
Modular Verification of Concurrent
Programs via Sequential Model

Checking

Dan Rasin

Modular Verification of Concurrent
Programs via Sequential Model

Checking

Research Thesis

Submitted in partial fulfillment of the requirements

for the degree of Master of Science in Computer Science

Dan Rasin

Submitted to the Senate

of the Technion — Israel Institute of Technology

Kislev 5778 Haifa November 2017

This research was carried out under the supervision of Prof. Orna Grumberg and Dr. Sharon

Shoham, in the Faculty of Computer Science.

ACKNOWLEDGEMENTS

First and foremost, I would like to thank my supervisor, Prof. Orna Grumberg, for being both a

wonderful supervisor and an incredible person. Thank you for the the weekly inspiring meetings,

for constantly helping me improve my work, and for encouraging me to explore and learn what

research is. Thank you for always having an open door, and for making the studying experience

so fun. It has been a huge honor to work with you and learn from you.

I would like to thank my co-supervisor Dr. Sharon Shoham for her immense part of this

work. Thank you for your dedication, and for the ability to make every meeting fruitful with

new ideas and sharp thought. It was always enjoyable to meet you both in Tel Aviv and the

Technion. You are a great advisor and a great person, and I am very grateful for all your help

and guidance.

I would like to thank my parents, Lina and Lev, for their endless love and support. Thank

you for teaching me how to always aim high, and being there for me at every stage of my life.

Finally, I would like to thank my girlfriend Veronica. You have been escorting me through this

period both on good days when I had progress and on worse more frustrating days. You have

been always supportive and helped me to go forward, and I will be forever grateful for that.

The generous financial help of the Technion is gratefully acknowledged.

Contents

List of Figures

Abstract 1

1 Introduction 3
1.1 Related Work . 5

1.2 Organization . 6

2 Preliminaries 9

3 Reduction to Sequential Verification 13
3.1 From Concurrent to Sequential Programs . 13

3.2 Interface Between Main and the Environment 14

3.3 What’s Next . 14

4 Analyzing the Main Thread 17
4.1 The Structure of PM . 17

4.2 Representation of P Within PM . 20

4.3 Initial Construction of PM . 25

4.4 Iteration of the MainThreadCheck Algorithm 26

4.5 Analyzing a Potentially Spurious Violating Path 28

4.6 Generalizing an Environment Query . 31

5 Soundness and Progress of the Main Thread Analysis 33
5.1 Soundness . 33

5.2 Progress and Termination . 43

6 Answering Environment Queries 49
6.1 Sequential Program for Answering Environment Queries 49

6.2 Correctness of Environment Query . 51

7 Extending the Algorithm 59
7.1 Extending to Multiple Threads . 59

7.2 Environment Queries with Multiple Threads 61

7.3 Extending Assertions to all Threads of P . 67

8 Optimizations 69
8.1 General Optimization . 69

8.2 Optimizations for Generalizing Environment Information 70

8.3 Multiple Threads Optimizations . 72

9 Experimental Results 75

10 Conclusion and Future Work 79
10.1 Conclusion . 79

10.2 Future Work . 79

List of Figures

4.1 A typical computation of PM is a periodic repetition of extended steps consisting

of: original commands of tM , newly added assertion and the env move function. 20

4.2 Peterson’s mutual exclusion algorithm for two threads t0 and t1. 27

4.3 The sequential program P0 after adding environment move calls. 27

4.4 (a) If Reach(tE)(α, β) = FALSE, we search fore more general α′ and β′ which

restrict the environment transition; (b) If Reach(tE)(α, β) = ψ 6= FALSE, then

we know that ψ leads to β and that ψ ∧ α 6= FALSE. 31

4.5 The sequential program P0 after a few iterations of Algorithm 4.1. 31

4.6 The env move function of P0: initially (without highlighted lines); and after

one refinement (with highlighted lines). 31

5.1 The partition and partitioning states of a computation ρ. Note that r3 is allowed

to have inner cut-point states, as it is a computation of tE 39

6.1 The sequential program P1 for computing Reach(tE)(α, β) for α = ¬cs1 ∧
claim0 ∧ (¬claim1 ∨ turn = 0) and β = cs1. For the convenience of

presentation, we split the assume(α) to three assume commands. 52

7.1 A variation of the fib bench examples from the SV-Comp concurrency bench-

mark with three threads. 67

7.2 The sequential program P2 with both try start and env move’ calls, for

answering Reach({t2,t3})(α1, β1) with α1 , (a == 1 ∧ b == 1 ∧ c == 1)

and β1 , (a+ 2b > 15). 67

9.1 Run times [secs] for all four tools for verifying concurrent dynamic program-

ming algorithms. 77

9.2 Run times [secs] for fib bench programs with ring topology vs. chain topology. 78

Abstract

Verification of concurrent programs is known to be extremely difficult. On top of the chal-

lenges inherent in verifying sequential programs, it adds the need to consider a high (typically

unbounded) number of thread interleavings. In this work, we utilize the plethora of work on ver-

ification of sequential programs for the purpose of verifying concurrent programs. We introduce

a technique which reduces the verification of a concurrent program to a series of verification

tasks of sequential programs, without explicitly encoding all the possible interleavings. Our

approach is modular in the sense that each sequential verification task roughly corresponds

to the verification of a single thread, with some additional information about the environment

in which it operates. Information regarding the environment is gathered during the run of the

algorithm, by need.

A unique aspect of our approach is that it exploits a hierarchical structure of the program

in which one of the threads, considered “main”, is being verified as a sequential program. Its

verification process initiates queries to its “environment” (which may contain multiple threads).

Those queries are answered by sequential verification, if the environment consists of a single

thread, or, otherwise, by applying the same hierarchical algorithm on the environment.

Our technique is fully automatic, and allows us to use any off-the-shelf sequential model-

checker. We implemented our technique in a tool called CoMuS and evaluated it against

established tools for concurrent verification. Our experiments show that it works particularly

well on hierarchically structured programs.

1

2

Chapter 1

Introduction

Verification of concurrent programs is known to be extremely hard. On top of the challenges

inherent to verifying sequential programs, it adds the need to consider a high (typically un-

bounded) number of thread interleavings. For such programs, it is very appealing to exploit

their modular structure in verification.

Usually, however, a property of the whole system cannot be partitioned into a set of properties

that are local to the individual threads. Hence, pure modular verification methods, in which each

thread is verified in isolation are not useful in practice. Thus, proving the property on a single

thread requires some knowledge about its interaction with its environment.

In this work we develop a new approach, which utilizes the plethora of work on verification

of sequential programs for the purpose of modularly verifying the safety of concurrent programs.

Our technique automatically reduces the verification of a concurrent program to a series of

verification tasks of sequential programs. This allows us to benefit from any past, as well as

future, progress in techniques for sequential verification.

Our approach is modular in the sense that each sequential verification task roughly cor-

responds to the verification of a single thread, with some additional information about the

environment in which it operates. This information is automatically and lazily discovered during

the run of the algorithm, when needed.

A unique aspect of our approach is that it exploits a hierarchical view of the program

in which one of the threads, tM , is considered “main”, and all other threads are considered

its “environment”. We analyze tM using sequential verification, where, for soundness, all

interferences from the environment are abstracted (over-approximated) by a function env move,

which is called by tM whenever a context switch should be considered. Initially, env move

havocs all shared variables; it is gradually refined during the run of the algorithm.

When the sequential model-checker discovers a violation of safety in tM , it also returns

a path leading to the violation. The path may include calls to env move, in which case the

violation may be spurious (due to the over-approximation). Therefore, the algorithm initiates

queries to the environment of tM whose goal is to check whether certain interferences, as

observed on the violating path, are feasible in the environment. Whenever an interference turns

out to be infeasible, the env move function is refined to exclude it. Eventually, env move

3

becomes precise enough to enable full verification of the desired property on the augmented tM .

Alternatively, it can reveal a real (non-spurious) counterexample in tM .

The queries are checked on the environment (that may consist of multiple threads) in the

same modular manner. Thus we obtain a hierarchical modular verification. The hierarchical

characteristics of our method guarantee that along the algorithm, each thread learns about the

next threads in the hierarchy, and is provided with assumptions from former threads in the

hierarchy to guide its learning.

Our technique is fully automatic and performs unbounded verification, i.e., it can both prove

safety and find bugs in a concurrent program. It works on the level of program code. The

information gathered about the environment is accumulated in the code of tM by means of

assertions, and assumptions within the env move function.

The fact that our algorithm generates standard sequential programs in its intermediate

checks allows us to use any off-the-shelf sequential model-checker. In particular, we can handle

concurrent programs with an infinite state-space, provided that the sequential model checker

supports such programs.

We implemented our technique in a prototype called Concurrent to Multiple Sequential

(CoMuS) and evaluated it against established tools for unbounded verification of concurrent

C programs. We use SeaHorn [22] to model check sequential programs. SeaHorn receives C

programs, annotated with assertions, and checks whether an assertion can be violated. If so,

it produces a trace leading to a violated assertion. Otherwise, it announces that no violation

occurs.

While our approach is designed to work on any concurrent program, our experiments

show that it works particularly well on programs in which the threads are arranged as a chain,

t1, t2, . . . , tk, where thread ti depends only on its immediate successor ti+1 in the chain. This in-

duces a natural hierarchical structure in which t1 is the main thread with environment t2, . . . , tk;

thread t2 is the main thread in the environment, and so on. This structure often occurs in

concurrent implementations of dynamic programming [2] algorithms.

To summarize, the main contributions of our work are as follows:

• We present a new modular verification approach that reduces the verification of a concur-

rent program to a series of verification tasks of sequential programs. Any off-the-shelf

model checker for sequential programs can thus be used.

• Our approach exploits a hierarchical view, where each thread learns about the next threads

in the hierarchy, and is provided with assumptions from former threads to guide its

learning.

• The needed information on a thread’s environment is gathered in the code, automatically

and lazily, during the run of the algorithm.

• We implemented our approach and showed that as the number of threads grows, it outper-

forms existing tools on programs that have a hierarchical structure, such as concurrent

4

implementations of dynamic programming algorithms.

1.1 Related Work

The idea of performing code transformation and using any off-the-shelf model checker appeared

in [42, 43, 30]. However, they translate the concurrent program to a single nondeterministic

sequential program, and model the scheduler as well. In contrast, our technique exploits the

modular structure of the program. [38] also transforms the concurrent program into a single

sequential one. However, their approach is not sound, as they can miss some behaviors leading

to an error.

The fundamental concept of using modular reasoning is known as the Assume-Guarantee

paradigm [34]. The main idea is to split the specification into two: one part describing the

desired behavior of one module, and the second part describes an assumption on the module’s

environment, under which the first property should hold. The system can then be proved safe if

the module satisfies the desired property under the given assumption about the environment,

and the environment is proved to satisfy the assumption (independently). The assume guarantee

paradigm has been a key aspect in many works in the world of verification and model checking

[23], [31], [32], [12]. Our work is inspired from the Assume-Guarantee paradigm. Assumptions

about the environment under which we try to prove the desired property are gathered within our

env move function. We start by generating simple assumptions about the environment (which

are correct by construction), and strengthen them with new assumptions after we were able to

prove that the environment indeed satisfies them.

In the rest of this section, we address unbounded modular techniques for proving safety

properties of concurrent programs. Other related problems in the field of concurrent verification

include proving termination (e.g. [9, 35]) and using bounded model checking, where the bound

can address different parameters, such as the number of context switches [25, 43], the number

of write operations [42] or the number of loop iterations [39, 1, 45].

The work most closely related to ours is [20, 21]. There, an automatic modular verification

framework is described, which uses predicate abstraction of both states and environment

transitions. Our env move function is also used to abstract environment transitions, and we also

use predicates, in the form of assertion in the code, to reason about states leading to an error.

[20, 21] also iteratively try to prove the program safe, and gradually refine this abstraction by

checking possible witnesses of errors. However, they treat all threads symmetrically, whereas

our approach exploits a hierarchical view of the program. In particular, we single out a ”main”

thread from its ”environment” threads. The main thread initiates queries to its environment in

order to prove or disprove a violation. The environment threads are also treated hierarchically, in

a similar manner. In addition, their exploration of a single thread (with the information learned

from its environment) uses abstract reachability trees, which are inherent to their technique. We,

on the other hand, represent each thread (augmented with information from its environment)

as a stand-alone C program. Thus, we can use any off-the-shelf model checker to address the

”sequential part” of the verification problem, utilizing possible advancements in the field of

5

sequential model checking.

The works in [13, 26, 16] suggest to apply rely-guarantee reasoning for concurrent (or

asynchronous) programs, while the different sections of the program can be verified sequentially.

However, their technique requires human effort to specify the rely-guarantee conditions. [24]

also suggests a human-involving approach, where verification is modular, but the user is

responsible for providing the abstraction for each thread. In our approach we infer assumptions

about the environment automatically, and augment the code with assumptions and assertions to

represent them.

[14] suggests a modular algorithm with rely-guarantee reasoning and automatic condition

inference. [27] formalizes the algorithm in the framework of abstract interpretation. However,

their algorithm requires finite state systems, and its inferred conditions only refer to changes in

global variables. Hence, they fail to prove properties where local variables are necessary for the

proof. This can be overcome by treating all variables as global, but this would strip the algorithm

from its modularity. In our approach, reasoning about local variables is allowed, when we learn

that they are necessary for verification. Such variables are then turned into global variables, but

their behavior is abstracted in the threads that require them, preserving modularity. [8] also

fights the incompetence of modular proofs by exposing local variables as global, according to

counterexamples. However, their approach uses BDDs and suits finite state systems. Similar to

[20], they also treat threads symmetrically. Our approach is applicable to infinite state systems

and uses a guided search to derive cross-thread information.

Our queries resemble queries in learning-based compositional verification [7, 32], which

are also answered by a model checker. Our hierarchical recursive approach resembles the

n-way decomposition handled in [32]. However, these works represent programs, assumptions

and specification as LTSs, and although extended to deal with shared memory in [41] these

algorithms are suitable for finite state systems.

Several works such as [15, 18, 44, 37], tackle the interleaving explosion problem by per-

forming a thread interleaving reduction. [44] combines partial order reduction [17] with the

impact algorithm [28], whereas [37] identifies reducible blocks for compositional verification.

These approaches are complementary to ours, as our first step is performing an interleaving

reduction (to identify cut-points for env move calls).

1.2 Organization

The rest of this work is organized as follows. Chapter 2 presents the background and necessary

definitions concerning the semantics and analysis of both sequential and concurrent programs.

Chapter 3 presents the key concepts of our methodology, and formally defines environment

queries. Chapter 4 focuses on the sequential program constructed to analyze tM , and the

env move function that is used to over-approximate computations of the environment. Chapter 5

formally proves the correctness of the aforementioned analysis. The correctness of the proofs

relies on the existence of a method for answering environment queries. Chapter 6 describes how

such environment queries are answered in case the environment consists of a single thread. The

6

chapter also includes a proof for the correctness of this construction. Chapter 7 describes how

our method can be extended to multiple threads. Chapter 8 describes a list of optimizations used

by our tool. Chapter 9 provides an experimental evaluation, and shows that our technique is

useful for programs which have a hierarchical structure. Chapter 10 summarizes this work.

7

8

Chapter 2

Preliminaries

Sequential Programs. A sequential program P is defined by a control flow graph whose

nodes are a set of program locations L (also called labels), and whose edges E are a subset of

L × L. The program has an initial label, denoted linit ∈ L. Each node l is associated with a

command c ∈ cmds, denoted cmd(l), which can be an assignment or an if command, as well as

havoc, assume and assert (explained below). Intuitively, we think of standard C programs

(that may contain loops as well), which can be trivially compiled to such control flow graphs.

The program may also include non-recursive functions, which will be handled by inlining.

The program is defined over a set of variables V . Conditions in the program are quantifier-

free first-order-logic formulas over V . A special variable pc 6∈ V , ranging over L, indicates

the program location. A state s of the sequential program P , is a pair (l, σ) where l ∈ L is the

value of pc and σ is a valuation of V . Variables may have unbounded domains, resulting in a

potentially infinite state-space. We also assume the existence of a special error state, denoted

ε = (lε,⊥). We denote by l(s) and σ(s) the first and second components (resp.) of a state

s = (l, σ). Given a valuation σ over V and a set of variables U , we denote by σ|U the restriction

of σ to the variables in U . That is, σ|U (v) = σ(v) for every v in V ∩U , and σ|U (v) is undefined

for any other v. Note that we do not assume that U ⊆ V . If c is a command or a condition over

some of the program variables, we denote by Vars(c) the set of variables appearing in c. We

denote σ|c = σ|Vars(c).

A program may include an initialization condition in the form of a valuation σinit of a set of

variables U ⊆ V . We denote by σinit(v) the initial value of a variable v ∈ U . The set of initial

states consists of all states (linit, σ) where σ|U = σinit. We denote by φinit the initialization

formula φinit , ∧
v∈U

[v = σinit(v)]. It is possible to express more complex initial conditions,

e.g. (v1 > 0 ∧ v2 + v3 = 7), via explicit assume commands in the code, as described below.

For a state s = (l, σ), let cmd(s)=cmd(l). We denote next(s) = {s′ | s′ can be obtained

from s using cmd(s)}1. This set is defined according to the command cmd(s). In particular,

s′ ∈ next(s) implies that (l(s), l(s′)) is an edge in P . The definition of next(s) for assignments

and if commands is standard. A v=havoc() command assigns a non-deterministic value to the

variable v. An assume(b) command is used to disregard any computation in which the condition

1havoc commands are non-deterministic, hence s′ is not unique.

9

b does not hold. It does nothing, otherwise. Formally, if s = (l, σ) and cmd(s)=assume(b),

then σ � b ⇒ next(s) = {(l′, σ)} where l′ is the label of the next command to be executed

after the assume command (i.e., l′ is the single label such that (l, l′) ∈ E), and σ 2 b ⇒
next(s) = ∅. An assert(b) command moves to the error state if b is violated, and does

nothing otherwise. Formally, if s = (l, σ) and cmd(s)=assert(b) for some condition b, then

σ � b ⇒ next(s) = {(l′, σ)} where l′ is the label of the next command to be executed, and

σ 2 b⇒ next(s) = {ε}.
A computation ρ of P is a sequence ρ = s0 −→ s1 −→ . . . −→ sn for some n ≥ 0 s.t. for

every two adjacent states si, si+1: si+1 ∈ next(si). ρ is an initial computation in P if it starts

from an initial state. ρ is a reachhable computation in P if there exists an initial computation ρ
′

for which ρ is the suffix. The path of a computation (l0, σ0) −→ . . . −→ (ln, σn) is the sequence

of program locations l0, . . . , ln.

Remark. The examples appearing later in this work are C programs, where we use line numbers

to denote the labels of the program.

Preconditions and Postconditions. Given a condition q over the program variables V and

an edge e = (l, l′), a precondition of q w.r.t. e, denoted pre(e, q), is a condition p such that

for every state s, if σ(s) � p and l(s) = l then there exists s′ ∈ next(s) s.t. σ(s′) � q and

l(s′) = l′ 2. A precondition extends to a path π = l0, . . . , ln with commands c0, . . . , cn−1 in

the natural way. The weakest precondition of q w.r.t. e (resp., π) is a precondition that is implied

by any other precondition, and can be computed in a standard way, according to the command

cmd(l) (resp., c0, . . . , cn−1) and the chosen target label l′ (resp., l1, . . . , ln) [11]. We denote it

wp(e, q) (resp., wp(π, q)).

A path precondition p = pre(π, q) has the property that for every state s such that σ(s) � p,

there exists a computation ρ whose path is π from s to some state s′ such that σ(s′) � q. A path

weakest precondition p = wp(π, q) also satisfies the converse: if ρ is a computation whose path

is π from some state s to a state s′ s.t. σ(s′) � q, then σ(s) � p.

A postcondition of a condition p w.r.t e = (l, l′), denoted post(e, p), is any condition q

such that if σ(s) � p, l(s) = l then for every s′ ∈ next(s), if l(s′) = l′ then σ(s′) � q.

Postconditions can also be extended to paths π = l0, . . . , ln. We use post(π, p) to denote a

postcondition of condition p w.r.t. path π. A path postcondition q = post(π, p) has the property

that for every computation ρ whose path is π from a state s s.t. σ(s) � p to some state s′, it

holds that σ(s′) � q.

Concurrent Programs A concurrent program P consists of multiple threads t1, . . . , tm,

where each thread ti has the same syntax as a sequential program over a set of variables Vi and

a program location variable pci. The threads communicate through shared variables, meaning

that generally Vi, Vj are not disjoint for i 6= j. Let V =
⋃m
i=1 Vi. A state s of the concurrent

program P is a pair s = (l, σ), where σ is a valuation of V and l = (l1, . . . , lm) with li being

2Note that our definition of a precondition does not require all the successors to satisfy q.

10

the value of pci for every thread ti. We denote l(s, ti) = li. We also assume one common

error state ε. An initialization condition σinit and initialization formula φinit are defined as in

the sequential case. The set of initial states consists of all states (l
init

, σ) where σ � φinit and

l
init

= (linit1 , . . . , linitm) are the initial labels of the threads t1, . . . , tm (resp.).

The execution of a concurrent program is interleaving, meaning that exactly one thread

performs a command at each step, and the next thread to execute is chosen non-deterministically.

We consider a sequentially consistent semantics in which the effect of a single command on the

memory is immediate. For s = (l, σ), let cmd(s, ti) denote the command of thread ti at label

li. We denote next(s, ti) = {s′ | s′ can be obtained from s after ti performs cmd(s, ti)}. A

computation ρ of the concurrent program P is a sequence s0
t(1)−−→ s1

t(2)−−→ . . .
t(n)

−−→ sn s.t. for

every two adjacent states si, si+1: t(i+1) ∈ {t1, . . . , tm} and si+1 ∈ next(si, t(i+1)). We say

that ρ is a computation of thread t in P if t(j) = t for every 1 ≤ j ≤ n. Given a set of threads

T ⊆ {t1, . . . , tm}, we sat that ρ is a computation of T in P if t(j) ∈ T for every 1 ≤ j ≤ n.

We define initial and reachable computations as in the sequential case, but w.r.t. computations

of the concurrent program.

Remark. Our technique also supports atomic synchronization operations by modeling them

with atomic control commands. For example, Lock(lock) is modeled by atomic execution of

assume(lock = false); lock=true; As explained later, our technique models context

switches by explicit calls to a function, env move. Thus, we are able to guarantee that these

commands are treated as an atomic operation (with no context switches allowed) by not including

env move calls between them.

Variable Classification A variable is read by a thread ti if it appears in a condition of any

control structure (if, assume, assert) or on the right hand side of any assignment in ti. A variable

is written by ti if it appears on the left hand side of any assignment in ti. A variable v ∈ V is

shared between two threads ti, tj if v ∈ Vi ∩ Vj . A variable v ∈ Vi is a local variable of ti if

v 6∈ Vj for every j 6= i.

Safety. A computation of a (sequential or concurrent) program is violating if it ends in the

error state (i.e., the last step of the computation executes the command assert(b) at a state s

such that σ(s) 2 b). The computation is safe otherwise. A (sequential or concurrent) program is

safe if it has no initial violating computations. In the case of a sequential program, we refer to

the path of a violating computation as a violating path.

A Sequential Model Checker is a tool which receives a sequential program as input, and

checks whether the program is safe. If it is, it returns “SAFE”. Otherwise, it returns a counterex-

ample in the form of a violating path.

Interleaving Reduction An interleaving reduction analysis is a technique which identifies

a set of labels, called cut-points, such that the original program is safe if and only if all the

computations in which context-switches can only occur at cut-points are safe. This means that

11

at every state of the computation, at most one thread (which is the thread performing the current

sequence of steps) can be at a label which is not a cut-point. When the next thread to move

changes (i.e., a context switch occurs), all threads must be in a cut-point label.

More formally, let CL1 ⊆ L1, . . . , CLm ⊆ Lm be the sets of cut-point labels for the

threads t1, . . . , tm of a concurrent program P . A state s satisfying l(s, tj) ∈ CLj for every

thread tj of P , is called a cut-point state. The program P is safe if and only if it has no initial

violating computation ρ = s0
t(1)−−→ s1

t(2)−−→ . . .
t(n)

−−→ sn in which every two adjacent transitions

si−1
t(i)−−→ si

t(i+1)

−−−→ si+1 satisfy the following two properties:

• If t(i) 6= t(i+1), then si is a cut-point state.

• if t(i) = t(i+1), then for every thread tj 6= t(i): l(si, tj) ∈ CLj (and l(si, t(i)) is not

restricted).

For the rest of this work, we will only consider computations in which context switches

are restricted to cut-point states. For simplicity, we assume that all initial states are also cut-

point states, i.e., linitj ∈ CLj for every thread tj of P . Several techniques for performing an

interleaving reduction are described in [15, 18, 44, 37].

12

Chapter 3

Reduction to Sequential Verification

In this chapter we provide an overview of our methodology for verifying safety properties of

concurrent programs, given via assertions. The main idea is to use a sequential model checker in

order to verify the concurrent program. Our approach handles any number of threads. However,

to simplify the presentation, we first describe our approach for a concurrent program that consists

of two threads. In Chapter 7, we extend the presentation to any number of threads.

In the sequel, we fix a concurrent program P with two threads. We refer to one as the

main thread (tM) and to the other as the environment thread (tE), with variables VM and VE
and program location variables pcM and pcE , respectively. VM and VE might intersect. Let

V = VM ∪ VE . Given a state s = (l, σ), we denote by lM (s) and lE(s) the values of pcM and

pcE in a state s, respectively. We also denote by linitM and linitE the initial values of pcM and

pcE . For simplicity, we assume that the safety of P is specified by assertions in tM . Section 7.3

describes how to support assertions in all threads of P .

3.1 From Concurrent to Sequential Programs

Our algorithm generates and maintains a sequential program for each thread. Let PM and PE
be the two sequential programs, with variables V̂M ⊇ VM and V̂E ⊇ VE . Each sequential

program might include variables of the other thread as well, together with additional auxiliary

variables not in V . Our approach is asymmetric, meaning that PM and PE have different roles

in the algorithm. PM is based on the code of tM , and uses a designated function, env move, to

abstract computations of tE . PE is based on the code of tE , and is constructed in order to answer

specific queries for information required by PM , specified via assumptions and assertions. The

algorithm iteratively applies model checking to each of these programs separately. In each

iteration, the code of PM is gradually modified, as the algorithm learns new information about

the environment, and the code of PE is adapted to answer the query of interest.

13

3.2 Interface Between Main and the Environment

In Chapter 4, we first describe the way our algorithm operates on PM . During the analysis

of PM , information about the environment is retrieved using environment queries: Intuitively,

an environment query receives two conditions, α and β, and checks whether there exists a

reachable computation of tE in P from α to β. The idea is to perform specific guided queries in

tE , to search for computations that might “help” tM to reach a violation. If such a computation

exists, the environment query returns a formula ψ, which ensures that all states satisfying it can

reach β using tE only. We also require that α and ψ overlap. In order to ensure the reachability

of β, the formula ψ might need to address local variables of tE , as well as pcE . These variables

will then be added to PM , and may be used for the input of future environment queries. If our

algorithm can prove that there are no such computations of tE , it returns ψ = FALSE. The

formal definition follows.

Definition 3.2.1 (Environment Query). An environment query Reach(tE)(α, β) receives con-

ditions α and β over V ∪ {pcE}, and returns a formula ψ over V ∪ {pcE} such that:

1. If there exists a computation of tE in P that is (1) reachable in P , (2) starts from a cut

point state s s.t. s � α, and (3) ends in a cut point state s′ s.t. s′ � β, then ψ∧α 6≡ FALSE.

2. For every state s s.t. s � ψ, there exists a computation (not necessarily reachable) of tE
in P from s to some s′ s.t. s′ � β.

3. ψ 6= FALSE⇒ ψ ∧ α 6≡ FALSE.

Observation 3.2.2. 1. We note that ψ is not required to be precise, i.e., nothing is required

of states s s.t. s 2 ψ.

2. If ψ = FALSE, the first property implies that there is no reachable computation of tE in

P between cut point states from α to β.

3. If α ∧ β 6≡ FALSE, β is always a valid result for Reach(tE)(α, β), as a computation of

length zero would satisfy the requirements.

4. The aforementioned computations do not have to be initial, (i.e., the first state s of the

computation is not necessarily an initial state).

5. The last property of Definition 3.2.1 is only needed for the progress of our main algorithm

(see Lemma 5.2.4 of Section 5.2). For soundness, the first two properties suffice.

3.3 What’s Next

Chapter 4 focuses on PM . It describes the structure of PM , based mainly on the code of tM ,

and the connection between states and computations of P to states and computations of PM . It

also describes the env move function, and formally defines in what sense it over-approximates

14

tE . The key part of this chapter is Algorithm 4.1, which analyzes and refines PM to determine

the safety of P . The correctness proof for Algorithm 4.1 appears in Chapter 5. The algorithm

assumes the existence of a model checker that can determine the correctness of sequential

programs (and provide counterexamples). That is, it reduces the verification of concurrent

programs to a series of verification tasks of sequential programs.

An additional assumption of Algorithm 4.1 and its correctness proof in Chapter 5, is the

existence of a method for answering environment queries. Chapter 6 describes how environment

queries are answered in the case of a single environment thread tE . The key elements of

this chapter are PE , the sequential program constructed according to tE , and the try start

function, that is used in PE to over-approximate initial computations of P in order to let PE
simulate non-initial computations of tE that follow them. Chapter 6 also includes a proof for

the correctness of this construction.

Multiple Threads The key ingredients used by our technique are (i) an env move function

that is used in PM to overapproximate finite computations (of any length) of tE , and (ii) a

try start function as mentioned above. When P has more than two threads, the environment

of tM consists of multiple threads, hence environment queries are evaluated by a recursive

application of the same approach. Since the computations we consider in the environment

are not necessarily initial, the main thread of the environment should now include both the

env move function and the try start function. For more details see Chapter 7.

15

16

Chapter 4

Analyzing the Main Thread

In this chapter we describe our algorithm for analyzing the main thread for the purpose of

proving the concurrent program P safe or unsafe (Algorithm 4.1). Algorithm 4.1 maintains

a sequential program, PM , over V̂M ⊇ VM , which represents the composition of tM with an

abstraction of tE . The algorithm changes the code of PM iteratively, by adding new assumptions

and assertions, as it learns new information about the environment.

The rest of this chapter is organized as follows: Section 4.1 describes general properties

of PM , that hold throughout Algorithm 4.1. Section 4.2 provides necessary formal definitions

describing the relation between P and PM . Next, we start describing our algorithm. Section 4.3

describes the initialization steps of Algorithm 4.1, and presents a running example. After

initialization, Algorithm 4.1 works in iterations. Section 4.4 describes the outline of each

iteration, and explains when the algorithm can terminate with a final result (safe or unsafe).

Section 4.5 details how the algorithm analyzes counterexamples provided by the sequential

model-checker. This analysis is the core of every iteration of Algorithm 4.1. Section 4.6 briefly

describes how the results of environment queries can be generalized.

4.1 The Structure of PM

We now detail the general structure of PM . The described properties are invariants, and hold

throughout all modifications of PM .

Variables of PM As mentioned before, V̂M includes all variables of tM , i.e., V̂M ⊇ VM . V̂M
may also include variables in VE \ VM , as well as include pcE as an explicit variable. All

other variables in V̂M are auxiliary local variables required for ad-hoc technical purposes, and

will be mentioned later (see (4) of Section 4.5). Other than the usage in (4) of Section 4.5,

all commands in PM only address variables in V ∪ {pcE}. Thus, we can safely assume that

conditions computed later in Algorithm 4.1 using paths of PM (weakest precondition and

postcondition) are also over V ∪ {pcE}.

17

Algorithm 4.1 Algorithm MainThreadCheck
1: procedure MAINTHREADCHECK(tM , tE)
2: PM = add env move calls in tM and initialize env move()
3: while a violating path exists in PM do // using sequential MC
4: Let π̂ = l̂0, . . . , l̂n+1 be a violating path.
5: if there are no env moves in π̂ then:
6: return “Real Violation”
7: end if
8: let l̂k be the label of last env move call in π̂
9: let π̂start = l̂0, . . . , l̂k and π̂end = l̂k+1, . . . , l̂n

10: β = wp(π̂end,¬b) // see (1) in Section 4.5
11: α = post(π̂start, φ̂init) // see (2) in Section 4.5
12: Let ψ = Reach(tE)(α, β) // environment query for tE (see Chapter 6)
13: if ψ is FALSE then
14: Let α′, β′ be as in (4) in Section 4.5.
15: PM = RefineEnvMove(PM , α

′, β′)

16: else // see (5) in Section 4.5
17: Add assert(¬ψ) in PM at new label l̂′, placed right before l̂k
18: end if
19: end while
20: return “Program is Safe”.
21: end procedure

Initialization Condition of PM All variables in V̂M ∩ V appear in PM with the same decla-

ration as in P , and the same (possible) initialization as in P . In addition, if pcE ∈ V̂M , it is

initialized with linitE . Formally, if P uses the initialization formula φinit , ∧
v∈U

[v = σinit(v)],

then φ̂init, the initialization formula of PM , is φ̂init , ∧
v∈U∩V̂M

[v = σinit(v)] if pcE 6∈ V̂M , and

φ̂init , (∧
v∈U∩V̂M

[v = σinit(v)]) ∧ (pcE = linitE) if pcE ∈ V̂M .

The env move Function The abstraction of tE is achieved by introducing a new function,

env move. Context switches from tM to tE are modeled explicitly by calls to env move. The

body of env move changes during the run of Algorithm 4.1. However, it always has the property

that it over-approximates the set of finite (possibly of length zero) computations of tE in P , that

are reachable in P (this is formalized by Definition 4.2.5). The env move function is called at

every cut-point location in tM , as determined by an interleaving reduction analysis.

Commands of PM The code of PM always consists of the original code of tM , with the

following changes:

• The env move function (which contains assumptions about the environment) is part of

PM .

• Calls to env move are included at every chosen cut-point. These are added during

initialization. Exactly one env move call is added at each cut-point, meaning that there is

at least one original command of tM between every two env move calls in PM .

18

• New assertions may be included (only) directly before an env move call. There may be

several such new assertions before a single env move call. These are added during the

run of Algorithm 4.1).

Observation 4.1.1. The last two properties imply that the next command after env move must

be an original command of tM . Clearly, by the second property above, it cannot be another

env move call. Further, when new assertions are added, they always immediately precede

an env move call (but after numerous such additions, there may be several subsequent newly

added assertions before a particular env move call). Therefore, if the next command after the

env move were some newly added assert(b), the next commands afterwards must have been

several (possibly zero) additional new assertions (part of the same sequence as assert(b)),

followed by the env move call before which assert(b) was added. This would have meant

no original command of tM between two consecutive env move calls, and it contradicts the

second property.

Computations of PM There are no additional commands in PM other than the ones listed

above. Original commands of tM are also neither modified nor reordered. In particular, the

control flow of tM is preserved within PM . Hence, any computation of PM can be viewed as a

periodic repetition of the following “extended steps”, where each step consists of:

1. A sequence of original commands of tM , between cut-point locations, with no inner

cut-point location.

2. A sequence of new assertions accumulated before an env move call.

3. An execution of the env move function.

Further, for every two such adjacent “extended steps”, the label reached in tM after the last

original command (of tM) of the former extended step, must be the same as the label in tM
of the first original command in the latter extended step. Figure 4.1 illustrates such a typical

computation of PM .

Observation 4.1.2. Note that the set of new assertions before an env move call may be empty.

Specifically, after initialization - none of the env move calls have new assertions preceding

them. Additionally, since we include the initial label of each thread in the set of cut-point labels,

there will be an env move call in PM before the first original command of tM , and possibly

additional new assertions before that env move call.

To address the original label in tM , Algorithm 4.1 maintains a mapping, denoted Lab, that

maps each label of PM (except those inside env move) to the corresponding label in tM .

Definition 4.1.3 (Lab). Let l̂ be a label of PM , not inside env move, with cmd(l) =c. We

define Lab(l̂) recursively as follows:

• If c is an original command of tM , appearing at label l in tM , then Lab(l̂) = l.

19

Figure 4.1: A typical computation of PM is a periodic repetition of extended steps consisting of:
original commands of tM , newly added assertion and the env move function.

• If c is an env move call or a new assert, Lab(l̂) = Lab(l̂′), where l̂′ is the next label in

PM after the env move or the assert command (resp.).

Lab is well defined, as the next label after asserts or env move calls is uniquely defined,

and a sequence of such commands cannot form a loop, without introducing at least a single

command originally from tM . Technically, for each label of PM , the mapping holds the label

of the next original command of tM to be executed. Clearly, this definition is not injective, as

multiple labels of asserts and env move calls can be mapped to the same label of an original

command. For example, consider the sequential program P0 in Figure 4.3, which is based on t0

from Figure 4.2. In this example, line 10 of P0 with the command turn = 1, as well as the

preceding line 9 with an env move call, are both mapped to line 8 of t0 with the original turn

= 1 command. Thus, Lab(9̂) = Lab(1̂0) = 8.

4.2 Representation of P Within PM

In this section, we describe the relation between states of the sequential program PM , and

states of the concurrent program P . We also formalize the relation between computations of

tM in P , and computations in PM that are restricted to original commands of tM (i.e., between

consecutive cut-points).

The purpose of PM is to combine a precise representation of tM , with an over-approximation

of tE (represented by the env move function). Together, this combination provides an over-

approximation of the computations of P . Every state of PM can be viewed as an abstract state,

20

representing several states of P . The formal relation is given by the following definition:

Definition 4.2.1 (Extend). Let ŝ = (l̂, σ̂) be a state of PM , s.t. l̂ is not inside env move. We

define the set Extend(ŝ) to be the set of all states s = (l, σ) of P such that:

• lM (s) = Lab(l̂)

• If pcE ∈ V̂M then lE(s) = σ̂(pcE)

• For every v ∈ V : v ∈ V̂M ⇒ σ(v) = σ̂(v)

Intuitively, the states appearing in Extend(ŝ) are all the states of P that agree with ŝ on the

program location of tM (and of tE if pcE ∈ V̂M), and agree with ŝ on all the variables in

V ∩ V̂M .

Observation 4.2.2. Note that the set Extend(ŝ) is never empty for any state ŝ of PM . This is

because any extension of σ(s) to the variables in V \ V̂M will form a legal state s of P (not

necessarily reachable) which is in Extend(ŝ).

Observation 4.2.3. If s ∈ Extend(ŝ), then for every formula γ over V̂M ∩ (V ∪ {pcE}), it

holds that s � γ ⇐⇒ σ(ŝ) � γ 1. This is true, since Definition 4.2.1 implies that s and ŝ have

identical values on all the variables in γ.

Next, we would like to extend our observation to initial states using the following lemma:

Lemma 4.2.4. Let ŝ be an initial state of PM . Then there exists an initial state s of P , such

that s ∈ Extend(ŝ).

Proof. Let φinit , ∧
v∈U

[v = σinit(v)] be the initialization formula of P . We define a state s as

follows:

• lM (s) = linitM .

• lE(s) = linitE .

• For every v ∈ U : σ(s)(v) = σinit(v).

• For v ∈ V̂M \ U : σ(s)(v) = σ(ŝ)(v).

• If v 6∈ V̂M and v 6∈ U : σ(s)(v) can be chosen arbitrarily.

1The difference in notation (i.e., “s” vs. “σ(ŝ)”) results from the special status of the variable pcE . It is not part
of σ(s), but it is a part of s, with its value indicated by lE(s). In PM , on the other hand, it is a regular variable, and
is part of σ(ŝ).

21

By the first three properties, s is clearly an initial state of P . We need to show that s ∈
Extend(ŝ).

The code of PM starts with a (possibly empty) sequence of new assertions, an env move,

and then the first original command c at label linitM of tM (see Observation 4.1.2). Therefore,

cmd(ŝ) is either such a new assertion or an env move call, and there is no other original

command of tM in PM between cmd(ŝ) and c. Hence, by Definition 4.1.3, Lab(l(ŝ)) = linitM .

Since ŝ is initial, σ(ŝ) � φ̂init. Thus, if pcE ∈ V̂M , then σ(ŝ)(pcE) = linitE = lE(s).

Similarly, if v ∈ V̂M ∩U , σ(ŝ)(v) = σinit(v) = σ(s)(v). For v ∈ V̂M \U , σ(ŝ)(v) = σ(s)(v)

by the construction of s. Thus, s ∈ Extend(ŝ).

After defining the compatibility between states of P and states of PM , we can now address

the compatibility of computations. First, we define in what sense the env move function over-

approximates computations of tE . Intuitively, the env move function over-approximates the

set of finite reachable computations of tE in terms of their input-output relation. Formally, this

means the following.

Definition 4.2.5 (Over-approximation). We say that env move over-approximates the compu-

tations of tE in P if for every reachable (and possibly empty) computation ρ = s
tE−→ . . .

tE−→ s′

of tE in P from a cut-point state s to a cut-point state s′, and for every state ŝ of PM s.t.

s ∈ Extend(ŝ), and cmd(ŝ) is an env move call, there exists a computation ρ̂ = ŝ→ · · · → ŝ′

of PM s.t.

• l(ŝ′) is the next command in PM after env move, and for every inner state ŝ′′ in ρ̂, l(ŝ′′)

is a label inside env move (i.e., ρ̂ is a complete single execution of env move)

• s′ ∈ Extend(ŝ′)

The definition implies that if tE can move (in any finite number of steps) from a state s

satisfying some condition α to a state s′ satisfying some condition β, env move should also

allow reaching a state satisfying β, when it is called from a state satisfying α. In order to prove

that env move always over-approximates the computations of tE in P , we need to consider

the possible refinements and changes applied to env move by Algorithm 4.1. This is proved

in Lemma 5.1.1, after the complete presentation of the algorithm in this chapter. We will later

see (Lemma 5.1.3) that in addition to this over-approximation, PM also under-approximates

the set of states leading to an error, using the new assertions. This under-approximation also

incorporates partial information about tE .

As opposed to tE , the representation of tM within PM is precise. In fact, this property is

based on the general structure of PM , as described in this section. Hence, we can prove the

following two useful lemmas, formalizing the meaning of “precise representation” of tM within

PM . Lemma 4.2.6 maps computations of PM that do not use env move, to representative

computations of tM in P . Lemma 4.2.7 maps computations ρ of tM in P to computations ρ̂

in PM that represent them, where a subtle point is that ρ̂ may correspond to a prefix ρ′ of ρ,

22

followed by an error state. This may happen, in case that Algorithm 4.1 already learned that the

last state of ρ′ leads to an error. The soundness proof at Section 5.1 uses both of these lemmas

(as well as additional properties of the algorithm, presented later) to complete the correctness

argument of our algorithm.

Lemma 4.2.6 (PM representation I). Let ρ̂ = ŝ→ · · · → ŝ′ be a computation of PM , along a

path in which all commands are not inside env move and are not env move calls, and such

that ŝ′ 6= ε. Then for every state s ∈ Extend(ŝ) there exists a computation ρ of tM in P from s

to some state s′ s.t. s′ ∈ Extend(ŝ′).

Proof. Let k be the length of the computation ρ̂. The proof is by induction on k.

Base Case: Assume k = 0. Let s be a state of P . If we choose s′ = s, there is a zero length

computation (of tM) in P from s to s′ (from s to itself). Since k = 0, ŝ′ = ŝ, and therefore

s ∈ Extend(ŝ) implies s′ ∈ Extend(ŝ′).

Indcution Step: Let k > 0. Assume that the lemma holds for computations in PM of length

(k-1), and let ρ̂ = ŝ → · · · → ŝ′′ → ŝ′ be a computation of length k in PM , as described

above. Then ρ̂′ = ŝ → · · · → ŝ′′ is a computation of length (k − 1), for which the induction

hypothesis holds. Let s ∈ Extend(ŝ). By the induction hypothesis, there exists some state

s′′ ∈ Extend(ŝ′′) and a computation ρ′ of tM in P from s to s′′. We define a state s′ = (l′, σ′)

as follows:

• lM (s′) = Lab(l(ŝ′)).

• lE(s′) = lE(s
′′).

• ∀v ∈ V :

– If v ∈ V̂M then σ′(v) = σ(ŝ′)(v).

– If v 6∈ V̂M then σ′(v) = σ(s′′)(v).

It is sufficient to show that there exists a computation ρ′′ of tM in P from s′′ to s′ and that

s′ ∈ Extend(ŝ′), since ρ , ρ′ · ρ′′ will then be a computation from s to s′, as required. Note

that in order to prove that s′ ∈ Extend(ŝ′), we only need to show that if pcE ∈ V̂M then

lE(s
′) = σ(ŝ′)(pcE), as the other two requirements of Definition 4.2.1 are met immediately by

the definition of s′.

Let c=cmd(ŝ′′). c is the command used by ρ̂ to move from ŝ′′ to ŝ′. Since c cannot be an

env move call and is also not inside env move, there are two possible cases:

• c is an original command of tM .

• c is a new assertion in PM .

23

1. Assume first that c is an original command of tM . Since original commands of tM
cannot change pcE in PM , we get σ(ŝ′′)(pcE) = σ(ŝ′)(pcE). Since s′′ ∈ Extend(ŝ′′),
pcE ∈ V̂M implies lE(s′′) = σ(ŝ′′)(pcE). Combining this with the definition of s′, we

get lE(s′) = lE(s
′′), and all together lE(s′) = σ(ŝ′)(pcE).

It is now sufficient to show that s′ ∈ next(s′′, tM) (a computation of length one from s′′

to s′).

Let Vact = Vars(c). The command c can only change the variables in Vact and the possible

modifications are independent of variables not in Vact. Since c is in PM , Vact ⊆ V̂M and

hence by the definition of s′, σ′|Vact = σ(ŝ′)|Vact . Since s′′ ∈ Extend(ŝ′′), we also get

σ(s′′)|Vact = σ(ŝ′′)|Vact . Since ŝ′ ∈ next(ŝ′′), it means that σ(ŝ′)|Vact can be obtained

from σ(ŝ′′)|Vact by performing c, and hence σ′|Vact can be obtained from σ(s′′)|Vact by

performing c. For a variable v 6∈ Vact, σ′(v) = σ(s′′)(v) (by the definition of s′ if

v 6∈ V̂M , and because σ(ŝ′)(v) = σ(ŝ′′)(v) for v ∈ V̂M \ Vact, as c cannot change

variables outside Vact). Hence, σ′ can be obtained from σ(s′′).

As for the labels, lE(s′) = lE(s
′′) by the definition of s′. We also need to show that lM (s′)

is the label reached after performing c from s′′. Given the state s′′, the label of the next

command depends on lM (s′′), the location of s′′ within tM , and of σ(s′′)|Vact . The label

of the next command is unique given this valuation (although an if-command may move

to several possible labels, it can only have one target given a specific valuation of Vact).

Since s′′ ∈ Extend(ŝ′′), it holds that lM (s′′) = Lab(l(ŝ′′)) and σ(s′′)|Vact = σ(ŝ′′)|Vact .
Hence, the label reached in tM after performing c from s′′, is also given by Lab(l(ŝ′)),

where ŝ′ is the state obtained after performing c on ŝ′′. Luckily, this is exactly how lM (s′)

was defined.

2. Otherwise, c is a newly added assertion command. Since, ŝ′ 6= ε, the assertion is not

violated and hence, σ(ŝ′′) = σ(ŝ′). In particular, pcE ∈ V̂M implies σ(ŝ′′)(pcE) =

σ(ŝ′)(pcE) as before, and hence again we have lE(s′) = lE(s
′′) = σ(ŝ′′)(pcE) =

σ(ŝ′)(pcE).

It is now sufficient to show that s′ = s′′ (a computation of length zero). By Definition 4.2.1,

lM (s′′) = Lab(l(ŝ′′)), which equals to Lab(l(ŝ′)) by Definition 4.1.3. With the definition

of s′ we get lM (s′) = lM (s′′). The rest of the equalities follow immediately from the

definition of s′, the equality σ(ŝ′′) = σ(ŝ′) and the assumption s′′ ∈ Extend(ŝ′′).

Lemma 4.2.7 (PM representation II). Let ρ be a computation of tM in P from a state s to a

state s′ such that there are no inner cut-point states within ρ (but s and s′ may be cut-point

states). Let ŝ be a state of PM such that s ∈ Extend(ŝ), and cmd(ŝ) is an original command

of tM . Then there exists a computation ρ̂ of PM from ŝ to a state ŝ′ such that either ŝ′ = ε, or

the following conditions hold:

• s′ ∈ Extend(ŝ′)

24

• If s′ is a cut-point state then cmd(ŝ′) is an env move call.

• If s′ is not a cut-point state then cmd(ŝ′) is an original command of tM (and by the first

requirement cmd(ŝ′) = cmd(s′)).

Proof Sketch. The full proof of this lemma is similar to the previous one, and is omitted. As

before, the main idea is that performing an original command of tM on some state s of P ,

has “the same” effect as performing it on a state ŝ of PM satisfying s ∈ Extend(ŝ). We can

construct ρ̂ by adding each command from ρ to ρ̂. Since VM ⊆ V̂M , and s ∈ Extend(ŝ), it is

possible to perform the same series of commands in PM as well. The two more subtle points in

the proof are the following:

• The formed sequence of commands, ρ̂, indeed forms a computation in PM , because PM
preserves the control flow of tM , and because there are no inner cut-point states in ρ.

Therefore, after performing a command from ρ in PM , the next command to be executed

is also an original command of tM , and cannot be an env move call or a newly added

assertion. Thus, we can continue with the construction of ρ̂ for every command in ρ.

• The last state ŝ′ may be ε. If s′ is a cut-point state, then the last step of ρ̂ should lead

to an env move call. However, some newly added assertions, not appearing in tM , may

appear before that env move call in PM . If s′ contradicts one of these assertions, the

computation in PM will move to ε (before reaching the env move call). We will later

see (Lemma 5.1.3) that this can only happen when the relevant state s′ is a state from

which an error is reachable. Algorithm 4.1 plants such new assertion about future errors,

when it learns the conditions that guarantee them. This is explained more thoroughly in

Section 4.4.

If s′ satisfies all the assertions before the env move call, we can simply add all these

assertions to ρ̂, making cmd(ŝ′) an env move call as needed. This is legal, as satisfied

assertions do not change σ(ŝ′). If s′ is not a cut-point state at all, ρ̂ would not reach

an env move call (nor the new assertions added before such calls), making cmd(ŝ′) an

original command of tM .

�

4.3 Initial Construction of PM

Algorithm 4.1 starts by constructing the initial version of PM , based on the code of tM . To do

so, it adds explicit calls to env move in every cut point label of tM . In addition, the algorithm

constructs the initial env move function, which havocs (i.e., assigns a non deterministic value

to) every shared variable of tE and tM that is written by tE . This function will gradually be

refined to represent the environment in a more precise way.

25

Example 4.3.1. We use the Peterson’s algorithm [33] for mutual exclusion, presented in Fig-

ure 4.2, as a running example. The algorithm contains a busy-wait loop in both threads, where

each thread enters its critical section (i.e. leaves the while loop) only after the turn variable

indicates that it is its turn to enter, or the other thread gave up on its claim to enter the critical

section. In order to specify the safety property (mutual exclusion), we use additional variables

cs0, cs1 which indicate that t0 and t1 (resp.) are in their critical sections. We would like

to verify that t0 and t1 cannot be in their critical section at the same time, i.e ¬cs0 ∨ ¬cs1
always holds. The safety property is specified by the assert(!cs1) commands at Line 13

of Figure 4.2. We could have also used the full assertion assert(!cs0 || !cs1) at every

location in t0. However, the assert(!cs1) at Line 13 suffices, as cs0 is always true there,

and always false everywhere else (In fact, our algorithm performs an initial static analysis that

makes this simplification automatic).

Assume that t0 was chosen as the main thread and t1 as the environment thread. We generate

a sequential program P0, based on the code of t0: we add env moves at every cut point, as

determined by our interleaving reduction analysis. The result is illustrated by Figure 4.3. In our

case, the cut-points are after all commands except for those in line 16 and 19, where t0 changes

the local variable cs0, and except for the while(true) command at Line 7, which does not

read any variable. 2

The initial env move only havocs all variables of P0 that are written by t1, i.e., claim1,

turn, cs1 (see Figure 4.6).

4.4 Iteration of the MainThreadCheck Algorithm

Each iteration of Algorithm 4.1 starts by applying a sequential model checker to check whether

there exists a violating path (that may involve calls to env move) in PM (Line 3). If not,

we conclude that the concurrent program is safe (Line 20), as the env move function over-

approximates the computations of the environment. If an assertion violation is detected in

PM , the model checker returns a counterexample in the form of a violating path. If there are

no env move calls in the path, (Line 5), it means that the path represents a genuine violation

obtained by a computation of the original main thread, and hence the program is unsafe (Line 6).

Otherwise, the violation relies on environment moves, and as such it might be spurious. We

therefore analyze this counterexample as described in Section 4.5. The purpose of the analysis

is to check whether tE indeed enables the environment transitions used along the path. If so, we

find “promises of error” for the violated assertion at earlier stages along the path and add them

as new assertions in PM . Intuitively speaking, a “promise of error” is a property ensuring that

tE can make a sequence of steps that will allow tM to violate its assertion. Such a property may

2In fact, since the condition claim1 && turn != 0 in line 12 of Figure 4.3 is not evaluated atomically
in C programs, another env move is required after reading claim1 and before reading turn. This can be
solved by rewriting the program s.t. it first assigns the values of claim1 and turn to two new local variables,
calls env move between these two assignments, and only evaluates the new local variables to check whether the
condition holds. We omit this here for simplicity.

26

1 bool c l a i m0 = f a l s e , c l a im 1 = f a l s e ;
2 bool cs1 = f a l s e , c s0 = f a l s e ;
3 i n t t u r n ;
4

5 void t 0 () {
6 whi le (t rue) {
7 c l a i m0 = t rue ;
8 t u r n = 1 ;
9 whi le (c l a i m1 && t u r n != 0) {

10 }
11 cs0 = t rue ;
12 / / CRITICAL SECTION
13 assert(!cs1);
14 cs0 = f a l s e ;
15 c l a i m0 = f a l s e ;
16 }
17 }
18 void t 1 () {
19 whi le (t rue) {
20 c l a i m1 = t rue ;
21 t u r n = 0 ;
22 whi le (c l a i m0 && t u r n != 1) {
23 }
24 cs1 = t rue ;
25 / / CRITICAL SECTION
26 cs1 = f a l s e ;
27 c l a i m1 = f a l s e ;
28 }
29 }

Figure 4.2: Peterson’s mutual exclusion
algorithm for two threads t0 and t1.

1 bool c l a i m0 = f a l s e , c l a im 1 = f a l s e ;
2 bool cs1 = f a l s e , c s0 = f a l s e ;
3 i n t t u r n ;
4

5 void P0 () {
6 env move();
7 whi le (t rue) {
8 c l a i m0 = t rue ;
9 env move();

10 t u r n = 1 ;
11 env move();
12 whi le (c l a i m1 && t u r n != 0) {
13 env move();
14 }
15 env move();
16 cs0 = t rue ;
17 a s s e r t (! c s1) ;
18 env move();
19 cs0 = f a l s e ;
20 c l a i m0 = f a l s e ;
21 env move();
22 }
23 }

Figure 4.3: The sequential program P0 af-
ter adding environment move calls.

depend on both threads, and hence it is defined over V ∪ {pcE} (pcM is given implicitly by the

label of the assertion in PM). Formally, we have the following definition:

Definition 4.4.1. Let ψ,ψ′ be formulas over V ∪ {pcE} and let l, l′ be labels of tM . We say

that (l, ψ) is a promise of (l′, ψ′) if for every state s of P s.t. lM (s) = l and s � ψ there exists a

computation in P starting from s to a state s′ s.t. lM (s′) = l′ and s′ � ψ′.

If (l, ψ) is a promise of (l′,¬b) and cmd(l′) =assert(b), then we say that (l, ψ) is a

promise of error.

A promise (and a promise of error) (l, ψ) is defined “from the point of view” of tM . That is, if

ψ holds when tM is at a specific label l, then (l′, ψ′) (or an error) can be reached. Note that the

definition refers to computations of P , and is independent of our construction of PM and PE .

Note further that the definition is transitive. Specifically, if (l, ψ) is a promise of (l′, ψ′) and

(l′, ψ′) is a promise of error, then (l, ψ) is also a promise of error. The proof follows.

Lemma 4.4.2 (Transitivity of promises of error). Let (l, ψ) be a promise of (l′, ψ′), and let

(l′, ψ′) be a promise of error. Than (l, ψ) is also a promise of error.

Proof. Since (l′, ψ′) is a promise of error, there exists a label l′′ ∈ L s.t. cmd(l′′) = assert(b)

and (l′, ψ′) is a promise of (l′′,¬b). It is sufficient to show that (l, ψ) is also a promise of

(l′′,¬b). Let s be a state of P s.t. lM (s) = l and s � ψ. By Definition 4.4.1, there exists a

computation ρ in P from s to a state s′ s.t. lM (s′) = l′ and s′ � ψ′. Again, by Definition 4.4.1,

27

there exists another computation ρ′ in P from s′ to a state s′′ s.t. lM (s′′) = l′′ and s′′ � ¬b. The

concatenation of these two computations, ρ′′ = ρ · ρ′, is a computation from s to s′′ and hence

(l, ψ) is indeed a promise of (l′′,¬b).

Outcome Each iteration of Algorithm 4.1 ends with one of these four scenarios:

1. There is no violation in PM and hence P is safe (Line 20).

2. The algorithm terminates having found a genuine counterexample for P (Line 6).

3. The obtained counterexample is found to be spurious since an execution of env move

along the path is proved to be infeasible. The counterexample is eliminated by refining

the env move function (Line 15, also see item (4) in the next section).

4. Spuriousness of the counterexample remains undetermined, but a new promise of error is

generated before the last env move call in the violating path of PM . We augment PM
with a new assertion, representing this promise of error (Line 17).

The analysis of a potentially spurious violating path of PM , as well as the generation of new

promises of error (step (5)) and the refinement of env move when the counterexample is found

to be spurious (step (4)), are explained in detail in Section 4.5.

4.5 Analyzing a Potentially Spurious Violating Path

This section thoroughly explains the analysis of a potentially spurious violating path in PM ,

i.e., a path that contains at least one env move call, obtained in an iteration of Algorithm 4.1.

Let π̂ = l̂0, . . . , l̂n+1 be such a violating path of PM returned by the sequential model checker.

Since π̂ is a violating path, we know that l̂n+1 = l̂ε and that cmd(l̂n) =assert(b), for some

condition b. Let l̂k, for some 0 ≤ k ≤ (n− 1), be the label of the last env move call in π̂. For

convenience, we assume that labels within env move are omitted from π̂. That is, l̂k+1 is the

label of the next command in PM after the env move.

We perform the following steps, illustrated by Figure 4.4:

(1) Computing Condition After the Environment Step: We compute (backwards) the weak-

est precondition of ¬b w.r.t. the path π̂end = l̂k+1, . . . , l̂n to obtain a formula β = wp(π̂end,¬b)
(Line 10 of Algorithm 4.1). Recall that β has the property that for every state ŝ of PM , σ(ŝ) � β

iff there exists a computation ρ̂ in PM starting from ŝ whose path is π̂end, that reaches a state ŝ′

s.t σ(ŝ′) � ¬b. Also, note that there are no env move calls in π̂end.

(2) Computing Condition Before the Environment Step: We compute (forward) a postcon-

dition α = post(π̂start, φ̂init) starting from φ̂init for the path π̂start = l̂0, . . . , l̂k. Note that α

is not necessarily a strongest postcondition. Therefore, in order to ensure progress, we need

to make sure that if π̂start ends with a suffix of asserts, assert(c1), . . . , assert(cm), they

are all taken into account in our postcondition computation (e.g., by conjoining each ci with

28

post(π̂start, φ̂init)). Formally, this means that α⇒ ci for every 1 ≤ i ≤ m. This requirement

is used by Lemma 5.2.4 (which is part of the progress proof for Algorithm 4.1).

Recall that α has the property that for every computation ρ̂ from a state ŝ of PM to state ŝ′

whose path is π̂start: if σ(ŝ) � φ̂init then σ(ŝ′) � α. Note that this property is not compromised

by our progress requirement, as the last commands of every such computation are the sequence

assert(c1), . . . , assert(cm). If σ(ŝ′) 2 ci for some 1 ≤ i ≤ m, ρ̂ cannot pass assert(ci)

and reach the env move call.

We strive to compute a postcondition which is “as precise as possible”. However, soundness

does not rely on this and we can choose α as an arbitrary postcondition. For progress, the

minimal necessary requirement is the one mentioned above.

(3) Environment Query: We compute ψ = Reach(tE)(α, β) (Line 12).

Example 4.5.1. Figure 4.5 presents a prefix of PM after a few iterations of the algorithm, before

the first refinement of env move (i.e., PM still uses the initial env move function). The previous

iterations found new promises of error, and augmented PM with new assertions. Consider the ini-

tial conditions from Figure 4.2, i.e., φinit , [claim0 = claim1 = cs1 = cs0 = false].

Assume that our sequential model checker found the violation given by the next path: 2, 3, 4, 5,

6, 7, 8, 9, reaching and violating assert(!cs1 || (claim1 && turn != 0)) at Line 9

(i.e., b = [¬cs1 ∨ (claim1 ∧ turn 6= 0)]).

To check whether the last env move call at Line 7 represents a real computation of t1,

we compute the weakest precondition of the condition ¬b , cs1 ∧ (¬claim1 ∨ turn = 0),

taken from the violated assertion at Line 9, w.r.t. the path π̂end = 8, 9. The result is β =

wp(π̂end,¬b) = (cs1 ∧ ¬claim1). The computation of α = post(π̂start, φ̂init) for the path

π̂start = 2, 3, 4, 5, 6 yields α = [¬cs0 ∧ claim0 ∧ (¬cs1 ∨ claim1)]. Note the conjunction

with (¬cs1 ∨ claim1), which is the condition inside the last assert of π̂start. We then generate

an environment query Reach(tE)(α, β).

(4) Refining the env move Function: If ψ = FALSE (Line 13) it means that there is no

reachable computation of tE in P from a state s such that s |= α to a state s′ such that

s′ |= β (due to the properties of an environment query in Definition 3.2.1). We invoke a

generalization method (see Section 4.6) to obtain two formulas α′, β′ such that α⇒ α′, β ⇒ β′

and still Reach(tE)(α
′, β′) = FALSE (Line 14). Finally, we refine env move to eliminate the

environment transition from α′ to β′ (Line 15). Figure 4.4(a) illustrates this step.

The refinement is done by introducing in env move, after the variables are havocked, the

command (if (α′(W old)) assume(¬β′)), where W old are the values of the variables

before they are havocked in env move (these values are copied by env move, using additional

auxiliary variables, to allow evaluating α′ on the values of the variables before env move is

called). The commands ensure that if the condition α′ is met when entering the env move

function, then condition β is satisfied when it exits. Since reachable computations from α′ to β′

29

were proven by the environment query to be infeasible in tE , we are ensured that env move

remains an over-approximation of the reachable computations of tE .

Example 4.5.2. Figure 4.6 presents the env move function before and after the refinement step

resulting from the reachability query described in Example 4.5.1, with α = [¬cs0 ∧ claim0 ∧
(¬cs1 ∨ claim1)] and β = (cs1 ∧ ¬claim1). The refinement step adds the two highlighted

lines to the initial env move function. The call to Reach(tE)(α, β) in this example results in

ψ = FALSE. After generalization is applied (see (4) in Section 4.5, and Section 4.6), we obtain

two formulas α′ = TRUE, β′ = β which indeed satisfy Reach(tE)(α
′, β′) = FALSE, α⇒ α′

and β ⇒ β′. Since Reach(tE)(α
′, β′) = FALSE, there are no reachable computations of tE

reaching a state satisfying β′ = cs1 ∧ ¬claim1. We therefore augment env move with a new

constraint (if (α′[W/W0]) assume(¬β′)), derived from this observation. Since α′ = True,

this constraint is simplified to (if (true) assume(!cs1 || claim1)).

(5) Adding Assertions: If ψ 6= FALSE, then for every state s satisfying ψ there exists a

computation of tE in P from s to a state s′ satisfying β. Since β = wp(π̂end,¬b) (see (1)), it

is guaranteed that this computation can be extended (in tM) along the path πend, which does

not use any environment moves, to reach a state s′′ that violates the assertion assert(b).

This is illustrated in Figure 4.4(b). We therefore conclude that if ψ is satisfied before the

env move at location l̂k, a genuine violation can be reached, making (Lab(l̂k), ψ) a promise of

error. Therefore, we add a new label l̂′ with cmd(l̂′) = assert(¬ψ) right before l̂k (Line 17).

The Lab function is updated to make sure that each command is mapped to the same label as

before, and Lab(l̂′) = Lab(l̂k), making (Lab(l̂′), ψ) a promise of error as well. In addition, if

ψ includes a variable v that is not in V̂M (e.g., pcE), then v is added to V̂M , its declaration (and

initialization, if exsits) is added to PM , and env move is extended to havoc v as well (if it is

written by tE).

Remark. In both steps (4) and (5), the algorithm learns new information about the environment

and is ensured to make progress. The formal proof appears in Section 5.2.

Intuitively, after the refinement in (4), the path π̂ (or any transformation of π̂ by adding

new inner assertions, which may be added by Algorithm 4.1 in future iterations) is eliminated

completely. This is because every computation that uses π̂start would reach a state satisfying

α. Then, the refined env move forces the computation to reach ¬β, which means that the

computation cannot reach and violate assert(b) using π̂end. Note, however, that the blocked

path π̂ is a path of PM . It might be the case that another violating path π̂′ is found, which

projects to the same path of tM as π̂. For example, if assert(b) is part of a sequence of

newly added assertions before some env move call, π̂′ can be identical to π̂, except for the last

assertion (i.e., π̂′ will not violate assert(b)).

In (5), the analysis is more subtle. First, after adding the new assertion, the algorithm

can search for computations violating that assertion (and having one less env move call).

Nevertheless, the algorithm may also have to re-examine the path π̂ (extended with the new

30

(a) (b)

Figure 4.4: (a) If Reach(tE)(α, β) = FALSE, we search fore more general α′ and β′ which
restrict the environment transition; (b) If Reach(tE)(α, β) = ψ 6= FALSE, then we know that ψ
leads to β and that ψ ∧ α 6= FALSE.

1 void P0 () {
2 a s s e r t ((! c s1) | | c l a i m1) ;
3 env move () ;
4 whi le (t rue) {
5 c l a i m0 = t rue ;
6 a s s e r t ((! c s1) | | c l a i m1) ;
7 env move () ;
8 t u r n = 1 ;
9 a s s e r t ((! c s1) | | (c l a i m1 && t u r n ! = 0)) ;

10 . . .
11 }
12 }

Figure 4.5: The sequential program P0 after a
few iterations of Algorithm 4.1.

1 void env move () {
2 bool c l a i m 1 c o p y = c l a i m1 ;
3 i n t t u r n c o p y = t u r n ;
4 bool c s 1 c o p y = cs1 ;
5 c l a i m1 = h a v o c b o o l () ;
6 t u r n = h a v o c i n t () ;
7 cs1 = h a v o c b o o l () ;
8 if (true) {
9 assume(!cs1 || claim1);

10 }
11 }

Figure 4.6: The env move function
of P0: initially (without highlighted
lines); and after one refinement (with
highlighted lines).

assertion) again in subsequent iterations. However, it is ensured that in all computations

whose path is π̂ (extended with the new assertion, and possibly other inner assertions added by

Algorithm 4.1), the new assertion holds.

4.6 Generalizing an Environment Query

Given formulas α, β s.t. Reach(tE)(α, β) = FALSE, we wish to generalize them into α′, β′

s.t. Reach(tE)(α
′, β′) = False and α ⇒ α′ and β ⇒ β′. We start by representing α and

β in negation normal form (NNF) ([40]). Note that, if a formula γ is in NNF, then for every

subformula (except atomic negations) δ of γ and for every formula δ′ s.t δ ⇒ δ′, it holds

that γ ⇒ γ[δ/δ′] (monotonicity). Then generalization is performed by iteratively choosing

subformulas δ of α (or β), replacing δ by a generalization δ′ 6≡ δ s.t. δ ⇒ δ′, and computing

Reach(tE)(α, β). For example, we can attempt to generalize δ = δ1 ∧ δ2 to δ1 or to δ2. If the

result of Reach(tE)(α, β) after generalization is still FALSE, the process continues. Otherwise,

α (or β) is reverted and another generalization is attempted.

31

32

Chapter 5

Soundness and Progress of the Main
Thread Analysis

In this chapter, we provide the correctness proof for Algorithm 4.1. First, we prove that the

algorithm is sound. That is, (i) if it terminates, and returns that P is safe, then P is indeed safe,

and (ii) if it returns that P is unsafe, then P has an initial violating computation. This is shown

by Theorem 5.1.

Next, we prove that Algorithm 4.1 makes progress. Namely, it never stagnates. Instead, it

continues learning new information through every iteration. This is proved by Lemmas 5.2.2

and 5.2.4. We also prove that for programs with a finite state space, termination is guaranteed.

Theorem 5.2 provides this proof.

The proofs use one implicit assumption. Namely, they assume that there exists some

mechanism for answering environment queries correctly. The mechanism we use is described

and proved correct in Chapter 6.

5.1 Soundness

Our algorithm for verifying the concurrent program P terminates when either (i) all the assertions

in PM are proven safe (i.e., neither the original error nor all the new promises of error can

be reached in PM), in which case Algorithm 4.1 returns “Program is Safe”, or (ii) a violation

of some assertion in PM , which indicates either the original error or a promise of error, is

reached without any env move calls, in which case Algorithm 4.1 returns “Real Violation”.

Theorem 5.1 below summarizes the soundness of the algorithm. In order to prove it we first

need Lemmas 5.1.1, 5.1.3 and 5.1.6:

Lemma 5.1.1 (Soundness of env move). During the run of Algorithm 4.1, env move always

over-approximates the computations of tE in P (see Definition 4.2.5).

Proof. The proof is by induction on the order of refinements of PM , and specifically, the

env move function. We start by proving that the initial env move satisfies the lemma. We

then consider the two possible modifications of PM : refining env move, and adding a new

33

assert(¬ψ) command, outside of env move. Though the latter, by itself, cannot affect any

computation within env move, it may introduce new variables (from tE) to PM , if such a

variable v, not already in V̂M , appears in ψ. This new variable affects the definition of Extend

(Definition 4.2.1), and may also require an additional v=havoc() within env move. Thus, the

proof consists of the following three stages:

1. The initial env move satisfies the lemma.

2. If env move satisfies the lemma and a variable v is added to PM , the new env move

function of the new program PM also satisfies the lemma.

3. If env move satisfies the lemma and is augmented with if (α′[W copy/W]) assume(¬β′)

commands, the new env move function also satisfies the lemma.

Let ρ be a computation of tE in P from s to s′ which satisfies the conditions of Definition 4.2.5.

Base Case: Initially, the env move function only havocs all variables in V̂M that are written

by tE (anywhere in the program). Let v1=havoc(), v2=havoc(), . . . , vn=havoc() be the

series of havocs inside env move. Since a havoc command only sets a non-deterministic value

to a single variable (and then moves to the next command), we can construct a computation in

PM , ρ̂ = ŝ0 → ŝ1 → ŝ2 · · · → ŝn starting from ŝ = ŝ0 and ending at ŝ′ = ŝn such that ŝi is

obtained from ŝi−1 by performing vi=havoc(), for every 1 ≤ i ≤ n.

Since a havoc command can assign any non-deterministic value, we can choose a computa-

tion in which vi=havoc() assigns σ(ŝi)(vi) with σ(s′)(vi) (or with lE(s′) if vi = pcE). Since

vi=havoc() does not change variables other than vi, we get σ(ŝi)(v) = σ(ŝi−1)(v) for every

v 6= vi. This yields a computation from ŝ to ŝ′, which is clearly a complete single execution of

env move. It is left to show that s′ ∈ Extend(ŝ′).
Since s ∈ Extend(ŝ), lM (s) = Lab(l(ŝ)). Since cmd(ŝ) is an env move call, Lab(l(ŝ)) is

defined as the label of the next command in PM after the env move, which is exactly Lab(l(ŝ′)).

Since ρ is a computation of tE in P , it does not change pcM , and hence we get lM (s) = lM (s′).

Joining all three equalities yields lM (s′) = Lab(l(ŝ′)) as required.

Finally, let v ∈ V̂M . If v is not written by tE , then the value of v in s and s′ is identical. It

also does not appear as one of the havocked variables, hence it’s value in ŝ and ŝ′ is identical.

Since s ∈ Extend(ŝ), we get the desired requirement about v for s′ and ŝ′ as well. If v is

written by tE , then v appears as one of the havocked variables. Its value is set exactly once

to σ(s′)(v) (or to lE(s′) if v = pcE) by the v=havoc() command, and it is unchanged by all

other havocs. Hence, σ(ŝ′)(v) = σ(s′)(v) if v ∈ V and σ(ŝ′)(v) = lE(s
′) if v = pcE , which

concludes the proof that s′ ∈ Extend(ŝ′).

Induction Step: For the next two parts, let PM denote the sequential program before refine-

ment, and P rM the sequential program after refinement. Let env mover denote the env move

function of P rM . Let Extendr denote the mapping Extend for states of P rM .

34

We need to show that given a state ŝr of P rM , s.t. cmd(ŝr) is an env mover call and

s ∈ Extendr(ŝr), there exists a computation ρ̂r = ŝr → · · · → ŝ′r in P rM , which is a complete

single execution of env mover s.t. s′ ∈ Extendr(ŝ′r). By the induction hypothesis, We know

that for every state ŝ of PM , s.t. cmd(ŝ) is an env move call and s ∈ Extend(ŝ), there exists a

computation ρ̂ = ŝ→ · · · → ŝ′ in PM , which is a complete single execution of env move s.t.

s′ ∈ Extend(ŝ′).

Adding a New Variable to PM Assume first that P rM was obtained from PM after introduc-

ing a new variable v. Given a state ŝr of P rM as described above, let ŝ be the state of PM
obtained from ŝr by removing the value of v from σ(ŝr). Clearly, since, s ∈ Extendr(ŝr),
then s ∈ Extend(ŝ), since removing a variable cannot compromise any of the conditions of

Definition 4.2.1. Since l(ŝ) is also copied from ŝr, then cmd(ŝ) is an env move call. Thus,

there exists a computation ρ̂ = ŝ0 → ŝ1 → · · · → ŝn in PM from ŝ = ŝ0 to some ŝ′ = ŝn, as

guaranteed by the induction hypothesis above. There are two cases to consider:

• If v is not written by tE , then env mover=env move. Since ρ is a computation of tE ,

it holds that σ(s′)(v) = σ(s)(v) (or lE(s′) = lE(s) if v = pcE). Let ŝr0, . . . , ŝ
r
n be a

sequence of states of P rM , obtained from ŝ0, . . . , ŝn by adding the value of v to σ(ŝi) and

setting it to σ(ŝri)(v) = σ(ŝr)(v), for 0 ≤ i ≤ n. Note that in particular, it means that

ŝr0 = ŝr.

Since all the commands in ρ̂ do not use v (which does not appear at all in PM), and since

σ(ŝri−1)(v) = σ(ŝri)(v) for every 1 ≤ i ≤ n, we can use the exact same commands as in ρ̂

to form a computation ρ̂r = ŝr0 → · · · → ŝrn. Since env mover=env move, this is also a

complete single execution of env mover in P rM . It is left to show that s′ ∈ Extendr(ŝrn).

Since s′ ∈ Extend(ŝn), and ŝ′ only differs from ŝrn by the appearance of v to σ(ŝrn), we

only need to check the condition in Definition 4.2.1 concerning v. And indeed, since v is

not changed during ρ̂r and since s ∈ Extend(ŝr), we get that σ(ŝrn)(v) = σ(ŝr)(v) =

σ(s)(v) = σ(s′)(v) (or = lE(s) = lE(s
′), if v = pcE), as required.

• If v is written by tE , then a new v =havoc() command is added at the beginning of

env mover. Let ŝr0, . . . , ŝ
r
n be a sequence of states of P rM , obtained from ŝ0, . . . , ŝn by

adding the value of v to σ(ŝi) and setting it to σ(ŝri)(v) = σ(s′)(v) (or to lE(s′), if

v = pcE), for 0 ≤ i ≤ n. We also change l(ŝr0) to point to the second command in

env mover, immediately after the new v =havoc(). Note that σ(ŝr) and σ(ŝr0) agree

on all variables, except for, possibly, v. Further, since cmd(ŝr) is an env mover call and

l(ŝr0) is immediately after the first command in env mover, there exists a transition in

P rM which moves from ŝr to ŝr0, by using the v =havoc() command at the beginning of

env mover, which sets the value of v to σ(ŝr0)(v) = σ(s′)(v) (or to lE(s′) if v = pcE).

Let ρ̂r be a computation in PM , defined as follows: the computation starts by moving from

ŝr to ŝr0, as described above. The computation continues from ŝr0, using the transitions

ŝr0 → · · · → ŝrn, and the same commands as in ρ̂. As before, this is a legal computation

35

since ρ̂ is a legal computation in PM , the commands of ρ̂ do not refer to v and all

the states ŝr0, . . . , ŝ
r
n agree on σ(ŝri)(v). Since ρ̂ is a complete execution of env move,

and env move only differs from env mover by the addition of the initial v =havoc()

command (which was used to reach from ŝr to ŝr0) at the beginning of env mover, then

ρ̂r is a complete single execution of env mover from ŝr to ŝrn.

Again, it is left to show that s′ ∈ Extendr(ŝ
r
n). As before, we only need to check

the condition for Definition 4.2.1 concerning v, and indeed, σ(ŝrn)(v) = σ(s′)(v) (or

= lE(s
′), if v = pcE), by construction.

Refining env move env move is only refined after an environment query Reach(tE)(α
′, β′)

returned FALSE, as described in the beginning of this section. The refinement step adds the

commands if (α′[W copy/W]) assume(¬β′) at the end of env mover. Given a state ŝr of

P rM as described above, let ŝ be the state of PM identical to ŝr. Clearly, since, s ∈ Extendr(ŝr),
then s ∈ Extend(ŝ). Since l(ŝ) is also copied from ŝr, then cmd(ŝ) is an env move call. Thus,

there exists a computation ρ̂ = ŝ0 → ŝ1 → · · · → ŝn in PM from ŝ = ŝ0 to some ŝ′ = ŝn, as

guaranteed by the induction hypothesis above.

Let ŝr0, . . . , ŝ
r
n be a sequence of states of P rM , identical to ŝ0, . . . , ŝn, except for the value

of l(ŝrn), which points to the beginning of the new if (α′[W copy/W]) command. Note that

in particular, ŝr = ŝr0. Since PM and P rM have the same variables, and since env move and

env mover share the same prefix until l(ŝrn), the computation ρ̂′r = ŝr0 → · · · → ŝrn is a valid

computation in P rM , from ŝr, at the beginning of env mover to l(ŝrn).

Since Reach(tE)(α
′, β′) returned FALSE, by Definition 3.2.1, one of the conditions s � α′

or s′ � β′ cannot hold. That is, s � α′ implies s′ � ¬β′. Since s ∈ Extend(ŝ) and

s′ ∈ Extend(ŝ), it follows by Observation 4.2.3, that if σ(ŝ) � α′ then σ(ŝ′) � ¬β′. Since

σ(ŝr) = σ(ŝ) and σ(ŝrn) = σ(ŝ′), then if σ(ŝr) � α′ then σ(ŝrn) � ¬β′.
The condition α′[W copy/W] uses auxiliary variables that are local to env mover and

reflects the values of ŝr’s variables, when entering env mover. The condition ¬β′ refers to the

current state variables. Consider a computation ρ̂r, which is a concatenation of ρ̂′r with the two

new commands of env mover.

If σ(ŝr) � α′, then σ(ŝrn) � ¬β′, which means that performing the two commands from

ŝrn will result in entering the true branch of the if command and then passing the assumption

assume(¬β′) (since the condition holds). If σ(ŝr) 2 α′, the next step from ŝrn will be to skip

the new if command (and the assume that follows). In both cases, ρ̂r reaches the end of

env mover without changing σ(ŝrn). Hence, we achieve a computation from ŝr to some new

state ŝ′r at the end of env mover.

Finally, by the same arguments as in the base case, we get lM (s′) = lM (s) = Lab(l(ŝr)) =

Lab(l(ŝ′r)), and since σ(ŝ′r) = σ(ŝrn) = σ(ŝ′) and s′ ∈ Extend(ŝ′), it also holds that s′ ∈
Extend(ŝ′r), as required. �

When ρ is an empty computation (i.e., s = s′) then the lemma receives the following form:

36

Corollary 5.1.2. If s is a reachable cut-point state of P , then for any state ŝ of PM such that

s ∈ Extend(ŝ) and cmd(ŝ) is an env move call, there exists a computation consisting of a

complete single execution of env move to a state ŝ′ such that s ∈ Extend(ŝ′).

Lemma 5.1.3 (Assertions are promises of error). Let l̂a be a label of PM with cmd(l̂a) =

assert(b) for some condition b. Then (Lab(l̂a),¬b) is a promise of error.

Proof. The proof is by induction on the order in which assertions are added to PM .

Base Case: Assume that assert(b) is an original assertion of tM in PM . According to

Definition 4.1.3, Lab(l̂a) = la, where la is the label of tM , for which cmd(la) is the original

assert(b). Let s be some state of P such that lM (s) = la and s � ¬b. Let ρ be a zero length

computation in P , starting from s (and hence ending at s). Hence, by Definition 4.4.1, (la,¬b)
is a promise of (la,¬b), and since the cmd(la)=assert(b), then (la,¬b) is a promise of error.

Induction Step: Assume that the lemma holds for all assertions in PM , and that a new

assertion is now added. An assertion is only added at step (5) of Section 4.5, after an environment

query Reach(tE)(α, β) returned ψ 6≡ FALSE. The added assertion is of the form assert(¬ψ)
and it is added at a new label l̂ψ, right before the env move call for which the environment

query was applied. Let lψ = Lab(l̂ψ) We would like to show that (lψ, ψ) is a promise of error.

Let s be a state of P such that lM (s) = lψ and s � ψ. By Definition 3.2.1, there exists a

computation ρ of tE in P from s to some state s′ such that s′ � β. Since this computation is

a computation of tE , pcM is left unchanged at every stage in ρ, hence lM (s′) = lM (s) = lψ.

Therefore, (lψ, ψ) is a promise of (lψ, β).

An environment query is invoked only after a violating path, containing at least one

env move call, is found in PM . Let π̂end be the suffix of the found path, starting after the

last env move, as defined in step (1) of Section 4.5. The path ends with some label l̂n having

cmd(l̂n)=assert(b) for some condition b. By the induction hypothesis, (Lab(l̂n),¬b) is a

promise of error.

We now wish to show that (lψ, β) is a promise of (Lab(l̂n),¬b). Let l̂k be the label in PM ,

of the last env move call in the found path, and l̂k+1 the label of the next command in PM after

the env move (not inside the function). Since the newly added assertion at location l̂ψ is not

an original command of tM and it is added right before an env move call, by Definition 4.1.3

lψ = Lab(l̂ψ) = Lab(l̂k). Using the same argument for the env move call at l̂k, we get that

Lab(l̂k) = Lab(l̂k+1), and hence lψ = Lab(l̂k+1).

Let sβ be some state of P such that lM (sβ) = lψ and sβ � β. Let ŝβ be a state of PM such

that:

• l(ŝβ) = l̂k+1

• ∀v ∈ (V ∩ V̂M): σ(ŝβ)(v) = σ(sβ)(v)

• If pcE ∈ V̂M then σ(ŝβ)(pcE) = lE(sβ)

37

Clearly sβ ∈ Extend(ŝβ), and by Observation 4.2.3, ŝβ � β. According to step (1) in

Section 4.5, and the definition of a weakest precondition, for every state ŝ of PM s.t. σ(ŝ) � β,

and specifically for ŝβ , there exists a computation in PM that passes through π̂end (and therefore

ends at l̂n) and reaches a state ŝ¬b such that σ(ŝ¬b) � ¬b (and l(ŝ¬b) = l̂n).

Since π̂end does not use env moves, it follows from Lemma 4.2.6, that there exists a

computation in P from sβ to a state s¬b ∈ Extend(ŝ¬b). Again, by Observation 4.2.3,

s¬b � ¬b. Since s¬b ∈ Extend(ŝ¬b), it also holds that lM (s¬b) = Lab(l(ŝ¬b)) = Lab(l̂n).

We conclude that indeed (lψ, β) is a promise of (Lab(l̂n),¬b). Since (Lab(l̂n),¬b) is a

promise of error, by Lemma 4.4.2, (lψ, β) is also a promise of error. Since (lψ, ψ) is a promise

of (lψ, β), we can use Lemma 4.4.2 again, to conclude that (lψ, ψ) is a promise of error. �

Essentially, lemma 5.1.3 describes the manner is which PM under-approximates the set

of states leading to an error in P . Each assertion provides an annotation for a set of states of

P , leading to an error. Any state of PM that can reach and violate an assertion without using

env move calls, represents concrete states of P that can reach an error (possibly with the help

of the environment).

The complementary direction, describes how PM also over-approximates the computations

of P . Computations passing through safe states only (i.e., states from which an error in not

reachable), are fully over-approximated. However, computations in P passing through states

from which an error is reachable may be pruned in PM by an assertion. To describe this formally,

we need the following definition and lemma.

Definition 5.1.4 (Computation Partitioning). Let ρ be a computation in P from a state s to a

state s′. The partition of ρ is a series of computations r1, . . . , rk, called segments, such that

• s is the first state of r1, s′ is the last state of rk and for every 1 ≤ i ≤ (k − 1), the last

state of ri is the first state of ri+1. Hence, the concatenation r1 · r2 · · · rk, connecting ri
with ri+1 using their overlapping state, yields ρ.

• For 1 ≤ i ≤ k, ri is either a computation of tM or a computation of tE .

• If ri is a computation of tM , then it has no inner cut-point states (but there is no restriction

for the first and last state of ri).

• Each ri is maximal. That is, if ri is a computation of tE then both of its neighbors ri−1 and

ri+1 (if defined) must be computations of tM . If ri, ri+1 are two adjacent computations

of tM , then the state connecting them is a cut-point state.

If r1, . . . , rk, are the partition of a computation ρ, then the partitioning states of ρ, s0, s1, . . . , sk
are the boundary states of the partition. That is, s0 is the first state of ρ and for 1 ≤ i ≤ k, si is

the last state of ri.

Figure 5.1 illustrates the definition above.

38

Figure 5.1: The partition and partitioning states of a computation ρ. Note that r3 is allowed to
have inner cut-point states, as it is a computation of tE .

Observation 5.1.5. Note that due to the maximality requirement, and the fact that initial

locations are always considered as cut-points, all the partitioning states, except for, maybe, sk,

are cut-point states.

Lemma 5.1.6. Let ρe = s → · · · → s′ → ε be an initial violating computation in P , and let

ρ be the prefix of ρe from s to s′ (i.e., cmd(s′) =assert(b) and σ(s′) 2 b). Let r1, . . . , rk be

the partition of ρ, and s0, s1, . . . , sk the partitioning states of ρ. Then there exists a sequence of

states ŝ0, . . . , ŝj of PM such that

1. j ≤ k

2. ŝ0 is reachable in PM from an initial state.

3. For 1 ≤ i ≤ j: ŝi is reachable in PM from ŝi−1

4. For 0 ≤ i ≤ j: si ∈ Extend(ŝi)

5. If i < j, and ri+1 is a segment of tM , then cmd(ŝi) is an original command of tM

6. If i < j, and ri+1 is a segment of tE , then cmd(ŝi) is an env move call

7. There exists a computation in PM from ŝj to an error state

The main idea of this very technical lemma is that computations of P have a representation

in PM . Given the partition of a computation ρ into segments, a segment of tM will be repre-

sented by the exact same commands appearing in PM (Lemma 4.2.7). Segments of tE will

be represented by the env move function (Lemma 5.1.1). It might be the case that ρ contains

two adjacent segments of tM , in which case their representative computations in PM will have

an env move call between them. We will use Corollary 5.1.2 to “skip” the env move while

preserving the valuation of the connecting state.

However, the representative computation of ρ in PM may encounter a promise of error,

annotated by an assertion in PM . In this case, the representative computation will be pruned

and move to an error state at an early stage. Thus, the representative computation will only

represent a prefix of ρ. Our goal is to show that when ρe is an initial violating computation

39

then the representative computation is always either pruned as described, or reaches the original

assertion and violates it.

Proof. The proof is by construction. At each step, we construct a new state ŝi satisfying Items 3

and 4. Then, we show that either an error state is reachable from that state (Item 7), or it satisfies

Items 5 and 6, and we can continue the construction of the next state ŝi+1. However, while

trying to construct ŝi+1, we may discover that ŝi reaches an error before reaching the desired

ŝi+1. In that case, we can simply choose j = i. I.e., ŝj will satisfy Item 7, as well as Items 5

and 6 (even without the condition i < j)

We also show that ŝ0 satisfies Item 2, and that if the construction reaches j = k, then

(Item 7) must hold, i.e., an error state is reachable (ensuring Item 1).

Base Case - i = 0: We start by constructing the first state ŝ0. We first construct a state ŝ of

PM as follows, and show that ŝ is an initial state of PM :

• l(ŝ) = l̂init (initial label of PM)

• For every v ∈ V ∩ V̂M : σ(ŝ)(v) = σ(s)(v)

• If pcE ∈ V̂M , then σ(ŝ)(pcE) = lE(s)

Let φinit = ∧
v∈U

[v = σinit(v)] be the initialization formula of P , for some U ⊆ V .

Since s is initial in P , it holds that σ(s)|U = σinit, and lE(s) = linitE . By the definition of ŝ,

σ(ŝ)|
V ∩V̂M

= σ(s)|
V ∩V̂M

. SinceU ⊆ V , then clearly σ(ŝ)|
U∩V̂M

= σ(s)|
U∩V̂M

= σinit|U∩V̂M .

Further, if pcE ∈ V̂M , then σ(ŝ)(pcE) = lE(s) = linitE . Hence, ŝ � φ̂init, and is an initial state

of PM .

By Definition 4.1.3, Lab(l̂init) is mapped to the label in tM , associated with the first original

command of tM in PM (see Observation 4.1.2). That is., Lab(l(ŝ)) = linitM = lM (s). By

Definition 4.2.1, s ∈ Extend(ŝ).
Since all initial labels are considered as cut-points, the code of PM starts with an env move

call, before the first original command of tM , cmd(s), and possibly some new assertions (not

originally from tM) prior to that env move call. If σ(ŝ) violates any of these new assertions,

then ŝ leads to an error, hence we can pick ŝ0 = ŝ and complete the proof with j = 0. Otherwise,

the computation starting from ŝ reaches a state ŝ′, after all new assertions, for which cmd(ŝ′) is

the env move call. Since satisfied assertions do not change the valuation of a state, we have

σ(ŝ) = σ(ŝ′). Further, since none of the assertions is an original command of tM , we have

Lab(l(ŝ)) = Lab(l(ŝ′)). Hence, since s ∈ Extend(ŝ), it also holds that s ∈ Extend(ŝ′). s is

initial in P , and therefore reachable. Thus by Corollary 5.1.2, there exists a computation in PM
which uses the entire env move function, from ŝ′ to another state ŝ′′, satisfying s ∈ Extend(ŝ′′).
cmd(ŝ′′), the next command after the env move, is the first command of tM , i.e. cmd(s). We

consider three possible cases:

40

1. If k = 0, ρ is an empty computation, and since ρe is a violation, then cmd(ŝ′′) =

cmd(s)=assert(b) for some condition b s.t. σ(s) 2 b. Since s ∈ Extend(ŝ′′), then

σ(ŝ′′) 2 b as well. Hence we can choose j = 0, and ŝ0 = s′′. s′′ is reachable from ŝ

(through (ŝ′) and the env move function), and reaches an error, as required (Item 7).

2. If k > 0 and r1 is a segment of tE , we can pick ŝ0 = ŝ′, as ŝ′ is reachable from ŝ,

s ∈ Extend(ŝ′) and cmd(ŝ′) is an env move call (Item 6).

3. If k > 0 and r1 is a segment of tM , we can choose ŝ0 = ŝ′′, as ŝ′′ is reachable from ŝ,

s ∈ Extend(ŝ′′) and cmd(ŝ′′) an original command of tM . (Item 5).

The latter two cases show that ŝ0 satisfies Items 5 and 6, even in the case where j > 0. Thus,

we can continue and construct the next state ŝ1. Of course, if during this construction we learn

that an error is reachable from ŝ0, we can choose j = 0 and conclude the construction, without

constructing ŝ1.

General Step: Let 0 < i < k, and let ŝi−1 be the last constructed state. If we did not choose

j = (i− 1) during the previous construction step, then ŝi−1 satisfies Items (3 - 6).

If ri is a segment of tM , cmd(ŝi−1) is an original command of tM (Item 5). ri has no inner

cut-point states, but si itself is a cut-point state (see Observation 5.1.5). Using Lemma 4.2.7 for

ri, there exists a computation in PM from ŝi−1 to some stare ŝ′, that is either ε, or satisfies that

si ∈ Extend(ŝ′) and cmd(ŝ′) is an env move call. If ŝ′ = ε, we can now choose j = (i− 1)

and complete the construction. Otherwise, if ri+1 is a segment of tE , we choose ŝi = ŝ′, and

it satisfies Items (3 - 6). Next, assume that ri+1 is a segment of tM . By Corollary 5.1.2, there

exists a computation ρ̂ in PM from ŝ′, consisting of a single complete execution of env move,

to a state ŝ′′, also satisfying si ∈ Extend(ŝ′′). Since ρ̂ passes through the entire env move

function, cmd(ŝ′′) is the next command after the env move, i.e., an original command of tM
(see Observation 4.1.1). We then choose ŝi = ŝ′′, and again it satisfies Items (3 - 6).

If, on the other hand, ri is a segment of tE , then ri+1 must be a segment of tM , due to the

maximality of the partition. Also, by Item 6, cmd(ŝi−1) is an env move call. Then by Lemma

5.1.1, there exists a computation in PM , consisting of a complete single execution of env move

from ŝi−1 to some state ŝ′ satisfying si ∈ Extend(ŝ′). Therefore, cmd(ŝ′) is the next command

after env move, i.e., an original command of tM , and we can choose ŝi = ŝ′ and complete the

construction of ŝi.

Last Step: i = k We now show that if ŝk is constructed, ε is definitely reachable from ŝk

(Item 7) and we can complete the construction. Assume that in the previous construction step,

we did not choose j = (k − 1), and ŝk−1 was constructed satisfying Items (3 - 6).

Similar to the construction step, if rk is a segment of tM , cmd(ŝk−1) is an original command

of tM . Again, by Lemma 4.2.7, there exists a computation ρ̂ in PM from ŝk−1 to either ε or

to a state ŝ′ such that sk ∈ Extend(ŝ′) and cmd(ŝ′) is either an env move call or an original

41

command of tM . If ρ̂ reaches ε, we choose j = (k−1) and complete the construction. Otherwise,

if cmd(ŝ′) is an env move call, again by Corollary 5.1.2, there exists a computation from ŝ′

to some state ŝ′′ also satisfying sk ∈ Extend(ŝ′′) s.t. cmd(ŝ′′) is an original command of tM ,

appearing immediately after the env move. Since sk ∈ Extend(ŝ′′), Lab(l(ŝ′′)) = lM (sk),

and therefore cmd(ŝ′′) = cmd(sk) =assert(b). Since σ(sk) 2 b, then σ(ŝ′′) 2 b (see

Observation 4.2.3), thus we can choose ŝk = ŝ′′, as the next step from ŝ′′ will reach ε. If

cmd(ŝ′) is an original command of tM , we can repeat the same arguments for ŝ′ instead of ŝ′′.

I.e., Lab(l(ŝ′)) = lM (sk) and cmd(ŝ′) = cmd(sk) =assert(b). Thus, choosing ŝk = ŝ′′

completes the construction.

Finally, if rk is a segment of tE , by Lemma 5.1.1, there exists a computation in PM from

ŝk−1 to some state ŝ′ satisfying sk ∈ Extend(ŝ′) and whose command is the next command

after the env move function, i.e., an original command of tM . As before, we learn that

cmd(ŝ′) = cmd(sk) =assert(b), and can choose ŝk = ŝ′.

�

Theorem 5.1. If Algorithm 4.1 returns “Safe” then the concurrent program P has no initial

violating computation; If it returns “Real violation” then P has an initial violating computation.

Intuitively, the first claim follows since env move always over-approximates the reachable

finite computations of tE (see Lemma 5.1.1). The second follows from the properties of an

environment query (see Definition 3.2.1) and from the use of promises of errors (Definition 4.4.1).

Formally, we use the lemmas above:

Proof. 1. The algorithm returns “Safe” only when PM is safe. However, if P is not safe,

by Lemma 5.1.6, there exists a sequence of states in PM such that the first is reachable

from an initial state, every other state in the sequence is reachable from the previous,

and the last state can reach ε in PM . This yields an initial violating computation in PM .

Therefore, Algorithm 4.1 cannot return “Safe”.

2. The algorithm returns ”Real violation” only when there exists an initial violating com-

putation ρ̂ = ŝ → · · · → ŝ′ → ε that does not use any env moves. Since the last step

of the computation leads to ε, cmd(ŝ′) =assert(b), for some condition b, such that

σ(ŝ′) � ¬b. By Lemma 4.2.4, there exists an initial state s of P s.t. s ∈ Extend(ŝ).
ŝ′ 6= ε, hence by Lemma 4.2.6, there exists a computation ρ in P from s to some state

s′ ∈ Extend(ŝ′). s is initial in P , and therefore, ρ is an initial computation in P .

Since, s′ ∈ Extend(ŝ′), it holds that lM (s′) = Lab(l(ŝ′)). Further, since σ(ŝ′) � ¬b,
then s′ � ¬b (see Observation 4.2.3). By Lemma 5.1.3, (Lab(l(ŝ′)),¬b) is a promise of

error. Hence, there exists a computation ρ′ from s′ in P which violates an assertion in P .

The concatenation of ρ with ρ′ yields an initial violating computation in P .

�

42

5.2 Progress and Termination

While termination is not guaranteed for programs over infinite domains, the algorithm is ensured

to make progress in the following sense. Each iteration either refines env move (step (4) in

Section 4.5), thus pruning a violating computation of PM , or generates new promises of errors

at earlier stages along the violating path (step (5) in Section 4.5). Each refinement of env move

makes it more precise w.r.t. the real environment, and hence advances the algorithm in the

direction of verifying the program, in case it is safe. When a new promise of error is introduced,

it is sufficient to find a path reaching it, rather than a path reaching the original error. Hence, it

advances the algorithm in the direction of finding a bug, in case the program is unsafe. With

each iteration, we can search for paths with less env move calls, until we encounter a violating

path in PM with no env move calls at all (or prove that no such violating path exists). Further,

the addition of the new promise of error guarantees that even though the same violating path

may recur, the new assertion restricts the computations that can be observed along this path.

In order to formally describe progress, and prove termination for finite state programs, we

consider two approximation sets. The ERR set is a set of states used to under-approximate

the set of states known to lead to a real violation of safety. We can deduce such states from

promises of error in PM . This set will strictly increase with every addition of a new assertion to

PM . The MOV set consists of pairs of states, that over-approximate the start and end state of

all reachable computations of tE . We can deduce such states from the computations allowed by

the env move function. This set will strictly decrease with every refinement of the env move

function.

The next lemmas show that each iteration of the algorithm (except the last one) refines one

of the sets (strictly increases ERR or strictly decreases MOV) and leaves the other unchanged.

This would prove termination for the finite case, as described in Theorem 5.2, as both sets ERR

and MOV are bounded.

Definition 5.2.1. We define the following approximation sets:

• ERR is the sets of all states s in P such that there exists a state ŝ of PM , satisfying

(i) s ∈ Extend(ŝ) (ii) cmd(ŝ) is a newly added assertion assert(b) in PM , and

(iii) s � ¬b

• MOV is the set of all pairs (s, s′), where s, s′ are states of P such that there exist states ŝ,

ŝ′ of PM such that s ∈ Extend(ŝ), s′ ∈ Extend(ŝ′), and there exists a complete single

execution of env move from ŝ to ŝ′ (see Definition 4.2.5).

Lemma 5.2.2 (Progress when Reach(tE)(α, β) = FALSE). Let ERR and MOV be the sets

as in Definition 5.2.1 at the beginning of a new iteration of Algorithm 4.1, in whichReach(tE)(α, β)

(in line 12) returned FALSE, and let ERRr and MOVr be the corresponding sets at the end of

the iteration. Then ERRr = ERR and MOVr (MOV

Proof. IfReach(tE)(α, β) returns FALSE, then Algorithm 4.1 refines env move, and concludes

the iteration. Since this does not change the code of PM outside the env move function (and

43

specifically does not add, remove or change any exiting assertion), it is clear that ERRr =

ERR1.

As forMOV , the refinement step augments env movewith if (α′[W copy/W]) assume(¬β′)

commands at the end of the function. Let P rM be the program obtained from PM following this

refinement step, and let env mover be the env move function of P rM .

We first show thatMOVr ⊆MOV . Let (s, s′) ∈MOVr and let ŝr, ŝ′r be the corresponding

states, and ρ̂r be the computation from ŝr to ŝ′r as described in Definition 5.2.1. ρ̂r is a complete

execution of env mover (who only has a single exit point, at its end), hence it must have a

prefix ρ̂′r consisting of the entire env mover function, except the newly added commands. Let

ŝ′′r be the last state of ρ̂′r. Consider a computation ρ̂ in PM starting from a state ŝ, identical to

ŝr, which uses the same sequence of actions (same commands and chooses the same value for

havoc commands) as in ρ̂′r. Since the initial states are identical, such a computation will follow

the same path and reach a state ŝ′ with σ(ŝ′) = σ(ŝ′′r). The only difference between ŝ′ and ŝ′′r is

the label. While l(ŝ′′r) points to the newly added if command, l(ŝ′) points immediately after

the env move function (same as ŝ′r), and hence satisfies l(ŝ′) = l(ŝ′r). Since the suffix of ρ̂r
reached ŝ′r from ŝ′′r only through if and assume commands, it also holds that σ(ŝ′′r) = σ(ŝ′r),

and hence σ(ŝ′) = σ(ŝ′r), which together with l(ŝ′) = l(ŝ′r) leads to ŝ′ = ŝ′r.

Therefore, s′ ∈ Extend(ŝ′), and we know that s ∈ Extend(ŝ) (because ŝ = ŝr), and that

ρ̂ is a complete single execution of env move from ŝ to ŝ′. By Definition 5.2.1, this proves

(s, s′) ∈MOV .

Finally, we wish to show that MOVr 6=MOV . The iteration can only reach line 12 (where

Reach(tE)(α, β) is called), if an initial violating computation, ρ̂, was found in PM , containing

at least one env move call. Let ŝα be the state of that computation before the last env move

call, and let ŝβ be the state of the same computation immediately after the env move. By the

definition of a postcondition and a weakest precondition, and of α and β in Algorithm 4.1, it

holds that σ(ŝα) � α and σ(ŝβ) � β.

Clearly, the sub-computation of ρ̂ from ŝα to ŝβ is a complete single execution of env move.

According to Observation 4.2.2, there exist some s ∈ Extend(sα) and s′ ∈ Extend(sβ),

which means that (s, s′) ∈MOV . We would like to show that (s, s′) 6∈MOVr

Let α′, β′ be the formulas used for refinement. The chosen formulas must satisfy α⇒ α′,

β ⇒ β′. Since s ∈ Extend(ŝα) and σ(ŝα) � α, then s � α (see Observation 4.2.3), and since

α⇒ α′: s � α′. Similarly, s′ � β′.

Assume to the contrary that (s, s′) ∈MOVr. That is, there exist some ŝr, ŝ′r of P rM , such

that s ∈ Extend(ŝr), s′ ∈ Extend(ŝ′r) and a computation ρ̂r from ŝr to ŝ′r, consisting of

a complete single execution of env mover. In particular, ρ̂r reaches (and passes) the newly

added if (α′[W copy/W]) assume(¬β′) at the end of the env move function. Since s ∈
Extend(ŝr) and s′ ∈ Extend(ŝ′r), by Observation 4.2.3, we get that σ(ŝr) � α′ and σ(ŝ′r) � β

′.

Using auxiliary variables to hold old values, the condition if (α′[W copy/W]) refers to the

1Note that the definition of ERR uses general (and not necessarily reachable) states of PM . Though the set of
reachable states in ERR may decrease due to the pruning of computations using env move, the set of general
states in ERR does not change

44

values of the variables of the first state that entered the env mover function, i.e., ŝr. Since

ŝr � α′, the computation enters the true branch of the if statement and reaches the assume(¬β′)

at some state ŝ′′r . Since the computation reaches the end of the function, it must hold that

σ(ŝ′′r) � ¬β′. The next (and final) state in ρ̂r is ŝ′r. However, passed assume commands do not

change variables, hence σ(ŝ′′r) = σ(ŝ′r), which contradicts σ(ŝ′r) � β
′.

�

When Reach(tE)(α, β) returns ψ 6= FALSE, the new formula might contain new variables

from V , which were not previously in V̂M . These variables should then be added to V̂M , and

if they are written by tE , they should also be havocked inside env move. We first show that

adding such variables does not change our approximation sets, and proceed to prove the progress

lemma for the case where Reach(tE)(α, β) 6= FALSE.

Lemma 5.2.3 (No regress when adding new variable). LetERR andMOV be the approxima-

tion sets as in Definition 5.2.1 for PM , and assume a new variable, v, from tE is added to V̂M ,

creating a new program P rM with variables V̂M
r
. Let ERRr and MOVr be the corresponding

sets in P rM . Then ERRr = ERR and MOVr =MOV

Proof. Adding v does not change any of the existing assertions, and does not add new assertions,

hence it is clear that ERRr = ERR. Let env mover denote the env move function of P rM . If

v is not written by tE , no modification is made to the code of PM , except adding a declaration

for v, i.e., adding it to V̂M , and maybe initializing v. In particular env move=env mover.

Hence, MOVr =MOV in this case as well.

If v is written by tE , a new havoc statement is added for this variable inside env mover,

and a new local auxiliary variable is added to env mover to hold v’s initial value.

We first show that MOV ⊆MOVr. Let (s, s′) ∈MOV , and let ŝ, ŝ′ be the corresponding

states, and ρ̂ be the computation from ŝ to ŝ′ as described in Definition 5.2.1. Let ŝr be a

state of P rM identical to ŝ w.r.t all mutual variable (V̂M) and with location l(ŝr) = l(ŝ), i.e.,

pointing to the same env move call. For the variable v, we define σ(ŝr)(v) = σ(s)(v) (or

σ(ŝr)(v) = lE(s) if v = pcE). Clearly, since s ∈ Extend(ŝ), we also get s ∈ Extend(ŝr).
Consider the following two-step computation ρ̂′r in PM starting from ŝr. The first step of

the computation would be to assign a copy of v to a new local auxiliary variable v COPY .

The second step will be a v =havoc() command, setting the value of v to σ(s′)(v) (or lE(s′)

if v = pcE). Let ŝ′′r be the end state of ρ̂′r. As only v and v COPY were changed by ρ̂′r,

σ(ŝ′′r)|V̂M = σ(ŝr)|V̂M = σ(ŝ).

The rest of the commands inside env mover (i.e., all commands except for those used

by ρ̂′r) are exactly the same commands as in the entire env move function of PM . Further,

σ(ŝ′′r)|V̂M = σ(ŝ), and the computation ρ̂ only uses variables from V̂M . Hence, there exists

a computation ρ̂′′r from ŝ′′r to some state ŝ′r which uses the exact same actions as ρ̂ (same

commands, and chooses the same values for havocs), and reaches a state, ŝ′r with the same

values for V̂M as ŝ′ (i.e., σ(ŝ′r)|V̂M = σ(ŝ′)), and the same location l(ŝ′r) = l(ŝ′), at the end of

the env move function. Further, since none of the commands in ρ̂ changes v, it must hold that

45

σ(ŝ′r)(v) = σ(ŝ′′r)(v) = σ(s′)(v) (or lE(s′) if v = pcE). Therefore, since s′ ∈ Extend(ŝ′)
then it also holds that s′ ∈ Extend(ŝ′r). Let ρ̂r be the concatenation ρ̂r = ρ̂′r · ρ̂′′r . Then ρ̂r is a

complete single execution of env mover, which means that (s, s′) ∈MOVr.

The proof of the converse, MOV ⊇MOVr is similar, and is only briefly sketched. For this

direction, we start with a computation ρ̂r = ŝr → · · · → ŝ′r of env mover and omit the two

first new commands. We obtain a computation ρ̂′r which does not use v and passes through the

same commands as in env move. We then need to show that it corresponds to a computation

ρ̂ in PM from a state ŝ “matching” ŝr to a state ŝ′ “matching” ŝ′r. Since v does not appear in

V̂M , its value does not influence the definition of Extend w.r.t. PM , and hence we will have

s ∈ Extend(ŝ) and s′ ∈ Extend(ŝ′). �

Lemma 5.2.4 (Progress when Reach(tE)(α, β) 6= FALSE). Let ERR and MOV be the ap-

proximation sets as in Definition 5.2.1 at the beginning of a new iteration of Algorithm 4.1, in

which Reach(tE)(α, β) (in line 12) returned ψ 6= FALSE, and let ERRr and MOVr be the

corresponding sets at the end of the iteration. Then ERRr) ERR and MOVr =MOV

Proof. If Reach(tE)(α, β) returns ψ 6= FALSE, then Algorithm 4.1 adds a new assert(¬ψ)
to the code of PM , and concludes the iteration. We can assume w.l.g. that all the variables in ψ

are already in V̂M , since if not, by Lemma 5.2.3 they can be added without changing the sets

ERR and MOV .

Adding assert(¬ψ) does not change the env move function, does not change any

env move call, and does not change original commands of tM . If (s, s′) ∈ MOV , then

the corresponding states (ŝ, ŝ′) from Definition 5.2.1 are such that cmd(ŝ) is an env move

call, and cmd(ŝ′) is a command appearing immediately after an env move. According to

Observation 4.1.1, it must be an original command of tM . Hence, all computations from such ŝ

to such ŝ′ do not pass through newly added assertions, and hence are not affected by the addition

of another new assertion. Therefore, MOVr =MOV 2.

For ERR, we first show that ERRr ⊇ ERR. Let s ∈ ERR and let ŝ be the corresponding

state from Definition 5.2.1, such that s ∈ Extend(ŝ), cmd(ŝ) is a new assertion assert(b)

in PM and s � ¬b. The existence of ŝ and the relevant assert(b), is not affected by adding

assert(¬ψ), hence s ∈ ERRr as well.

Finally, we need to show that ERRr 6= ERR. Let P rM be the program obtained from

PM after adding the new assertion. The command assert(¬ψ) is added directly before

an env move call. Let assert(c1), . . . , assert(cm) be the (possibly empty) sequence of

assertions preceding this env move call in PM , and let γ = ∧
1≤i≤m

ci. According to step (2) of

Section 4.5, α⇒ γ, and by the last property of Definition 3.2.1, α ∧ ψ 6= FALSE.

Hence, there exists a valuation σ̂r of V̂M such that σ̂r � (ψ ∧ α), and since α⇒ γ, it holds

that σ̂r � (ψ ∧ γ). Let ŝr = (l̂′r, σ̂r), where l̂′r is the new label associated with the newly added

assert(¬ψ) in P rM . According to Observation 4.2.2, there exists some s ∈ Extend(ŝr), and

by Observation 4.2.3, s � ψ ∧ γ. By Definition 5.2.1, we get that s ∈ ERRr.
2As in lemma 5.2.2, this is correct since we do not restrict ourselves to reachable computations

46

We would like to show that s 6∈ ERR. Assume to the contrary that s ∈ ERR, and let ŝ be

a state of PM such that s ∈ Extend(ŝ), cmd(ŝ) is some newly added assert(b) in PM , and

s � ¬b.
Since s ∈ Extend(ŝr) and s ∈ Extend(ŝ), it holds that Lab(l(ŝ)) = lM (s) = Lab(l(ŝr)).

l(ŝr) = l̂′r is the new label associated with the new assert(¬ψ) in P rM , right before an

env move call. Hence, Lab(l̂′r) is mapped to the location in tM of the first command after

that env move (which is an original command of tM by Observation 4.1.1). Let l′ = Lab(l̂′r).

The only new assertions in PM whose location can also be mapped to l′ are assert(c1), . . . ,

assert(cm).

Hence, cmd(ŝ) =assert(ci) for some 1 ≤ i ≤ m, which means that s � ¬ci. But,

γ = ∧
1≤i≤m

ci, and this contradicts s � γ.

�

Theorem 5.2. If P is a finite-state program, then Algorithm 4.1 terminates.

Proof. Let N be the number of states in P . Given PM , we define the function f(PM) =

(N − |ERR|) + |MOV |). The number of states in ERR is bounded by N , the total number of

states of P , hence f(PM) is always non-negative. If Reach(tE)(α, β) returns FALSE at some

iteration, then by lemma 5.2.2, |ERR| is left unchanged, while |MOV | decreases, causing

f(PM) to decrease. If Reach(tE)(α, β) returns ψ 6= FALSE, then by lemma 5.2.4, |MOV | is
left unchanged, and |ERR| increases, causing f(PM) to decrease again.

Since f(PM) is bounded from below by 0, it can only decrease a finite number of times.

Hence, Algorithm 4.1 can only reach the call to Reach(tE)(α, β) finitely often. The only cases

in which Algorithm 4.1 does not reach the environment query, is either when there is no initial

violating computation in PM - in which case the algorithm terminates, proving the program

safe, or when there exists an initial violating computation in PM without any env move calls -

in which case the algorithm terminates, proving the program unsafe. Therefore, termination is

always guaranteed. �

Note. The proof of termination here relies on the successful termination of all sequential model

checking calls performed by our algorithm. Clearly, if our sequential model checker does not

terminate at some stage during the algorithm, our algorithm will continue waiting for its result

and will not terminate as well.

47

48

Chapter 6

Answering Environment Queries

In this chapter, we complete the description of our approach for verifying concurrent programs

that consist of two threads, by presenting a technique for answering environment queries

(Definition 3.2.1). Intuitively, the purpose of an environment query Reach(tE)(α, β) is to check

whether there exists a reachable computation ρ of tE in P from a state s |= α to a state s′ |= β.

This computation may involve any finite number of steps of tE , executed without interference

of tM . Section 6.1 describes how we can generate a sequential program and use a sequential

model checker to answer this question, while Section 6.2 formally proves that this construction

indeed satisfies the properties of Definition 3.2.1.

Note. A careful examination of the exact properties of Definition 3.2.1 reveals that an environ-

ment query does not completely determine the existence of a reachable computation of tE from

α to β. Although, ψ = FALSE guarantees that there are no such computations, there might be

no such computation when ψ 6= FALSE as well, if all the states satisfying ψ∧α are unreachable.

6.1 Sequential Program for Answering Environment Queries

If α ∧ β 6≡ FALSE, we simply return β, which is a valid answer, as it represents a computation

of length zero. Otherwise, we wish to apply a sequential model checker on tE in order to reveal

such computations, or conclude there are none. However, the computation ρ may not be initial.

That is, ρ may start from an arbitrary label l of tE with non-initial values to the variables, while

our sequential model checker can only search for violating paths starting from an initial state.

Hence we construct a modified sequential program PE , based on the code of tE , which also

represents (over-approximates) non-initial, but reachable, computations ρ of tE in P .

We observe that a reachable computation ρ is the continuation of a computation ρ′ which

is initial in P , but is not restricted to tE alone. Before starting ρ, tM was allowed to run and

set different values to its variables (possibly several times) and this could have also affected

the control flow of tE before starting ρ. Therefore, we add in PE calls to a new function,

try start, which models the runs of tM until the start of ρ, by assigning non-deterministic

values to the variables written by tM . The calls to try start are added in all cut-points of tE .

49

The try start Function The try start function is responsible for non-deterministically1

setting the start point of ρ, where context switches to tM are no longer allowed. It does so by

setting a new start variable to TRUE (provided that its value is not yet TRUE). We refer

to the latter call as the activation try start. start is initialized to FALSE in PE . As long

as start remains FALSE (i.e., prior to the activation call), try start havocs all the variables

in PE , written by tM . When start is set to TRUE, we add an assume(α) command after

the havoc commands, as this is the state chosen to start the computation ρ. Whenever start is

already TRUE, try start exits without performing any havoc commands, ensuring that ρ

indeed only uses transitions of tE .

Recall that α and β may also refer to pcE . To address this, we explicitly add pcE to V̂E as

an auxiliary variable (which is different than the implicit pc variable of PE). We need to make

sure that whenever α or β are evaluated, the value of pcE corresponds to the label of the next

original command of tE to be executed (similar to the mapping in Definition 4.1.3). To this

end, try start receives the original location (in tE) in which it is called as a parameter, and

updates the explicit pcE variable.

We also add assertions of the form assert(!start || ¬β), after every call to try start

in PE . Hence, a violating path, if found, is such that it reached start ∧ β. That is, it captures

a computation in which start was set to TRUE at some point (in which α was satisfied)

and reached β. As before, β may refer to pcE , but the new assertions appear exactly after the

try start calls, which update pcE .

Returning Result If a violating path is not found, we conclude that a computation as above

does not exist and hence return Reach(tE)(α, β) = FALSE. If a violating path π̂ = l̂0, . . . , l̂n+1

is found (with l̂n+1 = lε), let l̂k be the location of the first command after the activation

try start(l) for some 0 ≤ k ≤ n, and l the program location that was passed to the activation

try start. Further, let π̂end be the sub-path of π̂ from l̂k to l̂n. We compute the weakest

precondition of β w.r.t. the path π̂end. When start = TRUE, the try start function does

nothing except updating the explicit pcE variable of PE . Hence, a computation passing through

π̂end is essentially a computation of tE in P .

However, π̂end is nevertheless a path of PE , and as such, its commands may refer to the

auxiliary variable start 2. We wish to obtain a result ψ over V ∪ {pcE} only. Since we

know that after the activation try start, start always has the value TRUE, we can replace

start with TRUE in the weakest precondition formula. Hence, the chosen result would be

ψ = (pcE = l) ∧ wp(π̂end, β)[start/TRUE].

The computed ψ satisfies the desired requirement: For every state s of P with lE(s) = l

s.t. s � wp(π̂end, β), there exists a computation ρ of tE starting from s which follows a path

corresponding to π̂end in P and will reach a state s′ satisfying β. This is described more formally

1A non-deterministic choice is modeled by using an additional variable, havocking it and then checking its value.
2In particular, the if (!start) condition itself inside try start will be part of the path, although its

true-branch is never taken

50

is Section 6.2.

Note. As mentioned in the beginning of this chapter, it is not guaranteed that ρ is reachable,

as in the prefix we only used an abstraction of tM . However, it satisfies the requirements of

Definition 3.2.1.

Example 6.1.1. Figure 6.1 describes the code of P1, used to answer the environment query

Reach(tE)(α, β) for α = ¬cs1 ∧ claim0 ∧ (¬claim1 ∨ turn = 0) and β = cs1. The

try start function is called at every computed cut-point, followed by assert(¬start
∨¬β), i.e. assert(!start || !cs1). However, since cs1 is only written by t1, we can

use static analysis to learn cs1’s value at different locations. In our case cs1 is false everywhere

except between lines 12 and 15, hence the assertion assert(!start || !cs1) immediately

holds and can be dropped.

The parameters passed to try start are the program locations of the next command to be

executed, as can be seen in Figure 4.2. For as long as start is false, every call to try start

will havoc claim0 and turn, as these are the variables written by t0. When the TRUE

branch of the if(*) is chosen, we set start to true and add assumptions for our precondition

¬cs1 ∧ claim0 ∧ (¬claim1 ∨ turn = 0).

If the activation try start is in lines 2, 5, 16 or 18, t1 will be stuck in the busy wait loop,

since we assume claim0, whose value does not change, and turn is set to 0 before the loop in

line 6. If the activation try start is in lines 7 or 9, where claim1 (who is only written by

t1) is always true, the assumptions assume(!claim1 || turn==0) and assume(claim0)

imply claim0 ∧ turn 6= 1, hence there are no computations leaving the loop. If the activation

try start is in line 13, all the computations are disregarded, since assume(!cs1) conflicts

with cs1’s actual value at this location, which is always true.

Finally, the only activation try start that can lead to a violation is the one in line 11,

which is followed by the command cs1=true. The path π̂end, starting after the activation

try start and reaching the violation, consists of the single command in line 12 (omitting the

“non-activating” try start call). The original location in tE in which this computation starts,

is Line 24 (see Figure 4.2), which is exactly the location passed to the activation try start.

Hence, we compute wp(π̂end, cs1)[start/TRUE] = TRUE, and thus Reach(tE)(α, β) re-

turns ψ , (pcE = L24).

6.2 Correctness of Environment Query

In this section, we prove the correctness of our technique for answering environment queries.

Namely, we prove that the returned formula ψ, as obtained by the aforementioned technique,

indeed satisfies the properties of Definition 3.2.1. To this end, we need to formally describe the

connection between tE and PE , and between states of PE and states of the original program P .

Evidently, such connections would be very similar to those between PM and P . Hence some

proofs do not contain the same amount of detail as we used for the case of PM , and others are

only sketched, while emphasizing the relevant differences.

51

1 bool c l a i m0 = f a l s e , c l a im 1 = f a l s e ;
2 bool cs1 = f a l s e ;
3 i n t t u r n ;
4

5 bool s t a r t = f a l s e ;
6

7 void t r y s t a r t (i n t pc aux) {
8 p c t 1 = pc aux ;
9 i f (! s t a r t) {

10 c l a i m0 = h a v o c b o o l () ;
11 t u r n = h a v o c i n t () ;
12 i f (∗) {
13 s t a r t = t rue ;
14 assume (! cs1) ;
15 assume (c l a im 0) ;
16 assume (! c l a im 1 | | t u r n == 0) ;
17 }
18 }
19 }

1 void P1 () {
2 t r y s t a r t (L19); // Label 19 in Figure 4.2
3 whi le (t rue) {
4 c l a i m1 = t rue ;
5 t r y s t a r t (L21);
6 t u r n = 0 ;
7 t r y s t a r t (L22);
8 whi le (c l a i m0 && t u r n != 1) {
9 t r y s t a r t (L23);

10 }
11 t r y s t a r t (L24);
12 cs1 = t rue ;
13 t r y s t a r t (L26);
14 a s s e r t (! s t a r t | | ! c s1) ;
15 cs1 = f a l s e ;
16 t r y s t a r t (L27);
17 c l a i m1 = f a l s e ;
18 t r y s t a r t (L28);
19 }
20 }

Figure 6.1: The sequential program P1 for computing Reach(tE)(α, β) for α = ¬cs1 ∧
claim0∧ (¬claim1∨ turn = 0) and β = cs1. For the convenience of presentation, we split
the assume(α) to three assume commands.

General Structure PE is constructed for the purpose of answering an environment query

Reach(tE)(α, β). The code of PE is based on the code of tE . Technically, it contains original

commands of tE , new assertions, calls to the try start, and the try start function itself.

Since assertions and function calls are only inserted between commands and do not change

the control flow (unlike if commands), the control flow of tE within PE is preserved. This

is similar to the case of PM , where except original commands of tM we had new assertions,

env move calls and the env move function.

To argue about the relation of PE to tE , we need to formally define a mapping between

labels of PE to labels of tE . Essentially, we map each label of PE to the label (in tE) of the next

original command of tE to be executed in PE . The definition is very similar to Definition 4.1.3

for PM .

Definition 6.2.1 (LabE). Let l̂ be a label of PE , not inside try start, with cmd(l̂) = c. We

define LabE(l̂) recursively as follows:

• If c is an original command of tE , appearing at label l in tE , then LabE(l̂) = l.

• Otherwise, c is either an assert or a try start call. We define LabE(l̂) = LabE(l̂
′),

where l̂′ is the next label inPE (not inside try start) after the assert or the try start

(resp.).

We can now define the relation between states of PE and states of P , similarly to Defini-

tion 4.2.1.

Definition 6.2.2 (ExtendE). Let ŝ = (l̂, σ̂) be a state of PE , s.t. l̂ is not inside try start.

We define the set ExtendE(ŝ) to be the set of all states s = (l, σ) of P such that:

• lE(s) = LabE(l(ŝ)).

52

• For every v ∈ V : v ∈ V̂E ⇒ σ(s)(v) = σ(ŝ)(v).

Observation 6.2.3. 1. Unlike Definition 4.2.1, the definition above does not make any

requirement for the value σ̂(pcE). Each location in PE is uniquely mapped to a location

in tE using LabE . However, PE does contain an explicit variable for pcE . The purpose

of this variable is to allow the query parameters α and β to argue about the label of tE .

Hence, it is important that pcE will have an updated value at every place where we use

one of the input formulas (α or β) in which it may appear. This is indeed the case, as α

appears only inside the try start function, whose first command is used to update pcE ,

and β appears in assertions, which are placed immediately after try start calls (and

with no original command of tE between them). The original commands of tE do not

address this variable.

2. Similar to Observation 4.2.2, ExtendE(ŝ) is also never empty.

3. We would have also liked to claim, similar to Observation 4.2.3, that if s ∈ ExtendE(ŝ),
then for every formula γ over V̂E ∩ (V ∪ {pcE}), it holds that s � γ ⇐⇒ σ(ŝ) � γ.

However, as mentioned above, the value of pcE is only updated (and corresponds to

lE(s)) at specific locations of PE . Hence, if γ contains pcE , this general claim may be

incorrect. However, the claim is correct in all cases where pcE has an updated value. In

particular, within try start and in assertions.

Next, we have a series of lemmas describing the properties of PE and the connection between

PE and tE . The correctness proof for our mechanism of answering environment queries is

concluded by Theorem 6.1.

First, we wish to prove that computations of PE in which the start variable is TRUE,

correspond to computations of tE . This is formalized by Lemma 6.2.7. To prove Lemma 6.2.7,

we first need the following three technical lemmas.

Lemma 6.2.4 (Start activation). Let ρ̂ be a computation in PE from a state ŝ to a state ŝ′ 6= ε,

such that σ(ŝ)(start) = TRUE. Then σ(ŝ′′)(start) = TRUE for every ŝ′′ in ρ̂.

Proof. Assume to the contrary that the lemma is false, then there exists some ŝ′′ in ρ̂, which

is the first state in ρ̂ such that σ(ŝ′′)(start) 6= TRUE. ŝ′′ 6= ŝ, the first state in ρ̂, since

σ(ŝ)(start) = TRUE. Let ŝp be the state preceding ŝ′′ in ρ̂. Since ŝ′′ is the first state

such that σ(ŝ′′)(start) 6= TRUE, cmd(ŝp) must change the value of start (from TRUE to

σ(ŝ′′)(start) = FALSE).

However, according to the construction described in Section 6.1, the only commands

in PE that change the value of start (after initialization) are start = TRUE inside the

try start function, and violated assertions (which transition to ε, in which the value of

start is undefined). None of the commands in ρ̂ can be a violated assertion, as this would

lead the computation to ε, which is a final state. This is impossible, since the last state of ρ̂

satisfies ŝ′ 6= ε. Hence, cmd(ŝp) = “start = TRUE′′, and since ŝ′′ is obtained from ŝp by

53

performing cmd(ŝp) = “start = TRUE′′, it must hold that σ(ŝ′′)(start) = TRUE, which is

a contradiction. �

Lemma 6.2.5 (State preservation in PE). Let ρ̂ be a computation in PE from a state ŝ to a state

ŝ′ 6= ε, such that σ(ŝ)(start) = TRUE. Assume that l(ŝ) and l(ŝ′) are not inside try start,

and that ρ̂ has no original commands of tE . Then for every state s of P : s ∈ ExtendE(ŝ) ⇐⇒
s ∈ ExtendE(ŝ′).

Proof. The only other commands in PE which are not original commands of tE are try start

calls and executions (i.e., commands within try start), and assertions. Since, LabE maps

a label of PE to the label associated with the next original command of tE , and there is no

such command between ŝ and ŝ′, it follows that LabE(l(ŝ)) = LabE(l(ŝ
′)). The definition of

ExtendE only depends on the mapping LabE , and the values of variables in VE ∩ V . Hence,

it is sufficient to show that σ(ŝ)(v) = σ(ŝ′)(v) for every v in V . Since ŝ′ 6= ε, none of the

assertions in ρ̂ can be violated. Hence, all of the assertions in ρ̂ do not change the valuation σ.

Further, since σ(ŝ)(start) = TRUE, by Lemma 6.2.4, σ(ŝ′′)(start) = TRUE for every ŝ′′

in ρ̂. When start = TRUE, the try start function, only updates the value of pcE (which is

not in V) and exits without changing any other variable.

Hence, none of the commands within ρ̂ change σ(v) for every v in V . Therefore, σ(ŝ)(v) =

σ(ŝ′)(v) for every v in V as required. �

With the help of the previous two lemmas, we can now also argue about computations that

include original commands of tE as well.

Lemma 6.2.6 (Single step of tE mapping). Let ρ̂ be a computation in PE from ŝ to ŝ′ 6= ε,

such that σ(ŝ)(start) = TRUE and l(ŝ), l(ŝ′) are not inside try start. Assume also that

cmd(ŝ) is an original command of tE and the rest of the commands in ρ̂ are not. Then for every

state s ∈ ExtendE(ŝ) there exists a state s′ ∈ ExtendE(ŝ′) such that s′ ∈ next(s,tE).

Proof. Let c = cmd(ŝ). If s ∈ ExtendE(ŝ), then LabE(l(ŝ)) = lE(s). Since c is an original

command of tE , it follows by the definition of LabE , that c is the same command as in label

lE(s) in tE , i.e., c = cmd(s,tE). Hence, we can apply c on s in tE .

Additionally, Vars(c) ⊆ VE ⊆ V̂E , and since s ∈ ExtendE(ŝ), it follows that σ(s)|c =
σ(ŝ)|c. Hence, any modification that c can apply on σ(ŝ), can also be applied to σ(s). Addition-

ally, the control flow of tE within PE is preserved (as the only new commands are try starts

and assertions), and any condition within c that may affect branching, holds or is violated in ŝ

iff it holds or is violated in s (resp.).

Hence, if ŝ′′ is the second state in ρ̂ (obtained after applying c to ŝ), then there exists

s′ in P obtained by applying c = cmd(s,tE) to s (i.e., s′ ∈ next(s,tE)), which satisfies

s′ ∈ ExtendE(ŝ′′).
By Lemma 6.2.4, σ(ŝ′′)(start) = TRUE. Since c is an original command of tE , l(ŝ′′)

cannot be inside try start (but it can be a try start call). Thus, we can use Lemma 6.2.5

(for the suffix of ρ̂ starting from ŝ′′) to obtain s′ ∈ ExtendE(ŝ′), as required.

54

�

Lemma 6.2.7 (Computations of PE). Let ρ̂ be a computation in PE from ŝ to ŝ′ 6= ε such that

l(ŝ), l(ŝ′) are not inside try start and σ(ŝ)(start) = TRUE.

Then for every s ∈ ExtendE(ŝ) there exists s′ in ExtendE(ŝ′) and a computation of tE in

P from s to s′.

Proof. Let s ∈ ExtendE(ŝ). If ρ̂ has no original commands of tE , then we can choose s′ = s

(and a computation of length 0) and the results follows from Lemma 6.2.5. Otherwise, ρ̂ contains

an original command of tE . Note that by Lemma 6.2.5, if ŝ′′ is the first state in ρ̂ such that

cmd(ŝ′′) is an original command of tE , then s ∈ ExtendE(ŝ′′). Therefore, proving the lemma

with ŝ′′ as the initial state would prove the lemma for ŝ as well. Thus, we can assume w.l.g. that

cmd(ŝ) is an original command of tE .

Let ŝ0, . . . ŝk be a partial series of the states in ρ̂, consisting of all states ŝ′′ such that cmd(ŝ′′)

is an original command of tE and including ŝ′ as well (even if cmd(ŝ′) is not an original

command of tE). By our assumption, ŝ0 = ŝ. Moreover, by Lemma 6.2.4, σ(ŝi)(start) =

TRUE for 0 ≤ i ≤ k. Further, according to our state selection, for every 0 ≤ i ≤ (k−1), there

exists a computation in PE from ŝi to ŝi+1, in which cmd(ŝi) is the only original command

of tE . Additionally, l(ŝi) is not inside try start for 0 ≤ i ≤ k (for ŝk = ŝ′ by the lemma’s

condition, and for the rest, cmd(ŝi) is an original command of tE , which cannot be inside

try start). Hence, by applying Lemma 6.2.6 iteratively k times (starting from s0 = s), we

obtain a series of k states in P , s1 . . . sk, such that si ∈ ExtendE(ŝi) and si ∈ next(si−1,tE)
for 1 ≤ i ≤ k. Since ŝk = ŝ′, we can choose s′ = sk to satisfy the lemma. �

The purpose of the lemmas above was to describe how a computation of PE , in which the

start variables was activated, corresponds to a computation of tE in P . This is conceptually

similar to lemma 4.2.6. A computation that does not use the abstracting commands, is de facto a

computation of a single thread. In PM , not using the abstraction meant avoiding the env move

function. In PE , the activation of the start variable prevents the computation from havocking

the variables written by tM .

Now, we also need a converse relation. More precisely, we need to show that a reachable

computation ρ of tE is indeed represented within PE . For the correctness of our proof, we

are only interested in computations from α to β. This again resembles a previous claim we

proved about PM , in Lemma 5.1.6. There, we proved that violating computations of P have a

representative violating computation in PM , using commands of tM in PM and the env move

function to abstract tE . In the following lemma, we show that the initial computation in P

which reaches the first state of ρ (and hence making ρ reachable) is represented by commands

of tE in PE and try start to abstract tM . The representation of ρ does not need to use the

abstraction. The proof is very similar to Lemma 5.1.6, and therefore it is only sketched, with

explanations of the differences from and similarities to Lemma 5.1.6.

55

Lemma 6.2.8. Let ρ be a computation of tE from s to s′ that is reachable in P such that

s � α, s′ � β and s, s′ are a cut-point states (the same conditions as in the first property of

Definition 3.2.1). Then there exists an initial violating computation ρ̂ in PE .

Proof Sketch. ρ is reachable in P , then there exists a computation ρ0 in P from an initial state,

s0 of P , to s. ρ0 contains both commands of tM and commands of tE . To prove the lemma,

we need to partition ρ0 to segments (i.e., sub-computations of ρ0), similar to Definition 5.1.4.

However, in Definition 5.1.4, we split ρ0 to computations of tM and computations of tE , and

further split computations of tM at cut point states. For this lemma, we need to split computations

of tE at cut point states, and leave computations of tM as a whole segment (even if they contain

inner cut point states).

Then, we can iteratively match each segment r with a computation r̂ in PE , such that the

first computation starts from an initial state, and each next one starts from the last state of the

previous computation, thus creating an initial computation in PE .

A segment r of tE with no inner cut-point states would correspond to a computation r̂ of PE
containing only original commands of tE . When r reaches the cut-point state, r̂ would reach a

try start call. This is similar to Lemma 5.1.6, where the corresponding computation in PM
reaches an env move call. if r is a segment of tM , the try start function would be used to

abstract r (i.e., r̂ would be an execution of try start). r̂ would skip the inner if-statement

(i.e., not setting start to TRUE). Since the try start havocs all the shared variables written

by tM , any modification performed by r is possible in r̂ as well (for all variables relevant to

PE). If we have two adjacent segments of tE , the try start can also abstract a zero length

computation of tM , since one possible result of a havoc command is keeping the existing value

of a variable.

Eventually, the constructed computation would end with a try start (whether it is a

segment of tE reaching a cut-point state, or a segment of tM abstracted by that try start).

This last try start will be chosen as the activation try start, i.e., it sets start to TRUE

and assumes α. Since ρ0 ends with s and s � α, the compatible state in PE would also satisfy

α, thus not pruning the computation.

To complete, we need to match each command in ρ with the compatible command in PE .

Since startwas already set to TRUE, when the computation in PE reaches another try start

call, it will skip it (except for updating pcE). This process would end at some state ŝ′ such that

s′ ∈ ExtendE(ŝ′) and cmd(ŝ′) is assert(!start || ¬β). start was set to TRUE at the

activation try start and is unchanged for the rest of the computation. Since s′ � β, we will

have σ(ŝ′) � start ∧ β. Hence, the assertion will be violated and the constructed computation

is indeed an initial violating computation. �

After discussing the relation between PE and tE , we need two additional lemmas that character-

ize the violating computations in PE and the return value of our mechanism.

Lemma 6.2.9. Let ρ̂ = ŝ→ . . . ŝ′ → ε be a violating initial computation in PE . The activation

try start (i.e., an execution of try start where start is changed from FALSE to TRUE)

exists and is unique.

56

Proof. All the assertions in PE are of the form assert(!start || ¬β). The variable start

has an initial value of FALSE. If start is left unchanged during ρ̂, then in particular σ(ŝ′)(start) =

FALSE, which is a contradiction to ρ̂ being a violating computation.

Since the only location in which start can be set to TRUE is within the try start

function, there exists an activation try start, which sets start to TRUE. After setting start

to TRUE, the try start assumes α and then exits. Let ŝ′′ be the first state in ρ̂ after the first

activation try start. Then by Lemma 6.2.4 for the sub-computation of ρ̂ from ŝ′′ to ŝ′, start

remains TRUE in all the next states. Hence, the activation try start is unique. �

With the proof above, the next Lemma is well defined:

Lemma 6.2.10. Let ρ̂ = ŝ→ . . . ŝ′ → ε be a violating initial computation in PE , and let ŝ′′ be

the first state in ρ̂ after the activation try start. Let ρ̂end be the sub-computation of ρ̂ from

ŝ′′ to ŝ′, π̂end the path of ρ̂end, and l be the program location parameter passed to the activation

try start.

Then σ(ŝ′′) � α ∧ (pcE = l) ∧ wp(π̂end, β)[start/TRUE].

Proof. The only command in the activation try start, after setting start to TRUE, is

assume(α), after which the function returns. Hence, ŝ′′ is the next state in ρ̂ after assume(α)

is executed. Since passed assume commands do not change the valuation σ, it follows that

σ(ŝ′′) � α.

The assertions in PE are of the form assert(!start || ¬β). Since ρ̂ is a violation, it

follows that ŝ′ � start ∧ β and in particular, ŝ′ � β. Since ρ̂end is a computation from ŝ′′ to

ŝ′, by the definition of a weakest precondition, it follows that σ(ŝ′′) � wp(π̂end, β). Since, ŝ′′

appears after the activation try start, then σ(ŝ′′)(start) = TRUE. Therefore, it must also

hold that σ(ŝ′′) � wp(πend, β)[start/TRUE].

Finally, the activation try start sets the value of pcE to l. This value is only set

at the beginning of try start, and is unchanged until the next try start call. Hence,

σ(ŝ′′)(pcE) = l, which means that σ(ŝ′′) � (pcE = l)

�

With the last lemma, we can finally complete the correctness proof of our technique for answering

an environment query:

Theorem 6.1 (Environment Query Construction). Let PE be a sequential program constructed

for an environment query Reach(tE)(α, β) and let ψ be the results of the query, obtained

according to the description in Section 6.1. Then ψ satisfies the properties of Definition 3.2.1.

Proof. First, if α ∧ β 6≡ FALSE, then β is a valid answer for Reach(tE)(α, β), as mentioned in

Observation 3.2.2. Otherwise, the answer is according to the construction of PE .

Assume first that the constructed PE is safe. In this case, we return ψ = FALSE. When

ψ = FALSE, the second and third property of Definition 3.2.1 hold vacuously. Additionally,

by Lemma 6.2.8, when PE is safe, there is no computation of tE from s � α to s′ � β that is

reachable in P such that s, s′ are cut-point states. Hence the first property holds as well.

57

Assume now that PE is unsafe, and let ρ̂ = ŝ→ · · · → ŝ′ → ε be a violating computation

in PE . Let ŝ′′ be the first state after the activation try start(l) (l being the parameter passed),

and π̂end the path used by ρ̂ starting from ŝ′′ until ŝ′. The returned formula is ψ = (pcE =

l) ∧ wp(π̂end, β)[start/TRUE]. According to Lemma 6.2.10, σ(ŝ′′) � α ∧ ψ. In particular,

this means that α ∧ ψ 6≡ FALSE. Hence, the first and third property of Definition 3.2.1 hold.

For the second property, let sψ be a state of P , such that sψ � ψ. We construct a state ŝψ of

PE as follows:

• l(ŝψ) = l(ŝ′′).

• σ(ŝψ)(pcE) = l.

• σ(ŝψ)(start) = TRUE.

• For every v ∈ V ∩ V̂E : σ(ŝψ)(v) = σ(sψ)(v).

We first wish to show that sψ ∈ ExtendE(ŝψ). The properties for variables in V ∩ V̂E hold

immediately, by the definition of ŝψ. It is left to show that lE(sψ) = LabE(l(ŝψ)). LabE(l(ŝ′′))

is mapped to the label associated with the next original command of tE to be executed in PE ,

starting from location l(ŝ′′). ŝ′′ is the next state after a try start, called with parameter l,

which is also the label associated with the next original command of tE to be executed. Hence,

LabE(l(ŝ
′′)) = l. Since sψ � ψ, then in particular sψ � (pcE = l), i.e., lE(sψ) = l. Since

l(ŝψ) = l(ŝ′′), we get lE(sψ) = LabE(l(ŝψ)), and sψ ∈ ExtendE(ŝψ) as required.

Note also that ŝψ has an updated value of pcE , i.e., σ(ŝψ)(pcE) = l = LabE(l(ŝψ)).

Hence, since sψ � ψ and sψ ∈ ExtendE(ŝψ), it follows that σ(ŝψ) � ψ (see the last

property of Observation 6.2.3). In particular, σ(ŝψ) � wp(π̂end, β)[start/TRUE]. Since

σ(ŝψ)(start) = TRUE, it also holds that σ(ŝψ) � wp(π̂end, β). Hence, by the definition of a

weakest precondition, there exists a computation ρ̂ψ from ŝψ to some ŝ′ψ, which uses the path

π̂end such that σ(ŝ′ψ) � β.

The last label of π̂end is l(ŝ′), which must be a label associated with an assertion, as the next

state in ρ̂ after ŝ′ is ε. Therefore, ŝ′ψ 6= ε and l(ŝ′ψ) is not inside try start (which does not

contain assertions). Then by Lemma 6.2.7, there exists s′ψ ∈ Extend(ŝ′ψ) and a computation of

tE from sψ to s′ψ in P . The pcE variable has an updated value at ŝ′ψ as well, since assertion are

placed immediately after try start calls (which update pcE), and before additional original

commands of tE . Hence, again by Observation 6.2.3, s′ψ � β. �

58

Chapter 7

Extending the Algorithm

In this chapter we discuss two extensions of our algorithm. First, in Sections 7.1 and 7.2, we

extend it to concurrent programs that consist of more than two threads. Next, in Section 7.3, we

extend it to handle assertions that appear in any thread, and not only the one designated as the

main thread.

7.1 Extending to Multiple Threads

In this section, we describe the extension of our method to programs with more than two threads.

We first give an overview of the differences from (and similarities to) the case of two threads

(and in particular, a single environment thread), and discuss the required adaptations to support

this setting. We then continue more formally with the necessary new definitions. Finally,

Section 7.2 describes how environment queries with multiple threads are answered, which is the

key ingredient of this extension.

Consider a program P with threads t1, . . . , tm, and assume t1 is chosen as tM . The

environment of t1 now consists of all the other threads: T = {t2, . . . , tm}. Recall that in the

case of two threads, the verification problem was divided to verification of the main thread,

performed by Algorithm 4.1, and answering environment queries, described in Chapter 6. Note

that our correctness proof of Algorithm 4.1 in Section 5.1 only relies on our construction and

refinement of PM according to the chosen main thread and the results of environment queries,

and in particular the construction of the env move function to abstract the environment. This

means that the correctness of Algorithm 4.1, which solves the verification problem “from

the point of view of tM”, is independent of the number of environment threads, as long as

information describing the environment is added correctly to PM .

More precisely, this means that the algorithm for handling the main thread, Algorithm 4.1,

remains the same in the presence of multiple threads. In order for the correctness proof

of Section 5.1 to be applicable for the case of multiple environment threads, we need to

make sure that (1) the initial env move function of PM over-approximates the environment T

(Definition 4.2.5), (2) refinements of env move preserve this over-approximation, and (3) newly

added assertions still represent promises of error, with respect to the environment T . This is

59

sufficient, as these are the only modifications applied to PM during Algorithm 4.1.

To achieve this, we consider the construction (and transformation) of PM and the env move

function in particular. Initially, the env move havocs all shared variables changed by the

environment. For the case of a single thread tE , it means all variables of tM that are also written

by tE . For the case of multiple environment threads T , it simply means all variables of tM that

are written by any of the threads in T . Next, there are two types of modifications that can be

applied to PM during Algorithm 4.1. First, the env move is changed by the refinement step

described in (4) of Section 4.5 iff an environment query Reach(tE)(α, β) returned ψ = FALSE.

Second, new assertions are added to PM iff an environment query returned ψ 6= FALSE. As

we argue next, these modifications remain correct, as long as the query’s result is correct. In

fact, their correctness relies completely on the correctness of the query’s result. The latter is

addressed in Section 7.2.

To this end, we first need to establish a slightly different definition for environment queries,

to capture the fact that the environment consists of multiple threads T = {t2, . . . , tm}. As each

thread ti ∈ T has its own pc variable, V̂M may now include pci as an additional variable for

every thread ti ∈ T , instead of a single pcE .

Definition 7.1.1 (Multithreaded Environment Query). Let P be a concurrent programs with

threads t1, . . . , tm, and let T ({t1, . . . , tm}. An environment query Reach(T)(α, β) receives

conditions α and β over V ∪
⋃

i: ti∈T
{pci}, and returns a formula ψ over V ∪

⋃
i: ti∈T

{pci} such

that:

1. If there exists a computation of T in P that is (1) reachable in P , (2) starts from a cut-point

state s s.t. s � α, (3) ends in a cut-point state s′ s.t. s′ � β, then ψ ∧ α 6≡ FALSE.

2. For every state s s.t. s � ψ, there exists a computation (not necessarily reachable) of T in

P from s to some s′ s.t. s′ � β.

3. ψ 6= FALSE⇒ ψ ∧ α 6≡ FALSE.

Essentially, this definition is identical to Definition 3.2.1, where computations of tE are

replaced with computations of T , and in which the conditions (α, β, ψ) can address the pc

variable of all environment threads. Next, we can rephrase the definition about the env move

”over-approximating T ”, and also the definition of a promise of error for the case of multiple

threads. For the former, we also need to adapt the definition of Extend to the case of multiple

threads:

Definition 7.1.2 (Multithreaded Extend). Let ŝ = (l̂, σ̂) be a state in PM , s.t. l̂ is not inside

env move. We define the set Extend(ŝ) to be the set of all states s = (l, σ) of P such that:

• lM (s) = Lab(l(ŝ)).

• For every thread ti ∈ T : If pci ∈ V̂M then li(s)1= σ(ŝ)(pci).

1 Where li(s) denotes the value of pci in s.

60

• For every v ∈ V : v ∈ V̂M ⇒ σ(s)(v) = σ(ŝ)(v).

Definition 7.1.3 (Multithreaded Over-approximation). We say that env move over-approximates

the computations of T in P if for every reachable (and possibly of length zero) computation

ρ of T in P from a cut-point state s to a cut-point state s′, and for every state ŝ of PM s.t.

s ∈ Extend(ŝ), and cmd(ŝ) is an env move call, there exists a computation ρ̂ = ŝ→ · · · → ŝ′

of PM s.t.

• l(ŝ′) is the next label in PM after the env move called at ŝ, and for every inner state ŝ′′ in

ρ̂, l(ŝ′′) is a label inside env move (i.e., ρ̂ is a complete single execution of env move)

• s′ ∈ Extend(ŝ′)

Definition 7.1.4 (Multithreaded Promise of Error). Let ψ,ψ′ be formulas over V ∪
⋃

i: ti∈T
{pci}

and let l, l′ be labels of tM . We say that (l, ψ) is a promise of (l′, ψ′) if for every state s of P s.t.

lM (s) = l and s � ψ there exists a computation in P starting from s to a state s′ s.t. lM (s′) = l′

and s′ � ψ′.

If (l, ψ) is a promise of (l′,¬b) and cmd(l′) = assert(b) for some condition b, then we

say that (l, ψ) is a promise of error.

We note that Definition 7.1.4 is almost identical to Definition 4.4.1, with V ∪ {pcE}
simply replaced by V ∪

⋃
i: ti∈T

{pci}. Definition 7.1.2 also highly resembles Definition 4.2.1,

where instead of addressing a single pcE variable in V̂M , the definition addresses multiple pci
variables (for each thread ti). Finally, Definition 7.1.3 is also identical to Definition 4.2.5, with

computations of tE replaced by computations of T .

In fact, the entire correctness proof from Section 5.1, can be left almost unchanged, while

only using the same replacements mentioned above: Computations of tE become computations

of T , and pcE should be replaced by multiple pci variables for each thread ti. Naturally, the

proof assumes that the environment query returns a correct result according to our new definition.

Hence, the core of the extension of the algorithm to multiple threads relies on our technique for

answering environment queries, which is explained next.

7.2 Environment Queries with Multiple Threads

Overview In this section, we wish to describe an algorithm for answering environment queries,

Reach(T)(α1, β1) for some environment T such that |T | ≥ 1. To preserve modularity, we use

an algorithm similar to Algorithm 4.1, which can answer the query by analyzing a single thread

with some abstraction of its environment. We select a thread t′M∈ T and view it as the main

thread for the query. The environment in this context will consist of T ′ = T \ {t′M}. During

the algorithm, we would require some information concerning T ′, which again will be answered

by environment queries: Reach(T ′)(α2, β2). Note that the size of the environment for the inner

queries is reduced. Thus, we can continue recursively until reaching an environment of size one,

which was already handled in Chapter 6.

61

After selecting t′M , we construct a sequential program P ′M with try start calls and

assertions as described in Chapter 6. After each try start call (and before the assert), we

add a call to an env move function. P ′M will have an env move′ function of its own, which is

different from the env move of PM . The goal of env move′ is to over-approximate T ′.

Recall that we are interested in over-approximating reachable, but not necessarily initial,

computations of T in P . For each such computation ρ, there exists some initial computation

ρi in P , which is a prefix of a computation ρ′ such that ρ′ = ρi · ρ. Each step in ρi can be

performed by any of the threads in P , while each step in ρ is restricted to T . Our construction

of P ′M models steps of t′M precisely, and it should abstract the steps of all other threads in both

ρi and ρ.

Over-approximating ρi The purpose of the try start function is to abstract ρi, and to non-

deterministically decide when ρi ends, α1 is satisfied, and ρ should start. To this end, as long as

the start variable remains FALSE, the try start function havocs all variables written by any

thread of P other than t′M
2. Similar to Chapter 6, the try start also non-deterministically sets

start to TRUE and assumes α1. As before, we refer to this call as the activation try start.

After this point, the try start function does not havoc any variables (as start= TRUE). As

in Chapter 6, we pass the label associated with the next original command of t′M to try start,

in order to update pcM ′ , the pc variable of t′M .

Over-approximating ρ When start is set to TRUE, we move from over-approximating ρi
to over-approximating ρ. As before, steps of t′M are modeled precisely, and we wish to over-

approximate the steps of all other threads in T , i.e., the threads in T ′. This over-approximation

will be handled by the env move′ function of P ′M . First, note that we are only interested in this

over-approximation once start was set to TRUE. Hence, the code of the env move′ function

should start with an if (start){...} condition, and all other commands would be inside

the true-branch of this if statement. The rest of env move′ is constructed in the same manner

as described in Chapter 4. The initial env move′ function havocs variables written by threads

in T ′, similar to the description in Section 4.3. It is later refined by statements of the form if

(α′
2[W copy/W]) assume(¬β′

2), similar to (4) of Section 4.5, following inner environment

queries Reach(T ′)(α2, β2), which returned FALSE.

Algorithm Outline Algorithm 7.1 provides the complete procedure of how environment

queries are answered. The algorithm follows a similar pattern as Algorithm 4.1. First, if at any

stage there are no initial violating computations in P ′M , the over-approximation ensures that

there is indeed no reachable computation of T in P from α1 to β1. In this case, Algorithm 7.1

returns ψ = FALSE (Line 25).

Next, assume that a violating computation ρ̂ was found in P ′M , and that ρ̂ contains at

least one env move′ call after the activation try start (Line 13). The last env move′ call

2Variables that neither belong to any of the threads in T , nor appear in α1 or β1 can be omitted, as they clearly
do not affect the result

62

Algorithm 7.1 AnswerEnvQuery
1: procedure ANSWERENVQUERY(P , T , t′M , α1, β1)
2: PM ’ = add try start calls in cut-point locations of t′M
3: PM ’ = add env move′ calls after try start in PM ’ and initialize env move′

4: PM ’ = add assert(¬start ∨ ¬β1) after every env move′ in PM ’
5: while a violating path exists in PM ’ do // using sequential MC
6: Let π̂ = l̂0, . . . , l̂n+1 be a violating path (with l̂n+1 = l̂ε)
7: Let assert(¬start ∨ b) be the violated assertion at label l̂n
8: Let try start(l) be the activation try start at some label l̂j
9: Let π̂′ = l̂j+1, . . . , l̂n be the sub-path of π̂ starting from the activation try start.

10: if there are no env move′ calls in π̂′ then:
11: return ψ , (pcM ′ = l) ∧ wp(π̂′, β1)[start/TRUE]
12: end if
13: let l̂k be the label of last env move call in π̂ (and in π̂′)
14: let π̂start = l̂0, . . . , l̂k and π̂end = l̂k+1, . . . , l̂n
15: β2 = wp(π̂end,¬b) // see (1) in Section 4.5
16: α2 = post(π̂start, φ̂init) // see (2) in Section 4.5
17: Let ψ2 = Reach(T ′)(α2, β2) // environment query for T ′

18: if ψ2 is FALSE then
19: Let α′2, β′2 be as in (4) in Section 4.5.
20: PM ’ = RefineEnvMove(P ′

M , α
′
2, β

′
2)

21: else // see (5) in Section 4.5
22: Add new label l̂′ in P ′M right before l̂k with cmd(l̂′) =assert(¬start ∨ ¬ψ2)

23: end if
24: end while
25: return ψ , FALSE
26: end procedure

will be examined in the same manner as in Algorithm 4.1, by another environment query

Reach(T ′)(α2, β2) (Line 17). If we learn that T ′ cannot lead from α2 to β2, env move′ is

refined to eliminate ρ̂ (Line 20). Otherwise, a new assertion is added before the env move′ call

(Line 22), whose violation ensures the reachability of β2 through computations of T ′.

Finally, if the algorithm finds an initial violating computation ρ̂ in P ′M with no env move′

calls after the activation try start (Line 11), it terminates and returns ψ as appears in Line 11.

The returned ψ guarantees the reachability of the violated assertion through steps of t′M alone.

The violated assertion itself guarantees the reachability of β1. The computed ψ must also

intersect α1 which is assumed at the activation try start.

Correctness The formal correctness proof for Algorithm 7.1 combines and repeats the cor-

rectness proofs from Sections 5 and 6. The parts about the role of the try start function

and the final result ψ intersecting α1, are similar to the ones in Chapter 6. The parts about

the over-approximation of the env move′ function and assertion being “promises of β1”, i.e.,

conditions ensuring the reachability of β1 through computations of T , are similar to the ones

used in Chapter 5. Next, we give a formal description of the correctness of Algorithm 7.1,

followed by a proof sketch with references to the relevant previously proved lemmas.

63

Theorem 7.1 (Correctness of Algorithm 7.1). Let Reach(T)(α1, β1) be an environment query

in P for an environment T , and let ψ be the results of the query, obtained by Algorithm 7.1.

Then ψ satisfies the properties of Definition 7.1.1.

Proof. (detailed sketch) The proof is by induction on the size of the environment T .

Base Case: |T | = 1: If |T | = 1, then T consist of a single thread t′M , with no environment.

The env move′ mentioned in Algorithm 7.1 would be empty, and can be omitted. There is

no need to examine inner environment queries from some α2 to some β2, as there are no

environment computations. Note that without the env move′ functions, the construction is

identical to the one in Chapter 6, and the algorithm will terminate after a single model-checker

call. Hence, the correctness proof for the base case was already presented in Chapter 6.

Induction Step: |T | > 1: Assume that |T | > 1. let t′M∈ T and let T ′ = T \{t′M}. |T ′| < |T |,
hence by the induction hypothesis, Algorithm 7.1 provides correct results for environment

queries about T ′. The induction hypothesis is needed for the two possible refinements of P ′M :

adding new assertions and refining env move′. Next, we discuss both of these refinements.

env move′ Over-approximates T ′: For this part we need an adjusted version of Lemma

5.1.1. In simple words, we claim that for every reachable computation ρ of T ′ in P from some

s to some s′, and for every state ŝ of P ′M that “matches” s (with an adapted version of the

Extend definition), there exists a complete single execution of the env move′ function from

ŝ to some ŝ′ matching s′. The proof follows the same pattern as the proof of Lemma 5.1.1.

At initialization, the lemma is correct as env move′ havocs all variables written by threads

in T ′. Refinements only occur after an inner environment query Reach(T ′)(α
′
2, β
′
2) returned

FALSE. By the induction hypothesis, this means that there are no reachable computations of T ′

in P from α′2 to β′2. We refine env move′ with commands of the form if (α′
2[W copy/W])

assume(¬β′
2), which only block env move′ from reaching β′2 when it was called with a

state satisfying α′2. Thus the refinement does not “lose” the representation of any reachable

computation of T ′ in P .

Assertions in P ′M Represent Promises of β1 . A promises of β1 is a condition ψ′ and a label

l of t′M , such that for every state s of P with lM ′(s)3= l and s � ψ′ there exists a computation

of T in P from s to some state s′ such that s′ � β1. We wish to show that the violation of

every assertion in P ′M is a promise of β1. The proof follows the same pattern as Lemma 5.1.3.

At initialization, this holds since all assertions are of the form assert(¬start ∨ ¬β1). Other

assertions are only added after inner environment queries returned ψ2 , Reach(T ′)(α2, β2) 6=
FALSE. Consider the first newly added assertion. It can only be added after a violating

computation ρ̂ was found in P ′M , leading to an original assertion. Thus, β2 is computed as a

weakest precondition and ensures the reachability of β1 using steps of t′M alone. Further, by

3denoting the pc variable of t′M

64

the induction hypothesis, the result ψ2 ensures the reachability of β2 using computations of T ′.

Combining computations of t′M and computations of T ′ yields computations of T . Hence, β1
is reachable from ψ2 by computations of T . Since the newly added assertion is of the form

assert(¬start ∨ ¬ψ2), its violation indeed represents a promise of β1. For other assertions,

we can continue inductively and use the transitivity of the definition of “promises of β1”, similar

to Lemma 5.1.3.

ψ 6= FALSE⇒ ψ∧α1 6= FALSE We now wish to show that whenever Algorithm 7.1 returns

ψ 6= FALSE, it means that ψ ∧ α1 6= FALSE. This is in fact the last property of Definition 7.1.1.

The proof is based mainly on the proof of Lemma 6.2.10. If Algorithm 7.1 returned ψ 6= FALSE,

it means that an initial violating computation ρ̂ = ŝ → . . . ŝ′ → ε was found in P ′M with

no env move′ calls after the activation try start. Let assert(¬start ∨ b) be the violated

assertion (Line 7). The state immediately after the activation try start must satisfy ψ ∧ α1.

It satisfies ψ, because ψ was computed as a weakest precondition from ¬b exactly until the

activation try start, using steps of t′M , and the computation ρ̂ used these exact steps to reach

¬b and violate the assertion. It satisfies α1 as α1 was assumed at the end of the activation

try start, and otherwise ρ̂ could not have continued. We conclude that ψ ∧ α1 6= FALSE.

ψ = FALSE Implies no Computation from α1 to β1 We now wish to show that when

Algorithm 7.1 returns ψ = FALSE, it means that there is no reachable computation of T in P

from a cut point stare s satisfying α1, to a cut point state s′ satisfying β1. This, together with

the property above, proves the first property of Definition 7.1.1.

The proof is a combination of the proofs of Lemma 5.1.6 and Lemma 6.2.8. Assume that

there exists such a reachable computation ρ. As discuss in the beginning of this section, since ρ

is reachable, there exists some initial computation ρi in P , which is a prefix of a computation ρ′

such that ρ′ = ρi · ρ. The main idea of the proof is to construct an initial violating computation

ρ̂′ in P ′M . As long as such a computation exists, Algorithm 7.1 cannot reach Line 25 and would

not return ψ = FALSE.

ρ̂′ would also consist of two subcomputations ρ̂′ = ρ̂i · ρ̂, based on ρi and ρ. During ρ̂i,

the start variable will be FALSE. Thus, the env move′ function, whose body is contained

within a if (start){...} statement, will be effectively disabled. Therefore, we can use a

construction similar to Lemma 6.2.8 until the activation try start. ρi would be partitioned

into segments, where each segment either corresponds to a computation of t′M with no inner

cut-point states, or to a computation of the rest of the threads in P , other than t′M . Segments

of t′M would be represented in ρ̂i by the exact same commands of t′M , which appear in P ′M .

Segments of the other threads would be represented by the try start function. ρ̂i would end

after the activation try start, where ρ̂ would start.

The connecting state ŝ between ρ̂i and ρ̂ would match s, which connects ρi and ρ. Since

s � α1, the assume(α1) command within the activation try start would not trim the

computation, and it can continue from ŝ. Next, during the activation try start, the start

variable is set to TRUE, which means that the havocs within the try start function are

65

disabled. Thus, we can now use a construction similar to Lemma 5.1.6. As before, ρ would be

partitioned into segments. Recall that ρ is a computation of T . Thus, each segment will either

corresponds to a computation of t′M with no inner cut-point states, or to a computation of T ′ in

P . Segments of t′M would be represented by the exact same commands in P ′M , and segments

T ′ would be represented by the env move′ function.

Finally, ρ̂ would reach a state ŝ′ matching s′. Since s′ is a cut-point state, there would be an

assert(¬start ∨ ¬β1) command at the compatible label at the end of ρ̂, i.e., at l(ŝ′). Since

s′ � β1, ŝ′ would also violate that assertion. Note that it is also possible that ρ̂ would violate

a previous assertion and thus would not continue until ŝ′. Nevertheless, we get a violating

computation ρ̂′ in P ′M .

ψ Guarantees the Reachability of β1 To conclude, we need to show that the second property

of Definition 7.1.1 holds. That is, if s � ψ, then there exists a computation of T in P

from s to some s′ satisfying β1. The proof is a combination of Item 2 of Theorem 5.1, and

the proof of the second property of Definition 3.2.1 in Theorem 6.1. The main idea is that

the returned ψ is computed as the weakest precondition in PM , from the violation of some

assertion assert(¬start ∨ b) to the activation try start. Therefore, if s � ψ, there exists a

computation of t′M in PM ’ from s to some s′′ satisfying ¬b. We already showed that the location

ot the violated assertion, together with ¬b are a promise of β1. Hence there is a computation

of T in P from s′′ to some s′ satisfying β1. Concatenating these two computations, gives the

desired result.

�

Example 7.2.1. Figure 7.1 presents a program with three threads, inspired by the fib bench

examples of the SV-Comp concurrency benchmark. Assume that t1 was selected as the main

thread in P , and during the analysis of the corresponding sequential program P1, an environment

query Reach({t2,t3})(α1, β1) was initiated, with α1 , (a == 1 ∧ b == 1 ∧ c == 1) and

β1 , (a+ 2b > 15). Figure 7.2 presents the sequential program P2 constructed to answer the

query. The try start havocs both a, which is written by t1 and c, which is written by t3 (and

pct3 as well), as it should abstract any prefix in P . The env move function, on the other hand,

only abstracts the next threads in the hierarchy, i.e., t3. Hence, it need not havoc a.

Note that there is no computation of T = {t2, t3} from α1 to β1. The variable a is not

written by the threads in T , hence it keeps the value of 1 in any computation of T starting

from α1. Therefore, c is bounded by 3, and b is bounded by 7, making β1 , (a + 2b > 15)

unreachable.

Nevertheless, there exists a violating computation in P2. The reason is of course the

abstraction of c. Assume that the first try start in Line 28 is chosen as the activation

try start. The following env move havocs c, and can set it to an arbitrary high value. This

value can then be added to b in Line 32, leading to the violation of the assertion in Line 35. This

violating computation will now be examined by Algorithm 7.1, and eventually eliminated, after

an appropriate refinement of P2’s env move function.

66

1 i n t a =1 , b =1 , c =1;
2

3 void t 1 () {
4 i n t k1 = 0 ;
5 whi le (k1 < 2) {
6 a += b ;
7 k1 ++;
8 }
9 a s s e r t (a <= 1 5) ;

10 }
11 void t 2 () {
12 i n t k2 = 0 ;
13 whi le (k2 < 2) {
14 b += c ;
15 k2 ++;
16 }
17 }
18 void t 3 () {
19 i n t k3 = 0 ;
20 whi le (k3 < 2) {
21 c += a ;
22 k3 ++;
23 }
24 }

Figure 7.1: A variation of the
fib bench examples from the
SV-Comp concurrency bench-
mark with three threads.

1 i n t a =1 , b =1 , c =1;
2 bool s t a r t = f a l s e ;
3 void env i ronment move () {
4 i f (s t a r t) {
5 i n t c COPY = c , pc t3 COPY = p c t 3 ;
6 c = h a v o c i n t () ;
7 p c t 3 = h a v o c i n t () ;
8 }
9 }

10 void t r y s t a r t (i n t pc aux) {
11 i n t a COPY = a , c COPY = c , pc t3 COPY = p c t 3 ;
12 p c t 2 = pc aux ;
13 i f (! s t a r t) {
14 c = h a v o c i n t () ;
15 a = h a v o c i n t () ;
16 p c t 3 = h a v o c i n t () ;
17 i f (∗) {
18 s t a r t = 1 ;
19 assume (a == 1) ;
20 assume (b == 1) ;
21 assume (c == 1) ;
22 }
23 }
24 }
25

26 i n t main () {
27 i n t k2 = 0 ;
28 t r y s t a r t (L13);
29 env i ronment move () ;
30 a s s e r t ((! s t a r t) | | (a + 2∗b <= 1 5)) ;
31 whi le (k2 < 2) {
32 b += c ;
33 t r y s t a r t (L15);
34 env i ronment move () ;
35 a s s e r t ((! s t a r t) | | (a + 2∗b <= 1 5)) ;
36 k2 ++;
37 }
38 }

Figure 7.2: The sequential program P2 with both
try start and env move’ calls, for answering
Reach({t2,t3})(α1, β1) with α1 , (a == 1 ∧ b ==

1 ∧ c == 1) and β1 , (a+ 2b > 15).

7.3 Extending Assertions to all Threads of P

The next paragraph briefly explains how our technique can support assertions appearing ev-

erywhere in P , and not only in tM . Since our sequential program PM for tM uses explicit

variables to address the pc of other threads, we can use these variables to address assertions

from other threads as well. Assume that an assert(b) appears at some label l of a thread

ti 6=tM . We can equip PM with a new assertion of the form assert((pci = l)⇒ b). Note that

this assertion should hold regardless of the program location in tM . That is, the environment of

tM should never be able to reach [(pci = l) ∧ ¬b], from every label of tM . To express this, we

can simply add this assertion at the end of the env move function of PM . Thus, this assertion

will be handled as if it was an original assertion of tM , appearing after every cut-point, and

simply referring to pci as well.

Another important observation is that environment queries issued by the algorithm, only

67

consider computations between cut-point states. If l is not a cut-point of ti, clearly there is no

reachable computation of the environment ending at a cut-point state s s.t. s � (pci = l). Thus,

we need to add the labels of all assertions to the sets of cut-points.

68

Chapter 8

Optimizations

The following chapter describes a list of optimizations used by our tool.

8.1 General Optimization

Reusing Counterexamples This optimization is used when Reach(tE)(α, β) returned ψ 6=
FALSE, and a new assertion assert(¬ψ) was added right before an env move call (case (5)

of Section 4.5). In that case, instead of initiating another call to our model-checker, as described

in Algorithm 4.1, we can reuse the counterexample of the previous iteration, including all of its

commands up to (excluding) the last env move call, and adding the new assertion assert(¬ψ)
at the end.

In this case, upon encountering a violating path, we try to validate all uses of env move

along that path. The main advantage of this optimization is that it avoids calling the model

checker (which is the most expensive part of Algorithm 4.1). The main disadvantage is that

the newly composed counterexample is not constructed by a model checker, as opposed to the

non-optimized case, and hence may not be feasible, even in PM . The reason for that is that the

computed postcondition α only over-approximates the reachable states before the env move

call. Hence, though ψ is guaranteed to intersect α, it may not intersect any reachable state of

PM .

Therefore, in order to make sure we only return sound answers, we only apply this opti-

mization when there is at least one env move in the composed counterexample. Since we only

return ”Unsafe” upon encountering a counterexample with no env move calls, this ensures that

the model checker was actually used to verify the feasibility of the counterexample. Note that

despite being possibly unreachable in PM , the new assertions are still promises of error, hence

any additional assertions added by analyzing the (possibly infeasible) counterexamples leading

to them, are also promises of error.

Skipping Assertions in Weakest Precondition Our technique includes weakest precondition

computations both in PM and in PE . In both cases, we compute a weakest precondition

β = wp(π̂,¬b) for some path π̂, ending at an assertion assert(b). If the path π̂ contains other

69

assertions, that may either be original assertions of P , new assertions added by our algorithm,

or assertions placed to answer an environment query, we can ignore them while computing the

weakest precondition. Thus, the obtained formula represents more states.

β = wp(π̂,¬b) has the property that for every states ŝ satisfying β, there exists a compu-

tation ρ̂ from ŝ, whose path is π̂, reaching ¬b, and thus violating the assertion. However, the

important part of this property is the reachability of an error from ŝ. We only use π̂, as this was

the witness that assured us the reachability of that error. By ignoring other assertions in π, we

obtain a more general formula β′. β′ has the property that for every state ŝ satisfying β′, there

exists a computation ρ̂ whose path is either π̂, in which case it reaches ¬b, or some prefix of π̂,

ending at another violated assertion.

Example 8.1.1. Consider the code below as an example, and assume we wish to compute the

weakest precondition from the violation of the assertion in Line 5, (i.e., for the condition a > 1),

for the path π̂ = 3, 4. This will later be sent to an environment query.

1 . . .
2 env move () ;
3 a s s e r t (b>0);
4 a += 1 ;
5 a s s e r t (a<=1);

Without the optimization, the computed condition is β , (a > 0 ∧ b > 0). This condition

indeed ensures the violation of the second assertion. Thus, the following environment query will

search for computations ending in both a > 0 and b > 0. However, if we ignore the assert

command in Line 3, we get β′ , (a > 0). This guarantees the violation of one of the assertions,

but not necessarily the latter. We can then apply a more general environment query, which

searches for computations reaching a > 0 only.

8.2 Optimizations for Generalizing Environment Information

The following three optimizations can be motivated by the following scenario. Assume the

main thread learns new information about the environment, of the form if (α(W old))

assume(¬β). The relevant formulas α and β may refer to several variables that are used only

by tM . Since the environment query only considers computations of tE , there exists some

property of the environment alone, which prevents the transition from α to β. Our goal is to

identify such properties.

Let C be the set of variables of tM that are not written by tE and appear in α and β. Those

variables are in fact constant in the context of tE . Thus, by the absence of computations of tE
from α to β we can conclude that for every assignment to the (unchanged) variables in C, there

is no computation from α to β.

This quantified property is of course a property of tE alone, since it is defined only over

variables of tE (it may contain variables shared between tE and tM , but none that are local to

tM). However, our representation does not allow us to express quantified predicates.

70

Thus, the following three optimizations all try to eliminate variables of tM that appear in

α and β, without applying quantification. The first optimization is applied before the query is

made (when we do not know yet whether indeed there are no computations from α and β), and

the other two are applied after the query returned ψ = FALSE.

Using Query Invariants A query invariant is a condition that appears in α or β as a conjunct

and consists only of variables not written by tE . Clearly, any computation from α to β (if exists)

must satisfy the query invariant along all states in the computation, and in particular in the first

and last states (satisfying α and β resp.). Hence, query invariants may be used to simplify α and

β.

If α or β contains a query invariant p, our optimization first constructs a simplification α′

and β′ of α and β w.r.t. p. Then an optimized environment query Reach(tE)(α
′, β′) is sent to

PE (see (3) in Section 4.5).

For example, if α = (i == 1 ∧ j > 0), and i is not written by tE , then (i == 1) is a query

invariant. If β = (i+ j > 5), then we can use the query invariant to obtain β′ = (j > 4). If i is

also not read by tE , then the predicate i == 1 can now be omitted entirely from α. With the

optimized query, instead of learning that there is no computation from α = (i == 1∧ j > 0) to

β = (i+ j > 5), we may learn that there is no computation from α′ = (j > 0) to β′ = (j > 4).

This property is (a) much stronger, and (b) only refers to variables of tE .

Query invariants may be useful not only for the case of constant variables. For example, if

β has a conjunct p as a query invariant, and α contains a sub-formula of the form q1 ∨ q2, s.t.

p⇒ ¬q1, then this sub-formula can be simplified to q2.

The optimization described above is useful for the case where Reach(tE)(α
′, β′) returned

ψ = FALSE, since the nonexistence of reachable computations of tE from α′ to β′ implies that

there are no such computations from α to β as well. However, if ψ′ = Reach(tE)(α
′, β′) 6=

FALSE, we cannot simply add assert(¬ψ′) as before. The reason is that query invariants

are only guaranteed to hold, given the context (α and β) of the query. More specifically, the

computed ψ′ only guarantees that we can reach β′. But β′ does not necessarily lead to β.

Reaching β′ guarantees that we reach β only for the specific α (and the query invariants)

used for this query. Since we might reach the env move that initiated the query using different

computations in which α does not hold, it is unsound to add assert(¬ψ′) before the env move

call. To resolve this, if a computation from α′ to β′ was found in PE , the returned formula ψ is

computed as the weakest precondition from the original β, and not from β′.

For example, if we learn that there exists a computation from j > 0 to j > 4 (using the

example above, where β = (i+ j > 5) is an error), and compute some weakest precondition ψ′

ensuring that we can reach j > 4, it will be unsound to add assert(¬ψ′) before the env move

call. This is because j > 4 implies the error only in case i == 1. If we reach the same

env move call with i == 0, reaching j > 4 does not guarantee that we can reach the original

β.

71

β Constants Replacement The next optimization can be used when α contains a conjunct of

the form v == p(U), where v is not written by tE , and p is a term over some other variables U

(that might be written by tE). The main observation here is that since v is unchanged during

computations of tE , the value of v at the end of the computation still equals to p(U old), where

U old represents the value of the variables in U at the start of the computation.

Recall that the standard refinement of env move uses a statement of the form if (α(W old))

assume(¬β). That is, we already have a method for arguing about variables at the beginning

of the computation, but it was typically used just for α. In this case, we can omit the predicate

v == p(U) from α, and simply replace every other occurrence of v (in α or β) with p(U old).

Searching for Inductive Environment Properties A useful type of property is an inductive

environment property. An Inductive environment property is a condition γ, defined only over

variables written by tE , such that there is no reachable computation of tE from γ to ¬γ.

Recall that when a query Reach(tE)(α, β) returns FALSE, we learn that there is no reachable

computation of tE from α to β. We try to utilize such results to proactively search for additional

relevant information, in the form of inductive environment properties. However, checking

whether some γ is an inductive environment property (by computing Reach(tE)(γ,¬γ)) is

computationally expensive, as it involves calling the model checker. Hence, this check is only

applied in specific cases, as described by the two heuristics below.

The first heuristic is applied if after the two optimizations above, the resulted α′ and β′ still

contain variables not written by tE . In a typical case, α is a conjunction of several conditions.

It might be the case that α itself contains variables not written by tE , but has some conjuncts

which are only over variables that are written by tE . For each such conjunct γ, we check if γ

is an inductive environment property. We also save γ, so that we will not check it again if it

reappears as a conjunct in some future α.

The second heuristic is applied when α = TRUE, and β is a conjunction. When

α = TRUE, it means that ¬β is a global invariant. Global invariants are typically strong

properties which incorporate some fundamental property of the program. When combined with

generalization, as described in Section 4.6, none of the disjuncts forming ¬β can also be global

invariant on their own (otherwise β would have been generalized). Nevertheless, they might be

inductive environment properties. Hence, we check whether any of the disjuncts of ¬β defined

only over variables written by tE , are indeed inductive environment properties.

In both cases, if an inductive environment property γ was found, we use it to further

refine the env move function, by adding if (γ(W old)) assume(γ), additionally to the

if (α(W old)) assume(¬β) statement we always add when environment queries return

FALSE.

8.3 Multiple Threads Optimizations

The optimizations appearing in this section are relevant for the case where P has more than two

threads, and environment queries are answered by Algorithm 7.1.

72

Preserving Environment Information Typically, during the run of Algorithm 4.1, multiple

environment queries Reach(T)(α1, β1) are made. When P consists of two threads, each such

query is answered using a single model checker call, on a sequential program PE (see Chapter 6).

However, when the environment T of the main thread tM consists of more than one thread,

environment queries are answered by Algorithm 7.1. During this algorithm, a sequential

program P ′M is constructed and refined according to additional inner environment queries

Reach(T ′)(α2, β2) for a smaller environment T ′. The information learned about T ′ can also be

relevant for future queries. Hence, P ′M does not have to be reconstructed from the beginning for

every new environment query, and it can reuse information learned about T ′.

We now discuss which information can remain in P ′M and serve future queries (made by PM).

Assume that P ′M was constructed once for answering an environment query Reach(T)(α1, β1)

from PM , and later reconstructed to answer another queryReach(T)(α′1, β
′
1). Any new assertion

added to P ′M during the process of answering the first query, is in fact a “promise of β1”. That

is, if the assertion is violated, it means that start ∧ β1 can be reached. In the general case,

β′1 6= β1 and hence this information does not guarantee the reachability of β′1, needed by the

query Reach(T)(α′1, β
′
1). Thus, it should be removed from P ′M .

However, the information which appears inside the env move′ function, represents the

absence of computations of T ′ from some α2 to some β2. Since this is a property of T ′, it

remains correct regardless of the conditions (α1, β1) given by the query from PM . Hence,

information gathered within the env move′ of P ′M can be accumulated and serve future queries.

Quick Generalization The generalization described in Section 4.6 is by itself a useful op-

timization. The difference in runtime between solving with and without generalizations can

sometimes be in orders of magnitude. A common interesting pattern observed during our exper-

iments, is that calling our tool with generalization, results in more calls to the model-checker

than calling it without generalization, for the same program P . However, the overall verification

time for the generalization case is still shorter. The reason for this pattern is that many of the

model-checker calls are performed as part of the generalization process, thus increasing the

number of calls. Nevertheless, the sequential programs obtained after generalization tend to be

simpler than those obtained without. This results in a much shorter runtime per each model

checker call.

Notwithstanding the above, consider the case of more than two threads, as described in

Chapter 7. Let PM be the sequential program of the main thread, tM , P ′M the sequential program

of the main thread of the environment, t′M , and T ′ the rest of the threads of P . Assume also

that Reach(T)(α1, β1) = FALSE for some environment query, originated from the analysis of

PM . Essentially, generalization is performed by guessing conditions α′1, β
′
1 s.t. α1 ⇒ α′1 and

β1 ⇒ β′1, and checking whether still Reach(T)(α′1, β
′
1) = FALSE. If this query is answered by

Algorithm 7.1, it may initiate additional inner environment queries Reach(T ′)(α2, β2). These

queries, in turn, might trigger another generalization, and so forth. When the number of threads

increases, this overhead becomes significant and compromises the benefits of generalization.

We therefore suggest an intermediate approach. Recall that if Reach(T)(α1, β1) returned

73

FALSE, it means that P ′M already has enough information to refute the transition from α1 to

β1. We can therefore check if P ′M , by itself, can also refute the transition from α′1 to β′1. If so,

we can generalize (α1, β1) to (α′1, β′1). Otherwise, this generalization call fails and we retreat

to (α1, β1) (and might try another generalization). Note that in the latter case, it still might

be the case that Reach(T)(α′1, β
′
1) would have returned FALSE, but this would have required

additional refinements of P ′M . In practice, we reduce the number of model-checker calls allowed

per generalization attempt Reach(T)(α′1, β
′
1) = FALSE to one. This approach often gives a

substantial share of the benefits of generalization, while significantly reducing the overhead.

74

Chapter 9

Experimental Results

Setup We implemented our algorithm in a prototype tool called CoMuS. The implementation

is written in Python 3.5, uses pycparser [3] for parsing and transforming C programs, uses

SeaHorn [22] for sequential model checking, and uses Z3 [10] to check implications of formulas

for some of the optimizations described in Chapter 8. CoMuS currently supports only a subset

of the syntax of C (as appears in the preliminaries). It does not perform alias analysis and hence

does not handle pointers. It also does not support dynamic thread creations, although we support

any fixed number of threads.

We compare CoMuS with Threader [36], VVT [19] and UL-CSeq [29], the last two being

the top scoring model checkers on the concurrency benchmark among sound unbounded tools

in SVCOMP’16 and SVCOMP’17 (resp.). On the concurrency benchmark, VVT was 4th overall

in SVCOMP’16, and UL-CSeq was 8th overall in SVCOMP’17 1. Threader performs modular

verification, abstracts each thread separately and uses an interference abstraction for each pair of

threads. UL-CSeq performs a reduction to a single non-deterministic sequential program. The

program is then passed to a sequential model-checker. We used UL-CSeq in its default setting,

with CPA-Checker [4] as a backend. VVT combines bounded model checking for bug finding

with an IC3 [6] based method for full verification.

We ran the experiments on a x86-64 Linux machine, running Ubuntu 16.04 (Xenial) using

Intel(R) Xeon(R) CPU E5-2680 v3 @ 2.50GHz with 8GB of RAM.

Experiments We evaluated the tools using three experiments. One compares the four tools

on concurrent programs with a clear hierarchy. The second compares syntactically similar

programs with and without hierarchal structure to evaluate the effect of the structure on the

verification time. The last one looked at general concurrent programs.

Hierarchically Structured Programs For the first experiment, we used three concurrent

dynamic-programming algorithms: Sum-Matrix, Pascal-Triangle and Longest-Increasing-Subsequence.

1The same benchmark was used for unbounded sound tools and tools which perform unsound bounded reductions.
Bounded tools are typically ranked higher. Our method is unbounded and is able to provide proofs, hence we find
the selected tools more suitable for comparison.

75

The Sum-Matrix programs receive a matrix A as input. For every pair of indexes (i, j), it com-

putes the sum of all elements A[k, l], where k ≥ i and l ≥ j. In their concurrent version,

each thread is responsible for the computation of a single row. The Pascal-Triangle programs

compute all the binomial coefficients up to a given bound. Each thread computes one row of

the triangle, where each element in the row depends on two results of the previous row. The

Longest-Increasing-Subsequence programs receive an array, and compute for each index i, the

length of the longest increasing subsequence that ends at index i. Each thread is responsible for

computing the result for a given index of the array, depending on the result of all prefixes.

These algorithms have a natural definition for any finite number of threads. Typically,

the verification becomes harder as the number of threads increases. For evaluation, we used

programs with an increasing number of threads, and checked the influence of the number on

the different tools. For each instance, we use both a safe and an unsafe version. Both versions

differ from each other either only by a change of specification, or by a slight modification that

introduces a bug.

The chosen programs have two meaningful characteristics: (i) They exhibit non-trivial

concurrency. This means that each thread performs a series of computations, and it can advance

when the data for each computation is ready, without waiting for the threads it depends on to

complete. Consider the Sum-Matrix problem as an example. Assume thread ti needs to compute

the result at some location (i, j), and that each row is computed backwards (from the last cell to

the first). The computation exploits the results of thread ti+1. Thread ti needs to wait for thread

ti+1 to compute the result for location (i+1, j). However, ti does not wait for ti+1 to terminate,

as it can compute the cell (i, j), while ti+1 continues to compute (i+ 1, j − 1). (ii) Their data

flow graph has a clear chain structure. That is, the threads can be ordered in a chain hierarchy,

and each thread only requires information computed by its immediate successor.

Figure 9.1 summarizes the results for these programs. The timeout was set to 3600 seconds.

The code of the programs is available at https://tinyurl.com/tacascomus. We

include in the table also our running example, the Peterson algorithm.

The results demonstrate a clear advantage for CoMuS for verification (i.e., for safe programs)

as the number of threads increases. For falsification, CoMuS is outperformed by VVT’s bounded

method. However, it still performs significantly better than the two other tools when the number

of threads grows.

Hierarchical vs. Non-hierarchical Programs The programs used for this evaluation are

variants of the “fib bench” examples of the SV-COMP concurrency benchmark. We compare

programs in which the data flow graph has a ring topology, vs. programs in which it has a chain

topology. Figure 7.1 presents such a program with three threads and a ring topology. For the

ring case, consider a program with threads t0, . . . , tn−1 and variables v0, . . . , vn−1. Each thread

ti runs in a loop, and iteratively performs vi+=v(i+1(mod n)). The checked property is that v0
does not surpass an upper bound. The chain case is identical except that for the last thread, tn−1,

we break the chain and perform vn−1+=1 instead of vn−1+=v0. Figure 9.2 presents the results

of this comparison. All the programs in the table are safe and with two loop iterations. The

76

https://tinyurl.com/tacascomus

Figure 9.1: Run times [secs] for all four tools for verifying concurrent dynamic programming
algorithms.

timeout was set to 1200 seconds.

For the ring case, all tools fail to verify programs with ≥ 4 threads. Threader presents

similar results for both ring and chain topologies. VVT benefits from the less dependent chain

topology, but still timeouts on more than three threads. CoMuS, on the other hand, is designed

to exploit hierarchy, and benefits significantly from the chain topology, where it verifies all

instances. UL-CSeq is excluded from the table as it performs sub-optimally for “fib bench”

examples (both in our experiments and in the SV-COMP results).

General Concurrent Programs We also evaluated the tools on a partial subset of the SV-

COMP concurrency benchmark, whose code is supported by CoMuS. Typically, on these runs

CoMuS was outperformed by the other tools.

We conclude that even though our method can be applied to programs without a clear

hierarchical structure, it is particularly beneficial for programs in which the hierarchy is inherent.

77

Figure 9.2: Run times [secs] for fib bench programs with ring topology vs. chain topology.

78

Chapter 10

Conclusion and Future Work

10.1 Conclusion

In this work we develop an automatic, hierarchical and modular method for proving or disproving

safety of concurrent programs by exploiting model checking for sequential programs. The

technique chooses one “main thread” and constructs a sequential program based on the main

thread and an abstraction of all other threads. It then uses a model checker on this sequential

program, and tries to determine the safety of the original program based on the model checker’s

result.

If the abstraction is not sufficient for a conclusive answer, we generate “environment queries”

to check whether the other threads can perform computations that would “help” the main

thread to reach a violation. The queries are answered by a recursive application of the same

approach, i.e., by creating a sequential program based on one of the environment threads, with

an abstraction of the rest. The number of abstracted threads decreases by one with every step of

the recursion, until we reach a single environment thread. In that case, environment queries are

answered by a single call to a model checker.

The method can use any off-the-shelf model checker, thus benefiting from possible develop-

ments in the field of sequential verification. The minimal requirement from the model checker

is to determine the safety of sequential programs, and to provide counterexamples in the form of

a violating path when the program is unsafe.

The method can handle infinite-state programs, assuming such programs are supported by

the sequential model checker. It is sound and unbounded. We proved that our method is sound,

ensured to make progress, and terminates in the case of finite state programs. We implemented

our approach in a prototype tool called CoMuS, which compares favorably with top scoring

model checkers on programs which have a hierarchical structure.

10.2 Future Work

Getting Inside the Model Checker Although a key aspect of the designed reduction is to be

independent of the chosen model-checker, there can be benefits for implementing the method

79

“inside” the model-checker. For example, when a model checker determines that a program is

safe, it typically learns certain invariants at different locations of the program. If the model-

checker is called to answer an environment query, such invariants can be used to learn properties

of the environment, that are more general than the specific question asked by the original query.

Thus, it can replace or diminish the need of our own generalization technique (which requires

additional model-checker calls). Further, since we generate a series of sequential programs that

are syntactically similar, it is to be expected that incremental techniques could yield a significant

speedup. In the future, we intend to exploit internal information gathered by the sequential

model-checker (e.g., SeaHorn) to further speedup our results.

Extension to Liveness An interesting view of our method is the question of whether it can

be applied to liveness properties as well. The main difference between liveness and safety

properties, is that liveness counterexamples are infinite. Given such a counterexample, possible

research directions are to try and compute a promise of error at some point along the infinite

counterexample (i.e., a property that ensures that the program will reach the infinite computation

violating the liveness property), or to reverse the counterexample analysis and try to compute a

strongest postcondition and an infinite precondition. [5] showed how liveness checking problems

can be transofrmed to safety checking problems for finite systems. However, it is remains an

open question if these ideas (or the other directions mentioned above) can be used to extend our

method.

80

Bibliography

[1] J. Alglave, D. Kroening, and M. Tautschnig. Partial orders for efficient Bounded Model

Checking of concurrent software. In Computer Aided Verification (CAV), volume 8044 of

LNCS, pages 141–157. Springer, 2013.

[2] R. Bellman. Dynamic programming. Courier Corporation, 2013.

[3] E. Bendersky. https://github.com/eliben/pycparser.

[4] D. Beyer and M. E. Keremoglu. CPAchecker: A tool for configurable software verification.

In Computer Aided Verification - 23rd International Conference, CAV 2011, Snowbird, UT,

USA, July 14-20, 2011. Proceedings, pages 184–190, 2011.

[5] A. Biere, C. Artho, and V. Schuppan. Liveness checking as safety checking. Electronic

Notes in Theoretical Computer Science, 66(2):160–177, 2002.

[6] A. R. Bradley. Sat-based model checking without unrolling. In Verification, Model

Checking, and Abstract Interpretation - 12th International Conference, VMCAI 2011,

Austin, TX, USA, January 23-25, 2011. Proceedings, pages 70–87, 2011.

[7] J. M. Cobleigh, D. Giannakopoulou, and C. S. Pasareanu. Learning assumptions for

compositional verification. In TACAS, pages 331–346, 2003.

[8] A. Cohen and K. S. Namjoshi. Local proofs for global safety properties. In Computer

Aided Verification, 19th International Conference, CAV 2007, Berlin, Germany, July 3-7,

2007, Proceedings, pages 55–67, 2007.

[9] B. Cook, A. Podelski, and A. Rybalchenko. Proving thread termination. In Proceed-

ings of the ACM SIGPLAN 2007 Conference on Programming Language Design and

Implementation, San Diego, California, USA, June 10-13, 2007, pages 320–330, 2007.

[10] L. De Moura and N. Bjørner. Z3: An efficient smt solver. Tools and Algorithms for the

Construction and Analysis of Systems, pages 337–340, 2008.

[11] E. W. Dijkstra. A Discipline of Programming. Prentice-Hall, 1976.

[12] K. A. Elkader, O. Grumberg, C. S. Păsăreanu, and S. Shoham. Automated circular

assume-guarantee reasoning. In International Symposium on Formal Methods, pages

23–39. Springer, 2015.

81

[13] C. Flanagan, S. N. Freund, and S. Qadeer. Thread-modular verification for shared-memory

programs. In Programming Languages and Systems, 11th European Symposium on

Programming, ESOP 2002, held as Part of the Joint European Conference on Theory

and Practice of Software, ETAPS 2002, Grenoble, France, April 8-12, 2002, Proceedings,

pages 262–277, 2002.

[14] C. Flanagan and S. Qadeer. Thread-modular model checking. In Model Checking Software,

10th International SPIN Workshop. Portland, OR, USA, May 9-10, 2003, Proceedings,

pages 213–224, 2003.

[15] C. Flanagan and S. Qadeer. Transactions for software model checking. Electr. Notes Theor.

Comput. Sci., 89(3):518–539, 2003.

[16] I. Gavran, F. Niksic, A. Kanade, R. Majumdar, and V. Vafeiadis. Rely/guarantee reasoning

for asynchronous programs. In 26th International Conference on Concurrency Theory,

CONCUR 2015, Madrid, Spain, September 1.4, 2015, pages 483–496, 2015.

[17] P. Godefroid. Partial-Order Methods for the Verification of Concurrent Systems - An

Approach to the State-Explosion Problem, volume 1032 of Lecture Notes in Computer

Science. Springer, 1996.

[18] G. Gueta, C. Flanagan, E. Yahav, and M. Sagiv. Cartesian partial-order reduction. In

Model Checking Software, 14th International SPIN Workshop, Berlin, Germany, July 1-3,

2007, Proceedings, pages 95–112, 2007.

[19] H. Günther, A. Laarman, and G. Weissenbacher. Vienna verification tool: IC3 for parallel

software - (competition contribution). In Tools and Algorithms for the Construction and

Analysis of Systems - 22nd International Conference, TACAS 2016, Held as Part of the

European Joint Conferences on Theory and Practice of Software, ETAPS 2016, Eindhoven,

The Netherlands, April 2-8, 2016, Proceedings, pages 954–957, 2016.

[20] A. Gupta, C. Popeea, and A. Rybalchenko. Predicate abstraction and refinement for

verifying multi-threaded programs. In Proceedings of the 38th ACM SIGPLAN-SIGACT

Symposium on Principles of Programming Languages, POPL 2011, Austin, TX, USA,

January 26-28, 2011, pages 331–344. ACM, 2011.

[21] A. Gupta, C. Popeea, and A. Rybalchenko. Threader: A constraint-based verifier for

multi-threaded programs. In Computer Aided Verification - 23rd International Conference,

CAV 2011, Snowbird, UT, USA, July 14-20, 2011. Proceedings, volume 6806 of Lecture

Notes in Computer Science, pages 412–417. Springer, 2011.

[22] A. Gurfinkel, T. Kahsai, A. Komuravelli, and J. A. Navas. The seahorn verification

framework. In Computer Aided Verification - 27th International Conference, CAV 2015,

San Francisco, CA, USA, July 18-24, 2015, Proceedings, Part I, volume 9206 of Lecture

Notes in Computer Science, pages 343–361. Springer, 2015.

82

[23] T. A. Henzinger, S. Qadeer, and S. K. Rajamani. You assume, we guarantee: Methodology

and case studies. In Computer Aided Verification, 10th International Conference, CAV ’98,

Vancouver, BC, Canada, June 28 - July 2, 1998, Proceedings, pages 440–451, 1998.

[24] S. K. Lahiri, A. Malkis, and S. Qadeer. Abstract threads. In International Workshop on

Verification, Model Checking, and Abstract Interpretation, pages 231–246. Springer, 2010.

[25] A. Lal and T. W. Reps. Reducing concurrent analysis under a context bound to sequential

analysis. In Computer Aided Verification, 20th International Conference, CAV 2008,

Princeton, NJ, USA, July 7-14, 2008, Proceedings, pages 37–51, 2008.

[26] K. R. M. Leino and P. Müller. A basis for verifying multi-threaded programs. In Pro-

gramming Languages and Systems, 18th European Symposium on Programming, ESOP

2009, Held as Part of the Joint European Conferences on Theory and Practice of Software,

ETAPS 2009, York, UK, March 22-29, 2009. Proceedings, pages 378–393, 2009.

[27] A. Malkis, A. Podelski, and A. Rybalchenko. Thread-modular verification is cartesian

abstract interpretation. In Theoretical Aspects of Computing - ICTAC 2006, Third Interna-

tional Colloquium, Tunis, Tunisia, November 20-24, 2006, Proceedings, pages 183–197,

2006.

[28] K. L. McMillan. Lazy abstraction with interpolants. In Computer Aided Verification, 18th

International Conference, CAV 2006, Seattle, WA, USA, August 17-20, 2006, Proceedings,

pages 123–136, 2006.

[29] T. L. Nguyen, B. Fischer, S. La Torre, and G. Parlato. Unbounded lazy-cseq: A lazy

sequentialization tool for C programs with unbounded context switches - (competition

contribution). In Tools and Algorithms for the Construction and Analysis of Systems - 21st

International Conference, TACAS 2015, Held as Part of the European Joint Conferences

on Theory and Practice of Software, ETAPS 2015, London, UK, April 11-18, 2015.

Proceedings, pages 461–463, 2015.

[30] T. L. Nguyen, B. Fischer, S. La Torre, and G. Parlato. Lazy sequentialization for the safety

verification of unbounded concurrent programs. In Automated Technology for Verification

and Analysis - 14th International Symposium, ATVA 2016, Chiba, Japan, October 17-20,

2016, Proceedings, pages 174–191, 2016.

[31] C. S. Pasareanu, M. B. Dwyer, and M. Huth. Assume-guarantee model checking of

software: A comparative case study. In SPIN, volume 99, pages 168–183. Springer, 1999.

[32] C. S. Pasareanu, D. Giannakopoulou, M. G. Bobaru, J. M. Cobleigh, and H. Barringer.

Learning to divide and conquer: applying the L* algorithm to automate assume-guarantee

reasoning. Formal Methods in System Design, 32(3):175–205, 2008.

[33] G. L. Peterson. Myths about the mutual exclusion problem. Inf. Process. Lett., 12(3):115–

116, 1981.

83

[34] A. Pnueli. In transition from global to modular temporal reasoning about programs. In

Logics and models of concurrent systems, pages 123–144. Springer, 1985.

[35] C. Popeea and A. Rybalchenko. Compositional termination proofs for multi-threaded

programs. In Tools and Algorithms for the Construction and Analysis of Systems - 18th

International Conference, TACAS 2012, Held as Part of the European Joint Conferences

on Theory and Practice of Software, ETAPS 2012, Tallinn, Estonia, March 24 - April 1,

2012. Proceedings, volume 7214 of Lecture Notes in Computer Science, pages 237–251.

Springer, 2012.

[36] C. Popeea and A. Rybalchenko. Threader: A verifier for multi-threaded programs -

(competition contribution). In Tools and Algorithms for the Construction and Analysis of

Systems - 19th International Conference, TACAS 2013, Held as Part of the European Joint

Conferences on Theory and Practice of Software, ETAPS 2013, Rome, Italy, March 16-24,

2013. Proceedings, volume 7795 of Lecture Notes in Computer Science, pages 633–636.

Springer, 2013.

[37] C. Popeea, A. Rybalchenko, and A. Wilhelm. Reduction for compositional verification of

multi-threaded programs. In Formal Methods in Computer-Aided Design, FMCAD 2014,

Lausanne, Switzerland, October 21-24, 2014, pages 187–194. IEEE, 2014.

[38] S. Qadeer and D. Wu. Kiss: Keep it simple and sequential. In Proceedings of the ACM

SIGPLAN 2004 Conference on Programming Language Design and Implementation, PLDI

’04, pages 14–24, New York, NY, USA, 2004. ACM.

[39] I. Rabinovitz and O. Grumberg. Bounded model checking of concurrent programs. In Com-

puter Aided Verification, 17th International Conference, CAV 2005, Edinburgh, Scotland,

UK, July 6-10, 2005, Proceedings, pages 82–97, 2005.

[40] A. J. Robinson and A. Voronkov. Handbook of automated reasoning, volume 1. Elsevier,

2001.

[41] N. Sinha and E. M. Clarke. Sat-based compositional verification using lazy learning. In

Computer Aided Verification, 19th International Conference, CAV 2007, Berlin, Germany,

July 3-7, 2007, Proceedings, pages 39–54, 2007.

[42] E. Tomasco, O. Inverso, B. Fischer, S. La Torre, and G. Parlato. Verifying concurrent

programs by memory unwinding. In Tools and Algorithms for the Construction and

Analysis of Systems - 21st International Conference, TACAS 2015, Held as Part of the

European Joint Conferences on Theory and Practice of Software, ETAPS 2015, London,

UK, April 11-18, 2015. Proceedings, pages 551–565, 2015.

[43] E. Tomasco, T. L. Nguyen, O. Inverso, B. Fischer, S. La Torre, and G. Parlato. Lazy

sequentialization for TSO and PSO via shared memory abstractions. In 2016 Formal

Methods in Computer-Aided Design, FMCAD 2016, Mountain View, CA, USA, October

3-6, 2016, pages 193–200, 2016.

84

[44] B. Wachter, D. Kroening, and J. Ouaknine. Verifying multi-threaded software with

impact. In Formal Methods in Computer-Aided Design, FMCAD 2013, Portland, OR, USA,

October 20-23, 2013, pages 210–217. IEEE, 2013.

[45] M. Zheng, J. G. Edenhofner, Z. Luo, M. J. Gerrard, M. S. Rogers, M. B. Dwyer, and

S. F. Siegel. CIVL: applying a general concurrency verification framework to c/pthreads

programs (competition contribution). In Tools and Algorithms for the Construction and

Analysis of Systems - 22nd International Conference, TACAS 2016, Held as Part of the

European Joint Conferences on Theory and Practice of Software, ETAPS 2016, Eindhoven,

The Netherlands, April 2-8, 2016, Proceedings, pages 908–911, 2016.

85

זאת, עם ביותר. הטובות התוצאות את מציג שגיאות) חיפוש לצורך חסומה מודל בבדיקת (המשתמש
 CoMuS עדיין מציג תוצאות טובות יותר משל החוטים האחרים.

מסדרת התכניות בהשראת נבחרו אשר תחבירית, דומות תכניות בדקה השנייה ההשוואה
החוטים בין המידע זרימת בהן תכניות בדקנו ההשוואה, לצורך .SV-COMP מהתחרות *fib_bench
ומשרה הטבעת, את "שובר" קל תחבירי שינוי בהן תכניות וכן טבעת, של טופולוגיה משרה השונים
רק תלויים החוטים בו מלא, היררכי בסדר החוטים את לסדר ניתן (כלומר, שרשרת של טופולוגיה
כל הטבעת, טופולוגיית עבור בלבד. אימות של השוואה ביצענו אלו, תכניות עבור שלהם). בעוקבים
בשני דומה בצורה פעל Threader כן, כמו ומעלה. חוטים ארבעה עם תכניות באימות נכשלו הכלים
זאת, לעומת יותר). קטנה התלות (בה השרשרת טופולוגיית עבור שיפור הציג VVT ואילו המקרים,
טופולוגיית עבור הכלים שאר לעומת משמעותי שיפור הציג היררכיה, לנצל שתוכנן ,CoMuS
אף עבור טובים ביצועים הציג לא UL-CSeq חוטים. שמונה בעלות תכניות לאמת והצליח השרשרת,

 אחת מהתכניות במשפחה זו.

הביצועים לרוב אלו, תכניות על כלליות. מקביליות תכניות על הכלים את בדקה השלישית ההשוואה
 של CoMuS היו פחותים משל הכלים האחרים.

נכונות טענות הפרכת או להוכחת והיררכית מודולרית אוטומטית, שיטה פיתחנו זו בעבודה לסיכום,
מצבים מרחב עם בתכניות תומכת השיטה סדרתיים. מודל בודקי ניצול ע"י מקביליות, בתכניות
לטובה בולט אשר ,CoMuS בשם ניסיוני בכלי השיטה את מימשנו חסומה. ולא נאותה היא אינסופי.
לעיל. שתוארו כפי תכניות, של מסוימת מחלקה עבור אחרים, מובילים מודל בודקי מול בהשוואה
כדי (SeaHorn (למשל, הסדרתי המודל בודק ע"י נאסף אשר פנימי מידע לנצל מתכננים אנו בעתיד,

 להאיץ יותר את תוצאותינו.

iii

לנו מאפשרת שלו, הביניים בבדיקות תקניות סדרתיות תכניות מייצר שלנו שהאלגוריתם העובדה
מרחב עם מקביליות בתכניות לטפל מסוגלים אנו בפרט, "מהמדף". מודל בודק בכל להשתמש

 מצבים אינסופי, בתנאי שבודק המודל הסדרתי תומך בתכניות כאלו.
אימות עבור מובילים כלים כנגד הכלי את ובחנו ,"CoMuS" בשם ניסיוני בכלי השיטה את מימשנו
שלנו. הסדרתי המודל כבודק SeaHorn ב- משתמשים אנו מקביליות. C תכניות של חסום בלתי
ניתנת הטענות אחת האם ובודק (assertions) ב"טענות" המסומנות C תכניות מקבל SeaHorn
לא הפרה אף כי מודיע הוא אחרת, להפרה. המוביל מסלול מחזיר הוא וכן, במידה להפרה.

 מתרחשת.
עובדת היא כי הראו שביצענו הניסויים אך מקבילית, תכנית לכל שתעבוד כך מעוצבת שיטתנו אמנם,
במידע רק תלוי חוט כל וכאשר שרשרת, בטופולוגית מסודרים החוטים בהן תכניות עבור במיוחד טוב
בשרשרת הראשון החוט בה טבעית היררכיה משרה כזה סידור בשרשרת. העוקב החוט ע"י המיוצר
רבים במקרים מופיע זה מבנה הלאה. וכן בסביבה, הראשי החוט הוא השני החוט הראשי, החוט הוא

 במימושים מקביליים של אלגוריתמי תכנון דינמי.

 לסיכום, התרומות העיקריות של עבודתנו הן להלן:
מאימות● רדוקציה מבצעת אשר מקביליות, תכניות לאימות חדשה מודולרית גישה מציגים אנו

להשתמש ניתן לכן, סדרתיות. תכניות עבור אימות בעיות של לסדרה המקבילית התכנית
 בכל בודק-מודל עבור תכניות סדרתיות.

הבאים● החוטים לגבי לומד חוט כל כאשר היררכית, מבט נקודת מנצלת שלנו הגישה
 בהיררכיה, ומצויד בהנחות ע"י החוטים הקודמים בהיררכיה על מנת להנחות את למידתו.

במהלך● ועצל, אוטומטי באופן התכנית, בקוד נאגר חוט של הסביבה לגבי הדרוש המידע
 ריצת האלגוריתם.

יותר● טובים ביצועים מציגה היא גדל, החוטים מספר שכאשר והראינו שיטתנו את מימשנו
אלגוריתמי של מקביליים מימושים כגון היררכי, מבנה יש בהן תכניות עבור מוכרים מכלים

 תכנון דינמי.

השווינו סדרתי. מודל כבודק SeaHorn ב- משתמש אשר ,CoMuS בשם בכלי שיטתנו את מימשנו
הכלים מבין .UL-CSeq. T ו- VVT, Threader אחרים: מוכרים כלים שלושה מול CoMuS את
מבצע כן גם אשר מודולרי, כלי זהו לשיטתנו. ביותר הדומה בצורה פועל Threader האחרים,
לכל זו הפשטה ומחשב סימטרית, בצורה החוטים לכל מתייחס הוא אך סביבה, להתנהגויות הפשטה
מודולרים. אינם UL-CSeq ו- VTT הכלים אחר). חוט על להשפיע יכול מסוים חוט (כיצד חוטים זוג
בדיקת המבצעים הכלים מבין מקביליות, תכניות באימות ביותר הגבוה במקום שדורגו הכלים אלו

 מודל לא חסומה, בתחרות SV-COMP, בשנים 2016 ו- 2017 (בהתאמה).
שלושה על הכלים התנהגות את בודקת הראשונה, הכלים. הערכת לצורך השוואות שלוש ביצענו
חוטים. של סופי מספר לכל טבעית הגדרה יש אלו לאלגוריתמים מקביליים. דינמי תכנון אלגוריתמי
האלגוריתמים, משלושת אחד לכל עולה. החוטים מספר כאשר יותר קשה הוא האימות טיפוסי, באופן
משך על משפיע זה מספר כיצד ובחנו חוטים, של משתנה מספר עם תכניות על הכלים את בדקנו
רצים אכן החוטים (כלומר, טריוויאלית לא מקביליות מציגים שנבחרו האלגוריתמים שלושת האימות.
כוללים וכן לחלוטין) ריצתם את יסיימו תלויים הם בהם שחוטים להמתין נדרשים לא וחוטים במקביל,
בעוקבים ורק אך תלויים והחוטים מלא, סדר לפי החוטים את לסדר ניתן בו ברור, היררכי מבנה
מראות התוצאות שגיאה. שכללו תכניות וגם בטוחות תכניות גם בדקנו ההשוואה, לצורך שלהם.

VTT ,באימות תכניות, כאשר מספר החוטים עולה. עבור מציאת שגיאות CoMuS -יתרון ברור ל

ii

 תקציר מורחב

סדרתיות, תכניות באימות המובנים לאתגרים בנוסף ביותר. קשה בעיה היא מקביליות תכניות אימות
לסירוגין רצים החוטים בהם חישובים, של חסום) לא (לרוב גבוה במספר להתחשב הצורך נוסף
לצורך שלהן המודולרי המבנה את ולנצל לנסות מתבקש כאלו, תכניות עבור משתנים. בסדרים
אחת שכל כך תכונות לקבוצת לחלוקה ניתנת לא כולה התכנית של תכונה שלרוב, אלא אימותן.
לגבי מסוים ידע דורשת החוטים אחד עבור התכונה הוכחת לכן, החוטים. אחד עבור מקומית

 האינטראקציה שלו עם סביבתו.
תכניות אימות בנושא העבודות שפע את מנצלת אשר חדשה גישה מפתחים אנו זו, בעבודה
אוטומטי באופן מבצעת שלנו השיטה מקביליות. תכניות של מודולרי אימות למטרת סדרתיות
לפיכך, סדרתיות. תכניות של אימות בעיות לסדרת מקבילית, תכנית אימות של מהבעיה רדוקציה

 נוכל להרוויח מכל התפתחות היסטורית, וכן מהתפתחויות עתידיות, בתחום של אימות סדרתי.
עם בודד, חוט של לאימות בקירוב דומה סדרתית אימות משימת שכל במובן מודולרית, שלנו הגישה
ריצת במהלך אוטומטי באופן מתגלים אלו נתונים פועל. הוא בה הסביבה לגבי נוספים נתונים אילו אי

 האלגוריתם, לפי הצורך.
החוטים אחד לפיה התכנית, לגבי היררכית מבט נקודת מנצלת שהיא הוא גישתנו, של ייחודי פן
אימות באמצעות הראשי החוט את מנתחים אנו לסביבתו. נחשבים והשאר הראשי", ל"חוט נחשב
שגרה ע"י ,(over-approximated) מופשטות הסביבה התערבויות כל נאותות, עבור כאשר סדרתי,
) הקשר החלפת לשקול צורך יש בו שלב בכל הראשי החוט ע"י תקרא השגרה "צעד-סביבה". בשם

.(context switch
לכל (havoc פקודת (באמצעות אי-דטרמיניסטיים ערכים כותבת "צעד-סביבה" שגרת תחילה,
כדי מעודנת השגרה האלגוריתם, ריצת במהלך והסביבה. הראשי החוט של המשותפים המשתנים

 לייצג את הסביבה בצורה מדויקת יותר.
אשר מסלול מחזיר הוא הראשי, בחוט נכונות טענת של הפרה מגלה הסדרתי המודל בודק כאשר
להיות עשויה ההפרה זה ובמקרה סביבה", ל"צעד קריאות לכלול עשוי המסלול זו. להפרה מוביל
האלגוריתם לכן, הסביבה. של ההפשטה עקב המקורית), בתכנית קיימת שלא כזו (כלומר, מדומה
נצפו אשר מסוימות, התערבויות האם לבדוק שמטרתן הראשי, החוט של לסביבה שאילתות יוזם
השגרה כבלתי-אפשרית, מתגלה התערבות כאשר בסביבה. אפשריות אכן המפר, המסלול לאורך

 "צעד סביבה" מעודנת כך שלא תכלול התערבות זו.
הרצויה התכונה של מלא אימות לאפשר מנת על מספיק מדויקת נעשית סביבה" "צעד לבסוף,
נגדית דוגמא לגלות עשוי האלגוריתם לחילופין, הסביבה. של וההפשטה הראשי החוט באמצעות

 אמיתית (שאינה מדומה) בחוט הראשי.
לכן, מודולרי. אופן באותו חוטים) מספר בעצמה לכלול (שעשויה הסביבה עבור נבדקות השאילתות
ריצת שבמהלך מבטיח שלנו השיטה של ההיררכי האופי היררכי. מודולרי אימות מקבלים אנו
מחוטים בהנחות ומצויד בהיררכיה, הבאים החוטים לגבי רלוונטי מידע לומד חוט כל האלגוריתם,

 קודמים בהיררכיה על-מנת להנחות את למידתו.
נכונות להוכיח גם יכולה היא כלומר, בלתי-חסום. אימות ומבצעת לחלוטין אוטומטית שלנו השיטה
המתגלה המידע תכניות. של קוד-המקור ברמת עובדת היא מקביליות. בתכניות שגיאות למצוא וגם
") והנחות ("assertions") טענות של בצורה הראשי, החוט של בקוד נאגר הסביבה עבור

 assumptions") בתוך השגרה "צעד סביבה".

i

 המחקר בוצע בהנחייתן של פרופסור ארנה גרימברג וד"ר שרון שוהם, בפקולטה למדעי המחשב.

 תודות

 בראש ובראשונה, אני רוצה להודות למנחה שלי, פרופ. ארנה גרימברג, על היותה גם מנחה מדהימה
 וגם אדם נפלא. תודה על הפגישות השבועיות מעוררות ההשראה, על כך שתמיד עזרת לי להשתפר

 בעבודתי, ועל כך שעודדת אותי לחקור ולהבין מהו מחקר. תודה על כך שדלתך תמיד הייתה פתוחה,
 עזרת להפוך את חווית הלימודים למהנה מאוד. זה היה כבוד מאוד גדול עבורי לעבוד איתך וללמוד

 ממך.
 אני רוצה להודות למנחה הנוספת שלי, ד"ר שרון שוהם, על חלקה העצום בעבודה זו. תודה על

 המסירות שלך, ועל היכולת להפוך כל פגישה לפוריה עם רעיונות חדשים וחשיבה חדה. זה תמיד
 היה מהנה עבורי לפגוש אותך גם בת"א וגם בטכניון. את מנחה נפלאה ואדם נפלא, ואני אסיר תודה

 על עזרתך והכוונתך.
 אני רוצה להודות להורים שלי, לינה ולב, על אהבתם ותמיכתם האינסופית. תודה שלימדתם אותי

 לכוון גבוה, ועל כך שהייתם שם בשבילי בכל שלב בחיי.
 לבסוף, אני רוצה להודות לחברה שלי ורוניקה. ליווית אותי במהלך התקופה הזו גם בימים הטובים

 יותר בהם הצלחתי להתקדם, וגם בימים טובים פחות ומתסכלים. תמיד תמכת בי ועזרת לי להמשיך,
 ואהיה אסיר תודה על כך לנצח.

 אני מודה לטכניון על התמיכה הכספית הנדיבה בהשתלמותי.

 אימות מודולרי של תכניות מקביליות
 באמצעות בדיקת מודל סדרתית

 חיבור על מחקר

 לשם מילוי חלקי של הדרישות לקבלת התואר
 מגיסטר למדעים במדעי המחשב

 דן רסין

 הוגש לסנט הטכניון - מכון טכנולוגי לישראל

 נובמבר 2017חיפהכסלו התשע"ח

 אימות מודולרי של תכניות מקביליות
 באמצעות בדיקת מודל סדרתית

 דן רסין

	List of Figures
	Abstract
	1 Introduction
	1.1 Related Work
	1.2 Organization

	2 Preliminaries
	3 Reduction to Sequential Verification
	3.1 From Concurrent to Sequential Programs
	3.2 Interface Between Main and the Environment
	3.3 What's Next

	4 Analyzing the Main Thread
	4.1 The Structure of PM
	4.2 Representation of P Within PM
	4.3 Initial Construction of PM
	4.4 Iteration of the MainThreadCheck Algorithm
	4.5 Analyzing a Potentially Spurious Violating Path
	4.6 Generalizing an Environment Query

	5 Soundness and Progress of the Main Thread Analysis
	5.1 Soundness
	5.2 Progress and Termination

	6 Answering Environment Queries
	6.1 Sequential Program for Answering Environment Queries
	6.2 Correctness of Environment Query

	7 Extending the Algorithm
	7.1 Extending to Multiple Threads
	7.2 Environment Queries with Multiple Threads
	7.3 Extending Assertions to all Threads of P

	8 Optimizations
	8.1 General Optimization
	8.2 Optimizations for Generalizing Environment Information
	8.3 Multiple Threads Optimizations

	9 Experimental Results
	10 Conclusion and Future Work
	10.1 Conclusion
	10.2 Future Work

