
1

Compositional Model Checking

Orna Grumberg

Technion, Israel

Marktoberdorf 2015

Thanks to Sharon Shoham and Yael Meller
for their help with the presentation

1

Lecture 1

2

2

Why (formal) Verification?
Computers are everywhere

4

Why (formal) verification?
• safety-critical applications: Bugs are unacceptable!

– Air-traffic controllers
– Medical equipment
– Cars

• Bugs found in later stages of design are expensive

• Hardware and software systems grow in size and complexity:
Subtle errors are hard to find by testing

• Pressure to reduce time-to-market

Automated tools for formal verification are needed

3

5

Formal Verification
Given

• a model of a (hardware or software) system and

• a formal specification

does the system model satisfy the specification?

Not decidable!

To enable automation, we restrict the problem to a
decidable one:

• Finite-state reactive systems

• Propositional temporal logics

6

Finite state systems -
examples

• Hardware designs

• Controllers (elevator, traffic-light)

• Communication protocols (when ignoring the
message content)

• High level (abstracted) description of non
finite state systems

4

7

Properties in propositional temporal
logic - examples

• mutual exclusion:
always ¬(cs1 ∧ cs2)

• non starvation:
always (request ⇒ eventually granted)

• communication protocols:
(¬ get-message) until send-message

8

Model Checking [CE81,QS82]

An efficient procedure that receives:

� A finite-state model describing a system

� A temporal logic formula describing a
property

It returns

yes, if the system has the property

no + Counterexample, otherwise

5

9

Model of a system
Kripke structure / transition system

a,b a

ab,c

c

a,c a,bb

10

Temporal Logics

• Linear Time
– Every moment has a unique

successor

– Infinite sequences (words)

– Linear Time Temporal Logic (LTL)

• Branching Time
– Every moment has several

successors

– Infinite tree

– Computation Tree Logic (CTL)

• Temporal Logics
– Express properties of event orderings in time

6

11

Propositional temporal logic

AP – a set of atomic propositions

Temporal operators:

Gp

Fp

Xp

pUq

Path quantifiers: A for all path

E there exists a path

12

CTL formulas: Example

• mutual exclusion: AG ¬(cs1 ∧ cs2)

• non starvation: AG(request ⇒ AF grant)

• “sanity” check: EF request

7

Example to demonstrate:
• Building a model from a program

• Properties

• Model checking

13

Mutual Exclusion Example

• Two processes with a joint Boolean signal
sem

• Each process Pi has a variable vi describing
its state:
– vi = N Non critical

– vi = T Trying

– vi = C Critical

8

Mutual Exclusion Example

• Each process runs the following program:
Pi :: while (true) {

if (vi == N) vi = T;

else if (vi == T && sem) { vi = C; sem = 0; }

else if (vi == C) {vi = N; sem = 1; }

}

• The full program is: P1||P2

• Initial state: (v1=N, v2=N, sem)

• The execution is interleaving

Atomic
action

Mutual Exclusion Example

v1=N, v2=N, sem

v1=T, v2=N, sem v1=N, v2=T, sem

v1=C, v2=N, Õsem v1=N, v2=C, Õsemv1=T, v2=T, sem

v1=C, v2=T, Õsem v1=T, v2=C, Õsem

9

• We define atomic propositions: AP={C1,C2,T1,T2)

• A state is marked with Ti if vi=T

• A state is marked with Ci if vi=C

v1=N, v2=N, sem

v1=T, v2=N, sem v1=N, v2=T, sem

v1=C, v2=N, Õsem v1=N, v2=C, Õsemv1=T, v2=T, sem

v1=C, v2=T, Õsem v1=T, v2=C, ÕsemC1,T2

T1

C1

• Property 1: AGÕ(C1.C2)

C1,T2

T1

C1 T1,T2

T1,C2

C2

T2

10

• Property 1: AGÕ(C1.C2)

S0

C1,T2

T1

C1 T1,T2

T1,C2

C2

T2

• Property 1: AGÕ(C1.C2)

S1

C1,T2

T1

C1 T1,T2

T1,C2

C2

T2

11

• Property 1: AGÕ(C1.C2)

S2

C1,T2

T1

C1 T1,T2

T1,C2

C2

T2

• Property 1: AGÕ(C1.C2)

S3

C1,T2

T1

C1 T1,T2

T1,C2

C2

T2

12

• M ╞ AG ¬ (C1 ∧C2)

S4 ` S04S14S24S3

C1,T2

T1

C1 T1,T2

T1,C2

C2

T2

• Property 2: AGÕ(T1.T2)

C1,T2

T1

C1 T1,T2

T1,C2

C2

T2

13

• Property 2: AGÕ(T1.T2)

C1,T2

T1

C1 T1,T2

T1,C2

C2

T2

• Property 2: AGÕ(T1.T2)

C1,T2

T1

C1 T1,T2

T1,C2

C2

T2

14

• M |≠ AG ¬ (T1 ∧T2)

• A violating state has been found

C1,T2

T1

C1 T1,T2

T1,C2

C2

T2

• M |≠ AG ¬ (T1 ∧T2)

Model checker returns a counterexample

C1,T2

T1

C1 T1,T2

T1,C2

C2

T2

15

29

Main Limitation of Model Checking:

The state explosion problem

• The number of states in the system
model grows exponentially with
− the number of variables

− the number of components in the system

• A solution to state explosion problem:
Compositional Verification

30

Learning Assumptions for
Compositional Verification

J. M. Cobleigh, D. Giannakopoulou and
C. S. Pasareanu
TACAS 2003

16

31

Compositional Verification

• Inputs:
– composite system M1║M2

– property P

• Goal: check if M1║M2 ~~~~ P

First attempt: Divide and Conquer

32

M1 ║ M2 ⊨ P

• try to verify each component separately

• usually inapplicable due to dependencies

– a component is typically designed to
satisfy its requirements in specific
environments (contexts)

17

33

Assume-Guarantee (AG) Paradigm

• Introduces assumptions representing a
component’s environment

Instead of: Does component satisfy property?

Ask: Under assumption A on its environment,
does the component guarantee the property?

34

Assume-Guarantee (AG) Paradigm

Notation: <A> M <P>

<A> M <P> is true if
whenever M is part of a system satisfying
the assumption A, then the system also
satisfies (guarantee) P

18

35

Useful AG Rule

1. check if a component M1 guarantees P when
it is a part of a system satisfying
assumption A

M1 ║ M2 ~~~~ P

A <A> �� <P>

<true> ��||��	<P>

36

Useful AG Rule for Safety
Properties

1. check if a component M1 guarantees P when it
is a part of a system satisfying assumption A

2. discharge assumption: show that the remaining

component M2 (the environment) satisfies A.

M1 ║ M2 ~~~~ P

A <A> �� <P>

<true> �� <A>

<true> ��||��	<P>

19

37

Outline

• Motivation

• Setting

• Automatic Generation of Assumptions
for the AG Rule

• Learning algorithm

• Assume-Guarantee with Learning

• Example

√√√√

38

Labeled Transition Systems (LTS)

LTS M = (Q, q0, ααααM, δδδδ)
• Q : finite non-empty set of states

• q0 ∈∈∈∈ Q : initial state

• ααααM : alphabet of M
• δδδδ ⊆⊆⊆⊆ Q x (αM ∪∪∪∪ {τ}) x Q : transition relation

Observable actions
Internal action

in

0 1 2

send

ack

20

39

Labeled Transition Systems (LTS)

in

0 1 2

send

ack

Trace of an LTS M : finite sequence of
observable actions that M can perform
starting at the initial state

L(M) = the Language of M : the set of all
traces of M

Traces:
<in>, <in, send>,…

40

Parallel Composition M1║M2

• Components synchronize on common observable
actions (communication)

• The remaining actions are interleaved

Example:

Input

in

0 1 2

send

ack

Output

out

a b c

send

ack

║

21

41

Input

in

0 1 2

send

ack

Output

out

a b c

send

ack

║

Input ║ Output

in

0,a

send

ack

0,b 0,c

1,a

2,a

1,b

2,b

1,c

2,
c

out

0 a

0,a

1

1,a

2,b

b2 c

2,c

42

Safety Properties

Expressed as deterministic LTSs

For a safety LTS, P:

• L(P) describes the set of legal (acceptable)
behaviors over αP

M ~~~~ P iff ∀∀∀∀σ ∈∈∈∈ L(M) : (σ↑↑↑↑ααααP) ∈∈∈∈ L(P)

Note that, since we check M ~~~~ P, ααααP ⊆⊆⊆⊆ ααααM

Language Containment
L(M) ↑αP ⊆⊆⊆⊆ L(P)

Order
in

out

22

43

Example

Order

in

out

Input ║ Output

0,a

in

send

ack

0,b 0,c

1,a

2,a

1,b

2,b

1,c

2,c
out

in in
out

out

~~~~
?

Pref(<in,send,out,ack>*) Pref(<in,out>*)⊆⊆⊆⊆
?

↑↑↑↑{in,out} √√√√

P

Lecture 2

44



23

45

Labeled Transition Systems (LTS)

in

0 1 2

send

ack

Trace of an LTS M : finite sequence of 
observable actions that M can perform 
starting at the initial state

L(M) = the Language of M : the set of all 
traces of M

Traces:
<in>, <in, send>,…

46

Parallel Composition M1║M2

• Components synchronize on common observable
actions (communication) 

• The remaining actions are interleaved

Example:

Input

in

0 1 2

send

ack

Output

out

a b c

send

ack

║



24

47

Input

in

0 1 2

send

ack

Output

out

a b c

send

ack

║

Input ║ Output

0,a

in

send

ack

0,b 0,c

1,a

2,a

1,b

2,b

1,c

2,c
out

in in
out

out

48

Safety Properties

Expressed as deterministic LTSs

For a safety LTS, P:

• L(P) describes the set of legal (acceptable) 
behaviors over αP

M ~~~~ P iff ∀∀∀∀σ ∈∈∈∈ L(M) : (σ↑↑↑↑ααααP) ∈∈∈∈ L(P)

Note that, since we check  M ~~~~ P, ααααP ⊆⊆⊆⊆ ααααM

Language Containment
L(M) ↑αP ⊆⊆⊆⊆ L(P)

Order
in

out



25

49

Example

Order

in

out

Input ║ Output

0,a

in

send

ack

0,b 0,c

1,a

2,a

1,b

2,b

1,c

2,c
out

in in
out

out

~~~~
?

Pref(<in,send,out,ack>*) Pref(<in,out>*)⊆⊆⊆⊆
?

↑↑↑↑{in,out} √√√√

P

50

Model Checking M ~ P

Safety LTS P � an Error LTS, Perr :
• “traps” violations with special error state ππππ

• Error LTS is complete

• ππππ is a deadend state: has no outgoing transitions

Ordererr in

out

Order

inout

26

51

Model Checking M ~~~~ P

Theorem:

• M ~~~~ P iff ππππ is unreachable in M ║ Perr

Recall that,

• M ~ P iff ∀σ ∈ L(M) : (σ↑αP) ∈ L(P)

• M║Perr synchronizes on αP

In automata:

M ~ ϕ iff

L(AM ∩∩∩∩Aϕϕϕϕ) =∅∅∅∅

52

Example

Ordererr

in

out

Order

inout

║

Input ║ Output

0,a

in

send

ack

0,b 0,c

1,a

2,a

1,b

2,b

1,c

2,c
out

in in
out

out

27

53

Example

Ordererr

in

out

Order

inout

║

Input ║ Output

0,a

in

send

ack

1,a

2,b 2,c
out

54

║

Input ║ Output

0,a
in send

ack

1,a 2,b 2,c
out

i ii

Ordererr

in

out

Order

inout

0,a,i

in

send

ack

1,a,i 2,b,i 2,c,i

out

0,a,ii

in

send

ack

1,a,ii 2,b,ii 2,c,ii

out

ππππ unreachable

0,a,i 2,c,i

1,a,ii 2,b,ii

0,a 1,a

ii

0,a,ii

28

55

Assume Guarantee Reasoning

• Assumptions: also expressed as safety LTSs.

• <A> M <P> is true iff A ║ M ~ P
i.e. π is unreachable in A ║ M ║ Perr

<A> M1 <P>

<true> M2 <A>

<true> M1║M2 <P>

A ║ M1 ~ P

M2 ~ A

M1║M2 ~ P

M1, M2 : LTSs

P, A : safety LTSs

56

Outline

• Motivation

• Setting

• Automatic Generation of Assumptions for
the AG Rule

• Learning algorithm

• Assume-Guarantee with Learning

• Example

√√√√
√√√√

29

Important concept:
Weakest assumption for M1, M2, P

Definition:

The weakest assumption Aw is a
deterministic LTS such that:

• ααααAw = ΣΣΣΣI = αM2 ∩(αP ∪ αM1)

• For every M’2 such that ααααAw ⊆⊆⊆⊆ αM’2
<true> M1||M’2 <P> iff <true> M’2 <Aw>

57

Important concept:
Weakest assumption for M1, M2, P

Note that:

• <true> M1||Aw <P> holds

• Aw describes exactly all traces σσσσ over ΣI

such that in the context of σσσσ, M1 satisfies P

58

30

59

Observation

• No need to use the weakest env. assumption Aw

• AG rule might be applicable with stronger (less
general) assumption.

� Instead of finding Aw:

• Use learning algorithm to learn Aw

• Use candidates Ai produced by learning
algorithm as candidate assumptions:
try to apply AG rule with Ai

A ║ M1 ~ P

M2 ~ A

M1║M2 ~ P

60

Given a Candidate
Assumption Ai

If Ai ║ M1 ~~~~ P does not hold:

Assumption Ai is not tight enough

� need to strengthen Ai

– We found a trace σ such that “σ ║M1”|≠P

– σ should be removed from Ai

A ║ M1 ~ P

M2 ~ A

M1║M2 ~ P

31

61

Given a Candidate
Assumption Ai

Suppose Ai║ M1 ~~~~ P holds:

If M2 ~~~~ Ai also holds � M1║M2 ~~~~ P verified!

Otherwise: σ ∈ ∈ ∈ ∈ L(M2) but (σ↑↑↑↑ΣI) ∉∉∉∉ L(Ai) -- cex

P violated by M1 in the context of cex=(σ↑↑↑↑ΣI) ?

Yes: real violation !

� M1║M2 ~~~~ P falsified !

No: spurious violation

� need to find better approximation of Aw

“cex║M1” ~ P ?

A ║ M1 ~ P

M2 ~ A

M1║M2 ~ P

62

“cex║M1” ~~~~ P ?

• Check if ππππ reachable in Acex║M1║Perr

Alternatively,

• Simulate cex on M1║ Perr

– cex║M1~~~~ P iff when cex is simulated on M1║Perr

it cannot lead to ππππ (error) state.

“cex ∊ ∊ ∊ ∊ L(Aw)” ?

32

63

Assume-Guarantee Framework

Model Checking

1. Ai║ M1 |= PLearning

real
error?

2. M2 |= Ai

Ai

counterexample – strengthen assumption

counterexample – weaken assumption

false

true
true

false

YN

P holds
in M1||M2

P violated
in M1||M2

Learning 1. Ai║ M1 ~ P

real
error?

2. M2 ~ Ai

cex║M1 ||||≠≠≠≠ P ?

cex ∉∉∉∉ L(Ai)

For Aw :

conclusive results
guaranteed �

termination!

Lecture 3

64

33

Goal:
Automatically learn an assumption for the
Assume Guarantee Rule for M1║ M2 ~ P

65

Important concept:
Weakest assumption Aw for M1, M2, P

• <true> M1||Aw <P> holds

• Aw describes exactly all traces σσσσ over ΣI

such that in the context of σσσσ, M1 satisfies P

66

34

67

Assume-Guarantee Framework

Model Checking

1. Ai║ M1 |= PLearning

real
error?

2. M2 |= Ai

Ai

counterexample – strengthen assumption

counterexample – weaken assumption

false

true
true

false

YN

P holds
in M1||M2

P violated
in M1||M2

Learning 1. Ai║ M1 ~ P

real
error?

2. M2 ~ Ai

cex║M1 ||||≠≠≠≠ P ?

cex ∉∉∉∉ L(Ai)

For Aw :

conclusive results
guaranteed �

termination!

68

Outline

• Motivation

• Setting

• Automatic Generation of Assumptions for
the AG Rule

• Learning algorithm (briefly)

• Assume-Guarantee with Learning

• Example

√√√√
√√√√
√√√√

35

69

Learning Algorithm for DFA – L*

• L*: by Angluin, improved by Rivest & Schapire

• learns an unknown regular language U

• produces a minimal Deterministic Finite-state
Automaton (DFA) C such that L(C) = U

DFA M = (Q, q0, αM, δδδδ, F) :
• Q, q0, αM, δδδδ : as in deterministic LTS

• F ⊆⊆⊆⊆ Q : accepting states

• L(M) = {σ | δδδδ(q0, σ) ∈∈∈∈ F}

70

Learning Algorithm for DFA – L*

• L* interacts with a Teacher to answer two
types of questions:
– Membership queries: is string σ in U ?

– Conjectures: for a candidate DFA Ci, is L(Ci) = U ?

• answers are (true) or (false + counterexample)

Conjectures C1, C2, … converge to C

Equivalence
Queries

36

71

Outline

• Motivation

• Setting

• Automatic Generation of Assumptions for
the AG Rule

• Learning algorithm

• Assume-Guarantee with Learning

• Example

√√√√
√√√√
√√√√

√√√√

72

Assume-Guarantee with Learning

Reminder:
• Use learning algorithm to learn Aw .
• Use candidates produced by learning as

candidate assumptions Ai for AG rule.

In order to use L* to produce assumptions Ai:
• Show that L(Aw) is regular
• Translate DFA to safety LTS (assumption)
• Implement the teacher

37

73

Implementing the Teacher

Aw is unknown…

• Membership query: σσσσ ∈∈∈∈ L(Aw)?

� Check if “σσσσ ║M1” ⊨⊨⊨⊨ P :
– Model checking: is ππππ reachable in Aσσσσ║M1║Perr ?

– Simulation: is ππππ (error) state reachable when
simulating σσσσ on M1║ Perr ?

• Equivalence query: L(Ci) = L(Aw) ?
– Translate Ci into a safety LTS Ai

– Use it as candidate assumption for AG rule

σσσσ ∈∈∈∈L(Aw) iff

in context of σσσσ,

M1 satisfies P

or

74

P holds
in M1||M2

Model Checking

1. Ai║ M1 |= P

real
error?

2. M2 |= Ai

Ai

counterexample – strengthen assumption

counterexample – weaken assumption

false

true
true

YN

P holds
in M1||M2

P violated
in M1||M2

false

cex║M1 ||||≠≠≠≠ P ?

cex ∉∉∉∉ L(Ai)

Model Checking

1. Ai║ M1 ~ PLearning

real
error?

2. M2 ~ Ai

Ai

counterexample – strengthen assumption

counterexample – weaken assumption

false

true
true

YN P violated
in M1||M2

L(Ai) = L(Aw) ?

false

cex║M1 ||||≠≠≠≠ P ?

cex ∉∉∉∉ L(Ai)

Aw contains all traces
that can be
composed with M1

without violating P.

38

75

Model Checking

1. Ai║ M1 |= PLearning

real
error?

2. M2 ~ Ai

Ai

counterexample – strengthen assumption

counterexample – weaken assumption

false

true
true

YN

P holds
in M1||M2

P violated
in M1||M2

1. Ai║ M1 ~ P

L(Ai) = L(Aw) ?

L(Ai) ⊆⊆⊆⊆ L(Aw)?

cex ∈∈∈∈ L(Ai)

cex ∉∉∉∉ L(Aw)

false

cex║M1 ||||≠≠≠≠ P ?

cex ∉∉∉∉ L(Ai)

Aw contains all traces
that can be
composed with M1

without violating P.

76

Model Checking

1. Ai║ M1 ~ PLearning

real
error?

2. M2 ~ Ai

Ai

counterexample – strengthen assumption

counterexample – weaken assumption

false

true
true

YN

P holds
in M1||M2

P violated
in M1||M2

L(Ai) = L(Aw) ?

L(Ai) ⊆⊆⊆⊆ L(Aw)

false

cex║M1 ||||≠≠≠≠ P ?

cex ∉∉∉∉ L(Ai)

Aw contains all traces
that can be
composed with M1

without violating P.

39

77

Model Checking

1. Ai║ M1 |= PLearning

real
error?

2. M2 |= Ai

Ai

counterexample – strengthen assumption

counterexample – weaken assumption

false

true
true

YN

P holds
in M1||M2

P violated
in M1||M2

real
error?

2. M2 |= Ai

L(Ai) = L(Aw) ?

L(Ai) ⊆⊆⊆⊆ L(Aw)

false

cex║M1 ||||≠≠≠≠ P ?

cex ∉∉∉∉ L(Ai)

Aw contains all traces
that can be
composed with M1

without violating P.

78

Model Checking

1. Ai║ M1 ~ PLearning

real
error?

2. M2 |= Ai

Ai

counterexample – strengthen assumption

counterexample – weaken assumption

false

true
true

YN

P holds
in M1||M2

P violated
in M1||M2

real
error?

2. M2 ~ Ai

L(Ai) = L(Aw) ?

L(Ai) ⊆⊆⊆⊆ L(Aw)

false

cex║M1 ||||≠≠≠≠ P ?

cex ∉∉∉∉ L(Ai)

Aw contains all traces
that can be
composed with M1

without violating P.

cex ∉∉∉∉ L(Ai)

cex ∈∈∈∈ L(Aw)

40

79

Equivalence Query - Summary

2 applications of

model checking

+ 1 model checking

or simulation

Model Checking

1. Ai║ M1 ~ P

real
error?

2. M2 ~ Ai

true
true

YN

false

false

!

!
cex

cex

80

Characteristics of Framework

• AG uses conjectures produced by L* as
candidate assumptions Ai

• L* uses AG as teacher

• L* terminates

� Framework guaranteed to terminate:

– At latest terminates when Aw is produced.

– Possibly terminates before Aw is produced!

41

81

Outline

• Motivation

• Setting

• Automatic Generation of Assumptions for
the AG Rule

• Learning algorithm

• Assume-Guarantee with Learning

• Example

√√√√
√√√√
√√√√

√√√√
√√√√

82

Output

send

ack

out

Ordererr in

outout in

Example
Input

in

ack

send

Check: Input║Output ~ Order ?

M1 M2 P

ΣΣΣΣΙΙΙΙ
(assumption’s alphabet) : {send, out, ack}

ΣI = (αM1 ∪∪∪∪ αP) ∩∩∩∩ αM2

42

83

Ordererr in

outout in

Output

send

ack

out

Conjectures
Input

in

ack

send

A1: Step 1:

A1║Input ~~~~

Order

ack

send

ΣI = {send, out, ack}

0,a

ack

1,a 2,a

0,b 1,b 2,b
send

send

in

in

ack

A1 ║Input ║Ordererr

0,a

1,b0,b 2,b

84

Ordererr in

outout in

Output

send

ack

out

Conjectures
Input

in

ack

send

A1: Step 1:

A1║Input ~

Order

Counterexample:

c = 〈〈〈〈in,send,ack,in〉〉〉〉
ack

send

ΣI = {send, out, ack}

Return to L*:

c↑↑↑↑ΣΣΣΣΙΙΙΙ
= 〈〈〈〈send,ack〉〉〉〉

∈∈∈∈ L(A1)\L(Aw)

0,
a

out

ack

1,a 2,a

0,
b

1,
b

2,
b

out out
send

send

in

in

ack

A1 ║Input ║Ordererr

0,a

1,b0,b 2,b

43

85

Ordererr in

outout in

Output

send

ack

out

Conjectures
Input

in

ack

send

A1: Step 1:

A1║Input ~

Order

Counterexample:

c = 〈〈〈〈in,send,ack,in〉〉〉〉
Return to L*:

c↑↑↑↑ΣΣΣΣΙΙΙΙ
= 〈〈〈〈send,ack〉〉〉〉

Step 1:

A2║Input ~ Order

True

Step 2:

Output ~ A2

True

property Order holds

on Input║Output

ack

send

out, send

A2:Queries

ack

send

ΣI = {send, out, ack}

∈∈∈∈ L(A1)\L(Aw)

c↑↑↑↑ΣΣΣΣΙΙΙΙ
∉∉∉∉ L(A2)

86

Conclusion of Learning-Based AG

• Generate assumptions for assume-guarantee
reasoning in an incremental and fully automatic
fashion, using learning

• Each iteration of assume-guarantee may conclude
that the required property is satisfied or violated
in the system

• Assumption generation converges to an assumption
that is necessary and sufficient for the property
to hold in the specific system

44

Learning-Based Compositional
Verification of Behavioral UML

Systems

Yael Meller, Orna Grumberg,
and Karen Yorav

87

UML – Unified Modeling Language

• UML – object oriented modeling language

• Used for visualizing, specifying, and
constructing systems

• Becoming dominant modeling language for
embedded systems

– E.g. car industry

• Used at early stages of the design

Verification is crucial

88

45

Behavioral UML Model –
Objects and Their Connection

89

Agent DataBase1

DataBase2Client

Behavioral UML System –
Objects and Their Connection

90

Agent
Object

DB1 Object

DB2 Object
Client
Object

e4e3 e1e1 e2

Event Queues:

e

e

e3

46

Object Behavior Defined by State
Machines

91

A1

tr1/v1=0;

[v]/

C1

A2

tr6/

tr5[v1==0]/

D1

tr2/v1=1; v2--; C3

[!v]/

tr3/v1=2;

/v3=func2();

/v3=func1();

/GEN(e1);

PriceProcessor

D2

C4

B1

tr4/

v=!v;

B2
D3 D4

C2

/GEN(e2);

trigger[guard]/action

Send event to

other objects

Object Behavior Defined by State
Machines – RTC steps

92

A1

tr1/v1=0;

[v]

C1

A2

tr6

tr5[v1==0]

D1

tr2/v1=1; v2--; C3

[!v]

tr3/v1=2;

/v3=func2();

/v3=func1();

/GEN(e1);

PriceProcessor

D2

C4

B1

tr4/

v=!v;

B2
D3 D4

C2

/GEN(e2);

trigger[guard]/action

47

Compositional Verification for
Behavioral UML Models

� �� 	

�� ��	 �

�� ��||�� 	

Define framework at the UML level
• The notation [A] emphasizes that the

assumption is a UML state machine

93

Compositional Verification for
Behavioral UML Models

Advantages of framework at the UML
level:

• Avoid blowup due to translation to lower
level representation

• Enable use of UML model checkers
– Useful information to the user

94

48

Lecture 4

95

Goal

Develop a learning-based Assume Guarantee
reasoning for UML models

• Components and assumptions are UML
state machine

• Specification is AGp :
– p holds for every reachable configuration of

the system

96

49

Behavioral UML System –
Objects and Their Connection

97

Agent
Object

DB1 Object

DB2 Object
Client
Object

e4e3 e1e1 e2

Event Queues:

e

e

e3

Object Behavior Defined by State
Machines – Run to Completion (RTC) steps

98

A1

tr1/v1=0;

[v]

C1

A2

tr6

tr5[v1==0]

D1

tr2/v1=1; v2--; C3

[!v]

tr3/v1=2;

/v3=func2();

/v3=func1();

/GEN(e1);

PriceProcessor

D2

C4

B1

tr4/

v=!v;

B2
D3 D4

C2

/GEN(e2);

trigger[guard]/action

50

Compositional Verification for
Behavioral UML Models

� �� 	

�� ��	 �

�� ��||�� 	

Define framework at the UML level
• The notation [A] emphasizes that the

assumption is a UML state machine

99

Compositional Verification for
Behavioral UML Models - Semantics

� �� 	

�� �� �

�� ��||�� 	

Need to define executions of UML
100

For every execution

ex of A||M1: ex~~~~P
Every execution ex of

M2 has a

“representative” in A

exééééAcccc��(A)

For every execution

ex of M1||M2: ex~~~~P

51

(Abstract) executions of UML models

• Describe the behavior w.r.t. event
manipulation

– gen(e) – represents generation of event e

– tr(e) – represents sending e to its target
state machine (from the event queue)

101

Client

Init

Work

e1/

grant1/

deny1/

SendReq
/GEN(req1)

S0 S1
ev1[a>0]

/

S2S3

/GEN(cont1)ev1[a==0]/

/GEN(clr1)Cancel

Req

/GEN(cancel1)

[a>0]/

/

e1/

Clear

/GEN(clr1)

Server

Start

/GEN(grant1)req1
Send1

req1

Req2

Req1

cancel1

S1

/GEN(deny1)

S2

req2

/GEN(deny2)

Send2
req1

S3

/GEN(deny1)

S4

req2

/GEN(deny2)

/GEN(grant2)

cancel2req2

req1

EQ1

EQ2

e1

ex=gen(e1)ex=gen(e1),tr(e1)ex=gen(e1),tr(e1),gen(req1)ex=gen(e1),tr(e1),gen(req1),tr(req1)ex=gen(e1),tr(e1),gen(req1),tr(req1),gen(e1)ex=gen(e1),tr(e1),gen(req1),tr(req1),gen(e1),…

52

Properties to be checked

P is a safety property defined over events,
based on predicates such as

• InQ(e): true when event e is in EQ

• Before(e,e’): true when e is before e’ in EQ

• Gen(e): true when e is generated

• tr(e): true when e is sent to target

103

Learning-Based Compositional
Verification of Behavioral UML Systems

104

Model Checking

1. �� �� 	Learning

real
error?

2.
�� �� ��

Ai

Counterexample:
strengthen assumption

Counterexample:
weaken assumption

false

true
true

false

YesNo

���� ��||�� �

holds

���� ��||�� �

does not hold

• Define alphabet and Teacher

• Translatate words/automata to state machines

• Define alphabet and Teacher

• Define how to

• ��||��~	

53

RTC of M2: (tr(e1),gen(req1),gen(clr1))

105

Define Alphabet

Client

Init

Work

e1/

grant1/

deny1/

SendReq
/GEN(req1)

S0 S1
ev1[a>0]

/

S2S3

/GEN(cont1)ev1[a==0]/

/GEN(clr1)Cancel

Req

e/GEN(cancel1)

[a>0]/

e1/

Clear

/GEN(clr1)

� �� 	

�� �� �

�� ��||�� 	

M2::

Letters in the alphabet

• Every RTC of M2 induces a letter in the
alphabet

• RTC is described as a sequence of events

– e.g. (tr(e1),gen(req1),gen(clr1))

• Alphabet of A is defined based on the
interface of M2

– e.g. (tr(e1),gen(req1)) in alphabet of A

106

54

Learning-Based Compositional
Verification of Behavioral UML

Systems

107

Model Checking

1. �� �� 	Learning

real
error?

2.
�� �� ��

Ai

Counterexample:
strengthen assumption

Counterexample:
weaken assumption

false

true
true

false

YesNo

���� ��||�� �

holds

���� ��||�� �

does not hold

• Alphabet – based on interface events

• Define a Teacher

– Is w=(tr(e1),gen(req1)),(tr(grant1)) in A?

108

Checking Membership
Queries

Server

Start

/GEN(grant1)req1 Send1
req1

Req2

Req1

cancel1

S1

/GEN(deny1)

S2

req2

/GEN(deny2)

Send2
req1

S3

/GEN(deny1)

S4

req2

/GEN(deny2)
/GEN(grant2)

cancel2req2

M1::

� �� 	

�� �� �

�� ��||�� 	

55

– w=(tr(e1),gen(req1)),(tr(grant1)) in A iff on every
concrete execution of A||M1 that matches w, P holds

109

Checking Membership
Queries

Server

Start

/GEN(grant1)req1 Send1
req1

Req2

Req1

cancel1

S1

/GEN(deny1)

S2

req2

/GEN(deny2)

Send2
req1

S3

/GEN(deny1)

S4

req2

/GEN(deny2)
/GEN(grant2)

cancel2req2

M1::

S1 S2 S3 S4

e1/ /GEN(req1) grant1/M(w)::

� �� 	

�� �� �

�� ��||�� 	

– w=(tr(e1),gen(req1)),(tr(grant1)) in A iff on every
concrete execution of A||M1 that matches w, P holds

110

Checking Membership
Queries

Server

Start

/GEN(grant1)req1 Send1
req1

Req2

Req1

cancel1

S1

/GEN(deny1)

S2

req2

/GEN(deny2)

Send2
req1

S3

/GEN(deny1)

S4

req2

/GEN(deny2)
/GEN(grant2)

cancel2req2

M1::

S1 S2 S3 S4

e1/ /GEN(req1) grant1/M(w)::

checking membership:

� � ||��~	

� �� 	

�� �� �

�� ��||�� 	

56

• In fact, M(w) is somewhat more complex…

111

Learning-Based Compositional
Verification of Behavioral UML

Systems

112

Model Checking

1. �� �� 	Learning

real
error?

2.
�� �� ��

Ai

Counterexample:
strengthen assumption

Counterexample:
weaken assumption

false

true
true

false

YesNo

���� ��||�� �

holds

���� ��||�� �

does not hold

• Alphabet – based on interface events

• Define a Teacher

• From words/automatons to state machines

• Define how to

57

–
�� �� � 	 means execution inclusion:
��(��) ↓ `��(�)

– Create a new state machine for
monitoring �� w.r.t � and model check
result

113

Verify
�� �� �

CheckInclusion

RTCErr

Modify A:

1. When flag is on,

check for matching

behavior.

2. Set err on if no

matching behavior

Modify M2:

1. Raise flag when starting

“relevant” RTC steps

2. record “relevant” event

generation

[err]/

checking inclusion:

� �,�� ~�"#ℎ(%&'���)

Summary of AG Verification for UML

• Present a framework for learning-based
AG reasoning on behavioral UML models

• Model checking remains at the UML
level

• Framework can also be defined for the
case where the system includes more
than 2 objects.

114

58

Automated Circular Assume-
Guarantee Reasoning

Karam Abd Elkader, Orna Grumberg,
Corina Pasareanu, and Sharon Shoham

Formal Methods (FM) 2015

115

Motivation

• AG rule is asymmetric w.r.t M1 and M2

• Sometimes the components mutually
depend on each other for their
correctness

116

59

Naïve Circular Rule

<	�> �� <	�>

<	�> �� <	�>

��||�� ⊨ 	�||	�

Unsound!

Need to break circularity

Induction: over formulas, time, or both
117

M1 ║ M2

P2P1

Inductive Properties [McMillan 99]

M ⊨ A 9999 P :

Every trace (of M:

• Initially satisfies P, and

• If (satisfies A up to k, then it also
satisfies P up to step * + 1

118

… …

P

60

Inductive Properties [McMillan 99]

M ⊨ A 9999 P :

Every trace (of M:

• Initially satisfies P, and

• If (satisfies A up to k, then it also
satisfies P up to step * + 1

119

… …

⇒⇒⇒⇒ PA

Circular AG Rule

Rule Circ-AG

			�� ⊨ -� 9999 -�

�� ⊨ -� 9999 -�

			

120

��
║ ��

.�.�

<-�> �� <-�><-�> �� <-�>

61

P is correct � Exist .� and .� s.t. rule applicable

Circular AG Rule

Rule Circ-AG

			�� ⊨ -� 9999 -�

�� ⊨ -� 9999 -�

-�||-� ⊨ 	

			��||�� ⊨ 	

Rule Circ-AG is sound and complete

121

��
║ ��

.�.�

⊨ �

P is verified with some .� and .� � P is correct

Rule Circ-AG

			�� ⊨ -� 9999 -�

�� ⊨ -� 9999 -�

-�||-� ⊨ 	

			��||�� ⊨ 	

How to automatically construct assumptions ?

Challenge: .� and .�	depend on each other
122

��
║ ��

.�.�

⊨ 	�

Automated Circular AG Reasoning

62

ACR Algorithm

123

Model Checking

�� ⊨ -�9999-�

�� ⊨ -�9999-�

-�||-� ⊨ 	

true

true

P holds
in ��||��

true

SAT
Solver

cex

cex

cex

y

P does
not hold
in ��||��

n

-�, -�

real
cex?

Update
membership
constraints

Cex analysisAssumption
Generation

Encode

Decode

sat

unsat

New membership constraints C

-�, -� ⊨ '

Summary of ACR

• Automated circular assume-guarantee reasoning
– Assumptions depend on each other
– Uses joint disjunctive constraints

• Assumptions are significantly smaller than those
obtained by the non-circular rule

• ACR outperforms L* based algorithms for non-
circular rule

124

63

Thank You

125

