
Applying Machine Learning for
Identifying Attacks at Run-Time

Nurit Devir

Applying Machine Learning for
Identifying Attacks at Run-Time

Research Thesis

Submitted in partial fulfillment of the requirements

for the degree of Master of Science in Computer Science

Nurit Devir

Submitted to the Senate

of the Technion — Israel Institute of Technology

Adar aleph 5779 Haifa February 2019

This research was carried out under the supervision of Prof. Orna Grumberg and Prof.

Shaul Markovitch, in the Faculty of Computer Science.

Acknowledgements

First of all, I would like to thank my main advisor, Prof. Orna Grumberg. Thank you

for the weekly meetings, the willingness to help even when the field is relatively far from

your main research subjects. Thanks for the encouragement, guidance and attention to

even the smallest details. Thank you for being available for me at any time, sometimes

even in less conventional hours. I won an amazing supervisor, both professionally and

personally, and I would like to thank you for making this time so pleasant for me.

I would also like to thank my associate advisor, Prof. Shaul Markovitch, for devoting

time and thought in busy and stressful times. Thank you for the additional points of

view you gave me, about the new ideas and sharp thinking. Thank you for your great

part in this work.

I would also like to thank Dr. Gabi Nakibly. Thank you for the direction and

the exposure to a field which I was not familiar with. Thank you for your willingness

to contact various organizations in order to contribute to the quality of the research.

Thank you for your cooperation and for your help and advices during your research.

This research was partially supported by the Technion Hiroshi Fujiwara cyber

security research center in the Technion and I would like to thank them for it.

I would like to thank my friend Harel Cain. Thank you for your availability, for your

desire to invest thought and time for promoting my research. Thanks for the tips you

gave me along the way. Knowing that I had someone who would gladly help me with

any problem, small or big, gave me a sense of calm. Thank you for the good feeling and

the great help, even in less convenient times.

I would like to thank my friends who shared this journey with me. Thank you for

being there even in more stressful times. Thank you for your encouragement, support,

and help when needed. This way would have been much harder without you.

Finally, I would like to thank my family. My parents, Menachem and Shoshi, my

sister Michal, my brother and his wife - Ori and Reut, and my three nephews - Ariel,

Yoav and Shachar. Thank you for inserting joy and happiness to this period. Thank

you for your help, for your endless support and love. Thank you for always being there

for me. Thanks to my parents for teaching me to aim high, to invest and not to despair,

even when you still do not see the light at the end of the tunnel. Thank you for pushing

me and help at any time. Without you it would not have happened. Special thanks to

my sister Michal for the great professional help. I am grateful to you for sharing your

great knowledge and creativity with me, in a pleasant and loving way. It is said that

you do not choose your family, but if I had the ability to choose - I would choose you.

The generous financial help of the Technion is gratefully acknowledged.

Contents

List of Figures

Abstract 1

1 Introduction 3

2 Preliminaries 7

2.1 OSPF Basics . 7

2.2 Cisco implementation of OSPF . 9

2.3 Formal Modeling . 9

3 Threat Model 11

4 Applying Machine Learning for Identifying Attacks at Run-Time 13

4.1 Introduction . 13

4.2 Problem definition . 13

4.3 Solution outline . 14

4.4 Example generation by simulation . 14

4.5 Example tagging . 15

4.5.1 Estimating the attack severity 16

4.5.2 Ordered categorical tags . 17

4.6 The Features . 17

4.7 The Learning Algorithm . 18

4.7.1 Choosing a Split . 19

4.7.2 Determining the Final Tag . 21

4.7.3 Feature Importance . 22

5 Empirical Evaluation 25

5.1 Experimental Methodology . 25

5.2 The Network Topology Generator . 26

5.3 System Performance . 27

5.4 Feature Importance . 29

5.5 Transfer Learning Setup . 30

5.5.1 Introduction . 30

5.5.2 The Target Belongs to the Same Family as the Source 30

5.5.3 The Target Belongs to a Different Family from the Source 31

5.6 Dynamic Networks . 32

5.6.1 Introduction . 32

5.6.2 Topology Changes Between the Training and Prediction Phases . 33

5.6.3 Topology Changes During Training and Prediction Phases 33

5.7 Detection Times . 35

5.8 Evaluation with Real Data . 36

5.8.1 Introduction . 36

5.8.2 Real OSPF Data . 36

5.8.3 Results . 37

6 The Monitor Placement Algorithm 39

6.1 Introduction . 39

6.2 Locating One Monitor . 39

6.3 Locating More Than One Monitor . 41

6.4 Optimal Set of Monitors . 44

7 Related Work 49

8 Discussion 51

8.1 Applying the Framework to Other Protocols 51

8.2 Working with Balanced Dataset . 51

8.3 Accuracy Measures . 52

8.3.1 Classification Measures . 52

8.3.2 Experiments with the New Terminology 53

9 Conclusions and Future Work 55

9.1 Conclusions . 55

9.2 Future Work . 55

Hebrew Abstract i

List of Figures

4.1 Illustration of choosing a feature for the split. The left side demonstrates

the using of feature f1 for the split and the left side demonstrates the

using of feature f2 (‘+’ represents the tag 0 while ‘-’ represents the tag 1). 20

5.1 A specific topology created by the algorithm 28

5.2 Several rounds of cross validation algorithm (from Wikipedia) 29

5.3 Weighted accuracy as a function of the number of examples used in the

training process . 30

5.4 Weighted accuracy as a function of the n and d. 31

5.5 Weighted accuracy as a function of the distance between the target and

the source families . 32

5.6 Weighted accuracy as a function of delta. Topologies with 6, 12 and 16

routers, from left to right respectively. 33

5.7 The organization’s network topology . 37

6.1 Weighted accuracy as a function of the number of monitors. Topologies

with 12 and 16 routers, from left to right, respectively. 45

Abstract

With the increase in malicious activity over the Internet, it has become extremely

important to build tools for automatic detection of such activity. There have been

attempts to use machine learning to detect network attacks, but the difficulty in obtaining

positive (attack) examples, led to using one-class methods for anomaly detection.

In this work we present a novel framework for using multi-class learning to induce

a real-time attack detector. We designed a network simulator that is used to produce

network activity. The simulator includes an attacker that stochastically violates the

normal activity, yielding positive as well as negative examples. We have also designed

a set of features that withstand changes in the network topology. Given the set of

tagged feature vectors, we can then apply a learning algorithm to produce a multi-class

attack detector. In addition, our framework allows the user to define a cost matrix for

specifying the cost for each type of detection error.

Our framework was tested in a wide variety of network topologies and succeeded to

detect attacks with a high accuracy. We have also shown that our system is capable

of handling a transfer learning setup, where the detector is learned on one network

topology but is used on another topology from the same family. Another setup we

tested is dynamic networks in which changes take place in the topologies. Finally, we

also referred to choosing the router(s) which should be chosen to record the traffic and

transfer this information to the detector, in order to achieve high performances.

We anticipate the presented framework will enable any organization to defend itself

with an attack detector that is automatically adapted to its particular setting.

1

2

Chapter 1

Introduction

Over the years, the use of the Internet has become increasingly widespread and its

applications became extremely wide with enormous importance to billions of people

around the world. In parallel, malicious attacks have become a critical threat to the

Internet activity all over the world. Thus, it has become extremely important to build

tools for automatic detection of such activities.

Network intrusion detectors are designed to spot malicious activity by identifying

protocol violations. It is desirable to detect such activity as early as possible to prevent

the attacker from damaging the infrastructure. There are many challenges making the

intrusion detection task harder than other areas [SP10]. One main challenge is related

to the background in which such a system works. In this field of attack detection, there

is an ongoing race between attackers and defenders. Each one tries to improve its own

abilities. Thus, the attackers try to hide their actions and make them similar to a

normal behavior of the system. Such an attack sometimes involves a small number of

actions, and these actions can be identical to legal actions in term of their structure

[SGN13].

Most initial attempts to build attack detectors relied on manually defining rules or

patterns that characterize attack activities [HS14, GM14]. Such an approach suffers

from several weaknesses. First, it is very difficult to design such a set of rules that covers

a wide variety of attacks. Second, the set of rules will usually be able to detect only

known attacks. To overcome these difficulties, new example-based machine-learning

based methods were developed. Since positive examples (of attack activity) are very

difficult to obtain, strong binary or multi-class algorithms could not be used, and these

solutions had to resort to weaker one-class learning approach to create a model of

trustworthy activity, and then compare new behaviors against this model [TDJ+14].

Such an anomaly detection approach has significant difficulties in intrusion detection

context as network traffic is often very diverse, where the bandwidth or the duration of

connections can exhibit immense variability. These changes are normal and occur in

networks on an ongoing basis, which makes it difficult to characterize normal behavior.

To account for the difficulties of characterizing normal behavior, several works

3

have made an attempt of using multi-class learning algorithms for the detection task

[SM03, CFF16, KJS17]. These works assumed the existence of a relevant tagged set

of examples, both positive and negative. This assumption, however, may not hold in

practice. First, the strategies of the attackers are continuously developed and evolved.

Thus, a model trained on previous attacks would have a problem identifying newer

types of attacks. Second, an attack may exploit characteristics of the particular network

topology. Therefore, a model trained on other topologies may not perform well. Third,

obtaining a real multi-class training set for intrusion detection is extremely difficult

[SP10]. It is especially difficult to obtain positive examples of attacks, mainly due the

potential sensitivity of the data.

In this work, we present a new framework for example-based learning of an intrusion

detector. Our approach overcomes the lack of datasets by including a simulation-based

example generator. The example generation algorithm simulates both attacks and

normal activity in a given network topology. The network activity records are then

passed to an automatic tagging module and then to the feature extractor that derives

a special set of features, yielding a multi-class training set. Our framework allows

the user to specify a cost matrix (for identifying the cost for each error type). We

therefore developed a cost-sensitive version of Random Forest algorithm, which is a well

known learning algorithm that uses a committee of decision trees. We used our learning

algorithm on the generated training set to induce an intrusion detector tailored to the

given network topology.

We have implemented this framework for the widely used routing protocol OSPF.

This protocol allows routers to calculate their routing tables within a cluster of networks

- an autonomous system (AS). An attacker that leverages OSPF to attack an AS

may have a catastrophic effect on it. A single malicious router within an AS can

poison the routing tables of all other routers of that AS by sending false routing

messages, thereby subverting the entire routing process. Finding attacks on the routing

protocol is a demanding task as the exact nature of the attack may be unknown. We

performed an extensive series of experiments to test our framework characteristics. Our

experimentation environment includes a network topology generator that enables us

to test our algorithm in a variety of environments. Our empirical evaluation showed

promising results, with a very low error rate. We have shown that the learned models

can withstand situations of transfer learning and dynamic networks, where the learned

model is applied to a different topology than the one trained on. In addition, we propose

a way to choose the location where the detector should be placed in order to get a high

accuracy rate.

Our new framework has a significant practical potential. An organization can easily

define its network topology and cost matrix and start the training process. The system

will produce a runtime intrusion detector that is adapted to the specific topology and

cost matrix. Furthermore, as we later show, our algorithm can recommend the particular

router where the detector should be located at.

4

Our work is an involved application of learning techniques for enhancing security

in the Internet. The main contribution of our work is the development of an adaptive

learning-based runtime intrusion detector. Our framework is unique in that it adapts

itself to the user’s specific setting (topology, severity of attacks, cost of different

misclassification errors, and more). This framework will enable an organization to

defend itself against malicious activities, according to its needs. Specifically, our

contributions include:

• Generating examples that are relevant to a specific desired topology.

• Enabling the user to define severity of attacks.

• Learning a model that withstands transfer learning and dynamic networks setups.

• Using a cost sensitive version of a known learning algorithm. Our modifications

of the algorithm take into account a cost matrix given as an input.

• Recommending a particular router where the intrusion detector should be located

at, for achieving a high accuracy rate.

This work is structured as follows: Chapter 2 presents the OSPF protocol, its

standards and the implementations. Chapter 3 describes the threat model we used.

Chapter 4 formally defines the problem and presents our solution components. Chapter

5 describes the experiments we conducted, including setups of transfer learning and

dynamic networks. Chapter 6 discusses the question of which router(s) needs to be

chosen to locate the detector at, and proposes an answer to that question. Chapter

7 reviews previous works done in the field. Finally, Chapters 8 and 9 discuss our

framework, summarize the results achieved and present a possibility to extend the work

in the future.

5

6

Chapter 2

Preliminaries

2.1 OSPF Basics

When talking about computer networking, a routing table is a database held by every

router in the network. This table tells the router to which of its neighbors it should

forward a packet in order for it to reach its destination through the optimal route.

Open Shortest Path First (OSPF) is one of the most widely used interior gateway

routing protocols on the Internet. Its aim is to allow routers within a single autonomous

system (AS) to construct their routing tables, while dynamically adapting to changes in

the autonomous system’s topology. OSPF is currently used within many autonomous

systems on the Internet. It was developed and standardized by the IETF’s OSPF

working group. On a given network, each one of the routers sends its neighbors a

message called “Link State Advertisement” (LSA). The main field in this message

contains the links to the neighbors known to the router who generated the LSA, and

their costs. We refer to this field as Links. This information actually describes the

router’s local view of the network. When a router receives such a message from another

router, it updates its view about the topology accordingly and floods the message to all

of its other neighbors. At the end of this process, each one of the routers has a database

which contains the up-to-date information about the network and about the costs of

sending a message from one router to its neighbors. According to this information,

using Dijkstra’s algorithm [DIJ59], a next hop is derived for each destination, which

forms the router’s routing table. Now, if router x wants to send a message to router y,

router x looks at its routing table and sends the information to the neighbor so that

the overall route to router y will be of a minimal cost. From the description above,

it is obvious that an attacker who compromised a router residing within the AS can

easily manipulate the routing information distributed by the protocol. It may block the

flooding of LSAs to some of its neighbors, change the contents of LSAs before sending

them to other routers or simply advertise false LSAs on behalf of the compromised

router or other routers in the AS. Using such manipulations, an attacker may poison the

routing tables of all other routers in the AS, thereby controlling the routing process in

7

the AS. Such control may allow the attacker to re-route selected traffic streams through

the router it controls in order to eavesdrop or alter the traffic. It may also substantially

degrade the performance of the AS by selecting longer routes or disconnecting portions

of the AS all together. Indeed several works have shown different attacks that abuse

OSPF.

The OSPF protocol dynamically adapts to changes in the network: every few

seconds, each router sends a ‘hello’ message to its neighbors in order to inform them

it is alive. This type of message is sent in a fixed time interval (“hello interval”). If a

router does not receive such a message from its neighbor within a certain predefined

period of time, it infers that the connection between them went down and they are no

longer neighbors. In the opposite case, when a router receives a ’hello’ message from a

new router that has not sent such a message before, it infers that a connection between

them was inserted and they are new neighbors. According to this knowledge, the router

updates its information about the network topology and sends a new LSA with its

updated local view. In addition, every 30 minutes the router sends a new LSA instance,

even if there is no change since the last one. This action is called “refresh the LSA”.

Definition 2.1.1 (LSA fields). The following are some of the relevant fields included

in an LSA:

• Sequence number - a serial number of the LSA. This number can not exceed

the value of “MaxSeqNum” parameter. This number increases by one on every

new instance of the LSA, which is either sent periodically or sent when the router

detects a change in the network. An LSA with a lower sequence number will be

replaced by an LSA of a higher sequence number that was originated by the same

router. The replacement will take place in the database of the router that received

the LSAs.

• Age - the time in seconds since the LSA was originated. This field is increased by

one every passing second as long as the LSA is stored in the router’s database, and

also when the LSA is moved to another router. This field is never incremented

past “MaxAge” parameter. When an LSA reaches the value of “MaxAge” in its

Age field, it is finally flushed from the router database.

• Advertising router - this field identifies the router which generates this LSA.

• Links - as described, this field contains the information about the links to the

router’s neighbors that the advertising router knows about, and their costs.

We also add some more fields that contain more information about the LSA:

• From - the router that sent this LSA.

• To - the router that received this LSA.

8

• Time - the absolute time in which the LSA was sent or received in the network.

An OSPF run π is a sequence of LSAs, sent or received by the routers of the network,

according to the protocol rules. For the problem we face in this work, we need to define

the following:

Definition 2.1.2 (run from the point of view of a router). Given an OSPF run

π and a router r, a run from the point of view of r, denoted πr, is a sequence of LSAs,

obtained by restricting π to those LSAs that were sent or received by the router r (r

appears in the To or From fields of the LSAs).

OSPF has a mechanism called fight-back which helps it to deal with attacks: When

a router receives an LSA which claims to be generated by itself, and after some checks

finds out that this LSA was not generated by itself, it sends a new LSA. This new LSA

contains the correct information about its links. It also includes a sequence number

which is higher by one than the sequence number of the malicious LSA. The new LSA

is also flooded in the system and because its sequence number is higher, it replaces

the malicious LSA in the databases of all other routers. This will cause the attack to

fail of being permanent in the system. Note that because of the flooding action, if an

attacker sends an LSA on behalf of a router, this router will often receive this LSA and

“understand” that something is wrong, because it did not originate such an LSA. This

router can then activate the fight-back mechanism.

In spite of the fight-back mechanism, previous works [SGN13] show that OSPF is

vulnerable to attacks. As mentioned, the goal of our work is to detect and alert of

attacks at runtime, when they actually occur.

2.2 Cisco implementation of OSPF

In this research, we are going to track the traffic messages and will try to find properties

that indicate that the system is under attack. In addition, we want our work to be

used in the real world - real OSPF running. For that, we checked the commands Cisco

provides the users in order to see the OSPF running mode in a specific time. Our

learning will be based on these commands, so users will be able to use our model in a

real OSPF setting.

2.3 Formal Modeling

Some previous works analyzed OSPF protocol. Most of them have not modeled

the protocol in its entirely but rather abstract away some details (see, for instance,

[MKSUKW12] and [SGN13]). In our work, we decided not to model the routing table

calculation. This is because we would like to detect an attack, even if it does not

affect the routing table. Note that the routing table calculation is based on Dijkstra’s

9

algorithm and therefore significantly increases the running time of the protocol. Thus,

implementing it will add unnecessary overhead to the process of generating runs which

will be examples to the learning algorithm.

Our modeling is suitable for static topologies, in which the links between routers

are unchanged. It is also expanded to dynamic networks, in which changes occur in the

structure of the topology.

The modeled functionality includes the LSA message structure, the LSA flooding

procedure, the fight-back mechanism, the hello message structure, the refresh LSA

procedure and the flushing operation.

We implemented this protocol using Python. The protocol was simulated on a variety

of topologies, each one of them contains legitimate OSPF routers and can also contain

a single malicious router. For the protocol simulation, we used an existing code 1 and

extended it to our needs.

1https://github.com/baudm/ospf-sim

10

Chapter 3

Threat Model

We adopt the common threat model found in the literature [WVW97, WCJ+, JM06,

NKGB12]. This model assumes the attacker has the ability to send LSAs to at least one

valid router in the AS and that router processes them as valid LSAs. This assumption

can be trivially achieved by an insider, namely an attacker who gained control over just

a single router in the AS. We assume nothing about the location of the compromised

router. The attacker can gain control of a router, for example, by remotely exploiting

an implementation vulnerability on the router. Several such vulnerabilities have been

published in the past (e.g., CVE-2018-0167, CVE-2018-0175, CVE-2015-0235).

OSPF employs per-link LSA authentication where each link is associated with a

secret shared by all the routers directly attached to that link. A router authenticates a

received LSA using the secret associated with the link on which it was received. Note

that no end-to-end authentication is employed in OSPF. The threat model assumes that

the attacker knows only the secrets associated with the links that are directly attached

to the router it controls. It does not know the secrets associated with other links in the

AS. Consequently, the attacker may only be able to send false LSAs to its immediate

neighbors (which they in turn flood to their neighbors). Specifically, the attacker cannot

send an LSA directly to a remote router.

We assume that attacker may be able to do illegitimate actions. The set of these

actions is described in detail in Section 4.4. In this work we monitor the routing protocol

traffic, which allows the detection system to identify attacks as soon as they unfold,

even before they have an affect on the routers’ routing tables. Identifying an attack

based on changes to the routing tables may be too late - the damage has already been

done.

We assume the defender has one or more monitoring points on the routers in the AS.

Detection logic may rely on information gleaned from those routers only. Specifically,

this includes the OSPF traffic that passes through the monitored routers. We assume

the detection system does not have a global view of the routing state of the AS.

11

12

Chapter 4

Applying Machine Learning for

Identifying Attacks at Run-Time

4.1 Introduction

In the following sections, we formally define a learning problem and discuss the different

components of the learning algorithm. In general, a learner is given a set of examples,

each of which is tagged with a value describing the subset it belongs to. The goal is to

build a classifier that can identify the tag of a new, previously unseen, example. Each

example is first transformed into a set of features and then analyzed by the learning

algorithm.

In our setting, the examples are runs of the OSPF protocol from the point of view

of a specific router, called monitor. Our goal is to identify whether the run contains an

attack, and tell how severe the attack is.

We now describe a learning problem more formally [Fri17]: Let O be a set of objects.

Let L = {l0, . . . , lk−1} be a set of k possible labels, also called “tags”. Let f : O → L be

a function which gets o ∈ O and returns its label l ∈ L. Let D ⊆ {(o, f(o))|o ∈ O} be a

set of tagged examples. Let F = {f1, . . . , fn} be a set of functions fi : O → Ii when Ii

is some domain representing possible values of the feature fi of an object. Then, the

training set is represented by feature vectors: S = {(〈f1(oi), . . . , fn(oi)〉, yi)|(oi, yi) ∈ D},
where yi is the tag of oi and 〈f1(oi), . . . , fn(oi)〉 is the feature vector associated with

oi. A learning algorithm takes S as an input and finds a function g : O → L, called a

classifier, which approximates the function f .

4.2 Problem definition

Let N = (V,E) be a graph representing a network topology, where V represents the set

of routers and E the set of connections. Let M ∈ V be a router, denoted as the monitor.

Let πM be a run from the point of view of the monitor M . Let T = 〈t0, . . . , tk−1〉
be a set of attack categories ordered by their severity (where t0 represents “no attack

13

in the system”). The motivation for using ordered categories is to provide the user

with well-defined severity levels rather than continuous values, which are difficult to

interpret. Such categorical tags can tell an organization how severe the attacker actions

are, according to its own definition of severity, and can help it to arrive at a more

well-informed decision on how to treat a detected attack. We assume the existence of

an oracle o that receives πM and returns its true category in T . Our goal is to build o′,

an approximation of o.

Furthermore, we assume that different types of errors may carry different costs,

and these costs are specified by a given k × k cost matrix C, whose Ci,j entry defines

the cost of assigning the tag ti to an instance whose actual (real) tag is tj . Note that

typically, entries on the main diagonal of this matrix are all 0 (no error). Our goal is to

minimize the error cost according to C.

4.3 Solution outline

We propose to solve the above problem using a machine learning approach. There are

several obstacles in applying learning for this problem, mainly the lack of examples. In

the following subsections we describe the components of our solution:

1. A simulation-based example generator.

2. An analysis-based tagging algorithm.

3. An OSPF-based feature extractor.

4. A cost sensitive learning algorithm.

4.4 Example generation by simulation

One significant challenge in training a model to be used as an attack detector is

the lack of public datasets to train the model with. In this section we present an

alternative approach, where the learning system produces its own training examples

using simulations.

The example generator works by simulating normal OSPF activity and periodically

simulating an attack. When simulating the OSPF runs, some of those runs contain

an attacker where others are normal. On each run, one of the routers is chosen to act

as the monitor, which means that the messages received and sent by this router are

recorded. Our simulations also contains an attacker defined as follows.

Definition 4.4.1 (Attacker). An attacker is an entity with predefined set of capabil-

ities. The attacker takes control of one of the routers in the network and can do the

following actions:

14

• When getting an LSA, the attacker can change the Links field. In addition, the

attacker can decide which of its neighbors to forward the LSA to, if any. The

motivation of such an action is to falsify the knowledge the other routers have

about the topology without doing something that can clearly reveal the attack

(such an action requires only the changing of the Links field of the LSA).

• The attacker can also generate a new LSA by choosing arbitrary values for the

fields and deciding which of its neighbors to send this massage to.

In this model, an attack is initiated by any action made by the attacking router,

which is not consistent with a normal protocol behavior, even if that action did not

have an effect on the routing process. The definition above contains a large collection

of capabilities from which the attacker can randomly generate different combinations

of actions resulting in different attacks. We do not restrict the attacker’s sequence of

actions at all. This means that the attacker can choose an action in every step, thus

creating a sequence of messages that constitutes an unknown attack. By doing that,

we enable the attacker to generate new attacks and our framework would be able to

identify them.

Given a network topology N and a monitor router M , we generate m runs. At each

run, we stochastically decide if the run contains an attacker A, and if so, which router

is the attacker. We simulate the OSPF protocol in a distributed manner. In addition to

the protocol simulation, the attacker can inject and execute actions that violate the

protocol, according to its capabilities, described above.

During a run π, we save records of πM and πA (the run from the points of view

of the monitor and the attacker, respectively). Once the simulation of π is finished

(after a predefined number of steps ρ), we partition πM and πA to prefixes at fixed time

intervals. This way, at a specific point in time, we have the prefixes of πM and πA, up

to that time. For a router r, we denote by PR(πr, t) the prefix of πr at time t, i.e., the

sequence of messages in πr in the time interval [0, t].

Both, the attacker prefixes and the monitor prefixes are later used by our tagging

algorithm. However, only the monitor prefixes will be available during detection, and

therefore, only these prefixes will be used for extracting features during training. Note

that using these prefixes simulates real-time mode in which we are given a run up to a

certain point in time. The example generation algorithm is listed in Algorithm 4.1.

4.5 Example tagging

The tagging algorithm receives a pair of prefixes, the monitor prefix and the attacker

prefix, from the example generator, and produces a tagged example. The tagging process

consists of two steps: first, computing a continuous value reflecting the severity of the

attack, and second, transforming the value into one of the categories in T .

15

Algorithm 4.1 GenerateExamples(N = (V,E), M)

1: S ← ∅
2: for i = 1, . . . ,m do
3: attack flag ← flip a coin
4: if attack flag then
5: A← random selection(V) . choose router A as attacker

6: simulate the OSPF protocol on N for ρ time units.
7: for j = 1, . . . , ρ do
8: S ← S ∪ {〈PR(πM , j), PR(πA, j)〉}

4.5.1 Estimating the attack severity

The goal of the first step is to assign the generated example a value reflecting the

severity of the attack. For doing so, we use the IllegalActionCost field, added to every

LSA with an initial value of 0. During the simulation, if the attacker performs an action

that deviates from the protocol, IllegalActionCost is assigned an integer positive value,

reflecting the severity of this deviation. For example, if according to the protocol, a

message should be sent to a set of neighbors, and the attacker blocks it from getting

to some of them, the severity of the attack is proportional to the number of neighbors

blocked. Note that the value of the IllegalActionCost field can only be determined

during the simulation, and not after it, since only then we know what was expected by

the protocol and how the attacker actually acted.

To determine the continuous value of a monitor prefix PR(πM , t), we use the

corresponding attacker prefix PR(πA, t). The value should reflect the severity of all

abnormal actions performed by the attacker along the prefix. To evaluate this value, we

take into account two factors:

• We sum up the values of the IllegalActionCost fields in all LSAs that appear in

the attacker prefix. This sum is denoted by TotalCost. A larger value of TotalCost

means more severe deviations from the protocol.

• Let FirstAttack represents the Time field of the first LSA in the attacker prefix,

where IllegalActionCost 6= 0. This is the first time the attacker did something

illegal. Let PrefixLength denotes the Time field of the last LSA in the prefix.

The value PrefixLength− FirstAttack reflects the absolute time during which the

attack had been in the system, had the potential of spreading throughout the

network and influencing its behavior. The larger this value is, the more severe the

attack is.

We now compute the continuous value of a prefix of πM as:

TotalCost · (PrefixLength− FirstAttack)

16

4.5.2 Ordered categorical tags

Once the example (monitor prefix) is assigned a value reflecting its severity, we transform

this value to a tag t ∈ T = {t0, . . . , tk−1} according to the problem definition. One

simple way to do this is a uniform discretization of the range of continuous values to

k− 1 intervals. These k− 1 intervals represent the k− 1 tags which symbolize an attack

(belong to the group T \ {t0}). Prefixes without an attack are automatically tagged as

t0.

4.6 The Features

The examples used for training are tagged monitor prefixes. We designed a set of

features that aggregate various values over the prefix. To make the features suitable

for both fixed and dynamic networks, we decided to make the features relative rather

than absolute. For example, if the model is trained on one topology but is applied on

another one (transfer learning), the number of neighbors of the monitor can be different

between these two networks. Therefore, instead of a feature describing the number

of neighbors an LSA was sent to, we use the difference between these values in two

consecutive LSAs. In addition, for the same reason, we do not define a feature for each

router in the system, but rather define aggregator features that summarize the desired

values for all the relevant routers. We have features of several types:

• F1: Features related to Sequence Numbers of LSAs.

• F2: Features related to the Links field in the LSAs - the number of links, the

connections they describe, and their costs.

• F3: Features related to the times in which LSAs were sent or received by the

monitor.

• F4: Features related to the neighbors to which the monitor sent the LSAs.

• F5: Features related to the ‘hello’ messages, received or sent by the monitor. This

type of features is used when dynamic networks are considered, where changes take

place and connections go up and down. In a fixed network, these ‘hello’ messages

are sent periodically to keep the routers in the network knowing their fixed set of

neighbors. However, in a dynamic network, these messages give information about

the changes occurred, and are taken into consideration while trying to distinct

between normal changes or attacks.

As it can be seen, some of the features are specific to the OSPF protocol and relate

to specific messages (LSA, ‘hello’) and specific fields of them (such as the Links field).

However, other features are more general and relate to the traffic passing through the

network (such as the number of neighbors a message is sent to).

17

Note that in some cases some of the features cannot be extracted in a certain prefix,

usually when considering a short prefix. In such a case it is possible that there is not

enough information about the run. We are not dealing with such examples and remove

them from the example set.

4.7 The Learning Algorithm

In general, there are two families of learning problems:

1. Classification - predicting a discrete number of values. For example, predicting if

a person is in a high risk of a specific disease or not.

2. Regression - predicting a continuous value. For example, predicting the price of a

house.

While choosing the learning algorithm to use, two issues are needed to be taken into

account:

• The tags are discrete values, like in a classification problem.

• There is an order between the possible tags, like in a regression problem.

Considering these properties of the tags, the user can define the penalty for each

type of misclassification error. For example, he can define a higher penalty for prediction

of t0 to an example whose real tag is t3, than a prediction of t0 to an example whose

real tag is t1. Such a decision takes into account the order between the different tags

and gives a more severe penalty for error between more distant tags. In other words,

some misclassification errors can be considered worse than others, as specified in the

cost matrix. Thus, we have modified the Random Forest algorithm, so that it can take

into consideration the cost matrix. By using this matrix, the user can define different

costs to different misclassification errors. In addition, the matrix is not required to be

symmetric, which means that the user can prefer, for instance, false positive over false

negative.

Our learning process uses the framework of Random Forest algorithm, which is a

well known learning algorithm that uses a committee of decision trees. Each decision

tree presents a sequence of tests conducted on a given example. At the end of each

test sequence, a decision is made and the tag of the new example is determined. Each

test is represented as an internal node of the tree and has several possible outcomes,

which constitute the children of that node. An internal node in the tree can be viewed

as implementing a split of the examples arriving at that node, based on the test in the

node. A leaf in the tree represents the tag will be given to an example that will arrive

to this leaf at the end of the test sequence.

A committee is a set of decision trees that commonly predict the tag of a given

example. Each one of the trees gives a prediction to the example and the final prediction

of the classifier is defined based on the predictions of the trees.

18

Random Forest is a learning algorithm that uses a committee. It builds a forest of

several decision trees, each of which is constructed with a subset of examples. Further,

in each splitting test node, a subset of features is considered, from which one feature

is chosen to be used for this split. When we are interested in predicting the tag of a

new instance, each one of the trees in the forest conducts its test sequence on the given

instance and outputs its prediction for the object. All the tree predictions are taken

into consideration when calculating the final tag of the instance. For example, in a

classification task, the final tag is determined to be the tag which was predicted by the

majority of the trees. This decision minimizes the number of trees that do not agree

with this final tag. In a regression problem, when we are interested in predicting a

continuous value, the final tag is determined to be the average of the tree decisions. In

order to take the cost matrix into account, we made two changes in the classic version

of Random Forest. One change is done when choosing the feature to split a node by and

the second change is done when calculating the final tag according to the predictions of

the trees in the forest.

4.7.1 Choosing a Split

Assume a set of tagged examples arrived at node v of a decision tree. The tag of v

will be determined so that it minimizes the average misclassification error in the node,

according to the cost matrix. For calculating this tag we check all the possible tags. For

each possible tag t, we check the penalty we would pay if we determine the tag of all

the examples arrived the node to be t. Note that this computation of the node tag is

done in the training phase, when we have the real tags of the examples, thus we can

calculate the penalty we would pay for the different possibilities of the node tag. At the

end of this process, we divide the results by the number of examples arriving at the

node and define the tag of the node to be the one that achieves the lowest cost. More

formally, recall that the set of possible tags is denoted by T and the cost matrix by C.

Let Ev be the set of examples reached node v. For each example e ∈ Ev, let r(e) ∈ T
be the real tag of e. Then the tag of node v is calculated by the following formula:

Tag(v) = argmin
t∈T

∑
e∈Ev

Ct,r(e)

|Ev|
(4.1)

When having the tag of the node, we can compute its average error by placing it in

the expression that represents the average misclassification error in the node. Therefore,

the average misclassification error for node v, Err(v), is given by the following formula:

Err(v) =

∑
e∈Ev

CTag(v),r(e)

|Ev|
(4.2)

According to Occam’s razor, simpler solutions are more likely to be correct than complex

ones. In terms of learning, the meaning of this principle is that a simpler and smaller

19

Figure 4.1: Illustration of choosing a feature for the split. The left side demonstrates
the using of feature f1 for the split and the left side demonstrates the using of feature
f2 (‘+’ represents the tag 0 while ‘-’ represents the tag 1).

tree is preferred to a more complex one. Therefore, when building the trees of the

learning algorithm, we are interested in the smaller trees. However, constructing such

an optimal tree is a NP-complete problem ([HR76]). Therefore heuristics are used. One

heuristic which is used for this purpose is called ‘Choose-Attribute’. This heuristic is a

greedy algorithm which chooses to split a node by the feature which results in the best

local separation. For example, consider a classification task, which is not cost sensitive,

in which we have a node with 3 examples, two of them have the real tag 0 and the other

one has the real tag 1. Suppose we have two possible features to use in order to split

the node. One feature, f1, separates the examples in this node to two successors - one

with the 2 examples tagged as 0 and the second with the last example (tagged as 1).

The other feature, f2, also separates the examples in the node to two successors, but in

a different way: one successor has 2 examples, one that is tagged as 0 and one that is

tagged as 1, and the third example (tagged also as 0) is passed from the node to the

second successor. In this case, the first feature executes a better local separation so we

will choose it to split the node (see Figure 4.1 for illustration).

In our cost sensitive version, we are also interested in small trees. We use a heuristic

which takes into account the cost matrix. Recall that for a given feature f that splits

the node, the examples of the node are divided between the different successors of the

node according to the values they have for this feature. In our algorithm, the feature

chosen to split a node v is the one that minimizes the weighted average on Err(vi)

for all successors vi of v, generated by the feature. We denote by succf (v) the set of

successors achieved when splitting the node v by the feature f . Note that all of the

examples in the node are divided between the node’s successors. Therefore, it holds

that
∑

vi∈succf (v) |Evi | = |Ev|. We denote the weighted average of the successor errors

as ‘WASE’, and given a node v and a feature f to split the node by, WASE(v, f) is

20

defined as follow:

WASE(v,f) =
∑

vi∈succf (v)

|Evi |
|Ev|

· Err(vi) (4.3)

The feature that minimizes the weighted average of the successor errors is finally

chosen to split the node. This feature is denoted by Feature(v) and formally defined by

the following formula:

Feature(v) = argmin
f∈Features

{WASE(v, f)} (4.4)

4.7.2 Determining the Final Tag

As said, using a platform of committee as in Random Forest, each one of the trees in

the committee gives a prediction for a new given example. The final prediction of the

classifier is defined according to the predictions of the trees. In our cost sensitive case,

we define the final tag to be the one that minimizes the average weighted error of the

trees. As before, this calculation is performed by using the cost matrix and checks all

the possibilities for the final tag. For each tag t, we check the average weighted error we

would get if we determine the tag of the new example to be t, considering the different

tree predictions. Let the set of trees in the committee be denoted by F . Recall that

the set of possible tags is denoted by T and the cost matrix by C. For a given example

e and a specific tree tree ∈ F , let tree(e) be the prediction of tree on e. Then, for

determining the final tag of e, we use the following formula:

final tag(e) = argmin
t∈T

1

|F |
·

∑
tree∈F

Ctree(e),t (4.5)

In the case where more than one tag achieved the minimal error, we choose the one

that achieved more ‘votes’ from the trees.

For clarification, let take a look at a specific example. Assume the set of tags given

as an input is T =< t0, t1, t2 > and the given cost matrix C is the cost matrix presented

in Table 4.1. Suppose we are interested in predicting the tag of a new example e, whose

real tag (unknown to us) is t0.

In one case, assume we have 3 trees in the forest that give the following predictions:

t0, t1 and t2. We denote by Err(ti) the average misclassification error we received when

determining the example’s tag to be ti. Then:

Err(t0) = 1
|F | · (Ct0,t0 + Ct1,t0 + Ct2,t0) = 1

3 · (0 + 2 + 4) = 2

Err(t1) = 1
|F | · (Ct0,t1 + Ct1,t1 + Ct2,t1) = 1

3 · (2 + 0 + 2) = 1.33

Err(t2) = 1
|F | · (Ct0,t2 + Ct1,t2 + Ct2,t2) = 1

3 · (4 + 2 + 0) = 2

Therefore, the chosen tag for e is t1, which is a mistake. Note that also in a regular

classification process (not a cost sensitive version), in such a case it is very likely to get

a wrong prediction according to the situation in which each one of the three trees gives

a different prediction and only one of them predicted the right tag.

21

Table 4.1: Example for the cost matrix. For each matrix element, the row represents
the predicted tag while the column represents the true tag.

t0 t1 t2

t0 0 2 4

t1 2 0 2

t2 4 2 0

Now suppose that the learning algorithm works better and builds an additional tree

that predicts the tag t0 for e. Then:

Err(t0) = 1
|F | · (Ct0,t0 + Ct1,t0 + Ct2,t0 + Ct0,t0) = 1

4 · (0 + 2 + 4 + 0) = 1.5

Err(t1) = 1
|F | · (Ct0,t1 + Ct1,t1 + Ct2,t1 + Ct0,t1) = 1

4 · (2 + 0 + 2 + 2) = 1.5

Err(t2) = 1
|F | · (Ct0,t2 + Ct1,t2 + Ct2,t2 + Ct0,t2) = 1

4 · (4 + 2 + 0 + 4) = 2.5

Predicting t0 and predicting t1 yield the same minimal error. However, the prediction

t0 got 2 votes by the trees, where t1 got only 1. Therefore, the chosen tag for e in this

case is t0, which is the correct tag.

Obviously, if we add an additional tree whose prediction for e is t0, Err(t0) will

remain unchanged while Err(t1) and Err(t2) will increase. Therefore Err(t0) will be

the minimal value and the final tag will be again t0, which is the correct tag.

4.7.3 Feature Importance

One of the most interesting issues when solving a machine learning problem is realizing

which ones of the features were helpful to the learning process. For finding these

features we implemented an algorithm which takes our new model classifier as an input

and outputs for each feature a value that represents the percentage of the feature’s

contribution to the learning process. The algorithm first initializes a zeros-array, where

each cell of this array is associated with one of the features and contains the feature’s

score. The algorithm traverses the trees of our model and in each internal node v (not

a leaf) that is splitted by a specific feature f , we calculate the two factors below:

• Error reduction: The decrease in the average error achieved by using f at this

node. A larger value of this factor means a greater contribution to the learning

process. As mentioned in Subsection 4.7.1, Err(v) represents the average error of

node v, and the weighted average of the errors of the successors of v is given by

WASE(v, f). Therefore, for a node v splitted by a feature f , the error reduction

factor is calculated by the following formula:

ErrorReductionv,f = Err(v)−WASE(v, f)

• Number of examples: The number of examples in node v. This is actually

the number of examples that are divided to smaller groups, using feature f .

The larger this factor is, meaning the feature helps to more examples, and

22

the contribution of this feature to the learning process is larger. Formally,

NumberOfExamplesv = |Ev|.

We now compute the Local score of feature f at a specific internal node v as

LocalScoref,v = ErrorReductionv,f · NumberOfExamplesv, and add this value to

the array cell associated with feature f . Algorithm 4.2 describes the algorithm that

calculates the features’ score array.

Algorithm 4.2 FeatureImportance(classifier)

1: features scores← zeros(number of features) . zeros-array
2: for tree t in classifier do
3: for node v in t do
4: if v is not a leaf then
5: f ← Feature(v)
6: LocalScoref,v ← ErrorReductionv,f ·NumberOfExamplesv
7: features scores[f] = features score[f] + LocalScoref,v

After having the features’ score array, we use it to calculate the percentage of each

feature’s contribution by the following expression:

Contribution(f) =
feature score[f]∑

g∈Features feature score[g]
· 100 (4.6)

23

24

Chapter 5

Empirical Evaluation

We have performed an extensive empirical study to test our new framework.

5.1 Experimental Methodology

The learning process requires from the user the following input: network topology,

monitor router, the set of possible tags and the cost matrix. For the experiments

described in this section we have used these settings:

1. Network topology: To allow experimentation in a diverse set of topologies, we have

designed a topology generator that is capable of generating topologies according

to specified parameters. This topology generator is described in the following

subsection.

2. Monitor location: We have randomly selected a node (a router) in the produced

topologies to act as a monitor.

3. Ordered set of tags: Our framework is capable of working with any ordered set.

For the experiments described here we have used 4 categories: No Attack, Weak

Attack, Medium Attack and Severe Attack.

4. Cost matrix: The cost matrix we used is specified in Figure 5.1. For each matrix

element, the row represents the predicted tag while the column represents the

true tag.

Since we need to measure performance with respect to the cost matrix, we have defined

a new measure called weighted accuracy.

Definition 5.1.1 (Average error cost). Given an example ei, let ti denote the true

tag of ei and pi denote the predicted tag of ei. Let max(C) denote the maximum

value specified in the cost matrix C (this is the maximal error cost we would pay for a

misclassification error). Given a cost matrix C and a test set of examples

E = {e1, . . . , en}, we define the average (normalized) error cost as AERC,E =

∑n
i=1

Cpi,ti
max(C)

n .

25

Table 5.1: The cost matrix used for the experiments.

No Weak Medium Severe

Attack Attack Attack Attack

No Attack 0 1
3

2
3 1

Weak Attack 1
3 0 1

3
2
3

Medium Attack 2
3

1
3 0 1

3

Severe Attack 1 2
3

1
3 0

Definition 5.1.2 (Weighted accuracy). Given a cost matrix C and a test set of

examples E = {e1, . . . , en}, we define the weighed accuracy as 1−AERC,E .

5.2 The Network Topology Generator

A network topology is the set of routers and the connections between them. Thus, a

topology can be represented by a simple (no self-loop, no parallel edges) undirected

graph. Topologies working with the OSPF protocol are usually connected graphs. We

characterize a topology by its number of nodes n and its average degree d, and define

Fn,d to be the family of all connected topologies with n routers and an average degree

of d. The motivation of characterizing the topologies with these two elements is our

hypothesis that these two factors will have a large impact on the performance of our

system on the topology. On the one hand, we assumed that when the network is larger,

in terms of the number of routers, the attacker has more options on which router to take

control of. Therefore, when the network is larger, the variety of possible attacks is likely

to be greater, which causes it to be more difficult to achieve good performance while

trying to identify attacks in that topology. On the other hand, we hypothesized that

the higher the level of connectivity in the network, the faster the information spread.

Therefore, identification of an attacker in such a network is expected to be easier and

faster than in a network where the average degree is relatively low.

Assume for now that n · d is an even number. We have designed an algorithm that,

given n and d, generates a random set of topologies in Fn,d.
Getting the number of routers n and the average degree d, we first check the validity

of the given parameters (for example, it must hold that d ≤ n− 1) and if the parameters

are valid, we generate a random topology from Fn,d. The algorithm that creates the

topology has two phases: the first one is for creating a connected graph with n vertices

and the second one is for making the average degree to be d (see algorithm 5.1).

According to the algorithm, we continue to add edges to E as long as |E| < nd
2 .

Therefore, at the end of the process nd
2 ≤ |E| <

nd
2 + 1. Since we assume nd is an even

number, |E| = nd
2 . The average degree of the resulting graph is d′ = 2·|E|

n (each edge

26

Algorithm 5.1 CreateTopology(n, d)

1: V ← ∅, E ← ∅
2: routers = {r1, . . . , rn}
3: choose a first router first r from routers
4: V ← V ∪ {first r}
5: routers← routers \ {first r}
6: while routers is not empty do
7: choose randomly router r from routers
8: routers← routers \ {r}
9: choose randomly one edge e from {(r, r′)|r′ ∈ V }

10: E ← E ∪ {e}, V ← V ∪ {r}
11: while |E| < nd

2 do . The second phase starts here
12: choose randomly an edge e such that e /∈ E
13: E ← E ∪ {e}
14: return G = (V,E)

increases the degree of its two end nodes by one). Therefore the average degree of the

generated graph is d′ = d as required.

Note that for arbitrary (not even) nd, our algorithm generates a member in Fn,d′
where |d′ − d| ≤ 2

n , which becomes very small for large values of n (by multiplying the

above formula by 2
n we get that d ≤ 2·|E|

n < d+ 2
n).

Figure 5.1 shows an example of a topology with 8 routers and an average degree

of 5 that was created by the above algorithm. Each node is associated with a unique

number identifying it.

After generating a network topology, we randomly choose a value reflecting the

bandwidth of the connection between each pair of neighbor routers.

5.3 System Performance

In order to evaluate our performance on different networks, we conducted experiments

in which we check the accuracy of our tool while using different network topologies. We

generated a number of topologies, with different number of routers and average degrees.

For each topology, we ran the simulator and tagger to produce a set of examples. We

balanced the set across categories which means that for every tag t ∈ T , we have an

equal number of examples that are tagged as t. Then we applied the feature extractor

in order to get the tagged feature vectors. Finally, we have conducted a cross-validation

experiment. This is a widely used technique for estimating how accurately our model will

perform in practice (see ‘Cross-validation (statistics)’ in Wikipedia). In this technique,

we use some of the given data to train the system with and the other data to test

our system on. One round of cross-validation involves partitioning a sample of data

into complementary k subsets, performing the analysis on the union of k − 1 subsets

(called the training set), and validating the analysis on the other subset (called the

27

1

2
3

4

5

6

7

8

Figure 5.1: A specific topology created by the algorithm

validation set or testing set). Usually multiple rounds of cross-validation are performed

using different partitions, and the validation results are averaged over the rounds to give

an estimate of the model’s predictive performance (see Figure 5.2 for illustration). In

our experiments, we used 10-fold stratified cross validation which means we conducted

10 rounds where each data subset has the same percentage of examples for each tag.

During the cross validation process we recorded the average weighted accuracy that was

achieved.

Figure 5.3 shows the learning curve, which describes the weighted accuracy as a

function of the number of examples used in the training phase. The figure represents the

learning curve for one of the tested topologies. We can see a typical learning behavior

where performance quickly improves up to about 2000 examples, and then stabilizes.

This result means that a learning process is actually taking place and succeeding

in generalizing the accumulated experience from the training phase on new unseen

examples.

In addition, we conducted more experiments to check how different parameters

influence the performance of the system. One of these parameters is the network size.

The left-hand side of Figure 5.4 shows the obtained results. The X axis represents the

number of routers in the tested topologies (n), and the Y axis the average weighted

accuracy.

Another factor we take into account is the connectivity of the graph. The right-hand

side of Figure 5.4 presents the result of experiments done with topologies with 12

28

Figure 5.2: Several rounds of cross validation algorithm (from Wikipedia)

routers. In the experiments, we create a number of topologies, each one with 12 routers

but different average degree, and repeat the process of conducting the experiments, as

described above. The X axis in the right image of Figure 5.4 represents the average

degree of the tested topologies (d), and the Y axis the average weighted accuracy.

From the left-hand side of Figure 5.4 we can see that, as expected, the weighted

accuracy decreases when the network becomes larger and contains more routers. How-

ever, the decline stabilizes, showing that our framework can handle even large network

topologies. From the right-hand side of the same figure we can see an upward trend in

the graph curve as the average degree of the tested topology gets higher. We expected

to see this trend as we assumed that a topology with a higher average degree should

yield a higher performance, resulting from the fact that the traffic flows in the topology

more quickly. More reinforces to this phenomenon are displayed in Subsection 5.6.2 and

in the experiments part of Section 6.2.

5.4 Feature Importance

We conducted some experiments in order to see which of the features help in recognizing

to which class a given prefix belongs. We generated random topologies and used our

simulator in order to generate examples for these topologies. Then we used our tagger

and the feature extractor and built a classifier according to these feature vectors. When

having the classifier, we applied algorithm 4.2 and checked the values the different

features received.

We notice that in different topologies there are different features which have more

impact, and therefore get higher scores. In general, it seems that the features which are

very helpful to the learning process are features related to the Links field in the LSAs -

the number of links, the connections they describe, and their costs.

Usually, attacker wants to falsify the knowledge the other routers have on the

structure of the topology, in order to route packets through it or prevent them from

29

0 1000 2000 3000 4000 5000 6000 7000
Number of examples in the learning process

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

W
e
ig

h
te

d
 a

cc
u
ra

cy

Figure 5.3: Weighted accuracy as a function of the number of examples used in the
training process

reaching their destinations. Thus, the LSA’s field which is usually used in the attack is

the one that related to the structure of the network - the Links field. Therefore it is not

surprising that the features related to this field are very helpful in detecting attacks.

5.5 Transfer Learning Setup

5.5.1 Introduction

We envision the following use case for our new method: A customer supplies our

algorithm with its specific topology, and applies the learning mechanism to generate an

intrusion detector. In realistic setups, however, we would like sometimes to be able to

learn a detector for a family of topologies. Recall that we define Fn,d to be the family

of all connected topologies with n routers and an average degree of d. If a customer has

a topology of that family, he can use the learned detector, without any further training.

This is a classical transfer learning setup where the predictor is learned on one problem

and is applied on another.

As mentioned in Section 4.6, we presented a set of features that use relative terms

to help adaptation to dynamic setups such as transfer learning. We experimented with

our algorithm to test its flexibility in such setups.

5.5.2 The Target Belongs to the Same Family as the Source

In our first experiment we learned on a source topology of a given family, and tested

the performance on a target topology of the same family. Table 5.2 lists the obtained

results. The first two columns specify the family parameters. The third column specifies

30

0 10 20 30 40 50
Number of routers in the topology

0.5

0.6

0.7

0.8

0.9

1.0

W
e
ig

h
te

d
 a

cc
u
ra

cy

0 1 2 3 4 5 6 7 8 9 10
Average degree

0.5

0.6

0.7

0.8

0.9

1.0

W
e
ig

h
te

d
 a

cc
u
ra

cy

Figure 5.4: Weighted accuracy as a function of the n and d.

the weighted accuracy for the normal setup where source = target, and the fourth one

displays the weighted accuracy for the transfer setup where the target is a different

topology from the same family as the source.

Table 5.2: Transfer learning results

Family source = target source 6= target
n d weighted accuracy weighted accuracy

4 2 0.970 0.937

8 5 0.934 0.887

12 5 0.920 0.843

16 7 0.908 0.870

Obviously, testing on the same topology yields better results than when testing on a

different one, but since they are of the same family, the difference is modest.

5.5.3 The Target Belongs to a Different Family from the Source

The second experiment tested the effect of the dissimilarity between the family of the

source topology and the family of the target topology on performance. We define the

distance between Fn1,d1 and Fn2,d2 to be |n1 · d1 − n2 · d2|. Figure 5.5 shows the results

for several target topologies. The X axis stands for the distance between the family of

the source topology and that of the target topology. The Y axis specifies the weighted

accuracy of the model learned on the source topology when tested on the target test set.

We can see a very typical transfer learning behavior with a decline in performance

when the target is getting further from the source.

31

0 50 100 150 200 250 300 350
Distance between the target and the source families

0.5

0.6

0.7

0.8

0.9

1.0

W
e
ig

h
te

d
 a

cc
u
ra

cy

Figure 5.5: Weighted accuracy as a function of the distance between the target and the
source families

5.6 Dynamic Networks

5.6.1 Introduction

Network topologies often go through continuous changes, such as addition or removal

of connections between routers. This may present a problem to a detector that was

trained on somewhat different topology. One obvious way to overcome the problem

is to perform retraining with the modified topology. As retraining is computationally

expensive, we prefer to deal with the problem differently by building a model that can

tolerate small topology changes.

In this section we consider two types of dynamic networks: the first scenario assumes

that the topology has dynamically changed after the training phase, and the learned

and predicted topologies are fixed, but different from one another. The second scenario

assumes that the changes take place both during the training and during the prediction

phases.

Similarly to transfer learning, in these cases the target topology is not identical to

the source one.

32

5.6.2 Topology Changes Between the Training and Prediction Phases

In this subsection we talk about the first scenario where the topology is dynamically

changed after the training phase.

We conducted several experiments in order to check how much our model can

tolerate such changes. In each experiment, we have generated a random topology and

applied our learning algorithm to generate a detector. We then produced a sequence of

topologies created by randomly choosing edge(s) to be removed or inserted from/to the

topology. A test set was produced for each member in the sequence and the learned

model was tested on these sets. Given two topologies with the same number of routers,

we define as delta the number of edges that exist in one of them but not in the other.

Note that in the described experiments, we made sure that we did not cancel a

change that already took place (not insert and remove the same edge). Figure 5.6

presents the results of some of the experiments.

0 1 2 3 4 5 6 7 8 9
Number of modifications

0.5

0.6

0.7

0.8

0.9

1.0

W
e
ig

h
te

d
 a

cc
u
ra

cy

0 2 4 6 8 10 12 14 16
Number of modifications

0.5

0.6

0.7

0.8

0.9

1.0

W
e
ig

h
te

d
 a

cc
u
ra

cy

0 2 4 6 8 10 12 14
Number of modifications

0.5

0.6

0.7

0.8

0.9

1.0

W
e
ig

h
te

d
 a

cc
u
ra

cy

Figure 5.6: Weighted accuracy as a function of delta. Topologies with 6, 12 and 16
routers, from left to right respectively.

We can see that the weighted accuracy is still high even for topologies that are

different than the one we used for training. It is particularly true for larger networks in

which the ratio between the number of changes and the size of the topology is smaller,

and therefore such a change is less significant.

We also note that at certain points in the graph the accuracy got better even

though the number of changes increased. These points are the result of adding edges

to the graph. We conjecture that increasing the graph connectivity may overcome the

disadvantage of having different learned and predicted topologies. This phenomenon

also reinforces the assumption examined in Section 5.3, that increasing the connectivity

of the graph may be beneficial to the performance of the system.

5.6.3 Topology Changes During Training and Prediction Phases

In this section we discuss the second scenario, in which the topology is dynamically

changed during the training and prediction phases.

33

The Simulator

For conducting experiments to check how much our model can tolerate such changes, we

have changed our OSPF simulation a bit. At the beginning of the simulation, a random

integer number is chosen. This number represents the number of connections that will

be changed (removed or inserted) during the simulation. Let us denote this number

as nchanges. Then we randomly choose nchanges pairs in which the first element is an

identifier of a connection (edge) and the second one is a time in which this connection

will be changed. Then we start running the simulator, while executing the insertion

or removal of the connections at the time specified for each one of them. This way,

our simulator actually represents an OSPF simulation while the network topology

is dynamically changed during the run. From now on, when we refer to the OSPF

simulator with its dynamic version, we call it the dynamic-simulator.

Additional Features

When considering a network which is dynamically changed during the run, we should

pay attention not only to the LSA messages which describes the different connections

and is spread over the network, but also to the local ’hello’ messages. This type of

messages is sent every few seconds between neighbor routers. If a router does not

receive such a message from its neighbor within a specific time interval, it infers that the

connection between them went down and they are no longer neighbors. In the opposite

case, when a router receives a ’hello’ message from a new router that has not sent such

a message before, it infers that a connection between them was inserted and they are

new neighbors. This way, the ’hello’ messages help the OSPF protocol to dynamically

adapt to changes in the network. Therefore, when working with dynamic topologies, we

include these messages. As with LSA messages, we include only hello messages that

were sent or received by the monitor. We used these messages and extract features from

them, as described in section 4.6.

Experiments

We conducted several experiments in order to check how much our model can deal

with this type of dynamic networks. In each experiment, we have generated a random

topology and used our dynamic-simulator for generating the examples. Then we applied

the tagger and balanced the set across categories. After that we applied the features

extractor including the features for the ’hello’ messages. Finally, we have conducted a

stratified cross-validation experiment and recorded the average weighted accuracy.

Tables 5.3 and 5.4 present the results achieved when executing the experiments on

two network topologies - with 12 and 16 routers. In each table, the rows represent the

type of the network on which the training process was done where we considered three

types on networks: a stable network (without changes at all), a network in which a

few changes occur during the run and a network in which many changes occur during

34

Table 5.3: different dynamic types - a topology with 12 routers

Stable Few changes Many changes

Stable 0.930 0.905 0.880

Few changes 0.900 0.935 0.912

Many changes 0.857 0.883 0.940

Table 5.4: different dynamic types - a topology with 16 routers

Stable Few changes Many changes

Stable 0.923 0.91 0.897

Few changes 0.906 0.938 0.911

Many changes 0.847 0.867 0.949

the run. The columns in the tables represent the type of the tested network: stable,

few changes and many changes. Each table cell (i,j) represents the weighted accuracy

achieved when training the detector on the topology specified in row i and testing the

performance on the topology specified in column j.

We can see that in both tables, the highest performance achieved on the diagonal,

when the tested network is taken from the same setup of the topology on which the

training process has been applied. For example, consider the second column, which

represents the situation in which the tested network is a dynamic network in which a

few changes occurred during the run. We can see that the highest value in this column

achieved in the second row, which means we received the best performance when the

detector was trained on a network of the same type. We can see this phenomenon also

in the other columns.

This situation is consistent with the real world situations in which the learned

network is usually the same as the network we want to predict (For example, if a

network of a specific organization is dynamic, it is unlikely that the organization will be

able to stop the changes for the training phase).

5.7 Detection Times

We conducted more experiments in order to check the detector performance in terms

of how long an attack exists in the network before it is revealed. In these experi-

ments we only distinguish between non-attacked (tag No Attack) and attacked (tags

Weak/Medium/Severe Attack) runs, ignoring the level of the attacks. Tables 5.5 and 5.6

show the accuracy rate of our framework as a function of the normalized detection time.

We define the normalized detection time as the actual detection time divided by the

time it takes for a packet to traverse the network’s diameter, which is the longest path

between any two nodes in the network. We present results for mid-size networks having

a diameter of 2 and 6 links. The different lines of the tables display the normalized

35

Table 5.5: network with a diameter of 2

Normalized detection time Accuracy rate

0− 2.3 0.925

2.3− 7.14 0.982

above 7.14 0.995

Table 5.6: network with a diameter of 6

Normalized detection time Accuracy rate

0− 3.2 0.965

3.2− 4.18 0.99

above 4.18 1

detection times and the accuracy we achieved in each one of them. From the tables

we can deduce that the longer an attack exists in the system, the higher our accuracy

rate is, which means that we are more likely to detect the attack. However, for both

networks, the accuracy rate is very high even for short detection times. This implies

that our algorithm is able to detect attacks in a very short time after the attack starts.

For example, for a network having a diameter of 6 links, an accuracy rate of 0.965 is

obtained, when the normalized detection time is under 3.2. Assuming the time it takes

for a packet to traverse the longest path in the AS is 50 ms, then the attack will be

detected with high probability within 160 ms (3.2 · 50).

5.8 Evaluation with Real Data

5.8.1 Introduction

As said in chapter 1, one of the most significant challenges when working in the

field of attack detection is the lack of appropriate public datasets for assessing the

systems [SP10]. The primary reason to this situation arises from the fact that the

inspection of network traffic can reveal highly sensitive information. Any breach of such

information can be harmful. Therefore researchers frequently encounter insurmountable

organizational and legal barriers when they attempt to provide such datasets.

5.8.2 Real OSPF Data

Although there is no available data to try our system on, we succeeded to achieve

real runs of the OSPF protocol from an ISP that prefers to remain anonymous. The

organization provided us with data of real OSPF runs, where all the runs are normal.

The network topology of that organization includes 17 routers and is presented in

Figure 5.7.

36

1

2

3

4

5

6

7

8

9
10

11

1213

14

15

16
17

Figure 5.7: The organization’s network topology

One main difference between our simulation and the data provided to us is that in

our simulation the monitor is located on one router while the data we received reflects

the traffic on one connection - the one between routers 16 and 17. To deal with this

difference, we performed a second processing on our examples to make them reflecting

the traffic on that connection only.

In addition, when considering a monitor located on a connection and not on a router,

some of our features became irrelevant and were omitted from the learning process. For

example, having only the record of the traffic on that connection, we cannot know how

many neighbors the router at the end of this connection sent an LSA to. Therefore, we

did not use all of our features and thus expected a lower accuracy rate. After making

the adjustment to this real data, we could conducted experiments to see how well our

system performs on it.

5.8.3 Results

We received from the provider a layout of its topology, and encoded this layout into our

system. We then trained a detector on this topology and tried it on the normal runs

supplied by the ISP. This is not an appropriate testing as the real test data contained

only normal runs, but it could still be indicative, especially if our system would have

performed poorly on the real data. We found, however, that our detectors achieved

high weighted accuracy results (≈ 95%). This result reinforces our hypothesis that the

model we built succeeds in identifying normal runs of the protocol.

37

38

Chapter 6

The Monitor Placement

Algorithm

6.1 Introduction

Our framework assumes that the user specifies which router(s) serves as the monitor(s),

but it is not clear how to choose the router(s) for this purpose. In this chapter we

propose a way to choose the location of the monitor(s) wisely in order to get a high

accuracy rate.

6.2 Locating One Monitor

In this section we assume the organization has resources to invest in only one monitor.

The organization needs to choose the monitor location wisely in order to achieve a good

identification of attacks. There are several possibilities for choosing this location. One

possibility is to choose it randomly. A more intelligent decision is to choose the router

with the highest degree in the topology. The motivation of such a decision is the idea

that a router with more neighbors gets more information of the traffic in the network

and therefore has a better position to detect an attack.

Another option is to use the measure of betweenness centrality, which is a measure

of centrality in a graph based on shortest paths. The betweenness centrality of a node

v is given by the expression g(v) =
∑

s 6=v 6=t
σst(v)
σst

where σst is the total number of

shortest paths from node s to node t and σst(v) is the number of those paths that pass

through v.

Another intelligent option for choosing the location for the monitor is to choose the

router that has the highest potential to transmit a large amount of traffic through it.

We call this router the ‘max-flow router’. In order to evaluate which router has the

potential to transfer a large amount of traffic, we used a technique called ‘random walk’.

We built an algorithm which executes a large number of random walks, nwalks, on the

given topology. In each walk, a random router is chosen to be the source of the walk

39

and at every step the algorithm randomly chooses to finish the walk or to continue

and randomly move to one of the neighbors of the current router. For each router we

maintain a counter which increases by one every time a walk arrives to this router.

Finally, we choose to place the monitor on the router with the largest counter value.

Algorithm 6.1 displays this algorithm.

Our flexible framework allows us to design another interesting strategy for choosing

a router for the monitor. We train the detector on each one of the possible routers and

estimate its performance. We then select the router that achieves the highest accuracy

rate to be the monitor.

Algorithm 6.1 FindMaxFlowRouter(N = (V,E))

1: counters← zeros(|V |) . zeros-array
2: for i = 1, . . . , nwalks do
3: r ← choose the first router randomly
4: counters[r] + +
5: to continue = choose if to continue the walk, with prob Pc
6: while to continue do
7: choose an arbitrary neighbor r′ of r
8: r ← r′

9: counters[r] + +
10: to continue = choose if to continue the walk, with prob Pc

Experiments

We conducted several experiments in order to compare all the above options for choosing

the location of the monitor. In each experiment, we built a network topology and

checked the accuracy achieved when locating the monitor according to the different

strategies. Table 6.1 presents these experiments. The first two columns describe the

checked topology parameters - the number of routers and the average degree. The other

columns describe the accuracy achieved when the monitor has been located according

to the above different techniques.

Table 6.1: Selecting one monitor

topology random router with the highest max-flow our
number of average router highest degree betweenness router algorithm

routers degree centrality

6 3 0.93 0.944 0.93 0.93 0.96

12 2 0.809 0.866 0.873 0.852 0.873

12 6 0.892 0.934 0.934 0.934 0.934

16 7 0.91 0.92 0.934 0.94 0.94

30 8 0.888 0.92 0.92 0.92 0.921

The table demonstrates the advantage of our approach for selecting the monitor

40

location, achieving the best accuracy rate in all experiments. No other methods achieved

high performances as ours, in all the different experiments.

We can see again that the connectivity of the topology helps in receiving a higher

performance (the results in the third row in the table is much higher than the results in

the second row), which also reinforces the assumption examined in Section 5.3.

6.3 Locating More Than One Monitor

In this section we assume the organization has resources to invest in more than one

monitor. When working with several monitors, each one of them records the network

traffic from its point of view. As in the previous case, the organization needs to choose

the monitor locations wisely in order to achieve a good identification of attacks.

When using more than one monitor, we consider two options for building the final

detector that will predict the tag of a new unseen example. The first option is to build

one classifier for all the monitors: each one of the monitors will transmit its point of

view of the run to this classifier. In this way, the classifier is the final detector and

it has all the monitors points of view of the same run. This means that the model

has more knowledge and is likely to achieve better detection results. In this case we

use an extended feature vector, which is the concatenation of the feature vectors of

the different monitors to each other (and even can include more features that describe

relations between the features of different monitors). We thus get a new feature vector

that will be used as an example (both for the training phase and the prediction phase).

Another option is to build a classifier for each one of the monitors separately by

generating examples to the training phase from its point of view. These examples are

generated by the simulator and are tagged by our tagger. Then we generated the feature

vectors and executed the training process for each monitor individually. This process

is done for every monitor and resulting in independent classifiers, each one of them is

fitted to its monitor. When executing a new run of the protocol, each monitor has its

point of view of the run which gets into its classifier using the regular feature extractor.

This way, each one of the monitor classifiers outputs a tag for the new run, relying on

its knowledge about the run (its monitor point of view). Then all these local decisions

of the classifiers are considered for determining the final decision (tag) for the run. In

this case, the detector is the one that takes all the classifier predictions into account

and determines the final tag accordingly. There are several methods for determining

the final tag using the decisions of the classifiers. Here are some of them:

1. Define the final tag to be the most severe attack among the predictions of the

classifiers. This decision makes sense by predicting the worst case.

2. Define the final tag to be the severity that the majority of the classifiers re-

ported on.

41

3. Define the final tag to be the average severity of the attack among the severity

reported by the classifiers. This decision makes sense by taking into account all

the classifier predictions and not just one or several of them as in the previous

options.

4. Define the final tag to be the tag that minimizes the average weighted error of

the classifiers. We calculate this tag using the cost matrix, in a similar way to

Subsection 4.7.2. We go over all the possible tags and for each possible tag t ∈ T
we calculate the average weighted error we would get if we determine the tag of

the new example to be t, considering the different classifier predictions. Finally

we choose the tag that achieves the lowest cost. As in Subsection 4.7.2, in the

case where more than one tag achieved the minimal error cost, we choose the one

that achieved more ‘votes’ from the classifiers. Formally, denote the set of the

classifiers as S. In this case, the size of S, |S|, is the number of monitors, as we

build a classifier for each monitor. For a classifier s ∈ S, we denote by s(e) the

classifier prediction of a given example e. Using the cost matrix C and the set of

possible tags T , the final tag of e is determined by the following formula:

final tag(e) = argmin
t∈T

· 1

|S|
∑
s∈S

Cs(e),t (6.1)

We conducted some experiments to check these two options of building the detector.

In each experiment, we generated a random topology and used our simulator while

putting a monitor on some of the routers. Then we used the tagger and the feature

extractor in order to get feature vectors - one feature vector to each one of the monitors.

After having the tagged examples, we checked the two options described above (building

one classifier for all the monitors and building a classifier for each one of the monitors and

then determining the final tag using the classifier predictions). In the second approach,

we tested the different options of determining the final tag of an unseen example, as

described above. We refer to these options as (1), (2), (3), (4), as they appeared in the

above explanation. Table 6.2 presents the results achieved. In the different experiments

done in this part, in each topology, we checked different sets of monitors. For each set,

we used the feature vectors that are relevant to the chosen routers and conducted a

stratified cross-validation experiment while recording the average weighted accuracy

achieved.

From the above experiments, we concluded that the preferred option is to build a

single classifier for all the monitors, that will act as the detector. This result confirms

our hypothesis that when the classifier has more information about the traffic in the

network (more routers’ points of view), its prediction on an unseen example will be

more accurate. The case that emphasizes this idea is the following: Let assume that we

have a network topology with n routers and we also have enough resources for locating

n monitors - one on each router. In the scenario where we build one classifier for all the

42

monitors, this classifier actually receives all the routers’ points of view, which includes

all the messages that were sent or received by a router in the network. In this case

specifically, no matter on which router the attacker takes control, the classifier also has

the information from the attacker point of view. This situation can help the classifier

in recognizing the presence of an attacker in the system. In the second option, when

building a classifier for each monitor separately, each one of the classifiers predicts

the tag for a new unseen example. The final tag is determined by the detector using

these local predictions. With the same logic, no matter on which router the attacker

takes control, there is a classifier that has the information from the attacker point of

view. However, the detector takes this classifier’s prediction into account with more

n− 1 predictions of the other classifiers, which reduces the effect of this classifier when

determining the final tag. In this case, it is harder to get a general pattern of attacks

and therefore the accuracy decreases.

Extending the Feature Extractor

When building one classifier for more than one monitor, we use a feature vector which

is the concatenation of the feature vectors of the different monitors. However, we can

also take into account additional features that can be extracted from the example

contains all the monitors’ points of view of the prefix. These additional features are the

results of applying mathematical operations on the features from each monitor. For

example, consider the case of two monitors. Let fM1
i be the feature i of monitor M1

(e.g. the maximum over the difference between the number of links in two adjacent

LSAs generated by the same router and received by M1). Let fM2
i be the same feature

calculated for M2. Then we can define a new feature fM1,M2
i to be the result of some

mathematical operation between fM1
i and fM2

i . Such a feature takes into account all

the monitors’ points of view and maybe can help to the learning process.

We conducted several experiments for testing the extended feature extractor in the

case of using one classifier for more than one monitor. In each experiment, we generated

a random topology and chose different combinations of more than one monitor. Then

we used our simulator and tagger to get tagged examples. After that, we generated

two feature vectors for each example (that includes the record of the traffic from the

points of view of all the selected monitors): One with the regular feature extractor

that concatenates the feature vectors of the different monitors to each other, and the

other one with the extended feature extractor which adds additional features (describe

relations between features of different monitors) to this concatenation. We used these

two sets of feature vectors in order to execute two learning processes. We conducted

stratified cross-validation experiments while recording the average weighted accuracy

achieved in the different settings. In all the experiments we saw an increase of about

0.5% in the performance when using the extended feature extractor. This can indicate

that these new shared features help a little to the learning process.

43

6.4 Optimal Set of Monitors

Using different combinations of routers to act as the monitors yields different accuracy

results. We want to be able to choose the best set of monitors, one that does not

contain a large number of monitors in order to save resources, and on the other hand,

succeeds in achieving high performances in identifying the attacks. When having a small

network topology, and enough resources, one can check all the possible combinations

of routers for this purpose. However, in a large topology, this check is very expensive,

having an exponential number of such combinations. Therefore, we decided to set the

number of monitors, nmonitors, according to the customer resources. We implemented an

algorithm for choosing the nmonitors monitors. The algorithm is based on the following

idea: When we are interested in one monitor, the best choice is to choose the one that

achieved the highest accuracy when working as a single monitor. Therefore we start

with choosing this router. Then, if nmonitors > 1, we add more routers to the monitor

set. For determining which router to add, we search for the k% of the other routers,

which achieved the highest accuracy results when working as a single monitor. We call

this set of monitors BESTk. From the set BESTk, we choose to insert the router which

is the farthest from the monitors that were already inserted to the monitor set. This

idea relies on the thought that we want the monitors not to be grouped in one area of

the network but rather to be spread out on large parts of it. Note that a distance of a

router r from the monitor set is calculated as the length of the shortest path between r

and a monitor m in the set. In addition, when we have more than one router, from the

BESTk set, with the same maximal distance from the monitor set, we select the one

that achieved the highest accuracy when working as a single monitor and add it to the

monitor set. The algorithm for choosing the monitor set is presented in algorithm 6.2.

Algorithm 6.2 ChooseMonitors(nmonitors, k,N = (V,E))

1: M ← ∅
2: R← V
3: for i = 1, . . . , nmonitors do
4: if M = ∅ then
5: M ← {the router r ∈ R which achieved the highest accuracy}
6: R← R \ {r}
7: continue
8: BESTk ←k% routers from R with the highest accuracy results
9: r′ ← the router r ∈ BESTk that is farthest from M

10: M ←M ∪ {r′}, R← R \ {r′}

Experiments

We can divide the experiments we conducted in this section to two parts: The first one is

done in order to test the performance of our algorithm for choosing the set of monitors.

In the different experiments done in this part, we generated random topologies and

44

used our simulator while putting a monitor on each one of the routers in the topologies.

Then we used the tagger and the feature extractor in order to get feature vectors - one

feature vector for each monitor. In each topology, we checked different sets of monitors.

One of these sets is the one selected by our algorithm using k = 40. For each set, we

used the feature vectors that are relevant to the chosen routers and conducted stratified

cross-validation experiments while recording the average weighted accuracy achieved.

As we concluded that building one classifier for all the monitors is the preferred option,

we conducted these experiments using this approach. Note that the case where we

are interested only in one monitor is actually already displayed in section 6.2, as our

algorithm choose the monitor with the highest accuracy in this case. For this reason,

here we display the results of using more than one monitor. Table 6.3 presents the

results achieved in this part.

From the experiments in this part we can see that our algorithm succeeds in selecting

a set of monitors that yields high performance.

0 1 2 3 4 5 6 7 8 9 10 11 12 13
Number of monitors

0.80

0.85

0.90

0.95

1.00

W
e
ig

h
te

d
 a

cc
u
ra

cy

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
Number of monitors

0.80

0.85

0.90

0.95

1.00
W

e
ig

h
te

d
 a

cc
u
ra

cy

Figure 6.1: Weighted accuracy as a function of the number of monitors. Topologies
with 12 and 16 routers, from left to right, respectively.

The second part includes experiments that check the number of monitors. As in

many other fields in the domain of machine learning, such as increasing the size of

the committee or increasing the size of the training set, investing more resources will

improve the system performance until a certain threshold value is reached. At this point,

it is not useful to invest more resources because the performance would not be improved

significantly. We assume that in our setting we will see a similar phenomenon: Using

a larger number of monitors will improve the system performance up to some point

where it will not be useful to add more monitors. We conducted several experiments to

check it. In the experiments, we generated random topologies and used our simulator

while putting a monitor on each one of the routers in the topologies. Then we used the

tagger and the feature extractor in order to get feature vectors. After that, we used our

algorithm (with k = 40) for choosing the monitors when examining different number of

monitors. For each set selected by our algorithm, we used the feature vectors that are

45

relevant to the chosen routers for building the trained detector. We then conducted

stratified cross-validation experiments while recording the average weighted accuracy

achieved. Again, as we concluded that building one classifier for all the monitors is

the preferred option, we conducted these experiments using this approach. Figure 6.1

presents the results of some of the experiments.

We can see the typical behavior we expected where performance improves while

adding more monitors, helping to observe more information about the traffic in the

network. Then, at some point, as expected, the improvement in performance slows

down.

46

Table 6.2: Building the final detector

Number of Number of Method of building Method of determining Weighted
monitors routers the classifier(s) the final prediction accuracy

2

16

Single classifier The classifier prediction 0.95

Per monitor
(1) 0.925
(2) 0.903

classifier (3) 0.926
(4) 0.903

50

Single classifier The classifier prediction 0.92

Per monitor
(1) 0.88
(2) 0.89

classifier (3) 0.88
(4) 0.89

3

12

Single classifier The classifier prediction 0.96

Per monitor
(1) 0.934
(2) 0.933

classifier (3) 0.94
(4) 0.936

16

Single classifier The classifier prediction 0.958

Per monitor
(1) 0.943
(2) 0.937

classifier (3) 0.943
(4) 0.939

12 12

Single classifier The classifier prediction 0.974

Per monitor
(1) 0.887
(2) 0.92

classifier (3) 0.91
(4) 0.925

16 16

Single classifier The classifier prediction 0.972

Per monitor
(1) 0.924
(2) 0.93

classifier (3) 0.93
(4) 0.94

47

Table 6.3: The locations of more than one monitor

The topology
Number of Location of Weighted
monitors the monitors accuracy

1
2

3

4

5

6

7
8

9
10

11

12

2

1, 2 0.892
5, 11 0.848
4, 10 0.884
2, 4 0.893
6, 8 0.876

Our algorithm - 0.893
2, 12

3
1, 2, 10 0.898
5, 7, 9 0.896

Our algorithm - 0.902
1, 2, 12

1
2

3

4

5

6

7

8

9

10

11

12

2

6, 9 0.934
11, 12 0.924
2, 7 0.936
3, 8 0.953
4, 10 0.937

Our algorithm - 0.954
3, 5

3
1, 6, 12 0.952
3, 8, 10 0.96

Our algorithm - 0.96
2, 3, 5

1

2

3

4
5

6

7
8

9

10

11

12

13
14

15

16

2

1, 2 0.937
7, 8 0.953
1, 10 0.932
4, 9 0.952
3, 7 0.953

Our algorithm - 0.956
4, 12

3
1, 2, 16 0.95
2, 6, 13 0.954

Our algorithm - 0.958
4, 7, 12

48

Chapter 7

Related Work

In [SP10] the authors emphasize the difficulties faced by researchers who use machine

learning for network intrusion detection. In our work we face similar difficulties and

provide successful solutions for dealing with these challenges.

The issue of attack detection has been studied over the years. There are two

main approaches for the tagged examples, used as a training set for the learning

process. One approach builds a model solely based on normal training examples and

evaluates each testing case to see how well it fits the model. Some works, such as

[SVG10, Bao09, MEAN13] use this approach for network intrusion detection. For

example, in [TDJ+14] the authors present an approach for detecting sensor spoofing

attacks on a cyber-physical system. They use only examples which were collected during

normal runs of the system. By those examples, they learn a safety envelope which

contains all the states that the system can reach when there is no sensor attack. Then

they use this envelope to check if the system’s state falls outside of it, and raise an

alarm if so.

Another approach attempts to learn the distinction between normal and abnormal

behaviors using both normal and attack examples in the training set. Works taking this

approach include [CFF16, SM03, KJS17]. For example, in [CFF16] the authors used the

Cyber Range Lab of the Australian Centre for Cyber Security (ACCS) dataset in which

a hybrid of real modern normal activities and attack behaviors were generated. They

used those examples for the training set of their learning algorithm (which includes a

combination of two machine learning methods) in order to classify normal and abnormal

behaviors. The accuracy achieved was 98.76%. In [KJS17] the authors created a

detection algorithm and used the NSL-KDD dataset, which is a much improved version

of the original KDDCUP’99 dataset, to evaluate it. This dataset contains 41 features

and is tagged as either normal or an attack, with exactly one specific attack type. The

authors used a combination of classifiers for their algorithm and classified incoming

network traffic as normal or as an attack. The accuracy achieved was 89.24%.

However, while these works use existing examples as their training data, we generate

the examples using sophisticated simulation. Generating the examples by our simulator

49

overcomes some issues that exist when using existing data (see Chapter 1), one of them

is the ability to fit the training data to a specific network topology when using such a

simulator. This ability can improve the accuracy rate because the training data is more

specific to the testing setup.

Previous works analyzed OSPF security vulnerabilities ([SGN13, NSM+14]), search-

ing for message falsification attacks ([WVW97]) and attacks with a persistent effect

([NSM+14]). These works are based on the assumption that the attacker sends legal

OSPF messages in terms of their structure, but the router’s behaviour deviates from

the protocol rules. Our work is also based on this assumption.

The works above search for vulnerabilities of the OSPF protocol, but cannot identify

an attack at runtime. In contrast, in [TDJ+14] the authors build an attack detector

monitor that runs continuously, monitors the state of the system, and raises an alarm

whenever it believes there is an attack during the runtime. This work is different from

ours in that it develops an attack detector to a different problem. More importantly, it

uses anomaly detection, which means only non-attacked examples were used for training.

In our work we build a multiclass learning-based attack detector using both normal

and attack examples for the training set. We use this detector in order to identify

attacks on the OSPF protocol at runtime. Our work is different from other works also

because it builds a detector that is suitable to the user’s setting, such as its network

topology or the different costs it gives to the possible misclassification errors (as specified

in the cost matrix).

50

Chapter 8

Discussion

8.1 Applying the Framework to Other Protocols

In order to apply our framework to other protocols than OSPF, two changes have to be

done: The first one is the simulation itself (including the attacker simulation), which

needs to fit the new protocol standards. The second one is the feature extraction, which

also depends on the specific protocol. Note that there are features which are not related

specifically to the OSPF protocol and can be used also for other routing protocols.

However, there are also features which are very specific to the fields of the messages used

in the OSPF protocol, which have to be changed when working with other protocols.

Despite those changes, there are several components that can remain unchanged

even when working on another protocol: Using a simulator in order to achieve examples

with all the possible tags, using relative and not absolute features for dealing with

changes occur in the network, using our cost sensitive version of the Random Forest

algorithm, and more.

In this work we developed a general framework for building an intrusion detector

adapted to the user’s setting. We fitted our framework to the OSPF protocol but it can

be adjusted also to other protocols.

8.2 Working with Balanced Dataset

In all of our experiments, we used a balanced set of examples according to their tags.

This case is not the typical one in reality, where the number of normal runs is much

higher than the number of runs which contain an attacker. However, a balanced dataset

enables a good assessment of our model. This assessment could not be achieved by

using, for example, 90% of normal instances and 10% of attacked ones. In this case, even

a basic classifier which always says ”normal” is right in 90% of the cases. Therefore, by

balancing the dataset, we can get a reliable assessment of our work.

51

8.3 Accuracy Measures

In order to evaluate our performances with respect to the cost matrix, we defined a new

measure, weighted accuracy, which takes into account not only the number of successes

but also the penalty on each one of the misclassification error types. However, we can

also extend the discussion and talk about more regular classification measures. For

doing that, we need to limit our tags, in order to talk about false negative and false

positive. First, let us define some terms [HKP12]:

• True positive: These are the positive examples that were correctly labeled by

the classifier. Let TP be the number of true positives in a given test set.

• True negative: These are the negative examples that were correctly labeled by

the classifier. Let TN be the number of true negatives in a given test set.

• False positive: These are the negative examples that were incorrectly labeled as

positive by the classifier. Let FP be the number of false positives in a given test

set.

• False negative: These are the positive examples that were incorrectly labeled as

negative by the classifier. Let FN be the number of false negatives in a given test

set.

Table 8.1 summaries the terminology we used for using the terms above, with respect

to the set of tags specified in Section 5.1. We refer to the No Attack tag as ”negative”

and to all the other tags (Weak/Medium/Severe Attack) as ”positive”.

Table 8.1: Terminology

Name Predicted tag Real tag

True Positive Weak/Medium/Severe Attack Weak/Medium/Severe Attack

True Negative No Attack No Attack

False Positive Weak/Medium/Severe Attack No Attack

False Negative No Attack Weak/Medium/Severe Attack

8.3.1 Classification Measures

We are interested in the following classification measures:

• Sensitivity - measures the proportion of actual positives that are correctly identified

as such. A high sensitivity test is reliable when its result is negative, since it rarely

misdiagnoses those attacked runs. Mathematically, sensitivity = TP
TP+FN .

• Specificity - measures the proportion of actual negatives that are correctly identified

as such. A high specificity test is reliable when its result is positive, since it rarely

misdiagnoses those normal runs. Mathematically, specificity = TN
TN+FP .

52

Table 8.2: Classification measures

Number of routers
Number of monitors Sensitivity Specificity

in the topology

12
1 0.96 0.903
2 0.985 0.975
3 0.988 0.972

16
1 0.96 0.87
2 0.98 0.91
3 0.99 0.92

8.3.2 Experiments with the New Terminology

We conducted some experiments to check our performances in terms of the classification

measures described in subsection 8.3.1. In each experiment, we generate random

topologies with different number of monitors chosen by our algorithm (see section 6.4).

Then we used our simulator, tagger and feature extractor to get tagged examples. We

conducted a stratified cross-validation experiment while recording the classification

measures using the new terminology. Table 8.2 describes the results of some of these

experiments.

From the experimental results we can see that our algorithm achieves high per-

formances in the terms of sensitivity and specificity. It can be seen that generally

the algorithm is somewhat more reliable in providing a negative prediction (a higher

performance in sensitivity), saying there is no attack in the system. Because in the

vast majority of cases the implications of saying there is no attack when there is, are

more severe than in the opposite case, this is an encouraging result, which implies that

our algorithm is valuable. Here we can also see that having more monitors improves

the performance in terms of sensitivity and specificity, similarly to the improvement in

performance we mentioned in Section 6.4.

53

54

Chapter 9

Conclusions and Future Work

9.1 Conclusions

In this work we produced a new framework for example-based learning of an intrusion

detector. We overcame the challenge of lacking data (especially data including attacks)

to learn from. This is done by building a simulator, which generates the examples.

An important strength of our approach is its being adjustable to the requirements

of a specific user. The user defines the possible tags, the network topology and the

error cost for each misclassification error. These factors help in providing the user an

intrusion detector that is fitted to his own needs.

Another added value of our framework is its ability to recommend the user of where

to locate the monitor(s) in order to be able to receive good performances.

In addition, we tested our framework with a setup of transfer learning and received

good accuracy rate. Such a setup can be used in the real world for shortening the time

of the learning process. For example, if an organization has a topology of the same

family as the topology of another organization, the first one can purchase the detector of

the second one and avoid the training process which takes time and resources. Another

setup we tested was dynamic networks, where we also received good results. This

strengthen our model by adapting to dynamic networks as well as to stable ones.

Our new framework has a significant practical potential when the user can define his

preferences and the system will produce a runtime intrusion detector that is adapted

to this particular setting. We believe that the new learning framework, presented in

this work, can be practical and useful for small as well as large organizations, and

significantly enhances their network security.

9.2 Future Work

Deep learning. One area of future work is trying to use deep learning algorithms.

Using our algorithm, we presented the features as values which are the result of a

mathematical computation (mean, max, etc.) on several message fields or other data.

55

In the future, researchers can represent the traffic as a serial of messages and try to use

Recurrent neural network (RNN) which works well with time-series.

Possible commands for the user. As mentioned in Section 2.2, our work is done

based on the commands Cisco provides to the user for examining the mode of an OSPF

run. This is reflected in the form of the traffic records and the features we have used.

However, another direction of possible future work is to check if extending the commands

the user can use in order to know the system states at different times can enable to

achieve a higher accuracy. For example, a command that enables checking ”what the

router does with the arrived LSA - insert it to its database or ignore it” can help to

extract a new feature and may improve the detector performances.

The networks. In this work we applied our model to networks with point-to-point

connections between the routers. However, OSPF protocol is used also in more compli-

cated networks, such as a network which has a border router that is used to establish a

connection between backbone networks and different OSPF areas. It can be interesting

to extend the simulation to such networks and test the detector performances.

Other protocols. As said in Section 8.1, one can use our framework for other protocols

than OSPF. It is interesting to see the model performance for different protocols.

56

Bibliography

[Bao09] Cui-Mei Bao. Intrusion detection based on one-class SVM and

SNMP MIB data. In Proceedings of the Fifth International Con-

ference on Information Assurance and Security, IAS 2009, Xi’An,

China, 18-20 August 2009, pages 346–349, 2009.

[CFF16] Md Nasimuzzaman Chowdhury, Ken Ferens, and Mike Ferens.

Network intrusion detection using machine learning. In Proceedings

of the International Conference on Security and Management

(SAM), 2016.

[DIJ59] E.W. DIJKSTRA. A note on two problems in connexion with

graphs. Numerische Mathematik, 1:269–271, 1959.

[Fri17] Lior Friedman. Recursive feature generation for knowledge-based

induction. Master’s thesis, Department of Computer Science,

Technion – Israel Institute of Technology, 2017.

[GM14] Wei Gao and Thomas H. Morris. On cyber attacks and signature

based intrusion detection for MODBUS based industrial control

systems. JDFSL, 9(1):37–56, 2014.

[HKP12] Jiawei Han, Micheline Kamber, and Jian Pei. Data mining concepts

and techniques, third edition, 2012.

[HR76] Laurent Hyafil and Ronald L. Rivest. Constructing optimal binary

decision trees is np-complete. Inf. Process. Lett., 5(1):15–17, 1976.

[HS14] Neminath Hubballi and Vinoth Suryanarayanan. False alarm

minimization techniques in signature-based intrusion detection

systems: A survey. Computer Communications, 49:1–17, 2014.

[JM06] E. Jones and O. Le Moigne. OSPF Security Vulnerabilities Analy-

sis. Internet-Draft draft-ietf-rpsec-ospf-vuln-02, IETF, June 2006.

[KJS17] Jasmin Kevric, Samed Jukic, and Abdulhamit Subasi. An effective

combining classifier approach using tree algorithms for network

57

intrusion detection. Neural Computing and Applications, 28(S-

1):1051–1058, 2017.

[MEAN13] Eitan Menahem, Yuval Elovici, Nir Amar, and Gabi Nakibly.

ACTIDS: an active strategy for detecting and localizing network

attacks. In AISec’13, Proceedings of the 2013 ACM Workshop

on Artificial Intelligence and Security, Co-located with CCS 2013,

Berlin, Germany, November 4, 2013, pages 55–66, 2013.

[MKSUKW12] Saif Malik, S K. Srinivasan, S U. Khan, and L Wang. A method-

ology for ospf routing protocol verification. 12 2012.

[NKGB12] Gabi Nakibly, Alex Kirshon, Dima Gonikman, and Dan Boneh.

Persistent OSPF attacks. In Proceedings of NDSS, 2012.

[NSM+14] Gabi Nakibly, Adi Sosnovich, Eitan Menahem, Ariel Waizel, and

Yuval Elovici. OSPF vulnerability to persistent poisoning attacks:

a systematic analysis. In Proceedings of the 30th Annual Computer

Security Applications Conference, ACSAC 2014, New Orleans,

LA, USA, December 8-12, 2014, pages 336–345, 2014.

[SGN13] Adi Sosnovich, Orna Grumberg, and Gabi Nakibly. Finding se-

curity vulnerabilities in a network protocol using parameterized

systems. In Natasha Sharygina and Helmut Veith, editors, Com-

puter Aided Verification - 25th International Conference, CAV

2013, Saint Petersburg, Russia, July 13-19, 2013. Proceedings,

volume 8044 of Lecture Notes in Computer Science, pages 724–739.

Springer, 2013.

[SM03] Andrew H. Sung and Srinivas Mukkamala. Identifying important

features for intrusion detection using support vector machines and

neural networks. In 2003 Symposium on Applications and the

Internet (SAINT 2003), 27-31 January 2003 - Orlando, FL, USA,

Proceedings, pages 209–217, 2003.

[SP10] Robin Sommer and Vern Paxson. Outside the closed world: On

using machine learning for network intrusion detection. In 31st

IEEE Symposium on Security and Privacy, S&P 2010, 16-19 May

2010, Berleley/Oakland, California, USA, pages 305–316. IEEE

Computer Society, 2010.

[SVG10] Osman Salem, Sandrine Vaton, and Annie Gravey. A scalable,

efficient and informative approach for anomaly-based intrusion

detection systems: theory and practice. Int. Journal of Network

Management, 20(5):271–293, 2010.

58

[TDJ+14] Ashish Tiwari, Bruno Dutertre, Dejan Jovanovic, Thomas de Can-

dia, Patrick Lincoln, John M. Rushby, Dorsa Sadigh, and Sanjit A.

Seshia. Safety envelope for security. In 3rd International Confer-

ence on High Confidence Networked Systems (part of CPS Week),

HiCoNS ’14, Berlin, Germany, April 15-17, 2014, pages 85–94,

2014.

[WCJ+] S. F. Wu, H. C. Chang, F. Jou, F. Wang, F. Gong, C. Sargor,

D. Qu, and R. Cleaveland. Jinao: Design and implementation of a

scalable intrusion detection system for the OSPF routing protocol.

ACM Transactions on Computer Systems, 2:251–273.

[WVW97] Feiyi Wang, Brian Vetter, and Shyhtsun Felix Wu. Secure Routing

Protocols: Theory and Practice. Technical report, North Carolina

State University, May 1997. Found on Google only available copy

is through Google view.

59

iii

 .הצלחנו להשיג מידע כזה ולהשתמש בו לצורך ביצוע ניסויים, להשיג מידע של תעבורה אמיתית

בעבודה זו הצענו דרך לבחור את המיקום בו כדאי להציב את הגלאי במטרה לקבל ביצועים , בנוסף

 . טובים

ארגון הרוצה לשפר את האבטחה שבו יכול . המערכת שבנינו הינה בעלת פוטנציאל מעשי משמעותי

המערכת . בקלות להגדיר את טופולוגית הרשת שלו ואת מטריצת המחיר ולהתחיל בתהליך האימון

, בנוסף. באופן המתאים למאפיינים שהגדיר, צר עבורו גלאי המסוגל לזהות התקפות בזמן אמתתיי

 .האלגוריתם שלנו יוכל להמליץ לארגון על איזה מבין הנתבים כדאי למקם את הגלאי שנבנה

התרומה העיקרית . העבודה שלנו מהווה יישום של טכניקות למידה לצורך שיפור האבטחה באינטרנט

תוך התאמה לדרישות , ו הינה פיתוח של גלאי התקפות לצורך זיהוי התקפות בזמן אמתשל עבודתנ

כגון)הייחודיות שבמערכת שלנו הינה התאמה לדרישות הספציפיות שמגדיר המשתמש . המשתמש

מערכת זו תוכל לאפשר (. התיוגים האפשריים וכן המחיר עבור השגיאות השונות, מבנה הרשת

 . פני פעילות זדונית העשויה להתרחש ברשת שלולארגון להגן על עצמו מ

 :תרומות המחקר כוללות, באופן ספציפי יותר

 לצורך תהליך האימון, יצירת דוגמאות המתאימות לטופולוגיה ספציפית.

 אפשור למשתמש להגדיר חומרות התקפה.

 פיתוח מודל שעמיד בפני מצבים בהם הרשת אותה רוצים לחזות אינה זהה לרשת עליה

 . נה המערכתאומ

 שימוש בגרסתcost sensitive השינויים שביצענו באלגוריתם . של אלגוריתם למידה מוכר

 .מתחשבים במטריצת המחיר שהגדיר המשתמש

 במטרה להשיג , הנתבים ברשת דנתינת המלצה למשתמש לגבי מיקום הגלאי על גבי אח

 .ביצועים טובים

ii

שמטרתה לבנות מודל שיגלה , ו מציגים מערכת חדשה מבוססת למידה חישוביתבעבודה זו אנ

הגישה שלנו מתגברת על המחסור בדוגמאות לצורך שלב האימון על ידי כך . התקפות בזמן אמת

האלגוריתם בו נעשה שימוש לצורך יצירת . המייצר את הדוגמאות רשהיא כוללת בתוכה סימולאטו

 . הדוגמאות מחקה הן התקפות והן התנהגות נורמאלית עבור טופולוגית רשת נתונה

התקפה נוצרת על ידי פעולה , במודל זה. סימולציית ההתקפות נעשית באמצעות מודל כללי של תוקף

אינה עולה קנה אחד עם התנהגותו הנורמאלית של אשר , שבוצעה על ידי הנתב עליו השתלט התוקף

. התקפות שונות עשויות להכיל סדרה של פעולות זדוניות שנבחרו באקראי על ידי התוקף. הפרוטוקול

אימון המערכת על דוגמאות הנוצרות באופן זה מאפשרות לו להיות מסוגל לזהות התקפות חדשות

 .בעלות מאפיינים שאינם ידועים

שת ברשת מתועדת ומועברת לשלב התיוג האוטומטי לצורך קביעה האם מדובר הפעילות המתרח

לאחר מכן הדוגמה המתויגת מועברת (. באיזו חומרת תקיפה, ואם כן)בריצה נורמאלית או בהתקפה

לאלגוריתם המחלץ ממנה תכונות שעשויות להיות רלוונטיות לצורך קביעת התיוג עבור דוגמאות

אנו מקבלים אוסף , מתבצע עבור כל הדוגמאות שיצר הסימולאטורה, לאחר תהליך זה. חדשות

 . המהווה את קבוצת האימון שלנו, בעל כל סוגי התיוג הקיימים, דוגמאות

. המערכת שלנו מאפשרת למשתמש להגדיר מטריצת מחיר בה מוגדר המחיר של כל שגיאת חיזוי

בסופו של . לגוריתם למידה ידועעבור א cost-sensitiveדבר זה הביא אותנו ליישם גרסה שהיא

התהליך קיבלנו גלאי התקפות שאומן על אוסף הדוגמאות המתויגות שיצרנו ועל כן הוא מותאם באופן

 . ספציפי לדרישות המשתמש ולטופולוגית הרשת שהוא סיפק

פרוטוקול זה מאפשר לנתבים . OSPFאנו מימשנו את המערכת עבור פרוטוקול התקשורת הנפוץ

בל תמונה מלאה של מבנה הרשת ובהתאם לכך לחשב את טבלאות הניתוב שלהם במטרה ברשת לק

ישות . לדעת לאיזה שכן להעביר הודעה מסוימת על מנת שתגיע ליעד שלה במסלול האופטימאלי

נתב זדוני אחד הקיים . שמבצעת התקפה על פרוטוקול זה יכולה להשפיע עליו בצורה הרסנית

ות הניתוב של כל הנתבים האחרים ברשת על ידי שליחת הודעות במערכת יכול לזהם את טבלא

 . באופן זה לפעולות התוקף תהיה השפעה על אופן הניתוב כולו. המכילות מידע שקרי

ולא את טבלאות הניתוב של הנתבים , המערכת שאנו בנינו מתעדת את התעבורה העוברת ברשת

, אי לזהות התקפות ברגע שהן מתרחשותניטור פעילות המערכת באופן זה מאפשרת לגל. השונים

שנעשו םזיהוי התקפה בהתבסס על שינויי. אפילו לפני שיש להן השפעה על טבלאות הניתוב

 . שכן הנזק כבר נגרם, בטבלאות הניתוב עלול להיות מאוחר מידיי

שכן אופי ההתקפה וצורתה , רב טוקולי תקשורת הינה משימה בעלת קושימציאת התקפות בפרו

 .ם להיות לא ידועיםעשויי

 . אנו ערכנו מגוון רחב של ניסויים במטרה לבחון את ביצועי המערכת שלנו

במטרה לבחון את ביצועי המערכת שלנו , סביבת הניסויים שלנו כללה אלגוריתם ליצירת טופולוגיות

 . עם שגיאה נמוכה מאוד, הניסויים שביצענו הראו תוצאות מבטיחות. עבור סביבות שונות

ורשתות transfer learning הראנו שהמערכת שבנינו יכולה לעמוד בפני מצבים של , מהניסויים כחלק

על אף הקושי , כמו כן. בהם החיזוי מבוצע על רשת שונה מזו שהמערכת אומנה עליה, דינאמיות

i

 תקציר

לאנשים ימושים שלו התרחבו והפכו חשובים במהלך השנים השימוש באינטרנט הלך וגדל והש

מתקפות זדוניות הפכו לאיום ממשי על פעילותו התקינה , במקביל לכך. וארגונים רבים ברחבי העולם

 .בניית כלים אוטומטיים שיזהו מתקפות כאלהשל החשיבות עלתהשל האינטרנט בכל העולם ולכן

אנו . גלאי חדירה לרשת מתוכננים למצוא פעילות זדונית על ידי זיהוי הפרות של פרוטוקולים

מעוניינים לזהות פעולות אלה כמה שיותר מוקדם על מנת למנוע מהתוקף לפגוע באופן חמור

ישנם אתגרים רבים שהופכים את פעולת זיהוי החדירה לרשת לקשה יותר , עם זאת. בתשתיות

בתחום של : אחד האתגרים המשמעותיים קשור לרקע בו מערכת כזאת פועלת .מתחומים אחרים

נים על הרשת כאשר כל אחד מן הצדדים מנסה יזיהוי התקפות ישנו מרוץ מתמשך בין התוקפים למג

ולגרום להן להיות פעולותיהםהתוקפים מנסים להסתיר את , כחלק מזה. לשפר ולשכלל את יכולותיו

מתקפות כאלה מכילות לעיתים מספר קטן של . המתרחשות במערכתדומות לפעולות הרגילות

 .ומכאן הקושי לזהותן, פעולות הזהות במבנה שלהן לפעולות חוקיות המתבצעות בפרוטוקול

רוב הניסיונות ההתחלתיים לבנות גלאי התקפות הסתמכו על הגדרה ידנית של חוקים או דפוסים

אוסף קשה מאוד להגדיר, ראשית. גישות אלו סובלות מכמה חולשות, עם זאת. קפותשמאפיינים מת

אוסף החוקים הזה יהיה מסוגל לזהות רק התקפות , שנית. התקפותחוקים שיכסה מגוון רחב של

 . ידועות בעלות מאפיינים ותבניות מוכרות

 . תדה חישוביפותחו שיטות חדשות מבוססות למי, כדי להתגבר על קשיים אלה

לא ניתן היה להשתמש , הינן קשות מאוד להשגה(של התקפות)מאחר ודוגמאות חיוביות

כאלה עם התקפות וכאלה)באלגוריתמים המערבים למידה מדוגמאות בעלות כל סוגי התיוג הקיימים

בהן נעשה ניסיון להשתמש , one classלכן היה צורך להצטמצם לשיטות של (. ללא התקפה

ולאחר , ת בלבד לצורך בניית מודל שישקף כיצד נראית פעילות מהימנה של הרשתבדוגמאות שליליו

. גם לגישה זו ישנם מספר קשיים משמעותיים, עם זאת. מכן להשוות התנהגות חדשה מול מודל זה

בהן רוחב הפס או חיבורים בין נתבים עלולים , המרכזי שבהם הוא האופי הדינאמי של רשתות

דבר המקשה על , ה נחשבים נורמאלים ומתרחשים ברשתות על בסיס קבועשינויים שכאל. להשתנות

 . האפיון של התנהגות נורמאלית

נעשו ניסיונות להשתמש בדוגמאות עם כל סוגי התיוג האפשריים , על מנת להתמודד עם קושי זה

 עבודות אלו הניחו שישנם מאגרים קיימים. בשלב הלמידה(כאלה עם התקפות וכאלה ללא התקפה)

מאגרים , ראשית. אינה מתיישבת עם המציאות, עם זאת, הנחה זו. של דוגמאות מסומנות כאלה

מודל שאומן על , לכן. בעוד אסטרטגיות התוקפים הולכות ומתפתחות, כאלה הינם קבועים ומתיישנים

התוקפים , בנוסף. סמך מאגרי מידע אלה ייתקל בבעיה בעת ניסיון זיהוי של התקפות חדשות יותר

, מכיוון שכך. ולים לכלול בהתקפותיהם מאפיינים שונים של הרשת הספציפית אותה הם תוקפיםיכ

דבר שיביא לביצועים , מודל שאומן על רשת שונה לא יצליח לבצע הכללה נכונה על הרשת הנחזית

שכן חברות אינן מעוניינות לפרסם , השגת מאגר מידע שכזה הינו משימה קשה מאוד, לבסוף. נמוכים

 .שעשויה להכיל מידע רגיש, התעבורה העוברת ברשת שלהןאת

בפקולטה למדעי ', המחקר בוצע בהנחייתם של פרופסור ארנה גרימברג ופרופסור שאול מרקוביץ

.המחשב

 תודות

, תודה על הפגישות השבועיות. ארנה גרימברג' פרופ, שלי ראשית ברצוני להודות למנחה האחראית

תודה על . שלך מרכזייםה נושאי המחקרמ ם ולעזור גם כאשר התחום רחוק יחסיתת להירתהנכונו

שהיית זמינה עבורי בכל על תודה . ההכוונה ועל תשומת הלב גם לפרטים הקטנים ביותר, העידוד

הן מבחינה מקצועית והן , זכיתי במנחה מדהימה. לעיתים גם בשעות פחות קונבנציונאליות, זמן

 . וריכ נעימה עב"וברצוני להודות לך על כך שגרמת לתקופה הזאת להיות כ, מבחינה אישית

על כך שהצליח להקדיש לי זמן ', שאול מרקוביץ' פרופ, שלי אני רוצה להודות גם למנחה השותף

על הרעיונות , תודה על נקודות המבט הנוספות שסיפקת לי. ומחשבה גם בזמנים עמוסים ולחוצים

 . תודה על חלקך הגדול בעבודה זו. החדשים ועל החשיבה החדה

תודה . תודה על ההכוונה והחשיפה לתחום שאינני שולטת בו. בלייגבי נק' ברצוני להודות לדר, כמו כן

תודה על שיתוף הפעולה ועל . של המחקר לגופים שונים במטרה לתרום לאיכותו על הנכונות לפנות

 .במהלך המחקרוהייעוץ העזרה

ני וברצו טכניוןשבש הירושי פוגיווארה "מרכז לאבטחת סייבר עהמחקר זה נתמך בחלקו על ידי

 .להודות לו על כך

על הרצון להשקיע מחשבה וזמן בשביל , תודה על הזמינות שלך. הראל קיןידידי אני רוצה להודות ל

הידיעה שיש לי מישהו . תודה על העצות הקטנות והגדולות שנתת לי לאורך הדרך. לקדם את המחקר

תודה לך על . ביטחון ורוגענתנה לי תחושת , קטנה או גדולה, שבשמחה יירתם לעזרתי בכל בעיה

 .גם בזמנים פחות שגרתיים, התחושה הטובה והעזרה הרבה

תודה על כך שהייתם שם גם בזמנים לחוצים . לחבריי שהיו שותפים איתי במסע הזהברצוני להודות

 . בלעדיכם הדרך הזו הייתה קשה הרבה יותר. התמיכה והעזרה בעת הצורך, תודה על העידוד. יותר

אורי –לאחי וגיסתי , לאחותי מיכל, מנחם ושושי, להורים שלי. צוני להודות למשפחתיבר, לבסוף

תם שמחה שהכנסהנאה והתודה על ה. יואב ושחר, אריאל –וכן לשלושת האחיינים שלי , ורעות

תודה על כך שתמיד . התמיכה והאהבה האינסופית, על הליווי, תודה על עזרתכם. לתקופה הזאת

גם כשעדיין לא , להשקיע ולא להתייאש, תודה להוריי על שלימדו אותי לכוון גבוה .הייתם שם בשבילי

 לא זה בלעדיכם. תודה על הדחיפה וההירתמות לעזור בכל זמן. רואים את האור שבקצה המנהרה

אני אסירת תודה לך על . תודה מיוחדת לאחותי מיכל על העזרה המקצועית הרבה .קורה היה

 .בצורה נעימה ואוהבת ,החשיבה היצירתית שלךומ שתרמת לי מהידע הרב

 .תודה לכם. הייתי בוחרת בכם –אבל לו הייתה לי היכולת לבחור , אומרים שמשפחה לא בוחרים

.הכרת תודה מסורה לטכניון על מימון מחקר זה

 שימוש בלמידה חישובית

 לצורך זיהוי התקפות בזמן אמת

 חיבור על מחקר

 הדרישות לקבלת התוארלשם מילוי חלקי של

 מגיסטר למדעים במדעי המחשב

 נורית דביר

 מכון טכנולוגי לישראל –הוגש לסנט הטכניון

9102ט חיפה פברואר "התשע' אדר א

 שימוש בלמידה חישובית

 לצורך זיהוי התקפות בזמן אמת

 נורית דביר

	List of Figures
	Abstract
	1 Introduction
	2 Preliminaries
	2.1 OSPF Basics
	2.2 Cisco implementation of OSPF
	2.3 Formal Modeling

	3 Threat Model
	4 Applying Machine Learning for Identifying Attacks at Run-Time
	4.1 Introduction
	4.2 Problem definition
	4.3 Solution outline
	4.4 Example generation by simulation
	4.5 Example tagging
	4.5.1 Estimating the attack severity
	4.5.2 Ordered categorical tags

	4.6 The Features
	4.7 The Learning Algorithm
	4.7.1 Choosing a Split
	4.7.2 Determining the Final Tag
	4.7.3 Feature Importance

	5 Empirical Evaluation
	5.1 Experimental Methodology
	5.2 The Network Topology Generator
	5.3 System Performance
	5.4 Feature Importance
	5.5 Transfer Learning Setup
	5.5.1 Introduction
	5.5.2 The Target Belongs to the Same Family as the Source
	5.5.3 The Target Belongs to a Different Family from the Source

	5.6 Dynamic Networks
	5.6.1 Introduction
	5.6.2 Topology Changes Between the Training and Prediction Phases
	5.6.3 Topology Changes During Training and Prediction Phases

	5.7 Detection Times
	5.8 Evaluation with Real Data
	5.8.1 Introduction
	5.8.2 Real OSPF Data
	5.8.3 Results

	6 The Monitor Placement Algorithm
	6.1 Introduction
	6.2 Locating One Monitor
	6.3 Locating More Than One Monitor
	6.4 Optimal Set of Monitors

	7 Related Work
	8 Discussion
	8.1 Applying the Framework to Other Protocols
	8.2 Working with Balanced Dataset
	8.3 Accuracy Measures
	8.3.1 Classification Measures
	8.3.2 Experiments with the New Terminology

	9 Conclusions and Future Work
	9.1 Conclusions
	9.2 Future Work

	Bibliography

