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Abstract

Nowadays, software systems can be found not only on our laptops, but all around us:
in phones, T'Vs, cars, airplanes and many more. Such systems are complex and hard to
design, and therefore they often reach the client while still containing many hidden bugs.
When discovered by the client, these bugs damage companies reputation, sometimes
irreversibly. Therefore, companies make tremendous efforts to detect and repair bugs,
devoting a significant percentage of the development process to these tasks.

Yet even though these efforts lead to the discovery of many bugs, still, companies
are forced to prioritize their repair, and many bugs remain uncorrected. This is because
human resources are limited, and manual repair of bugs is a notoriously difficult task,
which often requires expertise and close acquaintance with the code under inspection.

Hence, automating program repair has always been a research challenge of much
interest. In recent years, however, research in this area has seen significant progress,
with the development of methods that have been shown to be useful for repairing real
bugs in large-scale programs.

This thesis is concerned with automated program repair from a formal point of view.
This means that programs are repaired with respect to a formal specification. Also,
formal methods from the world of program verification are used for the repair process.

We mostly focus on search-based repair, where programs are iteratively sampled
from within a search space and then checked to see if they meet the specification. We
present three published papers, describing several algorithms. The common goal of all
algorithms is to make search-based repair more efficient, by pruning the search space

whenever possible and by making the repeated correctness checks more efficient.






Chapter 1

Introduction

Nowadays, computers are everywhere. And where there are computers, there are
computer bugs. Most of the time, these bugs merely disturb the user. For example,
when an application suddenly crashes on the user’s phone. But, when found in safety-
critical systems, such as autonomous cars, bugs can have disastrous outcomes. The
manual detection, examination and repair of computer bugs are all notoriously difficult
tasks that programmers face daily. These tasks are hard because they usually require
expertise and close acquaintance with the code under inspection.

Automated program repair receives a specification and a program that violates it,
and outputs a different program, called a repair, which meets the specification. The
repair needs to be as similar to the original buggy program as possible, where similarity
can be measured syntactically or semantically: syntactic similarity means that their
code should be mostly identical, while semantic similarity means that their behavior
should remain the same for most inputs.

Research on automated program repair has grown intensively in recent years
[TYPR16, DSS16, ABS17, GPKS17, XWY*17, MNN*18, JXZ*18, SGZL18, WCW 18,
HZWK18b, vTG18]. The techniques used for automated repair are varied, and include
search-based algorithms [LNFW12, TYPR16, WCW 18], formal synthesis [NQRC13,
MYR15, DSS16, MNN*18] and machine learning [LR16, GPKS17].

While many existing techniques use a finite set of tests as a specification, this thesis
focuses on repair using a formal specification. When a program is repaired with respect
to a formal specification, it is guaranteed to meet it, which means that it is correct for
all inputs and not just a selected set. Thus, formal repair allows for greater confidence
in the given program. On the other hand, the repair problem is more challenging, and
therefore algorithms are expected to be less efficient in general.

Another difference of this work from much of the previous work on repair is in the
methods we have used. The emphasis in our work was on the use of formal methods,
which make it possible to prove the correctness of formal specifications. The main
methods we have used are techniques for software model checking, solvers of boolean

formulas (SAT solvers), and solvers of formulas over first-order theories (SMT solvers).



All program repair algorithms we have designed follow a search-based repair approach
(as opposed to a synthesis-based one). Techniques following this approach look for a
repair to a program P by making changes to P according to a predefined set of rules.
We refer to the set of programs created in this way as the search space of the technique,
and to any program in it as a patched program.

Many search-based techniques [LNFW12, QML*13b, RHJ*12, LR16]| follow a gen-
erate and validate working scheme. This means that each time a patched program is
sampled according to a certain policy, the correctness of this program is examined. If it
is correct - it is returned as a repair, otherwise - another patched program is chosen,
and so on.

This thesis includes three papers whose common objective is to enable efficient
generate and validate algorithms for formal program repair. The first paper presents a
mutation-based algorithm for program repair following the generate and validate scheme.
Its efficiency stems from pruning non-minimal repairs from the search space each time a
patched program is found to be correct during the validate stage. Its efficiency also stems
from using incremental SAT and SMT solving. The second paper presents two automata-
based algorithms for incremental verification, which is the problem of efficiently verifying
many similar revisions of a program in a row. Though this paper is not concerned
directly with program repair, one of the major applications for the algorithms presented
in it is to be used for the validate stage in a generate and validate loop. The third paper
improves the repair algorithm of the first by using fault localization and pruning the
search space also in the case where a patched program is found to be buggy during the
validate stage.

Next, we present a short abstract for each of the papers.

Mutation-Based Repair This work presents a novel approach for automatically
repairing an erroneous program with respect to a given set of assertions. Programs
are repaired using a predefined set of mutations. We refer to a bounded notion of
correctness, even though, for a large enough bound all returned programs are fully
correct. To ensure no changes are made to the original program unless necessary, if a
program can be repaired by applying a set of mutations Mwut, then no superset of Mut
is later considered. Programs are checked in increasing number of mutations, and every
minimal repaired program is returned as soon as found.

We impose no assumptions on the number of erroneous locations in the program,
yet we are able to guarantee soundness and completeness. That is, we assure that a
program is returned iff it is minimal and bounded correct.

Searching the space of mutated programs is reduced to searching unsatisfiable sets
of constraints, which is performed efficiently using a sophisticated cooperation between
SAT and SMT solvers. Similarities between mutated programs are exploited in a new
way, by using both the SAT and the SMT solvers incrementally.

We implemented a prototype of our algorithm, compared it with a state-of-the-art



repair tool and got very encouraging results.

Incremental Verification Modern software projects often consist of thousands of
lines of code and are updated on a daily basis. Despite the increasing effectiveness of
model checking tools, automatically re-verifying the entire program whenever a new
revision is created is often not feasible using existing tools. Incremental verification
aims at facilitating this re-verification, by reusing partial results from previous revisions
in order to focus the analysis on parts of the program that were semantically affected
by the change.

In this paper, we propose a novel approach for incremental verification that is based
on trace abstraction. Trace abstraction is an automata-based verification technique
that follows the counter-example guided abstraction refinement (CEGAR) scheme. The
abstraction itself is a sequence of automata, and it is refined by repeatedly adding an
automaton to the sequence. When a program is proven correct, this sequence forms a
proof of its correctness. When a bug is found in a program, the sequence obtained up
to the point of finding the bug forms a proof of correctness for some subset of program
traces.

We present two algorithms that reuse the obtained sequence, one eagerly and one
lazily. We demonstrate their effectiveness in an extensive experimental evaluation on
a previously established benchmark set for incremental verification based on different
revisions of device drivers from the Linux kernel. Our algorithm is able to achieve

significant speedups on this set, compared to stand-alone verification.

Fault Localization This work is concerned with fault localization for automated
program repair.

We define a novel concept of a must location set. Intuitively, such a set includes
at least one program location from every repair for a bug. Thus, it is impossible to
fix the bug without changing at least one location from this set. A fault localization
technique is considered a must algorithm if it returns a must location set for every
buggy program and every bug in the program. We show that some traditional fault
localization techniques are not must.

We observe that the notion of must fault localization depends on the chosen repair
scheme, which identifies the changes that can be applied to program statements as part
of a repair. We develop a new algorithm for fault localization and prove that it is must
with respect to commonly used schemes in automated program repair.

We incorporate the new fault localization technique into an existing mutation-based
program repair algorithm. We exploit it in order to prune the search space when a
buggy mutated program has been generated. Our experiments show that must fault
localization is able to significantly speed-up the repair process, without losing any of

the potential repairs.



1.1 Related Work

Program Repair Several repair methods follow a test-based generate and validate
approach. GenProg [LNFW12] uses a genetic programming algorithm to go over a
search space of programs created using deletions, replacements and insertions (only
of preexisting code). This approach has been proved very effective for real-life bugs
[LDVEFW12]. The success of GenProg led to the development of several related tools,
trying to improve it in different aspects. TrpAutoRepair [QML13a] and AE [WFF13]
aim at reducing the cost of running the entire test suite during the validate stage, and
RSRepair [QMLT13b] suggests to use random search instead of genetic programming.

SPR [LR15] uses parametrized transformation schemes, each representing a class of
useful program transformations. Then, target value search is used to reject schemes
that can not produce a repair for any parameter value. Finally, condition synthesis is
used in attempt to find appropriate parameter values for each of the remaining schemes,
thus replacing it with a concrete condition that constitutes a repair. Prophet [LR16]
improves SPR by better prioritizing the programs in SPR’s search space, in an attempt
to find ”good” repairs (i.e. repairs that will be accepted by the user) faster. The
priorities are determined using a probabilistic model learned automatically from a large
code database containing successful human patches. PAR [KNSK13] and Monperrus
and Martinez [MM15] also use successful human patches to learn schemes to be used
for repair, but the learning is done by human observation rather than machine learning.
Also, the resulting templates are fixed (i.e. contain no parameters) and only use existing
code in the surroundings of the altered statement. CodePhage [SDLLR15] exploits the
knowledge embedded in correct applications by directly transferring peaces of code from
correct donor applications to buggy recipient ones. In this way it is able to eliminate
out of bounds access, integer overflow, and divide by zero errors in the recipient.

In the literature there is also a wide range of techniques for automated program
repair using formal methods [NQRC13, MYR16, ABS17, JGB05, VJ15, KKK15, DSS16,
NWKF17]. SemFix [NQRC13], DirectFix [MYR15] and Angelix [MYR16] are test-based
repair tools, but instead of iterating through the search space in an attempt to find
a successful repair, they infer semantic information from the program and use it to
synthesize a repair. All three tools assume the problem lies in faulty expressions and use
controlled symbolic execution to infer a repair constraint. Next, they use component-
based synthesis to synthesize new expressions satisfying this constraint. SemFix relies
on the assumption that the program contains a single faulty expression. DirectFix
manages to get rid of this assumption, at the cost of having a large repair constraint,
resulting in low scalability. Angelix combines the best of both, having no assumption
on the number of faulty expressions and at the same time a compact repair constraint.

Both [DW10] and [RHJ*12] use fault localization in order to produce a suspiciousness
ranking, and then programs are mutated according to it. In [DW10] the Tarantula

spectrum-based fault localization is used, and in [DW10] dynamic slicing is used. The



tool MUT-APR [AB18] fixes binary operator faults in C programs, but only targets faults
that require one line modification. The tools FOREnSiC[BDF*12] and Maple[NTC19]
repair C programs with respect to a formal specification by replacing expressions with
templates, which are then patched and analysed. SemGraft[MNN™'18] conducts repair
with respect to a reference implementation, and relies on tests for SBFL fault localization

of the original program.

Incremental Verification The validation of evolving software has been the subject
of extensive research over the years (see the book by Chockler et al. [CKMS15]). Several
different problems have been studied in this context, e.g., analyzing the semantic differ-
ence between successive revisions [TGK17] or determining which revision is responsible
for a bug [MVP15, ABV16]. Here, we will focus on the problem of formally verifying
all program revisions.

A dominant approach to solve this problem is to only verify the first revision, and
then prove that every pair of successive revisions is equivalent. It was suggested by
Godlin and Strichman in [SGO08], where they gave it the name regression verification and
introduced an algorithm that is based on the theory of uninterpreted functions. Papers
about regression verification are concerned with improving equivalence checking and
increasing its applicability. In [BPRT13], a summary of program behaviors impacted
by the change is computed for both programs, and then equivalence is checked on
summaries alone. Similarly, in [BOR13|, checking equivalence is done gradually by
partitioning the common input space of programs and checking equivalence separately
for each set in the partition. In [FGK*14], a reduction is made from equivalence
checking to Horn constraint solving. In [SVBV16] applicability is extended to pairs
of recursive functions that are not in lock-step, and in [CGS12] to multi-threaded
concurrent programs. The work of [BUVHW15] is focused on Programmable Logic
Controllers, which are computing devices that control production in many safety-critical
systems. Finally, [BV16] proposes a different notion of equivalence, which on top of the
usual functional equivalence also considers runtime equivalence.

Another approach towards efficiently verifying all program revisions, which is the
one we follow in our work, is to use during each revision verification partial results
obtained from previous revisions, in order to limit necessary analysis. Work in this
field vary based on the underlying non-incremental verification technique used, which
determines what information can be reused and how efficiently so.

The work of Beyer et al. [BLNT13] suggests to reuse the abstraction precision in
predicate abstraction. Other techniques for reuse of verification results include reuse of
function summaries for bounded model checking [CGS12], contextual assumptions for
assume-guarantee reasoning [HMW16], parts of a proof or counter-example obtained
through ic3 [CIM*11] and inductive invariants [FGS14].

Also, incremental techniques for runtime verification of probabilistic systems modeled

as Markov decision processes are developed in [FKPT12]. For the special case of



component-based systems, [JCK13] uses algebraic representations to minimize the
number of individual components that need to be reverified. Last, the tool Green
[VGD12] facilitates reuse of SMT solver results for general purposes, and authors

demonstrate how this could be beneficial for incremental program analysis.

Fault Localization Approaches for fault localization include spectrum-based (SBFL)
[JHS01, AZVG06, EDC10, NLR11, WDGL14|, mutation-based (MBFL)MKKY14,
PT15, HLK" 15, GZL15] and formula-based (FBFL) [JM11, ESW12, SSNW13, HSNB*16]
CHM™19] techniques. Both SBFL and MBFL techniques compute the suspiciousness
of a statement using coverage information from failing and passing test executions.
MBFL uses, in addition, information on how test results change after applying different
mutations to the program. A comprehensive survey of fault localization techniques can
be found in [WGL™16].

FBFL techniques represent information about the bug using a logical formula, and
analyze it to find suspicious locations. Analysis is done using error invariants [ESW12,
CESW13, SSNW13, HSNB* 16|, maximum satisfiability solvers [JM11, LNH15, LN16],
and weakest preconditions [CHM'19]. In contrast to SBFL and MBFL techniques,
FBFL techniques are usually accompanied with a formal proof that the returned set of
locations satisfies some property of interest, with respect to the formula.

The techniques of [JM11] and [ESW12] use a formula called the extended trace
formula to encode the error trace of the bug. This formula encodes three things: a) that
the input causing the bug remains the same, b) that the computation remains the same,
i.e., that the same sequence of statements is executed in the same order, and, c) that
the property holds at the end. Therefore, the formula is unsatisfiable. Both methods
intuitively look for explanations of its unsatisfiability, from which they learn which
parts of the computation were relevant for the bug to appear. The method of [JM11]
finds a maximal-satisfiable-subset (MSS) of the formula, and returns its complement,
a Co-MSS as the explanation. The method of [ESW12] use error invariants instead.
An error invariant for a position in an error trace is a formula over program variables
that over-approximates the reachable states at the given position while only capturing
states that will still produce the error, if execution of the trace is continued from that
position. If two successive positions along the trace have the same error invariant, then
the execution of the statement between them had no effect on this set of states, and
therefore the statement can be deemed irrelevant for the bug in question. Flow-sensitive
fault localization [CESW13] enhances the traditional trace formula with information on
the control-flow of the program. This new information is important since a possible fix
could be to avoid reaching certain locations by altering a control-flow statement before
them.

The relation between fault localization and program repair has also been studied in
the past. In [YQM17], an empirical evaluation is made to compare the performance of

the automated repair tool Nopol [DXLM14] using two fault localization strategies: rank-



first, which is based on suspiciousness rankings of statements, and suspiciousness-first,
which is based on suspiciousness value of statements. The work of [LKB*19] studied the
impact of different fault localization configurations on the performance of automated
program repair tools. An interesting observation they make is that many bugs in the
commonly used Defects4J benchmark cannot be fixed using any of the examined fault
localization tools, because neither of them correctly identifies the location of the bug.
Another important conclusion the authors draw is that success rates of repair tools
are highly influenced by the fine-tuning of fault localization parameters, and therefore
it is very important that repair tools are compared with emphasis on using the same
parameters for fault localization (which is not the current practice). Finally, [LGL"20]
proposes to incorporate fault localization and repair also in the other direction: feedback

from the repair process can be used to improve the ranking returned by fault localization.

1.2 Thesis Structure

The thesis is constructed as follows: first, we present an overview of the methods used
in our work, in chapter 2. Then, chapters 3,4 and 5 contain three of our papers, as
published in [RG16, RDH18, RG20], respectively. These papers lay out the body of our
work, including description of algorithms and proofs, and presentation of experimental
results. They are arranged in chronological order, according to their publication time.

Finally, chapter 6 concludes and discusses interesting directions for future work.
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Chapter 2

Research Methods

The emphasis of this work is on formal program repair. Therefore, we have mostly
used formal methods, taken from the world of verification and program analysis. In
this chapter, we describe these methods in detail in order to provide the reader with

necessary background for what comes next.

2.1 Incremental SAT and SMT Solving

A SAT solver is a decision procedure for deciding the satisfiability of a propositional
formula. Formulas are usually in conjunction normal form (CNF) and can also be seen
as a set of clauses.

Incremental SAT solving is a general name for a set of techniques aimed at improving
the SAT solver’s performance when called repeatedly for similar formulas (i.e., similar
sets of clauses). The basic principal behind these techniques is to save running time by
retaining information learned by the SAT solver between calls.

One of the common methods for incremental SAT solving is incremental SAT solving
under assumptions, introduced by Minisat [ES04]. According to this method, at each
step the SAT-solver is given a CNF formula ¢; and a set of assumption literals A;, and
solves ¢; A A;. The given formula must increase in every step, i.e the set of clauses in
; must be a subset of the set of clauses in ¢; 1, for all i. The set of assumptions, on
the other hand, may change arbitrarily in each step.

An SMT solver (where SMT stands for satisfiability modulo theories), is another
kind of decision procedure of much recent interest. It decides the satisfiability of a
formula expressed in first order logic (FOL), where the interpretation of some symbols
is constrained by a background theory (for more details see [DB09]). Examples of
commonly used theories are the theory of linear arithmetic over integers and the theory
of arrays. An SMT formula can be seen as a set of constraints in the theory (referred to
as SMT constraints).

Similarly to SAT solving, incremental techniques can be applied to SMT solving as

well. For this to be useful, an SMT formula ¢ is usually instrumented with boolean

11



variables called guard variables. The instrumentation of a formula ¢ is done as follows:
each constraint ¢; € ¢ is replaced by the constraint x; — ¢;, where x; is a fresh
boolean variable. As a result, the new constraint can easily be satisfied by setting x;
to false. Guard variables are conjuncted with ¢ and are used as assumptions, passed
to an incremental SMT solver. They have the effect of canceling out a subset of
constraints. For example, if ¢ = ¢ A co, after instrumentation we get the formula
¢ = (x1 — 1) A (x2 — ¢2). Calling an incremental SMT solver on ¢’ with the set of
assumptions {1} causes the SMT solver to check the satisfiability of ¢’ A z1, which
essentially disables the constraint co. That is, because nothing prevents xo from being
set to false, and z1 must be set to true, checking satisfiability of ¢ is reduced to checking

satisfiability of ¢;.

2.2 Software Model Checking

Software model checking is the problem of checking whether a model of a software
system meets its formal specification. In this thesis we focus on programs that are
sequential and imperative. Also, we focus on safety properties, which assert that the
system should never reach an error state (or states).

A common way to model a program in order to check a safety property is using its
control flow graph (CFG). The set of vertices of the CFG is the set of program locations
L, which contains a distinguished initial location, [;, and a subset of distinguished error
locations, L.. Edges of the CFG are labeled with statements of the program. An edge
(15, s,1) appears in the graph iff when the control of the program reaches location [;, it
is possible to continue to location [, upon execution of the statement s.

A trace is an error trace of the program if it labels a path from [/; to some error
location [, € L, in this graph. An error trace is feasible if there exists an execution of

the program following it. The program is correct iff no error trace is feasible.

Bounded Model Checking

Bounded model checking is the problem of determining for a program P and an integer
bound b, whether there exists a bug in P along executions of length at most b. Put in
terms of the CFG, this means checking whether there exists a feasible error trace of
length at most b. If there does not exist such a trace, then the program is said to be
b-correct.

In our work, we have used the SMT-based bounded verification approach of [CKY03],
implemented in the tool CBMC [CKLO04|. This approach gets both the input program
P and the bound b and converts P into a set of SMT constraints s.t. the program is
b-correct iff the set of constraints is unsatisfiable (i.e the conjunction of all constraints
in it is unsatisfiable). Then, an SMT solver is used to determine the satisfiability of this

set. For more details on the conversion process, see section 3.3.1.
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Trace-Abstraction-Based Verification

Another verification method that we rely on is the one proposed by Heizmann and
Podelski in [HHP13]. At the basis of this verification method is the idea of looking
at the basic statements of the program, i.e., its assignments and conditions, as letters
of a finite alphabet. Following this point of view, the program can be seen as a finite
automaton whose states are the program locations, and whose language is the set of
error traces of the program.

Formally, a program P is modeled using an automaton P = (Q, %, qo, 6, F') where:
1. @, the (finite) set of automaton states, is the set of all program locations Loc.

2. X, the alphabet of the automaton, is the set of all statements that appear in the

program.
3. qo, the initial state of the automaton, is the initial location ;.

4. ¢, the transition relation, is a subset of Loc x ¥ x Loc containing exactly those
triples that are edges of the CFG.

5. F', the set of final states, is the set of error locations, Le.

Note that the language of this automaton L(P), is indeed the set of error traces of the
program.

The way the verification method works is by constructing an abstraction A of the set
of feasible program traces, called a trace abstraction, which is a sequence of automata
over the alphabet of statements.

The algorithm consists of a counter-example-guided-abstraction-refinement loop,
where A is initially empty (i.e., contains no automata). In each iteration of the loop,
an uncovered error trace mw is sampled, by checking the emptiness of the language
L(P) — (U AieA L(.Ai)). Next, the feasibility of 7 is examined: if it is feasible- then the
program is not correct; if it isn’t feasible- then an automaton A; is constructed using
the proof of its unfeasibility. By construction, A; accepts 7 along with other traces that
are, intuitively, unfeasible for the same reasons as w. A; is then added to A and the

loop is repeated.
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Chapter 3

Sound and Complete
Mutation-Based Program Repair

Abstract

This work presents a novel approach for automatically repairing an erroneous
program with respect to a given set of assertions. Programs are repaired using a
predefined set of mutations. We refer to a bounded notion of correctness, even
though, for a large enough bound all returned programs are fully correct. To ensure
no changes are made to the original program unless necessary, if a program can
be repaired by applying a set of mutations Mut, then no superset of Mut is later
considered. Programs are checked in increasing number of mutations, and every
minimal repaired program is returned as soon as found.

We impose no assumptions on the number of erroneous locations in the program,
yet we are able to guarantee soundness and completeness. That is, we assure that a
program is returned iff it is minimal and bounded correct.

Searching the space of mutated programs is reduced to searching unsatisfiable
sets of constraints, which is performed efficiently using a sophisticated cooperation
between SAT and SMT solvers. Similarities between mutated programs are exploited
in a new way, by using both the SAT and the SMT solvers incrementally.

We implemented a prototype of our algorithm, compared it with a state-of-the-

art repair tool and got very encouraging results.

3.1 Introduction

In the process of software production and maintenance, much effort and many resources
are invested in order to ensure that the product is as bug free as possible. Manual bug
repair is time-consuming and requires close acquaintance with the checked program.
Therefore, there is a great need for tools performing automated program repair. In
recent years, there has been much progress in this field (e.g., [LNFW12, NQRC13,
MYR16, DXLM14, LR15, KB13]).

In previous work, the presented motivation for the development of program repair

tools is to enable the automatic repair of real-world bugs found in large-scale software
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projects. As a result, existing tools for automated repair aim at being scalable and are
targeted for the type of bugs found in deployed software.

We have designed our algorithm with a different goal in mind. In our opinion,
automatic repair can be equally or even more useful when applied in the earlier stages of
development, before any manual effort was invested in debugging at all. This is because,
in our view, it is precisely the initial debugging work that could benefit the most from
this automation, since it involves relatively simple bugs being fixed manually by the
programmer. For these early development stages, as well as for millions of independent
programmers working on small pieces of code, even a non-scalable automatic repair
method can help save a lot of time and avoid much frustration.

Our vision is to have a fast, easy-to-use program repair tool, which programmers
can run routinely. Ideally, programmers will run the tool immediately after making
changes to the program, before any manual effort was invested in debugging at all.
Then, if the program contains an assertion violation, the chosen course of action will be
determined by the tool’s result. If the tool returns one or more possible repairs, those
are guaranteed to suppress all assertion violations and thus may be safely applied to
the program. If the tool does not return any possible repairs, the programmer can be
sure that the problem can not be solved using changes within the search space of the
tool. In the later case, though manual debugging will still be needed, knowing what
will not solve the problem might give the programmer a head start.

In this work, we take a step forward towards accomplishing this vision, presenting
a novel algorithm for automatically repairing a program with respect to a given set
of assertions. We use a bounded notion of correctness. That is, for a given bound
b, we consider only bounded computations, along which each loop in the program is
performed at most b times and each recursive call is in-lined at most b times. We say
that a program is repaired if whenever a bounded computation reaches an assertion, the
assertion is evaluated to true. Our repair method is sound, meaning that every returned
program is repaired (i.e., no violation occurs in it up to the given bound). Just like
Bounded Model Checking, this increases our confidence in the returned program.

Our programs are repaired using a predefined set of mutations, applied to expressions
in conditionals and assignments (e.g. replacing a + operator by a —), as was shown useful
in previous work [DW10, RHJ*12, DW14]. We impose no assumptions on the number
of mutations needed to repair the program and are able to produce repairs involving
multiple buggy locations, possibly co-dependent. To make sure that our suggested repairs
are as close to the original program as possible, the repaired programs are examined and
returned in increasing number of mutations. In addition, only minimal sets of mutations
are taken into account. That is, if a program can be repaired by applying a set of
mutations Mut, then no superset of Mut is later considered. Intuitively, this is our way
to make sure all changes made to the program by a certain repair are indeed necessary.
Our method is complete in the sense of returning e/l minimal sets of mutations that

create a repaired program. Specifically, if no repair is found, one can conclude that the
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given set of mutations is not enough to repair the program. Furthermore, we show that

for large enough bound, all returned programs are (unbounded) fully correct.

Note that, the choice to use mutations for repair makes the search space small enough
to enable us to have completeness at an affordable cost, yet it is expressive enough to

repair meaningful bugs (especially those present in earlier stages of development).

Our algorithm is based on the translation of the program into a set of SMT constraints
which is satisfiable (i.e., the conjunction of constraints in it is satisfiable) iff the
program contains an assertion violation. This was originally done for the purpose
of bounded model checking in [CKL04]!. Our key observation is that mutating an
expression in the program corresponds to replacing a constraint in the set of constraints
encoding the program. Thus, searching the space of mutated programs is reduced to
searching unsatisfiable sets of constraints. The latter can be performed efficiently using
a sophisticated cooperation between SAT and SMT solvers, as was done in [LPMMS16]

for the purpose of finding minimal unsatisfiable cores.

The SAT solver is used to restrict the search space of mutated programs to only
those obtained by a minimal mutation set and the SMT solver verifies whether a
mutated program is indeed correct. Both the SAT solver and the SMT solver are used
incrementally, which means that learned information is passed between successive calls,
resulting in big savings in terms of resources used. Using an SMT solver incrementally
constitutes a novel way to exploit information learned while checking the correctness
of one program for the process of checking correctness of another program. Note, that
if the programs are similar, their encoding as sets of SMT constraints will also be
similar (due to our observation presented above), resulting in bigger savings when using

incremental SMT. This is another important contribution of this paper.

We implemented a prototype of our algorithm for C programs, compared it with

the methods of [KB11, KB13] and got very encouraging results.

To summarize, the main contributions of our work are:

e We propose a novel sound and complete algorithm which returns all minimal

repaired programs.

e The returned programs are proved to be bounded correct. However, we show that
for a large enough bound, all returned programs are fully correct and all minimal

fully correct programs are returned.

o We develop an efficient implementation of the algorithm, based on sophisticated

cooperation between SAT and SMT solvers, both used incrementally.

!To be precise, [CKL04] first translates the program into a bit-vector formula and then further
translates it into a propositional formula. Here, we only use the first part of the translation
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3.1.1 Related Work

Several repair methods follow a test-based "generate and validate” approach. They iter-
atively select a candidate from the repair search space and check its validity by running
all tests in the test suite against it. Examples are GenProg [LNFW12, LDVFW12],
TrpAutoRepair [QML13a], AE [WFF13], RSRepair [QML*13b] and the more recent
SPR [LR15]. PAR [KNSK13], Monperrus and Martinez [MM15] and Prophet [LR16]
suggest to use information learned from successful human repairs to extract and priori-
tize repair actions suitable for the suspected location of the error. Similarily, CodePhage
[SDLLR15] directly transfers pieces of code from correct donor applications to buggy
recipient ones. AutoFix-E [WPFT10] and AutoFix [PFNT14] also use location based
repair actions, but require programs to be equipped with contracts.

SemFix [NQRC13], DirectFix [MYR15] and Angelix [MYR16] use symbolic execution
to infer a repair constraint and synthesize a repair based on it. Nopol [DXLM14] also
uses synthesis, but only deals with buggy if conditions and missing pre conditions.
[KKK15] uses deductive synthesis and is based on pre and post conditions, rather
than tests alone. [JGBO05] and [VJ15] describe systems using automata and use LTL
specifications for repair.

Mutation based program repair (where the term "mutation” has the same meaning
as in this work) was previously done in [RHJ"12] and [DW14]. Both use a test suite as
the only specification and focus their efforts on efficient error localization. We, on the
other hand, use a formal specification and have no use of localization, since we have to
consider all locations in order to guarantee completeness. Also, we allow the repair of
multiple expressions, whereas both methods assume a single fault ([DW14] mentions a
possible extension to multiple faults, but this is not a part of the described method).

Finally, he methods of [KB11, KB13] are similar to ours in that they work on C
programs equipped with assertions (or test suites) and assume faulty expressions. The
differences are that they use program analysis based on a finite number of inputs each
time, while we use incremental SMT solving that allows reuse of information. Also, they
use templates (e.g. a linear combination of variables) for repair, while we use mutations
and are able to guarantee completeness. We provide a comparison of performance results

between our method and theirs in sec. 3.6.

3.2 Preliminaries

Program Correctness

For our purposes, a program is a sequential program composed of standard commands:
assignments, conditionals, loops and function calls. Each command is located at a
certain program location l;, and all commands are defined over the set of program
variables X.

In addition to the standard commands, a program may contain assumptions and
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assertions, which are commands that help the user specify the desired behavior. Assump-
tions (resp., assertions) are commands of the form assume(e) (resp., assert(e)), where e
is a boolean expression over X. An assertion assert(e) at location [;, specifies that the
user expects e to evaluate to true whenever control reaches I;, in all program runs. If e
evaluates to true every time control reaches [; during a run r, we say the assertion holds
for r. Otherwise, the assertion is violated. Once an assertion in the program is violated,
the program terminates (this early termination indicates an error has occurred and is
usually preceded by an error message explaining what went wrong). An assumption
assume(e) at location [;, specifies that every run reaching [; with e evaluated to false is
terminated. Unlike before, this early termination is not an indication that something
went wrong, but simply that the user does not want to consider the rest of this run
when checking correctness. For example, if a function f gets as input an integer n, but
the user assumes it will only be called with n > 2, an assumption assume(n > 2) can
be inserted at the beginning of the function to make sure all runs in which this function

is called inappropriately will be truncated.

Definition 3.2.1 (correct program). A program is correct if all assertions in it hold in

all runs.

For a program P and an integer b, a b-run of P is a run of P that goes through each
loop at most b times and has a recursion depth of at most b (i.e., the depth of the call

stack is at most b during the entire run).

Definition 3.2.2 (b-correct program). Let b be an integer. A program is b-correct if

all assertions in it hold in all b-runs.

Our repair method aims at finding programs which are b-correct, therefore we use

the term repaired program as a notation for a b-correct program.

3.2.1 Incremental SAT and SMT Solving

A SAT solver is a decision procedure for deciding the satisfiability of a propositional
formula. Formulas are usually in conjunction normal form (CNF) and can also be seen
as a set of clauses. Incremental SAT solving is a general name for a set of techniques
aimed at improving the SAT solver’s performance when called repeatedly for similar
formulas (i.e., similar sets of clauses). The basic principal behind these techniques is to
save running time by retaining information learned by the SAT solver between calls.
An SMT solver (where SMT stands for satisfiability modulo theories), is another
kind of decision procedure of much recent interest. It decides the satisfiability of a
formula expressed in first order logic (FOL), where the interpretation of some symbols
is constrained by a background theory (for more details see [DB09]). Examples of
commonly used theories are the theory of linear arithmetic over integers and the theory
of arrays. Just like a CNF formula can be seen as a set of clauses, an SMT formula can

be seen as a set of constraints in the theory (referred to as SMT constraints).
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Similarly to SAT solving, incremental techniques can be applied to SMT solving as
well. For this to be useful, an SMT formula ¢ is usually instrumented with boolean
variables called guard variables. The instrumentation of a formula ¢ is done as follows:
each constraint ¢; € ¢ is replaced by the constraint x; — ¢;, where x; is a fresh
boolean variable. As a result, the new constraint can easily be satisfied by setting x;
to false. Guard variables are conjuncted with ¢ and are used as assumptions, passed
to an incremental SMT solver. They have the effect of canceling out a subset of
constraints. For example, if ¢ = ¢ A co, after instrumentation we get the formula
¢ = (x1 = 1) A (x2 — ¢2). Calling an incremental SMT solver on ¢" with the set of
assumptions {1} causes the SMT solver to check the satisfiability of ¢’ A x1, which
essentially disables the constraint co. That is, because nothing prevents xo from being
set to false, and z1 must be set to true, checking satisfiability of ¢ is reduced to checking

satisfiability of c;.

Boolean Cardinality Constraints

Boolean cardinality constraints are constraints of the form >°1 ; l; < k, where [; is a
literal assigned the value 1 if true and 0 if false, and k is an integer constant. For
readability, we will refer to these constraints using the notation AtMost({l1,..,1,}, k),
also used in [LS08], in order to remind the reader of their intuitive meaning: require that
at most k of these literals get the value true. Similarly, the notation AtLeast({l1,..,l,}, k),
denotes the constraint Y ;' ; l; > k. For our implementation we used Minicard [LM12],
which is a SAT-solver designed to perform well on instances containing cardinality

constraints.

3.3 Our Approach

In this section we fix a bound b and refer to repaired programs which are b-correct.
Figure 3.1 presents an overview of our repair system. It is composed of three units: the
translation unit, the mutation unit and the repair unit.

The initial processing is done in the translation unit. The translation unit translates
the input program into two sets of SMT constraints: Sp..q, encoding parts of the
program which cannot be changed (e.g. assertions), and Ss, st Then, the mutation unit
constructs for each constraint ¢; in Sy,f¢ a set of alternative constraints S;, by applying
mutations to ¢;. Finally, the repair unit searches for all sets of constraints encoding
minimal repaired programs (where minimality will be defined with respect to the set of

mutations used). In the rest of the section we explain in detail how each unit works.

3.3.1 The Translation Unit

The translation unit is the first step of the process. It gets an input program and an

integer bound b and converts the input program into a set of SMT constraints s.t. the
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Figure 3.1: Overview of the repair system

program is b-correct iff the set of constraints is unsatisfiable (i.e the conjunction of all
constraints in it is unsatisfiable).

Before the set of constraints is constructed, the program undergoes three transfor-
mations: simplification, unwinding, and conversion to static single assignment (SSA)
form. This transformations are taken from [CKLO04], but we present them here because
the details are important in order to understand our method.

To explain the different transformations we will use the example presented in Figure
3.2. Figure 3.2a presents anC function named sum, which gets as input an integer n

and is supposed to return > ¢. But, being used to 0-based counting, the programmer

made a mistake in line 3, b}ll initializing ¢ to 0 instead of 1 and checking ¢ < n instead
of i <=mn. The assertion in line 6 specifies that the result should always be calculated
according to the formula %, which is the correct sum calculated using the formula
for a sum of an arithmetic progression.

We will now go over each transformation and explain its role shortly, using the
described example.

Simplification Figure 3.2b shows the result of applying simplification to the pro-
gram in Figure 3.2a. Complex constructs are replaced with simpler ones (for example,
the for loop was replaced with a while loop). More importantly, all conditions are
assigned to auxiliary boolean variables (g in the example). Note that after this step, all
original program expressions are right-hand-sides of assignments.

Unwinding Figure 3.2c shows the result of applying unwinding for b = 2 to the
program in Figure 3.2b. The loop is unwound b times by duplicating the loop body b
times, where each copy is guarded using an if statement that uses the same condition
as the loop statement (lines 5-15). Inside the innermost copy, an assume statement
is inserted with the negation of the condition (line 13), to specify we do not want to
consider runs going through the loop more than b times.? Function calls are inlined,
with recursive calls treated similarly to loops (inserted up to a depth of b).

Conversion to SSA Form The program is converted to SSA form (which means
each variable is assigned only once). Figure 3.2d shows the result of converting the
program in Figure 3.2c to SSA form. All variables are replaced with indexed variables,

and whenever a variable appears as the left-hand-side of an assignment, its index is

2In [CKLO04] an assertion was inserted and not an assume. Since we fix the program with respect to
all assertions in it, we need this to be an assume and not an assert, because we do not want to refer to
unbounded runs as bugs.
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increased by 1. If a variable z is assigned inside a conditional statement and is used
after the statement, an assignment is inserted straight after the conditional statement
to determine which copy of « should be used. For example, lines 16-17 determine the
updated value of sum after the nested if statements, according to g1 and g2. We refer
to this type of assignments as ®-assignments.

After the above transformations, conversion to a set of SMT constraints S is
straightforward. An assignment x = e is converted to the constraint x = e, an assume(e)
is converted to the constraint e and an assert(e) is converted to the constraint —e.?
Shortly, we say that a constraint encodes a statement.

In the next step, the mutation unit will apply mutations independently to every
constraint passed to it. The problem is that, due to unwinding, all statements which are
part of a loop (as the loop condition or in the loop body) are encoded using more than
one constraint in S. This is of course undesirable, because we do not want constraints
encoding the same statement to be mutated using different mutations. To avoid this, if
a statement s is encoded using the constraints ¢, ...,¢; € S (where ¢t > 1), we remove
c1,...,c; from S, and add instead one complex constraint, /\5:1 ¢;. Note that this has no
effect on the satisfiability of S (which is determined by the conjunction of all constraints
in S anyway).

As a final step, the modified set S is partitioned into two sets: Sy, containing all
constraints encoding statements subject to repair (i.e statements containing original
program expressions), and Shq-q, containing the rest (constraints encoding negated
assertions, assumptions and ®-assignments). Note that since we made sure all original
program expressions are right-hand-sides of assignments using simplification, we can be
sure all constraints in Sof are of the form (x = e) (where z is an SSA variable and e
is an expression), or of the form (c; A ca, ..., Acy,) where each ¢; is of the form (z = e).
Furthermore, we can be sure all program statements which are subject to repair are
encoded using a single constraint and vice versa, and thus the size of Sy,r; will always

be the same as the number of original program expressions (regardless of the bound b).

3.3.2 The Mutation Unit

We assume the program is incorrect because it contains one or more faulty expressions,
and we try to repair it by applying mutations to program expressions. A mutation
can be any function mapping a program expression to another program expression of
the same type. Examples of mutations include replacing an operator by a similar one
(e.g., < by <) and applying constant manipulations (e.g., replacing a constant by 0).
The mutation unit is the component in charge of applying the mutations. In fact, as
described in Fig. 3.1, the mutations are not applied directly on the program, but on

constraints encoding the program, received from the translation unit.

3 Assertions are negated because we want a satisfying assignment to the set of constraints to represent
a violation of the assertion. If multiple assertions exist in the code, the disjunction of their negations is
added as a constraint.

22



= O oD

int sum(int n) {
assume (n>=1) ;
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2. int sum = 0;
) ) ) 3. int i = 0;
int sum(int n? { q. boel g = i<n;
assume (n>=1) ; 5. while (g){
int sum = 0; é. sum = sum+i;
for (i=0;i<n;i++)/{ 7 i = 1i+1;
sum += 1i; 5. g = i<n;
} G. }
assert (sum=n* (n+1)/2); 10. assert (sum=n* (n+1)/2) ;
return sum; 11. return sum;
} }
(a) Original program (b) Program after simplification
int sum(int n){ int sum(int n 1)
assume (n>=1) ; 1. assume (n_1>=1);
int sum = O: 2. int sum 1 = 0;
int i = 0 B 3. int i 1 = 0;
o 4. bool g 1 = i 1l«<n 1;
beel g = i<n; - T
. . 5. if (g 1)
if (g){ 6. sum 2 = sum 1+i 1;
sum = sum+l; 7 i2=1 1+1;
i = i+1; 3 g2 =1i 2<n 1;
g = i<n; g. if (g 2){
. if (g){ 10 sum 3 = sum 2+i 2;
0. sum = sum+i; 11. i_3 = i_2_;;
1. i = i+1; 12. g 3 =1 3<n 1;
5 g = i<n; 13. assume (!g_ 3)
-5 1 —4' }
3. assume (!q) -
%' I 16. sum 4 = g 2 ? sum 3 sum_2;
f- } L 17 sum 5 = g 1 ? sumd sum 1;
o. assert (sum=n* (n+1)/2); 15, assert(sum 5=n 1*(n 1+1)/2);
7 return sum; 19. return sum 5;

} !

(¢c) Program after unwinding for b = 2 (d) Program after conversion to SSA

Figure 3.2: Example of program transformations during translation
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As explained in Section 3.3.1, the constraints in the input set, S, s, can be single
assignment constraints or multiple assignments constraints. Formally, given a mutation
M, and a single assignment constraint (z = e), M(x = e) is the constraint (z = M(e)).
For a multiple assignment constraint ¢ = (¢1 A ca A ... A ¢i), M(c) is the constraint
(M(c1) AN M(ea) A.oo N M(ct)).

The mutation unit maintains a fixed list of possible mutations, My, M, ..., M,,.
For each ¢; € Ssf (1 < ¢ < n) all the mutations are applied and the set S; =
{ci, M1(¢;), ..., My (ci)} is created.* Note that the set S; contains the original constraint
¢;, so leaving a statement intact is always an option. Finally, the sets Sy, ...,.5, are

passed on to the repair unit, which uses them to search for a repair.

3.3.3 The Repair Unit

Basic Terms and Definitions The input to the repair unit is a set of "hard con-
straints”, Shqrq, encoding the parts of the program which can not be changed, and n
disjoint sets of ”soft constraints”, Sy, ..., .Sy, corresponding to n program locations where
a possible fault may occur. Every set S; contains one special constraint, ¢!, encoding
the original statement in line ¢, referred to as the original constraint. The rest of the
constraints in .S; encode possible replacements for line i, obtained by applying mutations
to the expression in the original statement.

Intuitively, the goal of the repair unit is to construct a repaired program by choosing
one constraint from each S;. Formally, we define a selection vector (sv) [ci1,...,cp] as a
vector of constraints where ¢; is taken from S; for all 1 <7 < n. Recall that constraints
in S; encode different statements for line 4, therefore choosing a specific constraint
from each S; can be seen as choosing a statement to appear in each line, i.e choosing a
mutated program. Thus, each selection vector encodes a program. We are interested
in selection vectors encoding repaired or correct programs. This leads to the following

definitions.

Definition 3.3.1 (Rsv,Csv). A selection vector is repaired, denoted Rsv, if it encodes
a repaired program. A selection vector is correct, denoted Csv, if it encodes a correct

program.

Though (bounded) correctness is essential for repair, it is not enough. We would also like
for the repair to be "minimal”, in the sense that no changes are made unless necessary.
For example, if a program can be repaired by applying a certain mutation to line number
2, we are not interested in a repair suggesting to additionally mutate line number 3,
even if it makes the program repaired. To capture this intuition we define a partial

order between constraints and between selection vectors.

4This is a simplification made for ease of presentation. In practice, we might not be able to (or not
want to) apply all mutations to all constraints. The choice of mutations to use may depend on the
expression’s type and/or its complexity.
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Definition 3.3.2 (C partial order between constraints). Let c},c? € S;. ¢} C ¢? if
1

et =c and ¢ # ¢ (i.e., only ¢ encodes a change to line i), or if ¢! = ¢? (i.e., both

encode the same statement for line i).

1

Definition 3.3.3 (C partial order between svs). Let vy = [c},...,cL],va = [¢3,...;c

be selection vectors. v1 Cvg ifforall 1 <i¢<n c} C cg.

Definition 3.3.4 (mRsv,mCsv). A repaired selection vector v is minimal repaired,

denoted mRsv, if there is no v’ s.t. v # v, v’ is a repaired selection vector and v’ C v.

A correct selection vector v is minimal correct, denoted mCsv, if there is no v’ s.t.

v # v, v’ is a correct selection vector and v' C v.

Finally, it makes sense to prefer repairs involving as few statements as possible, because
those are more likely to satisfy the user. For example, if the program can be repaired by
mutating line 1 and also by mutating lines 2 and 3, the first repair is preferable. This

intuition is formalized using the following definition:

Definition 3.3.5 (size). Let v be a selection vector. The size of v, denoted size(v), is
il <i < n,ofi] # i}

In other words, size(v) is the number of mutated lines in the program encoded by
v. Thus, the repair unit should only look for minimal repaired selection vectors, and
amongst them prefer those with smaller size. In what follows, we present an algorithm
that computes all minimal repaired selection vectors (mRsvs), and produces results in

increasing size over time.

3.4 Algorithm AllRepair for the Repair Unit

3.4.1 Outline of the Algorithm

Figure 3.3 presents the general outline of our algorithm. Overall, the algorithm goes
over the search space of all svs, in increasing size order. This order is enforced using
the variable k, which limits the allowed size of the searched svs (k is initially 1 and
grows over time)®. Once the search reaches an sv v, we say v has been ezplored (until

then, v is unezplored). The algorithm is divided into two repeating phases:

5k is not to be confused with the unwinding bound b, which is fixed at this point.
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Figure 3.3: Outline of Algorithm AllRepair

Phase 1 is responsible for finding the next unexplored sv. First, it looks for an
unexplored sv of size k. If one exists, it is passed on to Phase 2. Otherwise, it checks if
there exist any unexplored svs left at all. If not, the search is over and the procedure
ends. Otherwise, k is repeatedly increased by one until an unexplored sv v of size k
is found (v must be found for some k since we know an unexplored sv exists). Once
found, v is passed on to Phase 2.

Phase 2 gets as input an unexplored sv v. First, it checks if v is repaired, that is, if
v is b-correct. If it is, v is returned as a possible repair. In addition, if v is repaired,
Phase 2 marks not only v as explored, but also every sv v’ s.t. v C v'. This is done in
order to make sure that we will not waste time exploring v’ in the future, since it is

necessarily not minimal. If v is not repaired, then only v is marked as explored.

3.4.2 Algorithm AllRepair in Detail

The pseudo-code of algorithm AllRepair is presented in Figure 3.4. This algorithm
follows the general outline presented before, where an incremental SAT-solver with
cardinality constraints is used for the implementation of Phase 1, and an incremental
SMT-solver is used for the implementation of Phase 2. Note that, we are interested in
the satisfying assignments returned by the SAT solver and in the unsatisfiable instances
returned by the SMT solver. The former represent svs of desired sizes while the latter
represent repaired programs.

The description below is strongly based on the background given in Section 3.2.1.
The first step is to instrument all constraints in S, ..., S, with guard variables. This
is done using a function call in line 2, and the results are the sets of instrumented
constraints, S7,...,S], (where S! = {z; — ¢; | for every ¢; € S;}) and the sets of fresh
guard variables used to guard the constraints in each set, Vi,...,V, (where V; contains
the variables x; used to guard constraints in S;). This instrumentation serves us in
building both the SMT formula 7 and the boolean formula ¢ (passed to the SAT-solver).
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1: function AllRepair(Input: Spqrg, S1, ..., Sn, Output: All mRsvs)

2: 51,50, V1, ..., Vo <= AddSelVars(Sy, ..., Sn)

3: T < true > initialization of SMT formula
4: for c € Sparq US; U...US,, do

5: T TAC

6: P + true > initialization of boolean formula
7 for 1 <i<ndo

8: » + pAAtMost(V;,1) > choose at most one statement per line
9: P t,p/\(vvevi v) > choose at least one statement per line
10: Vo, < GetSelVarsOfOriginal(V1, ..., Vi)

11: k+1

12: while true do

13: Pk < @ N\ AtLeast(V,,n — k)

14: satRes,V + SAT(py)

15: if satRes is unsat then

16: if ~SAT(p) then > No more svs to explore
17: return

18: repeat

19: k< k+1

20: o — @ N AtLeast(Vo,n — k)

21: satRes,V < SAT (o)

22: until satRes is sat
23: smtRes < IncrementalSMT (7, V) > at this point V has been assigned
24: if smtRes is SAT then
25: ¢Block < BlockUnrepairedsv (V)
26: else
27: output Getsv(V,S5!,...,S},)
28: ¢Block < BlockRepairedsv(V)
29: ©  © A PBlock > ¢ includes new blocking; k is not changed

Figure 3.4: Algorithm AllRepair for finding all mRsvs

Next, in lines 3-6, 7 is initialized to the conjunction of all constraints in Spg-q and
all the instrumented constraints. Notice that this will enable us to determine which of
the soft constraints will be considered in each call to the SMT solver, by using their
guard variables as assumptions (while hard constraints will be considered in all calls,
regardless of the assumptions).

The boolean formula ¢ is initialized in lines 7-11. The boolean variables composing
this formula are the guard variables Vi, ..., V,,, and therefore every satisfying assignment
of it can be seen as a subset of guard variables (those assigned true by the assignment).
We would like every satisfying assignment to be not just any subset of guard variables,
but one consistent with the definition of an sv, i.e., a subset that contains exactly one
selector variable from each V;. Lines 9-10 add to ¢ the necessary constraints to enforce
this. From now on, we will say that satisfying assignments returned by the SAT-solver
represent Svs.

Next, we would like to be able to add an upper bound on the size of represented
svs. For this purpose, we define an additional formula, ¢. In order to construct ¢y,
we first need to identify which guard variables guard the original constraints. This is
done in the function call in line 12, and the result is stored in V.

Lines 13-26 essentially implement Phase 1 of the outline in Figure 3.3. k£ is initialized
to 1 (line 13) and the iterative repetition of the two phases begins. First, ¢y is set
to the conjunction of ¢ and the clause AtLeast(V,,n — k) (line 15). That is, in ¢
we additionally require that at least n — k variables from V, get the value true. This

essentially means that every satisfying assignment to (j now represents an sv of size at
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most k.

Next, we check whether there exists an unexplored sv of size at most k by sending
@i, to the SAT solver (line 16). The satisfiability result (sat/unsat) is saved into satRes,
and if the result is sat, V' gets the set of all variables assigned true by the satisfying
assignment. If the result is unsat, we check whether there exists an unexplored sv
(without limitation on size) by sending ¢ to the SAT solver (line 18). If the result is
unsat, the algorithm ends (line 19). Otherwise, we repeatedly increase k by one and
resend ¢y, to the SAT solver, until the result is sat (lines 21-25).

Phase 2 begins in line 27, by calling the function IncrementalSMT(7, V'), which
checks the satisfiability of 7 with all variables in V' passed as assumptions. This is in
fact equivalent to checking the satisfiabillity of the conjunction of all constraints in
Shara and all soft constraints guarded by variables in V' (since all other constraints can
be easily satisfied by setting their guard variables to false). Note that this formula is
unsat iff the sv represented by V' (i.e., the constraints guarded by variables in V') is an
Rsv. Therefore, if the result is sat, we create a blocking clause ppjock for the case in
which V' represents an sv that is not repaired (line 29). The blocking clause in this case
is simply \/, ey —v (i.e only V' is blocked). If the result is unsat, we translate V' into
the represented sv and return it as a possible repair (line 31). The blocking clause we
add in this case (line 32) is \V/,cy\y, ~v, which requires that the same set of mutations
will never appear as a subset of any future set of mutations. This way we block not
only V but also every V' for which v C v’ (where v,v" are the svs represented by V, V',

respectively).

3.5 Soundness and Completeness of Algorithm AllRepair

In this section we analyze our algorithm. We show that it is sound, that is, every
returned sv is minimal repaired, and that it is complete in the sense that every minimal

repaired sv is eventually returned.

Clearly, the algorithm returns all mRsvs, because we go over all svs and only mark
an sv as explored if it is returned (as repaired), if it is not repaired, or if it is not
minimal. Also, all svs returned by the algorithm are mRsvs, because every returned
sv is repaired (it is explicitly checked), and is minimal repaired because otherwise it
would have been marked as explored by another sv in a previous iteration. Thus, the

following theorem holds:

Theorem 3.1 (Correctness of AllRepair). Our algorithm is sound and complete. Thaf]
1s, every sv v returned by our algorithm is an mRsv and every mRsv v is returned by

our algorithm at some point.
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3.5.1 Extension to Full Correctness

We now analyze the soundness and completeness of our algorithm with respect to full
(unbounded) correctness. We show that there is a bound B for which the notion of
B-correctness is equivalent to the notion of correctness.

We first notice that since the set of mutations we consider is finite, so is the set of
mutated programs PG. For each P € PG, if it is not correct then it has a b-run for some
b, along which some assertion is violated. Let bp be the smallest bound for which such
a run exists for P. Then, by definition, P is not b-correct for any b greater than b,. Let
maz-bound B be defined as follows. B =1+ maxz{bp | P € PG and P is not correct}.
Clearly, for every program P in PG, P is B-correct iff P is correct. The following
theorem describes this observation by means of the selection vectors encoding programs
in PG.

Theorem 3.2 (Equivalence of B-correctness and Full correctness). Let B be the mazx-
bound defined above. Then v is an Rsv for bound B iff v is a Csv. Further, v is an

mRsv for bound B iff v is an mCsv.

Proof. The first part of the theorem is a direct consequence of the definition of B. The
second part of the theorem is a direct consequence of the first part. This is because, by
definition, v is an mRsv for bound B iff v is an Rsv for B and every v’ s.t. v/ C v and
v’ # v is not an Rsv for B. By the first part, this happens iff v is a Csv and every v’

s.t. v C v and v/ # v is not a Csv, which means v is an mCsv.

Theorem 3.2 implies that for a large enough bound, all returned programs are correct

and all minimal correct programs are returned.

3.6 Experimental Results

We implemented a prototype of our algorithm on top of two existing tools. The
translation unit and the mutation unit were implemented in C4++, by modifying version
5.2 of the CBMC model checking tool [CKL04]. The repair unit was implemented in
Python, by modifying version 1.1 of the MARCO tool [LPMMS16]. MARCO uses Z3
[DMBO8] as an SMT solver and Minicard [LM12] as a SAT solver.

Our current implementation works on C programs and uses a basic set of mutations,
which is a subset of the set used in [RHJT12]. We define two mutation levels: level 2
contains all possible mutations and level 1 contains only a subset of them. Thus level 1
involves easier computation but may fail more often in finding a repaired program.

Table 3.1 shows the list of mutations used in every mutation level. For example,
for the sub-category of arithmetic operator replacement, in mutation level 1, the table
specifies two sets: {+,-} and {*,/,%}. This means that a + can be replaced with a -,
and vice versa, and that the operators *,/,% can be replaced with each other. Constant

manipulation mutations apply to a numeric constant and include increasing its value by
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Level 1 Level 2
Arithmetic {+,-},{*,/, %} {+,-%/, %}
replzggl.nent Relational | {>,>=}{<,<=} {>7>::’7<!7:<} b
Logical UL&&}
Bit-wise {>>, <<}{&,7}
Constant C—C+1,C—C-1,
manipulation C—-C,C—0

Table 3.1: Partition of mutations to levels

1 (C—C+1), decreasing it by 1 (C—C-1), setting it to 0 (C—0) and changing its sign
(C—-C).

We have evaluated our algorithm on the TCAS benchmarks from the Siemens
suite [DERO05]. The TCAS program implements a traffic collision avoidance system for
aircrafts. It has about 180 lines of code and it comes in 41 faulty versions, together
with a reference implementation (a test suite is also included but we do not use it).

We compared our results to those obtained by Kénighofer and Bloem [KB11, KB13].
The results are summarized in table 3.2. Each row refers to a different faulty version of
TCAS (we only include versions for which at least one method was able to produce a
repair). The specification used (in both our work and their’s) is an assertion requiring
equivalence with the correct version®. For each method there are two columns: "Fixed?”,
which contains a + if the method was able to find a repair for that version, and "Time”,
which specifies the time (in seconds) it took to find a repair (if found). The bottom line
specifies for each method the number of repaired versions along with their percentage
from the total 41 faulty TCAS versions, and the average time it took to find a repair.

From table 3.2 it is clear that there is a trade-off between repairability and runtime
when deciding which mutations to use. When using mutation level 1, our method repairs
less faulty versions than [KB11, KB13] (11 vs. 15,16), but is significantly faster (2.3s
vs. 38s on average). When using mutation level 2, the number of faulty versions we
fix increases to 18, which is better than [KB11, KB13], but the average time to repair
increases to 48s.

For all versions that we can not repair (including those that do not appear in the
table), we are able to say that they can not be fixed using the given set of mutations.
Using mutation level 1 it takes approximately 2 seconds on average to reach the conclusion
that the program can not be fixed using mutation sets of size 1, and approximately
7 seconds to reach that conclusion for sets of size 2 (we did not collect information
about larger sizes though it is possible). Using mutation level 2 these times increase
significantly to 1.5 and 24 minutes, respectively.

Note that the runtime of mutation level 1 for version number 10 is exceptionally
large. This is because this version requires applying two mutations in two different

locations in order to be repaired. Since we inspect programs with increasing size of

5This is implemented by inlining the code of the correct version, saving the results of both versions
to variables resl and res2, and asserting that resl=res2. The code of the correct version is marked so
that it will not be mutated (constraints encoding it are hard constraints).
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Our method
Method of [KB11] Method of [KB13] Mutation level 1 Mutation level 2
Ver. Fixed? Timels] Fixed? Time|s] Fixed? Timels] Fixed? Timels]
1 + 65 + 1.392 + 8.879
2 + 26 + 12
3 + 1.725 + 68.651
6 + 55 + 79 + 2.056 + 33.762
7 + 11 + 6
8 + 17 + 38
9 + 41 + 28 + 1.203 + 17.286
10 + 6.429 + 90.666
12 + 2.157 + 77.852
16 + 9 + 6 + 84.711
17 + 12 + 6 + 55.538
18 + 14 + 40
19 + 18 + 37
20 + 85 + 26 + 1.709 + 15.883
25 + 82 + 100 + 2.68 + 16.234
28 + 34 + 35 + 93.678
31 + 1.246 + 4.661
32 + 1.902 + 85.349
35 + 41 + 46 + 92.866
36 + 8 + 6 + 94.599
39 + 82 + 101 + 2.558 + 16.393
40 + 4.829
41 + 4.875
16 (39%) 38 15 (36.6%) 38 11 (26.83%)  2.278 | 18 (43.9%) 48.151

Table 3.2: Performance results on TCAS versions

mutation sets, we have to first apply all mutation sets of size 1 before inspecting any
mutation sets of size 2. Though our method takes longer to produce this multi-line
repair, it succeeds while [KB11, KB13] fail.

Since the TCAS program does not contain any loops or recursive calls, all returned
programs are guaranteed to be (fully) correct, and the unwinding bound is insignificant.
Therefore, we also evaluated our algorithm on a set of programs with loops. This
set contains implementations of commonly known algorithms (e.g., bubble-sort and
max-sort) in which we inserted bugs to create different versions (a total of 10 faulty
versions). All bugs can be fixed using mutation level 1, but some require multi-line
repair (up to 3 mutations at a time). In all the above experiments a correct repair was
found for a bound as small as 3. Furthermore, for a bound of 3, all returned programs
were found to be correct (and not only bounded correct) by a manual inspection. These
results suggest that though our algorithm only guarantees bounded correctness, in many
cases the returned programs are correct, even when using a small bound and even in

the presence of several bugs.

3.7 Conclusion and Future Work

This work presents a novel approach to program repair. Given an erroneous program, a
set of assertions and a predefined set of mutations, our algorithm returns al/l minimal
repairs to the program, in increasing number of changes.

Since the number of optional repairs might be huge, it is necessary to prune the
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search space whenever possible. Our technique does it by blocking all repairs that are
not minimal: Whenever a successful repair is found, all repairs that use a superset of
its mutations are blocked. Thus, a significant pruning of the search space is obtained.

Another promising direction is to block sets of mutations that are guaranteed not to

succeed in repairing, based on previously seen unsuccessful once.
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Chapter 4

Incremental Verification Using
Trace Abstraction

Abstract

Despite the increasing effectiveness of model checking tools, automatically re-
verifying a program whenever a new revision of it is created is often not feasible
using existing tools. Incremental verification aims at facilitating this re-verification,
by reusing partial results. In this paper, we propose a novel approach for incremental
verification that is based on trace abstraction. Trace abstraction is an automata-
based verification technique in which the program is proved correct using a sequence
of automata. We present two algorithms that reuse this sequence across different
revisions, one eagerly and one lazily. We demonstrate their effectiveness in an
extensive experimental evaluation on a previously established benchmark set for
incremental verification based on different revisions of device drivers from the Linux
kernel. Our algorithm is able to achieve significant speedups on this set, compared

to stand-alone verification.

4.1 Introduction

Manual detection of bugs in software is extremely time consuming and requires expertise
and close acquaintance with the code. Yet, for some applications, delivering a bug-free
product is crucial. Using automated program verification tools is a useful means to
ease the burden. Despite the increasing effectiveness of such tools, advancements in
technology of the past decade have given rise to new challenges. Modern software
consists of thousands of lines of code and is developed by dozens of developers at a time.
As a result, the software update rate is extremely high and dozens or even hundreds of
successive program versions (also called revisions) are created every day. Automatically
re-verifying the entire program whenever a new revision is created is often not feasible
using existing tools.

Incremental verification is a methodology designed to make re-verification realistic.

When a program revision undergoes incremental verification, changes made from the
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previous revision are taken into account in an attempt to limit the analysis to only the
parts of the program that need to be reanalyzed. Partial verification results obtained
from previous revisions can help accomplish this task and can also be used to make
analysis more effective.

The development of incremental verification techniques is a long-standing research
topic, e.g., [Mes92, BMD00, LBBO01, CPMBO07, SFS12, JCK13, HMW16]|. The main
challenge these techniques face is deciding which information to pass on from the
verification of one revision to another, and to find effective ways to reuse this information.
The proposed solutions vary, based on the underlying non-incremental verification
technique used. For example, the technique of [HMW16] is based on assume-guarantee
reasoning, and thus suggests reusing contextual assumptions, whereas the technique
of [SFS12] is based on bounded model checking using function summaries, and thus
suggests reusing these summaries.

In this paper, we propose a new technique for incremental verification, which is based
on the verification method of [HHP09, HHP13]. At the basis of this verification method
is the idea of looking at the basic statements of the program, i.e., its assignments and
conditions, as letters of a finite alphabet. Following this point of view, the paths of
the program can be seen as words over this alphabet; the program itself can be seen as
a finite automaton whose states are the program locations, and whose language is a
set of paths. The way the method works is by constructing an abstraction of the set
of feasible program paths, called a trace abstraction, which is a sequence of automata
over the alphabet of statements. Our suggestion is to use this trace abstraction for
incremental verification. We believe that some of its properties, which we will present
in later sections, make it an ideal candidate for reuse.

The paper is organized as follows: In Section 4.2 we will provide notations and formal
definitions. Then, in Section 4.3, we will briefly review the work of [HHP09, HHP13]
on which our incremental approach is based. Next, in Section 4.4, we will present our
approach, and in Section 4.5 we will discuss our implementation details, and present
extensive experimental results. Finally, in Section 4.6 we will survey related work, and

in Section 4.7 we will conclude.

4.2 Preliminaries

In this section we will present the formal setting of our work. Basic concepts from the
world of verification, such as a program and program correctness, will be defined in

terms of formal languages and automata.

Traces. Throughout the paper, we assume the existence of a fixed set of statements,
ST. The reader should think of this set as the set of all possible statements one can
compose in a given programming language. An alphabet is a finite non-empty subset of

ST. A trace over the alphabet ¥, denoted 7, is an arbitrary word over ¥ (i.e., m € ¥*).
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ly: assume p != 0;

f1: while(n >= 0) { H@pbomo
62:

assert p != 0;

if(n == 0) { ¥

{3: p := 0; p==0
n-—- n

n !=0
Ly n-——; p =0
) (o)

Figure 4.1: Pseudo-code of a program Pex and its control-flow automaton Ap,_,

Programs. It is common to represent a program using its control flow graph (CFG).
The set of vertices of the CFG is the set of program locations L, which contains a
distinguished initial location, [;, and a subset of distinguished error locations, L.. Edges
of the CFG are labeled with statements of the program. An edge (I}, s,[;) appears
in the graph iff when the control of the program reaches location [;, it is possible to
continue to location [ upon execution of the statement s. A trace is an error trace of
the program if it labels a path from [; to some error location I, € L. in this graph.

In our setting, we prefer to view the program as an automaton over the alphabet
of statements, instead of a graph. Formally, we define a program P as an automaton

(Q,X%,qo,9, F), called a control-flow automaton, where:
1. @, the (finite) set of automaton states, is the set of all program locations L.

2. X, the alphabet of the automaton, is the set of all statements that appear in
the program. Note that this set is indeed an alphabet according to our previous
definition (i.e., ¥ C ST).

3. qo, the initial state of the automaton, is the initial location ;.

4. ¢, the transition relation, is a subset of L x ¥ X L containing exactly those triples
that are edges of the CFG.

5. F', the set of final states, is the set of error locations, Le.

By construction, the language of this automaton, £(P), is the set of error traces of the

program.

Ezample 4.2.1. Figure 4.1 presents the pseudo-code of a program Peyq, along with its
control-flow automaton, Ap_,. The correctness of this program is specified via the
assert statement at location fo: every time this location is reached, the value of the
variable p must not equal 0. Thus, modeling of the assert statement is done using an
edge labeled with the negation of the assertion (here, p == 0 ) to a fresh error location,
L.. The initial state of the automaton is the entering point of the program, £y, and the

only accepting state is /.
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Correctness. We assume a fixed set of predicates ®, which comes with a binary
entailment relation. If the pair (1, ¢2) belongs to the entailment relation, we say that
1 entails po and we write @1 = p2. We also assume a fixed set HT of triples of the
form (1, s, p2), where @1, 2 € ® and s € ST. A triple (¢1, s, p2) is said to be a valid
Hoare triple if it belongs to HT. In this case, we write {¢1}s{p2}. The set of valid
Hoare triples with s € 3 is denoted HT%,. Given a set S C HT, we denote by ®g the set
of predicates that appear in S (i.e., all predicates that are the first or the last element
of some triple in 5).

Next, we extend the notion of validity from statements to traces. Given a trace
T =81+ Sp, where n > 1, the triple (1,7, pny1) is valid (and we write {1 }m{@ni1}),
iff there exists a sequence of predicates @ - - @y, s.t. {pi}si{pit1} forall 1 <i < n. For
an empty trace 7 (a trace of length 0), the triple (¢, 7, ') is valid iff ¢ entails ¢'.

In order to define correctness, we also assume the existence of a pair of specific
predicates from @, true and false. A trace w is infeasible if {true}n{false}. The set of
all infeasible traces over the alphabet ¥ is denoted INFEASIBLEy.. Finally, a program P is
said to be correct if all error traces of it are infeasible. That is, if £(P) C INFEASIBLEy,,

where 3 is the alphabet of the program.

4.3 Verification Using Trace Abstraction

In this section we will review the work of [HHP09] and [HHP13], which presents an
automata-based approach for verification, upon which our incremental verification
scheme is based. Even though some of the notions had to be adapted to our setting, all

relevant theorems remain valid.

4.3.1 Floyd-Hoare Automata

We begin by introducing the notion of a Floyd-Hoare automaton, presented in [HHP13],
and describing some of its key properties. Intuitively, a Floyd-Hoare automaton is an
automaton over an alphabet ¥ whose states can be mapped to predicates from ® and
whose transitions can be mapped to valid Hoare triples. The motivation behind this
definition is that we want Floyd-Hoare automata to accept only infeasible traces, by

construction. Formally, we use the following definition:

Definition 4.3.1 (Floyd-Hoare automaton). A Floyd-Hoare automaton is a tuple
A= (Q7E7QO767F70)

where () is a finite set of states, 3 is an alphabet, gp € @ is the initial state, § C Q@ x X xQ
is the transition relation, F' C @ is the set of final states, and 6 : Q — ® is a mapping

from states to predicates s.t. the following conditions hold:

1. 6(qo) = true.
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2. For every q € F, 6(q) = false.
3. For every triple (gi,s,q;) € 9, {0(qi)}s{0(q;)}

The function @ is called the annotation of A. The image of 8 (i.e., the set of all
predicates ¢ € ® s.t. there exists a ¢ € Q for which 6(q) = ) is called the predicate set
of A and is denoted ® 4.

Theorem 4.1 ([HHP13, page 12]). Every trace accepted by a Floyd-Hoare automaton

A is infeasible. That is, for every Floyd-Hoare automaton A over X,

L(A) C INFEASIBLEy,

In what follows, we define a mapping from Floyd-Hoare automata to sets of valid
Hoare triples, and vice versa, using a pair of functions, a and 5. The function «
is a function from sets of valid Hoare triples to Floyd-Hoare automata. A set S

of valid Hoare triples over ¥ is mapped by « to the Floyd-Hoare automaton Ag =
(@s,%, 905,05, Fs,05) where:

1 QS = {Q<p|§0 € q>5} U {the, Qfalse}-
® Jos = Qtrue

L4 55 = {(qw1757Q¢2)’(901787902) € S}

Fs = {Qfalse}

Vg, € Qs 0s(qp) =

Note that this is indeed a Floyd-Hoare automaton according to definition 4.3.1, since S
contains only valid Hoare triples.

The function § is a function from Floyd-Hoare automata to sets of valid Hoare
triples. Given a Floyd-Hoare automaton A = (Q, %, qo,0, F,0), 8 maps A to the set
{(0(qi),s,0(q5)) | (gi,s,q5) € 6}. By definition 4.3.1 (specifically, by requirement number

3 of 0), this set contains only valid Hoare triples.

4.3.2 Automata-Based Verification

Next, we describe how Floyd-Hoare automata can be used to verify programs via trace
abstraction [HHP09]. Formally, a trace abstraction is a tuple of Floyd-Hoare automata
(Ay,...,A,) over the same alphabet 3. The alphabet X is referred to as the alphabet
of the trace abstraction. We say that a program P is covered by (A,,...,A,) if P and
(Aq,...,A,) are over the same alphabet and L(P) C L(A1)U...UL(A,).

Theorem 4.2 ([HHP09, page 7]). Given a program P, if there exists a trace abstraction
(Ay,...,A,) s.t. P is covered by (Ay,...,A,), then P is correct.
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Theorem 4.2 implies a way to verify a program P, namely, by constructing a trace
abstraction (Ay,...,A,) s.t. P is covered by (A,,...,A,). This is realized in [HHP09]
in an algorithm that is based on the counter-example guided abstraction refinement
(CEGAR) paradigm (Fig. 4.2). Initially, the trace abstraction is an empty sequence of
automata, and then it is iteratively refined by adding automata, until the program is
covered by the trace abstraction.

program P
1

return Floyd-Hoare automaton
o= 0 Arn41 such that 7 € L(Ap+1)

yes

LPNAIN---NA,)=07 7 is infeasible?

W
yes no

return error trace m
such that
TeELPNAIN---NAy)

W ~

‘P is correct P is incorrect

Figure 4.2: [HHP09] CEGAR-based scheme for non-incremental verification using trace
abstraction

Each iteration consists of two phases: validation and refinement. During the
validation phase, we check whether the equation L(PNA;N---NA,) = 0 holds.
The overline notation stands for computing automata complementation and the N
notation stands for computing automata intersection. Note that complementation,
intersection and emptiness checking, can all be done efficiently for finite automata.
Checking whether this equation holds is semantically equivalent to checking whether
L(P)C L(A1)U...UL(A,), so if the answer is "yes”, we can state that the program is
correct (Theorem 4.2). If the answer is "no”, then we get a witness in the form of a
trace w s.t. m € L(PN AL N---NA,), which is passed on to the refinement phase.

During the refinement phase, 7 is semantically analyzed to decide whether it is
infeasible or not. If it is not, we can state that the program is incorrect, since 7 is an
error trace of P. If it is, then the proof of its infeasibility can be used to construct a
Floyd-Hoare automaton A, that accepts = (in particular, the way this is done in
[HHP13], is by obtaining a set of valid Hoare triples from the proof and applying o on
it). This automaton is then added to the produced trace abstraction, and the process is

repeated.

Ezample 4.3.2. Recall program P,y from Figure 4.1. We claim that an assertion
violation is not possible in this program. A convincing argument for this claim can be
made by considering separately those executions that visit /3 at least once and those
who do not. For the later, p is never assigned during the execution, and the assume

statement makes sure that initially p does not equal 0, so every time the assertion
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Figure 4.3: Floyd-Hoare automata Ay, Ay, with accepting states ¢o, p3, resp. The gray
frames labeling transitions represent letters from X, where an edge labeled with G C X
means a transition reading any letter from G. The green frames labeling states represent
predicates assigned to states by the annotation 6.

is reached the condition p '= 0 must hold. For the former, since /5 is reached, the
true branch of the if statement was taken during that iteration, so n equals 0 at /4.
Therefore, after the execution of n--, n will equal -1, and thus the loop will be exited
and the assertion will not be reached.

Program Pey is successfully verified using the scheme of Figure 4.2. The trace
abstraction obtained is the tuple (A;,.42), presented in Figure 4.3. Observe that the
language of A; consists of all traces that contain the statement p 1= 0 followed by
the statement p == 0 , without an assignment to p in between. The language of As
consists of all traces that contain the statement n == followed by the statement

n-- and the statement n >= 0 , without an assignment to n between any of these
three statements. As we have just explained, all error traces of Pey fall into one of

these categories (which one depends on whether or not /3 is visited), so the inclusion

L(Ap,.,) € L(A1) U L(A3) indeed holds.

4.4 Incremental Verification Using Trace Abstraction

In the previous section we saw a CEGAR-based algorithm for verification using trace
abstraction. In this section, we show how incremental verification can be done by
reusing a trace abstraction. For the incremental setting, in addition to the program
P, the algorithm also gets as input a trace abstraction TA!, and is expected to return
the verification result coupled with a trace abstraction TA®. The alphabet of T A may
be different than that of the program P. From here on, let us denote the alphabet of
the program by € and the alphabet of the trace abstraction by 3/. While there is no
restriction on %!, the performance of the algorithm is expected to improve the more
similar it is to £© (i.e., the larger the set ¥/ N X0 is).
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Procedure TranslateAutomaton

Input: As: over !, Sgo € HTs0. Output: Aso over X°
1. Construct the set S} = S(Axr).

2. Construct the set Sy = (51 \ HTx1\y0) U Syo.

3. Return Aso = a(S2).

Figure 4.4: Translation procedure

4.4.1 Translation of Floyd-Hoare Automata

The rationale for reusing a trace abstraction is that each Floyd-Hoare automaton in it
forms a proof that the set of traces it accepts is infeasible (Theorem 4.1), and therefore
we do not need to analyze any trace in this set. The organization of the information
in the form of an automaton, gives us a convenient way to get rid of all error traces
of P that belong to this set: simply by subtracting the automaton from the program
(which is also an automaton). The problem is that the above subtraction can not be
done straight away, since the program and the trace abstraction are not necessarily over
the same alphabet.

Notice that the only alphabet that is of interest to us for the current verification
problem is X (traces that contain statements that are not from X© are definitely not
error traces of our program). Therefore, we would like to translate the given trace
abstraction from %! to £9. But, first, we must define what it means to “translate”. In
the context of Floyd-Hoare automata it is easier to define translation first in terms of

valid Hoare triples.

Definition 4.4.1 (Translation of a set of valid Hoare triples). Given a set of valid Hoare]
triples Syyr € HTYyr, a set of valid Hoare triples Sy.o € HT¥.0 is a translation of Syr to
%O, if all valid Hoare triples over £/ N £? in Sy are also in Sgo. In other words, if

SEI N HTEIHZO Q Szo

It is easy to extend the definition of translation from sets of valid Hoare triples to
Floyd-Hoare automata, using the connection between the two, defined in the previous

section (specifically, the function ().

Definition 4.4.2 (Translation of a Floyd-Hoare automaton). Given a Floyd-Hoare au-
tomaton Ayr over the alphabet %/, a Floyd-Hoare automaton Ayo over the alphabet
YO is a translation of Agr to X9, if B(As0) is a translation of f(Axr) to X°.

Given a Floyd-Hoare automaton Ay over the alphabet ¥/ and a set Syo of valid
Hoare triples over the alphabet X, one can translate Ay to Aso over the alphabet
Y9, using the procedure in Fig. 4.4.

Proposition 4.4.3. Fvery Floyd-Hoare automaton Aso that is constructed using the

procedure TranslateAutomaton, is a translation of Asr to X°.
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Proof. Since all valid Hoare triples removed from S; when creating Sy were over %7\ £0,
then S1 N HTxrqx0 C Sy. Therefore, by definition 4.4.1, Ss is a translation of S; to 0.
Now, S1 = B(As1), so we conclude that Sy is a translation of 3(Ayx:) to 9. Next, we
want to claim that 5(Ayo) = S2. This is correct because, according to the definitions
of f and «, for every set S, B(a(S)) = S, so in particular («(S2)) = S2. Thus, we
conclude that B(Ayso) is a translation of (Axr) to ©°. By definition 4.4.2, this means
that Ayo is a translation of Ay to X°. |

The TranslateAutomaton procedure enables us to translate the trace abstraction
into the alphabet of the program, but the question remains which set should we use
as Syo. This set can be any subset of HTy.0 between () and HTy,o itself. Notice that,
since Ayo = (S2) and Syo C So, the number of transitions in Aso is at least the size
of Sso. Therefore, the choice of Syo greatly influences the efficiency of the algorithm.
The larger Sy.o is, the larger translated automata will be, thus the more effort will be
required during translation and during operations involving these automata in future
steps (e.g., complementation and intersection).

On the other hand, translation is our mechanism for adapting the proof of correctness
of the old program, which is the input trace abstraction, to the new program. So, certain
addition of transitions not only is not a bad thing, but it is crucial for reuse to be
effective, as we somehow need to account for the changes made to the program. Thus,
in choosing Sy.o there is a trade-off between how much effort we are willing to spend
on building the translated automata and using them, and how useful they will be for
proving the new program correct.

In the current implementation we considered three options for Sy.o:

¢
o S;Vgpy:@

o SEem = {{p1}s{w2} | s € ZONE, 1,02 € Pa )
b S%lcl) = {{301}8{302} ’ s € ZO) P1,P2 € (I)AEI}

Note that all three sets are indeed subsets of H1xo, and all of them only use
predicates from & Agg- As a result, using TranslateAutomaton with either of these
sets as Syo yields an automaton As,o whose states were also in Ay (states are only
removed and not added). Also, in all three cases, transitions with irrelevant letters (i.e.,
in ¥\ ¥9) are removed from Ay, while transitions with relevant letters (i.e., in )
remain intact.

The difference between the three lies in which transitions are added to Asr in each
case. In the case of Sggp ty, no transitions are added at all. In this case, translated
automata are only useful to prove infeasibility of error traces that remained unchanged
from the previous version, but translation requires no effort. On the other end of the
spectrum there is S%%, in which all valid Hoare triples over £ are added as transitions

to As,o. Here, any error trace that can be proved infeasible using predicates from ® Ay

41



program P over $°

trace abstraction TA? =(Al, ... AlY) over ©1
W
translate (Af,--- AL) e Tl tomat
to (AT, .., AT ) over 2.0 return Floyd-Hoare automaton
Ay m) Apn+1 such that
e L(A
V1<i<mA; ::AZT T (An+1) yes
LPNAIN---NA) =07 7 is infeasible?
no\—/
yes return trace m o
suchithat -
TeLPNAIN---NAy)
A 4 A 4
P is correct P is incorrect
TAO:(A1,~",An) TAOI(Al,“-,An)

Figure 4.5: Eager reuse: Scheme for incremental verification using an eager approach

will be accepted by Ayo. On the other hand, translation is expensive and resulting
automata are often rather large.

SEEiee™ suggests an intermediate solution, by considering only valid Hoare triples
over YO\ ©1. The rationale is that all valid Hoare triples over ¥ N/ that are relevant
to prove infeasibility of error traces would have already been considered when Ayr was
constructed. In practice, in cases where a trace was changed by reordering statements
or by adding preexisting statements somewhere in the middle of it, Ayo might not have
the necessary transitions to prove that trace infeasible.

We have performed our experiments with all three of these options. The set that
%l(l). Thus, the experimental
results presented in section 4.5.1 are based on using S%% as Syo. The fact that S%l(l;

gave the best overall results in practice, on average, was S

outperforms S§5°““" suggests, perhaps, that changes such as reordering code and adding
preexisting code (i.e., copy-pasting), on which SEEee™ has bad results, are frequent in

software evolution.

4.4.2 Reuse Algorithms

We now present two schemes for incremental verification, that differ in the strategy they
use for subtraction of Floyd-Hoare automata from the program. In both schemes, any
subtraction P — A is replaced with P N A, which results in the same language but uses

different automata operations that more faithfully represent our implementation.

Eager Reuse. The first scheme, presented in Figure 4.5, suggests an eager approach
towards reuse of Floyd-Hoare automata. Here, subtraction of Floyd-Hoare automata is

done straight away, and entirely (all Floyd-Hoare automata in the trace abstraction are
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program P over €

trace abstraction (Af, .-, AL) over ©1
3 return Floyd-Hoare automaton
translate (A, .-+, AL) An+1 such that
to (AT, ..., AL over £¢ T € L(Ant1)
yes
7 = 0\
- N Ant1 = AIT
LPNAIN---NA,) =07 ¢ m is infeasible?
no
yes return traceir s.t. L yes 0
TeELPNAIN---NA)
J1<i<mst. we L(AT)? no
L 4 L 4
‘P is correct ‘P is incorrect
TAO:(-Alv"’,An) TAO:(-A17"'7AH)

Figure 4.6: Lazy reuse: Scheme for incremental verification using a lazy approach

subtracted). Then, the CEGAR-based algorithm continues as in the non-incremental
case. The output trace abstraction, TA®, contains all automata translated from T A’
along with all other automata obtained during the CEGAR loop.

An advantage of this scheme is that all those traces that can be proved infeasible
using the Floyd-Hoare automata are excluded to begin with, and are not analyzed
during the CEGAR loop. On the other hand, we may have done some subtractions
(or, in fact, intersections) that did not change the language at all and hence were
not useful. For example, it is possible that for some automaton A;TF translated from
TA!, L(P ﬂ/TlTﬁ o NAD) = L(P ﬁfT{ﬁ e ﬂ?_l) and so the computation of the

intersection with .,ZT;‘F was done in vain. Note that all Floyd-Hoare automata are added

to TA9, regardless of whether they were useful or not (since retrieving this information

is prohibitively expensive).

Lazy Reuse. The second scheme, presented in Figure 4.6, suggests a lazy approach
towards reuse of Floyd-Hoare automata. A Floyd-Hoare automaton is only subtracted
once we know that it is useful, i.e., that its subtraction will remove at least one trace
from the set of traces we have not yet proven infeasible.

In this scheme, the initial trace abstraction is the empty sequence, as in the non-
incremental case. Then the CEGAR loop begins, but with an additional phase, which we
call the reuse phase, inserted between the validation and refinement phases (which them-
selves are not changed). If the validation phase finds a trace 7 in L(P N A1 N---NA,),
then the reuse phase first checks whether this trace is accepted by some automaton
AlT translated from TA’. If it is, then .AZT is added to the trace abstraction and we

return to the validation phase again. If it is not, then we pass 7 to the refinement phase
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ly:  if(p == 0) {
51: n := -2;
}

lo: while(n >= 0) {

£3: assert p != 0;
if(n == 0) {
2 p :=0;
¥
fs: n--;

Figure 4.7: Program Peyo, which is a modified version of program P.y;. Changes from
P,y appear in red.

and proceed as before. The output trace abstraction in this case includes only those
automata translated from T A’ that were added to it during the reuse phase, in addition

to all those created during the refinement phase.

Ezxample 4.4.4. Figure 4.7 presents the source code and the control-flow automaton
of a program Peyo. This program is an updated version of Py (Figure 4.1), where
instead of assuming that p is initially different than 0, if p equals 0, n is set to -2. The
alphabet X of the control-flow automaton Ap,_, is the set of Peyo’s statements (i.e.,
YO =2Tu{ n := -2 }, where ¥/ is the alphabet of Ap__, ).

You will notice that despite the changes made, the assertion still can not be violated.
For executions who visit ¢4 (formerly ¢3) at least once, we can make the same argument
as we did in example 4.3.2. For executions who do not visit ¢4, the argument we used
in example 4.3.2 relied on p being initially different than 0, so now it only applies to
those executions beginning in a transition from ¢y to ¢3. For executions going from ¢
to £1, we need a new argument. For them, we can say that the visit in /; guarantees
n will be equal to -2 upon reaching ¢2, and thus the loop will not be entered and the

assertion will not be reached.

Figure 4.8 presents the output trace abstraction TA? = (A9, AS, AJ) produced by
our algorithm, in both the Eager and the Lazy variants, when using the tuple (Aj,.42)
from Figure 4.3 as the input trace abstraction TA!. The first two automata, A and
A9, are the translations of automata A; and Ay to X°, resp. Translation, in this
case, amounts to adding transitions with the new letter, n := -2 , where appropriate.
Specifically, n := -2 was added to the 3 self-loops in A;, and to the self loops from
po and p3 in As. The third automaton, Ago, is a new Floyd-Hoare automaton, obtained

during the refinement phase.
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Figure 4.8: Trace abstraction (A{,AS,A9), which is the output of our algorithm for
P.x2, when using the tuple (Aj, Ag) from Figure 4.3 as T Al

4.5 Evaluation

We have implemented our incremental verification algorithms on top of the ULTIMATE
AUTOMIZER software verification tool, which is part of the ULTIMATE program analysis
framework '. The source code is available on Github 2. We currently support incremental
verification of C and Boogie programs with respect to safety properties (e.g., validity of

assertions or memory-access safety).

On-the-fly Computation For simplicity of presentation, schemes of our algorithms
in figures 4.5 and 4.6 show a stand-alone translation phase that precedes the CEGAR
loop. According to these schemes, each automaton A]I in the input trace abstraction is
first translated into an automaton .A]T over Y9, In practice, computing .A;F entirely can
be quite expensive, depending on Sy.0, as previously discussed. Also, the computation of
certain transitions may turn out to be redundant, as we may not need these transitions at
any point during the CEGAR loop. Therefore, our implementation translates automata
on-the-fly, adding transitions only as soon as the need for them emerges. On-the-
fly translation may happen during the reuse phase in the Lazy reuse algorithm, and
during the validation phase in both algorithms. Additionally, creation of Floyd-Hoare
automaton A,11 in case a trace is found infeasible during the refinement phase is
already done on-the-fly in the preexisting implementation of Ultimate Automizer. That
is, transitions are added to A,,4+1 only if they are needed during the following validation

phase.

"ttps://ultimate.informatik.uni-freiburg.de
’https://github.com/ultimate-pa
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4.5.1 Experimental Results

We have performed an extensive experimental evaluation of our approach on a set of
benchmarks previously established in [BLNT13], available on-line®. This benchmark set
is based on industrial source code from the Linux kernel, and contains 4,193 verification
tasks from 1,119 revisions of 62 device drivers. A verification task is a combination of
driver name, revision number, and specification, where the specification is one of six
different rules for correct Linux kernel core API usage (more details can be found in
[BLNT13]). We excluded those tasks where ULTIMATE AUTOMIZER was unable to parse
the input program successfully, and were left with a total of 2,660 verification tasks.

Our experiments were made on a machine with a 4GHz CPU (Intel Core i7-6700K).
We used ULTIMATE AUTOMIZER version 0.1.23-bb20188 with the default configuration,
which was also used in SV-COMP’18 4, [HYFD*18]. In this configuration ULTIMATE
AUTOMIZER first uses SMTINTERPOL® with Craig interpolation for the analysis of
error traces during the refinement phase, and if this fails, falls back on Z3 ¢ with trace
interpolation [DHM*17]. Validity of Hoare triples is also checked with Z3. A timeout
of 90s was set to all verification tasks and the Java heap size was limited to 6GB.

For each verification task we verified the revision against the specification three
times: first, without any reuse, and then with reuse, using both the Eager and the Lazy
algorithms. The output trace abstraction of each revision was used as the input trace
abstraction of the next revision. The results of these experiments are summarized in
Table 4.1.

These results clearly show that our method, both when used with the Eager algorithm
and with the Lazy one, manages to save the user a considerable amount of time, for the
vast majority of these benchmarks. The difference in performance between the Eager
and Lazy algorithms on these benchmarks was quite negligible; both obtain a nontrivial
speedup of around x4.7 in analysis time, and x 3.6 in overall time, on average. When
comparing mean analysis speedups of our approach and that of [BLNT13], we get a
speedup that is x1.5 larger. But, what is additionally interesting to note, is that we do
not succeed on the same benchmarks as [BLN113] does; the best 15 series in our work
and theirs are completely disjoint. This suggests that the two methods are orthogonal.

Slowdowns are demonstrated for our worst 7 results. On the other hand, our top 7
results all demonstrate speedups of more than an order of magnitude, with an impressive
max value of x79.80. For each pair of successive revisions, we have computed their
edit-distance by summing up the number of added, modified and deleted lines, and
dividing by the total number of lines in the file. To compute the edit-distance of a
series, we have computed the mean edit-distance of all revisions in it. We expected to

see a correlation between the edit-distance of a series and the speedup obtained for

*https://www.sosy-lab.org/research/cpa-reuse/regression-benchmarks
‘https://sv-comp.sosy-lab.org/2018/
"https://ultimate.informatik.uni-freiburg.de/smtinterpol, version 2.1-441-gf99e49f
Shttps://github.com/Z3Prover/z3, version master 450f3c9b
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Default Eager Lazy

Speedup  Speedup  [BLN*+13]]

Driver Spec  Tasks  Overall Overall  Analysis Overall  Analysis Overall  Analysis  Speedup
dvb-usb-rtl28xxu 08_.la 10 20.509 0.352 0.187 0.416 0.257 49.30 79.80 3.6
dvb-usb-rtl128xxu  39_7a 10 110.893 4.081 1.992 4.059 2.546 27.32 43.55 6.3
dvb-usb-rtl128xxu  32_7a 10 35.551 1.306 0.725 1.550 0.844 22.93 42.12 4.9
dvb-usb-az6007  08_la 5 4.620 0.173 0.118 0.187 0.132 24.70 35.00 3.5
dvb-usb-az6007 39_Ta 5 17.952 1.378 0.862 1.425 0.989 12.59 18.15 4.9
cx231xx-dvb 08_1a 13 3.330 0.303 0.206 0.323 0.228 10.30 14.60 1.8
panasonic-laptop  08_la 16 3.466 0.337 0.222 0.384 0.257 9.02 13.48 2.4
Spcp8xH 43_1a 13 5.531 0.632 0.437 0.618 0.432 8.94 12.80 1.6
panasonic-laptop 321 4 0.623 0.100 0.061 0.072 0.051 8.65 12.21 3.4
panasonic-laptop  39_Ta 16 18.961 2.377 1.654 2.617 1.906 7.24 9.94 3.6
leds-bd2802 68_1 4 1.039 0.180 0.112 0.191 0.123 5.43 8.44 4.4
leds-bd2802 321 4 0.484 0.089 0.057 0.097 0.064 4.98 7.56 3.9
wm831x-dedc 3221 3 0.330 0.063 0.044 0.066 0.047 5.00 7.02 2.1
cx231xx-dvb 39.7a 13 17.536 3.389 2.425 3.464 2.517 5.06 6.96 3.2
ems_ush 08_1a 21 2.334 0.502 0.327 0.543 0.362 4.29 6.44 2.9
... (for full results cf. http://batg.cswp.cs.technion.ac.il/publications/)

ar7part 32_7a 6 0.071 0.067 0.056 0.074 0.063 0.95 1.12 1.3
metro-usb 08.la 25 0.394 0.497 0.330 0.518 0.356 0.76 1.10 2.1
rtc-max6902 32_Ta 9 0.133 0.124 0.106 0.147 0.126 0.90 1.05 1.1
i2c-algo-pca 43_la 7 0.012 0.018 0.018 0.019 0.019 1.00 1.00 1.0
dvb-usb-vp7045 43_la 2 0.001 0.002 0.002 0.027 0.027 1.00 1.00 2.6
cfagl12864b 43_1a 2 0.036 0.039 0.036 0.040 0.037 0.90 0.97 1.0
rtc-max6902 43 1a 5 0.278 0.273 0.262 0.303 0.291 0.91 0.95 1.1
magellan 32.7a 2 0.015 0.018 0.016 0.018 0.016 0.83 0.93 0.93
VSXXXaa 43_la 2 0.030 0.037 0.033 0.036 0.032 0.83 0.93 6.8
ar7part 43_la 2 0.036 0.043 0.038 0.044 0.039 0.81 0.92 1.2
Sum 1,177 529.258 142.856 107.543 146.275 112.225
Mean 13 5.881 1.587 1.195 1.625 1.247 3.618 4.716 3.17

Sum (All) 2,660 3,048.373 434.853 334.603 448.424 349.69

Mean (All) 15 16.749 2.389 1.838 2.464 1.921 6.798 8.717 4.3

Table 4.1: The results of our evaluation. Each row contains the results for a series of
revisions of a driver and one type of specification. The table only shows those series
where we could parse all files, allowing for a comparison in speedup with [BLN*13]. We
also limited the display to the best 15 and the worst 10 series in terms of speedup. The
number of tasks specifies the number of files including the first revision. The settings
“Eager” and “Lazy” are divided in overall and analysis time, where analysis time is the
overall time without the time it took writing the output trace abstraction to file. As the
“Default” setting does not write an output trace abstraction, its analysis time is the same
as its overall time. All times are given as seconds of wall time and do not include the
time for the first revision. The speedup colums compare the relative speedup between
the Default setting and the Lazy setting. The rows “Sum” and “Mean” show the sum
and mean of all the series where we were able to parse all the tasks, whereas the rows
“Sum (All)” and “Mean (All)” show the sum and the mean of all the tasks we could
parse. We adjusted the mean speedup of [BLNT13] for our subset by recomputing their
speedup relative to our shared subset, but their mean speedup in the “Mean (All)” row
refers to the original 4,193 tasks.
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it. In general, such a correlation does seems to exist; a speedup of greater than 4 is
achieved mostly for revisions where the edit distance is small. But, this correlation is
not definitive. For example, we had one series where the mean edit-distance was over 90
percent, but the speedup was over x60. Also, cases with slowdowns distribute evenly

over the mean edit-distance size.

4.6 Related Work

The validation of evolving software has been the subject of extensive research over
the years (see the book by Chockler et al. [CKMS15]). Several different problems
have been studied in this context, e.g., analyzing the semantic difference between
successive revisions [TGK17] or determining which revision is responsible for a bug
[MVP15, ABV16]. In this section, we will focus on the problem of formally verifying all
program revisions.

A dominant approach to solve this problem is to only verify the first revision, and
then prove that every pair of successive revisions is equivalent. It was suggested by
Godlin and Strichman in [SGO08], where they gave it the name regression verification and
introduced an algorithm that is based on the theory of uninterpreted functions. Papers
about regression verification are concerned with improving equivalence checking and
increasing its applicability. In [BPRT13], a summary of program behaviors impacted
by the change is computed for both programs, and then equivalence is checked on
summaries alone. Similarly, in [BOR13|, checking equivalence is done gradually by
partitioning the common input space of programs and checking equivalence separately
for each set in the partition. In [FGK*14], a reduction is made from equivalence
checking to Horn constraint solving. In [SVBV16] applicability is extended to pairs
of recursive functions that are not in lock-step, and in [CGS12] to multi-threaded
concurrent programs. The work of [BUVHW15] is focused on Programmable Logic
Controllers, which are computing devices that control production in many safety-critical
systems. Finally, [BV16] proposes a different notion of equivalence, which on top of the
usual functional equivalence also considers runtime equivalence.

Another approach towards efficiently verifying all program revisions, which is the
one we follow in this paper, is to use during each revision verification partial results
obtained from previous revisions, in order to limit necessary analysis. Work in this
field vary based on the underlying non-incremental verification technique used, which
determines what information can be reused and how efficiently so. The work we find
most closely related to ours is that of Beyer et al [BLNT13], which suggests to reuse
the abstraction precision in predicate abstraction.

Other techniques for reuse of verification results include reuse of function summaries
for bounded model checking [CGS12], contextual assumptions for assume-guarantee
reasoning [HMW16], parts of a proof or counter-example obtained through ic3 [CIM*11]

and inductive invariants [FGS14]. Also, incremental techniques for runtime verification of
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probabilistic systems modeled as Markov decision processes are developed in [FKP112].
For the special case of component-based systems, [JCK13] uses algebraic representations
to minimize the number of individual components that need to be reverified. Last, the
tool Green [VGD12] facilitates reuse of SMT solver results for general purposes, and

authors demonstrate how this could be beneficial for incremental program analysis.

4.7 Conclusion

We have presented a novel automata-based approach for incremental verification. Our
approach relies on the method of [HHP09, HHP13] which uses a trace abstraction as
a proof of correctness. Our idea is to reuse a trace abstraction by first translating it
to the alphabet of the program under inspection, and then subtracting its automata
from the control-flow automaton. We have defined a procedure, TranslateAutomaton,
for automata translation, and two algorithms for reuse of trace abstraction that differ
in their strategy for automata subtraction. We have evaluated our approach on a
set of previously established benchmarks on which we get significant speedups, thus

demonstrating the usefulness of trace abstraction reuse.
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Chapter 5

Must Fault Localization For

Program Repair

Abstract

This work is concerned with fault localization for automated program repair.

We define a novel concept of a must location set. Intuitively, such a set includes
at least one program location from every repair for a bug. Thus, it is impossible to
fix the bug without changing at least one location from this set. A fault localization
technique is considered a must algorithm if it returns a must location set for every
buggy program and every bug in the program. We show that some traditional fault
localization techniques are not must.

We observe that the notion of must fault localization depends on the chosen repair
scheme, which identifies the changes that can be applied to program statements as
part of a repair. We develop a new algorithm for fault localization and prove that
it is must with respect to commonly used schemes in automated program repair.

We incorporate the new fault localization technique into an existing mutation-
based program repair algorithm. We exploit it in order to prune the search space
when a buggy mutated program has been generated. Our experiments show that
must fault localization is able to significantly speed-up the repair process, without

losing any of the potential repairs.

5.1 Introduction

Fault localization and automated program repair have long been combined. Traditionally,
given a buggy program, fault localization suggests locations in the program that might
be the cause of the bug. Repair then attempts to change those suspicious locations in
order to eliminate the bug.

Bad fault localization may cause a miss of potential repairs, if it is too restrictive, or
cause an extra work, if it is too permissive. Studies have shown that for test-based repair
imprecise fault localizations happen very often in practice [LKB™19]. This identifies
the need for fault localization that can narrow down the space of candidates while still

promising not to lose potential causes for a bug.
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In this work, we define the concept of a must location set. Intuitively, such a set
includes at least one location from every repair for the bug. Thus, it must be used
for repair. In other words, it is impossible to fix the bug using only locations
outside this set. A fault localization technique is considered a must algorithm if it
returns a must location set for every buggy program and every bug in the program.

To demonstrate the importance of the must notion, consider the program in Figure 5.1
for computing the absolute value of a variable x. The program is buggy since the assertion
in location 4 is violated when intially x = -1. Intuitively, a good repair would replace the
condition (x < -1) in location 2 with condition x <= -1. Our must fault localization,
defined formally in the paper, will include location 2 in the must location set. In
contrast, the fault localization techniques defined for instance in [JM11, ESW12] do not
include 2 in their location sets: They are not must and may miss optional repairs.

Our first observation regarding must notions is that their definition should take into
account the repair scheme under consideration. A repair scheme identifies the changes
that can be applied to program statements as part of a repair. A scheme can allow,
for instance, certain syntactic changes in a condition (e.g. replacing < with >) or in
the right-hand-side expression of an assignment (e.g. replacing + by -). A particular
location set can be a must set using one scheme, but non-must using another. We
further discuss this observation when presenting our formal definition of a must fault
localization.

The setting of our work is as follows. Our approach is formula-based rather than
test-based. We handle simple C-programs, with specification given as assertions in the
code. Similarly to bounded model checking tools (e.g. [CKLO04]), the program and the
negated specification are translated to a set of constraints, whose conjunction forms
the program formula. This formula is satisfiable if and only if the program violates an
assertion, in which case a satisfying assignment (also called a model) is returned.

We focus on a simple repair scheme of syntactic changes, as described above. We
assume that the user prefers repairs that are as close to the original program as possible
and will want to get several repair suggestions. Thus, we return all minimal repairs
(minimal in the number of changes applied to the program code).

Once the notion of must fault localization is defined, we develop a new algorithm for
fault localization and prove that it is must with respect to syntactic mutation schemes.
The input to the algorithm is a program formula ¢ and a model u for ¢, representing
a buggy execution of the program. Our approach is based on a dynamic-slicing-like
algorithm that computes dependencies.

For a variable v in ¢, its slice F' is computed based on dynamic dependencies among
variables in ¢, whose values influence the value of v in u. Informally, F' is a must
location set that contains all assignemts to the variables that v depends upon. Some
assignment from F' thus must be changed in order to eliminate the bug associated with
73

esides the promise of being must, our fault localization technique has several addi-
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tional advantages:

1. The input to our method is exactly the output of bounded model checking tools
such as [CKL04]: A program formula and its model. There is no need to run
the program and to extract execution information. We also do not require any

additional test inputs.

2. Unlike other formula-based approaches, we do not require solving the formula
(footnote to clarify that solving was needed to obtain the model in the first place,
but other approaches would require additional solving, of the extended formula,

while ours does not). Our technique is linear in the size of the program formula.

3. Our technique is susceptible to incrementality under the mutation scheme: When
used several times in a row for several mutated programs with different error traces,
a significant amount of computational effort can be saved. Using a preliminary
computation, which is linear in the size of the program formula, we are then able
to compute each fault localization instance at a cost that is linear only in the
size of the result (where the size of the result is at most the number of executed

statements).

We incorporated the new fault localization technique into an existing mutation-based
program repair algorithm [RG16]. In [RG16], the repair scheme is based on a predefined
set of mutations. Given a buggy program P, the goal of the algorithm is to return
all minimal repairs for P. The algorithm goes through iterations of generate-validate,
where the generate part produces a mutated program of P and the validate part checks
whether it is bounded-correct. The bottleneck of the algorithm is the size of the search
space, consisting of all possible mutated programs of P. In [RG16], the search space
has been pruned when the generated mutated program has been successfully validated.
No pruning has been applied otherwise.

In this work, we exploit our novel must fault localization in order to prune the search
space when a buggy mutated program P’ has been generated (i.e. validation failed).
In this case, we compute the must location set F' of P’. We can now prune from the
search space any mutated program whose F' locations are identical to those of P’. This
is because, by the property of must location set, it is guaranteed that the bug cannot be
repaired without changing a location in F. Thus, a large set of buggy mutated programs
is pruned, without the need for additional validation and without losing any minimally
repaired program. It should be noted that the smaller F' is, the larger the pruned set is.
Our experimental results confirm the effectiveness of this pruning by showing significant
speedups.

To summarize, the contributions of this work are:

1. We define a novel notion of must fault localization with respect to a repair scheme.

We show that many of the formula-based techniques are not must.
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procedure absValue(x)
abs := x

: if x < -1 then

abs := -x

. assert (abs >= 0)

L

Figure 5.1: A buggy program

2. We present a novel fault localization technique and prove that it is must for the
scheme of syntactic mutations. Our technique also has other advantages, such as

low-complexity and incrementality.

3. We show how our new fault localization technique can be incorporated into an
existing mutation-based program repair algorithm for pruning its search space.
The technique is applied iteratively, whenever a generated mutated program is

found to be incorrect.

4. We implemented the algorithm of repair with fault localization as part of the open
source tool AllRepair. Our experimental results show that fault-localization is able
to significantly speed-up the repair process, without losing any of the potential

repairs.

5.2 Motivating Example

Figure 5.1 presents a simple program for computing the absolute value of a variable
x. The result is computed in the variable abs, and the specification states, using an
assertion on line 4, that in the end abs should always be non-negative. Unfortunately,
the program has a bug. The true branch of the if is intended to flip the sign of x
whenever x is negative, but it accidentally misses the case where x is —1. As a result, if
x is —1, the wrong branch of the if is taken, and the assertion is reached with abs = —1,
which causes a violation.

Clearly, it is desirable that line number 2 be returned when running fault localization
on this bug, as a human written repair is likely to change the condition on this line
from x < -1 to x <= -1 or x < 0. But, as we will show next, some of the existing
formula-based fault localization techniques do not include this line in their result.

The error trace representing the bug for input I = {x <— —1} is m =< 1,2,4 > (this
is the sequence of program locations visited when executing the program on I). The
MAX-SAT-based fault localization technique of [JM11] and the error-invariant-based
technique of [ESW12] use a formula called the extended trace formula in order to find
faulty statements along the error trace. The extended trace formula for the bug in
question is

(x=-1) A (abs=2xz) A (x> —1) A (abs > 0)

——— ———
Input Computation Assertion
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This formula encodes three things: a) that the input remains I, b) that the compu-
tation is as the trace dictates, and, c) that the assertion holds at the end. Therefore,
the formula is unsatisfiable. Both [JM11] and [ESW12] intuitively look for explanations
of its unsatisfiability, and therefore decide that the statement (z > —1) on line 2 is
irrelevant; The formula remains unsatisfiable even if the constraint (z > —1) is removed.

Even the method of [CESW13], which suggests a flow-sensitive encoding of the
extended trace formula, with the goal of including all statements affecting control-flow
decisions that are relevant to the bug, classifies the statement on line 2 as irrelevant.
This is because the error trace does not include any location from the body of the
branch that was taken (in our case it is the else branch, which is empty), in which case
the flow-sensitive formula remains identical to the traditional formula.

The dynamic slicing method of [AH90, KL88] also fails to include line 2 in its result.
This method computes the set of statements influencing the evaluation of the assertion
along the trace, using data and control dependency relations. A statement st; is data
dependent on sto iff st; uses a variable x, and sty is the last to assign a value to x
along the trace. In our example, the assertion on line 4 is data dependent only on
the statement in line 1, which in itself is not data dependent on any other statement.
A statement st; is control dependent on a conditional statement sto iff sty is inside
the body of either branch of st;. None of the statements along our error trace is
control dependent on another statement. The slice, which is the set of lines returned, is
computed using the transitive closure of these relations. Thus, for our example, only
line 1 is part of the slice.

In this example, we have seen how many different fault localization techniques fail
to include a statement that is relevant, i.e., where a modification could be made for
the bug to be fixed. In contrast, the set of locations returned by our technique for this
example is {1,2}. The fact that our technique includes line 2 is not a coincidence: We
show that, intuitively, whenever a repair can be made by making changes to a single
line, this line must be included in the result. In general, whenever a repair can be made

by making changes to a set of lines, at least one of them must be included in the result.

5.3 Preliminaries

5.3.1 Programs and Error Traces

For our purposes, a program is a sequential program composed of standard statements:
assignments, conditionals, loops and function calls, all with their standard semantics.
Each statement is located at a certain location (or line) l;, and all statements are defined
over the set of program variables X.

In addition to the standard statements, a program may also contain assume state-
ments of the form assume (bexpr), and assert statements of the form assert (bexpr).

In both cases bexpr is a boolean expression over X. If an assume or an assert statement
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proc. foo(x, w) proc. simFoo(x, w) proc. SSAFoo(x, w) ©foo =1

1: £ :=0 t =0 t0 := 0 to =0,

2:y :=x-3 y :=x -3 yoO := x0 - 3 Yo = xo — 3,

3:z:=x+ 3 z :=x + 3 z0 := x0 + 3 z0 = xo + 3,

4: if (w > 3) then g :=w>3 g0 := w0 > 3 go = wo > 3,

5: t =z +w if (g) then tl := z0 + w0 t1 = 20 + wo,

6: assert (t < x) ti=z+w assert (g0 — t1 < x0)

7 y =y + 10 assert (t < x) yl := yO + 10 y1 = yo + 10,

8: assert (y > z) y =y + 10 t2 :=g0 7 t1: t0 to = ite(go,t1,t0),
assert (y > z) y2 :=g0 7 y1: yO0 y2 = ite(go,y1,Y0),

assert (y2 > z0) =(y2 > 20) V =(g0 — t1 < z0)

Figure 5.2: Example of the translation process of a simple program

is located in [;, execution of the program stops whenever location [; is reached in a state
where bexpr is evaluated to false. In the case of an assertion, this early termination has
the special name assertion violation, and it is an indication that an error has occurred.

A program P has a bug on input I if an assertion violation occurs during the
execution of P on I. Otherwise, the program is correct for I.! Whenever P has a bug
on I, this bug is associated with an error trace, which is the sequence of statements

visited during the execution of P on I.

5.3.2 From Programs to Program Formulas

In this section we explain how a program is translated into a set of constraints, whose
conjunction constitutes the program formula. In addition to constraints representing
assignments and conditionals, such a formula includes constraints representing assump-
tions and a constraint representing the negated conjunction of all assertions. Thus,
a satisfying assignment (a model) of the program formula represents an execution of
the program that satisfies all assumption but violates at least one assertion. Such an
execution is a counterexample.

The translation, following [CKLO04], goes through four stages. We refer to the

example in Figure 5.2 to demonstrate certain steps.

1. Simplification: Complex constructs of the language are replaced with equivalent
simpler ones. Also, branch conditions are replaced with fresh boolean variables.
In the example, the if condition (w > 3) is assigned to a fresh boolean variable

g. Branching is then done based on the value of g, instead of (w > 3).

2. Unwinding: The body of each loop and each function is inlined wb times. The set

of executions of the new program is called the wb-executions of P.

3. Conversion to SSA: The program is converted to static single assignment (SSA)

form, which means that each variable in the new program is assigned at most once.

! Alternatively, one could assume to know the desired output of the program for I and define a bug
on I as a case where the program outputs the wrong value for I.
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This is done by replacing all variables with indexed variables, and increasing the
index of a variable whenever it appears on the left-hand-side of an assignment. In
the example, the first assignment to t is replaced by an assignment to t0 and the
second, by an assignment to t1. Since t is assigned inside a conditional statement
and is used after the statement, the if-then-else assignment t2 := g07t1:t0 is
inserted in order to determine which copy of t should be used after the conditional
statement. These special if-then-else assignments are called ®-assignments. In

the example, there is also a ®-assignment for y (y2=g0?y1:y0).

Note that, assertions are also expressed by means of indexed variables. The
specific indices in the assertion indicate the location in the execution in which
the assertion is checked. In addition, if an assumption or an assertion is located
within an if statement with branch condition g, then it is implied by g if it is
within the then part of the if and is implied by —g, if it is within the else part.
In the example, assert (t < x) is encoded by (go — t1 < zp).

4. Conversion to SMT constraints: Once the program is in SSA form, conversion to
SMT is straightforward: An assignment x:=e is converted to the constraint x = e;
A P-assignment x:= b?x1:x2 is converted to the constraint (xz = ite(b, z1, z2)),
which is an abbreviation of (b Az = x1) V (=b A x = z2)); An assume statement
assume (bexpr) is converted to the constraint bexpr, and an assert statement
assert (bexpr) is converted to the constraint —bexpr (since a model of the SMT

formula should correspond to an assertion violation).

If the program includes several assertions, then they are converted to one constraint,
representing the negation of their conjunction. In the example, the two assertions

are converted to the following constraint:

=(y2 > 20) V =(g0 — t1 < z0).

We say that a constraint encodes the statement it came from and we partition
constraints into three sets, Sussign, Sphi and Sgemand, based on what they encode.
Sassign contains constraints encoding assignments, including those originated from
assigning a fresh boolean variable with a branching condition; Spp; - encoding ®-
assignments; and Sgemang - €ncoding demands from assert and assume statements.

In particular, it encodes the negated conjunction of all assertions.

The triple (Squssign, Sphis Sdemand) 18 called a program constraint set. The program
constraint set we get from a program P when using wb as an unwinding bound is
denoted C’S%b. The program formula gp}‘;’b, is the conjunction of all constraints in all
three sets of C'S%’:

= N 9ACA HAC N o)

sesassign Sesphi $€Sdemand
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[CKY03] 1. A program P is wb-violation free iff the formula ¢'%’ is unsatisfiable.

For simplicity of notation, in the rest of the paper we omit the superscript wb.
Since the program formula is the result of translating an SSA program, the formula
is defined over indexed variables. Further, each constraint in Syssign corresponds to the

single variable, which is assigned in the statement encoded by the constraint.

5.4 Must Fault Localization

In this section, we precisely define when a location should be considered relevant for a
bug. This definition is motivated by a repair perspective, taking into account which
changes can be made to statements in order to repair a bug.

In order to define the changes allowed, we use repair schemes. A repair scheme S is
a function from statements to sets of statements. An S-patch for a program P is a set
of pairs of location and statement {(I1,st}),- -, (I, st},)}, for which the following holds:
for all 1 <14 <k, let st; be the statement in location /; in P, then st] € S(st;). The
patch is said to be defined over the set of locations {l1,--- ,l;}. Applying an S-patch T
to a program P means replacing for every location /; in 7, the statement st; with st}.
This results in an S-patched program of P. The set of all S-patched programs created
from a program P is the S-search space of P.

Let P be a program with a bug on input I, and S be a repair scheme. An S-repair
for I is an S-patched program that is correct for I. An S-repairable set is a set of
locations F' such that there exists an S-repair defined over F. An S-repairable set
is minimal if removing any location from it makes it no longer an S-repairable set. A
location is S-relevant if it is a part of a minimal S-repairable set. 2

In this paper, we focus on two repair schemes that are frequently used for auto-
mated program repair: the arbitrary scheme (Sg) and the mutation scheme (Syue).
Both schemes only manipulate program expressions, but the mutation scheme is more
restrictive than the arbitrary scheme: S,,4(st) is the set of all options to replace the
expression of st3 with an arbitrary expression, while S,,.¢(st) only contains statements
where the expression in st is mutated according to a set of simple syntactic rules. The
rules we consider are replacing a + operator with a - operator, and vice versa, replacing
a < operator with a > operator, and vice versa, and increasing or decreasing a numerical

constant by 1.4

Ezample 5.4.1. In this example we demonstrate how different repair schemes define

different sets of relevant locations. Consider again the foo program from Figure 5.2.

2We sometimes omit S from notations where S is clear from context.

3If st is an assignment, its expression is its right-hand-side. If st is a conditional statement, its
expression is its condition.

4This simple definition of the mutation scheme is used only for simplicity of presentation. Our
implementation supports a much richer set of mutation rules, as explained in section 5.7.
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This program has a bug on input I = x < 0,w <— 0. The error trace associated with
the bug is (1,2, 3,4, 8) (the assertion on line 8 is violated).

The location set {3,4} is a minimal S,,,;-repairable set: It is an S, -repairable
set because applying the Sp,¢-patch {(3,z:=x-3), (4,w<3)}, results in an Sp,-patched
program that is correct for I. This set is also minimal, because none of the Spt-
patches defined over {3} or {4} alone is an S,,,-repair for I: Each one of the Sy-
patches {(3,z:=x-3)},{(3,z:=x+4)}, {(3,z:=x+2)}, {(4,w<3)}, {(4,w>4)}, {(4,w>2)} re-
sults in an assertion violation for I.

On the other hand, {3,4} is not a minimal S,,,-repairable set: For example, the
Sarp-patch {(3,z:=-6)} is an Syp-repair for I. Note that, the Syp-patch only needs to
repair the bug, and not the program. That is, it is sufficient that there is no assertion
violation on the specific input I, even though an assertion could be violated in the
Sarp-patched program on another input.

The set of all minimal S,.,-repairable sets is {{2},{3},{4,5}}. Therefore, the set
of Sgrp-relevant statements is {2,3,4,5}. The set of all minimal S,,,;-repairable sets is
{{2,3},{3,4}}. Therefore, the set of S,,,-relevant statements is {2,3,4}.

Fault localization should focus the programmer’s attention on locations that are
relevant for the bug. But, returning the exact set of S-relevant locations, as defined
above, can be computationally hard. In practice, what many fault localization algorithms
return is a set of locations that may be relevant: The returned locations have a higher
chance of being S-relevant than those who are not, but there is no guarantee that all
returned locations are S-relevant, nor that all S-relevant locations are returned. We call
such an algorithm may fault localization. In contrast, we define must fault localization,

as follows:

S-must location set 1. An S-must location set is a set of locations that contains at least

one location from each minimal S-repairable set.’

S-must fault localization 2. An S-must fault localization algorithm is an algorithm that

for every program P and every buggy input I, returns an S-must location set.

Note that, an S-must location set is not required to contain all S-relevant locations,
but only one location from each minimal S-repairable set. Still, this is a powerful notion
since it guarantees that no repair is possible without including at least one element
from the set.

Also note, that the set of all locations visited by P during its execution on I is always
an S-must location set. This is because any S-patch where none of these locations is
included is definitely not an S-repair, since the same assertion will be violated along
the same path. However, this set of locations may not be minimal. In the sequel, we

aim at finding small S-must location sets.

5This is, in fact, a hitting set of the set of all minimal S-repairable sets.
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Ezample 5.4.2. Continuing the previous example, the set {2,3,4} is an Sgp-must
location set, and also an Sy,,-must location set. In contrast, the set {2,3} is only an
Sut-must location set, but not an S,,p-must location set, since it does not contain any
location from the S,,,-minimal repairable set {4,5}. The set {2} is neither an S,,-must

location set nor an Sp,,:-must location set.

Ezample 5.4.3. Consider again the absValue procedure of Figure 5.1. The set {2}
is an Sp-minimal repairable set and an S,.p,-minimal repairable set for the bug in
question. Therefore, we can say that all algorithms that were shown in Section 5.2 not
to include the location 2 in their result [JM11, ESW12, CESW13, AH90, KL88], are

neither S,p-must nor S,,-must fault localization algorithms.

5.5 Fault Localization Using Program Formula Slicing

In this section we formally define the notion of slicing. Based on this, we present an

algorithm for computing must fault localization for S, and Spyt-

5.5.1 Program Formula Slicing

A central building block in our fault localization technique is slicing. But, we do not
define slicing in terms of the program directly, but in terms of the program formula
representing it, instead. The input to the slicing algorithm is a program formula ¢,
a model p of it, and a variable v. Recall that ¢ is a conjunction of constraints from
Sassign, Sphi and Sgemana (see Section 5.3.2). The goal of the slicing algorithm is to
compute the slice of the variable v with respect to ¢ and p. Intuitively, this slice
includes the set of all constraints that influence the value v gets in u.

Similar to traditional slicing, it is easy to define the slice as the reflexive-transitive
closure of a dependency relation. But, unlike traditional slicing, which defines dependen-
cies between statements, our dependency relation is between variables of the formula.
These variables are indexed. Fach originates from a variable of the underlying SSA
program, where it was assigned at most once. We refer to variables never assigned as
input variables, and denote the set containing them by InputVars. A variable v that
was assigned once is called a computed variable, and the (unique) constraint encoding
the assignment to it is denoted Assign(v). The set of all computed variables is denoted
ComputedVars. We also denote by vars(e) the set of variables that appear in a formula

or expression e.

Static Dependency 3. The static dependency relation of a program formula ¢ is SD, C

vars(p) x vars(y) s.t.
SD, = {(v1,v2) | Je s.t. (v1 =€) € Sassign, V2 € vars(e)} U
{(v,0), (v,v1), (v,v2)| (v =ite(b,v1,v2)) € Spni}
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Figure 5.3: Illustration of the static and dynamic dependency relations of the foo
procedure

The left-hand-side of Figure 5.3 presents the graph for the static depency relation of
the foo procedure of Figure 5.2. The nodes in the graph are (indexed) variables and

there is an arrow from v; to vy iff (vi,v2) € SD,,.

Dynamic Dependency 4. The dynamic dependency relation of a program formula ¢ and

a model p of ¢ is DD, ,, C vars(p) x vars(p) s.t.
DD, = {(v,v1) | 3b,v2 s.t. (v = ite(b,v1,v2)) € Spni, pb] = true}

U{(v,v2) | 3b,v1 s.t. (v ="rite(b,v1,v2)) € Sphi, p[b] = false}
U{(v,b) | v, v s.t. (v =rite(b,v1,v2)) € Spni}
U{(v,v1) | Je s.t. (v =e) € Sussign,v1 € vars(e)}
Note that, dynamic dependency includes only dependencies that coincide with the
specific model p, which determines whether the then or the else direction of the if is
executed. Static dependency, on the other hand, takes both options into account. Thus,
DD, , € SD, for every model p.

The bold arrows on the right-hand-side of Figure 5.3 represent the relation DD, ,

of the foo procedure, for any u where u[gy] = false.

Influencing Variables 5. Given a program formula ¢, a model p of it, and a computed

variable v, the set of influencing variables of v with respect to ¢ and p is:
InfluenceVarsy, ,(v) = {v' | (v,v") € (DD, )" }

The circled nodes on the right-hand-side of Figure 5.3 represents the variables that
belong to InfluenceVarsy, ,(y2).
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Program Formula Slice 6. Given a program formula ¢, a model u of it, and a computed

variable v, the program formula slice of v with respect to ¢ and p is:
Slicey, ,(v) = {Assign(v') | v' € (InfluenceVarsy, ,(v) N ComputedVars)}

Thus, intuitively, Slice, ,(v) includes all constraints (in SSA form) encoding assignments
that influence the value of v in u. More precisely, when considering the conjunction of
only the constraints of Slice, ,(v), as long as the value of all input variables remains
the same as in pu, the value of v will remain the same as well. This is formalized in the

following theorem, whose proof can be found in Appendix B.

Theorem 2. For every ¢, and v, the following holds:

A en A i=plbl)| = =pl)

ceSlicey ;i (v) vi€InputVars

ecall that, we define a variable v to be dependent on a boolean variable b only if v
is defined by means of an assignment in Sj;;. This in turn indicates that v has been
assigned within the body of an if statement with condition b. Thus, b is included in
the slice of v only if b is indeed relevant to the value of v.

Continuing with our example of foo procedure,
Slicey u(y2) = { y2 = ite(go, y1,%0), Yo =20 —3, go =wo >3 }.

5.5.2 Computing the Program Formula Slice

The computation of the program formula slice is composed of two steps. In the first
step, we build a graph based on the static dependency relation, SD,. In the second
step, we compute the slice Slice, ,(v) by computing the set of nodes reachable from v
in this graph, using a customized reachability algorithm, which makes use of the model
73

The graph built during the first step is called the Static Dependency Graph (SDG) of
¢. Nodes of this graph are variables of ¢ and edges are the static dependencies of SD.,.
Edges are annotated using the function v, mapping every static dependency (v,v’) to
a boolean formula such that (v,v") € DD, , iff u = 9¥[(v,v’)]. Specifically, for every
constraint of the form (v = ite(b,v1,v2)) in Sy, the edge (v,v1) is annotated with b
and the edge (v, v9) is annotated with —b. All other edges of the graph are annotated
with true. See the left-hand-side of Figure 5.3. For simplicity all ¢true annotations are
omitted.

The algorithm for the second step is presented in Algorithm 5.1. This algorithm gets a
program formula ¢, its SDG, a model 1 of ¢, and a variable v, and computes Slicey, ,(v).
First, the set InfluenceVars, ,(v) is computed as the set of nodes reachable from

v in SDG, except that the reachability algorithm traverses an edge (v,v’) only if

62



p = ¥[(v,v")]. Thus, an edge (v,v’) is traversed iff (v,v") € DD, ,, which means
that the set of reachable nodes computed this way is in fact InfluenceVars, ,(v).
Finally, the slice Slicey ,(v) is the set of constraints encoding assignments to variables

in InfluenceVarsy ,(v).

Algorithm 5.1 Compute The Program Algorithm 5.2 FOrmula-Slicing-Fault-

Formula Slice Localization (FOSFL)
Input: a program formula ¢, its SDG, Input: A program formula ¢ of a

a model p of ¢ and a variable v. program P, and a model p of .

Output: Slice, ;. (v). Output: A set of statements F' of P.
Procedure Procedure FOSFL(p, 1)
C’omputeSlzce(cp, S‘DG’ Hs U) 1: SDG := ComputeDependencyGraph(y)
1. v:=0 2: demandFormula := /\cesd €
2: ModelBasedDFS(SDG, v, p, V) 3 V= ImportantVars(demgﬁé%‘ormula,y)
3: Slice := {Assign(v') | v € V} 4: S = ¢
4: return Slice 5: for v € V do
6: S := S U ComputeSlice(¢, SDG, p,v)
Procedure 7 F =0
ModelBasedDFS(SDG, v, u, V) g: fot.'CESﬁS  do
: assign

1. Vi=vu{v} 9: F := FU{Origin(c)}

2: for (v,w) € E s.t. pu = ¢[(v,w)] do
3: if w¢ V then
4: ModelBasedDFS(SDG,w, u, V)

—
o

: return F

5.5.3 The Fault Localization Algorithm

Our fault localization algorithm is presented in Algorithm 5.2. The input to this
algorithm is a program formula ¢ of a program P, and a model u of ¢. The model
represents a buggy execution of P on an input I, and the algorithm returns a set of
locations, F', that is an S,,-must location set.

As before, we assume to know the origin of constraints in ¢, and use the sets
Sassigns Sphi and Sgemand. Furthermore, here we also assume that for every constraint
¢ € Sussign, we know exactly which program statement it came from. We call this
statement the origin of ¢, and denote it by Origin(c).

As a first step, the algorithm computes a set of variables V' by calling the procedure
ImportantVars. This procedure receives an SMT formula ¢ and a model u of ¢, and
reduces p to a partial model of ¢. A partial model of p w.r.t. u is a partial mapping
from variables of the formula to values, which is consistent with p and is sufficient
to satisfy the formula. For example, for the formula ¢ = (a = 0V b = 0) and the
model p = {a +— 0,b+ 1}, the valuation {a — 0} is a partial model of ¢. Procedure
ImportantVars will return the set of variables that appear in the partial model ({a}
in our example). Details of this procedure are presented in Appendix A.

The formula passed to ImportantVars in our case is the conjunction of all demands

in Sgemand- Recall that the set Sgemang contains constraints encoding all conditions
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that need to be met for an assertion violation to happen: Conditions from assumptions
appear as is, while conditions from assertions are negated and disjuncted (See Figure 5.2.
The last constraint on the right-hand-side represents the disjunction of the negated
assertions). Therefore, the set of variables V, returned by I'mportantVars, is such that
as long as their values in p remain the same, this conjunction will still be satisfied,
which means that an assertion violation will still occur.

To make sure that their values do not remain the same, we use slicing: The algorithm
proceeds by computing the program formula slice for each of the variables in V' using
Algorithm 5.1. All slices are united into the combined set S. This set represents all
constraints that if remain the same, then all the variables in V' maintain their value.
Thus, at least one element from .S must be included in any repair.

Note that, by first applying ImportantVars, we reduce the number of variables
whose value should be preserved in order to maintain the bug. The smaller this number,
the smaller F' is. We will explain the usefulness of a small F' in Section 5.6.

Finally, we need to translate the constraints in S back to statements of P. Because
of how the slicing algorithm works, constraints in .S may belong to either Syssign or Spni-
If they belong to Spp;, we ignore them, because they encode the control-flow structure
of the program, rather than a particular statement. Otherwise, we add the origin of
the constraint, which is a statement of the program, to the set of returned locations, F'.
Note that, several different constraints may have the same origin, for example due to
loop unwinding. In such a case, it is sufficient for one constraint encoding the statement
st to be included in S, for st to be included in F. A proof for the following theorem
can be found in Appendix B.

Theorem 3. Algorithm FOSFL is an S,,-must and also an S,,¢-must fault localization

algorithm.

5.5.4 Incremental Fault Localization

It is often necessary to apply fault localization to several bugs in the same program,
or even to several programs with different bugs. Therefore, it is desired that the fault
localization algorithm be incremental, which means that the computation effort of each
fault localization attempt should be proportional to the changes made from the previous
attempt. In other words, we should avoid re-computation whenever possible, taking
advantage of the fact that the program remains the same, or at least remains similar.

Algorithm FOSFL can be easily made incremental for the case of different bugs
of the same program. In this case, several successive calls are made to the algorithm
using the same program formula ¢, but with different models of it. Since the static
dependency relation SD, depends solely on the program formula, and not on the
model, we can avoid re-computing the SDG for each call. Instead, we can compute
the SDG once, upfront, and whenever FOSFL is called, simply skip the first line. We

call the incremental version of FOSFL Incremental-Formula-Slicing-Fault-Localization

64



(I-FOSFL).

Note that I-FOSFL is useful not only for fault localization of different bugs of the
same program, but also whenever the SDG remains the same during successive fault
localization calls. This is the case when considering different mutated programs P’
of the same program P, since every change to P’ replaces an expression e with an
expression €’ over the same variables. Thus, the SDG remains the same, since the static

dependency relation, in fact, only depends on vars(e), and not on e itself®,

5.6 Program Repair with Iterative Fault Localization

In [RG16], a mutation-based algorithm for program repair, named ALLREPAIR, was
presented. This algorithm uses the mutation scheme in order to repair programs with
respect to assertions in the code. Unlike fault localization, where the motivation is
repairing a bug for a specific input, program repair aims at repairing the program for all
inputs. To avoid confusion, we refer to a repair for all inputs as a full repair. In [RG16],
the notion of a full repair is bounded: loops are unwound wb times, and a program is
considered fully repaired if no assertion is violated along executions with at most wb
unwindings. A program that is not fully repaired is said to be buggy. For the rest of
this section, we refer to an S,,,+-patch as a patch, and to an S,,,,,.-patched program as
a mutated program.

As its name implies, the goal of ALLREPAIR is to obtain all minimal fully repaired
mutated programs, where minimality refers to the patch used in the program. It goes
through an iterative generate-validate process. The generate phase chooses a mutated
program from the search space, and the validate phase checks whether this program is
fully repaired, by solving its program formula. The mutated program is fully repaired
iff the formula is unsatisfiable.

The generate-validate process is realized using an interplay between a SAT solver
and an SMT solver. The SAT solver is used for the generate stage. For every mutation
M and line [, there is a boolean variable By (1), which is true if and only if mutation M
is applied to line [. A boolean formula is constructed and sent to the SAT solver, where
each satisfying assignment corresponds to a program in the search space. The SMT
solver is used for the validate stage. The program formula of the mutated program is
solved to check if it is buggy or not. To achieve minimality, when a mutated program
created using a patch 7 is fully repaired, every mutated program created using a patch
7/, with 7 C 7/, is blocked.

Ezample 5.6.1. Let PM be a fully repaired mutated program obtained by applying the
patch 7, consisting of mutating line /1 using mutation M; and mutating line [5 using

mutation Ms. Then blocking any superset of 7 will we done by adding to the boolean

5This is true for Sy, but not for Su,s, since the latter allows to replace an expression e with an
expression e’ over different variables.
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Figure 5.4: Algorithm FL-ALLREPAIR: Mutation-based program repair with iterative
fault localization. The notation PM =5 P’ means that PM and P’ agree on the content
of all locations in . The notation PM T P’ means that the patch used for creating P’
is a superset of the patch used for creating PM.

formula representing the search space, the blocking clause =(Bjy, (I1) A B, (l2)), which
means “either do not apply My to l; or do not apply My to ly”. This clause blocks any

mutated program with 7 C 7’.

Blocking such programs prunes the search space, but only in a limited way. No pruning
occurs when the mutated program is buggy.

In this paper, we extend the algorithm of [RG16] with a fault localization component.
The goal of the new component is to prune the search space by identifying sets of
mutated programs that are buggy, without inspecting each of the individual programs
in the set.

Figure 5.4 shows the program repair algorithm with the addition of fault localization.
In the new algorithm, called FL-ALLREPAIR, whenever a mutated program is found
to be buggy during the validation step, its program formula is passed to the fault
localization component along with the model obtained when solving the formula. The
fault localization component returns a set of locations F', following the I-FOSFL
algorithm. Since this set is guaranteed to be an S,,,-must location set, at least one
of the locations in it should be changed for the bug to be fixed. Consequently, all
mutated programs in which all locations from F' remain unchanged are blocked from
being explored in the future. As before, blocking is done by adding a blocking clause

that disallows such programs.

Example 5.6.2. Let PM be a buggy mutated program for which F' consists of {l1,12,13},
where [; was mutated with M, lo was not mutated, and I3 was mutated with Ms.
The blocking clause =By, (I1) V 2 Boriginal(l2) V 7B, (I3) will be added to the boolean
formula representing the search space of mutated programs. It restricts the search space
to those mutated programs that either do not apply mutation M; to l1, or do mutate Io
or do not apply Mj to l3. This will prune from the search space all mutated programs
which are identical to PM on the locations in F. Note that smaller F' will result in a

larger set of pruned programs.
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Correctness of Algorithm FL-ALLREPAIR In [RG16], the base algorithm was proved
to be sound and complete, where sound means that every mutated program returned
is minimally fully repaired, and complete means that every minimally fully repaired
program will eventually be returned. In the new algorithm, whenever PM is buggy,
not only PM is blocked, but also every P’ that agrees with PM on the content of all
locations in F'. Clearly, this blocking does not harm soundness. Moreover, since fault
localization returns an Sy,-must location set, blocking does not damage completeness

either.

Proposition 1. Algorithm FL-ALLREPAIR is sound and complete

5.7 Experimental Results

We have implemented our fault localization technique and its integration with mutated-
based program repair in the tool ALLREPAIR, available at https://github.com/
batchenRothenberg/AllRepair. In this section, we present experiments evaluating the
contribution of the new fault localization component to the program repair algorithm.
We refer to the algorithm of [RG16], without fault localization, as AllRepair, and to the
algorithm presented in this paper as FL-AllRepair. Both algorithms search for minimal
wb-violation free programs, and both are sound and complete. Thus, for every buggy
program and every bound wb, both algorithms will eventually produce the same list of
repairs.

The difference between the algorithms lies in the repair loop. In case a mutated
program is found to be buggy, the AllRepair algorithm will only block the one program,
while the FL-AllRepair algorithm might block a set of programs. Therefore, the number
of repair iterations required to cover the search space can only decrease using the
FL-AllRepair algorithm. On the other hand, the cost of each iteration with fault
localization is strictly higher than without it. Our goal in this evaluation is to check if
the use of fault localization pays off. That is, to check if repairs are produced faster

using FL-AllRepair than using AllRepair.

Benchmarks For our evaluation, we have used programs from two benchmarks:
TCAS and Codeflaws. The TCAS benchmark is part of the Siemens suite [DER05], and
is frequently used for program repair evaluation [BDFt12, RG16, NTC19]. The TCAS
program implements a traffic collision avoidance system for aircrafts, and consists of
approximately 180 lines of code. We have used all 41 faulty versions of the benchmark
in our experiments.

The Codeflaws benchmark [TYM™117] is also a well-known and widely used bench-
mark for program repair. Programs in this benchmark are taken from buggy user

submissions to the programming contest site Codeforces’. In each program, a user

"http://codeforces.com/
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Figure 5.5: Partition of mutations to levels

tries to solve a programming problem published as part of a contest on the site. The
programming problems are varied, and also the users have a diverse level of expertise.
The benchmark also provides correct versions for all buggy versions, which are used
to classify bug types by computing the syntactic difference. For our experiments we
randomly chose 13 buggy versions classified with bug types that can be fixed using

mutations. The size of the chosen programs ranges from 17 to 44 lines of code.

Mutations The mutations used in ALLREPAIR (and accordingly in FL-AllRepair)
is a subset of the mutations used in [RHJ*12]. We define two mutation levels, where
level 1 contains only a subset of the mutations available in level 2. Thus, level 1 involves

easier computation but may fail more often in finding repairs.

Table 5.5 shows the list of mutations used in each mutation level. For example, for
the category of arithmetic operator replacement, in mutation level 1, the table specifies
two sets: {+,-} and {/,%}. This means that a 4+ can be replaced by a - , and vice versa,
and that the operators /,% can be replaced with each other. Constant manipulation
mutations apply to a numeric constant and include increasing its value by 1 (C—C+1),

decreasing it by 1 (C—C-1), setting it to 0 (C—0) and changing its sign (C—-C).

Setting All of our experiments were run on a Linux 64-bit Ubuntu 16.0.4 virtual
machine with 1 CPU, 4 GB of RAM and 40 GB of storage, provided using the VMWARE
vRA service®. For each of the buggy versions in our benchmarks we have experimented
with both mutation levels 1 and 2. For the Codeflaws benchmarks we additionally
experimented with different unwinding bounds: 2 (entering the loop once), 5, 8 and
10. This experiment is irrelevant to the TCAS benchmarks since the TCAS program
does not contain loops or recursive calls. Overall we had 186 combinations of buggy
programs, mutation levels and unwinding bounds. We refer to each such combination as
an input. For each input, we run both the AllRepair and the FL-AllRepair algorithms
with a timeout of 10 minutes and a mutation size limit of 2 (i.e., at most two mutations

could be applied at once).

8https://www.vmware.com/il/products/vrealize-automation.html
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Figure 5.6: Time to find each repair using AllRepair (AR) and FL-AllRepair (FLAR).
Each x value represents a single repair, and the corresponding y values represent the
time, in seconds, it took to find that repair using both algorithms. Note that the graphs
differ in the y axis scale.

5.7.1 Results

In total, 131 different repairs were found during our experiments, for 60 different inputs
(for several inputs there was more than one possible repair). In this count, we treat
repairs fixing the same program in the same way as different, if they were produced
using different mutation levels or unwinding bounds. This is because our evaluation
is concerned with the time to find these repairs, and both the mutation level and the
unwinding bound greatly influence this time.

Because the time to produce a repair sometimes varied in several orders of magnitude
depending on the input, we have chosen to split repairs into three categories: fast,
intermediate, and slow, and examine the time difference separately for each category.
Splitting repairs to categories was done according to the time it took to find them using
the AllRepair algorithm. If that time was under 5 seconds, the repair was considered
fast. If it was over 4 minutes, it was considered slow, and otherwise it was considered
intermediate.

Figure 5.6 shows a comparison of the time, in seconds, it took to find repairs in both
algorithms. There are three graphs, according to our three categories. In all graphs,
each x value represents a single repair, where the corresponding blue dot in the y axis
represents the time it took to find that repair using AllRepair, and the red square
represents the time using FL-AllRepair. So, whenever the blue dot is above the red
square, FL-AllRepair was faster in finding that repair, and the y difference represents

the time saved.
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For the fast category (Figure 5.6a), there is no clear advantage to FL-AllRepair.
The majority of the repairs in this category are produced in less than a second using
both algorithms. For the remaining repairs, there appears to be as many cases where
FL-AllRepair is faster as when it is slower. But, in all cases where there is a time
difference, in either direction, it is only of a few seconds.

For the intermediate category (Figure 5.6b), the advantage of FL-AllRepair is starting
to become clear. There are now only 4 repairs (out of 20) for which FL-AllRepair is
slower. Also, on average, it is slower by 4 seconds, but faster by 10 seconds. Finally, for
the slow category (Figure 5.6¢), there is an obvious advantage to FL-AllRepair. First,
it is able to find 6 repairs exclusively, while AllRepair reaches a time-out. Also, for the
remaining 27 repairs, FL-AllRepair is faster in all cases but one. The time difference is
now also very significant: FL-AllRepair is faster by 1512 seconds (around 25 minutes)
on average.

To sum up, the results show that in many cases our algorithm FL-AllRepair is able
to save time in finding repairs. The savings are especially significant in cases where
it takes a long time to produce the repair using the original AllRepair algorithm, and

these are the cases where time savings are most needed.

5.7.2 Comparison with Other Repair Methods

The TCAS benchmark was recently used also in [NTC19], where ALLREPAIR’s perfor-
mance was compared to that of four other automated repair tools: ANGELIX [MYR16],
GENPROG [LNFW12], FORENSIC [BDF*12] and MAPLE [NTC19]. ALLREPAIR was
found to be faster by an order of magnitude than all of the compared tools, taking only
16.9 seconds to find a repair on average, where the other tools take 1540.7, 325.4, 360.1,
and 155.3 seconds, respectively. Since in our experiments on TCAS FL-ALLREPAIR was
faster than ALLREPAIR on average (and even when it was slower it was only by a few
seconds), we conclude that FL-ALLREPAIR also compares favorably to these other tools.

In terms of repairability, the repair scheme used by ALLREPAIR (and FL-ALLREPAIR)
is limited compared to the other tools: ALLREPAIR only uses mutations on expressions
while ANGELIX, FORENSIC and MAPLE allow replacing an expression with a template
(e.g., a linear combination of variables), which is then filled out to create a repair.
GENPROG allows modifying a statement as well as deleting it or adding a statement
after it. Therefore, the other tools are inherently capable of producing repairs in more
cases than ALLREPAIR.

In the case of TCAS, the study showed that ALLREPAIR is able to find repairs
for 18 versions (a result that we confirm in our experiments as well), while ANGELIX,
GENPROG, FORENSIC and MAPLE found 32, 11, 23 and 26, respectively. But, what
the study also showed, is that in repair methods that are based on tests, in many cases
the repair found only adhered to the test-suite, but was not correct when inspected

manually. When counting only correct repairs, ALLREPAIR finds repairs for 18 versions
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(all of ALLREPAIRs repairs are correct), while ANGELIX, GENPROG, FORENSIC and
MAPLE find 9, 0, 15 and 26, respectively. Since FL-ALLREPAIR is able to find all repairs
found by ALLREPAIR, the same results also apply to FL- ALLREPAIR.

5.8 Related Work

Dynamic slicing has been widely used for fault localization in the past [ZGG07a, ZGGO7b,
QX08, Wot10, HW12, WPP*14]. But, as we have seen, traditional notations of dynamic
slicing [AH90, KL88] are not must (with respect to neither of the presented schemes),
and thus, the above techniques may fail to include relevant locations in their results.

Other approaches for fault localization include spectrum-based (SBFL) [JHSO1,
AZVG06, EDC10, NLR11, WDGL14], mutation-based (MBFL)[MKKY14, PT15, HLK 15}
GZL15] and formula-based (FBFL) [JM11, ESW12, SSNW13, HSNB™16, CHM"19].
Both SBFL and MBFL techniques compute the suspiciousness of a statement using
coverage information from failing and passing test executions. MBFL uses, in addition,
information on how test results change after applying different mutations to the program.
Both SBFL and MBFL techniques can be seen as may fault localization techniques,
in nature: they return locations that are likely to be relevant to the failing execution,
based on all executions. We see may fault localization techniques as orthogonal to ours
(and to must fault localization techniques in general), since in the trade-off between
returning a small set of locations, and returning one that is guaranteed to contain all
relevant statements, may techniques prefer the first, while must techniques prefer the
second. In the context of repair, there are interesting applications for both.

FBFL techniques represent an error trace using an SMT formula and analyze it
to find suspicious locations. These techniques include using error invariants [ESW12,
CESW13, SSNW13, HSNB*16], maximum satisfiability [JM11, LNH15, LN16|, and
weakest preconditions [CHM™19]. What we were able to show in this paper, is that the
methods of [JM11, ESW12, CESW13| are not must. In contrast, we believe (though we
do not prove it) that the methods of [LNH15, LN16, CHM*19] are must. But, what
[LNH15, LN16, CHM*19] have in common is that they use the semantics of the error
trace or the program. Though semantic information can help to further minimize the
number of suspicious locations, retrieving it involves using expensive solving-based
procedures. Our approach, on the other hand, uses only syntactic information, which
makes the fault localization computation relatively cheap; No SMT solving is needed.
Thus, these approaches can be seen as complementary to ours.

In the literature there is also a wide range of techniques for automated program
repair using formal methods [NQRC13, MYR16, ABS17, JGB05, VJ15, KKK15, DSS16,
NWKF17]. Both [DW10] and [RHJ*12] also use fault localization followed by applying
mutations for repair. But, unlike this work, fault localization is applied only for the
original program. Also, neither the Tarantula fault localization used in [DW10] nor the

dynamic slicing used in [RHJ"12] carries the guarantee of being a must fault localization.
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The tool MUT-APR [AB18] fixes binary operator faults in C programs, but only targets
faults that require one line modification. The tools FORENSIC [BDF112] and MAPLE
[INTC19] repair C programs with respect to a formal specification, but they do so by
replacing expressions with templates, which are then patched and analysed. SEMGRAFT
[MNNT18] conducts repair with respect to a reference implementation, but relies on

tests for SBFL fault localization of the original program.

5.9 Conclusion

In this work we define a novel notion of must fault localization, that carefully identifies
program locations that are relevant for a bug, so that the set is sufficiently small but
is guaranteed not to miss desired repairs. We also show that the notion of must fault
localization should be defined with respect to the repair scheme in use. We show that
our notion of must fault localization is particularly useful in pruning the search space of
a specific mutation-based repair algorithm.

To the best of our knowledge, we are the first to investigate the widely-used notion
of fault localization and to suggest criteria for evaluating its different implementation.

e have presented a slicing technique for programs in SSA form, and a fault localization
algorithm that relies on it. This fault localization algorithm was integrated into a
mutation-based program repair algorithm, where it was applied not only to the original
program, but whenever a buggy mutated program was found during the search. The
set of constraints returned by fault localization was used for efficient pruning of the
search space: instead of blocking the one buggy program, all mutated programs in which
this set remains unchanged were blocked. We have shown that by doing so we do not
damage the completeness of the program repair algorithm, since all programs that are
blocked are definitely buggy. Finally, our experimental results have confirmed that the
program repair algorithm of this paper in fact produces all repairs that were produced

before, and, in some cases, significantly faster.
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Chapter 6

Conclusion and Discussion

In the process of software production and maintenance, much effort and many resources
are invested in order to ensure that the product is as bug free as possible. Manual bug
repair is time-consuming and requires close acquaintance with the checked program.
Therefore, there is a great need for research on automated program repair, as done in
this thesis.

Prior research on program repair has been mostly empirical, and has focused on
heuristic, search-based, techniques, and on test-based repair. In contrast, the emphasis
of this work is on examining the formal aspect of program repair, both in terms of the
methods used and the specification provided. Thus, this work has contributed to closing
this research gap.

The body of our work was presented in three papers whose connecting thread
is the enhancement of the basic generate-and-validate scheme for program repair.
Improvements were made to both the generate stage, which samples patched programs
from the search space, and to the validate stage, which checks the correctness of the
sampled program. The generate stage was improved by introducing efficient pruning
of the search space: In chapter 3 this was done by removing non-minimal repaired
programs upon finding a correct program, and in chapter 5 it was done also by using
fault localization upon finding an incorrect program. The validate stage was improved
by using incrementality: In chapter 3 we employed incremental SAT and SMT solving,
and in chapter 4 we developed algorithms for incremental verification.

The main contributions of the research done as part of this thesis are as follows:
e Development of new algorithms and proof of their correctness

— Program repair algorithms: AllRepair (Algorithm 3.4) and FLAlIRepair
(Algorithm 5.4)

— Trace-abstraction-based incremental verification algorithms: Eager
(Figure 4.5) and Lazy (Figure 4.6)

— Fault localization algorithm: FOSFL (Algorithm 5.2)
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e Experimental evaluation of the new algorithms

— In section 3.6, our AllRepair algorithm was compared with two state-of-the-art
techniques by Konighofer and Bloem [KB11, KB13] on the tcas benchmark,
which contains 41 faulty versions of a program implementing a traffic collision
avoidance system for aircrafts. Results have shown a clear trade-off between
repairability and efficiency: When using a short list of mutations our method
repairs less faulty versions than [KB11, KB13], but is significantly faster. On
the other hand, when adding more mutations, the number of faulty versions
we fix increases, and becomes better than [KB11, KB13], but the average
time to repair also increases significantly, making the method slower than
[KB11, KB13].

— In section 4.5, our incremental verification algorithms were compared with
stand-alone verification and with another state-of-the-art technique by Beyer
et al. [BLNT13] on a benchmark set based on different revisions of device
drivers from the Linux kernel. Results have proved that incrementality pays-
off: our method, both when used with the Eager algorithm and with the Lazy
one, manages to save the user a considerable amount of time, for the vast
majority of these benchmarks. Both algorithms obtain a nontrivial speedup
of around x4.7 in analysis time (compared to stand-alone verification), which

is x1.5 larger than the mean analysis speedup of [BLN*13].

— In section 5.7, the FLAIllIRepair algorithm was compared to the AllRepair
algorithm, using programs from two benchmarks: tcas and Codeflaws. Our
conclusion from the results was that fault localization is indeed very helpful
in pruning the search space of program repair: in many cases FLAlIRepair
found repairs significantly faster than AllRepair. The savings were especially
significant in cases where it took a long time to produce the repair using

AllRepair, and these are the cases where time savings are most needed.
e Open source tools implementing our algorithms

— AllRepair a program repair tool for C programs with assertions. Available
for download at https://github.com/batchenRothenberg/AllRepair. This
tool implements both the AllRepair and the FLAIIRepair algorithms, and

was developed from scratch as part of this research.

— Ultimate Automizer an automata-based software model checker developed
by the software engineering group of Andreas Podelski at the University
of Freiburg. Available for download at https://monteverdi.informatik.uni-
freiburg.de/tomcat /Website/ 7ui=tool&tool=automizer. The contribution of
this research to the tool was the implementation of the Eager and the Lazy

incremental verification algorithms. A new configuration of the tool was
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introduced, allowing the user to run it in incremental mode and to choose

the desired algorithm from the two.

6.1 Future Work

The work of this thesis can be expanded in several interesting directions. Next, we

portray our ideas for what we believe is the most promising future work.

Using Incremental Verification for Repair The program repair algorithms de-
scribed in this thesis (AllRepair, FLAlIRepair) instantiate the generate and validate
scheme using a bounded verification technique for the validate stage. Other repair
algorithms could result from using the same method for the generate stage, but replacing
the verification technique with any other off-the-shelf technique. But, if the verification
techniques are used as a black box, solving the verification problem of each patched
program we wish to validate in isolation, the efficiency of these algorithms will be

limited.

Instead, incremental verification should be used. Incremental verification aims at
facilitating the re-verification of successive revisions of a program; changes made from
the previous revision are taken into account in an attempt to limit the analysis to only
the parts of the program that need to be reanalyzed, and partial verification results
are reused. The syntactically closer the two revisions are, the more likely incremental
verification is to be useful. Therefore, it can be especially useful for generate and
validate-based repair, since patched programs are usually very similar to each other

syntactically.

There are many incremental verification techniques that could be used for this
purpose. The first one is our work, presented in chapter 4, which is based on the use
of trace abstraction for verification. This is a particularly promising approach, since
trace-abstraction-based verification has been proved to be very successful, winning
the SV-comp verification competition several times. Other techniques for reuse of
verification results include reuse of function summaries for bounded model checking
[CGS12], contextual assumptions for assume-guarantee reasoning [HMW16], parts of
a proof or counter-example obtained through ic3 [CIM*11] and inductive invariants
[FGS14].

While using incremental verification techniques for the validation stage can be
effective, it can be even more effective if we do not use these methods as a black box.
Instead, they can be provided with information on the code changes allowed for repair,
and hence the expected differences between successive patched programs being verified.
We believe that this information can be used to refine existing algorithms, or even to

design variants of algorithms that are specific to a particular type of code change.
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Fault Localization The fault localization problem, i.e., finding a set of locations
responsible for a certain bug, is a long standing research problem. However, traditional
fault localization methods are intended for use by humans trying to manually repair
the code. As research on automated program repair progresses, a new use for these
methods has emerged: many repair algorithms use them as a first step, in order to
figure out which lines of code should be repaired, and then try to make changes to those
lines. The difference between the use of these methods in algorithms and their use by
human beings is significant, since human beings have freedom of action as to the nature
of the repair, while the changes made by repair algorithms are limited and known in
advance. Therefore, it is necessary to rethink fault localization from the point of view
of automated repair.

Our work on fault localization, presented in Chapter 5, is a successful example of
such rethinking. This work shows that an accurate definition of the properties of fault
localization, can enable more efficient repair, without sacrificing its desired properties.
For example, the definition of the must-fault-localization property (definition 2) allows
programs to be removed from the repair search space, while ensuring that no good
repair is lost.

We believe that there are other, similar, properties of fault localization that can be
thought of, which, like the must definition, depend on the repair scheme, and that will
be useful for repair. Given a bug in a program, and a particular repair scheme, the set
of all ways to repair the bug using the repair scheme can be seen as set S of sets of
locations, where changes from the scheme can be applied to make the program correct.
The must definition, as defined in definition 2, actually requires that the set returned
by fault localization always be a hitting set of S. Similarly, we could require that one of
the sets in .S will be returned exactly, or that all the locations that are in any set from
S will be returned (i.e., that the returned set will contain the union of all sets from 5).
Each of these definitions leads to a different property of fault localization, or, in fact, to
a different definition of what it means to ”localize the fault”.

New definitions such as these can, as mentioned, be used in repair algorithms and
lead to their improvement. However, their contribution will not be just that; they can
also lead to a better understanding and evaluation of existing fault localization methods.
Although these methods have been the focus of research for many years, comparison
and analysis of them has been and remains largely empirical. Defining additional formal
properties will also allow for theoretical comparison, by sorting the methods into those
in which a property holds and those in which it does not.

A theoretical comparison such as this is important in order to complete the picture
obtained from an empirical comparison, which is sometimes partial and misleading. For
example, in an empirical comparison some formal method may look bad compared to
other methods, since its localization result for a particular set of programs is large and
takes a long time to obtain; In a theoretical comparison, however, it may turn out that

the formal method in fact guarantees certain properties that will hold in all cases, and
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not just for the given programs, which is an important advantage.

Program Repair that Learns from Mistakes In chapter 5 we have presented
algorithm FLAIIRepair, which incorporates fault localization with a traditional generate
and validate loop: whenever a program was found incorrect during the validation stage,
fault localization was applied to it in order to obtain a set of suspicious lines, which
were then used to derive a set of patched programs that could be safely removed from
the search space. But, in fact, applying fault localization is only one example of how
you can gain information from a failed repair attempt.

In general, we propose to replace the traditional generate and validate working
scheme with an enhanced, three-staged, working scheme, called generate-validate-analyze.
In the generate-validate-analyze scheme, whenever a program is found to be incorrect,
a witness of the bug is further analyzed to obtain a search hint, which improves the
sampling of patched programs in the future. We call it "repair that learns from mistakes”.

In FLAIIRepair, the analyze stage was realized by a fault localization component,
the search hint was a must-location-set, and it was used to prune patched programs that
are certainly erroneous because the content of all locations in the set was not changed. A
possible extension of this, is to provide a search hint that not only indicates problematic
locations, but also problematic changes. For example, in the case of mutation-based
repair, the analyze stage can be given the list of mutations, and return a set of tuples of
locations and mutations of the form (I,m), indicating that for every tuple in the set the
mutation m should not be applied to the location I.

Another possible extension is to provide a search hint that results in pruning of
programs that are only likely to be erroneous, but are not guaranteed to be so. In this
case, the analyze stage can be realized using any off-the-shelf fault localization technique,
and not necessarily one that is a must-fault-localization, as defined in definition 2. Also,
one can use several heuristics to prioritize certain patched programs over others, based
on information observed from the error trace.

Instead, one can think of an analyze stage that also gets information about the
changes made when creating patched programs (e.g., the list of mutations in the case of
AllRepair), and results in a search hint that is not a set of locations, but a set of tuples
of locations and change actions. A tuple of the form (I, c), where [ is a location and c is
a change action, can be seen as either a do or a don’t-do search hint: it can indicate that

the code in location [ should be changed using change action ¢, or that it shouldn’t.

Integrating Test-Based and Formal Repair Test-based repair is the problem of
repairing a program with respect to a test-suite; a program is considered correct iff it
passes all tests in the test-suite. Overall, test-based techniques have shown to scale well
and be able to automatically repair bugs and vulnerabilities from real life applications
[WCW18, HZWK18a, XMD*16, GPKS17, MYR16, LR16].

In recent years, however, the quality of repairs produced by test-based tools has been
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studied more closely, and has been found to be problematic. It turns out that many
tools produce repairs that are overfitting to the test suite. That is, despite passing all
tests, these repairs will not be accepted by a human developer, since they break other
desired functionalities, unspecified by the tests. In some cases, overfitting repairs might
even introduce new bugs or cause the program to crash. This problem is now referred
to as the overfitting problem and is believed to be a major obstacle for test-based repair
[SBLGB15, LTLLG18, YMDMZ20].

On the other hand, formal program repair, as done in this work, produces repairs
with an inherent guarantee of correctness. However, it is far less scalable, showing
results only for small programs.

Therefore, the combined use of tests and formal methods seems to be a promising
approach, with the potential of getting the best of both worlds. One example of a
successful combination in the context of verification is concolic execution [SMAO05],
where concrete inputs guide the symbolic exploration of the program. We believe a
similar idea can also work for repair: tests can guide the generation of programs, but

formal methods will be used to verify that the result is correct.
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Appendix A

Computing Important Variables

Definitions Let ¢ be a first-order SMT formula over a quantifier-free theory 7. A
(partial) valuation of the formula is a (partial) function from vars(p) to D, the domain
of variables in the theory T. For a valuation p, we denote by u[v] the value of the
variable v in p. For a partial valuation p, p[v] is either the value of v in p, if p is defined
for v, or a don’t-care symbol, L, otherwise (L ¢ D). A partial valuation p is a reduction
of a valuation u, if p and p agree on their common variables. That is, if for every
v € vars(yp), either p[v] = L or p[v] = p[v]. Symmetrically, in such a case p is said to
be an extension of p. The V-reduction of a valuation u, denoted uly, is the (unique)
reduction of p that is defined for the exact set of variables V. A partial valuation p is a

partial model of ¢, denoted p = @, if every extension p of it is a model of .

ImportantVars In this section we present a procedure, ImportantVars, which receives
a quantifier-free SMT formula ¢ and a model p of it, and finds a set of variables V' such
that the partial valuation uly is a partial model of ¢. Although in the literature there
exist several algorithms for finding a partial model of an SMT formula, these algorithms
aim at finding minimal or even minimum [DDMA12] models. Therefore, they have an
exponential cost that would incur a severe overhead for our repair algorithm. Thus,
we use a naive algorithm with linear cost, that does not guarantee that the produced
model is minimal but manages to produce small partial models in practice.

The naive algorithm is presented in Algorithm A.1. It is given a quantifier-free SMT
formula, and a model p of it, and produces a partial model for the formula by creating a
reduction of u. As a first step, the formula is converted to negation normal form (NNF),
by pushing negation inwards (this is done by the function TONNF). Then, there is a
recursive search for all sub-formulas with an or (V) operator, and for each of them, only
the first disjunct satisfied by u is kept. When a sub-formula with an and (A) operator
is reached, all of its conjuncts are kept. Finally, whenever the search reaches an atomic
formula it computes the set of variables that appears in it and adds it to the result
set. This set is then returned at the end, after the recursive traversal of the formula is

completed.
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Algorithm A.1 Find Important Variables
Input: quantifier-free SMT formula ¢ and a model p of ¢.
Output: set V of variables from ¢.

Procedure ImportantVars(p, i)

1: PNNF = TONNF((,D)

2: result :== ()

3: RecursiveImportantVars(¢NNF, i, result)
4: return result

Procedure RecursivelmportantVars(p, u, result)
if ¢ is an A formula then
for every c, a conjunct of ¢ do
RecursiveImportantVars(c, p, result)
else if ¢ is an V formula then
for every d, a disjunct of ¢ do
if p f=d then
RecursiveImportantVars(d, p, result)
break
else > ¢ is an atomic formula
result := result Uwvars(y)

Proposition 2. Let V be the result of Algorithm A.1 on the formula ¢ and its model pu.
Then, uly = .
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Appendix B

Proofs

B.1 Proof of Theorem 2

Instead of proving the theorem as stated, we will prove the following, stronger, lemmas:

Lemma B.1.1. For every ¢, p,v, and v' € InflVars, ,(v), the following holds:

A en A <vz-=mvz-]>} — (v = uv) (B.1)

ceSlicey,u(v) vi€lnputVars
Since v € InflVars, ,(v), Theorem 2 will be implied.

Lemma B.1.1. Let ¢, and v be a program formula, a model of it, and a variable,

respectively. Let u’ s.t.

MIF[ A en A <vz-=mvz-]>] (*)

ceSlicey ;i (v) vi€lnputVars

For every v’ € InflVars, ,(v), if v' € InputVars then the constraint (v' = p[v']) is
a conjunct of *, and therefore clearly p/ = (v = ulv']).

Next, we show that also for every computed variable v' € InfiVars, ,(v), p' =
(v" = p[v']). Let us denote Assign(v’) by (v/ = e) (recall that this constraint encodes
cither an assignment or a ®-assignment). First, since v’ € InflVarsy, ,(v), Assign(v') €
Slicey ,(v), which means that 4/ = (v =€) (as a conjunct of *). Also, since p = ¢,
and Assign(v') is a conjunct of ¢, u |= Assign(v’). That is, u[v’] = ule]. Putting these
two facts together, we get that it is sufficient to show that u' = (e = ple]), in order to
get that p/ = (v/ = p[v’]), and finish the proof.

In fact, it is thus sufficient to show that for every v, € vars(e), ' = (ve = plvel),
since the value of yi/[e] is uniquely determined by the value p’ gives to the variables of e.

With that in mind, we use induction to show that for every computed variable
v e InflVarsy ,(v), ' = (v = p[v']). The induction is on the set of computed

variables, which is in fact an induction on the location number in the SSA program
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where the computed variable v' was assigned. Note that, in an SSA program, for every
assignment or ®-assignment of the form x:=e in a location [, all the variables in vars(e)

are assigned before [ (if assigned at all).

base case Let ¢’ € InflVars, ,(v) be a computed variable assigned on [ = 1, and
denote by v’ = e the constraint Assign(v’). Since this is the first location of the program,
vars(e) C InputVars. Therefore, for every v, € vars(e), p' = (ve = plve]), because it

is a conjunct of *.

inductive step Let v’ € InflVars, ,(v) be a computed variable assigned on [, and
denote by v' = e the constraint Assign(v’). Let us explore the different options for

Assign(v'):

1. If Assign(v') is an assignment constraint: Let v, € vars(e). If v, € InputVars,
then ' |= (ve = plve]) as a conjunct of *. Otherwise, ve € ComputedVars. Also
ve € InflVars, ,(v), since vDDy 0" (v' € InflVars, ,(v)) and also v' DDy v,
(by definition of DD, ,,). Therefore, from induction hypothesis, y' |= (ve = pfve]).

2. If Assign(v’) is a ®-assignment constraint, where e = ite(b, v1,v2): b € InflVars, ,(v)]
since vDD, o' and also v'DD,, ,b. Therefore, pu' = (b = p[b]) (this is either from
induction hypothesis, if b € ComputedVars, or from *, if b € InputVars). This
in particular means that p/[b] = p[b]. Let us explore the different options for pu[b]:

(L) If u[b] = true: Since p'[b] = pu[b] = true, the value of u'[e] is determined by
the value of u/[v1], and the value of ple] is determined by the value of pfvi].
Therefore, if we can show that p' |= (v1 = plv1]), then 1/ = (e = ple]), as

needed.

Since pu[b] = true, by the definition of DD, ,, v DD, ,vi. In combination
with vDD7 o', v1 € InflVars, ,(v). Thus, indeed, ' |= (v1 = pfv1]) (this
is either from induction hypothesis, if v1 € ComputedVars, or from *, if

v1 € InputVars).

(L) If p[b] = false: This case is symmetric to the one where p[b] = true. [ |

B.2 Proof of Theorem 3

To prove this theorem we will prove the following two lemmas, from which the theorem

is applied:
Lemma B.2.1. Algorithm FOSFL is an Sqrp-must fault localization algorithm.

Lemma B.2.2. Every Sy.p-must fault localization algorithm is also an Spat-must fault

localization algorithm.
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lemma B.2.1. To simplify the presentation of the proof, we begin with some notations.
First, given a program formula ¢, we denote by ¢%™ the formula constructed from
the conjunction of all constraints in Sgemang. This is, in fact, the demandFormula
computed on line 2 of the FOSFL algorithm, and it encodes only the requirements from

assumptions and negation of assertions.

Also, we denote by “™P the formula constructed from the conjunction of all
constraints in Sgssign and Spp;. This formula encodes the computation of the program,
without any requirements from assumptions or assertions, and therefore is always
satisfiable. Furthermore, for every input I, there exists a model uy of P s.t. for
every input variable v € InputVars, pr[v] is the value of v in I. We say that such a

model represents the execution of P on I. The correspondence between models of (P

and inputs also works in the other direction: for every model p™P of P 1 ,comP
represents the execution of P on I, where [ is the input in which the value of v, for
every v € InputVars, is pmP[v].

Now that we are done presenting notations, we begin the actual proof: Assume,
by contradiction, that FOSFL is not an S,.,-must fault localization algorithm. Let
P be a program with a program formula ¢p, and g be a model of pp, s.t. the set F’
returned by FOSFL for ¢op and p is not an S,.5-must location set. That is, there exists
a minimal S,,-repairable set R, s.t. RN EF = (. Let Pg be an S,,-repair defined over

R, and let pg be the program formula of Pg.

First, we claim that all constraints of the united slice S computed for ¢p and p
on lines 4-6 of the FOSFL algorithm, remain unchanged in ¢ (or, in fact, in ¢""").
Formally, let VI P(cpjéem, 1) be the set of important variables computed on line 3 of the

algorithm for ¢p and p. Then, for every constraint ¢ in

S= U Slicepp u(vip)
vip€VIP(oE™ 1)

¢ is a conjunct of gp%mp . This is because, the only statements changed in Pr are those
on locations from R, and therefore the only constraints of ¢r that are different from
pp are those encoding assignments in locations from R. This, in combination with the
fact that RN F = (), implies what we want, since F' is the set of all locations whose

assignments are encoded by constraints in S (lines 7-9 of the algorithm).

Next, consider the formula

er A N (v = pful) (**)
vi€InputVars

This formula is satisfiable. Specifically, let I be the input that p represents. The model
,uﬁ of """ that represents the execution of Pg on I, satisfies **. Note that, this input
I is the buggy input we are trying to repair (Pg is an Syqp-patched program that is

correct for T).
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Let vy, € VIP(e%™ ). Since we have shown that every constraint ¢ in S is a

conjunct of p%""*, and Slice, ,(vip) C S,

pilE N e

ceSlicey ; (vip)

Taking into account that also

Y R )

vi€InputVars

we get from Theorem 2 that pf = (v, = plvip]). That is, pfvip] = wlvip).

Thus, we have shown that N?LVIP( aem ) = Mlyrps gem )+ From proposition 2,

YOI
tly P(plem ) = wdem Therefore, pf LV IP(pem 4 ): Lpdem Since no changes are made

dem

in Pp to assumptlons or assertions, 3" = <pdem So, pf LV IP(gdem 1) = % dem which
means that pf |= godem Put together with the fact that u¥ satisfies the formula **
this means that ul = %" A pf™. Thus, uf = ¢g.

Since pft 1 represents the execution of Pr on I, the fact that uf/ E ©r means that Pr

dem encodes a disjunction of the negation of assertions, so

has a bug on I (recall that p%
the satisfiability of ¢ implies that an assertion is violated). Thus, this is a contradiction

to Pgr being an S,.p-repair (i.e., an Syp-patched program that is correct for I).

lemma B.2.2. 1t is sufficient to show that every S,,,-must location set is also an Sp,u-
must location set. Let Hg be an S,,p-must location set. That is, H,,, contains at least
one location from each minimal S,,p-repairable set.

Let Fi¢ be a minimal S,,,-repairable set. Since every S,,.-patch is also an
Sarp-patch, Fiuqt is also an Syqp-repairable set. Though Fiuqt itself is not necessarily a
minimal S,rp-repairable set, it must contain a non-empty subset F . that is. Therefore,
H,, contains at least one location from Férb. Since F érb C Fhut, Harp in fact contains
at least one location from Fjqy:.

Thus, we have shown that for every minimal S, -repairable set Fi,u¢, Hqrp contaings

at least one location from Fj,;. This makes H,., also an S,,;-must location set. W
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