Applying Machine Learning for
Identifying Attacks at Run-Time

Nurit Devir

Applying Machine Learning for
Identifying Attacks at Run-Time

Research Thesis

Submitted in partial fulfillment of the requirements

for the degree of Master of Science in Computer Science

Nurit Devir

Submitted to the Senate
of the Technion — Israel Institute of Technology
Adar aleph 5779 Haifa February 2019

This research was carried out under the supervision of Prof. Orna Grumberg and Prof.

Shaul Markovitch, in the Faculty of Computer Science.

Acknowledgements

First of all, I would like to thank my main advisor, Prof. Orna Grumberg. Thank you
for the weekly meetings, the willingness to help even when the field is relatively far from
your main research subjects. Thanks for the encouragement, guidance and attention to
even the smallest details. Thank you for being available for me at any time, sometimes
even in less conventional hours. I won an amazing supervisor, both professionally and
personally, and I would like to thank you for making this time so pleasant for me.

I would also like to thank my associate advisor, Prof. Shaul Markovitch, for devoting
time and thought in busy and stressful times. Thank you for the additional points of
view you gave me, about the new ideas and sharp thinking. Thank you for your great
part in this work.

I would also like to thank Dr. Gabi Nakibly. Thank you for the direction and
the exposure to a field which I was not familiar with. Thank you for your willingness
to contact various organizations in order to contribute to the quality of the research.
Thank you for your cooperation and for your help and advices during your research.

This research was partially supported by the Technion Hiroshi Fujiwara cyber
security research center in the Technion and I would like to thank them for it.

I would like to thank my friend Harel Cain. Thank you for your availability, for your
desire to invest thought and time for promoting my research. Thanks for the tips you
gave me along the way. Knowing that I had someone who would gladly help me with
any problem, small or big, gave me a sense of calm. Thank you for the good feeling and
the great help, even in less convenient times.

I would like to thank my friends who shared this journey with me. Thank you for
being there even in more stressful times. Thank you for your encouragement, support,
and help when needed. This way would have been much harder without you.

Finally, I would like to thank my family. My parents, Menachem and Shoshi, my
sister Michal, my brother and his wife - Ori and Reut, and my three nephews - Ariel,
Yoav and Shachar. Thank you for inserting joy and happiness to this period. Thank
you for your help, for your endless support and love. Thank you for always being there
for me. Thanks to my parents for teaching me to aim high, to invest and not to despair,
even when you still do not see the light at the end of the tunnel. Thank you for pushing
me and help at any time. Without you it would not have happened. Special thanks to
my sister Michal for the great professional help. I am grateful to you for sharing your
great knowledge and creativity with me, in a pleasant and loving way. It is said that

you do not choose your family, but if I had the ability to choose - I would choose you.

The generous financial help of the Technion is gratefully acknowledged.

Contents

List of Figures
Abstract

1 Introduction

Preliminaries
2.1 OSPF Basics
2.2 Cisco implementation of OSPF
2.3 Formal Modeling L
Threat Model
Applying Machine Learning for Identifying Attacks at Run-Time
4.1 Introduction L
4.2 Problem definitiono oo
4.3 Solution outline L Lo
4.4 Example generation by simulation 0000
4.5 Example taggingo
4.5.1 Estimating the attack severity
4.5.2 Ordered categorical tags
4.6 The Features
4.7 The Learning Algorithm
4.7.1 Choosing a Split
4.7.2 Determining the Final Tag
4.7.3 Feature Importance
Empirical Evaluation
5.1 Experimental Methodology
5.2 The Network Topology Generator
5.3 System Performance oL
5.4 Feature Importance. Lo

5.5 Transfer Learning Setup

© © 9

11

13
13
13
14
14
15
16
17
17
18
19
21
22

5.5.1 Introduction
5.5.2 The Target Belongs to the Same Family as the Source
5.5.3 The Target Belongs to a Different Family from the Source
5.6 Dynamic Networks L
5.6.1 Introduction
5.6.2 Topology Changes Between the Training and Prediction Phases .
5.6.3 Topology Changes During Training and Prediction Phases
5.7 Detection Times e
5.8 Evaluation with Real Data
5.8.1 Imtroduction L
582 Real OSPF Data
5.8.3 Results

The Monitor Placement Algorithm

6.1 Introduction Lo
6.2 Locating One Monitor
6.3 Locating More Than One Monitor
6.4 Optimal Set of Monitors

Related Work

Discussion

8.1 Applying the Framework to Other Protocols
8.2 Working with Balanced Dataset
8.3 Accuracy Measures

8.3.1 Classification Measures

8.3.2 Experiments with the New Terminology

Conclusions and Future Work

9.1 Conclusions e
9.2 Future Work

Hebrew Abstract

39
39
39
41
44

49

51
o1
o1
52
592
93

List of Figures

4.1

5.1
5.2
5.3

5.4
9.5

5.6

5.7

6.1

Illustration of choosing a feature for the split. The left side demonstrates
the using of feature f; for the split and the left side demonstrates the
using of feature fo (‘+’ represents the tag 0 while ‘-’ represents the tag 1). 20

A specific topology created by the algorithm 28
Several rounds of cross validation algorithm (from Wikipedia) 29
Weighted accuracy as a function of the number of examples used in the
training processo e e e e 30
Weighted accuracy as a function of thenandd.. 31
Weighted accuracy as a function of the distance between the target and
the source families L Lo Lo 32
Weighted accuracy as a function of delta. Topologies with 6, 12 and 16
routers, from left to right respectively. 33

The organization’s network topology 37

Weighted accuracy as a function of the number of monitors. Topologies

with 12 and 16 routers, from left to right, respectively. 45

Abstract

With the increase in malicious activity over the Internet, it has become extremely
important to build tools for automatic detection of such activity. There have been
attempts to use machine learning to detect network attacks, but the difficulty in obtaining
positive (attack) examples, led to using one-class methods for anomaly detection.

In this work we present a novel framework for using multi-class learning to induce
a real-time attack detector. We designed a network simulator that is used to produce
network activity. The simulator includes an attacker that stochastically violates the
normal activity, yielding positive as well as negative examples. We have also designed
a set of features that withstand changes in the network topology. Given the set of
tagged feature vectors, we can then apply a learning algorithm to produce a multi-class
attack detector. In addition, our framework allows the user to define a cost matrix for
specifying the cost for each type of detection error.

Our framework was tested in a wide variety of network topologies and succeeded to
detect attacks with a high accuracy. We have also shown that our system is capable
of handling a transfer learning setup, where the detector is learned on one network
topology but is used on another topology from the same family. Another setup we
tested is dynamic networks in which changes take place in the topologies. Finally, we
also referred to choosing the router(s) which should be chosen to record the traffic and
transfer this information to the detector, in order to achieve high performances.

We anticipate the presented framework will enable any organization to defend itself

with an attack detector that is automatically adapted to its particular setting.

Chapter 1

Introduction

Over the years, the use of the Internet has become increasingly widespread and its
applications became extremely wide with enormous importance to billions of people
around the world. In parallel, malicious attacks have become a critical threat to the
Internet activity all over the world. Thus, it has become extremely important to build
tools for automatic detection of such activities.

Network intrusion detectors are designed to spot malicious activity by identifying
protocol violations. It is desirable to detect such activity as early as possible to prevent
the attacker from damaging the infrastructure. There are many challenges making the
intrusion detection task harder than other areas [SP10]. One main challenge is related
to the background in which such a system works. In this field of attack detection, there
is an ongoing race between attackers and defenders. Each one tries to improve its own
abilities. Thus, the attackers try to hide their actions and make them similar to a
normal behavior of the system. Such an attack sometimes involves a small number of
actions, and these actions can be identical to legal actions in term of their structure
[SGN13].

Most initial attempts to build attack detectors relied on manually defining rules or
patterns that characterize attack activities [HS14, GM14]. Such an approach suffers
from several weaknesses. First, it is very difficult to design such a set of rules that covers
a wide variety of attacks. Second, the set of rules will usually be able to detect only
known attacks. To overcome these difficulties, new example-based machine-learning
based methods were developed. Since positive examples (of attack activity) are very
difficult to obtain, strong binary or multi-class algorithms could not be used, and these
solutions had to resort to weaker one-class learning approach to create a model of
trustworthy activity, and then compare new behaviors against this model [TDJ*"14].
Such an anomaly detection approach has significant difficulties in intrusion detection
context as network traffic is often very diverse, where the bandwidth or the duration of
connections can exhibit immense variability. These changes are normal and occur in
networks on an ongoing basis, which makes it difficult to characterize normal behavior.

To account for the difficulties of characterizing normal behavior, several works

have made an attempt of using multi-class learning algorithms for the detection task
[SM03, CFF16, KJS17]. These works assumed the existence of a relevant tagged set
of examples, both positive and negative. This assumption, however, may not hold in
practice. First, the strategies of the attackers are continuously developed and evolved.
Thus, a model trained on previous attacks would have a problem identifying newer
types of attacks. Second, an attack may exploit characteristics of the particular network
topology. Therefore, a model trained on other topologies may not perform well. Third,
obtaining a real multi-class training set for intrusion detection is extremely difficult
[SP10]. It is especially difficult to obtain positive examples of attacks, mainly due the
potential sensitivity of the data.

In this work, we present a new framework for example-based learning of an intrusion
detector. Our approach overcomes the lack of datasets by including a simulation-based
example generator. The example generation algorithm simulates both attacks and
normal activity in a given network topology. The network activity records are then
passed to an automatic tagging module and then to the feature extractor that derives
a special set of features, yielding a multi-class training set. Our framework allows
the user to specify a cost matrix (for identifying the cost for each error type). We
therefore developed a cost-sensitive version of Random Forest algorithm, which is a well
known learning algorithm that uses a committee of decision trees. We used our learning
algorithm on the generated training set to induce an intrusion detector tailored to the
given network topology.

We have implemented this framework for the widely used routing protocol OSPF.
This protocol allows routers to calculate their routing tables within a cluster of networks
- an autonomous system (AS). An attacker that leverages OSPF to attack an AS
may have a catastrophic effect on it. A single malicious router within an AS can
poison the routing tables of all other routers of that AS by sending false routing
messages, thereby subverting the entire routing process. Finding attacks on the routing
protocol is a demanding task as the exact nature of the attack may be unknown. We
performed an extensive series of experiments to test our framework characteristics. Our
experimentation environment includes a network topology generator that enables us
to test our algorithm in a variety of environments. Our empirical evaluation showed
promising results, with a very low error rate. We have shown that the learned models
can withstand situations of transfer learning and dynamic networks, where the learned
model is applied to a different topology than the one trained on. In addition, we propose
a way to choose the location where the detector should be placed in order to get a high
accuracy rate.

Our new framework has a significant practical potential. An organization can easily
define its network topology and cost matrix and start the training process. The system
will produce a runtime intrusion detector that is adapted to the specific topology and
cost matrix. Furthermore, as we later show, our algorithm can recommend the particular

router where the detector should be located at.

Our work is an involved application of learning techniques for enhancing security
in the Internet. The main contribution of our work is the development of an adaptive
learning-based runtime intrusion detector. Our framework is unique in that it adapts
itself to the user’s specific setting (topology, severity of attacks, cost of different
misclassification errors, and more). This framework will enable an organization to
defend itself against malicious activities, according to its needs. Specifically, our

contributions include:

e Generating examples that are relevant to a specific desired topology.

Enabling the user to define severity of attacks.

e Learning a model that withstands transfer learning and dynamic networks setups.

Using a cost sensitive version of a known learning algorithm. Our modifications

of the algorithm take into account a cost matrix given as an input.

Recommending a particular router where the intrusion detector should be located

at, for achieving a high accuracy rate.

This work is structured as follows: Chapter 2 presents the OSPF protocol, its
standards and the implementations. Chapter 3 describes the threat model we used.
Chapter 4 formally defines the problem and presents our solution components. Chapter
5 describes the experiments we conducted, including setups of transfer learning and
dynamic networks. Chapter 6 discusses the question of which router(s) needs to be
chosen to locate the detector at, and proposes an answer to that question. Chapter
7 reviews previous works done in the field. Finally, Chapters 8 and 9 discuss our
framework, summarize the results achieved and present a possibility to extend the work

in the future.

Chapter 2

Preliminaries

2.1 OSPF Basics

When talking about computer networking, a routing table is a database held by every
router in the network. This table tells the router to which of its neighbors it should
forward a packet in order for it to reach its destination through the optimal route.
Open Shortest Path First (OSPF) is one of the most widely used interior gateway
routing protocols on the Internet. Its aim is to allow routers within a single autonomous
system (AS) to construct their routing tables, while dynamically adapting to changes in
the autonomous system’s topology. OSPF is currently used within many autonomous
systems on the Internet. It was developed and standardized by the IETF’s OSPF
working group. On a given network, each one of the routers sends its neighbors a
message called “Link State Advertisement” (LSA). The main field in this message
contains the links to the neighbors known to the router who generated the LSA, and
their costs. We refer to this field as Links. This information actually describes the
router’s local view of the network. When a router receives such a message from another
router, it updates its view about the topology accordingly and floods the message to all
of its other neighbors. At the end of this process, each one of the routers has a database
which contains the up-to-date information about the network and about the costs of
sending a message from one router to its neighbors. According to this information,
using Dijkstra’s algorithm [DIJ59], a next hop is derived for each destination, which
forms the router’s routing table. Now, if router x wants to send a message to router v,
router x looks at its routing table and sends the information to the neighbor so that
the overall route to router y will be of a minimal cost. From the description above,
it is obvious that an attacker who compromised a router residing within the AS can
easily manipulate the routing information distributed by the protocol. It may block the
flooding of LSAs to some of its neighbors, change the contents of LSAs before sending
them to other routers or simply advertise false LSAs on behalf of the compromised
router or other routers in the AS. Using such manipulations, an attacker may poison the

routing tables of all other routers in the AS, thereby controlling the routing process in

the AS. Such control may allow the attacker to re-route selected traffic streams through
the router it controls in order to eavesdrop or alter the traffic. It may also substantially
degrade the performance of the AS by selecting longer routes or disconnecting portions
of the AS all together. Indeed several works have shown different attacks that abuse
OSPF.

The OSPF protocol dynamically adapts to changes in the network: every few
seconds, each router sends a ‘hello’ message to its neighbors in order to inform them
it is alive. This type of message is sent in a fixed time interval (“hello interval”). If a
router does not receive such a message from its neighbor within a certain predefined
period of time, it infers that the connection between them went down and they are no
longer neighbors. In the opposite case, when a router receives a ’hello’ message from a
new router that has not sent such a message before, it infers that a connection between
them was inserted and they are new neighbors. According to this knowledge, the router
updates its information about the network topology and sends a new LSA with its
updated local view. In addition, every 30 minutes the router sends a new LSA instance,

even if there is no change since the last one. This action is called “refresh the LSA”.

Definition 2.1.1 (LSA fields). The following are some of the relevant fields included
in an LSA:

e Sequence number - a serial number of the LSA. This number can not exceed
the value of “MaxSeqNum” parameter. This number increases by one on every
new instance of the LSA, which is either sent periodically or sent when the router
detects a change in the network. An LSA with a lower sequence number will be
replaced by an LSA of a higher sequence number that was originated by the same

router. The replacement will take place in the database of the router that received
the LSAs.

e Age - the time in seconds since the LSA was originated. This field is increased by
one every passing second as long as the LSA is stored in the router’s database, and
also when the LSA is moved to another router. This field is never incremented
past “MaxAge” parameter. When an LSA reaches the value of “MaxAge” in its
Age field, it is finally flushed from the router database.

e Advertising router - this field identifies the router which generates this LSA.

e Links - as described, this field contains the information about the links to the

router’s neighbors that the advertising router knows about, and their costs.
We also add some more fields that contain more information about the LSA:
e From - the router that sent this LSA.

e To - the router that received this LSA.

e Time - the absolute time in which the LSA was sent or received in the network.

An OSPF run is a sequence of LSAs, sent or received by the routers of the network,
according to the protocol rules. For the problem we face in this work, we need to define

the following:

Definition 2.1.2 (run from the point of view of a router). Given an OSPF run
7 and a router 7, a run from the point of view of r, denoted 7., is a sequence of LSAs,
obtained by restricting 7 to those LSAs that were sent or received by the router r (r
appears in the To or From fields of the LSAs).

OSPF has a mechanism called fight-back which helps it to deal with attacks: When
a router receives an LSA which claims to be generated by itself, and after some checks
finds out that this LSA was not generated by itself, it sends a new LSA. This new LSA
contains the correct information about its links. It also includes a sequence number
which is higher by one than the sequence number of the malicious LSA. The new LSA
is also flooded in the system and because its sequence number is higher, it replaces
the malicious LSA in the databases of all other routers. This will cause the attack to
fail of being permanent in the system. Note that because of the flooding action, if an
attacker sends an LSA on behalf of a router, this router will often receive this LSA and
“understand” that something is wrong, because it did not originate such an LSA. This
router can then activate the fight-back mechanism.

In spite of the fight-back mechanism, previous works [SGN13] show that OSPF is
vulnerable to attacks. As mentioned, the goal of our work is to detect and alert of

attacks at runtime, when they actually occur.

2.2 Cisco implementation of OSPF

In this research, we are going to track the traffic messages and will try to find properties
that indicate that the system is under attack. In addition, we want our work to be
used in the real world - real OSPF running. For that, we checked the commands Cisco
provides the users in order to see the OSPF running mode in a specific time. Our
learning will be based on these commands, so users will be able to use our model in a
real OSPF setting.

2.3 Formal Modeling

Some previous works analyzed OSPF protocol. Most of them have not modeled
the protocol in its entirely but rather abstract away some details (see, for instance,
[MKSUKW12] and [SGN13]). In our work, we decided not to model the routing table
calculation. This is because we would like to detect an attack, even if it does not

affect the routing table. Note that the routing table calculation is based on Dijkstra’s

algorithm and therefore significantly increases the running time of the protocol. Thus,
implementing it will add unnecessary overhead to the process of generating runs which
will be examples to the learning algorithm.

Our modeling is suitable for static topologies, in which the links between routers
are unchanged. It is also expanded to dynamic networks, in which changes occur in the
structure of the topology.

The modeled functionality includes the LSA message structure, the LSA flooding
procedure, the fight-back mechanism, the hello message structure, the refresh LSA
procedure and the flushing operation.

We implemented this protocol using Python. The protocol was simulated on a variety
of topologies, each one of them contains legitimate OSPF routers and can also contain
a single malicious router. For the protocol simulation, we used an existing code ! and

extended it to our needs.

Thttps://github.com/baudm /ospf-sim

10

Chapter 3

Threat Model

We adopt the common threat model found in the literature [WVW97, WCJ*, JMO6,
NKGB12]. This model assumes the attacker has the ability to send LSAs to at least one
valid router in the AS and that router processes them as valid LSAs. This assumption
can be trivially achieved by an insider, namely an attacker who gained control over just
a single router in the AS. We assume nothing about the location of the compromised
router. The attacker can gain control of a router, for example, by remotely exploiting
an implementation vulnerability on the router. Several such vulnerabilities have been
published in the past (e.g., CVE-2018-0167, CVE-2018-0175, CVE-2015-0235).

OSPF employs per-link LSA authentication where each link is associated with a
secret shared by all the routers directly attached to that link. A router authenticates a
received LSA using the secret associated with the link on which it was received. Note
that no end-to-end authentication is employed in OSPF. The threat model assumes that
the attacker knows only the secrets associated with the links that are directly attached
to the router it controls. It does not know the secrets associated with other links in the
AS. Consequently, the attacker may only be able to send false LSAs to its immediate
neighbors (which they in turn flood to their neighbors). Specifically, the attacker cannot
send an LSA directly to a remote router.

We assume that attacker may be able to do illegitimate actions. The set of these
actions is described in detail in Section 4.4. In this work we monitor the routing protocol
traffic, which allows the detection system to identify attacks as soon as they unfold,
even before they have an affect on the routers’ routing tables. Identifying an attack
based on changes to the routing tables may be too late - the damage has already been
done.

We assume the defender has one or more monitoring points on the routers in the AS.
Detection logic may rely on information gleaned from those routers only. Specifically,
this includes the OSPF traffic that passes through the monitored routers. We assume

the detection system does not have a global view of the routing state of the AS.

11

12

Chapter 4

Applying Machine Learning for
Identifying Attacks at Run-Time

4.1 Introduction

In the following sections, we formally define a learning problem and discuss the different
components of the learning algorithm. In general, a learner is given a set of examples,
each of which is tagged with a value describing the subset it belongs to. The goal is to
build a classifier that can identify the tag of a new, previously unseen, example. Each
example is first transformed into a set of features and then analyzed by the learning
algorithm.

In our setting, the examples are runs of the OSPF protocol from the point of view
of a specific router, called monitor. Our goal is to identify whether the run contains an
attack, and tell how severe the attack is.

We now describe a learning problem more formally [Fril7]: Let O be a set of objects.
Let L ={lp,...,lx—1} be a set of k possible labels, also called “tags”. Let f: O — L be
a function which gets o € O and returns its label [€ L. Let D C {(o, f(0))|o € O} be a
set of tagged examples. Let F' = {f1,..., f,} be a set of functions f; : O — I; when I;
is some domain representing possible values of the feature f; of an object. Then, the
training set is represented by feature vectors: S = {((f1(0i), .., fn(0:)),yi)|(0:,yi) € D},
where y; is the tag of o; and (f1(0;),..., fn(0;)) is the feature vector associated with
0;. A learning algorithm takes S as an input and finds a function g : O — L, called a

classifier, which approximates the function f.

4.2 Problem definition

Let N = (V, E) be a graph representing a network topology, where V' represents the set
of routers and E the set of connections. Let M € V be a router, denoted as the monitor.
Let mp be a run from the point of view of the monitor M. Let T' = (tg,...,tx_1)

be a set of attack categories ordered by their severity (where tg represents “no attack

13

in the system”). The motivation for using ordered categories is to provide the user
with well-defined severity levels rather than continuous values, which are difficult to
interpret. Such categorical tags can tell an organization how severe the attacker actions
are, according to its own definition of severity, and can help it to arrive at a more
well-informed decision on how to treat a detected attack. We assume the existence of
an oracle o that receives 7y, and returns its true category in T. Our goal is to build ¢/,
an approximation of o.

Furthermore, we assume that different types of errors may carry different costs,
and these costs are specified by a given k x k cost matriz C, whose C; ; entry defines
the cost of assigning the tag ¢; to an instance whose actual (real) tag is t;. Note that
typically, entries on the main diagonal of this matrix are all 0 (no error). Our goal is to

minimize the error cost according to C.

4.3 Solution outline

We propose to solve the above problem using a machine learning approach. There are
several obstacles in applying learning for this problem, mainly the lack of examples. In

the following subsections we describe the components of our solution:
1. A simulation-based example generator.
2. An analysis-based tagging algorithm.
3. An OSPF-based feature extractor.

4. A cost sensitive learning algorithm.

4.4 Example generation by simulation

One significant challenge in training a model to be used as an attack detector is
the lack of public datasets to train the model with. In this section we present an
alternative approach, where the learning system produces its own training examples
using simulations.

The example generator works by simulating normal OSPF activity and periodically
simulating an attack. When simulating the OSPF runs, some of those runs contain
an attacker where others are normal. On each run, one of the routers is chosen to act
as the monitor, which means that the messages received and sent by this router are

recorded. Our simulations also contains an attacker defined as follows.

Definition 4.4.1 (Attacker). An attacker is an entity with predefined set of capabil-
ities. The attacker takes control of one of the routers in the network and can do the

following actions:

14

e When getting an LSA, the attacker can change the Links field. In addition, the
attacker can decide which of its neighbors to forward the LSA to, if any. The
motivation of such an action is to falsify the knowledge the other routers have
about the topology without doing something that can clearly reveal the attack
(such an action requires only the changing of the Links field of the LSA).

e The attacker can also generate a new LSA by choosing arbitrary values for the

fields and deciding which of its neighbors to send this massage to.

In this model, an attack is initiated by any action made by the attacking router,
which is not consistent with a normal protocol behavior, even if that action did not
have an effect on the routing process. The definition above contains a large collection
of capabilities from which the attacker can randomly generate different combinations
of actions resulting in different attacks. We do not restrict the attacker’s sequence of
actions at all. This means that the attacker can choose an action in every step, thus
creating a sequence of messages that constitutes an unknown attack. By doing that,
we enable the attacker to generate new attacks and our framework would be able to
identify them.

Given a network topology N and a monitor router M, we generate m runs. At each
run, we stochastically decide if the run contains an attacker A, and if so, which router
is the attacker. We simulate the OSPF protocol in a distributed manner. In addition to
the protocol simulation, the attacker can inject and execute actions that violate the
protocol, according to its capabilities, described above.

During a run m, we save records of mj; and w4 (the run from the points of view
of the monitor and the attacker, respectively). Once the simulation of 7 is finished
(after a predefined number of steps p), we partition my; and 74 to prefixes at fixed time
intervals. This way, at a specific point in time, we have the prefixes of my; and w4, up
to that time. For a router r, we denote by PR(m,,t) the prefix of 7, at time ¢, i.e., the
sequence of messages in 7, in the time interval [0, t].

Both, the attacker prefixes and the monitor prefixes are later used by our tagging
algorithm. However, only the monitor prefixes will be available during detection, and
therefore, only these prefixes will be used for extracting features during training. Note
that using these prefixes simulates real-time mode in which we are given a run up to a

certain point in time. The example generation algorithm is listed in Algorithm 4.1.

4.5 Example tagging

The tagging algorithm receives a pair of prefixes, the monitor prefix and the attacker
prefix, from the example generator, and produces a tagged example. The tagging process
consists of two steps: first, computing a continuous value reflecting the severity of the

attack, and second, transforming the value into one of the categories in T.

15

Algorithm 4.1 GENERATEEXAMPLES(N = (V, E), M)
1. S« 0
2: fori=1,...,mdo
3: attack_flag < flip a coin
if attack_flag then
A < random_selection(V) > choose router A as attacker

for j=1,...,pdo

4
5
6: simulate the OSPF protocol on N for p time units.
7
8 S« SU{(PR(mu,), PR(7a,4))}

4.5.1 Estimating the attack severity

The goal of the first step is to assign the generated example a value reflecting the
severity of the attack. For doing so, we use the IllegalActionCost field, added to every
LSA with an initial value of 0. During the simulation, if the attacker performs an action
that deviates from the protocol, IllegalActionCost is assigned an integer positive value,
reflecting the severity of this deviation. For example, if according to the protocol, a
message should be sent to a set of neighbors, and the attacker blocks it from getting
to some of them, the severity of the attack is proportional to the number of neighbors
blocked. Note that the value of the IllegalActionCost field can only be determined
during the simulation, and not after it, since only then we know what was expected by
the protocol and how the attacker actually acted.

To determine the continuous value of a monitor prefix PR(mas,t), we use the
corresponding attacker prefix PR(ma,t). The value should reflect the severity of all
abnormal actions performed by the attacker along the prefix. To evaluate this value, we

take into account two factors:

e We sum up the values of the IllegalActionCost fields in all LSAs that appear in
the attacker prefix. This sum is denoted by TotalCost. A larger value of TotalCost

means more severe deviations from the protocol.

o Let FirstAttack represents the Time field of the first LSA in the attacker prefix,
where IllegalActionCost # 0. This is the first time the attacker did something
illegal. Let PrefizLength denotes the Time field of the last LSA in the prefix.
The value PrefixLength — FirstAttack reflects the absolute time during which the
attack had been in the system, had the potential of spreading throughout the
network and influencing its behavior. The larger this value is, the more severe the

attack is.

We now compute the continuous value of a prefix of my; as:

TotalCost - (PrefixLength — FirstAttack)

16

4.5.2 Ordered categorical tags

Once the example (monitor prefix) is assigned a value reflecting its severity, we transform
this value to a tag t € T = {tg,...,tx_1} according to the problem definition. One
simple way to do this is a uniform discretization of the range of continuous values to
k — 1 intervals. These k — 1 intervals represent the k — 1 tags which symbolize an attack
(belong to the group T\ {to}). Prefixes without an attack are automatically tagged as
to.

4.6 The Features

The examples used for training are tagged monitor prefixes. We designed a set of
features that aggregate various values over the prefix. To make the features suitable
for both fixed and dynamic networks, we decided to make the features relative rather
than absolute. For example, if the model is trained on one topology but is applied on
another one (transfer learning), the number of neighbors of the monitor can be different
between these two networks. Therefore, instead of a feature describing the number
of neighbors an LSA was sent to, we use the difference between these values in two
consecutive LSAs. In addition, for the same reason, we do not define a feature for each
router in the system, but rather define aggregator features that summarize the desired

values for all the relevant routers. We have features of several types:
e F1: Features related to Sequence Numbers of LSAs.

F2: Features related to the Links field in the LSAs - the number of links, the

connections they describe, and their costs.

F3: Features related to the times in which LSAs were sent or received by the

monitor.

e F4: Features related to the neighbors to which the monitor sent the LSAs.

F5: Features related to the ‘hello’ messages, received or sent by the monitor. This
type of features is used when dynamic networks are considered, where changes take
place and connections go up and down. In a fixed network, these ‘hello’ messages
are sent periodically to keep the routers in the network knowing their fixed set of
neighbors. However, in a dynamic network, these messages give information about
the changes occurred, and are taken into consideration while trying to distinct

between normal changes or attacks.

As it can be seen, some of the features are specific to the OSPF protocol and relate
to specific messages (LSA, ‘hello’) and specific fields of them (such as the Links field).
However, other features are more general and relate to the traffic passing through the

network (such as the number of neighbors a message is sent to).

17

Note that in some cases some of the features cannot be extracted in a certain prefix,
usually when considering a short prefix. In such a case it is possible that there is not
enough information about the run. We are not dealing with such examples and remove

them from the example set.

4.7 The Learning Algorithm

In general, there are two families of learning problems:

1. Classification - predicting a discrete number of values. For example, predicting if

a person is in a high risk of a specific disease or not.

2. Regression - predicting a continuous value. For example, predicting the price of a

house.

While choosing the learning algorithm to use, two issues are needed to be taken into

account:

e The tags are discrete values, like in a classification problem.

e There is an order between the possible tags, like in a regression problem.

Considering these properties of the tags, the user can define the penalty for each
type of misclassification error. For example, he can define a higher penalty for prediction
of ty to an example whose real tag is t3, than a prediction of ¢y to an example whose
real tag is 1. Such a decision takes into account the order between the different tags
and gives a more severe penalty for error between more distant tags. In other words,
some misclassification errors can be considered worse than others, as specified in the
cost matrix. Thus, we have modified the Random Forest algorithm, so that it can take
into consideration the cost matrix. By using this matrix, the user can define different
costs to different misclassification errors. In addition, the matrix is not required to be
symmetric, which means that the user can prefer, for instance, false positive over false
negative.

Our learning process uses the framework of Random Forest algorithm, which is a
well known learning algorithm that uses a committee of decision trees. Each decision
tree presents a sequence of tests conducted on a given example. At the end of each
test sequence, a decision is made and the tag of the new example is determined. Each
test is represented as an internal node of the tree and has several possible outcomes,
which constitute the children of that node. An internal node in the tree can be viewed
as implementing a split of the examples arriving at that node, based on the test in the
node. A leaf in the tree represents the tag will be given to an example that will arrive
to this leaf at the end of the test sequence.

A committee is a set of decision trees that commonly predict the tag of a given
example. Each one of the trees gives a prediction to the example and the final prediction

of the classifier is defined based on the predictions of the trees.

18

Random Forest is a learning algorithm that uses a committee. It builds a forest of
several decision trees, each of which is constructed with a subset of examples. Further,
in each splitting test node, a subset of features is considered, from which one feature
is chosen to be used for this split. When we are interested in predicting the tag of a
new instance, each one of the trees in the forest conducts its test sequence on the given
instance and outputs its prediction for the object. All the tree predictions are taken
into consideration when calculating the final tag of the instance. For example, in a
classification task, the final tag is determined to be the tag which was predicted by the
majority of the trees. This decision minimizes the number of trees that do not agree
with this final tag. In a regression problem, when we are interested in predicting a
continuous value, the final tag is determined to be the average of the tree decisions. In
order to take the cost matrix into account, we made two changes in the classic version
of Random Forest. One change is done when choosing the feature to split a node by and
the second change is done when calculating the final tag according to the predictions of

the trees in the forest.

4.7.1 Choosing a Split

Assume a set of tagged examples arrived at node v of a decision tree. The tag of v
will be determined so that it minimizes the average misclassification error in the node,
according to the cost matriz. For calculating this tag we check all the possible tags. For
each possible tag t, we check the penalty we would pay if we determine the tag of all
the examples arrived the node to be ¢t. Note that this computation of the node tag is
done in the training phase, when we have the real tags of the examples, thus we can
calculate the penalty we would pay for the different possibilities of the node tag. At the
end of this process, we divide the results by the number of examples arriving at the
node and define the tag of the node to be the one that achieves the lowest cost. More
formally, recall that the set of possible tags is denoted by 7" and the cost matrix by C.
Let E, be the set of examples reached node v. For each example e € E,, let r(e) € T
be the real tag of e. Then the tag of node v is calculated by the following formula:

C rie
Tag(v) = argmin M (4.1)

teT ’Ev‘
When having the tag of the node, we can compute its average error by placing it in
the expression that represents the average misclassification error in the node. Therefore,

the average misclassification error for node v, Err(v), is given by the following formula:

>cck, CTagv)r(e)
| Ey|

Err(v) = (4.2)

According to Occam’s razor, simpler solutions are more likely to be correct than complex

ones. In terms of learning, the meaning of this principle is that a simpler and smaller

19

Figure 4.1: Hlustration of choosing a feature for the split. The left side demonstrates

the using of feature f; for the split and the left side demonstrates the using of feature
fa (‘4 represents the tag 0 while ‘-’ represents the tag 1).

tree is preferred to a more complex one. Therefore, when building the trees of the
learning algorithm, we are interested in the smaller trees. However, constructing such
an optimal tree is a NP-complete problem ([HR76]). Therefore heuristics are used. One
heuristic which is used for this purpose is called ‘Choose-Attribute’. This heuristic is a
greedy algorithm which chooses to split a node by the feature which results in the best
local separation. For example, consider a classification task, which is not cost sensitive,
in which we have a node with 3 examples, two of them have the real tag 0 and the other
one has the real tag 1. Suppose we have two possible features to use in order to split
the node. One feature, fi, separates the examples in this node to two successors - one
with the 2 examples tagged as 0 and the second with the last example (tagged as 1).
The other feature, fo, also separates the examples in the node to two successors, but in
a different way: one successor has 2 examples, one that is tagged as 0 and one that is
tagged as 1, and the third example (tagged also as 0) is passed from the node to the
second successor. In this case, the first feature executes a better local separation so we

will choose it to split the node (see Figure 4.1 for illustration).

In our cost sensitive version, we are also interested in small trees. We use a heuristic
which takes into account the cost matrix. Recall that for a given feature f that splits
the node, the examples of the node are divided between the different successors of the
node according to the values they have for this feature. In our algorithm, the feature
chosen to split a node v is the one that minimizes the weighted average on Err(v;)
for all successors v; of v, generated by the feature. We denote by succy(v) the set of
successors achieved when splitting the node v by the feature f. Note that all of the
examples in the node are divided between the node’s successors. Therefore, it holds
that 3, .. ccs(v) |Ey,| = |Ey|. We denote the weighted average of the successor errors
as ‘WASE’, and given a node v and a feature f to split the node by, WASE(v, f) is

20

defined as follow:

WASE(wf) = 3 |§”"‘.Err(vi) (4.3)

v Esuccy(v) | v‘

The feature that minimizes the weighted average of the successor errors is finally
chosen to split the node. This feature is denoted by Feature(v) and formally defined by

the following formula:

Feature(v) = argmin {WASE(v, f)} (4.4)

fE€Features

4.7.2 Determining the Final Tag

As said, using a platform of committee as in Random Forest, each one of the trees in
the committee gives a prediction for a new given example. The final prediction of the
classifier is defined according to the predictions of the trees. In our cost sensitive case,
we define the final tag to be the one that minimizes the average weighted error of the
trees. As before, this calculation is performed by using the cost matrix and checks all
the possibilities for the final tag. For each tag t, we check the average weighted error we
would get if we determine the tag of the new example to be ¢, considering the different
tree predictions. Let the set of trees in the committee be denoted by F. Recall that
the set of possible tags is denoted by 7' and the cost matrix by C. For a given example
e and a specific tree tree € F', let tree(e) be the prediction of ¢ree on e. Then, for

determining the final tag of e, we use the following formula:

1
nal_tag(e) = argmin — - Chree(e 4.5
.ﬁ g() thT |F‘ trge:F tree(e),t ()

In the case where more than one tag achieved the minimal error, we choose the one
that achieved more ‘votes’ from the trees.

For clarification, let take a look at a specific example. Assume the set of tags given
as an input is T' =< tg, t1, t2 > and the given cost matrix C is the cost matrix presented
in Table 4.1. Suppose we are interested in predicting the tag of a new example e, whose
real tag (unknown to us) is ¢o.

In one case, assume we have 3 trees in the forest that give the following predictions:
to, t1 and to. We denote by Err(t;) the average misclassification error we received when

determining the example’s tag to be t;. Then:

ETT‘(tO) = ﬁ : (Ct(),to + Ct17t0 + Ctzﬂ‘/o) = % : (0 +2+ 4) =2
Err(t1) = ﬁ (Choy + Crity + Croy) = 5 (2+0+2) = 1.33
Err(t2) = (1 - (Ciosts + Crits + Croty) = 5 - (4+240) =2

Therefore, the chosen tag for e is t1, which is a mistake. Note that also in a regular
classification process (not a cost sensitive version), in such a case it is very likely to get
a wrong prediction according to the situation in which each one of the three trees gives

a different prediction and only one of them predicted the right tag.

21

Table 4.1: Example for the cost matrix. For each matrix element, the row represents
the predicted tag while the column represents the true tag.

to | t1 | ta
tol 0214
tl2]0]2
ol 41210

Now suppose that the learning algorithm works better and builds an additional tree
that predicts the tag to for e. Then:
Err(to) = % (Ctoto + Ciito + Cato + Crorto) =
Err(t1) = 1 - (Ciogy + Oty + Croty + Croy) = - (2+0+2+2) = 1.5
Err(ty) = ﬁ (Crota + Ctito + Cotg + Cros) = 7- (A +2+0+4) =25
Predicting tg and predicting ¢; yield the same minimal error. However, the prediction

(04+244+0)=15

IR N

to got 2 votes by the trees, where ¢; got only 1. Therefore, the chosen tag for e in this
case is tg, which is the correct tag.

Obviously, if we add an additional tree whose prediction for e is tg, Err(tg) will
remain unchanged while Err(t;) and Err(tz) will increase. Therefore Err(ty) will be

the minimal value and the final tag will be again tg, which is the correct tag.

4.7.3 Feature Importance

One of the most interesting issues when solving a machine learning problem is realizing
which ones of the features were helpful to the learning process. For finding these
features we implemented an algorithm which takes our new model classifier as an input
and outputs for each feature a value that represents the percentage of the feature’s
contribution to the learning process. The algorithm first initializes a zeros-array, where
each cell of this array is associated with one of the features and contains the feature’s
score. The algorithm traverses the trees of our model and in each internal node v (not

a leaf) that is splitted by a specific feature f, we calculate the two factors below:

e Error reduction: The decrease in the average error achieved by using f at this
node. A larger value of this factor means a greater contribution to the learning
process. As mentioned in Subsection 4.7.1, Err(v) represents the average error of
node v, and the weighted average of the errors of the successors of v is given by
WASE(v, f). Therefore, for a node v splitted by a feature f, the error reduction
factor is calculated by the following formula:

ErrorReduction, § = Err(v) — WASE(v, f)

e Number of examples: The number of examples in node v. This is actually
the number of examples that are divided to smaller groups, using feature f.

The larger this factor is, meaning the feature helps to more examples, and

22

the contribution of this feature to the learning process is larger. Formally,
NumberO f Examples, = |E,|.

We now compute the Local score of feature f at a specific internal node v as
LocalScorey, = ErrorReduction, y - NumberO f Examples,, and add this value to
the array cell associated with feature f. Algorithm 4.2 describes the algorithm that

calculates the features’ score array.

Algorithm 4.2 FEATUREIMPORTANCE(CLASSIFIER)

1. features_scores < zeros(number_of_features) > zeros-array
2: for tree t in classifier do
for node v in t do
if v is not a leaf then
f < Feature(v)
LocalScorey,, < ErrorReduction, ;- NumberO f Examples,
features_scores|f] = features_score[f| + LocalScorey,,

After having the features’ score array, we use it to calculate the percentage of each

feature’s contribution by the following expression:

feature_score[f]

Contribution(f) = -100 (4.6)

depeatwes feature_score[g|

23

24

Chapter 5
Empirical Evaluation

We have performed an extensive empirical study to test our new framework.

5.1 Experimental Methodology

The learning process requires from the user the following input: network topology,
monitor router, the set of possible tags and the cost matrix. For the experiments

described in this section we have used these settings:

1. Network topology: To allow experimentation in a diverse set of topologies, we have
designed a topology generator that is capable of generating topologies according
to specified parameters. This topology generator is described in the following

subsection.

2. Monitor location: We have randomly selected a node (a router) in the produced

topologies to act as a monitor.

3. Ordered set of tags: Our framework is capable of working with any ordered set.
For the experiments described here we have used 4 categories: No Attack, Weak
Attack, Medium Attack and Severe Attack.

4. Cost matriz: The cost matrix we used is specified in Figure 5.1. For each matrix
element, the row represents the predicted tag while the column represents the

true tag.

Since we need to measure performance with respect to the cost matrix, we have defined

a new measure called weighted accuracy.

Definition 5.1.1 (Average error cost). Given an example e;, let ¢; denote the true
tag of e; and p; denote the predicted tag of e;. Let maz(C) denote the maximum
value specified in the cost matrix C' (this is the maximal error cost we would pay for a

misclassification error). Given a cost matrix C' and a test set of examples

Zn Cpi,ti
i=1 maz(C)

E ={ei,..., ey}, we define the average (normalized) error cost as AERc g = -

25

Table 5.1: The cost matrix used for the experiments.

No Weak | Medium | Severe
Attack | Attack | Attack | Attack

No Attack 0 i 2 1
Weak Attack % 0 % %
Medium Attack 2 3 0 1
Severe Attack 1 2 i 0

Definition 5.1.2 (Weighted accuracy). Given a cost matrix C' and a test set of
examples F = {e1,...,e,}, we define the weighed accuracy as 1 — AER¢ k.

5.2 The Network Topology Generator

A network topology is the set of routers and the connections between them. Thus, a
topology can be represented by a simple (no self-loop, no parallel edges) undirected
graph. Topologies working with the OSPF protocol are usually connected graphs. We
characterize a topology by its number of nodes n and its average degree d, and define
Fn,d to be the family of all connected topologies with n routers and an average degree
of d. The motivation of characterizing the topologies with these two elements is our
hypothesis that these two factors will have a large impact on the performance of our
system on the topology. On the one hand, we assumed that when the network is larger,
in terms of the number of routers, the attacker has more options on which router to take
control of. Therefore, when the network is larger, the variety of possible attacks is likely
to be greater, which causes it to be more difficult to achieve good performance while
trying to identify attacks in that topology. On the other hand, we hypothesized that
the higher the level of connectivity in the network, the faster the information spread.
Therefore, identification of an attacker in such a network is expected to be easier and
faster than in a network where the average degree is relatively low.

Assume for now that n - d is an even number. We have designed an algorithm that,
given n and d, generates a random set of topologies in F, 4.

Getting the number of routers n and the average degree d, we first check the validity
of the given parameters (for example, it must hold that d < n — 1) and if the parameters
are valid, we generate a random topology from F,, 4. The algorithm that creates the
topology has two phases: the first one is for creating a connected graph with n vertices
and the second one is for making the average degree to be d (see algorithm 5.1).

According to the algorithm, we continue to add edges to E as long as |E| < %d.
Therefore, at the end of the process %d <|E| < %d + 1. Since we assume nd is an even

number, |E| = %d. The average degree of the resulting graph is d’ = % (each edge

26

Algorithm 5.1 CREATETOPOLOGY(n, d)

V—0,E—0
routers = {ry,...,rn}
choose a first router first_r from routers
V «— VU{firstr}
routers < routers \ {first_r}
while routers is not empty do
choose randomly router r from routers
routers < routers \ {r}
choose randomly one edge e from {(r,r)|r' € V'}
E«+ EU{e}, V«VU{r}

. while |E| < % do > The second phase starts here

choose randomly an edge e such that e ¢ F
E <+ EU{e}
: return G = (V, E)

,_.
e

= =
w N =

—
W~

increases the degree of its two end nodes by one). Therefore the average degree of the
generated graph is d’ = d as required.

Note that for arbitrary (not even) nd, our algorithm generates a member in F,, o
where |d' —d| < %, which becomes very small for large values of n (by multiplying the
above formula by % we get that d < % <d+ %)

Figure 5.1 shows an example of a topology with 8 routers and an average degree
of 5 that was created by the above algorithm. Each node is associated with a unique
number identifying it.

After generating a network topology, we randomly choose a value reflecting the

bandwidth of the connection between each pair of neighbor routers.

5.3 System Performance

In order to evaluate our performance on different networks, we conducted experiments
in which we check the accuracy of our tool while using different network topologies. We
generated a number of topologies, with different number of routers and average degrees.
For each topology, we ran the simulator and tagger to produce a set of examples. We
balanced the set across categories which means that for every tag t € T', we have an
equal number of examples that are tagged as t. Then we applied the feature extractor
in order to get the tagged feature vectors. Finally, we have conducted a cross-validation
experiment. This is a widely used technique for estimating how accurately our model will
perform in practice (see ‘Cross-validation (statistics)’ in Wikipedia). In this technique,
we use some of the given data to train the system with and the other data to test
our system on. One round of cross-validation involves partitioning a sample of data
into complementary k subsets, performing the analysis on the union of £k — 1 subsets

(called the training set), and validating the analysis on the other subset (called the

27

Figure 5.1: A specific topology created by the algorithm

validation set or testing set). Usually multiple rounds of cross-validation are performed
using different partitions, and the validation results are averaged over the rounds to give
an estimate of the model’s predictive performance (see Figure 5.2 for illustration). In
our experiments, we used 10-fold stratified cross validation which means we conducted
10 rounds where each data subset has the same percentage of examples for each tag.
During the cross validation process we recorded the average weighted accuracy that was
achieved.

Figure 5.3 shows the learning curve, which describes the weighted accuracy as a
function of the number of examples used in the training phase. The figure represents the
learning curve for one of the tested topologies. We can see a typical learning behavior
where performance quickly improves up to about 2000 examples, and then stabilizes.
This result means that a learning process is actually taking place and succeeding
in generalizing the accumulated experience from the training phase on new unseen
examples.

In addition, we conducted more experiments to check how different parameters
influence the performance of the system. One of these parameters is the network size.
The left-hand side of Figure 5.4 shows the obtained results. The X axis represents the
number of routers in the tested topologies (n), and the Y axis the average weighted
accuracy.

Another factor we take into account is the connectivity of the graph. The right-hand

side of Figure 5.4 presents the result of experiments done with topologies with 12

28

(——l Training data }—)
teretion 1 | -{0 DD V000000000000000

00000005007 0000000000

200000000900 1100000
00000000000000000009

]l All data l[>

Figure 5.2: Several rounds of cross validation algorithm (from Wikipedia)

routers. In the experiments, we create a number of topologies, each one with 12 routers
but different average degree, and repeat the process of conducting the experiments, as
described above. The X axis in the right image of Figure 5.4 represents the average
degree of the tested topologies (d), and the Y axis the average weighted accuracy.
From the left-hand side of Figure 5.4 we can see that, as expected, the weighted
accuracy decreases when the network becomes larger and contains more routers. How-
ever, the decline stabilizes, showing that our framework can handle even large network
topologies. From the right-hand side of the same figure we can see an upward trend in
the graph curve as the average degree of the tested topology gets higher. We expected
to see this trend as we assumed that a topology with a higher average degree should
yield a higher performance, resulting from the fact that the traffic flows in the topology
more quickly. More reinforces to this phenomenon are displayed in Subsection 5.6.2 and

in the experiments part of Section 6.2.

5.4 Feature Importance

We conducted some experiments in order to see which of the features help in recognizing
to which class a given prefix belongs. We generated random topologies and used our
simulator in order to generate examples for these topologies. Then we used our tagger
and the feature extractor and built a classifier according to these feature vectors. When
having the classifier, we applied algorithm 4.2 and checked the values the different
features received.

We notice that in different topologies there are different features which have more
impact, and therefore get higher scores. In general, it seems that the features which are
very helpful to the learning process are features related to the Links field in the LSAs -
the number of links, the connections they describe, and their costs.

Usually, attacker wants to falsify the knowledge the other routers have on the

structure of the topology, in order to route packets through it or prevent them from

29

1.00

i . P)
0.95 - ..N. v, ,,\;;.s‘ ‘_.0) S A s ©
~ [}

Weighted accuracy
o IS o o o
~ ~ [e0] [ee] (e}
o w o w o
p : . .
&
°
°

o

o

5}
T

0.60

0.55

0 1000 2000 3000 4000 5000 6000 7000
Number of examples in the learning process

Figure 5.3: Weighted accuracy as a function of the number of examples used in the
training process

reaching their destinations. Thus, the LSA’s field which is usually used in the attack is
the one that related to the structure of the network - the Links field. Therefore it is not
surprising that the features related to this field are very helpful in detecting attacks.

5.5 Transfer Learning Setup

5.5.1 Introduction

We envision the following use case for our new method: A customer supplies our
algorithm with its specific topology, and applies the learning mechanism to generate an
intrusion detector. In realistic setups, however, we would like sometimes to be able to
learn a detector for a family of topologies. Recall that we define F,, 4 to be the family
of all connected topologies with n routers and an average degree of d. If a customer has
a topology of that family, he can use the learned detector, without any further training.
This is a classical transfer learning setup where the predictor is learned on one problem
and is applied on another.

As mentioned in Section 4.6, we presented a set of features that use relative terms
to help adaptation to dynamic setups such as transfer learning. We experimented with

our algorithm to test its flexibility in such setups.

5.5.2 The Target Belongs to the Same Family as the Source

In our first experiment we learned on a source topology of a given family, and tested
the performance on a target topology of the same family. Table 5.2 lists the obtained

results. The first two columns specify the family parameters. The third column specifies

30

10 1.0
e
-
o
Te._ L _e—— e
0.9} T - -7 e T -e 0.9 _._,—0~—~0———0——"'
! - - "
.«

>
[>
g 9
5038 go_s
9 "
M o
© ©
o
£ 3
=
20.7 .‘5‘07
Q (7] -
2 2

0.6 0.6

0.5 0.5

0 10 20 30 40 50 0 1 2 3 4 5 6 7 8 9 10

Number of routers in the topology Average degree

Figure 5.4: Weighted accuracy as a function of the n and d.

the weighted accuracy for the normal setup where source = target, and the fourth one
displays the weighted accuracy for the transfer setup where the target is a different

topology from the same family as the source.

Table 5.2: TRANSFER LEARNING RESULTS

Family | source = target source # target
n | d | weighted accuracy | weighted accuracy
4 |2 0.970 0.937

8 |5 0.934 0.887

12| 5 0.920 0.843

16 | 7 0.908 0.870

Obviously, testing on the same topology yields better results than when testing on a

different one, but since they are of the same family, the difference is modest.

5.5.3 The Target Belongs to a Different Family from the Source

The second experiment tested the effect of the dissimilarity between the family of the
source topology and the family of the target topology on performance. We define the
distance between F,,, 4, and Fy,, 4, to be |ny - di — ng - da|. Figure 5.5 shows the results
for several target topologies. The X axis stands for the distance between the family of
the source topology and that of the target topology. The Y axis specifies the weighted

accuracy of the model learned on the source topology when tested on the target test set.

We can see a very typical transfer learning behavior with a decline in performance

when the target is getting further from the source.

31

1.0 T T T T T T

0.9+ 8

o
©
T
i
!
/
1

Weighted accuracy
o
q
/
[J
I
1
I
I
l
®

0'5 ! ! ! ! ! !
0 50 100 150 200 250 300 350

Distance between the target and the source families

Figure 5.5: Weighted accuracy as a function of the distance between the target and the
source families

5.6 Dynamic Networks

5.6.1 Introduction

Network topologies often go through continuous changes, such as addition or removal
of connections between routers. This may present a problem to a detector that was
trained on somewhat different topology. One obvious way to overcome the problem
is to perform retraining with the modified topology. As retraining is computationally
expensive, we prefer to deal with the problem differently by building a model that can

tolerate small topology changes.

In this section we consider two types of dynamic networks: the first scenario assumes
that the topology has dynamically changed after the training phase, and the learned
and predicted topologies are fixed, but different from one another. The second scenario
assumes that the changes take place both during the training and during the prediction

phases.

Similarly to transfer learning, in these cases the target topology is not identical to

the source one.

32

5.6.2 Topology Changes Between the Training and Prediction Phases

In this subsection we talk about the first scenario where the topology is dynamically

changed after the training phase.

We conducted several experiments in order to check how much our model can
tolerate such changes. In each experiment, we have generated a random topology and
applied our learning algorithm to generate a detector. We then produced a sequence of
topologies created by randomly choosing edge(s) to be removed or inserted from/to the
topology. A test set was produced for each member in the sequence and the learned
model was tested on these sets. Given two topologies with the same number of routers,

we define as delta the number of edges that exist in one of them but not in the other.

Note that in the described experiments, we made sure that we did not cancel a
change that already took place (not insert and remove the same edge). Figure 5.6

presents the results of some of the experiments.

R et T S S

1 2 3 2 5 6 7 B 2 4 3 8 10 12 1 16 2 7 6 B 10 12 14
Number of modifications Number of modifications Number of modifications

Figure 5.6: Weighted accuracy as a function of delta. Topologies with 6, 12 and 16
routers, from left to right respectively.

We can see that the weighted accuracy is still high even for topologies that are
different than the one we used for training. It is particularly true for larger networks in
which the ratio between the number of changes and the size of the topology is smaller,

and therefore such a change is less significant.

We also note that at certain points in the graph the accuracy got better even
though the number of changes increased. These points are the result of adding edges
to the graph. We conjecture that increasing the graph connectivity may overcome the
disadvantage of having different learned and predicted topologies. This phenomenon
also reinforces the assumption examined in Section 5.3, that increasing the connectivity

of the graph may be beneficial to the performance of the system.

5.6.3 Topology Changes During Training and Prediction Phases

In this section we discuss the second scenario, in which the topology is dynamically

changed during the training and prediction phases.

33

The Simulator

For conducting experiments to check how much our model can tolerate such changes, we
have changed our OSPF simulation a bit. At the beginning of the simulation, a random
integer number is chosen. This number represents the number of connections that will
be changed (removed or inserted) during the simulation. Let us denote this number
as Nchanges- Lhen we randomly choose ncpanges Pairs in which the first element is an
identifier of a connection (edge) and the second one is a time in which this connection
will be changed. Then we start running the simulator, while executing the insertion
or removal of the connections at the time specified for each one of them. This way,
our simulator actually represents an OSPF simulation while the network topology
is dynamically changed during the run. From now on, when we refer to the OSPF

simulator with its dynamic version, we call it the dynamic-simulator.

Additional Features

When considering a network which is dynamically changed during the run, we should
pay attention not only to the LSA messages which describes the different connections
and is spread over the network, but also to the local 'hello’ messages. This type of
messages is sent every few seconds between neighbor routers. If a router does not
receive such a message from its neighbor within a specific time interval, it infers that the
connection between them went down and they are no longer neighbors. In the opposite
case, when a router receives a ’hello’ message from a new router that has not sent such
a message before, it infers that a connection between them was inserted and they are
new neighbors. This way, the "hello’ messages help the OSPF protocol to dynamically
adapt to changes in the network. Therefore, when working with dynamic topologies, we
include these messages. As with LSA messages, we include only hello messages that
were sent or received by the monitor. We used these messages and extract features from

them, as described in section 4.6.

Experiments

We conducted several experiments in order to check how much our model can deal
with this type of dynamic networks. In each experiment, we have generated a random
topology and used our dynamic-simulator for generating the examples. Then we applied
the tagger and balanced the set across categories. After that we applied the features
extractor including the features for the ’hello’ messages. Finally, we have conducted a
stratified cross-validation experiment and recorded the average weighted accuracy.
Tables 5.3 and 5.4 present the results achieved when executing the experiments on
two network topologies - with 12 and 16 routers. In each table, the rows represent the
type of the network on which the training process was done where we considered three
types on networks: a stable network (without changes at all), a network in which a

few changes occur during the run and a network in which many changes occur during

34

Table 5.3: DIFFERENT DYNAMIC TYPES - A TOPOLOGY WITH 12 ROUTERS

Stable | Few changes | Many changes
Stable 0.930 0.905 0.880
Few changes | 0.900 0.935 0.912
Many changes | 0.857 0.883 0.940

Table 5.4: DIFFERENT DYNAMIC TYPES - A TOPOLOGY WITH 16 ROUTERS

Stable | Few changes | Many changes
Stable 0.923 0.91 0.897
Few changes | 0.906 0.938 0.911
Many changes | 0.847 0.867 0.949

the run. The columns in the tables represent the type of the tested network: stable,
few changes and many changes. Each table cell (i,j) represents the weighted accuracy
achieved when training the detector on the topology specified in row 7 and testing the
performance on the topology specified in column j.

We can see that in both tables, the highest performance achieved on the diagonal,
when the tested network is taken from the same setup of the topology on which the
training process has been applied. For example, consider the second column, which
represents the situation in which the tested network is a dynamic network in which a
few changes occurred during the run. We can see that the highest value in this column
achieved in the second row, which means we received the best performance when the
detector was trained on a network of the same type. We can see this phenomenon also
in the other columns.

This situation is consistent with the real world situations in which the learned
network is usually the same as the network we want to predict (For example, if a
network of a specific organization is dynamic, it is unlikely that the organization will be

able to stop the changes for the training phase).

5.7 Detection Times

We conducted more experiments in order to check the detector performance in terms
of how long an attack exists in the network before it is revealed. In these experi-
ments we only distinguish between non-attacked (tag No Attack) and attacked (tags
Weak/Medium/Severe Attack) runs, ignoring the level of the attacks. Tables 5.5 and 5.6
show the accuracy rate of our framework as a function of the normalized detection time.
We define the normalized detection time as the actual detection time divided by the
time it takes for a packet to traverse the network’s diameter, which is the longest path
between any two nodes in the network. We present results for mid-size networks having

a diameter of 2 and 6 links. The different lines of the tables display the normalized

35

Table 5.5: NETWORK WITH A DIAMETER OF 2

Normalized detection time | Accuracy rate
0—2.3 0.925
23—-17.14 0.982
above 7.14 0.995

Table 5.6: NETWORK WITH A DIAMETER OF 6

Normalized detection time | Accuracy rate
0—3.2 0.965
3.2 —-4.18 0.99
above 4.18 1

detection times and the accuracy we achieved in each one of them. From the tables
we can deduce that the longer an attack exists in the system, the higher our accuracy
rate is, which means that we are more likely to detect the attack. However, for both
networks, the accuracy rate is very high even for short detection times. This implies
that our algorithm is able to detect attacks in a very short time after the attack starts.
For example, for a network having a diameter of 6 links, an accuracy rate of 0.965 is
obtained, when the normalized detection time is under 3.2. Assuming the time it takes
for a packet to traverse the longest path in the AS is 50 ms, then the attack will be
detected with high probability within 160 ms (3.2 - 50).

5.8 Evaluation with Real Data

5.8.1 Introduction

As said in chapter 1, one of the most significant challenges when working in the
field of attack detection is the lack of appropriate public datasets for assessing the
systems [SP10]. The primary reason to this situation arises from the fact that the
inspection of network traffic can reveal highly sensitive information. Any breach of such
information can be harmful. Therefore researchers frequently encounter insurmountable

organizational and legal barriers when they attempt to provide such datasets.

5.8.2 Real OSPF Data

Although there is no available data to try our system on, we succeeded to achieve
real runs of the OSPF protocol from an ISP that prefers to remain anonymous. The
organization provided us with data of real OSPF runs, where all the runs are normal.
The network topology of that organization includes 17 routers and is presented in
Figure 5.7.

36

Figure 5.7: The organization’s network topology

One main difference between our simulation and the data provided to us is that in
our simulation the monitor is located on one router while the data we received reflects
the traffic on one connection - the one between routers 16 and 17. To deal with this
difference, we performed a second processing on our examples to make them reflecting
the traffic on that connection only.

In addition, when considering a monitor located on a connection and not on a router,
some of our features became irrelevant and were omitted from the learning process. For
example, having only the record of the traffic on that connection, we cannot know how
many neighbors the router at the end of this connection sent an LSA to. Therefore, we
did not use all of our features and thus expected a lower accuracy rate. After making
the adjustment to this real data, we could conducted experiments to see how well our

system performs on it.

5.8.3 Results

We received from the provider a layout of its topology, and encoded this layout into our
system. We then trained a detector on this topology and tried it on the normal runs
supplied by the ISP. This is not an appropriate testing as the real test data contained
only normal runs, but it could still be indicative, especially if our system would have
performed poorly on the real data. We found, however, that our detectors achieved
high weighted accuracy results (= 95%). This result reinforces our hypothesis that the

model we built succeeds in identifying normal runs of the protocol.

37

38

Chapter 6

The Monitor Placement
Algorithm

6.1 Introduction

Our framework assumes that the user specifies which router(s) serves as the monitor(s),
but it is not clear how to choose the router(s) for this purpose. In this chapter we
propose a way to choose the location of the monitor(s) wisely in order to get a high

accuracy rate.

6.2 Locating One Monitor

In this section we assume the organization has resources to invest in only one monitor.
The organization needs to choose the monitor location wisely in order to achieve a good
identification of attacks. There are several possibilities for choosing this location. One
possibility is to choose it randomly. A more intelligent decision is to choose the router
with the highest degree in the topology. The motivation of such a decision is the idea
that a router with more neighbors gets more information of the traffic in the network
and therefore has a better position to detect an attack.

Another option is to use the measure of betweenness centrality, which is a measure

of centrality in a graph based on shortest paths. The betweenness centrality of a node

ost(v)
Ost

v is given by the expression g(v) =), Lvtt where oy is the total number of
shortest paths from node s to node ¢t and o4 (v) is the number of those paths that pass
through wv.

Another intelligent option for choosing the location for the monitor is to choose the
router that has the highest potential to transmit a large amount of traffic through it.
We call this router the ‘max-flow router’. In order to evaluate which router has the
potential to transfer a large amount of traffic, we used a technique called ‘random walk’.
We built an algorithm which executes a large number of random walks, n,qks, O the

given topology. In each walk, a random router is chosen to be the source of the walk

39

and at every step the algorithm randomly chooses to finish the walk or to continue
and randomly move to one of the neighbors of the current router. For each router we
maintain a counter which increases by one every time a walk arrives to this router.
Finally, we choose to place the monitor on the router with the largest counter value.
Algorithm 6.1 displays this algorithm.

Our flexible framework allows us to design another interesting strategy for choosing
a router for the monitor. We train the detector on each one of the possible routers and
estimate its performance. We then select the router that achieves the highest accuracy

rate to be the monitor.

Algorithm 6.1 FINDMAXFLOWROUTER(N = (V,E))

1: counters < zeros(|V|) > zeros-array

2: for i =1,...,nyurs do

3: r < choose the first router randomly

4: counters(r] + +

5: to_continue = choose if to continue the walk, with prob P,

6: while to_continue do

7: choose an arbitrary neighbor 7’ of

8: r1

9: counters(r] + +

10: to_continue = choose if to continue the walk, with prob P.
Experiments

We conducted several experiments in order to compare all the above options for choosing
the location of the monitor. In each experiment, we built a network topology and
checked the accuracy achieved when locating the monitor according to the different
strategies. Table 6.1 presents these experiments. The first two columns describe the
checked topology parameters - the number of routers and the average degree. The other
columns describe the accuracy achieved when the monitor has been located according

to the above different techniques.

Table 6.1: SELECTING ONE MONITOR

topology random | router with the highest max-flow our
number of | average | router | highest degree | betweenness router algorithm
routers degree centrality
6 3 0.93 0.944 0.93 0.93 0.96
12 2 0.809 0.866 0.873 0.852 0.873
12 6 0.892 0.934 0.934 0.934 0.934
16 7 0.91 0.92 0.934 0.94 0.94
30 8 0.888 0.92 0.92 0.92 0.921

The table demonstrates the advantage of our approach for selecting the monitor

40

location, achieving the best accuracy rate in all experiments. No other methods achieved
high performances as ours, in all the different experiments.

We can see again that the connectivity of the topology helps in receiving a higher
performance (the results in the third row in the table is much higher than the results in

the second row), which also reinforces the assumption examined in Section 5.3.

6.3 Locating More Than One Monitor

In this section we assume the organization has resources to invest in more than one
monitor. When working with several monitors, each one of them records the network
traffic from its point of view. As in the previous case, the organization needs to choose
the monitor locations wisely in order to achieve a good identification of attacks.
When using more than one monitor, we consider two options for building the final
detector that will predict the tag of a new unseen example. The first option is to build
one classifier for all the monitors: each one of the monitors will transmit its point of
view of the run to this classifier. In this way, the classifier is the final detector and
it has all the monitors points of view of the same run. This means that the model
has more knowledge and is likely to achieve better detection results. In this case we
use an extended feature vector, which is the concatenation of the feature vectors of
the different monitors to each other (and even can include more features that describe
relations between the features of different monitors). We thus get a new feature vector
that will be used as an example (both for the training phase and the prediction phase).
Another option is to build a classifier for each one of the monitors separately by
generating examples to the training phase from its point of view. These examples are
generated by the simulator and are tagged by our tagger. Then we generated the feature
vectors and executed the training process for each monitor individually. This process
is done for every monitor and resulting in independent classifiers, each one of them is
fitted to its monitor. When executing a new run of the protocol, each monitor has its
point of view of the run which gets into its classifier using the regular feature extractor.
This way, each one of the monitor classifiers outputs a tag for the new run, relying on
its knowledge about the run (its monitor point of view). Then all these local decisions
of the classifiers are considered for determining the final decision (tag) for the run. In
this case, the detector is the one that takes all the classifier predictions into account
and determines the final tag accordingly. There are several methods for determining

the final tag using the decisions of the classifiers. Here are some of them:

1. Define the final tag to be the most severe attack among the predictions of the

classifiers. This decision makes sense by predicting the worst case.

2. Define the final tag to be the severity that the majority of the classifiers re-

ported on.

41

3. Define the final tag to be the average severity of the attack among the severity
reported by the classifiers. This decision makes sense by taking into account all
the classifier predictions and not just one or several of them as in the previous

options.

4. Define the final tag to be the tag that minimizes the average weighted error of
the classifiers. We calculate this tag using the cost matrix, in a similar way to
Subsection 4.7.2. We go over all the possible tags and for each possible tag t € T’
we calculate the average weighted error we would get if we determine the tag of
the new example to be ¢, considering the different classifier predictions. Finally
we choose the tag that achieves the lowest cost. As in Subsection 4.7.2, in the
case where more than one tag achieved the minimal error cost, we choose the one
that achieved more ‘votes’ from the classifiers. Formally, denote the set of the
classifiers as S. In this case, the size of S, |S|, is the number of monitors, as we
build a classifier for each monitor. For a classifier s € S, we denote by s(e) the
classifier prediction of a given example e. Using the cost matrix C' and the set of

possible tags T', the final tag of e is determined by the following formula:

1
final_tag(e) = argmin -— Cye 6.1
(e ter |5 ; (€} 6.1)

We conducted some experiments to check these two options of building the detector.
In each experiment, we generated a random topology and used our simulator while
putting a monitor on some of the routers. Then we used the tagger and the feature
extractor in order to get feature vectors - one feature vector to each one of the monitors.
After having the tagged examples, we checked the two options described above (building
one classifier for all the monitors and building a classifier for each one of the monitors and
then determining the final tag using the classifier predictions). In the second approach,
we tested the different options of determining the final tag of an unseen example, as
described above. We refer to these options as (1), (2), (3), (4), as they appeared in the
above explanation. Table 6.2 presents the results achieved. In the different experiments
done in this part, in each topology, we checked different sets of monitors. For each set,
we used the feature vectors that are relevant to the chosen routers and conducted a
stratified cross-validation experiment while recording the average weighted accuracy
achieved.

From the above experiments, we concluded that the preferred option is to build a
single classifier for all the monitors, that will act as the detector. This result confirms
our hypothesis that when the classifier has more information about the traffic in the
network (more routers’ points of view), its prediction on an unseen example will be
more accurate. The case that emphasizes this idea is the following: Let assume that we
have a network topology with n routers and we also have enough resources for locating

n monitors - one on each router. In the scenario where we build one classifier for all the

42

monitors, this classifier actually receives all the routers’ points of view, which includes
all the messages that were sent or received by a router in the network. In this case
specifically, no matter on which router the attacker takes control, the classifier also has
the information from the attacker point of view. This situation can help the classifier
in recognizing the presence of an attacker in the system. In the second option, when
building a classifier for each monitor separately, each one of the classifiers predicts
the tag for a new unseen example. The final tag is determined by the detector using
these local predictions. With the same logic, no matter on which router the attacker
takes control, there is a classifier that has the information from the attacker point of
view. However, the detector takes this classifier’s prediction into account with more
n — 1 predictions of the other classifiers, which reduces the effect of this classifier when
determining the final tag. In this case, it is harder to get a general pattern of attacks

and therefore the accuracy decreases.

Extending the Feature Extractor

When building one classifier for more than one monitor, we use a feature vector which
is the concatenation of the feature vectors of the different monitors. However, we can
also take into account additional features that can be extracted from the example
contains all the monitors’ points of view of the prefix. These additional features are the
results of applying mathematical operations on the features from each monitor. For
example, consider the case of two monitors. Let ‘)‘"iM1 be the feature i of monitor M;
(e.g. the maximum over the difference between the number of links in two adjacent
LSAs generated by the same router and received by Mj). Let fiM2 be the same feature
calculated for Ms. Then we can define a new feature fZM M2 46 he the result of some
mathematical operation between fiM1 and fZMQ. Such a feature takes into account all
the monitors’ points of view and maybe can help to the learning process.

We conducted several experiments for testing the extended feature extractor in the
case of using one classifier for more than one monitor. In each experiment, we generated
a random topology and chose different combinations of more than one monitor. Then
we used our simulator and tagger to get tagged examples. After that, we generated
two feature vectors for each example (that includes the record of the traffic from the
points of view of all the selected monitors): One with the regular feature extractor
that concatenates the feature vectors of the different monitors to each other, and the
other one with the extended feature extractor which adds additional features (describe
relations between features of different monitors) to this concatenation. We used these
two sets of feature vectors in order to execute two learning processes. We conducted
stratified cross-validation experiments while recording the average weighted accuracy
achieved in the different settings. In all the experiments we saw an increase of about
0.5% in the performance when using the extended feature extractor. This can indicate

that these new shared features help a little to the learning process.

43

6.4 Optimal Set of Monitors

Using different combinations of routers to act as the monitors yields different accuracy
results. We want to be able to choose the best set of monitors, one that does not
contain a large number of monitors in order to save resources, and on the other hand,
succeeds in achieving high performances in identifying the attacks. When having a small
network topology, and enough resources, one can check all the possible combinations
of routers for this purpose. However, in a large topology, this check is very expensive,
having an exponential number of such combinations. Therefore, we decided to set the
number of monitors, Nyenitors, according to the customer resources. We implemented an
algorithm for choosing the n,,0nitors monitors. The algorithm is based on the following
idea: When we are interested in one monitor, the best choice is to choose the one that
achieved the highest accuracy when working as a single monitor. Therefore we start
with choosing this router. Then, if n0nitors > 1, we add more routers to the monitor
set. For determining which router to add, we search for the k% of the other routers,
which achieved the highest accuracy results when working as a single monitor. We call
this set of monitors BEST).. From the set BEST}., we choose to insert the router which
is the farthest from the monitors that were already inserted to the monitor set. This
idea relies on the thought that we want the monitors not to be grouped in one area of
the network but rather to be spread out on large parts of it. Note that a distance of a
router r from the monitor set is calculated as the length of the shortest path between r
and a monitor m in the set. In addition, when we have more than one router, from the
BEST}, set, with the same maximal distance from the monitor set, we select the one
that achieved the highest accuracy when working as a single monitor and add it to the

monitor set. The algorithm for choosing the monitor set is presented in algorithm 6.2.

Algorithm 6.2 CHOOSEMONITORS (Nmonitors, k, N = (V, E))

1 M0
22 R+<V
3: for i =1,..., Nmonitors dO
4: if M = () then
M < {the router r € R which achieved the highest accuracy}
R+ R\ {r}
continue
BESTy, <+ k% routers from R with the highest accuracy results
r’ < the router r € BEST), that is farthest from M
10: M+ MU{r'},R+«+ R\ {r'}

Experiments

We can divide the experiments we conducted in this section to two parts: The first one is
done in order to test the performance of our algorithm for choosing the set of monitors.

In the different experiments done in this part, we generated random topologies and

44

used our simulator while putting a monitor on each one of the routers in the topologies.
Then we used the tagger and the feature extractor in order to get feature vectors - one
feature vector for each monitor. In each topology, we checked different sets of monitors.
One of these sets is the one selected by our algorithm using k& = 40. For each set, we
used the feature vectors that are relevant to the chosen routers and conducted stratified
cross-validation experiments while recording the average weighted accuracy achieved.
As we concluded that building one classifier for all the monitors is the preferred option,
we conducted these experiments using this approach. Note that the case where we
are interested only in one monitor is actually already displayed in section 6.2, as our
algorithm choose the monitor with the highest accuracy in this case. For this reason,
here we display the results of using more than one monitor. Table 6.3 presents the

results achieved in this part.

From the experiments in this part we can see that our algorithm succeeds in selecting

a set of monitors that yields high performance.

1.00 1.00

o
©
ol
o
©
o

Weighted accuracy
o
©
o
Weighted accuracy
o
©o
o

o
0
[l
o
©
[l

0.80

0.80 " " " " " " " " " " " " P S S S S S S S MY
0 1 2 3 4 5 6 7 8 9 10 11 12 13 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
Number of monitors Number of monitors

Figure 6.1: Weighted accuracy as a function of the number of monitors. Topologies
with 12 and 16 routers, from left to right, respectively.

The second part includes experiments that check the number of monitors. As in
many other fields in the domain of machine learning, such as increasing the size of
the committee or increasing the size of the training set, investing more resources will
improve the system performance until a certain threshold value is reached. At this point,
it is not useful to invest more resources because the performance would not be improved
significantly. We assume that in our setting we will see a similar phenomenon: Using
a larger number of monitors will improve the system performance up to some point
where it will not be useful to add more monitors. We conducted several experiments to
check it. In the experiments, we generated random topologies and used our simulator
while putting a monitor on each one of the routers in the topologies. Then we used the
tagger and the feature extractor in order to get feature vectors. After that, we used our
algorithm (with k& = 40) for choosing the monitors when examining different number of

monitors. For each set selected by our algorithm, we used the feature vectors that are

45

relevant to the chosen routers for building the trained detector. We then conducted
stratified cross-validation experiments while recording the average weighted accuracy
achieved. Again, as we concluded that building one classifier for all the monitors is
the preferred option, we conducted these experiments using this approach. Figure 6.1
presents the results of some of the experiments.

We can see the typical behavior we expected where performance improves while
adding more monitors, helping to observe more information about the traffic in the
network. Then, at some point, as expected, the improvement in performance slows

down.

46

Table 6.2: BUILDING THE FINAL DETECTOR

Number of | Number of | Method of building | Method of determining | Weighted
monitors routers the classifier(s) the final prediction accuracy
Single classifier The classifier prediction 0.95
16 (1) 0.925
Per monitor (2) 0.903
5 classifier (3) 0.926
(4) 0.903
Single classifier The classifier prediction 0.92
50 (1) 0.88
Per monitor (2) 0.89
classifier (3) 0.88
(4) 0.89
Single classifier The classifier prediction 0.96
(1) 0.934
12 .
Per monitor (2) 0.933
3 classifier (3) 0.94
(4) 0.936
Single classifier The classifier prediction 0.958
16 (1) 0.943
Per monitor (2) 0.937
classifier (3) 0.943
(4) 0.939
Single classifier The classifier prediction 0.974
(1) 0.887
12 12 Per monitor (2) 0.92
classifier (3) 0.91
(4) 0.925
Single classifier The classifier prediction 0.972
(1) 0.924
16 16 Per monitor (2) 0.93
classifier (3) 0.93
(4) 0.94

47

Table 6.3: THE LOCATIONS OF MORE THAN ONE MONITOR

The topology Number of Location of Weighted
monitors the monitors accuracy
1,2 0.892
5, 11 0.848
9 4,10 0.884
2,4 0.893
6, 8 0.876
Our algorithm - 0.893
2, 12
1,2, 10 0.898
3 5, 7,9 0.896
Our algorithm - 0.902
1,2, 12
6,9 0.934
11, 12 0.924
9 2,7 0.936
3,8 0.953
4,10 0.937
Our algorithm - 0.954
3,5
1, 6, 12 0.952
3 3,8, 10 0.96
Our algorithm - 0.96
2,3,5
1,2 0.937
7,8 0.953
9 1, 10 0.932
, 9 0.952
3,7 0.953
Our algorithm - 0.956
4,12
1,2, 16 0.95
3 2,6,13 0.954
Our algorithm - 0.958
4,7, 12

48

Chapter 7

Related Work

In [SP10] the authors emphasize the difficulties faced by researchers who use machine
learning for network intrusion detection. In our work we face similar difficulties and
provide successful solutions for dealing with these challenges.

The issue of attack detection has been studied over the years. There are two
main approaches for the tagged examples, used as a training set for the learning
process. One approach builds a model solely based on normal training examples and
evaluates each testing case to see how well it fits the model. Some works, such as
[SVG10, Bao09, MEAN13] use this approach for network intrusion detection. For
example, in [TDJ*14] the authors present an approach for detecting sensor spoofing
attacks on a cyber-physical system. They use only examples which were collected during
normal runs of the system. By those examples, they learn a safety envelope which
contains all the states that the system can reach when there is no sensor attack. Then
they use this envelope to check if the system’s state falls outside of it, and raise an
alarm if so.

Another approach attempts to learn the distinction between normal and abnormal
behaviors using both normal and attack examples in the training set. Works taking this
approach include [CFF16, SM03, KJS17]. For example, in [CFF16] the authors used the
Cyber Range Lab of the Australian Centre for Cyber Security (ACCS) dataset in which
a hybrid of real modern normal activities and attack behaviors were generated. They
used those examples for the training set of their learning algorithm (which includes a
combination of two machine learning methods) in order to classify normal and abnormal
behaviors. The accuracy achieved was 98.76%. In [KJS17] the authors created a
detection algorithm and used the NSL-KDD dataset, which is a much improved version
of the original KDDCUP’99 dataset, to evaluate it. This dataset contains 41 features
and is tagged as either normal or an attack, with exactly one specific attack type. The
authors used a combination of classifiers for their algorithm and classified incoming
network traffic as normal or as an attack. The accuracy achieved was 89.24%.

However, while these works use existing examples as their training data, we generate

the examples using sophisticated simulation. Generating the examples by our simulator

49

overcomes some issues that exist when using existing data (see Chapter 1), one of them
is the ability to fit the training data to a specific network topology when using such a
simulator. This ability can improve the accuracy rate because the training data is more
specific to the testing setup.

Previous works analyzed OSPF security vulnerabilities ([SGN13, NSM*14]), search-
ing for message falsification attacks ([WVW97]) and attacks with a persistent effect
(INSM*14]). These works are based on the assumption that the attacker sends legal
OSPF messages in terms of their structure, but the router’s behaviour deviates from
the protocol rules. Our work is also based on this assumption.

The works above search for vulnerabilities of the OSPF protocol, but cannot identify
an attack at runtime. In contrast, in [TDJ*14] the authors build an attack detector
monitor that runs continuously, monitors the state of the system, and raises an alarm
whenever it believes there is an attack during the runtime. This work is different from
ours in that it develops an attack detector to a different problem. More importantly, it
uses anomaly detection, which means only non-attacked examples were used for training.

In our work we build a multiclass learning-based attack detector using both normal
and attack examples for the training set. We use this detector in order to identify
attacks on the OSPF protocol at runtime. Our work is different from other works also
because it builds a detector that is suitable to the user’s setting, such as its network
topology or the different costs it gives to the possible misclassification errors (as specified

in the cost matrix).

50

Chapter 8

Discussion

8.1 Applying the Framework to Other Protocols

In order to apply our framework to other protocols than OSPF, two changes have to be
done: The first one is the simulation itself (including the attacker simulation), which
needs to fit the new protocol standards. The second one is the feature extraction, which
also depends on the specific protocol. Note that there are features which are not related
specifically to the OSPF protocol and can be used also for other routing protocols.
However, there are also features which are very specific to the fields of the messages used

in the OSPF protocol, which have to be changed when working with other protocols.

Despite those changes, there are several components that can remain unchanged
even when working on another protocol: Using a simulator in order to achieve examples
with all the possible tags, using relative and not absolute features for dealing with
changes occur in the network, using our cost sensitive version of the Random Forest

algorithm, and more.

In this work we developed a general framework for building an intrusion detector
adapted to the user’s setting. We fitted our framework to the OSPF protocol but it can

be adjusted also to other protocols.

8.2 Working with Balanced Dataset

In all of our experiments, we used a balanced set of examples according to their tags.
This case is not the typical one in reality, where the number of normal runs is much
higher than the number of runs which contain an attacker. However, a balanced dataset
enables a good assessment of our model. This assessment could not be achieved by
using, for example, 90% of normal instances and 10% of attacked ones. In this case, even
a basic classifier which always says ”"normal” is right in 90% of the cases. Therefore, by

balancing the dataset, we can get a reliable assessment of our work.

51

8.3 Accuracy Measures

In order to evaluate our performances with respect to the cost matrix, we defined a new
measure, weighted accuracy, which takes into account not only the number of successes
but also the penalty on each one of the misclassification error types. However, we can
also extend the discussion and talk about more regular classification measures. For
doing that, we need to limit our tags, in order to talk about false negative and false

positive. First, let us define some terms [HKP12]:

e True positive: These are the positive examples that were correctly labeled by

the classifier. Let TP be the number of true positives in a given test set.

e True negative: These are the negative examples that were correctly labeled by

the classifier. Let TN be the number of true negatives in a given test set.

e False positive: These are the negative examples that were incorrectly labeled as
positive by the classifier. Let FP be the number of false positives in a given test

set.

e False negative: These are the positive examples that were incorrectly labeled as
negative by the classifier. Let FN be the number of false negatives in a given test

set.

Table 8.1 summaries the terminology we used for using the terms above, with respect
to the set of tags specified in Section 5.1. We refer to the No Attack tag as "negative”
and to all the other tags (Weak/Medium/Severe Attack) as ”positive”.

Table 8.1: TERMINOLOGY

H Name H Predicted tag ‘ Real tag H
True Positive | Weak/Medium/Severe Attack | Weak/Medium/Severe Attack
True Negative No Attack No Attack
False Positive || Weak/Medium/Severe Attack No Attack
False Negative No Attack Weak/Medium/Severe Attack

8.3.1 Classification Measures

We are interested in the following classification measures:

e Sensitivity - measures the proportion of actual positives that are correctly identified
as such. A high sensitivity test is reliable when its result is negative, since it rarely

misdiagnoses those attacked runs. Mathematically, sensitivity = zﬁ%.

e Specificity - measures the proportion of actual negatives that are correctly identified
as such. A high specificity test is reliable when its result is positive, since it rarely

misdiagnoses those normal runs. Mathematically, speci ficity = %.

52

Table 8.2: CLASSIFICATION MEASURES

Number of routers . e o
in the topology Number of monitors | Sensitivity | Specificity

1 0.96 0.903

12 2 0.985 0.975

3 0.988 0.972

1 0.96 0.87

16 2 0.98 0.91

3 0.99 0.92

8.3.2 Experiments with the New Terminology

We conducted some experiments to check our performances in terms of the classification
measures described in subsection 8.3.1. In each experiment, we generate random
topologies with different number of monitors chosen by our algorithm (see section 6.4).
Then we used our simulator, tagger and feature extractor to get tagged examples. We
conducted a stratified cross-validation experiment while recording the classification
measures using the new terminology. Table 8.2 describes the results of some of these
experiments.

From the experimental results we can see that our algorithm achieves high per-
formances in the terms of sensitivity and specificity. It can be seen that generally
the algorithm is somewhat more reliable in providing a negative prediction (a higher
performance in sensitivity), saying there is no attack in the system. Because in the
vast majority of cases the implications of saying there is no attack when there is, are
more severe than in the opposite case, this is an encouraging result, which implies that
our algorithm is valuable. Here we can also see that having more monitors improves
the performance in terms of sensitivity and specificity, similarly to the improvement in

performance we mentioned in Section 6.4.

53

54

Chapter 9

Conclusions and Future Work

9.1 Conclusions

In this work we produced a new framework for example-based learning of an intrusion
detector. We overcame the challenge of lacking data (especially data including attacks)
to learn from. This is done by building a simulator, which generates the examples.

An important strength of our approach is its being adjustable to the requirements
of a specific user. The user defines the possible tags, the network topology and the
error cost for each misclassification error. These factors help in providing the user an
intrusion detector that is fitted to his own needs.

Another added value of our framework is its ability to recommend the user of where
to locate the monitor(s) in order to be able to receive good performances.

In addition, we tested our framework with a setup of transfer learning and received
good accuracy rate. Such a setup can be used in the real world for shortening the time
of the learning process. For example, if an organization has a topology of the same
family as the topology of another organization, the first one can purchase the detector of
the second one and avoid the training process which takes time and resources. Another
setup we tested was dynamic networks, where we also received good results. This
strengthen our model by adapting to dynamic networks as well as to stable ones.

Our new framework has a significant practical potential when the user can define his
preferences and the system will produce a runtime intrusion detector that is adapted
to this particular setting. We believe that the new learning framework, presented in
this work, can be practical and useful for small as well as large organizations, and

significantly enhances their network security.

9.2 Future Work

Deep learning. One area of future work is trying to use deep learning algorithms.
Using our algorithm, we presented the features as values which are the result of a

mathematical computation (mean, max, etc.) on several message fields or other data.

55

In the future, researchers can represent the traffic as a serial of messages and try to use

Recurrent neural network (RNN) which works well with time-series.

Possible commands for the user. As mentioned in Section 2.2, our work is done
based on the commands Cisco provides to the user for examining the mode of an OSPF
run. This is reflected in the form of the traffic records and the features we have used.
However, another direction of possible future work is to check if extending the commands
the user can use in order to know the system states at different times can enable to
achieve a higher accuracy. For example, a command that enables checking ”"what the
router does with the arrived LSA - insert it to its database or ignore it” can help to

extract a new feature and may improve the detector performances.

The networks. In this work we applied our model to networks with point-to-point
connections between the routers. However, OSPF protocol is used also in more compli-
cated networks, such as a network which has a border router that is used to establish a
connection between backbone networks and different OSPF areas. It can be interesting

to extend the simulation to such networks and test the detector performances.

Other protocols. As said in Section 8.1, one can use our framework for other protocols

than OSPF. It is interesting to see the model performance for different protocols.

56

Bibliography

[Bao09] Cui-Mei Bao. Intrusion detection based on one-class SVM and
SNMP MIB data. In Proceedings of the Fifth International Con-
ference on Information Assurance and Security, IAS 2009, Xi’An,
China, 18-20 August 2009, pages 346349, 2009.

[CFF16] Md Nasimuzzaman Chowdhury, Ken Ferens, and Mike Ferens.
Network intrusion detection using machine learning. In Proceedings

of the International Conference on Security and Management
(SAM), 2016.

[DI1J59] E.W. DIJKSTRA. A note on two problems in connexion with
graphs. Numerische Mathematik, 1:269-271, 1959.

[Fril7] Lior Friedman. Recursive feature generation for knowledge-based
induction. Master’s thesis, Department of Computer Science,

Technion — Israel Institute of Technology, 2017.

[GM14] Wei Gao and Thomas H. Morris. On cyber attacks and signature
based intrusion detection for MODBUS based industrial control
systems. JDFSL, 9(1):37-56, 2014.

[HKP12] Jiawei Han, Micheline Kamber, and Jian Pei. Data mining concepts
and techniques, third edition, 2012.

[HR76] Laurent Hyafil and Ronald L. Rivest. Constructing optimal binary
decision trees is np-complete. Inf. Process. Lett., 5(1):15-17, 1976.

[HS14] Neminath Hubballi and Vinoth Suryanarayanan. False alarm
minimization techniques in signature-based intrusion detection

systems: A survey. Computer Communications, 49:1-17, 2014.

[JMO6] E. Jones and O. Le Moigne. OSPF Security Vulnerabilities Analy-
sis. Internet-Draft draft-ietf-rpsec-ospf-vuln-02, IETF, June 2006.

[KJS17] Jasmin Kevric, Samed Jukic, and Abdulhamit Subasi. An effective

combining classifier approach using tree algorithms for network

o7

[MEAN13]

[MKSUKW12]

[NKGB12)

[NSM+14]

[SGN13]

[SMO3]

[SP10]

[SVG10]

intrusion detection. Neural Computing and Applications, 28(S-
1):1051-1058, 2017.

FEitan Menahem, Yuval Elovici, Nir Amar, and Gabi Nakibly.
ACTIDS: an active strategy for detecting and localizing network
attacks. In AISec’18, Proceedings of the 2018 ACM Workshop
on Artificial Intelligence and Security, Co-located with CCS 2013,
Berlin, Germany, November 4, 2013, pages 55—66, 2013.

Saif Malik, S K. Srinivasan, S U. Khan, and L. Wang. A method-
ology for ospf routing protocol verification. 12 2012.

Gabi Nakibly, Alex Kirshon, Dima Gonikman, and Dan Boneh.
Persistent OSPF attacks. In Proceedings of NDSS, 2012.

Gabi Nakibly, Adi Sosnovich, Eitan Menahem, Ariel Waizel, and
Yuval Elovici. OSPF vulnerability to persistent poisoning attacks:
a systematic analysis. In Proceedings of the 30th Annual Computer
Security Applications Conference, ACSAC 2014, New Orleans,
LA, USA, December 8-12, 2014, pages 336-345, 2014.

Adi Sosnovich, Orna Grumberg, and Gabi Nakibly. Finding se-
curity vulnerabilities in a network protocol using parameterized
systems. In Natasha Sharygina and Helmut Veith, editors, Com-
puter Aided Verification - 25th International Conference, CAV
2013, Saint Petersburg, Russia, July 13-19, 2013. Proceedings,
volume 8044 of Lecture Notes in Computer Science, pages 724—739.
Springer, 2013.

Andrew H. Sung and Srinivas Mukkamala. Identifying important
features for intrusion detection using support vector machines and
neural networks. In 2003 Symposium on Applications and the
Internet (SAINT 2003), 27-31 January 2003 - Orlando, FL, USA,
Proceedings, pages 209-217, 2003.

Robin Sommer and Vern Paxson. Outside the closed world: On
using machine learning for network intrusion detection. In 31st
IEEE Symposium on Security and Privacy, SEP 2010, 16-19 May
2010, Berleley/Oakland, California, USA, pages 305-316. IEEE
Computer Society, 2010.

Osman Salem, Sandrine Vaton, and Annie Gravey. A scalable,
efficient and informative approach for anomaly-based intrusion
detection systems: theory and practice. Int. Journal of Network
Management, 20(5):271-293, 2010.

58

[TDJ*14]

(WCJ+]

[WVWOI7]

Ashish Tiwari, Bruno Dutertre, Dejan Jovanovic, Thomas de Can-
dia, Patrick Lincoln, John M. Rushby, Dorsa Sadigh, and Sanjit A.
Seshia. Safety envelope for security. In 3rd International Confer-
ence on High Confidence Networked Systems (part of CPS Week),
HiCoNS ’14, Berlin, Germany, April 15-17, 2014, pages 85-94,
2014.

S. F. Wu, H. C. Chang, F. Jou, F. Wang, F. Gong, C. Sargor,
D. Qu, and R. Cleaveland. Jinao: Design and implementation of a
scalable intrusion detection system for the OSPF routing protocol.
ACM Transactions on Computer Systems, 2:251-273.

Feiyi Wang, Brian Vetter, and Shyhtsun Felix Wu. Secure Routing
Protocols: Theory and Practice. Technical report, North Carolina
State University, May 1997. Found on Google only available copy

is through Google view.

59

.D"I0" VIN NIXT7 12 WNNWATZIE DT VT A'Wn7 NN, N'MMK NIavn 7w yTn a'wn?
D'WIN 7277 N10N 'R7aN X 2'¥N7 'RTD 12 DIP'MN DX JINQY? T YYD IT N7yl 900

.0'a1v

712! 1AW NNVARN DX 1OY7 XN IR . NIYAYN 'Yyn 78'¥1019 N7Y2 01D 11128 NDWwNN
NN [IN'RN 7NN 7'NNNTE NN NXYNM0N DXL 7Y YN NfAL7IDI0 DX ' Tan7 NI
,90112 ' TANW D1I''OXRNYT D'RNNN [DIXA ,NNAKX [ATA NIDPNN NINT? 221010 'K72 NIAY X'

.11V 'R72N IR D7 'RTD D'ANIN AN NTR 7V IRT7 Y'mint o 07w onniian

NNZ'WN NNNNN .01NVI'RI NNVARN DY IX? NTAY NIERO0 7W DIYY DINN 119 NTIAYN
NIYIT? NAXNN N, NNK (AT DIDPNN INT IX? NI9PNN K72 7W NIN'DS N0 NNTIAY v
[122) UNNWNN V' TANY NI'D'YO0N NIYAIT? NAXNN N1'N N7W NDIWNIAY NIFTINYD .WNNYnNn

AWOKX7 721N IT MDA .(NNIYA NIRAYN 11AY 1'NAN 21 DMIYORD DAIFND ,NYIN N1an
17¢ nwNa wnNnt nflwyn NATT NI7'YO 191 InxY W a7 1K

770 AZNNN NINNN NI '9'X90 |9IKA

JMRD NN NIXT NI9YO0 NAIZIDINYG NIN'RNNAN NIXAAIT 'Y e

97NN NNNIN Y TANT WNNWN? NIWOR - e

N'7Y NWAT7 NNT NI'R NITNYZ D'YN DNIK YN 0N DAY 119 TNyw 7T NIN'D - e
.NDYNN NINIR

DNMIA7N NYXAY D'I'WN IR TN DNNIAYYR 7Y cost sensitive NOMAA win'y e
UNNYNN YTANY 1'NNN NXYMUNA D'AYNNN

A'WN7 NN0NY ,NYND D'ANIN TRXN 3 7V 'K7a0 DI 227 wnnwn? ax7nn n1'ma - e

.0'a10 O'WIX"

N72'y 7T N7 nNunYy ,NAIYN NN NO0IAN NYWTN N>WWN DN 1IN IT NTIAY]

7D T2V IN'RD 27 IIX7 NINNAITA 110NAN 7Y NN2ANN N7¢ nYIn NNK AT NIDRNN
NN NIX7 WIN'Y DYV 12 DNNIIAZRN NIRNATN DX ¥ NN J1I0XR71I7'0 NdINA N771D R'nY
.NAINI WO NAI7ISI0 112V NIRNII NININN [N NIDPNN [N NN NIKAAITN

N7V T 7V NN NOPNN LT 7TINA 7N 7w 97D 7T NIyynRa N'wyl NI9ENNN NYN7IN'o
7¢ NINNINN IMININN DY TR NP D71V DI'RIYKR Q71NN V2NYN 17V 2NN YT 2V NIy
QPINN TV RPERA NNQY NIMITT NI7IVD 7w NYTO 7007 NIYY NRIY NI9NN 211090
NIYTN NIDPNN NINT? 721010 NI'N7 17 NNWORN 0T [DINQ NINXIN NINNAIT 7V NdWNN [N
.D'WIT' DI'XY DIV'ONRN NIV

72T ORN NYRAR IXT 'ONI0IRD AN 27W7 DAV NTYINN Y2 TYNNNN Ni7'won
NNV NA'INNAN DNAITA [P0 INKYT .(N9'PN DNNIN IT'RA L[DXRI) NOPNNA IX NY78NIND X2
NINNAIT VY NN DY2ARZ NIX7 DI'0AN DY DIFIYYY NIRIDN NN Y7Nnn DNy
qOIX D727 1IX ,NIVXR7IN'0N X'W NINNAITA 72 1AV Y¥ANnN AT)'70N K7 .NiwTn

117W IN'RD NXIAP IR DINND LD AN A0 72 v NIKNAIT

JIT'N NIRAY 7D 79 ' NN 1TAIM N2 1NN NXNI0N TN wnnwn? NNWoKn 17 ndwvnn
7w 19102 .VIT DTNY DNMIATX NIV cost-sensitive X'NW N0 DW'™7 NNIXK X'2N AT T
[9IX2 DXNIN KIN D 72V1 MX'Y NRINNN NIRNAITA QOIX 7V [AIXY NIDPNN K72 1727 1'7nnn

.79'0 KINW NWIN NAI7I9IVYI WNNWNN NIYAT? '9'¥90

D'2N17 AWOKN N7 717109 .OSPF Y1910 MIYPZNN 71710109 112y Nd>WNN DX YN X
NMLN DN7Y 2NN NIRA0 DX AWN7 07 DXNNANYAN N1aNn 7W AR Nmn 7277 nwna
NIY' IRN'0DIRN 717002 N7W TY'7 Y'ANY Min 7y nntlon nYTIN 11vn? PY NTR? nyTY
DN TAX 27T AN .N01N NIXA 1'72V Y'OWUN7 710" NT 21710N9 7V N9pPNn Nyx¥any
NIWYTIN NN T 72U YN DINKRD D'ANIN 7D 7W 2NN NIK720 DR DNT? 710' Ndwwna
712 2NN 9IX 7Y NYOWN NN QRINN NI7IVOYT 0T [9IX .Y YT NI7DNN

D'2NIN 7¥ 2NN NIX7A0 DR X71,NIYI NNAIYA MIIAYNN DX NTYNNA 112 1IRY NDwNn
,NIYNINN DY VAT NIDPZNN NINT? 'R727 NNYWOKRN NT [9IX2 NDWNN NI7'YO 1101 .01WN
IWYIY DMI'Y 7Y 002NN NOPNN 'IN'T .AIMAN NIXTALV 7V NYOYN [N W' 197 17'9X
.0721 12 PN PY TN ANIRA NI 717V 2N nikava

NNIXI NOPNNN 'SIX DY 27 'WIZ N7Y2 NN'YN NN NIYPN 717101092 NI9PNN NR'XN

.DWIT X7 Nifn? nvivy

.N7¥ NdYNN I DX [IN27 NNVNA 0*I01 7Y 2NN [I1AN 11DV 1IN

17w NOIYNN 'WIX' DX [IN27 N0, NIAIRISIL N'YX'Y7 DNMIATK 1770 17w 0*100 N20
.TING NDIN1 NN'AW DY ,NIN'0AN NIRXIN XN QYX'AY 0U101N .NRIY NIA0 1Ay

NIMWNI transfer learning 7w 0raxn 1191 TINY7 N713' 112W NDWWNNY 1IRIN ,D"10NN0 77ND

'"WIpn R v |2 IND .7V NININ NDWANY ITA MY WA 7V UXIan 1T'NN 0N ,NIMNT

STy

D'WIXYT DRAIWUN 1D9N1 1IANNN 17YW D'YIN'YNI 771 7170 001K YIN'YN DRIWN 17002
NI'PNN INI7'WO 7V 'wnn DI'RY 1290 NIMITT NIDPNN 07 7270 .071vn 'anna 0 DRIANI

.N7XD NI9PNN INT'W D*VNIVIXK D7D N 7W NNIA'WN NNV 271 D71VN 722 01TVI'RN Y

X 071710119 27U NN9N IN'T YT 2V NITT NIT'YO KIXAY DDINN NWA7 DTN IR

2NN 91X YIA97 QpINNN Y7 NIn 72y 0T NI'Y nnd 7R N7V NINT? D'Ivn

NP NYRY? TYAY DYCTNN INTT D719 IR DD9INY 02N DNANK DY NNT OY .NIMYN]

7Y DINN2A :N7V19 NIRT NDWN 12 Y7 YR DYNIYNYNN DNANKD TNX .0NK D'MINNN
NOIN D'TTYN [N TNXR 72 TWKRD NYWIN 7V D'AN7 O'97INN |'2 (WNNN YN Y NIDPNN 'IN'T
NI'N7 |07 0MNa71 DNMI7IY9 DX 1'MONY7 0'0IN D'OFZINN ,NTA 7'7Nd .IMI7ID' DX 77571 19w
7w |uj 190N DNV NITDA DR NIDPFNN .NDIWNI NIYNINNN NI72a0N NI7Iyo7? nimiT

JNINT? '"WIpN [XON1,717101N92 NIYXANNN DIFRIN NI71Y97 [N7¢ N1ana NINTA NI7IYO

D'0I9T IX D'?IN 7¥ NIT' NITAN 7V 1DANON NI9PNN 'K72 NIA7 D'N7NNNN NNIroan an
QOIX V' TAN? TINN DY ,N'UKXI .NIY7IN NNdN NI7AI0 17X NIYA NNT DY .NISZNN D1M'OXRNY
NI9PNN 71 NINT? 72100 "' ATH D'RIND QOIX ,NIY NI9PNN 7¢ AN [11an N0>'Y D'7IN
JN2IN NINANI 019X NIV NIT

IYN NTNY7 NI00IAN NIYTN NIV'Y INNID ,N7R DY 7V 12ann7 '

UNNYN7 0N N1 X7 ,NAawn? TIXN DIYR ' (NIDPNN 7¢) Nifarn NIXNAITI INKRN

N7X01 NI9PNN DY N'7XD) DN AN 10 72 NIV NIXNAITA NT'A7 D'AYNN D'NNNIATRA
YNNWN? |I'0 NWY1 [N ,one class 7¥ NIV'W7 D¥xnLXN? IX 0D Y7 .(NopNn K77
INX71,NYNN 7Y NN N9 NROD TYD Yy 9T 1T NIX7 7272 nir'7w niknam
.D"NIYNYN D"YjR 150N DY IT NW'A7 DA ,NNT DY .07 77N 7N nYTN NIANINN NHYRY Pn
D'717¥ D'aN1 |2 DMIA'N IX 09N 2NN [N ,NINYY 7W MIXITA 'DIXN KIN DNAY 'TOINN

2V NYpzNn 12T ,YiIap 0'02 7Y NINWNA D'YNINAIL DY7RNII DRAYWN] D780 D' .NNNWUNY
YNNI NIANINN 7Y [1I'9RN

D'MYONN AI'MN 210 72 DY NINNAITA WNANWAT7 NNI'0Y 1YWY ,NT 'WIR DY TTINNN? Nn 7y
D' DNANA DIY'Y ININ 17X NITIAY .2TN70 2702 (NOPNN K77 N8I NI9PNN DY N7XD)
DNANA ,N'UKXD NIN'YAN DY NAY'NN NI'R ,NNRT DY LIT NNIN .N7RD NINIoN NIXAAIT 7Y

2V [AIRY 77N, 127 .NINNSnnl NRYIN 0'DZINN NIFAAVIVOX TIYA ,0IY NNl D'WIAP DI'N N7XRD
D'9{7INN ,90112 ANIF NIYTN NIDPNN 7Y 1N I'0'1 Ny N'Y2d 7PN R7R YT'n MaRN N0
LAY 11PN .0'9RIN DN NNIXK N'O'YO0N NYWIN 7w DIY DN'ONN DNMNIDPNNA 71707 071D
D'VIX'A7 X'2'W 02T ,N'TNIN WA 7V N0 7700 yX¥a7 Nyt X7 miw nwn 7y nIke 7Tin
D097 NIMIYN [I'R NNAN PY ,TIRN NYR NN'YN 11'N NTOY YT 1aRN NAYN 91017 .0'IN)

YT 7007 nwyY L In7¢ NN NNAIvn MNIvNn DX

N7 NUYIREO9L 'Y AN 7INY 11091191 212112 NIIX 11099 7Y DNYNINA VXA pPNnn

Avunnn

nITin

JIVAYA NIYIADD 7V NTIN .212N1N2 N1X '9N9 L, NERINRD NN NN 11X D'
2V nTIN Q79 DU TOINN IPNAN 'Y N'ON' 21NN DINNN TWKRD DA 1ITY?21 DNYNYT N0
75712 N1y N1'AT DAY 7Y QTN NIM DRI0PN 00197 DA 270 NNIYN 791 NN, TITYN

[N NWIXNI N1'NAN [N ,NAMTA NN DT NIYRIIYIIR NIND NIYWA DA D'N'YY ,|AT
M1y NNl 3" NI NIRTN N9IENYT7 NNNAY 2 2V 717 NIMINY 121IX12a1, 'YK N1'Nan

[T 7 W TREN? N7xnW D Y 'Yl IR '9N9 Y gnivn nNanY 0a NITng nxn X
NNy 7y ,"7 NEooW NISO0IN VAN NITIRI 72V NTIN .0'XINYTI D'0INY DYIATA DA NAYNNI
AT NTIAWA 7man RN Y ATIN ATRN NQ'WNN Y1 D' TNN

NTIN .12 NO7IY 11'RY DINNYT N9'WNNI MDD 7V NTIN .'72421 123 T2 DN 21X, 1md
V1 07190 qIN'Y 7Y NTIN NN W INRR? DNNY NMMUN2 DAIY 09137 NIS9Y NIdIN 7Y
APNNN 17001 Yyl ntvn

11¥I2I 111202 DIRIMID 'YW W'Y 1210 NNVART? NN T 7V 1702 N1 AT NN

22 v 17 nimn?

72w N7 NAYNN Y'PUn (1N 7Y)79 DRt Y TIm LR R0 7T DTN nxn
NYM "2 Y'Y Ny TN TN IR Y7 NNIY D7D NNRVRD NIXYN 7Y QTN pnnn DX 0777
7Y 17 DTN .YaNi INV NYIND 7 NIN2 ,N7ITA IR NV ,N'WA 701 'MITY7 DN NNNWaY
.D"NNAY NINS D'INTA DA ,N2N ATV NAIVN NYINNN

D'¥IN7 D'INT DA DY DN"AY D 7V QTN .NTH YoNnd 'M'R D'9NIY I'NY "1aN7 NITINYT 11X
DN NN YR ANTAITA)TN DTV IXD DA ATVl ND'ANn L TITYN Y aTin N
MIX — 'NO"AI 'NXYT ,70M 'MINKYT ,'YIYI DNIN ,'7W DNINYT S NMNDWNYT NITINY 11X ,91017
DNONY NNNWNI NRINN 2V NTIN NYIE AR 78IX — "7 DIYNRD DYIRYT D1, DI
TNNY 7D 7V NTIN .N'OI01'RN NANXRNI NIMNN LNIY70 7V ,00NTY 7V NTIN .IRTN N9IPNY
N7 |"TYWD DA ,UN'NNT K71 V'PYUN7 .02 17 MIX 1ITA7e 70 "In? nTin ."7'awa v DN
N7 NT DO'TY7Q AT 7222 ITY? NINNY'ANEND'NTA 7V NTIN .NNNIAN NXPAY 1IRD DX 0'RN
7V 17 DTIN NY'OX IR .N2N NWIXZAN DITYA 7Y 72 MINKYT? DTN QTN .AIR AN
JININE 'Y NIXA)7W DN N2WWNNNALE N VTN Y NNy

.00'7 NTIN .00 NN AN = INAY? 7N 7 antn 17 7aX ,0NR X7 NNSYnY DNNIX

T AZNN (M 2y 11007 A1on ATIN NN

N2IYIN NT9972 VINIVY
NN)22 MAPNN NN TND

NN 7y 1IN

ANINN N7AR7 NIYATR 7w 72970 19 Dwh
2WUNNN 'Vl 0'WTn? 100'an

929 599

7R 1171100 |1DN — |1"1D0N V10T YAIN
2019 wN1® no'n L"ywnn 'RITR

N2IYIN NT9972 VINIVY
NN)92 MAPNN NN TND

929 599

	List of Figures
	Abstract
	1 Introduction
	2 Preliminaries
	2.1 OSPF Basics
	2.2 Cisco implementation of OSPF
	2.3 Formal Modeling

	3 Threat Model
	4 Applying Machine Learning for Identifying Attacks at Run-Time
	4.1 Introduction
	4.2 Problem definition
	4.3 Solution outline
	4.4 Example generation by simulation
	4.5 Example tagging
	4.5.1 Estimating the attack severity
	4.5.2 Ordered categorical tags

	4.6 The Features
	4.7 The Learning Algorithm
	4.7.1 Choosing a Split
	4.7.2 Determining the Final Tag
	4.7.3 Feature Importance

	5 Empirical Evaluation
	5.1 Experimental Methodology
	5.2 The Network Topology Generator
	5.3 System Performance
	5.4 Feature Importance
	5.5 Transfer Learning Setup
	5.5.1 Introduction
	5.5.2 The Target Belongs to the Same Family as the Source
	5.5.3 The Target Belongs to a Different Family from the Source

	5.6 Dynamic Networks
	5.6.1 Introduction
	5.6.2 Topology Changes Between the Training and Prediction Phases
	5.6.3 Topology Changes During Training and Prediction Phases

	5.7 Detection Times
	5.8 Evaluation with Real Data
	5.8.1 Introduction
	5.8.2 Real OSPF Data
	5.8.3 Results

	6 The Monitor Placement Algorithm
	6.1 Introduction
	6.2 Locating One Monitor
	6.3 Locating More Than One Monitor
	6.4 Optimal Set of Monitors

	7 Related Work
	8 Discussion
	8.1 Applying the Framework to Other Protocols
	8.2 Working with Balanced Dataset
	8.3 Accuracy Measures
	8.3.1 Classification Measures
	8.3.2 Experiments with the New Terminology

	9 Conclusions and Future Work
	9.1 Conclusions
	9.2 Future Work

	Bibliography

