
Compositional Model-Checking of
Multi-Properties

Ohad Goudsmid

Compositional Model-Checking of
Multi-Properties

Research Thesis

Submitted in partial fulfillment of the requirements
for the degree of Master of Science in Computer Science

Ohad Goudsmid

Submitted to the Senate
of the Technion — Israel Institute of Technology

Adar 5781 Haifa February 2021

This research was carried out under the supervision of Prof. Orna Grumberg and Dr. Sarai
Sheinvald, in the Faculty of Computer Science.

Some results in this dissertation have been published in a paper by the author and collaborators
in a conference (VMCAI 2021) during the course of this masters, the most up-to-date version
of which being:

Ohad Goudsmid, Orna Grumberg, and Sarai Sheinvald. Compositional model checking for multi-
properties. In Fritz Henglein, Sharon Shoham, and Yakir Vizel, editors, Verification, Model Checking,
and Abstract Interpretation - 22nd International Conference, VMCAI 2021, Copenhagen, Denmark,
January 17-19, 2021, Proceedings, volume 12597 of Lecture Notes in Computer Science, pages 55–80.
Springer, 2021.

Acknowledgements

First and foremost, I would like to thank my advisor, Prof. Orna Grumberg, for being an
incredible supervisor, a mentor, a friend, and for inspiring me along the course of my studies.
Thank you for our weekly meetings, for constantly encouraging and aiding me to improve my
work, for introducing me to the phenomenal world of research, and for making it a fun experience.
It has been a huge honor to work with you and to learn from you.

I would also like to thank my co-advisor, Dr. Sarai Sheinvald, for her immense part of this
work. Thank you for your dedication, and for the ability to make every meeting fruitful with
new ideas, humor and sharp thought. You are a great advisor and a great person, and I am very
grateful for working with you during this research.

Last but not the least, I would like to thank my family, for their endless love and support.
Thank you for believing in me, for encouraging me to be curious and to always aim high.

The generous financial help of the Technion, and Melvin R. Berlin Fellowship for Cyber Security
Research are hereby gratefully acknowledged.

Contents

List of Figures

Abstract 1

Abbreviations and Notations 3

1 Introduction 5
1.1 Related Work . 7

2 Preliminaries 11
2.1 Linear Time Logic (LTL) . 12

2.1.1 Negation Normal Form of LTL . 13
2.2 Hyperproperties and HyperLTL . 14

2.2.1 Negation Normal Form of HyperLTL . 15

3 Multi-Models and Multi-Properties 17
3.1 MultiLTL . 17

3.1.1 Examples . 18
3.1.2 Negation Normal Form of MultiLTL . 19

3.2 Model-Checking MultiLTL . 19
3.2.1 Reduction from HyperLTL Model-Checking to MultiLTL Model-Checking . 19
3.2.2 Reduction from MultiLTL Model-Checking to HyperLTL Model-Checking . 20

3.3 Direct Algorithm for MultiLTL Model-Checking 25
3.3.1 Counterexamples from the Model-Checking Algorithm 27

3.4 Compositional Proof Rules for Model-Checking MultiLTL 28

4 Abstraction-Refinement Based Implementation of the Proof Rules 31
4.1 Constructing a Sequence of Over-Approximations 31

4.1.1 Over-approximation Sequence Construction 32
4.2 Constructing a Sequence of Under-Approximations 34

4.2.1 Under-approximation Sequence Construction 35
4.3 Abstraction-Refinement Guided Model-Checking 36
4.4 Counterexample Guided Model-Checking Using (PR) 38

5 Multi-Properties for Finite Traces 41
5.1 Multi-Languages and Multi-NFH . 43
5.2 Equivalence of MNFH Model-Checking and NFH Model-Checking 44
5.3 Direct Algorithm for MNFH Model-Checking . 46
5.4 Compositional Proof Rules for Model-Checking MNFH 47

6 Learning-Based Multi-Property Model-Checking 49
6.1 Learning Assumptions for General Multi-Properties 50
6.2 Weakest Assumption for MNFH∀∃ . 51

6.2.1 Regularity of the Weakest Assumption . 52
6.3 Learning Assumptions for ∀∃ . 53

7 Reducing the Alphabet Size 57
7.1 Decreasing the Alphabet for MultiLTL . 57
7.2 Decreasing the alphabet for MNFH . 58

8 Conclusion and Future Work 59
8.1 Conclusion . 59
8.2 Future Work . 59

A Some Additional Proof Rules 61
A.1 Proof Rules for Hyperproperties . 61

B Discussing Weakest Assumptions 63
B.1 Weakest Assumptions for MNFH∃∀ . 63
B.2 Weakest Assumption for MNFH∀Q∗ . 64

B.2.1 Regularity of the Weakest Assumption . 64

Hebrew Abstract i

List of Figures

4.1 Illustration of Refinements: (a) ∃∃, and (b) ∀∃ 33
4.2 Example: Model-Checking for ⟨M1,M2⟩ |= P . 38

5.1 The NFH A (left) and the MNFH B (right). 43

Abstract

Hyperproperties lift conventional trace properties in a way that describes how a system behaves
in its entirety, and not just based on its individual traces, by allowing quantification over traces.
Hyperproperties are very useful for describing security properties. Thus, performing hyperprop-
erty model-checking is desired. We generalize this notion to multi-properties, which describe the
behavior of not just a single system, but of a set of systems, which we call a multi-model.

We demonstrate the usefulness of our setting with practical examples. We show that model-
checking multi-properties is equivalent to model-checking hyperproperties. However, our frame-
work has the immediate advantage of being compositional, allowing to consider abstraction for
each component separately. We introduce sound and complete compositional proof rules for
model-checking multi-properties, based on over- and under-approximations of the systems in
the multi-model.

We then describe methods of computing such approximations. The first is abstraction-
refinement based, in which a coarse initial abstraction is continually refined using counterexam-
ples, until a suitable approximation is found. The second, tailored for models with finite traces,
finds suitable approximations via the L∗ learning algorithm. We suggest improved algorithms
for model-checking the ∀∗∃∗ fragment of both methods, which utilize additional information
from the multi-property.

Our methods can produce much smaller models than the original ones, and can therefore be
used for accelerating model-checking for both multi-properties and hyperproperties.

1

2

Abbreviations and Notations

AP : a set of atomic propositions
P : a trace property
P : a hyperproperty, usually given as a formula in HyperLTL or as an NFH
P : a multi-property, usually given as a formula in MultiLTL or as an MNFH

:
M : a model, given as a Kripke structure or as an NFA
M : a multi-model, given as a tuple of Kripke structures or as an MNFA
A : an approximation, given as a Kripke structure or as an NFA
A,B : a tuple of approximations

:
π, τ : a trace
L(·) : a language, hyper-language or a multi-language
Lf (·) : a prefix language

:
[a, b] : the set {a, a+ 1, . . . , b}
Q : a trace quantifier (∃, ∀)
I∃(·) : the set of indices of existential quantifiers in a formula
I∀(·) : the set of indices of universal quantifiers in a formula

3

4

Chapter 1

Introduction

Temporal logics, such as LTL, are widely used for specifying program behaviors. An LTL property
characterizes a set of traces, each of which satisfies the property. It has recently been shown
that trace properties are insufficient for characterizing and verifying security vulnerabilities or
their absence.

The notion of hyperproperties [23], a generalization of trace properties, provides a uniform
formalism for specifying properties of sets of traces. Hyperproperties are particularly suitable
for specifying security properties. For instance, secure information flow may be characterized by
identifying low-security variables that may be observable to the environment, and high-security
variables that should not be observable outside. Secure information flow is maintained in a
system if for every two traces, if their low-security inputs are identical then so are their low-
security outputs, regardless of the values of high-security variables. This property cannot be
characterized via single traces.

While hyperproperties are highly useful, they are still limited: they can only refer to the
system as a whole. Systems often comprise several components, and it is desired to relate traces
from one component to traces of another. A prominent such example is diversity [46]. Diversity
generalizes the notion of security policies by considering policies of a set of systems. The systems
are all required to implement the same functionality but to differ in their implementation details.
As noticed in [23], such a set of policies could, in principle, be modeled as a hyperproperty on a
single system, which is a product of all the systems in the set. This, however, is both unnatural
and highly inefficient.

We remedy this situation by presenting a framework which explicitly describes the system
as a set of systems called a multi-model, and provides a specification language, MultiLTL, which
explicitly relates traces from the different components in the multi-model. Our framework
enables to directly and naturally describe properties like diversity, while avoiding the need for
a complex translation.

Our framework also has the immediate advantage of being compositional. We thus suggest a
sound and complete compositional model-checking rule. The rule is based on abstracting each
of the components by over- and under-approximations, thus achieving additional gain.

We then suggest methods of computing such approximations. The first method is based
on abstraction-refinement, in which a coarse initial abstraction is continuously refined by using

5

counterexamples, until a suitable approximation is found. The second, tailored for models with
finite traces, finds suitable approximations via the L∗ learning algorithm. Our methods can
produce much smaller models than the original ones, and can therefore be used for accelerating
model-checking for both multi-properties and hyperproperties.

We now describe our work in more detail. Our framework consists of multi-models, which
are tuples of Kripke structures. The logic we focus on, called MultiLTL, is an extension of
HyperLTL [22]. MultiLTL allows indexed quantifications, ∀i and ∃i, referring to the ith component-
model in the multi-model.

We show that there is a two-way reduction between the model-checking problem for HyperLTL
and the model-checking problem for MultiLTL. We emphasize, that even though the two model-
checking problems are equivalent, our new framework is clearly more powerful as it enables a
direct specification and verification of the whole system by explicitly referring to its parts.

We exploit this power by introducing two compositional proof rules, which are based on over-
and under-approximations for each system component separately. These proof rules are capable
of proving a MultiLTL property or its negation for a given multi-model.

We suggest two approaches to computing these approximations for the compositional proof
rules. The first approach is based on abstraction-refinement. The approximations are computed
gradually, starting from coarse approximations and are refined based on counterexamples. The
abstraction-refinement approach is implemented using one of two algorithms. In both algorithms,
when model-checking the abstract multi-model is successful, we conclude that model-checking
for the original multi-model holds. Otherwise, a counterexample is returned.

The first algorithm is based on counterexamples coming from the multi-model only. For
each component-model, we find a behavior that should be eliminated from an over-approximated
component-model or added to an under-approximated component-model, and refine the compo-
nents accordingly.

The second algorithm is applicable for a restricted type of MultiLTL properties, in which the
quantification consists of a sequence of ∀ quantifiers followed by a sequence of ∃ quantifiers. In
hyperproperties, this is a useful fragment which allows specifying noninterference and generalized
noninterference, observational determinism, and more. The counterexamples in this case come
directly from the unsuccessful model-checking process, and therefore refer both to the model and
to the property. Notice that, since the abstract component-models are typically much smaller
than the original component-models, their model-checking is much faster.

The logics of MultiLTL and the model of Kripke structure are designed for describing and
modeling the behavior of on-going systems. However, to do the same for terminating programs
with finite traces, a more suitable description is needed. Therefore, we turn our attention to
multi-models and multi-properties with finite traces. In this context, we use nondeterministic
finite automata (NFA) to describe a system, and a set of NFAs (multi-NFA) to describe a set of
such systems. For the specification language, we use nondeterministic finite-word hyperautomata
(NFH) suggested in [16]. NFH can be thought of as the regular-language counterpart of LTL,
and are able to describe the regular properties of sets of finite-word languages, just as HyperLTL
is able to describe the properties of a language of infinite traces. Also like HyperLTL, NFH can
be easily adjusted to describe multi-properties, a model that we call multi-NFH.

6

We show that, as in the infinite-trace case, there is a two-way reduction between the model-
checking problem for NFH and the model-checking problem for multi-NFH. We then proceed
to present a compositional model-checking framework for multi-NFH. As in the case of infinite-
traces, this framework is based on finding approximations for the NFAs in the multi-model. The
method for finding these approximations for this case, however, is learning-based.

Learning-based model-checking [45] seeks candidate approximations by running an automata-
learning algorithm such as L∗ [3]. In the L∗ algorithm, a learner constructs a finite-word
automaton for an unknown regular language L, through a sequence of membership queries (“is
the word w in L?”) and equivalence queries (“is A an automaton for L?”), to which it receives
answers from a teacher who knows the language. The learner continually constructs and submits
candidate automata, until the teacher confirms an equivalence query.

In our algorithm, the learner constructs a set of candidate automata in every iteration, one for
every NFA in the multi-model. The key idea is treating these candidate automata as candidate
approximations. When an equivalence query is submitted, we (as the teacher) check whether
the NFAs that the learner submitted are suitable approximations. If they are not, we return
counterexamples to the learner, based on the given multi-NFA, which it uses to construct the
next set of candidates. If they are suitable approximations, we model-check the multi-NFA of
the approximations against the multi-NFH. Since the automata that the learner constructs are
relatively small, model-checking the candidates multi-model is much faster than model-checking
the original multi-model.

In [45], the learning procedure aims at learning the weakest assumption W , which is a regular
language that contains all the traces that under certain conditions satisfy the specification. The
construction of W relies on counterexample words provided by the model checking. We can
derive such counterexamples for a certain fragment of multi-NFH. Moreover, we define a suitable
weakest assumption for this case, prove that it is regular, and use it as a learning goal in an
improved algorithm. Both of these improvements – extracting counterexamples from the model-
checker, and learning the weakest assumption rather than the model itself – allow for an even
quicker convergence of the model-checking process for this type of multi-properties.

1.1 Related Work

Abstractions are used to reduce the state-space of a model by discarding details which are irrele-
vant for the model-checking, thus improving the running time of the model-checking algorithms
[37, 27]. In many cases, the initial abstraction is too coarse for solving the model-checking prob-
lem. Refinement is used for achieving a more precise abstraction in an iterative process. Some
refinements are guided by counterexamples from previous model-checking calls. Counterexam-
ples, returned by model checking abstract models, may be spurious. Thus, counterexamples are
analyzed, and spurious ones are used to guide the refinement of the models. This approach is
usually referred to as counterexamples-guided abstraction-refinement (CEGAR) [18, 19]. Com-
bining abstraction-refinement with game-based model-checking is suggested in [50]. This work
creates an abstraction which is both an over- and an under-approximation simultaneously, by
using may-transitions and must-transitions. This abstraction is refined using counterexamples
extracted from a game-based model-checking procedure.

7

Hyperproperties, introduced in [23], provide a uniform formalism for specifying properties
of sets of traces, by quantification over traces in the system. Hyperproperties are particularly
suitable for specifying security properties, such as secure information flow and non-interference.
Two logics for hyperproperties are introduced in [22]: HyperLTL and HyperCTL∗, which generalize
LTL and CTL∗, respectively. Other logics for hyperproperties have been studied in [52, 28, 36,
44, 1, 9, 13, 25].

One of the first sound and complete methods for model-checking hyperproperties is self-
composition [8]. Self-composition combines several disjoint copies of the same program, allow-
ing to express relationships among multiple traces. This reduces the k-trace hyperproperty
model-checking to trace property model-checking. Unfortunately, the size of the product model
increases exponentially with the number of copies. Thus, reasoning directly on the product
program is prohibitive.

Many approaches have been suggested for dealing with the high complexity of the self-
composition. A possible approach is using a symbolic representation for the system and the
specification as first-order formulae. This allows to use an SMT solver as part of the model-
checking. However, using self-composition still increases drastically the size of the representation,
and methods to increase the efficiency of SMT solvers for hyperproperty model-checking have
been suggested. In [53, 7] type-directed transformations are suggested, aiming to move similar
program segments next to one another. [7] extends this idea to an aligned-by-fragments program,
which employs lock-step execution of loops. In this manner, many variables change together,
aiding solvers to find a solution.

A generalization of Hoare triplets for safety-hyperproperties is presented in [51]. This is
possible by considering k copies of the program and allowing formulae to refer to all executions
simultaneously. This allows ignoring redundant parts of the product program in its reasoning.
A game-based approach for liveness-hyperproperties is described in [26]. This method also allow
to synthesize a model for such hyperproperties.

In [40], the bounded model-checking approach [12] is extended for the partial verification
of hyperproperties. Although their approach is not complete, they suggest optimistic and pes-
simistic semantics for the bounded constraints, allowing to refute and prove the satisfaction of
the hyper-property.

Different approaches to avoid the construction of the full product are presented in [54,
49]. The former exploits taint analysis or Bounded Model Checking. The latter infers a self-
composition function together with an inductive invariant, suitable for verification.

An automata based algorithm for HyperLTL and HyperCTL is proposed in [35]. It combines
self-composition with ideas from LTL model-checking using alternating automata. Alternat-
ing tree-automata are utilized in [30] for representing a proof for the verification of safety-
hyperproperties. This proof restrict the possible interleavings of the self-composed model, re-
ducing the state-space.

The L∗ algorithm for automata learning is described in [3] and improved by [47]. This
algorithm consists of interaction between a learner and a teacher. The learners aims to construct
a minimal deterministic finite automaton (DFA) for an unknown regular language U , using two
kinds of queries – “is w ∈ U?”, and equivalence queries – “is A a DFA for U?” – which

8

are answered by the teacher. This idea is extended to other kinds of automata, including:
alternating automata [4, 11], weighted automata [10, 6], infinite-alphabet automata [43], and
regular-ω-languages [29, 5].

Automata learning algorithms are used for generating approximations for model-checking
procedures. In the assume-guarantee framework [24, 45], a system consists of two models, and
automata learning algorithms are used for generating an approximation for one of the model.
The L∗ algorithm is used in order to create the approximation. Its learning goal is set to be
the weakest assumption. In essence, the weakest assumption is the most general language with
whom the property can be satisfied. In [45] alphabet refinement is also implemented, allowing
to consider only a subset of the alphabet of the system, further reducing the approximation.

Learning separating DFAs for compositional model-checking is suggested in [17]. In this
work, the problem of finding the weakest assumption is reduced to learning a separating DFAs,
improving the running time of the model-checking procedure.

A representation of hyperproperties in a form of finite-word automata is developed in [31].
This work introduces a canonical automata representation for regular-k-safety hyperproperties,
which are only-universally-quantified safety-hyperproperties. This representation uses a k-bad-
prefix-automaton, a finite-word automaton that recognizes sets of k-bad-prefixes as finite words.
The authors present a learning algorithm for k-safety hyperproperties.

The first representation of general hyperproperties using finite automata is introduced in [16].
This representation, called hyperautomata, allows running multiple quantified words on an au-
tomaton. The authors show that hyperautomata can express regular hyperproperties and ex-
plore the decidability of nonemptiness (satisfiability) and membership (model-checking) prob-
lems. Additionally, they describe an L∗-based learning algorithm for some fragments of hyper-
automata.

The problem of runtime verification and monitoring hyperproperties is studied in [2, 34,
14, 39] from both algorithmic and theoretical point of view. Synthesis of hyperproperties is
discussed in [32, 33], where decidable fragments are identified, and algorithms for their synthesis
are suggested. The repair problem for HyperLTL is investigated in [15], and a detailed complexity
analysis is shown, under different restrictions on the Kripke structure.

Notions of asynchronous hyperproperties are explored in [38]. One uses a new automata
model and another is based on a fixpoint-calculus, allowing to regard different traces in asyn-
chronous manner. As the model-checking problem for asynchronous hyperproperties is highly-
undecidable, the work suggests an approximative analyses for both models, which induce some
decidable fragments.

9

10

Chapter 2

Preliminaries

Kripke Structures are a standard model for ongoing finite-state systems.

Definition 2.0.1. Given a finite set of atomic propositions AP , a Kripke structure is a 4-tuple
M = (S, I,R, L), where S is a finite set of states, I ⊆ S is a non-empty set of initial states,
R ⊆ S × S is a total transition relation and L : S → 2AP is a labeling function.

A path in M is an infinite sequence of states p = s0, s1, s2, . . . such that (si, si+1) ∈ R for
every i ∈ N. A trace over AP is an infinite sequence τ ∈

(
2AP

)ω
. We sometimes refer to a trace

as an (infinite) word over 2AP .
The trace that corresponds to a path p is the trace τ(p) = τ0, τ1, τ2, . . . in which τi = L(si)

for every i ∈ N. Notice that since R is total, there exists an infinite path from every state. We
denote by τ i the trace τi, τi+1, . . . and by iτ the prefix τ0, τ1, . . . , τi−1.

Given a word w = w0, w1, · · · ∈ (2AP)ω, a run of M on w is a path p = s0, s1, . . . in M such
that L(sn) = wn for every n ∈ N.

Definition 2.0.2. The language L(M) of M is the set of all traces corresponding to paths in
M that start in I. The prefix language Lf (M) of M is the set of all finite prefixes of traces in
L(M).

For two Kripke structures M,M′, we write M |= M′ to denote that L(M) ⊆ L(M′).

Definition 2.0.3. A possibly-infinite tree T is a subset of N∗
>0 such that for every node t ∈ N∗

>0

and every n ∈ N>0:

• If t · n ∈ T , then t ∈ T .

• If t · n ∈ T , then t ·m ∈ T for every 0 < m < n.

The root of T is the empty sequence ϵ and for a node t ∈ T , we use |t| to denote the length of t.

Definition 2.0.4. Let M = (S, I,R, L) be a Kripke structure, and let ∆ be an prefix-closed
infinite set of finite paths in M. The infinite unwinding tree of ∆ is a tuple (T, ℓ, p) where T is
a tree, ℓ : T → S is a mapping from the tree to states in M and p : T → ∆ is a mapping from
the tree to paths in ∆. Such that:

• ℓ(ϵ) ∈ I

11

• For every node t with children t1, . . . , tk it holds that 0 ≤ k ≤ |S| and that (ℓ(t), ℓ(ti)) ∈ R

for every i ∈ [1, k].

• For every node t · n ∈ T , the path p(t · n) is of length |t · n| and p(t) is the prefix of length
|t| of p(t · n).

The following is a known result, which can be proven using König’s Lemma and the definition
of infinite unwinding tree.

Lemma 2.0.5. For Kripke structures M and M′, it holds that L(M) = L(M′) iff Lf (M) =
Lf (M′).

Proof. For the first direction, assume that L(M1) = L(M2). By Definition 2.0.2:

Lf (M1) = {w ∈ (2AP)∗ | ∃τ ∈ L(M1), n ∈ N s.t. nτ = w}

= {w ∈ (2AP)∗ | ∃τ ∈ L(M2), n ∈ N s.t. nτ = w}

= Lf (M2)

For the second direction, assume that Lf (M1) = Lf (M2). Let τ ∈ L(M1) be a trace.
Thus, for every n ∈ N, nτ ∈ Lf (M1). From the assumption, for every n ∈ N, it holds that
nτ ∈ Lf (M2). Therefore, for every prefix nτ , there is a path s0, s1, . . . , sn−1 in M2 which
corresponds to it. Since I2 is a finite set, there exists a state s0 ∈ I2, which appears in infinite
such paths. Let ∆ be the set of all such paths from s0, and consider the infinite unwinding tree
T of ∆. Since S2 is finite, the branching degree of T is finite, and since ∆ is infinite, this tree is
infinite.

By König’s lemma, there is an infinite path p in T . By definition, all traces that correspond
to paths of length i in T are equal. This means that for every i ∈ N, it holds that τ(ip) = iτ .
Thus, τ(p) = τ . Since T is an unwinding tree for M2, we get that τ ∈ L(M2).

The proof for the inclusion L(M2) ⊆ L(M1) is symmetric. ■

2.1 Linear Time Logic (LTL)

The logic LTL is a common logic for describing trace properties.

Definition 2.1.1. Given a set of atomic propositions AP , a trace property is a set of traces
P ⊆ (2AP)ω.

The (path) formulae of LTL are given by the following grammar:

ψ ::= a | ¬ψ | ψ ∨ ψ | Xψ | ψUψ for every a ∈ AP

12

Let τ = τ0, τ1, . . . be a trace over AP . The semantics of LTL are defined as follows:

τ |= a iff a ∈ τ0

τ |= ¬φ iff τ ̸|= φ

τ |= φ1 ∨ φ2 iff τ |= φ1 or τ |= φ2

τ |= Xφ iff τ1 |= φ

τ |= φ1Uφ2 iff there exists i ≥ 0 such that τ i |= φ2

and for all 0 ≤ j < i, τ j |= φ1

Trivially, we can add the logical operators ∧,→,↔. Similarly, it is possible to include
additional temporal operators, which are defined as follows.

Fφ ≡ trueUφ Gφ ≡ ¬F¬φ φ1Rφ2 ≡ ¬(¬φ1U¬φ2)

Given a Kripke structure M and an LTL formula φ, we say that M satisfies φ, denoted
M |= φ, if τ |= φ for every τ ∈ L(M).

2.1.1 Negation Normal Form of LTL

The fragment of LTL, where negation is applied only to atomic propositions, is called the negation
normal form of LTL (LTLNNF).

Definition 2.1.2. An LTL formula is in negation normal form if every negation operator is
used only on atomic propositions. We denote the set of negation normal form formulae of LTL
by LTLNNF. In this definition, we allow the use of X, U and R as temporal operators and the
additional logical operator ∧.

Lemma 2.1.3. The logic LTL is equivalent to the logic LTLNNF.

Proof. For the first direction, let φNNF be an LTLNNF formula. We show, by induction on the
structure of LTL, that there exists a formula φ ∈ LTL which is equivalent to φNNF.

Base: When φNNF = a or φNNF = ¬a for some a ∈ AP , it holds that φNNF ∈ LTL.
Step: Assume that ψNNF, ϕNNF are LTLNNF formulae such that their equivalent LTL formulae

are ψ and ϕ respectively.

• If φNNF = ψ ◦ ϕ for ◦ ∈ {∨,U}, then the formula φ = ψ ◦ ϕ is an LTL formula, which is
equivalent to φNNF.

• If φNNF = XψNNF, then the formula φ = Xψ is an LTL formula, which is equivalent to
φNNF.

• If φNNF = ψNNF ∧ ϕNNF, then by de-Morgan’s laws and the induction hypothesis, the
formula φ = ¬ ((¬ψ) ∨ (¬ϕ)) is an LTL formula, which is equivalent to φNNF.

• If φNNF = ψNNFRϕNNF, then by the definition of R and the induction hypothesis, φ =
¬ ((¬ψ) U (¬ϕ)) is an LTL formula, which is equivalent to φNNF.

13

For the second direction, let φ be an LTL formula. We show, by induction on the structure
of LTL, that there exists formulae φNNF, φ̄NNF ∈ LTLNNF such that, φNNF is equivalent to φ and
φ̄NNF is equivalent to ¬φ.

Base: When φ = a or φ = ¬a for some a ∈ AP , it holds that φ,¬φ ∈ LTLNNF, since we
identify ¬¬φ with φ, and they satisfy the requirements.

Step: Assume that ψ, ϕ are LTL formulae and let ψNNF, ψ̄NNF, ϕNNF and ϕ̄NNF be their
equivalent and negated LTLNNF formulae respectively.

• If φ = ψ ◦ ϕ for ◦ ∈ {∨,U}, then φNNF = ψNNF ◦ ϕNNF is an LTLNNF formula, which
is equivalent to φ. Additionally, ψ̄NNF ◦̄ ϕ̄NNF, where ∧̄ = ∨ and Ū = R, is an LTLNNF

formula, equivalent to ¬φ.

• If φ = Xψ, then the formula φNNF = XψNNF is an LTLNNF formula, which is equivalent to
φ. Additionally, Xψ̄NNF is an LTLNNF formula equivalent to ¬φ.

• If φ = ¬ (ψ ∨ ϕ), then by de-Morgan’s laws and the induction hypothesis, the formula
φNNF =

(
ψ̄NNF

)
∧

(
ϕ̄NNF

)
is an LTLNNF formula, which is equivalent to φ. Additionally,

ψNNF ∨ ϕNNF is an LTLNNF formula equivalent to ¬φ.

• If φ = ¬ (ψUϕ), then by the definition of R and the induction hypothesis, the formula
φNNF =

(
ψ̄NNF

)
R

(
ϕ̄NNF

)
is an LTLNNF formula, which is equivalent to φ. Additionally,

ψNNFUϕNNF is an LTLNNF formula equivalent to ¬φ.

• If φ = ¬Xψ, then by the semantics of X and the induction hypothesis, the formula φNNF =
X

(
ψ̄NNF

)
is an LTLNNF formula, which is equivalent to φ. Additionally, XψNNF is an

LTLNNF formula equivalent to ¬φ.

Since every LTLNNF formula is finite, this process terminates in a finite number of steps.
Note that this construction is linear in the length of the formula. ■

2.2 Hyperproperties and HyperLTL

Trace properties and the logics that express them are commonly used to describe desirable system
behaviors. However, some behaviors cannot be expressed by referring to each trace individually.
This is especially the case for many security protocols, such as non-interference and observational
determinism [22]. These properties refer to a system with low-security variables that may be
observable to the environment, and high-security variables that should not be observable outside.
Actions in this system, may refer to low- and high-security variables, separately. Non-interference
is maintained in this system, if for every trace, there exists an additional trace, without actions
that affect high-security variables, which is equivalent to the original trace, over the low-security
variables. Observational determinism holds, if the system appears deterministic to an observer
from the environment.

In [23], properties describing the behavior of a combination of traces are formalized as hy-
perproperties. Thus, a hyperproperty is a set of sets of traces: all sets that behave according to
the hyperproperty.

14

Definition 2.2.1. Given a set of atomic propositions AP , a hyperproperty is a subset of the
powerset of traces, P ⊆ 2(2AP)ω

.

HyperLTL [22] is an extension of linear temporal logic (LTL) to hyperproperties. The formulae
of HyperLTL are given by the following grammar:

φ ::= ∃π. φ | ∀π. φ | ψ where π is a trace variable

ψ ::= aπ | ¬ψ | ψ ∨ ψ | Xψ | ψUψ for every a ∈ AP

Intuitively, ∃π.φ means that there exists a trace that satisfies φ and ∀π.φ means that φ holds
for every trace. aπ means that a holds in the first state of π. The semantics of X,U and the
Boolean operators are similar to those in LTL.

The semantics of HyperLTL is defined as follows. Let T ⊆ (2AP)ω be a set of traces over AP ,
let V be a set of trace variables, and Π : V → T be a trace assignment. Let Π[π → t] be the
function obtained from Π, by mapping π to t. Let Πi be the function defined by Πi(π) = (Π(π))i.

Π |=T ∃π.ψ iff there exists t ∈ T such that Π[π → t] |=T ψ

Π |=T ∀π.ψ iff for every t ∈ T , Π[π → t] |=T ψ

Π |=T aπ iff a ∈ Π(π)[0]

Π |=T ¬φ iff Π ̸|=T φ

Π |=T φ1 ∨ φ2 iff Π |=T φ1 or Π |=T φ2

Π |=T Xφ iff Π1 |=T φ

Π |=T φ1Uφ2 iff there exists i ≥ 0 such that Πi |=T φ2

and for all 0 ≤ j < i, Πj |=T φ1

Notice that when all trace variables of a HyperLTL formula P are in the scope of a quantifier
(i.e. when P is closed), then the satisfaction is independent of the trace assignment, in which case
we write T |= P. Given a Kripke structure M and a HyperLTL formula P, the model-checking
problem is to decide whether L(M) |= P (which we denote by M |= P).

By abuse of notation, given traces w1, . . . , wk over AP , we write
⟨w1, . . . , wk⟩ |= Q1π1 . . .Qkπkψ(π1, . . . , πk) if Π |= ψ(π1, . . . , πk), where Π(πi) = wi.

2.2.1 Negation Normal Form of HyperLTL

Definition 2.2.2. An HyperLTL formula is in negation normal form if every negation operator
is used only on atomic propositions. We denote the set of negation normal form formulae of
HyperLTL by HyperLTLNNF.
Note that similarly to Definition 2.1.2, we allow the use of X, U, R and ∧, as well as the trace
quantifiers ∃ and ∀.

Lemma 2.2.3. The logic HyperLTL is equivalent to the logic HyperLTLNNF.

Proof. For the first direction, let PNNF = Q1π1, . . . ,Qnπn.φNNF(π1, . . . , πn) be an HyperLTLNNF
formula. By the definition of HyperLTLNNF, the formula φNNF(π1, . . . , πn) is in LTLNNF. By

15

applying Lemma 2.1.3, we can obtain an equivalent formula φ(π1, . . . , πn) in LTL. Thus, the
formula P = Q1π1, . . . ,Qnπn.φ(π1, . . . , πn) is in HyperLTL and is equivalent to PNNF.

For the second direction, let P = Q1π1, . . . ,Qnπn.φ(π1, . . . , πn) be an HyperLTL formula.
By the definition of HyperLTL, the formula φ(π1, . . . , πn) is in LTL. By applying Lemma 2.1.3,
we can obtain an equivalent formula φNNF(π1, . . . , πn) in LTLNNF. Thus, the formula PNNF =
Q1π1, . . . ,Qnπn.φNNF(π1, . . . , πn) is in HyperLTLNNF and is equivalent to P.

16

Chapter 3

Multi-Models and Multi-Properties

We generalize hyperproperties to multi-properties, which reason about the connections between
several models, which we call a multi-model.

Definition 3.0.1. Given k ∈ N, a k-multi-model is a k-tuple M = ⟨M1,M2, . . . ,Mk⟩ of Kripke
structures over a common set of atomic propositions AP . The multi-language of a k-multi-model
M, denoted L(M), is a tuple of languages ⟨L(M1), . . . ,L(Mk)⟩. A k-multi-property is a set of
tuples P ⊆ (2(2AP)ω)k.

M is a multi-model if it is a k-multi-model for some k, and similarly P is a multi-property.

Intuitively, in a multi-property P, every T ∈ P is a tuple of k sets of traces, each interpreted
in a model.

3.1 MultiLTL

We now present MultiLTL, a logic for describing multi-properties. A MultiLTL formula is inter-
preted over a multi-model M = ⟨M1, . . . ,Mk⟩. We use [a, b], where a ≤ b are integers, to denote
the set {a, a+ 1, . . . , b}. MultiLTL formulae are defined inductively as follows.

φ ::= ∃jπ. φ | ∀jπ. φ | ψ where j ∈ [1, k] and π is a trace variable

ψ ::= aπ | ¬ψ | ψ ∨ ψ | Xψ | ψUψ for every a ∈ AP

The only difference in syntax from HyperLTL is that trace quantifiers are now indexed. This
index is taken from the set [1, k] for some k ∈ N. The formula ∃jπ.φ means that there exists a
trace in Mj that satisfies φ and ∀jπ.φ means that φ holds for every trace in Mj .

The semantics of MultiLTL is defined as follows. Let T = ⟨T1, . . . Tk⟩ be a multi-language
over AP , called domain. Let V be a set of trace variables, and let Π : V →

∪
i∈[1,k] Ti.

Π |=T ∃iπ.ψ iff there exists t ∈ Ti such that Π[π → t] |=T ψ

Π |=T ∀iπ.ψ iff Π[π → t] |=T ψ for every t ∈ Ti

The semantics of the temporal operators is defined as in HyperLTL. Since every MultiLTL formula
describes a multi-property, we refer to the formulae themselves as multi-properties.

17

As with HyperLTL, when a MultiLTL formula P is closed, satisfaction is independent of Π,
and we denote T |= P. Given a multi-model M and a MultiLTL formula P, the model-checking
problem for MultiLTL is to decide whether L(M) |= P (which we denote M |= P).

For a MultiLTL formula P = Qi1
1 π1 . . .Qin

n πn.φ, we define the sets I∃(P) = {j | Qi
j = ∃ and i ∈

[1, k]}, and I∀(P) = {j | Qi
j = ∀ and i ∈ [1, k]}. We write I∃ and I∀ when P is clear from the

context.

3.1.1 Examples

We demonstrate the usefulness of MultiLTL and multi-models with some examples. The multi-
models we consider consist of models that interact with each other via an asynchronous com-
munication channel (which is not modeled). This assumption is not necessary outside the scope
of the examples, where other forms of interactions across models can take place (e.g., shared
variables).

Example 3.1.1. Consider a multi-model consisting of a client model C and a server model S.
We would like to check whether ⟨C, S⟩ |= ∀Cπ1∀Sπ2.G(rπ1 → Frπ2). In this formula, rπ1 means
that a request is sent in C and rπ2 means that a request is received in S. The formula specifies
that for every run of the client and for every run of the server, every request sent by the client
is eventually received by the server. This is a form of a liveness property that specifies that
messages are guaranteed to eventually arrive at their destination.

Example 3.1.2. Consider again the multi-model of Example 3.1.1. Assume that the interaction
between the client and the server is as follows. At the beginning of the interaction, the client
sends its username and password to the server. Immediately afterwards the server updates its
authentication flag and informs the client whether the authentication was successful or not. The
client gets this notification one clock cycle after the server authentication flag has been updated.
Consider the specification P2.

P2 = ∀Sπ1∃Cπ2∀Cπ3.

((userDBπ1 = userπ2) ∧ ((passDBπ1 = passπ2)) ∧ (Xautπ1 ∧ XXautπ2)

∧ ((userDBπ1 = userπ3) ∧ ((passDBπ1 ̸= passπ3)) → (X¬autπ1 ∧ XX¬autπ3)

The first two lines of P2 states that for every trace of the server there is a trace of the client
whose username and password match the username and password in the server database. If
so, the authentication succeeds. The third line assures that for each username in the server
database there is only one valid password with which the authentication succeeds.

Note that in this example, we describe a property which cannot be described using LTL.
Further, it cannot be expressed naturally in HyperLTL. MultiLTL, which explicitly refers to
traces in different models within a multi-model, naturally expresses it.

Example 3.1.3. We demonstrate again the power of MultiLTL to naturally express properties
that are not naturally expressible in HyperLTL. Diversity [46] refers to security policies of a set
of systems. The systems constitute different implementations of the same high-level program.

18

They differ in their implementation details1, but are equivalent with respect to the input-output
they produce. In [46], diversity has been advocated as a successful way to resist attacks that
exploit memory layout or instruction sequence specifics.

Assume that we are given a high-level program P and two low-level implementationsM1 and
M2. The following MultiLTL properties describe the fact that all implementations are equivalent
to P .

P1 = ∀Pπ∃M1π1∃M2π2.(inputπ = inputπ1 = inputπ2)∧

G(endπ ∧ endπ1 ∧ endπ2 → outputπ = outputπ1 = outputπ2)

P2 = ∀M1π1∃Pπ.(inputπ1 = inputπ) ∧ G(endπ1 ∧ endπ → outputπ1 = outputπ)

P3 = ∀M2π2∃Pπ.(inputπ2 = inputπ) ∧ G(endπ2 ∧ endπ → outputπ2 = outputπ)

Note that these properties cannot naturally be expressed in HyperLTL since they require an
explicit reference to the models from which the related traces are taken.

3.1.2 Negation Normal Form of MultiLTL

Definition 3.1.4. A MultiLTL formula is in negation normal form if every negation operator
is used only on atomic propositions. We denote the set of negation normal form formulae of
MultiLTL by MultiLTLNNF.
Note that similarly to Definition 2.1.2 and Definition 2.2.2, we allow the use of X, U, R and ∧,
and the trace quantifiers ∃j and ∀j .

Lemma 3.1.5. The logic MultiLTL is equivalent to the logic MultiLTLNNF.

Proof. The proof is almost identical to the proof of Lemma 2.2.3. ■

3.2 Model-Checking MultiLTL

We now show that although MultiLTL is a generalization of HyperLTL, the model-checking prob-
lems for these logics are equivalent.

3.2.1 Reduction from HyperLTL Model-Checking to MultiLTL Model-Checking

For the first direction, it is easy to see that the model-checking problem for a model M and
a HyperLTL formula P is equivalent to the model checking problem for ⟨M⟩ and the MultiLTL
formula obtained from P by indexing all of its quantifiers with the same index, 1.

Theorem 3.1. The model-checking problem for HyperLTL is polynomially reducible to the model-
checking problem for MultiLTL.

1For instance, the call stack of procedures is obfuscated by changing the order of variables, the specific memory
location of arguments and local variables, etc. The obfuscations differ in the different implementations.

19

Proof. Let M be a Kripke structure and let P = Q1π1 . . .Qnπn.φ(π1, . . . , πn) be a HyperLTL
formula. For M = ⟨M⟩ and the MultiLTL formula P = Q1

1π1 . . .Q1
nπn.φ(π1, . . . , πn), we show

that M |= P iff M |= P.
Let Π : V → L(M) be an assignment, T = L(M) and T = ⟨L(M)⟩. Since there was

no change to φ, it is immediate that Π |=T φ(π1, . . . , πn) iff Π |=T φ(π1, . . . , πn). Denote by
Pk(π1, . . . , πk−1) the formula Qkπk . . .Qnπnφ(π1, . . . , πn) and by Pk(π1, . . . , πk−1) the formula
Q1
kπk . . .Q1

nπnφ(π1, . . . , πn).
Assume that Π |=T Pk iff Π |=T Pk. Consider the quantifier Qk−1 in P:

• If Qk−1 = ∃, then Π |=T ∃πk−1.Pk iff there exists a trace τ ∈ L(M) such that Π[πk−1 →
τ] |=T Pk. By the induction hypothesis, this holds iff there exists a trace τ ∈ L(M) such
that Π[πk−1 → τ] |=T Pk. This claim holds iff Π |=T ∃1πk−1.Pk, since T = ⟨T ⟩.

• If Qk−1 = ∀, then Π |=T ∀πk−1.Pk iff for every trace τ ∈ L(M) it holds that Π[πk−1 →
τ] |=T Pk. This is iff for every trace τ ∈ L(M) it holds that Π[πk−1 → τ] |=T Pk. This
claim holds iff Π |=T ∀1πk−1.Pk, since T = ⟨T ⟩.

Notice that by induction this also holds for P = P1 and P = P1, which do not contain free
variables. Thus, M |= P iff T |= P iff T |= P iff M |= P as required. ■

3.2.2 Reduction from MultiLTL Model-Checking to HyperLTL Model-Checking

For the other direction, we first introduce several definitions. We use the notation ⊎ for disjoint
union.

Definition 3.2.1. Given a multi-model M = ⟨M1, . . . ,Mk⟩ over AP , its union model is ∪M =
(⊎ni=1Si,⊎ni=1Ii,⊎ni=1Ri, L), where L(s) = Li(s) ⊎ {i} for every i and s ∈ Si.
The indexing by i of a trace τ = t0, t1, . . . over AP is the trace indi (τ) = t0 ∪ {i}, t1 ∪ {i},
We define indexing of a word in a similar manner.
Note that indi is invertible. The inverse of indi is denoted ind−1

i . Given an indexed trace τ ′, the
trace ind−1

i (τ ′) is called the unindexed trace of τ ′.

For a trace τ and a multi-model M = ⟨M1, . . . ,Mk⟩, it holds that τ ∈ L(Mi) iff indi (τ) ∈
L(∪M), as shown by the following lemma.

Lemma 3.2.2. Let M = ⟨M1, . . . ,Mk⟩ be a multi-model over AP . Then for every i ∈ [1, k] it
holds that τ ∈ L(Mi) ⇐⇒ indi (τ) ∈ L(∪M).

Proof. We first prove the claim for finite words, by induction on the structure of (2AP)∗.
Base: w = ϵ, by definition of Kripke structure, w ∈ Lf (Mi) and indi (w) = w ∈ Lf (∪M) for

every i ∈ {1, . . . , k}.
Step: Assume that w = w′σ for w′ ∈ (2AP)∗. If w ∈ Lf (Mi) for some i than there are states

si, s
′
i ∈ Si such that si is the end of the run of Mi over w and s′

i is the end of the same run over
w′. Therefore, there exists a transition (s′

i, si) ∈ Ri. Since Kripke structures are prefix-closed,
w′ ∈ Lf (Mi), and by the induction hypothesis, indi (w) ∈ Lf (∪M). This means also that there
is a transition (s′

i, si) ∈ R in ∪M, which means that indi (w) ∈ Lf (∪M).

20

For the second direction, assume that w /∈ Lf (Mi), therefore, there is an index j such that
jw, the prefix of w of length j, is not in Lf (Mi). As a result, by the induction hypothesis,
indi

(
jw

)
/∈ Lf (∪M), and therefore also indi (w) /∈ Lf (∪M).

Consequently, this must also hold for infinite traces, since otherwise, there is some finite
prefix for which it does not hold, contradicting the previous induction. ■

Note 3.2.3. Consider an input M,P to the model-checking problem of MultiLTL. Without
loss of generality, we can assume that each sub-model in M is quantified exactly once, and
furthermore, that P is a MultiLTLNNF formula of the form Q1

1π1Q2
2π2 . . .Qn

nπn.φ(π1, . . . , πn). This
can be achieved by duplicating models which are quantified several times and by reordering the
models according to the order of the quantifiers.

We assume that M and P are in this form, for the rest of the section.

Definition 3.2.4. Given a model M and a HyperLTL formula P, an assignment Π respects the
model M, if Π(πi) ∈ L(M) for every i ∈ [1, n].

Similarly, given a multi-model M and a MultiLTL formula P, an assignment Π respects the
multi-model M, if Π(πi) ∈ L(Mi) for every i ∈ [1, n].

Note that when checking whether a model (multi-model) satisfies a hyperproperty (multi-
property), it is enough to consider only assignments that respect the model (multi-model) for
every sub-formula of the property. This holds since there are no free trace variables in the
formula.

Definition 3.2.5. Given a multi-model M, a MultiLTL formula P and an assignment Π that
respects M, the indexed assignment of Π, denoted indM,P (Π), is defined by indM,P (Π) (πi) =
indi (Π(πi)) for every i ∈ [1, n].

Given an indexed assignment Π, the unindexed assignment of Π, denoted ind−1
M,P (Π), is

defined by ind−1
M,P (Π) (πi) = ind−1

i (Π(πi)).

Lemma 3.2.6. Let M be a multi-model, P be a multi-property and Π be an assignment that
respects M. Then, indM,P (Π) respects ∪M.

Proof. Since Π respects M, it holds that Π(πi) ∈ L(Mi) for every i ∈ [1, n]. By Lemma 3.2.2,
this implies that indi (Π(πi)) ∈ L(∪M). Since indM,P (Π) (πi) = indi (Π(πi)), we also get that
indM,P (Π) (πi) ∈ L(∪M). ■

Lemma 3.2.7. Let M be a multi model, P be a multi property and Π an assignment that respects
M. For every j ∈ N, it holds that indM,P (Π)j = indM,P

(
Πj

)
.

Proof. The following equations hold for every πi and j ∈ N, as required.

indM,P (Π)j (πi) = (indi (Π(πi)))j = indi
(
Πj(πi)

)
= indM,P

(
Πj

)
(πi) ■

Definition 3.2.8. Let P = Q1
1π1 . . .Qn

nπnφ(π1, . . . , πn) be a MultiLTLNNF formula. The trans-
formed formula of P, denoted trans (P), is defined inductively as follows:

21

• If φ = aπi or φ = ¬aπi for a ∈ AP , we define trans (φ) to be iπi → φ if Qi
i = ∀i, and iπi ∧φ

otherwise.

• If φ = Xψ, we define trans (φ) = Xtrans (ψ).

• If φ = ψ ◦ ϕ for some ◦ ∈ {∨,∧,U,R}, we define trans (φ) = trans (ψ) ◦ trans (ϕ).

• If φ = Qiπi.ψ for Q ∈ {∀, ∃}, we define trans (φ) = Qπi.trans (ψ).

Intuitively, trans (P) is obtained from P by the following changes:

1. For every a ∈ AP , every occurrence of a literal l = aπ or l = ¬aπ where π is universally
quantified, is replaced with iπ → l. This change requires that the constraints on the
atomic propositions are enforced only on traces that originate from the model on which
the universal quantified was used in the multi-property. For traces from other models, the
requirement is immediately satisfied.

2. For every a ∈ AP , every occurrence of aπ and for every occurrence of a literal l = aπ or
l = ¬aπ where π is existentially quantified, is replaced with iπ ∧ l. This requires that the
trace used for the satisfaction of the existential quantifier is from the model which was
quantified in the multi-property.

3. Every quantifier Qi
i is replaced with Qi.

Note that when P is a MultiLTLNNF formula, trans (P) is a HyperLTLNNF formula.

Lemma 3.2.9. Let M be a multi-model, P = Q1
1π1 . . .Qn

nπn.φ(π1, . . . , πn) be a MultiLTLNNF

formula and let Π be a trace assignment that respects M. Then Π |= φ(π1, . . . , πn) iff indM,P (Π) |=
trans (φ(π1, . . . , πn)).

Proof. By induction on the structure of MultiLTLNNF without quantifiers.
Base: φ = aπi or φ = ¬aπ. We show the proof for φ = aπi , the case where φ = ¬aπi is similar.

• If i ∈ I∃, then trans (φ) = iπi ∧ φ. It holds that Π |= aπi iff a ∈ Π(πi) iff {a, i} ⊆
indM,P (Π) (πi) iff indM,P (Π) |= iπi ∧ aπi .

• If i ∈ I∀, then trans (φ) = iπi → φ. Note that Π respects M, which means that indM,P (Π)
respects ∪M. Therefore, it holds that Π |= aπi iff a ∈ Π(πi) iff {a, i} ⊆ indM,P (Π) (πi)
iff indM,P (Π) |= iπi → aπi . Note that in the last transition, we use the fact that i ∈
indM,P (Π) (πi) for every i.

Step: Let φ1, φ2 be MultiLTL formulae. Assume that Π |= φi iff indM,P (Π) |= trans (φi) for
i ∈ [1, 2]. By the definition of trans (·) the step follows:

• Let ◦ ∈ {∧,∨}. It holds that Π |= φ1◦φ2 iff (Π |= φ1) ◦ (Π |= φ2) iff indM,P (Π) |= trans (φ1)
and/or indM,P (Π) |= trans (φ2) iff indM,P (Π) |= trans (φ1 ◦ φ2).

• Π |= Xφ iff Π1 |= φ iff indM,P
(
Π1)

|= trans (φ) iff indM,P (Π)1 |= trans (φ) iff indP (Π) |=
trans (Xφ).

22

• Π |= φ1Uφ2 iff there exists k ≥ 0 such that Πk |= φ2 and for every 0 ≤ i < k Πi |= φ1.
This is iff there exists k ≥ 0 such that indM,P

(
Πk

)
|= trans (φ2) and for every 0 ≤ i <

k indM,P
(
Πi

)
|= trans (φ1). This holds iff there exists k ≥ 0 such that indM,P (Π)k |=

trans (φ2) and for every 0 ≤ i < k indM,P (Π)i |= trans (φ1). This is iff indM,P (Π) |=
(trans (φ1))U(trans (φ2)), which is iff indM,P (Π) |= trans (φ1Uφ2).

• The proof for R is similar to the proof for U.

For the cases X,U,R we use Lemma 3.2.7 in some of the transitions. ■

Definition 3.2.10. Given a MultiLTL formula P, the basic sub-formulae of trans (P) are all the
sub-formulae of trans (P) of the form: iπi → aπi or iπi ∧ aπi .

The following lemma shows that for every MultiLTLNNF formula P, the formula trans (P) is
monotonic with respect to its basic sub-formulae. I.e. by changing the truth value of some basic
sub-formulae to true, the truth value of the entire formula cannot become false, unless it was
false before.

Lemma 3.2.11. Let P = Q1
1π1 . . .Qn

nπn.φ(π1, . . . , πn) be a MultiLTLNNF, such that Qk = ∀. Let
M be a multi-model and Π be an assignment for trans (φ). If Π |= trans (φ) and if τ is a trace
that is not marked by the index k, then Π[πk → τ] |= trans (φ).

Proof. Let Π and τ be as in the lemma. We show a proof by induction on the structure of a
MultiLTLNNF formula without quantifiers.

Base: If there is no aπk
in the formula, then the assignment is independent from Π[πk],

which means that if Π |= trans (φ), then also Π[πk → τ] |= trans (φ). Otherwise, φ = kπk
→ aπk

.
Since τ is not indexed by k, then Π[πk → τ] |= trans (φ) vacuously.

Step: Since all the operators in {∧,∨,X,U,R} are monotonic, the step is immediate. ■

We now can show the reduction from MultiLTL model-checking problem to HyperLTL model-
checking problem.

Theorem 3.2. The model-checking problem for MultiLTL is polynomially reducible to the model-
checking problem for HyperLTL.

Proof. Let P = Q1
1π1 . . .Qn

nπn.φ(π1, . . . , πn) be a MultiLTLNNF formula and let M be a multi-
model ⟨M1, . . . ,Mk⟩, both over AP . Denote T = ⟨L(M1), . . . ,L(Mn)⟩ and T = L(∪M). Let
Π be an assignment that respects M and Λ be an assignment that respects ∪M, such that
ind−1

i (Λ(πi)) ∈ L(Mi) for every i ∈ I∃.. We show that Π |=T P iff Λ |=T trans (P).
Let Pk(π1, . . . , πk−1) = Qk

kπk . . .Qn
nπn.φ and trans (P)k (π1, . . . , πk−1) = trans (Pk), for every

k ∈ [1, n+ 1]. Note that φ = Pn+1 and trans (φ) = trans (P)n+1.
First Direction: Assume that for every assignment Π that respectsM, it holds that Π |=T P.

Let Λ be an assignment that respects ∪M, such that ind−1
i (Λ(πi)) ∈ L(Mi) for every i ∈ I∃.

By induction on the number of quantifiers in P, we show that if Π |=T P then Λ |=T trans (P).
Note that since P and trans (P) does not contain free trace variables, this means that this claim
also holds for λ that does not fulfill the requirements, when considering the entire formula.

23

Base: When the formula does not contain quantifiers, we consider two cases. If Λ =
indM,P (Π) for some Π that respects M, then the base case holds according to Lemma 3.2.9.

Otherwise, Λ assigns at least one trace variable πi, a trace that is not indexed by i for i ∈ I∀.
In this case, every basic sub-formula that refers to those trace variables is vacuously satisfied.
When considering an assignment Λ′ which agrees with Λ on the assignment for every πi, when
i ∈ I∃, by the first case, Λ′ |=t trans (φ). By Lemma 3.2.11, this also holds for Λ, since it is can
be obtained by changing the traces assigned by Λ′ for universally quantified trace variables.

Step: Assume that the claim holds for Pk+1 and trans (P)k+1. We now show that it holds
for Pk and trans (P)k. We consider two cases.

• Pk = ∃kπk.Pk+1: This means that trans (P)k = ∃πk.trans (P)k+1.
Assume that Π |=T ∃kπk.Pk+1. By the semantics of MultiLTL, this means that there
exists τ ∈ L(Mk) such that Π[πk → τ] |=T Pk+1. Since τ ∈ L(Mk), the assignment
Π[πk → τ] respects M. Additionally, indk (τ) ∈ L(∪M) by construction. By the induction
hypothesis, Λ[πk → indk (τ)] |=T trans (P)k+1, which means by the semantics of HyperLTL
that Λ |=T ∃πk.trans (P)k+1.

• Pk = ∀kπk.Pk+1: This means that trans (P)k = ∀πk.trans (P)k+1.
Assume that Π |=T ∀kπk.Pk+1. By the semantics of MultiLTL, this means that for every
τ ∈ L(Mk), Π[πk → τ] |=T Pk+1. Thus, by the induction hypothesis, Λ[πk → indk (τ)] |=T

trans (P)k+1. By Lemma 3.2.11, since for every trace τ ′ ∈ L(∪M) such that ind−1
k (τ ′) /∈

L(Mk), all the basic sub-formulae of trans (P)k that refer to πk are satisfied. Also Λ[πk →
τ ′] |=T trans (P)k+1.

Second Direction: Assume that Λ |=T trans (P) for every assignment Λ that respects ∪M.
By Lemma 3.2.6, this means that for every assignment Λ such that Λ = indM,P (Π), for Π that
respects M, it holds that Λ |= trans (P).

Let Π be an assignment that respects M. By induction on the number of quantifiers in P,
we show that if Λ |=T trans (P) then Π |=T P.

Base: The base case holds according to Lemma 3.2.9, in a similar manner to the previous
direction.

Step: Assume that the claim holds for Pk+1 and trans (P)k+1. We now show that it holds
for Pk and trans (P)k.

• Pk = ∃kπk.Pk+1: This means that trans (P)k = ∃πk.trans (P)k+1.
Assume that Λ |=T ∃πk.trans (P)k+1. By the semantics of HyperLTL, this means that there
exists τ ∈ L(∪M) such that Λ[πk → τ] |=T trans (P)k+1. Since τ ∈ L(∪M), the assignment
Λ[πk → τ] respects ∪M.

– If ind−1
k (τ) ∈ L(Mk), then Π[πk → ind−1

i (τ)] respects M and also Λ[πk → τ] =
indM,P

(
Π[πk → ind−1

i (τ)]
)
. Thus, by the induction hypothesis, Π[πk → ind−1

k (τ)] |=T

Pk+1. This means that Π |=T ∃kπk.Pk+1.

– Otherwise, ind−1
k (τ) /∈ L(Mk). Additionally, every basic sub-formula that refers to πk

in trans (P)k+1, is of the form k ∧ aπk
for some a ∈ AP . Since ind−1

k (τ) /∈ L(Mk), we

24

get that τ |= G¬k. Thus, the every basic sub-formula that refers to πk is not satisfied.
By the monotonicity of HyperLTLNNF (following a similar proof to Lemma 3.2.11),
Π[πk → τ ′] |=T Pk+1 for some τ ′ such that ind−1

k (τ ′) ∈ L(Mk). Thus we return to
the previous case.

• Pk = ∀kπk.Pk+1: This means that trans (P)k = ∀πk.trans (P)k+1.
Assume that Λ |=T ∀πk.trans (P)k+1. By the semantics of HyperLTL, this means that
for every τ ∈ L(∪M), it holds that Λ[πk → τ] |=T trans (P)k+1. Since τ ∈ L(∪M),
this also holds for every τ such that ind−1

k (τ) ∈ L(Mk). By the induction hypothesis,
Π[πk → ind−1

k (τ)] respects M and Π[πk → ind−1
k (τ)] |=T Pk+1. By the semantics of

MultiLTL, this results in Π |=T Pk. ■

Note that this proof is stronger than a simple reduction. Theorem 3.2 implies that there is a
linear-time reversible translation of the traces of M to the traces of M. This is especially useful
when handling counterexamples.

3.3 Direct Algorithm for MultiLTL Model-Checking

In [35], the authors present an algorithm for model-checking HyperLTL that can be easily adjusted
for MultiLTL. Thus, there is no need to use the reduction in Theorem 3.2 for MultiLTL model-
checking. The algorithm relies roughly on the repeated intersection of the models under ∃ with
an automaton for φ, the quantifier-free part of the formula, or, in the case of ∀ quantifiers, for
¬φ (which involves complementation). Accordingly, the complexity is a tower in the number of
models, and the size of the models greatly influences the run-time.

Definition 3.3.1. A non-deterministic Büchi automaton (NBW) is a tuple A = (Q, q0,Σ, δ, α),
where Q is a finite set of states, q0 ∈ Q is the initial state, Σ is a finite alphabet, δ : Q× Σ → 2Q

is a transition function, and α ⊆ Q is a set of accepting states.

Definition 3.3.2. Let Q be a finite set. The set of positive boolean formulae over Q, denoted
B+(Q), is defined inductively as follows:

• true, false ∈ B+(Q) and q ∈ B+(Q) for every q ∈ Q.

• If φ1, φ2 ∈ B+(Q) then also φ1 ∧ φ2 and φ1 ∨ φ2 are in B+(Q).

Let Q′ ⊆ Q and θ ∈ B+(Q). We say that Q′ satisfies θ, denoted Q′ |= θ, if zQ′ |= θ, where:

zQ′(q) =

0, if q /∈ Q′

1, if q ∈ Q′

Definition 3.3.3. An alternating Büchi automaton (ABW) is a tuple (Q, q0,Σ, δ, α), where Q,
q0, Σ and α are as in Definition 3.3.1 and δ : Q× Σ → B+(Q) is a transition function mapping
each state and letter to a positive Boolean formula of states.

Note that, an NBW A = (Q, q0,Σ, δ, α) can be seen as an ABW where δ(q, σ) is a disjunction,
for every q ∈ Q and σ ∈ Σ.

25

Definition 3.3.4. Let A be an ABW and w = w0, w1, · · · ∈ Σω be an inifinte-word. A run of
A on w is a tuple (T, r), where T is a tree (see Definition 2.0.3), and r : T → Q is a mapping
from nodes in the tree to states in A, such that the following holds: r(ϵ) = q0 and for every
node t ∈ T with children t1, . . . , tk it holds that {r(t1), . . . , r(tk)} |= δ

(
r(t), w|t|

)
.

A run (T, r) of A on w is accepting if one of the two holds.

• For every infinite path t0, t1 . . . in T , there are infinitely many i with r(ti) ∈ α.

• Every maximal finite path t0, . . . , tk ends in a true transition.

We say that w is accepted by A if there is an accepting run of A on w, and denote by L(A) the
set of infinite words accepted by A.

It is a known result that NBW and ABW are equivalent in their expressive power.

Theorem 3.3. [42] For every ABW A, there exists a NBW B with L(A) = L(B).

Given an ABW A we denote by nbw (A) an NBW B such that L(A) = L(B), which exists by
Theorem 3.3.

We next present our model-checking algorithm for MultiLTL.
Our model-checking algorithm takes a multi-model M = ⟨M1, . . . ,Mk⟩, where Mi =

(Si, Ii, Ri, Li) and a MultiLTLNNF formula P = Q1
1π1, . . . ,Qk

kπk.φ(π1, . . . , πk), and constructs
an ABW AP over Σ = S1 ×S2 ×· · ·×Sk, such that a word w̄ ∈ Σ is in its language, iff the traces
that correspond to the states traversed by the run of AP on w̄ satisfy the multi-property P.

Let Σi = S1 × S2 × · · · × Si. Note that Σ = Σk and Σ0 is a unary alphabet. Given a i-tuple
s̄ ∈ Σi where s̄ = (s1, . . . , si), we use s̄|j to denote sj . Given tuples s̄1 = (s1, . . . , sn), s̄2 =
(s′

1, . . . , s
′
m), we use ⟨s̄1, s̄2⟩ = (s1, . . . , sn, s

′
1, . . . , s

′
m) to denote the (n + m)-tuple of their con-

catenation.
We first describe a construction of an ABW for the quantifier-free formula φ(π1, . . . , πk).

The construction is by induction on the structure of the formula, as described below. Assume
that Aψi

= (Qi, qi0,Σ, δi, αi) for i ∈ {1, 2}, are the ABWs for the subformulae ψ1 and ψ2.

• If ψ = aπk
:

Aψ = ({q0}, q0,Σ, δ, ∅) where δ(q0, s̄) = true if a ∈ Lk(s̄|k) and δ(q0, s̄) = false otherwise.

• If ψ = ¬aπk
:

Aψ = ({q0}, q0,Σ, δ, ∅) where δ(q0, s̄) = false if a ∈ Lk(s̄|k) and δ(q0, s̄) = true otherwise.

• If ψ = ψ1 ◦ ψ2, where ◦ ∈ {∨,∧}:
Aψ = (Q1 ⊎Q2 ⊎ {q0}, q0,Σ, δ, α1 ⊎ α2) where δ(q0, s̄) = δ1(q1

0, s̄) ◦ δ2(q2
0, s̄), and δ(q, s̄) =

δi(q, s̄) for every q ∈ Qi and i ∈ {1, 2}.

• If ψ = Xψ1:
Aψ = (Q1 ⊎ {q0}, q0,Σ, δ, α1), where δ(q0, s̄) = q1

0, and δ(q, s̄) = δ1(q, s̄) for every q ∈ Q1.

• If ψ = ψ1Uψ2:
Aψ = (Q1 ⊎ Q2 ⊎ {q0}, q0,Σ, δ, α1 ⊎ α2), where δ(q0, s̄) = δ2(q2

0, s̄) ∨ (δ1(q1
0, s̄) ∧ q0), and

δ(q, s̄) = δi(q, s̄)for every q ∈ Qi.

26

• If ψ = ψ1Rψ2:
Aψ = (Q1 ⊎Q2 ⊎ {q0}, q0,Σ, δ, α1 ⊎ α2 ⊎ {q0}), where δ(q0, s̄) = δ2(q2

0, s̄) ∧ (δ1(q1
0, s̄) ∨ q0),

and δ(q, s̄) = δi(q, s̄) for every q ∈ Qi.

Now, we describe how to handle quantifiers. When we introduce a quantifier, we restrict
the alphabet of the automaton. Specifically, when introducing the ith quantifier to the formula
ψ = ∃iπ.ψ1, we restrict the alphabet of the automaton from Σψ1 = Σi to Σψ = Σi−1. The
idea behind this is that the states for the ith trace, are hidden inside the automaton, and are
not given as its input. We follow a path p in Mi, by tracking the states it follows, using the
new component in the tuple that represents a state from Si. In this way, when we reach an
automaton for the entire formula, we can follow the first existentially quantified traces in the
constructed automaton.

• If ψ = ∃iπi.ψ1:
Let nbw (Aψ1) = (Q′, q′

0,Σψ1 , δ
′, α′) be the NBW that is equivalent to Aψ1 , and let Mi =

(Si, Ii, Ri, Li) be the ith model in M.

Aψ = ((Q′ × Si) ⊎ {q0}, q0,Σψ, δ, α
′ × Si), where

δ(q0, s̄) =
{
(q′, s′) | q′ ∈ δ′(q′

0, ⟨s̄, si⟩), (si, s′) ∈ Ri and si ∈ Ii
}

δ((q, t), s̄) =
{
(q′, s′) | q′ ∈ δ′(q, ⟨s̄, t⟩) and (t, s′) ∈ Ri

}
After this construction is applied to the first quantifier Q1

1, the automaton AP is over a
unary alphabet Σ0.

For the universal quantifiers we use the fact that NBWs are closed for complementation [41].
Thus, for ψ = ¬ψ1, we can use nbw(Aψ1).

• If ψ = ∀iπi.ψ1:
Then ψ is equivalent to ¬∃iπi.¬ψ1, and we set Aψ = nbw (∃iπi.¬ψ1).

Similarly to [35], when P begins with an existential quantifier, M |= P iff L(AP) is not empty.
The correctness follows directly from the correctness of the original algorithm.

3.3.1 Counterexamples from the Model-Checking Algorithm

In this section, we describe how counterexamples can be obtained from the aforementioned
model-checking algorithm, and for which formulae. Let M = ⟨M1, . . . ,Mk⟩ be a multi-model,
and T = L(M).

We first consider a MultiLTL formula P = Q1
1π1 . . . ,Qk

kπk.φ, which begins with a sequence of
n existential trace quantifiers. The witness for the satisfaction is a tuple ⟨w1, . . . , wn⟩, such that
for every trace assignment Π, if Π(πi) = wi for i ∈ [1, n], then Π |=T Qn+1

n+1πn+1 . . . ,Qk
kπk.φ.

Since the construction of AP starts from the innermost sub-formulae, the n last quantifiers,
for which the construction is applied are the first n quantifiers in the formula Q1

1, . . . ,Qn
n. This

is due to the fact that we apply the construction of the quantifiers in a decreasing order – from
Qk towards Q1.

27

During each of the constructions for Qn
n, . . . ,Q1

1, the states of the automaton are labeled by
the states of the models in M, from which a trace is needed by the quantifier. This is done
by the Cartesian product in the construction for existential quantifiers. Thus, each state in
AP is a tuple (q, sn, . . . , s1), such that si ∈ Si, for i ∈ [1, n]. Note that when considering the
automaton Aψ for ψ = Qn+1

n+1πn+1 . . . ,Qk
kπk.φ, the states in the automaton do not correspond

to states in the multi-model M. This is due to the fact, that in the construction for universal
quantifiers, a complementation is needed. Similarly, if there are no other quantifiers, the states
in the automaton are independent from the states of the multi-model. Thus, the states of AP can
be viewd as an (n+ 1)-tuple of states, where the first component is a state in the complemented
NBW Aψ. Due to the nature of the complementation construction, this component does not
correspond to a path in the previously quantified models. Therefore, we can obtain such paths
only for the first (outermost) sequence of existential quantifiers.

Consequently, when M |= P, the language of AP is not empty. Thus, we get a non-emptiness
witness, which is an infinite path (q0, s0

n, . . . , s
0
1), (q1, s1

n, . . . , s
1
1), . . . , which corresponds to a

word w ∈ L(AP). Each path pi = s0
i , s

1
i , . . . is a path in Mi, for i ∈ [1, n]. By setting each πi to

pi, for i ∈ [1, n], the formula Qn+1
n+1πn+1 . . .Qk

kπk.φ can be satisfied.
Symmetrically, if P begins with n universal trace quantifiers. When M ̸|= P, we aim to obtain

a counterexample. Since M ̸|= P iff M |= ¬P, we can obtain a witness for the satisfiability of
¬P, as described before. This witness a counterexample for the satisfaction of P by M. This
means that a counterexample is a tuple ⟨w1, . . . , wn⟩, such that for every trace assignment Π, if
Π(πi) = wi for i ∈ [1, n], then Π ̸|=T Qn+1

n+1πn+1 . . . ,Qk
kπk.φ.

To summarize, we have the following.

Lemma 3.3.5. 1. There is a direct algorithm for model-checking M |= P.

2. Let P ∈ MultiLTL with k quantifiers such that Qi = ∀ for every i ∈ [1, n], let Π be an
assignment that respects M and T = L(M). If M ̸|= P then the model-checking algorithm
can also extract a counterexample ⟨w1, . . . , wn⟩ such that wi ∈ L(Mi) for every i ∈ [1, n].
Additionally, for every trace assignment Π such that Π(πi) = wi for i ∈ [1, n], it holds that
Π ̸|=T Qn+1

n+1πn+1 . . .Qk
kπk.φ.

Intuitively, when Qn+1 = · · · = Qk = ∃, (2) means that there is no extension of ⟨w1, . . . , wn⟩
for k traces, from the appropriate models, that satisfies the formula.

Note 3.3.6. Although the model checking algorithm works for every quantification condition,
counterexamples are defined only for the first sequence of universal quantifiers. Since, for ex-
istential quantifiers, there is no natural counterexample in the form of a single word. Indeed,
a counterexample for this case would need to convince the lack of existence of an appropriate
word.

3.4 Compositional Proof Rules for Model-Checking MultiLTL

We present two complementing compositional proof rules for the model-checking problem of
MultiLTL.

28

Let M be a k-multi-model, and let P = Qi1
1 π1 . . .Qim

m πmφ be a MultiLTL formula. The rule
(PR) aims at proving M |= P, and (PR) aims at proving the contrary, that is, M |= ¬P. Every
model Ai in the rules is an abstraction. Since some models may be multiply quantified, a model
Mi may have several different abstractions, according to the quantifiers under which Mi appears
in P.

∀i ∈ I∀. Mij |= Ai ∀i ∈ I∃. Ai |= Mij ⟨A1, . . . ,Am⟩ |= Q1
1π1 . . .Qm

mπm.φ

⟨M1, . . . ,Mk⟩ |= Qi1
1 π1 . . .Qim

m πm.φ (PR)

∀i ∈ I∀. Ai |= Mij ∀i ∈ I∃. Mij |= Ai ⟨A1, . . . ,Am⟩ |= ¬(Q1
1π1 . . .Qm

mπm.φ)
⟨M1, . . . ,Mk⟩ |= ¬(Qi1

1 π1 . . .Qim
m πm.φ) (PR)

Intuitively, in (PR), we use an over-approximation for every model under ∀, and an under-
approximation for every model under ∃. The rule (PR) behaves dually to (PR) for the negation
of P.

Lemma 3.4.1. The proof rules (PR) and (PR) are sound and complete.

Proof. We first prove for (PR). Let M = ⟨M1, . . . ,Mk⟩ and P = Qi1
1 π1 . . .Qim

m πm.φ(π1, . . . , πm).
Completeness: When M |= P, we can choose Ai = Mij for every i ∈ [1,m], which satisfy all
the requirements.

Soundness: Let A = ⟨A1, . . . ,Am⟩ such that M,A and P fulfill the premises of the proof
rule. Let Π be an assignment for the trace variables, and ψ a sub-formula of P that contains φ.
Denote T = ⟨L(M1), . . . ,L(Mk)⟩ and T′ = ⟨L(A1), . . . ,L(Ak)⟩.

We show soundness by induction on the number of quantifiers in sub-formulae of P, that if
Π |=T′ ψ then Π |=T ψ.

Base: ψ is quantifier free, this means that ψ = φ. Therefore Π |=T′ ψ iff Π |=T ψ, since
when there are no quantifiers, the domain does not affect the satisfaction.

Step: Let ψ = Qin
n π.ψ

′ be a formula with m− n+ 1 quantifiers, and ψ′ be its sub-formula
with m− n quantifiers. By the induction hypothesis we know that if Π |=T′ ψ′ then Π |=T ψ

′.

• If Qin
n = ∃i, then Π |=T′ ∃iπ.ψ′ iff there exists t ∈ L(Ai) such that Π[π → t] |=T′ ψ′.

Since Ai |= Mi, the same t is also in L(Mi). Therefore, there exists t ∈ L(Mi) such that
Π[π → t] |=T′ ψ′ which by the induction hypothesis means that there exists t ∈ L(Mi)
such that Π[π → t] |=T ψ

′. By the semantics of MultiLTL, we get that Π |=T ∃iπ.ψ′.

• If Qin
n = ∀i, then Π |=T′ ∀iπ.ψ′ iff for every t ∈ L(Ai), it holds that Π[π → t] |=T′ ψ′. Since

Mi |= Ai, for every t ∈ L(Mi), it holds Π[π → t] |=T′ ψ′. By the induction hypothesis,
this means that for every t ∈ L(Mi), it holds that Π[π → t] |=T ψ

′. By the semantics of
MultiLTL, we get that Π |=T ∀iπ.ψ′.

When ψ = P, we get that if A |= P then M |= P as needed.

For (PR), notice that ¬P ≡ Qi1
1 π1 . . .Q

im
1 πm¬φ, where ∀ = ∃ and ∃ = ∀, conforming to

(PR). ■

29

30

Chapter 4

Abstraction-Refinement Based
Implementation of the Proof Rules

In this chapter, we present methods for constructing over- and under-approximations using an
abstraction-refinement based approach. We first define the notion of simulation.

Definition 4.0.1. Let M1 = (S1, I1, R1, L1) and M2 = (S2, I2, R2, L2) be Kripke structures
over AP . A simulation from M1 to M2 is a relationH ⊆ S1×S2 such that for every (s1, s2) ∈ H:

• L1(s1) = L2(s2)

• For every (s1, s
′
1) ∈ R1, there exists a state s′

2 ∈ S2 such that (s2, s
′
2) ∈ R2 and (s′

1, s
′
2) ∈ H.

If additionally, for every s0 ∈ I1 there exists s′
0 ∈ I2 such that (s0, s

′
0) ∈ H, we denote M1 ≤H

M2. We denote M1 ≤ M2 if M1 ≤H M2 for some simulation H.

The following Lemma is a well-known property of a simulation relation.

Lemma 4.0.2. Let M1,M2 be two Kripke structures such that M1 ≤ M2. Then M1 |= M2.

Next, we describe how to construct sequences of over- and under-approximations for a given
model M. Each approximation in these sequences is closer to the original model than its
previous. We later incorporate these sequences in a MultiLTL abstraction-refinement based
model-checking algorithm using our proof rules.

4.1 Constructing a Sequence of Over-Approximations

Given a Kripke structure M = (S, I,R, L) over AP , we aim to construct a sequence of over-
approximations A0 ≥ A1 ≥ · · · Ak ≥ M, where Ai+1 is a refinement of Ai, which we calculate by
using counterexamples. A counterexample is a word w ∈ L(Ai) yet w /∈ L(M). By Lemma 2.0.5,
it suffices to consider finite prefixes of w, since there is an index j for which w0, w1, . . . , wj−1 ∈
L(Ai) \ L(M).

We use a sequence of abstraction functions h0, . . . , hk, each defining an abstract model.

Definition 4.1.1. Let Ŝ be a finite set of abstract states. A function h : S → Ŝ is an abstraction
function if h is onto, and for every ŝ ∈ Ŝ, it holds that L(s1) = L(s2) for every s1, s2 ∈ h−1(ŝ) .

31

Definition 4.1.2. For an abstraction function h : S → Ŝ, the ∃∃ abstract model induced by h
is Ah = (Ŝ, Î, R̂, L̂), where Î = {ŝ | ∃s0 ∈ I, h(s0) = ŝ}, and for every ŝ ∈ Ŝ we set L̂(ŝ) = L(s)
for some s such that h(s) = ŝ.1 However, (ŝ, ŝ′) ∈ R̂ iff there exist s, s′ ∈ S such that (s, s′) ∈ R

for which h(s) = ŝ and h(s′) = ŝ′.

Lemma 4.1.3. Let M = (S, I,R, L) be a Kripke structure and Ah = (Ŝ, Î, R̂, L̂) be the ∃∃
abstract model induced by an abstraction function h : S → Ŝ. Then, M ≤ Ah.

Proof. Let H = {(s, h(s))|s ∈ S}. We show that H is a simulation relation. Let (s, h(s)) ∈ H.

1. L(s) = L̂(h(s)) by the definition of abstraction function.

2. Let (s, s′) ∈ R, we show that (h(s), h(s′)) ∈ R̂. By definition (h(s), h(s′)) ∈ R̂ iff there
exist sM, s′

M ∈ S such that (sM, s′
M) ∈ R and (sM, h(sM)) ∈ H and (s′

M, h(s′)) ∈ H.
Clearly for s = sM and s′ = s′

M this requirement is fulfilled.

3. Let s0 ∈ I, by the construction of the abstract model, we know that h(s0) ∈ Î as needed.

■

Definition 4.1.4. Let M and M′ be Kripke structures such that M ≤ M′ by a simulation H,
and let r′ = s′

0, s
′
1, . . . be a run of M′ on w. The run r = s0, s1, . . . , sj is a maximal induced run

of r′ in M, if for every i ∈ [0, j] it holds that (si, s′
i) ∈ H, and for every i ∈ [0, j−1] it holds that

(si, si+1) ∈ R. Moreover, there is no state s∗ ∈ S such that (s∗, s′
j+1) ∈ H and (sj , s∗) ∈ R. If no

such j exists then r is infinite, and for every i ≥ 0 it holds that (si, s′
i) ∈ H and (si, si+1) ∈ R.

In the sequel, we fix a Kripke structure M = (S, I,R, L).

4.1.1 Over-approximation Sequence Construction

Initialization.

Define Ŝ0 = {sP | P ⊆ AP and ∃s ∈ S : L(s) = P}. That is, there is a state in Ŝ0 for every
labeling in M. The initial over-approximation A0 is the ∃∃ model induced by h0 : S → Ŝ0

defined by h0(s) = sL(s). Since h0 is an abstraction function, by Lemma 4.1.3 we have that
M ≤ A0.

Refinement.

Let hi : S → Ŝi be an abstraction function. Let Ai = (Ŝi, Îi, R̂i, L̂i) be the ∃∃ model induced
by hi. By Lemma 4.1.3 we have that M ≤ Ai. Let w ∈ L(Ai)\L(M) be a counterexample. Let
r̂i = ŝ0, ŝ1 . . . be a run of Ai on w, and r = s0 . . . , sj be a maximal induced run of M on w.
Since w /∈ L(M), we have that r is finite. We define Ai+1 to be the ∃∃ model induced by hi+1,
where hi+1 : S → Ŝi+1 for Ŝi+1 = Ŝi ⊎ {ŝ′}, defined as follows, for every s ∈ S.

1L̂ is well defined since by Definition 4.1.1, only equilabeled states are mapped to the same abstract state.

32

...

ŝ0 ŝ1 ŝj ŝj+1

(a)

...

ŝ0 ŝ1 ŝj hi(sj+1)

(b)

Figure 4.1: Illustration of Refinements: (a) ∃∃, and (b) ∀∃
.

hi+1(s) =


hi(s), if hi(s) ̸= ŝj

hi(s), if hi(s) = ŝj and ∃s′ ∈ S such that hi(s′) = ŝj+1 and (s, s′) ∈ R

ŝ′, if hi(s) = ŝj and ¬∃s′ ∈ S such that hi(s′) = ŝj+1 and (s, s′) ∈ R

The intuition for the refinement is presented in Figure 4.1 (a). Concrete states are the full
circles and abstract states are the dashed ovals. The purple line is a maximal induced run of
ŝ0, ŝ1 . . . in M, which ends at ŝj . Since there is an infinite run in the abstract model, we can
split ŝj into two abstract states: one that includes all states that can continue to ŝj+1, and
another that includes all the states with no such transitions. Clearly, the former set includes
only states that are not reachable by the maximal induced run of ŝ0, ŝ1, . . . , else the induced
run would not have been maximal.

Lemma 4.1.5. For every i ∈ N, for every state ŝ ∈ Ŝi, there exists a state s ∈ S such that
hi(s) = ŝ.

Proof. By induction on i.
Base: By construction, for every ŝP ∈ Ŝ0 there exists a state s ∈ S such that L(s) = P , and so
h0(s) = ŝP .
Step: Assume towards contradiction that there is an abstract state ŝ ∈ Ŝi+1 such that for
every s ∈ S, it holds that hi+1(s) ̸= ŝ. Since Ai fulfills the required property, ŝ /∈ Ŝi. Then ŝ
is the new state ŝ′. Let s0, . . . , sj be a maximal induced run of M on the counterexample w.
There is no state s′ ∈ h−1

i (ŝj+1) such that (sj , s′) ∈ R. Thus, by construction, hi+1(sj) = ŝ′, a
contradiction. ■

The model Ai+1 obtained from hi+1 is a refinement of Ai, as stated in the following lemma:

Lemma 4.1.6. For every i ≥ 0, it holds that M ≤ Ai+1 ≤ Ai

Proof. According to Lemma 4.1.3, it is left to show is that Ai+1 ≤ Ai. Consider the relation
H ⊆ Ŝi+1 × Ŝi defined by H = {(ŝ, ŝ′) | h−1

i+1(ŝ) ⊆ h−1
i (ŝ′)}. We show that H is a simulation

relation. Let (ŝ, ŝ′) ∈ H:

1. Since hi and hi+1 are abstraction functions, we know that for every concrete states s1, s2 ∈
h−1
i (ŝ′), it holds that L(s1) = L(s2) = L(ŝ′). Also for every states s1, s2 ∈ h−1

i+1(ŝ), it holds
that L(s1) = L(s2) = L(ŝ). Since h−1

i+1(ŝ) ⊆ h−1
i (ŝ′), we get that L(ŝ) = L(ŝ′).

33

2. Let ŝ1 ∈ Ŝi+1 such that (ŝ, ŝ1) ∈ R̂i+1. This means that there are s, s1 ∈ S such that
hi+1(s) = ŝ, hi+1(s1) = ŝ1 and (s, s1) ∈ R. By construction ŝ′

1 = hi(s1) ⊇ hi+1(s1) = ŝ1,
thus (ŝ1, ŝ

′
1) ∈ H as needed. Additionally, (ŝ′, ŝ′

1) ∈ R̂i by the definition of ∃∃ abstract
structure.

3. Let ŝ ∈ Îi+1. By definition, there exists a state s ∈ I such that hi+1(s) = ŝ. By con-
struction of the abstract model, hi(s) ⊇ hi+1(s), which means that hi(s) ∈ Îi and also
(ŝ, hi+1(s)) ∈ H. ■

Following Lemma 4.1.6, we have that M ≤ · · · ≤ A1 ≤ A0. Thus, the refinements get more
precise with every refinement step. Moreover, for i > 0, the model Ai is obtained from Ai−1

by splitting a state. In a finite-state setting, this guarantees termination at the latest when
reaching Ai = Ai+1.

Lemma 4.1.7. Let M be a Kripke structure and let A0 ≥ A1 · · · ≥ M be our sequence of
over-approximations. Then, there exists m ∈ N for which L(Am) = L(M).

Proof. In each refinement step i, the approximation Ai is refined. In the process, an abstract
state is split into two abstract states. According to Lemma 4.1.5, there is a concrete state mapped
to every abstract state ŝ. When |Ŝi| = |S|, every abstract state has exactly one concrete state
mapped to it. Thus, by the definition of ∃∃ induced model, we achieve a model isomorphic to
M. The process terminates when |Ŝi| = |S| or before. If it terminates beforehand, then an
abstraction Am was reached, which does not require another refinement. This means that there
is no w ∈ L(Am) \ L(M). Therefore, L(Am) ̸⊂ L(M), and since L(M) ⊆ L(Am), we get that
L(Am) = L(M). ■

4.2 Constructing a Sequence of Under-Approximations

Given M = (S, I,R, L) over AP , we construct a sequence of under-approximations A0,A1, . . .

such that Ai ≤ M for every i ∈ N, via a sequence of abstraction functions using counterexamples.
In this case, a counterexample is a word w /∈ L(A), yet w ∈ L(M). Again, we can consider a
prefix of w.

Definition 4.2.1. Given an abstraction function h : S → Ŝ, the ∀∃ abstract model induced by
h is Ah = (Ŝ, Î, R̂, L̂), where Î and L̂ are as in Definition 4.1.2, and (ŝ, ŝ′) ∈ R̂ iff for every s ∈ S

such that h(s) = ŝ there exists s′ ∈ S such that (s, s′) ∈ R and h(s′) = ŝ′.

Notice that the transition relation R̂ of the ∀∃ abstract model might not be total, i.e., there
may exist a state with no outgoing transitions.

Lemma 4.2.2. Let M = (S, I,R, L) be a Kripke structure and Ah = (Ŝ, Î, R̂, L̂) be the ∀∃
abstract model induced by an abstraction function h : S → Ŝ. Then, Ah ≤ M.

Proof. Define H = {(h(s), s) | s ∈ S}. We show that H is a simulation relation. Let (h(s), s) ∈
H.

1. L(s) = L̂(h(s)) by the definition of abstraction function.

34

2. Let (h(s), ŝ) ∈ R̂. By the definition of R̂, for every s1 ∈ S such that h(s1) = h(s) there
exists s2 ∈ S such that (s1, s2) ∈ R and h(s2) = ŝ. Specifically, for s1 = s and s2 = s′ ∈ S

this premise holds.

3. Let s0 ∈ I, by the construction of the abstract model, we know that h(s0) ∈ Î as needed.

■

4.2.1 Under-approximation Sequence Construction

Initialization.

Let Ŝ0 and h0 be as in Subsection 4.1.1. We set the initial under-approximation A0 of M to be
the ∀∃ abstract model induced by h0. By Lemma 4.2.2, we have A0 ≤ M.

Refinement.

As in the construction of the over-approximations sequence, we use counterexamples to guide our
refinement. Let Ai = (Ŝi, Îi, R̂i, L̂i) be an ∀∃ abstract model such that Ai ≤ M by an abstraction
function hi : S → Ŝi. Let w ∈ L(M) \ L(Ai) be a counterexample. Let r = s0, s1, . . . be a run
of M on w, and let r̂ = ŝ0, . . . , ŝj be a maximal induced run of Ai on w. We define Ai+1 to be
the ∀∃ abstract model induced by hi+1 : S → Ŝi+1 where Ŝi+1 = Ŝi ⊎ {ŝ′}, and where:

hi+1(s) =


hi(s), if hi(s) ̸= ŝj

hi(s), if hi(s) = ŝj and ∃s′ ∈ S such that hi(s′) = hi(sj+1) and (s, s′) ∈ R

ŝ′, if hi(s) = ŝj and ¬∃s′ ∈ S such that hi(s′) = hi(sj+1) and (s, s′) ∈ R

The idea behind this refinement is represented in Figure 4.1 (b). The purple states and lines
represent the run in M. Note that in ŝj there is a red state with no transition to states in
hi(sj+1). Thus there is no ∀∃ abstract transition from ŝj to hi(sj+1). To add such a transition,
we split ŝj into two states: one with all states that have a transition to a state in hi(sj+1), and
another with all states that have no such transition. As a result, Ai+1 includes a ∀∃ transition
from ŝj to hi(sj+1).

As a result of Lemma 4.2.2, and since hi is an abstraction function for every i ∈ N, we get
that the sequence of under-approximations A0,A1, . . . fulfills that Ai ≤ M, for every i ∈ N.
Note that this is different from the over-approximation case, since we do not guarantee that
the abstractions get more precise after every iteration. This property does not hold, since by
splitting an abstract state ŝ, transitions entering ŝ in Ai might not be present in Ai+1. However,
since the number of states increases by each refinement, we can still guarantee termination, in
a similar manner to over-approximations.

Lemma 4.2.3. For every i ∈ N, for every state ŝ ∈ Ŝi there exists a state s ∈ S such that
hi(s) = ŝ.

Proof. Base: By construction, for every ŝP ∈ Ŝ0 there exists a state s ∈ S such that L(s) = P ,
which means that h0(s) = ŝP .

35

Algorithm 4.1 Abstraction-refinement based MultiLTL model-checking
Input: M = ⟨M1, . . . ,Mn⟩, P = Q1

1π1 . . .Qn
nπn.φ(π1, . . . , πn)

Output: M |= P?
1: A,B = initialize(M,P)
2: while true do
3: res = mmc(A,P)
4: if res == true then
5: return M |= P
6: else
7: ⟨w1, . . . , wn⟩ = Get_cex(A,M, PR)
8: A = refine(⟨w1, . . . , wn⟩ ,A)
9: end if

10: res = mmc(B,¬P)
11: if res == true then
12: return M ̸|= P
13: else
14: ⟨w1, . . . , wn⟩ = Get_cex(B,M, PR)
15: B = refine(⟨w1, . . . , wn⟩ ,B)
16: end if
17: end while

Step: Assume towards contradiction that there is an abstract state ŝ ∈ Ŝi+1 such that for every
s ∈ S, hi+1(s) ̸= ŝ. Since Ai fulfills the required property, ŝ /∈ Ŝi. This means that ŝ is the
new added state ŝ′. Let s0, . . . , sj be a maximal induced run of M on a word w ∈ L(Ai), which
caused the refinement to Ai+1. Denote the run of Ai on w by ŝ0, ŝ1, Since a refinement was
performed on Ai, we get that there is some state s ∈ h−1

i (ŝj) and s′ ∈ S such that (s, s′) /∈ R

and hi+1(s′) = h(sj+1). Thus, by construction of Ai+1, we get that hi+1(s) = ŝ′, which achieves
the contradiction. ■

For finite models, this guarantees termination of the refinement, similarly to the over-
approximation case.

Lemma 4.2.4. Let M be a finite-state Kripke structure and let A0 ≤ A1 · · · ≤ M be our
sequence of under-approximations. Then, there exists m ∈ N for which L(Am) = L(M).

Proof. Identical to the proof of Lemma 4.1.7. ■

4.3 Abstraction-Refinement Guided Model-Checking

Following Section 4.1 and Section 4.2, we present an abstraction-refinement inspired approach
for model-checking multi-properties. We are given a MultiLTL formula P = Q1

1π1 . . .Qn
nπn.φ

and a multi-model M = ⟨M1, . . . ,Mn⟩ over AP . The model-checking procedure for M |= P is
described in Algorithm 4.1, which we detail next.

The procedure mmc(M,P) performs model-checking as per Lemma 3.3.5 (1) and returns
true if M |= P, and false otherwise. refine refines every approximation Ai for which there is
a counterexample wi in the vector ⟨w1, . . . , wn⟩ of counterexamples.

36

Initialization.

In initialize (Line 1), for every model Mi such thatQi
i = ∀, we initialize abstract models Ai and

Bi as described in Section 4.1 and Section 4.2, respectively. Each Ai is an over-approximation of
the model Mi, and each Bi is an under-approximation. For every model Mi such that Qi

i = ∃,
we initialize abstract models Ai and Bi as described in Section 4.2 and Section 4.1, respectively.
This means that one of them is an over-approximation and the other is an under-approximation
for the same model. Thus, Bi ≤ Mi ≤ Ai for every i ∈ I∀ and Ai ≤ Mi ≤ Bi for every i ∈ I∃.
In Algorithm 4.1, A = ⟨A1, . . . ,An⟩ is used for (PR) and B = ⟨B1, . . .Bn⟩ for (PR).

Abstraction-refinement.

Lines 3-8 apply the rule (PR). When reaching line 3, it is guaranteed that Mi ≤ Ai for every
i ∈ I∀ and Ai ≤ Mi for every i ∈ I∃. Thus, we try to apply (PR). We model-check A |= P
(Line 3). If the result is true, then by the correctness of (PR), we have M |= P (Line 5).
Otherwise, A ̸|= P. As noted in Section 3.3, for Ai where i ∈ I∃, no single word counterexample
can be obtained from the model-checking. Instead, we call Get_cex (Line 7), which returns
a sequence of words that lead to more precise abstractions. For (PR), Get_cex returns an
arbitrary wi ∈ L(Mi) \ L(Ai) for every i ∈ I∀ and an arbitrary wi ∈ L(Ai) \ L(Mi) for every
i ∈ I∃. For (PR), Get_cex behaves dually on B for I∀ and I∃. If for some i such a word wi does
not exist, Get_cex returns null as wi. refine uses ⟨w1, . . . , wn⟩ to refine each abstraction
in A as described in Section 4.1 and Section 4.2, obtaining closer abstractions to the original
models.

Lines 10-14 apply the rule (PR). When we reach line 10, it is guaranteed that Bi ≤ Mi for
every i ∈ I∀ and Mi ≤ Bi for every i ∈ I∃. Thus, we try to apply (PR) in a similar manner
as before. We model-check B |= ¬P. If the result is true, then by the correctness of (PR), we
have M |= ¬P which implies M ̸|= P. Otherwise, we call Get_cex (Line 14) and refine B using
⟨w1, . . . , wn⟩ (Line 15).

In the worst case, all approximations converge to their respective models (as per Lemma 4.1.7
and Lemma 4.2.4), upon which no further counterexamples are found. Therefore, the run is
guaranteed to terminate. Of course, the run terminates much earlier in case that appropriate
approximations are found.

Correctness follows from the correctness of (PR) and (PR). Hence, we have the following.

Lemma 4.3.1. Algorithm 4.1 terminates with the correct result.

Proof. In each iteration, either we terminated with M |= P, M ̸|= P or find a counterexample.
In the case of counterexample, at least one of the over-approximations or under-approximations
is refined, either from A or B. Since we cannot refine an abstract model Ai and Bi more than
|Mi| times each, after at most 2 ·

n∑
i=1

|Mi| refinements, Ai = Mi and Bi = Mi for every

i ∈ [1, n]. Then, the output is as performing model-checking on the original models, since no
counterexamples can be found. Thus, the answer at this point must either be M |= P or M ̸|= P
(Lines 5,12).

Correctness follows from the correctness of the model-checking procedure and the correctness
of the proof rules. ■

37

pM1 ::

qM2 ::

q

p

A0
1 ::

A0
2 ::

pA1
1 ::

q

q
A1

2 ::

1

2

3

4 5 6
7

8 9
10

Figure 4.2: Example: Model-Checking for ⟨M1,M2⟩ |= P

Example.

Consider M1,M2 (Figure 4.2) and P = ∀1π∃2τ. G(pπ ⊕ Xpπ ⊕ XXpπ) ∧ G(pπ → qτ), where ⊕
denotes XOR. For brevity, we ignore B since ⟨M1,M2⟩ |= P. When running Algorithm 4.1 for
⟨M1,M2⟩ |= P, we first construct A0

1,A0
2 as over- and under-approximations of M1,M2, respec-

tively (Figure 4.2). Then, we check whether
⟨
A0

1,A0
2
⟩

|= P. This does not hold, and mmc returns
counterexamples ⟨∅p∅ω, ∅qω⟩. We refine the abstractions according to these counterexamples.

Next, we find the maximal induced run of ∅p∅ω in M1, which is the path 1,2,3,1⊥. Since
the path for ∅p∅ω is 4,5,4,4ω in A0

1, we need to refine the state 4 in A0
1. By similar analysis of

∅qω, state 8 is to be split in A0
2. Thus, we split state 4 from A0

1 to states 6,7 in A1
1. In A0

2, we
split state 8 to states 9,10 in A1

2. Then, model-checking
⟨
A1

1,A1
2
⟩

|= P, passes, and we return
⟨M1,M2⟩ |= P.

4.4 Counterexample Guided Model-Checking Using (PR)

Algorithm 4.1 is guided by the difference between the abstract models and the original mod-
els. We now consider the ∀∗∃∗ fragment of MultiLTL. By Lemma 3.3.5, when model-checking
∀∗∃∗MultiLTL fails, we can get counterexamples for the models under ∀. We use these coun-
terexamples to further improve our model-checking scheme for this fragment.

We are given a ∀∗∃∗MultiLTL formula P = ∀1
1π1 . . . ∀kkπk∃

k+1
k+1 . . . ∃nnπn.φ and a multi-model

M = ⟨M1, . . . ,Mn⟩ over AP as input. Our model-checking procedure is described in Algo-
rithm 4.2.

The procedure mmc(M,P) performs multi-property model-checking, and returns (true, ∅) if
M |= P, and otherwise returns (false, cex), where cex is a counterexample vector ⟨w1, . . . , wk⟩
such that wi ∈ L(Mi) for every i ∈ [1, k] and there are no wi ∈ L(Mi) for i ∈ [k + 1, n] such
that ⟨w1, . . . , wn⟩ |= P, as per Lemma 3.3.5 (2). We fix every Ai under ∃ to be Mi. Thus,
it is guaranteed that the model-checking failure is not caused by words that are missing from
the under-approximations, yet do exist in the concrete models. A counterexample wi from
⟨w1, . . . , wk⟩ is spurious if wi ∈ L(Ai) yet wi /∈ L(Mi). That is, wi cannot serve as proof that
M ̸|= P. refine refines every approximation Ai for which there is a tuple (i, wi) in spuriousList,
the list of spurious counterexamples, by removing wi from Ai.

38

Algorithm 4.2 CEGAR-based ∀∗∃∗MultiLTL model-checking
Input: M = ⟨M1, . . . ,Mn⟩, P = ∀1

1π1 . . . ∀kkπk∃
k+1
k+1 . . . ∃nnπn.φ(π1, . . . , πn).

Output: M |= P?
1: A = initialize∀∗∃∗(M,P)
2: while true do
3: (res, cex) = mmc(A,P)
4: if res == true then
5: return M |= P
6: end if
7: spuriousList = spurious(cex, M)
8: if isEmpty(spuriousList) then
9: return M ̸|= P

10: end if
11: A = refine(cex, spuriousList,A,M)
12: end while

Initialization.

In initialize∀∗∃∗ (Line 1), for every model Mi such that Qi
i = ∀, we initialize an abstract

model Ai as described in Section 4.1. For every model Mi such that Qi
i = ∃, we fix Ai to be

Mi. Thus, Mi ≤ Ai for every i ∈ [1, k] and Ai ≤ Mi (trivially) for every i ∈ [k + 1, n].

Model-Checking.

When we reach line 3, it is guaranteed that Mi ≤ Ai for every i ∈ I∀ (and Ai ≤ Mi for
every i ∈ I∃, since Ai = Mi). Thus, we try to apply the proof rule (PR), and model-check
⟨A1, . . . ,An⟩ |= P (Line 3) by running mmc. If the result is true, then by (PR), we have M |= P
(Line 5). Otherwise, we get a counterexample vector of the form ⟨w1, . . . , wk⟩.

Counterexample Analysis.

(Lines 6-9). The procedure spurious iterates over the words in the counterexample ⟨w1, . . . , wk⟩,
and returns a list of tuples (i, wi) such that wi /∈ L(Mi). Note that since ⟨w1, . . . , wk⟩ is a
counterexample, it holds that wi ∈ L(Ai) for every i ∈ [1, k]. Thus, every wi in the list of
(i, wi) is spurious. If there are no spurious counterexamples, then we return M ̸|= P (Line 8).
Otherwise, we refine the approximations based on the spurious counterexamples.

In the worst case, the run iterates until Mi = Ai for every i ∈ [1, n], in which case there are
no spurious counterexamples. Hence, we have the following.

Lemma 4.4.1. Algorithm 4.2 terminates with the correct result.

Proof. In each iteration, either we terminated with M |= P or find a counterexample. In the case
of counterexample, one of the over-approximations is refined. Since we cannot refine an abstract

model Ai more than |Mi| times for i ∈ [1, k], after at most
k∑
i=1

|Mi| refinements, Ai = Mi for

i ∈ [1, k]. Then, the output is as performing model-checking on the original models. Thus, the
answer at this either be M |= P or a non-spurious counterexample.

39

Correctness follows from the correctness of the model-checking procedure and the correctness
of the proof rule. ■

Algorithm 4.2 improves Algorithm 4.1 in several ways. First, in order to compute the coun-
terexamples there is no need to complement the models, to achieve a counterexample, which
comes with an exponential price. Second, the counterexamples are provided by the model-
checking process. As such, they are of “higher quality”, in the sense that they take into account
the checked property and are guaranteed to remove refuting parts from the abstractions. This,
in turn, leads to faster convergence.

40

Chapter 5

Multi-Properties for Finite Traces

We now consider models whose traces are finite. This setting is natural, for example, when
modeling terminating programs. In this case, a model is a finite-word language, and hyperprop-
erties can be expressed by nondeterminisitic finite hyperautomata (NFH) [16]. To explain the
idea behind NFH, we first review nondeterministic automata.

Definition 5.0.1. A nondeterministic finite-word automaton (NFA) is a tuple (Σ, Q,Q0, δ, F),
where Σ is an alphabet, Q is a nonempty finite set of states, Q0 ⊆ Q is a set of initial states,
F ⊆ Q is a set of accepting states, and δ ⊆ Q× Σ ×Q is a transition relation.

Given a word w = σ1σ2 · · ·σn over Σ, a run of A on w is a sequence of states q0, q1, . . . , qn,
such that q0 ∈ Q0, and for every i ∈ [1, n], it holds that (qi−1, σi, qi) ∈ δ. The run is accepting if
qn ∈ F . The language of A, denoted L(A), is the set of all words on which A has an accepting
run. A language L is called regular if there exists an NFA such that L(A) = L.

An NFA A is called deterministic (DFA) if |Q0| = 1, and for every q ∈ Q and σ ∈ Σ, there
exists exactly one q′ for which (q, σ, q′) ∈ δ. It is well-known that every NFA has an equivalent
DFA.

We now turn to explain NFH. An NFH P consists of a set of word variables, an NFA nfa (P)
that runs on words that are assigned to these variables (which is akin to the unquantified LTL
formula in a HyperLTL formula), and a quantification condition that describes the requirements
for these assignments (which is akin to the quantifiers in a HyperLTL formula). Thus, NFH can
be thought of as the regular-language counterpart of HyperLTL.

Definition 5.0.2. A nondeterministic finite-word hyperautomaton (NFH) P is a 7-tuple
(Σ, X,Q,Q0, F, δ, α) where X = {x1, ..., xk} is a finite set of word variables, α = Q1x1 . . .Qkxk

is a quantification condition s.t. Qi ∈ {∀, ∃} for every i ∈ [1, k] and nfa (P) = (Σ̂, Q,Q0, δ, F) is
an NFA, where Σ̂ = (Σ ∪ {#})X . This means that every letter in Σ̂ is a mapping from every
variable in X to a letter in Σ.

We call nfa (P) the NFA induced by P. Intuitively, nfa (P) is an NFA that recognizes all
k-tuples of finite words that satisfy P.

We now define the notion of acceptance by an NFH.

41

Definition 5.0.3. Let ⟨w1, . . . , wk⟩ be a tuple of words, m = max
i

{|wi|} and P be an NFH. A

run of nfa (P) over ⟨w1, . . . , wk⟩ is a run over a word w̄ ∈
(
(Σ ⊎ {#})k

)∗
of length m, in which

for each i ∈ [1,m], w̄i = {(w1)ix1
, . . . , (wk)ixk

}, where (wi)j is the jth letter in the word wi if
|wi| ≥ j and # otherwise. That is, the run of nfa (P) that matches assigning the letters of wi to
xi, and uses # as a padding at the end of wi when |wi| ≤ m.
We denote ⟨w1, . . . , wk⟩ ∈ L(nfa (P)) if the run of nfa (P) over ⟨w1, . . . , wk⟩ is accepting.

Example 5.0.4. Let P be an NFH with X = {x1, x2, x3} and let w1 = aa, w2 = b and w3 = aaa

be words over Σ = {a, b}. A run of nfa (P) over ⟨w1, w2, w3⟩ is a run of nfa (P) over the word
w̄ = {ax1 , bx2 , ax3}{ax1 ,#x2 , ax3}{#x1 ,#x2 , ax3}.

Let S ⊆ Σ∗ be a language and let v : X → S be an assignment of the word variables of
P with words in S. We denote by v[x → w] the assignment obtained from v by assigning the
word w ∈ S to x ∈ X. We represent v by the word ⟨v⟩ = ⟨v(x1), . . . v(xk)⟩. We now define the
acceptance condition of a language S by an NFH P. We first define the satisfaction relation |=
for S,P, a quantification condition α, and an assignment v : X → S, as follows:

• For α = ϵ, we write S |=v (α,P) if ⟨v⟩ ∈ L(nfa (P)).

• For α = ∃xiα′, we write S |=v (α,P) if there exists w ∈ S, such that S |=v[xi→w] (α′,P).

• For α = ∀xiα′, we write S |=v (α,P) if for every w ∈ S, it holds that S |=v[xi→w] (α′,P).

Since the quantification condition of P includes all x ∈ X, the satisfaction is independent of
the assignment v, and we denote S |= P, in which case, we say that P accepts S.

Definition 5.0.5. Let P be an NFH, the hyperlanguage of P, denoted L(P), is the set of all
languages accepted by P.

We demonstrate NFH and their acceptance conditions with an example.

Example 5.0.6. Consider the NFH A in Figure 5.1 (left) over the alphabet Σ = {a, b} and two
word variables x and y. The NFA part nfa (A) of A reads two words simultaneously: one is
assigned to x and the other to y. Accordingly, the letters that nfa (A) reads are tuples of the
form {σx, σ′

y}, where σ is the current letter in the word that is assigned to x, and similarly for σ′

and y. The symbol # is used for padding at the end if one of the words is shorter than the other.
In the example, for two words w1, w2 that are assigned to x and y, respectively, nfa (A) requires
that (1) w1, w2 agree on their a positions, and (2) once one of the words has ended, the other
must only contain b letters. Since the quantification condition of A is ∀x∀y, in a language S
that A accepts, every two words agree on their a positions. As a result, all the words in S must
agree on their a positions. The hyperlanguage of A is then the set of all finite-word languages
in which all words agree on their a positions.

Notation. Let w1, . . . , wk be k words in (Σ ∪ {#})∗ and P an NFH with k quantifiers in α. We
denote ⟨w1, . . . , wk⟩ |= P if ∅ |=v (ϵ,P), where v(xi) = wi for every i ∈ [1, k].
Note that since the quantification condition is ϵ, we can substitute ∅ with every language over
(Σ ∪ {#}).

42

{𝑎𝑥, 𝑎𝑦}

{#𝑥, 𝑎𝑦}∀𝑥∃𝑦

𝑎𝑥, 𝑎𝑦 ,

{𝑏𝑥, 𝑏𝑦}

∀𝑥∀𝑦

{#𝑥, 𝑎𝑦}

{𝑏𝑥, #𝑦}
{𝑏𝑥, #𝑦}

{#𝑥, 𝑏𝑦}{#𝑥, 𝑏𝑦}

∀𝐶𝑥∃𝑆𝑦
{𝑟𝑒𝑞𝑥, 𝜏𝑦}

{∗𝑥, 𝑔𝑟𝑡𝑦}

{∗𝑥, 𝜏𝑦}

𝜏𝑥,∗𝑦 , {𝑟𝑒𝑞𝑥, 𝑔𝑟𝑡𝑦}

Figure 5.1: The NFH A (left) and the MNFH B (right).

Definition 5.0.7. The model-checking problem for NFH is to decide, given a language S and
an NFH P, whether P accepts S, in which case we denote S |= P.

When S is given as an NFA, the model-checking problem is decidable (albeit, as for HyperLTL,
by a nonelementary algorithm) [16].

5.1 Multi-Languages and Multi-NFH

As in the case of models with infinite traces, we generalize languages and NFH to multi-languages
and multi-NFH (MNFH). Thus, a multi-language is a tuple S = ⟨S1, S2, . . . Sk⟩ of finite-word
languages, and an MNFH A is an NFH with indexed quantifiers.

Definition 5.1.1. A multi-NFH (MNFH) is a tuple (Σ, X,Q,Q0, F, δ, α) where Σ, X,Q,Q0, F

and δ are as in Definition 5.0.2, and α = Qi1
1 x1 . . .Qik

k xk is a quantification condition, where
Qij
j ∈ {∀,∃} and ij ∈ [1, k] for every j ∈ [1, k].
The NFA induced by P is denoted nfa (P) and defined similarly to Definition 5.0.2.

Intuitively, the semantics are similar to that of Chapter 3, i.e., a quantifier Qi in the quan-
tification condition of A refers to Si (rather than all quantifiers referring to the same language
in the case of standard NFH).

Let S = ⟨S1, . . . , Sk⟩ be a multi-language where Si ⊆ Σ∗ for every i ∈ [1, k], and v : X → S be
an assignment of the word variables of P to words in S = ⊎ki=0Si. We now define the acceptance
condition of a multi-language S by an MNFH P. We first define the satisfaction relation |= for
S,P, with a quantification condition α, and an assignment v : X → ⊎ki=0Si, as follows:

• For α = ϵ, we denote S |=v (α,P) if ⟨v⟩ ∈ L(nfa (P)).

• For α = ∃ixjα′, we denote S |=v (α,P) if there exists w ∈ Si, such that S |=v[xj→w] (α′,P).

• For α = ∀ixjα′, we denote S |=v (α,P) if for every w ∈ Si, it holds that S |=v[xj→w] (α′,P).

As before, the satisfaction is independent of the assignment v, and we denote S |= P, in
which case, we say that P accepts S.

Definition 5.1.2. Let P be an MNFH. The multi-language of P, denoted L(P), is the set of all
multi-languages accepted by P.

We consider multi-languages that consist of regular languages. We can express such a multi-
language ⟨L1, L2, . . . , Lk⟩ by a tuple M = ⟨M1,M2, . . . ,Mk⟩ of NFAs, where L(Mi) = Li for
every i ∈ [1, k]. We call M a multi-NFA (MNFA).

43

Definition 5.1.3. The model-checking problem for MNFH is to decide, given a multi-language
S and an MNFH P, whether P accepts S. In which case, we denote S |= P.

We define the model-checking problem for MNFA accordingly, and denote M |= P if an
MNFH P accepts L(M).

Example 5.1.4. Consider an MNFA ⟨S,C⟩, where S models a server and C models a client, and
the MNFH B of Figure 5.1 (right) over Σ = {req, grt, τ}, where req is a request sent to the
server, grt is a grant given to the client and τ is a non-communicating action.

The multi-model ⟨S,C⟩ satisfies B iff for every run of S there exists a run of C such that
every request by C is eventually granted by S. This means that the server does not starve the
client.

From now on, we assume without loss of generality, in a similar manner to Note 3.2.3, that
the quantification conditions of the MNFH that we consider are of the form Q1

1x1Q2
2x2 . . .Qk

kxk.

5.2 Equivalence of MNFH Model-Checking and NFH Model-
Checking

We now show that the model-checking problem for MNFH is equivalent to the model-checking
problem for NFH.

For the first direction, in a similar manner to Theorem 3.1, a language S is accepted by an
NFH P iff ⟨S⟩ is accepted by the MNFH P obtained from P by indexing all quantifiers in the
quantification condition of P by the same index 1, as shown by the following lemma.

Theorem 5.1. The model-checking problem for NFH is reducible to the model-checking problem
for MNFH.

Proof. Let M = (Σ, Q,Q0, δ, F) be an NFA and P = (Σ, X,Q,Q0, F, δ, α) be an NFH. Consider
the multi-NFA M = ⟨M⟩ and the MNFH P = (Σ, X,Q,Q0, F, δ, β), where β is the same as
α, but with every quantifier Qi replaced by Q1

i . Denote S = L(M), and S = ⟨L(M)⟩ and let
v : X → Σ∗ an assignment. By induction on the number of quantifiers in α, we show that
S |=v (α,P) iff S |=v (β,P).

Base: When α = ϵ, also β = ϵ. Thus, S |=v (α,P) iff ⟨v⟩ ∈ L(nfa (P)). By the definition
of P, it holds that nfa (P) = nfa (P). Thus ⟨v⟩ ∈ L(nfa (P)) iff ⟨v⟩ ∈ L(nfa (P)). This holds iff
S |=v (β,P).

Step: Assume that α = Qx.α′. By the construction, β = Q1x.β′. Consider the different
options for Q:

• Q = ∃, then S |=v (α,P) iff there exists w ∈ S such that S |=v[x→w] (α′,P). By the
induction hypothesis this holds iff there exists w ∈ S such that S |=v[x→w] (β′,P). By the
definition of ∃1 and S, this holds iff S |=v (β,P).

• Q = ∀, then S |=v (α,P) iff for every w ∈ S it holds that S |=v[x→w] (α′,P). By the
induction hypothesis this holds iff for every w ∈ S it holds that S |=v[x→w] (β′,P). By the
definition of ∀1 and S, this holds iff S |=v (β,P).

44

Thus, we can conclude that M |= P iff M |= P. ■

We now proceed to the second direction. The idea of the proof is similar to the reduction
from MultiLTL model-checking to HyperLTL model-checking (Theorem 3.2). We aim to construct
an NFA that contains all the NFAs in the multi-NFA, with their corresponding index. Then, we
change the MNFH to an NFH, such that it refers also to the indices and the semantics of the
acceptance condition.

Definition 5.2.1. Let M = (Σ, Q,Q0, δ, F) be an NFA. The indexed NFA of M is indi (M) =
(Σi, Q,Q0, δi, F), where Σi = Σ × {i} and (q, (σ, i), q′) ∈ δi iff (q, σ, q′) ∈ δ for every q, q′ ∈ Q

and σ ∈ Σ.
Let w ∈ Σ∗ be a word such that w = σ0, . . . σk. The indexed word of w, denoted indi (w), is

(σ0, i) . . . (σk, i).

Corollary 5.2. By Definition 5.2.1, it holds that w ∈ L(M) iff indi (w) ∈ L(indi (M)).

Definition 5.2.2. Given a tuple of words ⟨w1, . . . , wk⟩, the indexed tuple of ⟨w1, . . . , wk⟩ is
ind (⟨w1, . . . , wk⟩) = ⟨ind1 (w1) , . . . , indk (wk)⟩.

The following theorem describes the reduction from MNFH model-checking to NFH model-
checking.

Theorem 5.3. Let P be an MNFH, and let M = ⟨M1, . . .Mk⟩ be an MNFA. Then there exist
an NFA M and an NFH P such that M |= P iff M |= P.

Proof. Let M = ⟨M1, . . . ,Mk⟩ be a multi-NFA, where indi (Mi) = (Σi, Qi, Q
i
0, δi, Fi), and

P = (Σ′, X,Q,Q0, F, δ, α) be an MNFH with α = Q1
1x1 . . .Qk

kxk. Denote Σ = ⊎ki=1Σi.
Define M = (Σ,⊎ki=1Qi,⊎ki=1Q

i
0,⊎ki=1δi,⊎ki=1Fi). By Corollary 5.2, w ∈ L(Mi) iff indi (w) ∈

L(M). Therefore, we can use the index of the letters to determine which NFA they originated
from.

Define P = (Σ, X,Q ⊎ {q∗}, Q0, F ⊎ {q∗}, δ∗, β), where β is as α without the indices on the
quantifiers and q∗ is a fresh accepting state. The transition relation δ∗ is defined as follows:

1. For every q, q′ ∈ Q and every letter set σ̂ = {σ1x1
, . . . , σkxk

} ∈ Σ̂:
Let ind (σ̂) = {(σ1,1)x1 , . . . , (σk,k)xk

}. We define (q, ind (σ̂) , q′) ∈ δ∗ iff (q, σ̂, q′) ∈ δ.

2. For every q ∈ Q0 and every letter set σ̂ = {σ1x1
, . . . , σkxk

} ∈ Σ̂, we define
(q, {(σ1, i1)x1 , . . . , (σk, ik)xk

}, q∗) ∈ δ∗ iff ij ̸= j for some j ∈ [1, k].

3. (q∗, σ
∗, q∗) ∈ δ∗, for every letter-set σ∗ = {σ∗

1x1
, . . . , σ∗

kxk
} ∈ Σ̂.

Intuitively, (1) means that for every k-word ⟨w1, . . . , wk⟩ accepted by nfa (P), its indexed k-word
ind (⟨w1, . . . , wk⟩) is accepted by nfa (P). (2)+(3) mean that when xi is assigned to a word not
in Mi, the NFA nfa (P) transitions into the accepting sink q∗.

Denote S = ⟨L(M1), . . . ,L(Mk)⟩ and S = L(M). By induction over the number of quanti-
fiers in α, we prove that for every assignment v that respects S, and ind (v) that respects M, it
holds that: S |=v (α,P) iff S |=ind(v) (β,P).

45

Base: By the construction, we get that for every ⟨w1, . . . , wk⟩ such that wi ∈ L(Mi), it holds
that ⟨w1, . . . , wk⟩ ∈ L(nfa (P)) iff ind (⟨w1, . . . , wk⟩) ∈ L(nfa (P)).
Step: Let α = Qi

ixi.α
′, therefore, β = Qixi.α.

• If Qi
i = ∃i, then S |=v (α,P) iff there exists w ∈ L(Mi) such that S |=v[xi→w] (α′,P). By

the induction hypothesis this holds iff that there exists w ∈ L(Mi), such that
S |=ind(v)[xi→indi(w)] (β′,P). By the construction of P, this means that there exists w′ ∈
L(M), such that S |=ind(v)[xi→w′] (β′,P), which by the semantics of MNFH holds iff
S |=ind(v) (β,P).

• If Qi
i = ∀i, then S |=v (α,P) iff for every w ∈ L(Mi) it holds that S |=v[xi→w] (α′,P). By the

induction hypothesis this holds iff for every w ∈ L(Mi) it holds that S |=ind(v)[xi→indi(w)]

(β′,P). By the construction of P, it also holds that S |=ind(v)[xi→indj(w)] (β′,P) for every w ∈
(Σ′ ∪ {#})∗ and j ̸= i. Therefore, for every w ∈ L(Mi) it holds that S |=ind(v)[xi→indi(w)]

(β′,P) iff for every w ∈ L(M) it holds that S |=ind(v)[xi→w] (β′,P), which by the semantics
of MNFH holds iff S |=ind(v) (β,P).

Therefore, M |= P iff M |= P as required. ■

The construction in the proof of Theorem 5.3 uses an alphabet whose size is polynomial in
the original alphabet. The model M that we construct is linear in the size of M, and the state
space of P is linear in that of P. However, since the size of the alphabet is larger, and the letters
of P are set-letters, there may be exponentially many transitions in P compared with P.

5.3 Direct Algorithm for MNFH Model-Checking

In this section, we describe a direct algorithm for model-checking MNFH, which is based on the
algorithm for model-checking NFH in [16]. Additionally, when M ̸|= P, it is possible to extract
a counterexample ⟨w1, . . . , wk⟩ when Qi = ∀ for i ∈ [1, k], in a similar manner to Lemma 3.3.5.

Lemma 5.3.1. There is a direct algorithm for model-checking MNFH.

Proof. Let M = ⟨M1, . . . ,Mk⟩ be a multi-NFA, where Mi = (Σ, Pi, P 0
i , ρi, Fi) for every i, and

let P = (Σ, {x1, . . . , xk}, Q,Q0, F, δ,Q1
1 . . .Qk

k) be an MNFH. Note that we assume, without loss
of generality, that every NFA Mi is quantified exactly once, similarly to the MultiLTL case.

We first extend the alphabet of each Mi to Σ∪{#}, and extend its language to L(Mi)·{#}∗.
This can be done by adding a new accepting state q# and transitions labeled # from every
accepting state (F ∪ {q#}) to it. We describe a procedure for deciding whether M |= P.

For the case that k = 1, if α = ∃1x1, thenM |= P iff L(M1) ∈ L(P) iff L(M1)∩L(nfa (P)) ̸= ∅.
Otherwise, if α = ∀1x1, then M |= P iff L(M1) ∈ L(P) iff L(M1) /∈ L(P), where P is the NFH
for L(P) (the complementation construction is found in [16]). The quantification condition for
P is ∃x1, conforming to the base case.

For k > 1, we construct a sequence of NFA Ak,Ak−1 . . . ,A1 as follows. Initially, Ak =
nfa (P). Let Ai = (Σi, Qi, Q

0
i , δi,Fi).

If Qi = ∃j , then we construct Ai−1 as follows. The set of states of Ai−1 is Qi × Pi, and the
set of initial states is Q0

i × P 0
i . The set of accepting states is Fi × Fi. For every (q f−→ q′) ∈ δi

46

and every (p f(xi−−→ p′) ∈ ρi, we have ((q, p)
f\{σixi

}
−−−−−→ (q′, p′)) ∈ δi−1. We denote this construction

by Mi ∩xi Ai. Then, Ai−1 accepts a word assignment v iff there exists a word u ∈ L(Mi), such
that nfa (Ai) accepts ⟨v ∪ {xi 7→ u}⟩.

If Qi = ∀i, then we set Ai−1 = Mi ∩xi Ai Notice that Ai−1 accepts a word assignment v iff
for every u ∈ L(Mi), it holds that nfa (Ai) accepts ⟨v ∪ {xi 7→ u}⟩.

Let Pi be the MNFH whose quantification condition is αi = Q1
1x1Q2

2x2 · · ·Qi
ixi, and whose

underlying NFA is Ai. Then, according to the construction of Ai−1, we have that M |= Pi iff
M |= Pi−1.

The NFH P1 has a single variable, and we can now apply the base case. ■

5.4 Compositional Proof Rules for Model-Checking MNFH

We present an adaptation of the proof rules (PR) and (PR) for automata.
Let M = ⟨M1, . . . ,Mk⟩ be a multi-NFA, and let P = (Σ, X,Q,Q0, F, δ, α) be an MNFH

with α = Qi1
1 x1 . . .Qim

m xm. Similarly to Section 3.4, the rule (PRA) aims at proving M |= P,
and (PRA) aims at proving the contrary, that is, M |= ¬P. Every model Ai in the rules is
an abstraction. Since some models may be multiply quantified, a model Mi may have several
different abstractions, according to the quantifiers under which Mi appears in α.
Denote P′ = (Σ, X,Q,Q0, F, δ, β), where β = Q1

1x1 . . .Qm
mxm.

∀i ∈ I∀. Mij |= Ai ∀i ∈ I∃. Ai |= Mij ⟨A1, . . . ,Am⟩ |= P′

⟨M1, . . . ,Mk⟩ |= P (PRA)

∀i ∈ I∀. Ai |= Mij ∀i ∈ I∃. Mij |= Ai ⟨A1, . . . ,Am⟩ |= P′

⟨M1, . . . ,Mk⟩ |= P (PRA)

Lemma 5.4.1. The proof rules (PRA) and (PRA) are sound and complete.

Proof. The proof is similar to the proof of Lemma 3.4.1, since the correctness of our rules stems
only from the semantics of the quantifiers. ■

47

48

Chapter 6

Learning-Based Multi-Property
Model-Checking

We describe how to use automata learning to find approximations according to the proof rules
(PRA) and (PRA) described in Section 5.4, for the multi-models of MNFA and multi-properties
of MNFH of Chapter 5. The L∗ algorithm [3] is a learning algorithm that finds a minimal
DFA for an unknown regular language U . We exploit the fact that MNFAs consist of regular
languages to introduce an L∗-based algorithm for constructing approximations for the languages
in the MNFA and for model-checking MNFH. To explain the idea behind our method, we first
describe the L∗ algorithm.

The L∗ algorithm.

L∗ consists of two entities: a learner, whose goal is to construct a DFA for U , and a teacher,
who helps the learner by answering membership queries – “is w ∈ U?”, and equivalence queries
– “is A a DFA for U?”. In case that L(A) ̸= U , the teacher also returns a counterexample: a
word which is accepted by A and is not in U , or vice versa.

The learner maintains an observation table T that contains words for which a membership
query was issued, along with the answers the teacher returned for these queries. Once T fulfills
certain conditions (in which case we say that T is steady), it can be translated to a DFA AT

whose language is consistent with T . If L(AT) = U then L∗ terminates. Otherwise, the teacher
returns a counterexample with which the learner updates T , and the run continues.

In each iteration, the learner is guaranteed to steady T , and L∗ is guaranteed to terminate
successfully. The sizes of the DFAs that the learner produces grow from one equivalence query
to the next (while never passing the minimal DFA for U). The runtime of L∗ is polynomial in
the size of a minimal DFA for U and in the length of the longest counterexample that is returned
by the teacher.

The main idea behind learning-based model-checking algorithms is to use the candidates
produced by the learner as potential approximations. Since these candidates may be significantly
smaller than the original models, model-checking is accelerated.

We first introduce our algorithm for the general case, in which L∗ aims to learn the models
themselves. Then, we introduce an improved algorithm in case that the quantification condition

49

is of the type ∀1∃2, in which case we can both define stronger learning goals, and use the
counterexamples provided by the model-checker to reach these goals more efficiently.

6.1 Learning Assumptions for General Multi-Properties

Consider an MNFA M = ⟨M1,M2, . . .Mk⟩, and an MNFH P with a quantification condition
α = Q1

1x1Q2
2x2 · · ·Qk

kxk. Algorithm L∗
MNFH, described in Algorithm 6.1, computes an over-

approximation for every Mi under ∀, and an under-approximation for every Mi under ∃. It
does so by running L∗ for every Mi in parallel, aiming to learn Mi. Thus, the learner maintains
a set T1, . . . Tk of observations tables, one for every Mi. Whenever all tables are steady, the
learner submits the DFAs AT1 , . . .ATk

that it produces as candidates for the approximations
via an equivalence query. The result of the equivalence query either resolves M |= P according
to (PRA) and (PRA), or returns counterexamples with which the learner updates the tables to
construct the next round of candidates.

In Algorithm 6.1, The methods Initialize and steady are learner functions used for initial-
izing an observation table, and reaching a steady observation table, respectively. The method
AddCex updates the table when a counterexample is returned from an equivalence query.

Handling membership queries is rather straightforward: when the learner submits a query
w for an NFA Mi, we return true iff w ∈ L(Mi). We now describe how to handle equivalence
queries.

Equivalence Queries.

The learner submits its candidate A, which includes its set of candidates. We first check that they
are approximations for (PRA), by checking whether Mi |= ATi for every over-approximation
and ATi |= Mi for every under-approximation.

If all checks pass, then we model-check A |= P. If the check passes, we return M |= P. If the
candidates are not approximations for (PRA) but are approximations for (PRA), we model-check
A |= ¬P. If the check passes, we return M ̸|= P.

If none of the above has triggered a return value, then there exists at least one candidate
Ai such that L(Ai) ̸= L(Mi). We can locate these candidates during the over- and under-
approximation checks, while computing a word w ∈ L(Mi)\L(Ai) (in case that we found Ai not
to be an over-approximation), or a word w ∈ L(Ai) \ L(Mi) (in the dual case). We then return
the list of counterexamples according to the candidates for which we found a counterexample.

Since L∗ is guaranteed to terminate when learning a regular language, Algorithm 6.1 is
guaranteed to terminate. The correctness of (PRA) and (PRA) guarantee that L∗

MNFH terminates
correctly at the latest after learning M (and terminates earlier if it finds smaller appropriate
approximations).

Lemma 6.1.1. Algorithm 6.1 terminated with the correct result.

Proof. Correctness: The only two possibilities for outputs are M |= P (Algorithm 11) and
M ̸|= P (Algorithm 13). According to the equivalence query algorithm, we determine that
M |= P only when we can apply (PRA) on A,P, which is sound by the correctness of the proof

50

Algorithm 6.1 L∗
MNFH

Input: M = ⟨M1, . . . ,Mk⟩, P with α = Q1
1π1 . . .Qk

kπk.
Output: M |= P?

1: Initialize(T1, . . . Tk)
2: while true do
3: for i ∈ [1, k] do
4: Ti = steady(Ti)
5: Construct ATi from Ti
6: end for
7: A = ⟨AT1 ,AT2 , . . .ATk

⟩
8: (CexList, pass) = equiv(A,M,P)
9: if CexList == null then

10: if pass then
11: return M |= P
12: else
13: return M ̸|= P
14: end if
15: end if
16: for (wi, i) ∈ CexList do
17: AddCex(Ti, wi)
18: end for
19: end while

rules. Similarly, we determine that M ̸|= P only when we can apply (PRA) on A,P, which is
sound by the correctness of the proof rules.

Termination: The goal of the L∗ algorithm, is to learn the language of Mi, for every i ∈
[1, k]. It is immediate that the membership queries are correct. Assume towards contradiction,
that we do not halt due to equivalence queries. Since Mi is an NFA and in every equivalence
query we obtain a counterexample which is correct according to Mi, L∗ terminates for Mi when
Ai is isomorphic to dfa (Mi), the equivalent DFA to Mi. Eventually, this happens for every
i ∈ [1, k]. In this case, the equivalence query cannot yield a spurious counterexample, resulting
in termination. ■

6.2 Weakest Assumption for MNFH∀∃

We introduce a weakest assumption in the context of multi-properties with a quantification
condition ∀∃. Intuitively, a weakest assumption is the most general language that can serve
as an over-approximation. We prove that the weakest assumption is regular, and show how
to incorporate it in a learning-based multi-property model-checking algorithm based on (PRA).
We denote MNFH with a quantification condition of the form ∀1

1x∃2
2y by MNFH∀∃. The weakest

assumption is the goal of the learning Algorithm 6.2 below.

Definition 6.2.1. Let M = ⟨M1,M2⟩ be an MNFA and let P be an MNFH∀∃. The weakest
assumption for P w.r.t. M2 is as follows.

WM2:P =
∪

A s.t. ⟨A,M2⟩|=P
L(A)

51

That is, WM2:P is the union of all languages that along with M2 satisfy P.

Lemma 6.2.2. Let A and M2 be NFA, and P be an MNFH∀∃. Then L(A) ⊆ WM2:P iff
⟨A,M2⟩ |= P.

Proof. If ⟨A,M2⟩ |= P then the claim holds by the definition of WM2:P.
For the other direction, if L(A) ⊆ WM2:P, then for every w ∈ L(A) there exists an NFA

Aw, with L(Aw) = {w} s.t. ⟨Aw,M2⟩ |= P. Therefore, for every w ∈ L(A), there exists a
word w′ ∈ L(M2) s.t. P accepts {wx, w′

y}, and so by the semantics of MNFH, we have that
⟨A,M2⟩ |= P. ■

We note that a similar approach to Lemma 6.2.2 cannot work for general quantification con-
ditions, since their satisfying assignments are generally not closed under union (See Appendix B).

6.2.1 Regularity of the Weakest Assumption

To justify using WM2:P as the objective of a learning algorithm, we show that WM2:P is regular.

Definition 6.2.3. Given two NFAs Ai = (Qi,Σi, Q
i
0, δi, Fi) for i ∈ {1, 2}, the product automa-

ton of A1 and A2 is A1×A2 = (Q1×Q2,Σ1×Σ2, Q
1
0×Q2

0, δ×, F1×F2) where δ× ((q, q′), (σ, σ′)) =
(δ1(q, σ), δ2(q′, σ′)).

Lemma 6.2.4. Let w,w′ ∈ Σ∗. Then, w = ⟨w1, w2⟩ ∈ L(A1 × A2) iff w1 ∈ L(A1) and
w2 ∈ L(A2).

Proof. By induction on the length of ⟨w1, w2⟩. ■

Definition 6.2.5. Let X be a set of variables, Σ be an alphabet and A = (Q, Σ̂, Q0, δ, F) be an
NFA. Denote A′ = (Q,Σ, Q0, δ

′, F), where for every q ∈ Q and σ ∈ Σ, the transition function is
defined as follows.

δ′(q, σ) =
∪

{(σ′
1)x1 ,...,(σ

′
k

)xk
}∈Σ̂, (σ′

i)xi =σ

δ(q, {(σ′
1)x1 , . . . , (σ′

k)xk
})

The projection of A to index xi ∈ X, denoted A ↓xi , is an NFA for the language L(A′)/{#}∗.1

Lemma 6.2.6. w ∈ L(A ↓xi) iff there exist words w1, . . . , wk ∈ Σ∗ such that wi = w and
⟨w1, . . . , wk⟩ ∈ L(A).

Proof. By definition. ■

Given a regular language L ⊆ Σ∗, AL is an automaton that accepts L. Additionally, given
NFAs A,B, the automaton A∩B is an NFA such that L(A ∩B) = L(A)∩L(B) (such automaton
exists since regular languages are closed for intersection).

1The right quotient L1/L2 is defined as the language {x ∈ Σ∗ | ∃y ∈ L2 s.t. xy ∈ L1}. Such NFA exists since
regular languages are closed under right quotient.

52

Lemma 6.2.7. Let P be an MNFH with a quantification condition α = ∀1∃2 and M = ⟨M1,M2⟩
be a multi-model. Denote by M′

2 the NFA for L(M2) · {#}∗. Then for every w ∈ Σ∗ it holds
that:

w ∈ WM2:P iff w ∈ L((nfa (P) ∩ (AΣ∗·{#}∗ × M′
2)) ↓x1)

Proof.

w ∈ L((nfa (P) ∩ (AΣ∗·{#}∗ × M′
2)) ↓x1) ⇐⇒ (Lemma 6.2.6)

∃w′ ∈ Σ∗ :
⟨
w,w′⟩ ∈ L((nfa (P) ∩ (AΣ∗·{#}∗ × M′

2))) ⇐⇒ (intersection)

∃w′ ∈ Σ∗ :
⟨
w,w′⟩ ∈ L(nfa (P)) ∧

⟨
w,w′⟩ ∈ L(AΣ∗·{#}∗ × M′

2) ⇐⇒ (Lemma 6.2.4)

∃w′ ∈ Σ∗ :
⟨
w,w′⟩ ∈ L(nfa (P)) ∧ w ∈ Σ∗ · {#}∗ ∧ w′ ∈ L(M2) ⇐⇒

∃w′ ∈ Σ∗ :
⟨
w,w′⟩ ∈ L(nfa (P)) ∧ w ∈ Σ∗ ∧ w′ ∈ L(M2) ⇐⇒

∃w′ ∈ L(M2) :
⟨
w,w′⟩ ∈ L(nfa (P)) ⇐⇒ (Definition 5.1.1)

∃w′ ∈ L(M2) :
⟨
w,w′⟩ |= P ⇐⇒ (Lemma 6.2.2)

{w} ⊆ WM2:P ⇐⇒ w ∈ WM2:P

That is, we can derive WM2:P by taking the lefthand-side projection of the parallel run of
nfa (P) with a multi-language consisting of an NFA that accepts all words in Σ∗, and M2 (while
ignoring the # symbols). Intuitively, this projection includes all the words which can be matched
with a word in M2 in a way that is accepted by nfa (P). We can therefore deduce the following.

Corollary 6.1. WM2:P is regular.

6.3 Learning Assumptions for ∀∃

Let P be an MNFH∀∃ and let M = ⟨M1,M2⟩ be an MNFA. We now introduce our L∗
∀∃ learning-

based algorithm for model-checking M |= P. As we have mentioned in Section 6.2, the learning
goal in our L∗

∀∃ algorithm is WM2:P, as it is an over-approximation of M1. However, notice that
every A such that L(M1) ⊆ L(A) ⊆ WM2:P suffices. L∗

∀∃ then runs L∗ while using every DFA
A that is produced by the learner during the run as a candidate for an over-approximation of
M1.

We now describe our implementation for answering the membership and equivalence queries.

Membership Queries.

When the learner submits a membership query “w ∈? L(A)”, we model-check ⟨Aw,M2⟩ |= P,
where Aw is a DFA whose language is {w}. If the check passes, then there exists a word
w′ ∈ L(M2) such that ⟨w,w′⟩ |= P. Therefore, we return true. Otherwise, ⟨w,w′⟩ ̸|= P for
every w′ ∈ L(M2), and thus we do not include w in L(A), and return false.

Equivalence Queries.

We first check that A is a potential over-approximation, by checking if M1 |= A. If not, then
we return a counterexample w ∈ L(M1) \ L(A). Otherwise, we model-check ⟨A,M2⟩ |= P. If

53

the model-checking passed, then we can conclude M |= P. Otherwise, a counterexample w is
returned for a word in L(M1) that has no matching word in L(M2). We now need to check if
w is spurious. If w /∈ L(M1), then we return w as a counterexample to the learner. Otherwise,
we can conclude that M ̸|= P.

Algorithm 6.2 L∗
∀∃

Input: An MNFH∀∃ P, an MNFA M = ⟨M1,M2⟩.
Output: M |= P?

1: Initialize(T)
2: while true do
3: T = steady(T)
4: Construct AT from T
5: (cex, pass) = Equiv(AT ,M,P)
6: if cex then AddCex(T, cex)
7: else
8: if pass then
9: return ⟨M1,M2⟩ |= P

10: else
11: return ⟨M1,M2⟩ ̸|= P
12: end if
13: end if
14: end while

Since L∗ is guaranteed to terminate when learning a regular language, L∗
∀∃ is guaranteed to

terminate. In both cases, when M |= P or M ̸|= P, the correctness of Equation PRA and the
properties ofWM2:P guarantee that the algorithm terminates with a correct answer, at most after
learningWM2:P (and may terminate earlier if it finds a smaller appropriate over-approximation).

Lemma 6.3.1. Algorithm 6.2 terminates with the correct result.

Proof. In this algorithm, we aim to learn a DFA A such that L(M1) ⊆ L(A) ⊆ WM2:P. For
a membership query on a word w, we add w to A iff ⟨Aw,M2⟩ |= P, which according to
Lemma 6.2.2 holds iff w ∈ WM2:P. For an equivalence query, we check that M1 |= A and
additionally, that ⟨A,M2⟩ |= P. By Lemma 6.2.2, this means that A ⊆ WM2:P. Thus, this
query is also correct.

Correctness: The algorithm outputs that M |= P when the equivalence query passes. This
happens if L(M1) ⊆ WM2:P, which implies that M |= P. The algorithm outputs M ̸|= P, when
the model checking algorithm on ⟨A,M2⟩ |= P, returns a non-spurious counterexample. This is
a word w ∈ L(M1), for which there exists no word w′ ∈ M2, with which ⟨w,w′⟩ |= P. Thus, by
the semantics of MNFH, this means that M ̸|= P.

Termination: Since the weakest assumption is regular, the learning algorithm terminates,
at the latest, when reaching a minimal DFA for WM2:P. In this iteration, termination is guar-
anteed. ■

There are several advantages to using Algorithm 6.2 over Algorithm 6.1. First, WM2:P

may be smaller than M1 which leads to quicker convergence, and the algorithm may halt
before reaching WM2:P, by finding an even smaller over-approximation. Second, there is no

54

need to complement M1 for the equivalence query, since we only check if M1 is contained in
the candidate submitted by the learner (which is a DFA and can be easily complemented).
Finally, in contrast to the previous algorithm, which cannot obtain counterexamples from the
model-checking, by a similar reason mentioned Note 3.3.6, we can now use the more targeted
counterexamples. These counterexamples are provided by the model-checking procedure, and
they take into account the checked property. As such, the counterexamples are guaranteed to
remove refuting parts from the abstractions. This, in turn, leads to faster convergence.

While we have defined the weakest assumption and Algorithm 6.2 for a quantification con-
dition of the type ∀∃, both can be easily extended to handle a sequence of ∃ quantifiers rather
than a single one.

55

56

Chapter 7

Reducing the Alphabet Size

Often, different properties are checked on the same multi-model. This may cause the model to
contain irrelevant information, which does not affect the satisfaction or refutation of a property.

In order to improve the approximation construction algorithms, we suggest a way to decrease
the alphabet size. This may lead to smaller approximation in both abstraction-refinement based
algorithm and automata-learning based algorithm.

The method described in the following sections may decrease the approximations in the
following manner. In the abstraction-refinement based algorithm, several (previously disjoint)
states may possibly be merged into one. Similarly, in the automata-learning based algorithm,
when the alphabet of an automaton is decreased, we eliminate many transitions in the NFA,
and consequently in the learned DFA.

In this chapter, we assume, without loss of generality, that each model is quantified exactly
once, and that the quantification is in the same order as the models, as explained in Note 3.2.3.

7.1 Decreasing the Alphabet for MultiLTL

Let P be a MultiLTLNNF formula over AP and M be a multi-model over AP ′.

Definition 7.1.1. Let Ai ⊆ AP be the set of atomic propositions, which appears in P, regarding
the trace variable πi. The restricted model of M w.r.t. a trace variable πi in P is M↓πi:P =
(S, I,R, L↓πi:P), where L↓πi:P(s) = L(s) ∩Ai, for every s ∈ S.

We now show that replacing the model Mi with Mi↓πi:P in the multi-model M does not
affect the satisfaction of the formula P.

Lemma 7.1.2. Let M↓i be the multi-model obtained from M by replacing Mi with Mi↓πi:P.
Then, M |= P iff M↓i |= P.

Proof. Let T = L(M) and Ti = L(M↓πi:P). Given trace assignment Π, denote by Π↓i the
assignment that satisfies Π↓i(πi) = Π(πi)1 ∩ Ai and is the same as Π for every other trace
variable. We show by induction on the structure of P, that for every assignment Π, it holds that
Π |=T P iff Π↓i(πi) |=Ti P.

Base: For aπ, when π ̸= πi, it is immediate, since Π(π) = Π↓i(π). For aπi , it holds that
a ∈ Ai, which means that Π |=T aπi iff Π↓i |=Ti aπi .

57

Step: For the operators ¬,∧,∨,X,U and R, the claim holds by their definitions. Additionally,
the claim holds for quantifiers which do not refer to the ith model. Therefore, it is enough to
show only for ∃i and ∀i quantifiers.

• Π |=T ∃iπi.φ(π1, . . . , πi) iff there exists a trace τ ∈ L(Mi) such that Π[πi → τ] |=T

φ(π1, . . . , πi). This holds iff there exists a trace τ ′ ∈ L(Mi↓πi:P), which is the restriction
of τ to Ai, such that Π↓i[πi → τ ′] |=Ti φ(π1, . . . , πi). By the semantics of MultiLTL, this
holds iff Π↓i |=Ti ∃iπi.φ(π1, . . . , πi).

• Π |=T ∀iπi.φ(π1, . . . , πi) iff for every trace τ ∈ L(Mi), it holds that Π[πi → τ] |=T

πi.φ(π1, . . . , πi). This holds iff for every trace τ ′ ∈ L(Mi↓πi:P), it holds that Π↓i[πi →
τ ′] |=Ti φ(π1, . . . , πi). By the semantics of MultiLTL, this is iff Π↓i |=Ti ∀iπi.φ(π1, . . . , πi).

■

By applying Lemma 7.1.2 to every model Mi in the multi-model M, we can decrease the
size of the AP over which every model is defined, reducing the size of the approximations.

7.2 Decreasing the alphabet for MNFH

Let P be an MNFH, where the alphabet of P↓xi
is Σi, and let M be a MNFA.

Definition 7.2.1. The restricted model of M w.r.t. a trace variable xi in P is M↓xi:P =
(Σi, Q,Qo, δ↓i, F), where for every q, q′ ∈ Q and σ ∈ Σi, it holds that (q, σ, q′) ∈ δ↓i iff (q, σ, q′) ∈
δ.

We now show that replacing Mi with Mi↓xi:P in the multi-model M does not change the
satisfaction of the MNFH.

Lemma 7.2.2. Assume that Mi is existentially quantified in α. Let M↓i denote the multi-model
obtained from M by replacing Mi with Mi↓xi:P. Then, M |= P iff M↓i |= P.

Proof. Let v be a trace assignment. We show by induction on the number of quantifiers in α,
that M |=v (α,P) iff M↓i |=v (α,P).

Base: When there are no quantifiers, then since the alphabet that refers to xi is Σi, the
claim holds.

Step: Since all other models are the same in M and M↓i, it is enough to consider only the
case for which α = ∃ixi.α′.

M |=v (∃ixi.α′,P) iff there exists a trace τ ∈ L(Mi) such that M |=v[xi→τ] (α′,P). Since the
alphabet that refers to Mi in P is Σi, it holds that τ ∈ Σ∗

i . The latter iff M↓i |=v[xi→τ] (α′,P).
By the semantics of MNFH, this holds iff M↓i |=v (∃ixi.α′,P). ■

By applying Lemma 7.2.2 for all the existentially quantified models in M, we can decrease
the alphabet size of those NFAs. This allows the observation table in the L∗ algorithm to be
much smaller.

Note 7.2.3. For a universally quantified model Mi, if there is a word w ∈ L(Mi) \ Σi
∗, then

when v(xi) = w, the MNFH P cannot be satisfied, since there cannot be an accepting run for w
in P. Thus, in this case, it is immediate that M ̸|= P.

58

Chapter 8

Conclusion and Future Work

8.1 Conclusion

We have introduced multi-models and multi-properties – useful notions that generalize hyper-
properties to handle multiple systems. We have formalized these notions for both finite-trace
(terminating) and infinite-trace (reactive) systems, and presented compositional proof rules for
model-checking multi-properties.

For infinite-trace systems, we have introduced MultiLTL, a generalization of HyperLTL, and
have applied our proof rules in abstraction-refinement and CEGAR based algorithms. For finite-
trace systems, we have introduced multi-NFH, which offer an automata-based specification for-
malism for regular multi-properties. Here, we have applied our proof rules in automata-learning
algorithms. The algorithms for both approaches accelerate model-checking by computing small
abstractions, that allow avoiding performing model-checking on the full multi-model.

We further enhanced these algorithms for the ∀∗∃∗ fragments of multi-properties, by consid-
ering information from the multi-property itself. Thus, we eliminate spurious runs that obstruct
the construction of the needed approximations, allowing faster convergence of the algorithm.

8.2 Future Work

Regarding Counterexamples. Counterexamples obtained by performing model-checking for
multi-properties, are extractable only for the first k outermost ∀-quantifiers of the multi-property.
This is due to the fact, that counterexamples for existential quantifiers are hard to define and
obtain. This is also the case in the branching temporal logic CTL. Some works [20, 48, 21, 50]
try to define a new notion of counterexamples for CTL or its fragments. Exploring similar ideas
in the context of multi-properties might be the key for expanding the CEGAR framework to the
full logic of MultiLTL.

Regarding Weakest Assumptions. Weakest assumptions, as described in Section 6.2, cannot
be directly extended to other quantification conditions (See Appendix B). Exploring and defining
new notions of weakest assumptions for other quantification conditions allows to extend the
learning based algorithm for every multi-property described as an MNFH. Since hyperproperties
and multi-properties are not closed under regular operations, finding the golden mean for this

59

definition, which is both regular and sound, may pose a challenge.

60

Appendix A

Some Additional Proof Rules

This appendix lists additional proof rules that were developed and investigated as part of the
initial work on this dissertation. Those rules were the inspiration for the proof rules (PR),
(PR), (PRA) and (PRA). When trying to extend those rules for more complex quantification
conditions, the one-model semantics of HyperLTL was not enough.

A.1 Proof Rules for Hyperproperties

At first we explored the ideas of over- and under-approximation in the context of HyperLTL.

Definition A.1.1. ∃∗HyperLTL is the fragment of HyperLTL which contains all of the HyperLTL
formulae with only existential quantifiers.

∀∗HyperLTL is the fragment of HyperLTL which contains all of the HyperLTL formulae with
only universal quantifiers.

The following are sound and complete proof rules for the aforementioned fragments:

P ∈ ∃∗HyperLTL A |= P A |= M
M |= P (A.1)

P ∈ ∀∗HyperLTL A |= P M |= A
M |= P (A.2)

Lemma A.1.2. (A.1),(A.2) are both sound and complete.

Proof. Let P be ∃∗HyperLTL formula with n quantifiers and M be a Kripke structure, both over
the set AP .

Completeness: If M |= P, by choosing A = M we obtain A |= P and A |= M.
Soundness: Assume that A |= M and A |= P. Therefore, there exist traces π1, . . . , πn ∈

L(A) such that ⟨π1, . . . , πn⟩ |= P. Since A |= M, it holds that πi ∈ L(M) for every i ∈ [1, n].
Thus, by the semantics of HyperLTL, M |= P.

Let P be ∀∗HyperLTL formula with n quantifiers and M be a Kripke structure, both over
the set AP .

61

Completeness: If M |= P, by choosing A = M we obtain A |= P and M |= A.
Soundness: Assume that M |= A and A |= P. Therefore, for every traces π1, . . . , πn ∈

L(A), it holds that ⟨π1, . . . , πn⟩ |= P. Let π1, . . . , πn ∈ L(M). Since M |= A, it holds that
π1, . . . , πn ∈ L(A), meaning that ⟨π1, . . . , πn⟩ |= P. Thus, by the semantics of HyperLTL,
M |= P. ■

Note that, the proof of completeness does not help in finding the over- or under-approximation.
The rule is complete under the assumption that such approximations exists.

62

Appendix B

Discussing Weakest Assumptions

We consider different possibilities for definitions of weakest assumptions under different quan-
tification conditions.

B.1 Weakest Assumptions for MNFH∃∀

We denote MNFH with quantification condition of the form ∃1
1x∀2

2y by MNFH∃∀. Consider the
following definition:

Definition B.1.1. Let M be an MNFA and let P be an MNFH∃∀. The weakest assumption for
P w.r.t M1 is as follows.

WM1:P =
∪

A s.t. ⟨M1,A⟩|=P
L(A)

That is, WM2:P is the union of all languages that along with M1 satisfy P.

We show that soundness is violated for this definition. I.e. that L(A) ⊆ WM1:P iff ⟨M1,A⟩ |=
P does not hold. Intuitively, this definition is not sound since different models might satisfy an
MNFH∃∀ using a different witness for the existential quantifier.

The following example shows that there exist an MNFH∃∀ and NFAs M1, C such that
⟨M1, C⟩ ̸|= P, yet C |= WM1 .

Example B.1.2. Consider the regular languages L1, L2, L3 and LP over Σ = {a, b}.

L1 = {a, aa} L2 = {b} L3 = {bb} LP = {(a, b)}∗

Let M1,M2 and M3 be NFAs for the languages L1, L2 and L3 respectively. Let P be a MNFH∀∃

such that L(nfa (P)) = LP .
Notice that:

• ⟨M1,M2⟩ |= P, since there exists w = a ∈ L1 such that for every word w′ ∈ L2, it holds
that ⟨w,w′⟩ |= P.

• ⟨M1,M3⟩ |= P, since there exists w = aa ∈ L1 such that for every word w′ ∈ L2,
⟨w,w′⟩ |= P.

63

Thus, according to the definition of WM1:P, both L2 ⊆ WM1 and L3 ⊆ WM1 . Let C be an
NFA such that L(C) = L2 ∪ L3. Note that it holds that ⟨M1, C⟩ ̸|= P – since both ⟨a, bb⟩ ̸|= P
and ⟨aa, b⟩ ̸|= P. Additionally, no other words can be in the WM1:P, by the definitions of P and
L1.

One might wonder whether changing the definition of the weakest assumption to be ŴM1:P =∩
A s.t. ⟨M1,A⟩|=P

L(A) works. However, by consider the same models in Example B.1.2, we get

that ŴM1:P = ∅. Yet, we have seen that there exist an NFA A such that ⟨M1,A⟩ |= P, and its
language is not empty.

Another possibility is to fix M2, and try to define a weakest assumption as an under-
approximation of M1. This results in a search for a witness word w ∈ L(M1) for the satisfaction
of P, which is equivalent to performing model-checking on ⟨M1,M2⟩ |= P.

B.2 Weakest Assumption for MNFH∀Q∗

We denote MNFH with quantification condition of the form ∀1
1x1Q2

2x2 . . .Qn
nxn by MNFH∀Q∗ .

We prove in a similar manner to Section 6.2, that by fixing all models except of the first, sound-
ness still holds and that the weakest assumption is regular. Thus, we can extend Algorithm 6.2
for MNFH∀Q∗ , by considering an approximation of the first model only.

Definition B.2.1. Let M = ⟨M1, . . . ,Mn⟩ be an MNFA and let P be an MNFH∀Q∗ . The
weakest assumption for P w.r.t. M−1 is as follows.

WM−1:P =
∪

A s.t. ⟨A,M2,...,Mn⟩|=P
L(A)

That is, WM−1:P is the union of all languages that along with M2, . . . ,Mn satisfy P.

Lemma B.2.2. Let A be an NFA, M be multi-NFA, and P be an MNFH∀Q∗ with quantification
condition α = ∀1

1x1Q2
2x2 . . .Qn

nxn. Then L(A) ⊆ WM−1:P iff ⟨A,M2, . . . ,Mn⟩ |= P.

Proof. If ⟨A,M2, . . . ,Mn⟩ |= P then the claim holds by the definition of WM−1:P.
For the other direction, denote α′ = Q2

2x2 . . .Qn
nxn, and P′ be as P with the quantification

condition α′ and v : X → Σ̂∗ be a trace assignment.
Assume that L(A) ⊆ WM−1:P and let w ∈ L(A). It holds that ⟨M2, . . . ,Mn⟩ |=v P′ since

there exists an automaton B such that ⟨B,M2, . . . ,Mn⟩ |=v P′ and w ∈ L(B). Since this holds
for every w ∈ L(A), by the semantics of MNFH, ⟨A,M2, . . . ,Mn⟩ |=v P. ■

B.2.1 Regularity of the Weakest Assumption

The following lemma is a generalization of Lemma 6.2.4.

Lemma B.2.3. w = ⟨w1, . . . , wn⟩ ∈ L(A1 × A2 × · · · × An) iff wi ∈ L(Ai) for every i ∈ [1, n].

Proof. By induction on the number of productions. ■

64

Lemma B.2.4. Let P be an MNFH∀Q∗ and M = ⟨M1, . . . ,Mn⟩ be a multi-model. Denote by
M′

i the automaton for the language L(Mi) · {#}∗. Then for every w ∈ Σ∗ it holds that

w ∈ WM−1:P iff w ∈ L((nfa (P) ∩ (AΣ∗·{#}∗ × M′
2 × · · · × M′

n)) ↓x1)

Proof. Denote B = (AΣ∗·{#}∗ × M′
2 × · · · × M′

n) and w̄′ = ⟨w2, . . . , wn⟩.

w ∈ L((nfa (P) ∩ B) ↓x1) ⇐⇒ (Lemma 6.2.6)

∃w̄′ ∈ (Σ∗)n−1 :
⟨
w, w̄′⟩ ∈ L((nfa (P) ∩ B)) ⇐⇒ (intersection)

∃w̄′ ∈ (Σ∗)n−1 :
⟨
w, w̄′⟩ ∈ L(nfa (P)) ∧

⟨
w, w̄′⟩ ∈ L(B) ⇐⇒ (Lemma B.2.3)

∃w̄′ ∈ (Σ∗)n−1 :
⟨
w,w′⟩ ∈ L(nfa (P))∧

w ∈ Σ∗ ∧ wi ∈ L(Mi) for i ∈ [2, n] ⇐⇒

∃wi ∈ L(Mi) for i ∈ [2, n] :
⟨
w, w̄′⟩ ∈ L(nfa (P)) ⇐⇒ (Definition 5.1.1)

∃wi ∈ L(Mi) for i ∈ [2, n] : ⟨w,w2, . . . , wn⟩ |= P ⇐⇒ (Lemma B.2.2)

{w} ⊆ WM−1:P ⇐⇒ w ∈ WM−1:P

We can therefore deduce that WM−1:P is regular, meaning that we can use an algorithm
similar to Algorithm 6.2 for model-checking general MNFH, by fixing all models except one.

65

66

Bibliography

[1] Erika Ábrahám and Borzoo Bonakdarpour. Hyperpctl: A temporal logic for probabilistic
hyperproperties. In Annabelle McIver and András Horváth, editors, Quantitative Evaluation
of Systems - 15th International Conference, QEST 2018, Beijing, China, September 4-
7, 2018, Proceedings, volume 11024 of Lecture Notes in Computer Science, pages 20–35.
Springer, 2018.

[2] Shreya Agrawal and Borzoo Bonakdarpour. Runtime verification of k-safety hyperproperties
in hyperltl. In IEEE 29th Computer Security Foundations Symposium, CSF 2016, Lisbon,
Portugal, June 27 - July 1, 2016, pages 239–252. IEEE Computer Society, 2016.

[3] Dana Angluin. Learning regular sets from queries and counterexamples. Inf. Comput.,
75(2):87–106, 1987.

[4] Dana Angluin, Sarah Eisenstat, and Dana Fisman. Learning regular languages via al-
ternating automata. In Qiang Yang and Michael J. Wooldridge, editors, Proceedings of
the Twenty-Fourth International Joint Conference on Artificial Intelligence, IJCAI 2015,
Buenos Aires, Argentina, July 25-31, 2015, pages 3308–3314. AAAI Press, 2015.

[5] Dana Angluin and Dana Fisman. Learning regular omega languages. Theoretical Computer
Science, 650:57 – 72, 2016. Algorithmic Learning Theory.

[6] Borja Balle and Mehryar Mohri. Learning weighted automata. In Andreas Maletti, edi-
tor, Algebraic Informatics - 6th International Conference, CAI 2015, Stuttgart, Germany,
September 1-4, 2015. Proceedings, volume 9270 of Lecture Notes in Computer Science, pages
1–21. Springer, 2015.

[7] Gilles Barthe, Juan Manuel Crespo, and César Kunz. Relational verification using product
programs. In Michael J. Butler and Wolfram Schulte, editors, FM 2011: Formal Methods
- 17th International Symposium on Formal Methods, Limerick, Ireland, June 20-24, 2011.
Proceedings, volume 6664 of Lecture Notes in Computer Science, pages 200–214. Springer,
2011.

[8] Gilles Barthe, Pedro R. D’Argenio, and Tamara Rezk. Secure information flow by self-
composition. In 17th IEEE Computer Security Foundations Workshop, (CSFW-17 2004),
28-30 June 2004, Pacific Grove, CA, USA, pages 100–114. IEEE Computer Society, 2004.

[9] Béatrice Bérard, Stefan Haar, and Loïc Hélouët. Hyper partial order logic. In Sumit
Ganguly and Paritosh K. Pandya, editors, 38th IARCS Annual Conference on Foundations

67

of Software Technology and Theoretical Computer Science, FSTTCS 2018, December 11-
13, 2018, Ahmedabad, India, volume 122 of LIPIcs, pages 20:1–20:21. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 2018.

[10] Francesco Bergadano and Stefano Varricchio. Learning behaviors of automata from multi-
plicity and equivalence queries. SIAM J. Comput., 25(6):1268–1280, 1996.

[11] Sebastian Berndt, Maciej Liskiewicz, Matthias Lutter, and Rüdiger Reischuk. Learning
residual alternating automata. In Satinder P. Singh and Shaul Markovitch, editors, Pro-
ceedings of the Thirty-First AAAI Conference on Artificial Intelligence, February 4-9, 2017,
San Francisco, California, USA, pages 1749–1755. AAAI Press, 2017.

[12] Armin Biere. Bounded model checking. In Armin Biere, Marijn Heule, Hans van Maaren,
and Toby Walsh, editors, Handbook of Satisfiability, volume 185 of Frontiers in Artificial
Intelligence and Applications, pages 457–481. IOS Press, 2009.

[13] Brandon Bohrer and André Platzer. A hybrid, dynamic logic for hybrid-dynamic infor-
mation flow. In Anuj Dawar and Erich Grädel, editors, Proceedings of the 33rd Annual
ACM/IEEE Symposium on Logic in Computer Science, LICS 2018, Oxford, UK, July
09-12, 2018, pages 115–124. ACM, 2018.

[14] Borzoo Bonakdarpour and Bernd Finkbeiner. The complexity of monitoring hyperproper-
ties. In 31st IEEE Computer Security Foundations Symposium, CSF 2018, Oxford, United
Kingdom, July 9-12, 2018, pages 162–174. IEEE Computer Society, 2018.

[15] Borzoo Bonakdarpour and Bernd Finkbeiner. Program repair for hyperproperties. In
Yu-Fang Chen, Chih-Hong Cheng, and Javier Esparza, editors, Automated Technology for
Verification and Analysis, pages 423–441, Cham, 2019. Springer International Publishing.

[16] Borzoo Bonakdarpour and Sarai Sheinvald. Finite-word hyperlanguages. In Alberto Lep-
orati, Carlos Martín-Vide, Dana Shapira, and Claudio Zandron, editors, Language and
Automata Theory and Applications - 15th International Conference, LATA 2021, Milan,
Italy, March 1-5, 2021, Proceedings, volume 12638 of Lecture Notes in Computer Science,
pages 173–186. Springer, 2021.

[17] Yu-Fang Chen, Azadeh Farzan, Edmund M. Clarke, Yih-Kuen Tsay, and Bow-Yaw Wang.
Learning minimal separating dfa’s for compositional verification. In Stefan Kowalewski
and Anna Philippou, editors, Tools and Algorithms for the Construction and Analysis of
Systems, pages 31–45, Berlin, Heidelberg, 2009. Springer Berlin Heidelberg.

[18] Edmund M. Clarke, Orna Grumberg, Somesh Jha, Yuan Lu, and Helmut Veith.
Counterexample-guided abstraction refinement. In Proceedings of the 12th International
Conference on Computer Aided Verification, CAV ’00, pages 154–169, London, UK, 2000.
Springer-Verlag.

[19] Edmund M. Clarke, Orna Grumberg, Somesh Jha, Yuan Lu, and Helmut Veith.
Counterexample-guided abstraction refinement for symbolic model checking. J. ACM,
50(5):752–794, 2003.

68

[20] Edmund M. Clarke, Somesh Jha, Yuan Lu, and Helmut Veith. Tree-like counterexamples in
model checking. In 17th IEEE Symposium on Logic in Computer Science (LICS 2002), 22-
25 July 2002, Copenhagen, Denmark, Proceedings, pages 19–29. IEEE Computer Society,
2002.

[21] Edmund M. Clarke and Helmut Veith. Counterexamples revisited: Principles, algorithms,
applications. In Nachum Dershowitz, editor, Verification: Theory and Practice, Essays
Dedicated to Zohar Manna on the Occasion of His 64th Birthday, volume 2772 of Lecture
Notes in Computer Science, pages 208–224. Springer, 2003.

[22] Michael R. Clarkson, Bernd Finkbeiner, Masoud Koleini, Kristopher K. Micinski, Markus N.
Rabe, and César Sánchez. Temporal logics for hyperproperties. In Martín Abadi and Steve
Kremer, editors, Principles of Security and Trust - Third International Conference, POST
2014, Held as Part of the European Joint Conferences on Theory and Practice of Software,
ETAPS 2014, Grenoble, France, April 5-13, 2014, Proceedings, volume 8414 of Lecture
Notes in Computer Science, pages 265–284. Springer, 2014.

[23] Michael R. Clarkson and Fred B. Schneider. Hyperproperties. J. Comput. Secur.,
18(6):1157–1210, 2010.

[24] Jamieson M. Cobleigh, Dimitra Giannakopoulou, and Corina S. Pasareanu. Learning as-
sumptions for compositional verification. In Hubert Garavel and John Hatcliff, editors,
Tools and Algorithms for the Construction and Analysis of Systems, 9th International
Conference, TACAS 2003, Held as Part of the Joint European Conferences on Theory and
Practice of Software, ETAPS 2003, Warsaw, Poland, April 7-11, 2003, Proceedings, volume
2619 of Lecture Notes in Computer Science, pages 331–346. Springer, 2003.

[25] Norine Coenen, Bernd Finkbeiner, Christopher Hahn, and Jana Hofmann. The hierarchy of
hyperlogics. In 34th Annual ACM/IEEE Symposium on Logic in Computer Science, LICS
2019, Vancouver, BC, Canada, June 24-27, 2019, pages 1–13. IEEE, 2019.

[26] Norine Coenen, Bernd Finkbeiner, César Sánchez, and Leander Tentrup. Verifying hy-
perliveness. In Isil Dillig and Serdar Tasiran, editors, Computer Aided Verification - 31st
International Conference, CAV 2019, New York City, NY, USA, July 15-18, 2019, Proceed-
ings, Part I, volume 11561 of Lecture Notes in Computer Science, pages 121–139. Springer,
2019.

[27] Dennis Dams and Orna Grumberg. Abstraction and abstraction refinement. In Edmund M.
Clarke, Thomas A. Henzinger, Helmut Veith, and Roderick Bloem, editors, Handbook of
Model Checking, pages 385–419. Springer, 2018.

[28] Rayna Dimitrova, Bernd Finkbeiner, Máté Kovács, Markus N. Rabe, and Helmut Seidl.
Model checking information flow in reactive systems. In Viktor Kuncak and Andrey Ry-
balchenko, editors, Verification, Model Checking, and Abstract Interpretation - 13th Inter-
national Conference, VMCAI 2012, Philadelphia, PA, USA, January 22-24, 2012. Proceed-
ings, volume 7148 of Lecture Notes in Computer Science, pages 169–185. Springer, 2012.

69

[29] Azadeh Farzan, Yu-Fang Chen, Edmund M. Clarke, Yih-Kuen Tsay, and Bow-Yaw Wang.
Extending automated compositional verification to the full class of omega-regular languages.
In C. R. Ramakrishnan and Jakob Rehof, editors, Tools and Algorithms for the Construction
and Analysis of Systems, pages 2–17, Berlin, Heidelberg, 2008. Springer Berlin Heidelberg.

[30] Azadeh Farzan and Anthony Vandikas. Automated hypersafety verification. In Isil Dillig
and Serdar Tasiran, editors, Computer Aided Verification - 31st International Conference,
CAV 2019, New York City, NY, USA, July 15-18, 2019, Proceedings, Part I, volume 11561
of Lecture Notes in Computer Science, pages 200–218. Springer, 2019.

[31] Bernd Finkbeiner, Lennart Haas, and Hazem Torfah. Canonical representations of k-safety
hyperproperties. In 32nd IEEE Computer Security Foundations Symposium, CSF 2019,
Hoboken, NJ, USA, June 25-28, 2019, pages 17–31. IEEE, 2019.

[32] Bernd Finkbeiner, Christopher Hahn, Jana Hofmann, and Leander Tentrup. Realizing
ømega-regular hyperproperties. In Shuvendu K. Lahiri and Chao Wang, editors, Computer
Aided Verification - 32nd International Conference, CAV 2020, Los Angeles, CA, USA,
July 21-24, 2020, Proceedings, Part II, volume 12225 of Lecture Notes in Computer Science,
pages 40–63. Springer, 2020.

[33] Bernd Finkbeiner, Christopher Hahn, Philip Lukert, Marvin Stenger, and Leander Tentrup.
Synthesis from hyperproperties. Acta Informatica, 57(1-2):137–163, 2020.

[34] Bernd Finkbeiner, Christopher Hahn, Marvin Stenger, and Leander Tentrup. Monitoring
hyperproperties. In Shuvendu K. Lahiri and Giles Reger, editors, Runtime Verification
- 17th International Conference, RV 2017, Seattle, WA, USA, September 13-16, 2017,
Proceedings, volume 10548 of Lecture Notes in Computer Science, pages 190–207. Springer,
2017.

[35] Bernd Finkbeiner, Markus N. Rabe, and César Sánchez. Algorithms for model checking
HyperLTL and HyperCTL∗. In Daniel Kroening and Corina S. Pasareanu, editors, Com-
puter Aided Verification - 27th International Conference, CAV 2015, San Francisco, CA,
USA, July 18-24, 2015, Proceedings, Part I, volume 9206 of Lecture Notes in Computer
Science, pages 30–48. Springer, 2015.

[36] Bernd Finkbeiner and Martin Zimmermann. The first-order logic of hyperproperties. In
Heribert Vollmer and Brigitte Vallée, editors, 34th Symposium on Theoretical Aspects of
Computer Science, STACS 2017, March 8-11, 2017, Hannover, Germany, volume 66 of
LIPIcs, pages 30:1–30:14. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2017.

[37] Patrice Godefroid, Michael Huth, and Radha Jagadeesan. Abstraction-based model check-
ing using modal transition systems. In Kim Guldstrand Larsen and Mogens Nielsen, editors,
CONCUR 2001 - Concurrency Theory, 12th International Conference, Aalborg, Denmark,
August 20-25, 2001, Proceedings, volume 2154 of Lecture Notes in Computer Science, pages
426–440. Springer, 2001.

70

[38] Jens Oliver Gutsfeld, Markus Müller-Olm, and Christoph Ohrem. Automata and fixpoints
for asynchronous hyperproperties. Proc. ACM Program. Lang., 5(POPL):1–29, 2021.

[39] Christopher Hahn. Algorithms for monitoring hyperproperties. In Bernd Finkbeiner and
Leonardo Mariani, editors, Runtime Verification - 19th International Conference, RV 2019,
Porto, Portugal, October 8-11, 2019, Proceedings, volume 11757 of Lecture Notes in Com-
puter Science, pages 70–90. Springer, 2019.

[40] Tzu-Han Hsu, Cesar Sanchez, and Borzoo Bonakdarpour. Bounded model checking for
hyperproperties. In Jan Friso Groote and Kim G. Larsen, editors, Tools and Algorithms for
the Construction and Analysis of Systems - 27th International Conference, TACAS 2021,
Held as Part of the European Joint Conferences on Theory and Practice of Software, ETAPS
2020, Luxembourg, Luxembourg, 27 March-1 April 2021. Proceedings, Part II, Lecture Notes
in Computer Science. Springer, 2021.

[41] Orna Kupferman and Moshe Y. Vardi. Weak alternating automata are not that weak. ACM
Trans. Comput. Log., 2(3):408–429, 2001.

[42] Satoru Miyano and Takeshi Hayashi. Alternating finite automata on omega-words. Theor.
Comput. Sci., 32:321–330, 1984.

[43] Joshua Moerman, Matteo Sammartino, Alexandra Silva, Bartek Klin, and Michał Szynwel-
ski. Learning nominal automata. SIGPLAN Not., 52(1):613–625, January 2017.

[44] Luan Viet Nguyen, James Kapinski, Xiaoqing Jin, Jyotirmoy V. Deshmukh, and Taylor T.
Johnson. Hyperproperties of real-valued signals. In Jean-Pierre Talpin, Patricia Derler,
and Klaus Schneider, editors, Proceedings of the 15th ACM-IEEE International Conference
on Formal Methods and Models for System Design, MEMOCODE 2017, Vienna, Austria,
September 29 - October 02, 2017, pages 104–113. ACM, 2017.

[45] Corina S Păsăreanu, Dimitra Giannakopoulou, Mihaela Gheorghiu Bobaru, Jamieson M
Cobleigh, and Howard Barringer. Learning to divide and conquer: applying the L* algo-
rithm to automate assume-guarantee reasoning. Formal Methods Syst. Des., 32(3):175–205,
2008.

[46] Riccardo Pucella and Fred B. Schneider. Independence from obfuscation: A semantic
framework for diversity. J. Comput. Secur., 18(5):701–749, 2010.

[47] Ronald L. Rivest and Robert E. Schapire. Inference of finite automata using homing se-
quences. Inf. Comput., 103(2):299–347, 1993.

[48] Natarajan Shankar and Maria Sorea. Counterexample-driven model checking. Technical
report, SRI International, Menlo Park, CA 94025, 2003.

[49] Ron Shemer, Arie Gurfinkel, Sharon Shoham, and Yakir Vizel. Property directed self
composition. In Isil Dillig and Serdar Tasiran, editors, Computer Aided Verification -
31st International Conference, CAV 2019, New York City, NY, USA, July 15-18, 2019,
Proceedings, Part I, volume 11561 of Lecture Notes in Computer Science, pages 161–179.
Springer, 2019.

71

[50] Sharon Shoham and Orna Grumberg. A game-based framework for CTL counterexamples
and 3-valued abstraction-refinement. ACM Trans. Comput. Log., 9(1):1, 2007.

[51] Marcelo Sousa and Isil Dillig. Cartesian hoare logic for verifying k-safety properties. In
Chandra Krintz and Emery Berger, editors, Proceedings of the 37th ACM SIGPLAN Con-
ference on Programming Language Design and Implementation, PLDI 2016, Santa Barbara,
CA, USA, June 13-17, 2016, pages 57–69. ACM, 2016.

[52] Alex Spelten, Wolfgang Thomas, and Sarah Winter. Trees over infinite structures and
path logics with synchronization. In Fang Yu and Chao Wang, editors, Proceedings 13th
International Workshop on Verification of Infinite-State Systems, INFINITY 2011, Taipei,
Taiwan, 10th October 2011, volume 73 of EPTCS, pages 20–34, 2011.

[53] Tachio Terauchi and Alexander Aiken. Secure information flow as a safety problem. In
Chris Hankin and Igor Siveroni, editors, Static Analysis, 12th International Symposium,
SAS 2005, London, UK, September 7-9, 2005, Proceedings, volume 3672 of Lecture Notes
in Computer Science, pages 352–367. Springer, 2005.

[54] Weikun Yang, Yakir Vizel, Pramod Subramanyan, Aarti Gupta, and Sharad Malik. Lazy
self-composition for security verification. In Hana Chockler and Georg Weissenbacher,
editors, Computer Aided Verification - 30th International Conference, CAV 2018, Held
as Part of the Federated Logic Conference, FloC 2018, Oxford, UK, July 14-17, 2018,
Proceedings, Part II, volume 10982 of Lecture Notes in Computer Science, pages 136–156.
Springer, 2018.

72

ביחס הקירובים קבוצת על מודל בדיקת מבצעים אנו אחרת, הנתונה. רב-המערכת על המבוססת לתלמיד,

בהרבה מהירה המועמדים על המודל בדיקת יחסי, באופן קטנים בונה שהתלמיד שהאוטומטים מאחר לתכונה.

המקורית. רב-המערכת על המודל לבדיקת ביחס

כל את שמכילה הרגולרית השפה שהיא ,W ההנחה-החלשה-ביותר את ללמוד מנסה הלמידה אלגוריתם ב-[45],
נגדיות דוגמאות קבלת על מתבססת W של הבנייה מסויימות. הגבלות תחת התכונה את שמספקות הריצות

ניתן עבורו ,MNFH של מוגבל לפרגמנט ההנחה-החלשה-ביותר את מגדירים אנו המודל. מבדיקת הנובעות

לאלגוריתם כיעד בה משתמשים אנו לכן, רגולרית. שההנחה מראים ואף המודל, מבדיקת נגדית דוגמה לקבל

הנחה-החלשה-ביותר ולמידת המודל, מבדיקת הנגדיות הדוגמאות הפקת – אלה שיפורים שני המשופר. הלמידה

הזה. לפרגמנט המודל בדיקת אלגוריתם של יותר מהירה התכנסות מאפשרים עצמו, המבנה את במקום

iii

.[22] HyperLTL הלוגיקה של הרחבה והיא ,MultiLTL נקראת מתמקדים אנו בה הלוגיקה קריפקה. מבני של

ברב-המערכת. i-ה לרכיב שמתייחס ,∃i-ו ∀i בעל-אינדקס, כימות מאפשרת MultiLTL הלוגיקה

עבור המודל בדיקת ובעיית HyperLTL עבור המודל בדיקת בעיית בין דו-כיוונית רדוקציה ישנה כי מראים אנו

יותר, חזק החדש הפורמליזם שקולות, הללו המודל בדיקת בעיות ששתי למרות כי מדגישים אנו .MultiLTL
השונים. לרכיבים מפורשת התייחסות באמצעות רב-מערכות, של ישיר ואימות אפיון לבצע מאפשר שהוא בכך

עבור ותת-קירוב על-קירוב על המבוססים מודולריים, הוכחה כללי שני של ניסוח באמצעות זה יתרון מתעלים אנו

רב-המערכת. על-ידי שלילתה של או על-תכונה של סיפוק להוכיח מאפשרים אלה הוכחה כללי בנפרד. רכיב כל

ההוכחה. בכללי בשימוש שנמצאים הקירובים לחישוב שיטות שתי מציגים אנו

גס, התחלתי מקירוב החל בהדרגה, מחושבים הקירובים ועידון. אבסטרקציה על מבוססת הראשונה השיטה

בדיקת כאשר בשניהם, אלגוריתמים. שני באמצעות ממומשת זו שיטה נגדיות. דוגמאות באמצעות ומעודנים

דוגמה אחרת, התכונה. את מספקת המקורית רב-המערכת כי מסיקים אנו מצליח, לעל-המערכת ביחס המודל

מוחזרת. נגדית

התנהגות מוצאים אנו רכיב, לכל בלבד. מרב-המערכת שנובעות נגדיות בדוגמאות משתמש הראשון האלגוריתם

האלגוריתם בהתאמה. עידון ומבצעים הרכיב, של לתת-הקירוב להוסיפה או הרכיב של מעל-הקירוב להסיר שיש

כמתי רצף ולאחריהם ∀ כמתי מרצף בנוי הכימות בו ,MultiLTL הלוגיקה של מוגבל לפרגמנט מותאם השני

אי-הפרעה כגון על-תכונות, באמצעות אבטחה תכונות של למידול במיוחד שימושי הינו זה פרגמנט .∃
ולכן המודל, בדיקת של מכישלון ישירות נובעות הנגדיות הדוגמאות זה, באלגוריתם .(noninterference)
קטנים לרוב האבסטרקטיים שהמבנים מאחר כי להדגיש, חשוב הנבדקת. לתכונה וגם למערכת גם מתייחסות

יותר. מהירה עבורם המודל בדיקת גם המקוריים, מהרכיבים משמעותית

שאינן מערכות של לתיאור מתאימים קריפקה, מבני באמצעות רב-מערכות של והייצוג MultiLTL הלוגיקה

לפיכך, שונה. בייצוג לבחור יש מובטחת, העצירה בהן לתכניות הייצוג את להתאים רוצים כאשר עוצרות.

הזה, בהקשר סופיים. מסלולי-ריצה עבור ורב-תכונות רב-מערכות של בתיאור מתמקדים אנו זה, מקרה עבור

של לייצוג שלהם ובוקטור רכיב, כל לתיאור (NFA) אי-דטרמיניסטיים סופיים באוטומטים משתמשים אנו

זה ייצוג על לחשוב ניתן .([16] NFH) סופיים בהיפר-אוטומטים משתמשים אנו המפרטים, עבור רב-מערכת.

רב-תכונות, לתיאור NFH את להתאים בקלות ניתן HyperLTL-ל בדומה .HyperLTL של הרגולרית כמקבילה

.(MNFH) סופי רב-אוטומט של המודל באמצעות

עבור המודל בדיקת בעיית בין דו-כיוונית רדוקציה ישנה אינסופיות, ריצות עבור למקבילה שבדומה מראים אנו

לביצוע מודולרית שיטה של בתיאור ממשיכים אנו מכן, לאחר .MNFH עבור המודל בדיקת בעיית ובין NFH
מתאימים קירובים למצוא מנסה השיטה אינסופיות, ריצות עבור למקרה בדומה .MNFH עבור מודל בדיקת

אוטומטים. למידת על מבוסס החיפוש הפעם, אולם לרב-המבנה.

L∗ האוטומטים למידת אלגוריתם באמצעות לקירוב אפשרי מועמד מחפשים [45] למידה מבוססת מודל בבדיקת

באמצעות L ידועה לא רגולרית שפה עבור דטמיניסטי סופי אוטומט לבנות מנסה התלמיד זה, באלגוריתם .[3]
השפה עבור אוטומט הוא A ("האם שקילות ושאילתות ("?L בשפה נמצאת w המילה ("האם שייכות שאילתות

ממשיך התלמיד לפיכך, היעד. שפת מהי יודע אשר מהמורה, תשובה מקבל התלמיד אלה, שאילתות עבור .("L
השקילות. שאילתת על בחיוב משיב המורה אשר עד אוטומט-מועמד, ולהציע לבנות

ברב-המערכת. רכיב לכל מועמד איטרציה, בכל אוטומטים-מועמדים של קבוצה בונה התלמיד שלנו, באלגוריתם

אנחנו נשלחת, שקילות שאילתת כאשר למבנה. קירובים בתור הללו למועמדים בהתייחסות הוא המרכזי הרעיון

נגדית דוגמה מחזירים אנו לא, אם לרכיב. כקירוב מתאים שנשלח המועמד האם בודקים המורה) (בתור

ii

תקציר

מאפיינת LTL תכונת תכניות. של התנהגות לאפיון נרחב בשימוש נמצאות ,LTL כדוגמת טמפורליות, לוגיקות

בעלות אינן אלה תכונות-מסלול אולם, הנדרשת. התכונה את מספק מהם אחד שכל מסלולי-ריצה, של קבוצה

העדרן. או אבטחה פרצות להמצאות הנוגעים מפרטים לתיאור מספק ביטוי כוח

לקבוצות המתייחסות תכונות לתיאור אחיד פורמליזם מספק תכונות-מסלול, של הכללה על-תכונות, של המושג

התכונה לדוגמה, אבטחה. תכונות של מפרטים לתיאור במיוחד מתאימות על-תכונות מסלולי-ריצה. של

פומביים, למשתנים התכנית משתני של חלוקה באמצעות מאופיינת להיות יכולה זרימת-מידע-מאובטחת של

זרימת-מידע- מהסביבה. לצפייה ניתנים להיות אמורים שלא סודיים ומשתנים מהסביבה, לצופה שחשופים

הפומביים המשתנים ערכי כל על מסכימים הם אם מסלולי-ריצה, שני לכל אם במערכת נשמרת מאובטחת

תכונה בתכנית. הסודיים המשתנים של לערכים קשר ללא שווים, שלהם הפומביים הפלטים ערכי גם אז בקלט,

יחיד. מסלול באמצעות לתיאור ניתנת לא זו

בלבד. בכללותה אחת למערכת להתייחס יכולות הן – מוגבלות עדיין הן ביותר, שימושיות שעל-תכונות אף-על-פי

בולטת דוגמה למשנהו. אחד רכיב בין ריצות בין לקשר הצורך ועולה רכיבים, ממספר מורכבות לרוב מערכות

מתייחסת שהיא בכך האבטחה דרישות את מכלילה המגוון תכונת .[46] (diversity) המגוון תכונת היא לכך

להיות אך הפונקציונליות, אותה את לממש נדרש מהרכיבים אחד כל המערכת. אותה של רכיבים למספר

באמצעות מיוצגת להיות עקרונית, יכולה זו, אבטחה תכונת ,[46] ב- שמוזכר כפי מרעיו. המימוש בפרטי שונה

ואינו טבעי אינו זו ייצוג ברם, המקורית. במערכת הרכיבים כל של הרכבה שמהווה יחידה מערכת על על-תכונה

יעיל.

רכיבים כקבוצת למערכת מפורש באופן להתייחס המאפשר פורמליזם של הצגה על-ידי זה קושי פותרים אנו

מאפשרת זו מפרט שפת רב-תכונות. לבטא שיכולה ,MultiLTL מפרט שפת עם בצירוף רב-מודל, הנקראת

ישיר באופן לבטא לנו מאפשר זה פורמליזם ברב-מודל. שונים מרכיבים למסלולי-ריצה מפורשות להתייחס

מסועפת. בבנייה צורך ללא המגוון, תכונת כדוגמת תכונות וטבעי

ושלמים, נאותים הוכחה כללי מציעים אנו לפיכך, המודולריות. מיתרון נהנית MultiLTL הלוגיקה יתר-על-כן,

יתרון משיגים אנו כך תת-קירוב. או על-קירוב מסוג בנפרד, רכיב לכל באבסטרקציה שימוש על המבוססים

נוסף.

בה ועידון, אבסטרקציה על מבוססת הראשונה, אלו. קירובים לחישוב שיטות שתי מציעים אנו מכן, לאחר

השניה, נמצא. מתאים שקירוב עד נגדיות, דוגמאות באמצעות איטרטיבי באופן מעודנת התחלתית אבסטרקציה

שיטות שתי .L∗ הלמידה אלגוריתם באמצעות קירובים מוצאת סופיים, מסלולי-ריצה עם למערכות מותאמת

אלגוריתמי להאצת לשמש יכולות ולכן המקוריים, מהמודלים משמעותית קטנים קירובים ליצור מסוגלות אלה

ורב-תכונות. על-תכונות של המודל בדיקת

סדרה שהן רב-מערכות, באמצעות מערכות של בייצוג משתמשים אנו נוסף. בפירוט העבודה את נתאר כעת,

i

המחשב. למדעי בפקולטה שינוולד, שרי ודוקטור גרימברג ארנה פרופסור של בהנחייתן בוצע המחקר

מחקר תקופת במהלך בכנס למחקר ושותפותיו המחבר מאת כמאמר פורסמו זה בחיבור התוצאות מן חלק

המחבר: של המגיסטר

Ohad Goudsmid, Orna Grumberg, and Sarai Sheinvald. Compositional model checking for multi-
properties. In Fritz Henglein, Sharon Shoham, and Yakir Vizel, editors, Verification, Model Checking,
and Abstract Interpretation - 22nd International Conference, VMCAI 2021, Copenhagen, Denmark,
January 17-19, 2021, Proceedings, volume 12597 of Lecture Notes in Computer Science, pages 55–80.
Springer, 2021.

תודות

השראה ומקור חברה מדהימה, מנחה היותה על גרימברג, ארנה פרופ' שלי, למנחה להודות ברצוני ראשית,

הצגתי על עבודתי, לשיפור פוסקים הבלתי והסיוע העידוד על השבועיות, הפגישות על לך תודה לימודיי. במהלך

ממך. וללמוד איתך לעבוד גדול כבוד לי היה מהנה. להיות זו לחוויה שגרמת כך ועל המחקר של המדהים לעולם

לך תודה לעבודה. הכבירה תרומתה על שינוולד, שרי ד"ר שלי, השותפה למנחה להודות ברצוני כמו-כן,

מנחה את מחשבה. וחדות הומור חדשים, רעיונות בעזרת למועילה פגישה כל להפוך יכולתך ועל מחוייבותך על

הזה. המחקר במהלך איתך לעבוד לי שיצא שמח מאד ואני מדהים, ואדם מעולה

בי, שהאמנתם כך על לכם תודה נדלית. הבלתי ותמיכתם אהבתם על למשפחתי, להודות ברצוני לבסוף,

גבוה. ולשאיפה לסקרנות אותי דירבנתם

בהשתלמותי. הנדיבה הכספית התמיכה על סייבר אבטחת למחקר ברלין ר. מלווין ולמלגת לטכניון מודה אני

רב-תכונות של מודולרית מודל בדיקת

מחקר על חיבור

התואר לקבלת הדרישות של חלקי מילוי לשם

המחשב במדעי למדעים מגיסטר

חאודסמיד אוהד

לישראל טכנולוגי מכון — הטכניון לסנט הוגש

2021 פברואר חיפה התשפ"א אדר

רב-תכונות של מודולרית מודל בדיקת

חאודסמיד אוהד

	List of Figures
	Abstract
	Abbreviations and Notations
	1 Introduction
	1.1 Related Work

	2 Preliminaries
	2.1 Linear Time Logic (LTL)
	2.1.1 Negation Normal Form of LTL

	2.2 Hyperproperties and HyperLTL
	2.2.1 Negation Normal Form of HyperLTL

	3 Multi-Models and Multi-Properties
	3.1 MultiLTL
	3.1.1 Examples
	3.1.2 Negation Normal Form of MultiLTL

	3.2 Model-Checking MultiLTL
	3.2.1 Reduction from HyperLTL Model-Checking to MultiLTL Model-Checking
	3.2.2 Reduction from MultiLTL Model-Checking to HyperLTL Model-Checking

	3.3 Direct Algorithm for MultiLTL Model-Checking
	3.3.1 Counterexamples from the Model-Checking Algorithm

	3.4 Compositional Proof Rules for Model-Checking MultiLTL

	4 Abstraction-Refinement Based Implementation of the Proof Rules
	4.1 Constructing a Sequence of Over-Approximations
	4.1.1 Over-approximation Sequence Construction

	4.2 Constructing a Sequence of Under-Approximations
	4.2.1 Under-approximation Sequence Construction

	4.3 Abstraction-Refinement Guided Model-Checking
	4.4 Counterexample Guided Model-Checking Using PR

	5 Multi-Properties for Finite Traces
	5.1 Multi-Languages and Multi-NFH
	5.2 Equivalence of MNFH Model-Checking and NFH Model-Checking
	5.3 Direct Algorithm for MNFH Model-Checking
	5.4 Compositional Proof Rules for Model-Checking MNFH

	6 Learning-Based Multi-Property Model-Checking
	6.1 Learning Assumptions for General Multi-Properties
	6.2 Weakest Assumption for MNFH_AE
	6.2.1 Regularity of the Weakest Assumption

	6.3 Learning Assumptions for AE

	7 Reducing the Alphabet Size
	7.1 Decreasing the Alphabet for MultiLTL
	7.2 Decreasing the alphabet for MNFH

	8 Conclusion and Future Work
	8.1 Conclusion
	8.2 Future Work

	A Some Additional Proof Rules
	A.1 Proof Rules for Hyperproperties

	B Discussing Weakest Assumptions
	B.1 Weakest Assumptions for MNFH_AE
	B.2 Weakest Assumption for MNFH_FQ*̂
	B.2.1 Regularity of the Weakest Assumption

	Bibliography
	Hebrew Abstract

