Example:

Input

in

0 1 2

send

ack

Output

out

a b c

send

ack

║
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Input

in

0 1 2

send

ack

Output

out

a b c

send

ack

║

Input ║ Output

in

0,a

send

ack

0,b 0,c

1,a

2,a

1,b

2,b

1,c

2,
c

out

0 a

0,a

1

1,a

2,b

b2 c

2,c

42

Safety Properties

Expressed as deterministic LTSs

For a safety LTS, P:

• L(P) describes the set of legal (acceptable) 
behaviors over αP

M ~~~~ P iff ∀∀∀∀σ ∈∈∈∈ L(M) : (σ↑↑↑↑ααααP) ∈∈∈∈ L(P)

Note that, since we check  M ~~~~ P, ααααP ⊆⊆⊆⊆ ααααM

Language Containment
L(M) ↑αP ⊆⊆⊆⊆ L(P)

Order
in

out
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Example

Order

in

out

Input ║ Output

0,a

in

send

ack

0,b 0,c

1,a

2,a

1,b

2,b

1,c

2,c
out

in in
out

out

~~~~
?

Pref(<in,send,out,ack>*) Pref(<in,out>*)⊆⊆⊆⊆
?

↑↑↑↑{in,out} √√√√

P

Lecture 2

44
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Labeled Transition Systems (LTS)

in

0 1 2

send

ack

Trace of an LTS M : finite sequence of 
observable actions that M can perform 
starting at the initial state

L(M) = the Language of M : the set of all 
traces of M

Traces:
<in>, <in, send>,…

46

Parallel Composition M1║M2

• Components synchronize on common observable
actions (communication) 

• The remaining actions are interleaved

Example:

Input

in

0 1 2

send

ack

Output

out

a b c

send

ack

║
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Input

in

0 1 2

send

ack

Output

out

a b c

send

ack

║

Input ║ Output

0,a

in

send

ack

0,b 0,c

1,a

2,a

1,b

2,b

1,c

2,c
out

in in
out

out

48

Safety Properties

Expressed as deterministic LTSs

For a safety LTS, P:

• L(P) describes the set of legal (acceptable) 
behaviors over αP

M ~~~~ P iff ∀∀∀∀σ ∈∈∈∈ L(M) : (σ↑↑↑↑ααααP) ∈∈∈∈ L(P)

Note that, since we check  M ~~~~ P, ααααP ⊆⊆⊆⊆ ααααM

Language Containment
L(M) ↑αP ⊆⊆⊆⊆ L(P)

Order
in

out
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Example

Order

in

out

Input ║ Output

0,a

in

send

ack

0,b 0,c

1,a

2,a

1,b

2,b

1,c

2,c
out

in in
out

out

~~~~
?

Pref(<in,send,out,ack>*) Pref(<in,out>*)⊆⊆⊆⊆
?

↑↑↑↑{in,out} √√√√

P

50

Model Checking M ~ P 

Safety LTS P � an Error LTS, Perr :
• “traps” violations with special error state ππππ

• Error LTS is complete

• ππππ is a deadend state: has no outgoing transitions

Ordererr in

out

Order

inout
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Model Checking M ~~~~ P

Theorem:

• M ~~~~ P iff ππππ is unreachable in M ║ Perr

Recall that,

• M ~ P iff ∀σ ∈ L(M) : (σ↑αP) ∈ L(P)

• M║Perr synchronizes on αP

In automata: 

M ~ ϕ iff

L(AM ∩∩∩∩Aϕϕϕϕ) =∅∅∅∅

52

Example

Ordererr

in

out

Order

inout

║

Input ║ Output

0,a

in

send

ack

0,b 0,c

1,a

2,a

1,b

2,b

1,c

2,c
out

in in
out

out
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Example

Ordererr

in

out

Order

inout

║

Input ║ Output

0,a

in

send

ack

1,a

2,b 2,c
out

54

║

Input ║ Output

0,a
in send

ack

1,a 2,b 2,c
out

i ii

Ordererr

in

out

Order

inout

0,a,i

in

send

ack

1,a,i 2,b,i 2,c,i

out

0,a,ii

in

send

ack

1,a,ii 2,b,ii 2,c,ii

out

ππππ unreachable

0,a,i 2,c,i

1,a,ii 2,b,ii

0,a 1,a

ii

0,a,ii
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Assume Guarantee Reasoning

• Assumptions: also expressed as safety LTSs.

• <A> M <P> is true iff A ║ M ~ P
i.e. π is unreachable in A ║ M ║ Perr

<A> M1 <P>

<true> M2 <A>

<true> M1║M2 <P>

A ║ M1 ~ P

M2 ~ A

M1║M2 ~ P

M1, M2 : LTSs

P, A : safety LTSs

56

Outline

• Motivation

• Setting

• Automatic Generation of Assumptions for 
the AG Rule 

• Learning algorithm 

• Assume-Guarantee with Learning

• Example

√√√√
√√√√
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Important concept:
Weakest assumption for M1, M2, P

Definition:

The weakest assumption Aw is a 
deterministic LTS such that:

• ααααAw = ΣΣΣΣI = αM2 ∩(αP ∪ αM1)

• For every M’2 such that ααααAw ⊆⊆⊆⊆ αM’2
<true> M1||M’2 <P>  iff <true> M’2 <Aw>

57

Important concept:
Weakest assumption for M1, M2, P

Note that:

• <true> M1||Aw <P>  holds

• Aw describes exactly all traces σσσσ over ΣI

such that in the context of σσσσ, M1 satisfies P

58
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Observation 

• No need to use the weakest env. assumption Aw

• AG rule might be applicable with stronger (less
general) assumption.

� Instead of finding Aw:

• Use learning algorithm to learn Aw 

• Use candidates Ai produced by learning 
algorithm as candidate assumptions: 
try to apply AG rule with Ai

A ║ M1 ~ P

M2 ~ A

M1║M2 ~ P

60

Given a Candidate 
Assumption Ai

If Ai ║ M1 ~~~~ P does not hold:

Assumption Ai is not tight enough 

� need to strengthen Ai

– We found a trace σ such that “σ ║M1”|≠P

– σ should be removed from Ai

A ║ M1 ~ P

M2 ~ A

M1║M2 ~ P
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Given a Candidate 
Assumption Ai

Suppose Ai║ M1 ~~~~ P holds:

If M2 ~~~~ Ai also holds � M1║M2 ~~~~ P  verified!

Otherwise: σ ∈ ∈ ∈ ∈ L(M2) but (σ↑↑↑↑ΣI) ∉∉∉∉ L(Ai) -- cex

P violated by M1 in the context of cex=(σ↑↑↑↑ΣI) ?

Yes: real violation !

� M1║M2 ~~~~ P  falsified !

No: spurious violation

� need to find better approximation of Aw

“cex║M1” ~ P ?

A ║ M1 ~ P

M2 ~ A

M1║M2 ~ P

62

“cex║M1” ~~~~ P ?

• Check if ππππ reachable in Acex║M1║Perr 

Alternatively,   

• Simulate cex on M1║ Perr

– cex║M1~~~~ P iff when cex is simulated on M1║Perr

it cannot lead to ππππ (error) state. 

“cex ∊ ∊ ∊ ∊ L(Aw)” ?
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Assume-Guarantee Framework

Model Checking

1. Ai║ M1 |= PLearning

real
error?

2. M2 |= Ai

Ai

counterexample – strengthen assumption

counterexample – weaken assumption

false

true
true

false

YN

P holds 
in M1||M2

P violated 
in M1||M2

Learning 1. Ai║ M1 ~ P

real
error?

2. M2 ~ Ai

cex║M1 ||||≠≠≠≠ P ?

cex ∉∉∉∉ L(Ai)

For Aw :

conclusive results 
guaranteed �

termination!

Lecture 3

64
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Goal:
Automatically learn an assumption for the 
Assume Guarantee Rule for M1║ M2 ~ P

65

Important concept:
Weakest assumption Aw for M1, M2, P

• <true> M1||Aw <P>  holds

• Aw describes exactly all traces σσσσ over ΣI

such that in the context of σσσσ, M1 satisfies P

66
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Assume-Guarantee Framework

Model Checking

1. Ai║ M1 |= PLearning

real
error?

2. M2 |= Ai

Ai

counterexample – strengthen assumption

counterexample – weaken assumption

false

true
true

false

YN

P holds 
in M1||M2

P violated 
in M1||M2

Learning 1. Ai║ M1 ~ P

real
error?

2. M2 ~ Ai

cex║M1 ||||≠≠≠≠ P ?

cex ∉∉∉∉ L(Ai)

For Aw :

conclusive results 
guaranteed �

termination!

68

Outline

• Motivation

• Setting

• Automatic Generation of Assumptions for 
the AG Rule 

• Learning algorithm (briefly) 

• Assume-Guarantee with Learning

• Example

√√√√
√√√√
√√√√
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Learning Algorithm for DFA – L*

• L*: by Angluin, improved by Rivest & Schapire

• learns an unknown regular language U

• produces a minimal Deterministic Finite-state 
Automaton (DFA) C such that L(C) = U

DFA M = (Q, q0, αM, δδδδ, F) :
• Q, q0, αM, δδδδ : as in deterministic LTS

• F ⊆⊆⊆⊆ Q : accepting states

• L(M) = {σ | δδδδ(q0, σ) ∈∈∈∈ F}

70

Learning Algorithm for DFA – L*

• L* interacts with a Teacher to answer two 
types of questions:
– Membership queries: is string σ in U ?

– Conjectures: for a candidate DFA Ci, is L(Ci) = U ?

• answers are (true) or (false + counterexample)

Conjectures C1, C2, … converge to C

Equivalence 
Queries
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Outline

• Motivation

• Setting

• Automatic Generation of Assumptions for 
the AG Rule 

• Learning algorithm 

• Assume-Guarantee with Learning

• Example

√√√√
√√√√
√√√√

√√√√
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Assume-Guarantee with Learning

Reminder:
• Use learning algorithm to learn Aw .
• Use candidates produced by learning as 

candidate assumptions Ai for AG rule.

In order to use L* to produce assumptions Ai:
• Show that L(Aw) is regular
• Translate DFA to safety LTS (assumption)
• Implement the teacher
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Implementing the Teacher

Aw is unknown…

• Membership query: σσσσ ∈∈∈∈ L(Aw)?

� Check if “σσσσ ║M1” ⊨⊨⊨⊨ P :
– Model checking: is ππππ reachable in Aσσσσ║M1║Perr ?    

– Simulation: is ππππ (error) state reachable when 
simulating σσσσ on M1║ Perr ?

• Equivalence query: L(Ci) = L(Aw) ?
– Translate Ci into a safety LTS Ai

– Use it as candidate assumption for AG rule

σσσσ ∈∈∈∈L(Aw) iff 

in context of σσσσ,

M1 satisfies P

or

74

P holds 
in M1||M2

Model Checking

1. Ai║ M1 |= P

real
error?

2. M2 |= Ai

Ai

counterexample – strengthen assumption

counterexample – weaken assumption

false

true
true

YN

P holds 
in M1||M2

P violated 
in M1||M2

false

cex║M1 ||||≠≠≠≠ P ?

cex ∉∉∉∉ L(Ai)

Model Checking

1. Ai║ M1 ~ PLearning

real
error?

2. M2 ~ Ai

Ai

counterexample – strengthen assumption

counterexample – weaken assumption

false

true
true

YN P violated 
in M1||M2

L(Ai) = L(Aw) ?

false

cex║M1 ||||≠≠≠≠ P ?

cex ∉∉∉∉ L(Ai)

Aw contains all traces 
that can be 
composed with M1

without violating P.
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Model Checking

1. Ai║ M1 |= PLearning

real
error?

2. M2 ~ Ai

Ai

counterexample – strengthen assumption

counterexample – weaken assumption

false

true
true

YN

P holds 
in M1||M2

P violated 
in M1||M2

1. Ai║ M1 ~ P

L(Ai) = L(Aw) ?

L(Ai) ⊆⊆⊆⊆ L(Aw)?

cex ∈∈∈∈ L(Ai) 

cex ∉∉∉∉ L(Aw)

false

cex║M1 ||||≠≠≠≠ P ?

cex ∉∉∉∉ L(Ai)

Aw contains all traces 
that can be 
composed with M1

without violating P.
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Model Checking

1. Ai║ M1 ~ PLearning

real
error?

2. M2 ~ Ai

Ai

counterexample – strengthen assumption

counterexample – weaken assumption

false

true
true

YN

P holds 
in M1||M2

P violated 
in M1||M2

L(Ai) = L(Aw) ?

L(Ai) ⊆⊆⊆⊆ L(Aw)

false

cex║M1 ||||≠≠≠≠ P ?

cex ∉∉∉∉ L(Ai)

Aw contains all traces 
that can be 
composed with M1

without violating P.
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Model Checking

1. Ai║ M1 |= PLearning

real
error?

2. M2 |= Ai

Ai

counterexample – strengthen assumption

counterexample – weaken assumption

false

true
true

YN

P holds 
in M1||M2

P violated 
in M1||M2

real
error?

2. M2 |= Ai

L(Ai) = L(Aw) ?

L(Ai) ⊆⊆⊆⊆ L(Aw)

false

cex║M1 ||||≠≠≠≠ P ?

cex ∉∉∉∉ L(Ai)

Aw contains all traces 
that can be 
composed with M1

without violating P.
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Model Checking

1. Ai║ M1 ~ PLearning

real
error?

2. M2 |= Ai

Ai

counterexample – strengthen assumption

counterexample – weaken assumption

false

true
true

YN

P holds 
in M1||M2

P violated 
in M1||M2

real
error?

2. M2 ~ Ai

L(Ai) = L(Aw) ?

L(Ai) ⊆⊆⊆⊆ L(Aw)

false

cex║M1 ||||≠≠≠≠ P ?

cex ∉∉∉∉ L(Ai)

Aw contains all traces 
that can be 
composed with M1

without violating P.

cex ∉∉∉∉ L(Ai) 

cex ∈∈∈∈ L(Aw)
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Equivalence Query - Summary

2 applications of 

model checking

+ 1 model checking

or simulation

Model Checking

1. Ai║ M1 ~ P

real
error?

2. M2 ~ Ai

true
true

YN

false

false

!

!
cex

cex

80

Characteristics of Framework

• AG uses conjectures produced by L* as 
candidate assumptions Ai

• L* uses AG as teacher

• L* terminates 

� Framework guaranteed to terminate:

– At latest terminates when Aw is produced.

– Possibly terminates before Aw is produced!



41

81

Outline

• Motivation

• Setting

• Automatic Generation of Assumptions for 
the AG Rule 

• Learning algorithm 

• Assume-Guarantee with Learning

• Example

√√√√
√√√√
√√√√

√√√√
√√√√
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Output

send

ack

out

Ordererr in

outout in

Example
Input

in

ack

send

Check: Input║Output ~ Order ?

M1 M2 P

ΣΣΣΣΙΙΙΙ
(assumption’s alphabet) : {send, out, ack}

ΣI = (αM1 ∪∪∪∪ αP) ∩∩∩∩ αM2
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Ordererr in

outout in

Output

send

ack

out

Conjectures
Input

in

ack

send

A1: Step 1: 

A1║Input ~~~~

Order

ack

send

ΣI = {send, out, ack}

0,a

ack

1,a 2,a

0,b 1,b 2,b
send

send

in

in

ack

A1 ║Input ║Ordererr

0,a

1,b0,b 2,b
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Ordererr in

outout in

Output

send

ack

out

Conjectures
Input

in

ack

send

A1: Step 1: 

A1║Input ~

Order

Counterexample:

c = 〈〈〈〈in,send,ack,in〉〉〉〉
ack

send

ΣI = {send, out, ack}

Return to L*:

c↑↑↑↑ΣΣΣΣΙΙΙΙ
= 〈〈〈〈send,ack〉〉〉〉

∈∈∈∈ L(A1)\L(Aw)

0,
a

out

ack

1,a 2,a

0,
b

1,
b

2,
b

out out
send

send

in

in

ack

A1 ║Input ║Ordererr

0,a

1,b0,b 2,b
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Ordererr in

outout in

Output

send

ack

out

Conjectures
Input

in

ack

send

A1: Step 1: 

A1║Input ~

Order

Counterexample:

c = 〈〈〈〈in,send,ack,in〉〉〉〉
Return to L*:

c↑↑↑↑ΣΣΣΣΙΙΙΙ
= 〈〈〈〈send,ack〉〉〉〉

Step 1: 

A2║Input ~ Order

True

Step 2: 

Output ~ A2

True

property Order holds

on Input║Output

ack

send

out, send

A2:Queries

ack

send

ΣI = {send, out, ack}

∈∈∈∈ L(A1)\L(Aw)

c↑↑↑↑ΣΣΣΣΙΙΙΙ
∉∉∉∉ L(A2)

86

Conclusion of Learning-Based AG

• Generate assumptions for assume-guarantee 
reasoning in an incremental and fully automatic
fashion, using learning

• Each iteration of assume-guarantee may conclude 
that the required property is satisfied or violated
in the system

• Assumption generation converges to an assumption 
that is necessary and sufficient for the property 
to hold in the specific system
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Learning-Based Compositional 
Verification of Behavioral UML 

Systems

Yael Meller, Orna Grumberg, 
and Karen Yorav

87

UML – Unified Modeling Language 

• UML – object oriented modeling language

• Used for visualizing, specifying, and 
constructing systems

• Becoming dominant modeling language for 
embedded systems

– E.g. car industry

• Used at early stages of the design

Verification is crucial

88
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Behavioral UML Model –
Objects and Their Connection

89

Agent DataBase1

DataBase2Client

Behavioral UML System –
Objects and Their Connection

90

Agent 
Object

DB1 Object

DB2 Object
Client 
Object

e4e3 e1e1 e2

Event Queues:

e

e

e3
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Object Behavior Defined by State 
Machines

91

A1

tr1/v1=0;

[v]/

C1

A2

tr6/

tr5[v1==0]/

D1

tr2/v1=1; v2--; C3

[!v]/

tr3/v1=2;

/v3=func2();

/v3=func1();

/GEN(e1);

PriceProcessor

D2

C4

B1

tr4/

v=!v;

B2
D3 D4

C2

/GEN(e2);

trigger[guard]/action

Send event to 

other objects

Object Behavior Defined by State 
Machines – RTC steps

92

A1

tr1/v1=0;

[v]

C1

A2

tr6

tr5[v1==0]

D1

tr2/v1=1; v2--; C3

[!v]

tr3/v1=2;

/v3=func2();

/v3=func1();

/GEN(e1);

PriceProcessor

D2

C4

B1

tr4/

v=!v;

B2
D3 D4

C2

/GEN(e2);

trigger[guard]/action
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Compositional Verification for 
Behavioral UML Models

� �� 	


�� ��	 �


�� ��||�� 	

Define framework at the UML level
• The notation [A] emphasizes that the 

assumption is a UML state machine

93

Compositional Verification for 
Behavioral UML Models

Advantages of framework at the UML 
level:

• Avoid blowup due to translation to lower 
level representation

• Enable use of UML model checkers
– Useful information to the user

94
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Lecture 4

95

Goal

Develop a learning-based Assume Guarantee 
reasoning for UML models

• Components and assumptions are UML 
state machine

• Specification is AGp :
– p holds for every reachable configuration of 

the system

96
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Behavioral UML System –
Objects and Their Connection

97

Agent 
Object

DB1 Object

DB2 Object
Client 
Object

e4e3 e1e1 e2

Event Queues:

e

e

e3

Object Behavior Defined by State 
Machines – Run to Completion (RTC) steps

98

A1

tr1/v1=0;

[v]

C1

A2

tr6

tr5[v1==0]

D1

tr2/v1=1; v2--; C3

[!v]

tr3/v1=2;

/v3=func2();

/v3=func1();

/GEN(e1);

PriceProcessor

D2

C4

B1

tr4/

v=!v;

B2
D3 D4

C2

/GEN(e2);

trigger[guard]/action
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Compositional Verification for 
Behavioral UML Models

� �� 	


�� ��	 �


�� ��||�� 	

Define framework at the UML level
• The notation [A] emphasizes that the 

assumption is a UML state machine

99

Compositional Verification for 
Behavioral UML Models - Semantics

� �� 	


�� �� �


�� ��||�� 	

Need to define executions of UML
100

For every execution 

ex of A||M1: ex~~~~P
Every execution ex of 

M2 has a 

“representative” in A 

exééééAcccc��(A)

For every execution 

ex of M1||M2: ex~~~~P
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(Abstract) executions of UML models

• Describe the behavior w.r.t. event 
manipulation

– gen(e) – represents generation of event e

– tr(e) – represents sending e to its target 
state machine (from the event queue)

101

Client

Init

Work

e1/

grant1/

deny1/

SendReq
/GEN(req1)

S0 S1
ev1[a>0]

/

S2S3

/GEN(cont1)ev1[a==0]/

/GEN(clr1)Cancel

Req

/GEN(cancel1)

[a>0]/

/

e1/

Clear

/GEN(clr1)

Server

Start

/GEN(grant1)req1
Send1

req1

Req2

Req1

cancel1

S1

/GEN(deny1)

S2

req2

/GEN(deny2)

Send2
req1

S3

/GEN(deny1)

S4

req2

/GEN(deny2)

/GEN(grant2)

cancel2req2

req1

EQ1

EQ2

e1

ex=gen(e1)ex=gen(e1),tr(e1)ex=gen(e1),tr(e1),gen(req1)ex=gen(e1),tr(e1),gen(req1),tr(req1)ex=gen(e1),tr(e1),gen(req1),tr(req1),gen(e1)ex=gen(e1),tr(e1),gen(req1),tr(req1),gen(e1),…
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Properties to be checked

P is a safety property defined over events, 
based on predicates such as

• InQ(e): true when event e is in EQ

• Before(e,e’): true when e is before e’ in EQ

• Gen(e): true when e is generated

• tr(e): true when e is sent to target

103

Learning-Based Compositional 
Verification of Behavioral UML Systems

104

Model Checking

1. �� �� 	Learning

real
error?

2. 
�� �� ��

Ai

Counterexample:
strengthen assumption

Counterexample:
weaken assumption

false

true
true

false

YesNo

���� ��||�� �

holds

���� ��||�� �

does not hold

• Define alphabet and Teacher

• Translatate words/automata to state machines

• Define alphabet and Teacher

• Define how to

• ��||��~	
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RTC of M2: (tr(e1),gen(req1),gen(clr1))

105

Define Alphabet        

Client

Init

Work

e1/

grant1/

deny1/

SendReq
/GEN(req1)

S0 S1
ev1[a>0]

/

S2S3

/GEN(cont1)ev1[a==0]/

/GEN(clr1)Cancel

Req

e/GEN(cancel1)

[a>0]/

e1/

Clear

/GEN(clr1)

� �� 	


�� �� �


�� ��||�� 	

M2::

Letters in the alphabet

• Every RTC of M2 induces a letter in the 
alphabet

• RTC is described as a sequence of events

– e.g. (tr(e1),gen(req1),gen(clr1))

• Alphabet of A is defined based on the 
interface of M2

– e.g. (tr(e1),gen(req1)) in alphabet of A 

106
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Learning-Based Compositional 
Verification of Behavioral UML 

Systems

107

Model Checking

1. �� �� 	Learning

real
error?

2. 
�� �� ��

Ai

Counterexample:
strengthen assumption

Counterexample:
weaken assumption

false

true
true

false

YesNo

���� ��||�� �

holds

���� ��||�� �

does not hold

• Alphabet – based on interface events

• Define a Teacher

– Is w=(tr(e1),gen(req1)),(tr(grant1)) in A?

108

Checking Membership 
Queries

Server

Start

/GEN(grant1)req1 Send1
req1

Req2

Req1

cancel1

S1

/GEN(deny1)

S2

req2

/GEN(deny2)

Send2
req1

S3

/GEN(deny1)

S4

req2

/GEN(deny2)
/GEN(grant2)

cancel2req2

M1::

� �� 	


�� �� �


�� ��||�� 	
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– w=(tr(e1),gen(req1)),(tr(grant1)) in A iff on every 
concrete execution of A||M1 that matches w, P holds

109

Checking Membership 
Queries

Server

Start

/GEN(grant1)req1 Send1
req1

Req2

Req1

cancel1

S1

/GEN(deny1)

S2

req2

/GEN(deny2)

Send2
req1

S3

/GEN(deny1)

S4

req2

/GEN(deny2)
/GEN(grant2)

cancel2req2

M1::

S1 S2 S3 S4

e1/ /GEN(req1) grant1/M(w)::

� �� 	


�� �� �


�� ��||�� 	

– w=(tr(e1),gen(req1)),(tr(grant1)) in A iff on every 
concrete execution of A||M1 that matches w, P holds

110

Checking Membership 
Queries

Server

Start

/GEN(grant1)req1 Send1
req1

Req2

Req1

cancel1

S1

/GEN(deny1)

S2

req2

/GEN(deny2)

Send2
req1

S3

/GEN(deny1)

S4

req2

/GEN(deny2)
/GEN(grant2)

cancel2req2

M1::

S1 S2 S3 S4

e1/ /GEN(req1) grant1/M(w)::

checking membership: 

� � ||��~	

� �� 	


�� �� �


�� ��||�� 	
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• In fact, M(w) is somewhat more complex…

111

Learning-Based Compositional 
Verification of Behavioral UML 

Systems

112

Model Checking

1. �� �� 	Learning

real
error?

2. 
�� �� ��

Ai

Counterexample:
strengthen assumption

Counterexample:
weaken assumption

false

true
true

false

YesNo

���� ��||�� �

holds

���� ��||�� �

does not hold

• Alphabet – based on interface events

• Define a Teacher 

• From words/automatons to state machines

• Define how to
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– 
�� �� � 	 means execution inclusion: 
��(��) ↓ `��(�)

– Create a new state machine for 
monitoring �� w.r.t � and model check 
result

113

Verify  
�� �� �

CheckInclusion

RTCErr

Modify A:

1. When flag is on,   

check for matching  

behavior. 

2. Set err on if no 

matching behavior

Modify M2:

1. Raise flag when starting 

“relevant” RTC steps

2. record “relevant” event 

generation

[err]/

checking inclusion:

� �,�� ~�"#ℎ(%&'���)

Summary of AG Verification for UML

• Present a framework for learning-based  
AG reasoning on behavioral UML models

• Model checking remains at the UML 
level

• Framework can also be defined for the 
case where the system includes more 
than 2 objects.

114
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Automated Circular Assume-
Guarantee Reasoning

Karam Abd Elkader, Orna Grumberg, 
Corina Pasareanu, and Sharon Shoham 

Formal Methods (FM) 2015

115

Motivation

• AG rule is asymmetric w.r.t M1 and M2

• Sometimes the components mutually 
depend on each other for their 
correctness

116
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Naïve Circular Rule

<	�> �� <	�>

<	�> �� <	�>

��||�� ⊨ 	�||	�

Unsound!

Need to break circularity

Induction: over formulas, time, or both
117

M1 ║ M2

P2P1

Inductive Properties [McMillan 99]

M ⊨ A 9999 P : 

Every trace ( of M:

• Initially satisfies P, and

• If ( satisfies A up to k, then it also 
satisfies P up to step * + 1

118

… …

P
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Inductive Properties [McMillan 99]

M ⊨ A 9999 P : 

Every trace ( of M:

• Initially satisfies P, and

• If ( satisfies A up to k, then it also 
satisfies P up to step * + 1

119

… …

⇒⇒⇒⇒ PA

Circular AG Rule

Rule Circ-AG

			�� ⊨ -� 9999 -�

�� ⊨ -� 9999 -�

			

120

��
║ ��

.�.�

<-�> �� <-�><-�> �� <-�>
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P is correct � Exist .� and .� s.t. rule applicable 

Circular AG Rule

Rule Circ-AG

			�� ⊨ -� 9999 -�

�� ⊨ -� 9999 -�

-�||-� ⊨ 	

			��||�� ⊨ 	

Rule Circ-AG is sound and complete

121

��
║ ��

.�.�

⊨ �

P is verified with some .� and .� � P is correct

Rule Circ-AG

			�� ⊨ -� 9999 -�

�� ⊨ -� 9999 -�

-�||-� ⊨ 	

			��||�� ⊨ 	

How to automatically construct assumptions ?

Challenge: .� and .�	depend on each other
122

��
║ ��

.�.�

⊨ 	�

Automated Circular AG Reasoning
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ACR Algorithm

123

Model Checking

�� ⊨ -�9999-�

�� ⊨ -�9999-�

-�||-� ⊨ 	

true

true

P holds 
in ��||��

true

SAT 
Solver

cex

cex

cex

y

P does 
not hold
in ��||��

n

-�, -�

real
cex?

Update 
membership 
constraints

Cex analysisAssumption 
Generation

Encode

Decode

sat

unsat

New membership constraints C

-�, -� ⊨ '

Summary of ACR

• Automated circular assume-guarantee reasoning
– Assumptions depend on each other
– Uses joint disjunctive constraints 

• Assumptions are significantly smaller than those 
obtained by the non-circular rule

• ACR outperforms L* based algorithms for non-
circular rule
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Thank You
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