
On-the-fly Model Checking
with Guided Abstraction

Gal Sade

On-the-fly Model Checking
with Guided Abstraction

Research Thesis

Submitted in partial fulfillment of the requirements
for the degree of Master of Science in Computer Science

Gal Sade

Submitted to the Senate
of the Technion — Israel Institute of Technology

Adar 5781 Haifa February 2021

This research was carried out under the supervision of Prof. Orna Grumberg, in the
Faculty of Computer Science.

Acknowledgements

First and foremost, I would like to thank my advisor, Professor Orna Grumberg.
Our weekly meetings were an indispensable source of inspiration for me. Through
these meetings I have learnt what research is, and how fun it might be. Our joint
work has given me the opportunity to acquire skills and experience, learning from a
world renowned and prominent researcher. Orna – thank you for believing in me, for
supporting me and for your friendship.

I would like to thank Dr. Yakir Vizel for a fruitful and a successful collaboration. I
enjoyed our mutual work, and I am sure that the knowledge I have acquired through it
would greatly influence me in the future. I will also like to thank my peers and fellow
researchers, who inspired and guided me along the way.

Finally, I would like to thank my beloved family for believing in me and helping me
all throughout my studies. I cherish the motivation and curiosity, bequeathed to me
by them. I am grateful for their support, both in happy moments and in challenging
ones.

The generous financial help of the Technion is gratefully acknowledged.

Contents

List of Figures

Abstract 1

1 Introduction 3

2 Preliminaries 5
2.1 The full abstract structure . 7

3 Main Algorithm Description 11
3.1 Abstract models corresponding to the unwinding trees 11
3.2 Recursive handling of CTL formulas . 13
3.3 Initialization and Recursive Activation 13

4 Handling ApVq 15
4.1 Intuition to AG . 15
4.2 Extension to ApVq . 17
4.3 The full algorithm . 19

4.3.1 HandleAV description . 19
4.3.2 indAV description . 20

4.4 Strengthenings . 23
4.4.1 Trace Strengthening . 23
4.4.2 Subtree Strengthening . 25

5 Handling EpVq 31
5.1 Intuition to EG . 31
5.2 Extension to EpVq . 33
5.3 The full algorithm . 33

5.3.1 HandleEV description . 33
5.3.2 indEV detailed description . 34

6 Handling EX and logical operators 43
6.1 Handling logical operators . 43
6.2 Handling EX . 43

7 Symbolic formalization and optimizations 47
7.1 Symbolic representation of abstract states 47

7.1.1 Abstract state representation using quantifiers 48
7.1.2 Quantifier-free representation of abstract states 48

7.2 Symbolic unwinding . 49
7.3 Adapting the algorithm . 50
7.4 General optimizations to OMG . 51

8 Correctness of OMG 53

9 Related Work 57

10 Conclusion and future work 59

Hebrew Abstract i

List of Figures

2.1 Kripke model (left) and its unwinding tree (right) 8

Abstract

Model checking is an automatic verification method that gets a system model and a
specification, and checks whether the model satisfies the specification.

CTL is a branching time temporal logic suitable for specifying behaviors of both
software and hardware systems. It enables specifying properties that cannot be ex-
pressed in linear time logics, such as LTL. An example of such a property is restarta-
bility, which means that in every reachable state, the system may return to its initial
state, due to a reset or a recovery. Further, in many cases, CTL model checking algo-
rithms can be easily extended to handle the alternation-free fragment of the powerful
µ-calculus logic.

In this work, we present a novel approach, OMG, that combines on-the-fly verifica-
tion with abstraction in order to obtain an efficient CTL model checking algorithm.

On-the-fly verification ensures that only parts that are needed for determining the
satisfaction of the specification are developed. The abstraction is used to form inductive
invariants, allowing OMG to determine satisfaction of the CTL specification without
traversing the entire state-space.

We formalize the correctness of OMG, and present both an explicit version of the
algorithm and a symbolic one.

We implemented our algorithm on top of a combination of explicit and symbolic
representations, where symbolic representations are handled with SAT/SMT solvers.
Our experiments show that on a few examples, our algorithm outperforms a state-of-
the-art SAT -based algorithm for CTL.

1

2

Chapter 1

Introduction

In this work we present a novel CTL model checking algorithm, called On-the-fly Model
checking with Guided abstraction (OMG). OMG combines an on-the-fly algorithm with
abstraction. Given a model and a specification, model checking [CGK+18] determines if
the model satisfies the specification. CTL [BPM83, CGK+18] is a significant branching
time specification language. It enables specifying properties that cannot be expressed in
linear time logics, such as LTL [Pnu77]. An example of such a property is restartability,
which means that in every reachable state, the system may return to its initial state,
due to a reset or a recovery. Further, in many cases, CTL model checking algorithms
can be extended to handle the alternation-free fragment of the powerful µ-calculus
logic [Koz83].

OMG is an on-the-fly algorithm. This means that it only analyzes parts of the
model, required in order to determine satisfaction of the examined property. Abstrac-
tion is used to enable termination (for infinite-state systems) or to obtain speedups (for
finite-state systems).

As an intuition, consider the case of reachability analysis, expressed in CTL by
formulas of the form AGp. Given a state s in a model M , checking M, s |= AGp

amounts to checking that all states reachable from s inM satisfy the property p. OMG
explores the states reachable from s in an on-the-fly manner (i.e. lazily), checking if
they all satisfy p. If it finds a state that does not satisfy p, a counterexample is found
and the algorithm terminates with a negative answer.

Terminating with a positive answer, on the other hand, requires visiting all reachable
states. We note, however, that if all successors of a state s have been visited, and all
satisfy p, then no further analysis of s is required. If this property holds for all visited
states, then OMG terminates with a positive answer. However, analyzing all reachable
states may be infeasible. To overcome this issue, OMG uses abstraction. It associates
an abstract state ŝ with each visited state s, and uses the abstract states when forming
an inductive invariant. This may accelerate convergence or even make it feasible, for
the infinite-state case.

To further explain OMG, consider formulas of the form EGp. CheckingM, s |= EGp

3

amounts to searching for an infinite path π from s such that every state along π satisfies
p. When analyzing states reachable from s, if OMG encounters a state t that does not
satisfy p, it determines that no further analysis is required for t. This is because t
cannot be a part of a path that satisfies Gp. If an infinite path is not found and there
are no more states to analyze, OMG terminates with a negative answer.

For a positive answer, OMG seeks again an inductive invariant. However, now a
set of states D forms an inductive invariant for EGp, if every state in D, in addition
to satisfying p, has a successor in D. This is in contrast with the inductive invariant
for AGp, in which for each state, all successors need to remain in the invariant.

For both AGp and EGp, we use abstraction to form inductive invariants. When an
inductive invariant cannot be formed, we may refine the abstraction or further explore
parts of the concrete model.

The abstraction used by OMG defines both may and must transitions between ab-
stract states. May transitions over-approximate the set of concrete transitions. There-
fore, they are used in the inductive invariant for AGp, to show that all paths in the
model satisfy Gp. Must transitions under-approximate the set of concrete transitions.
Hence, they are used in the inductive invariant for EGp, to show that there exists a
path satisfying Gp.

These approximations allow OMG to handle general CTL formulas with nested
universal and existential path quantifiers. OMG analyzes a general CTL formula re-
cursively. For example, to determine if s |= p ∧ AXEGq, it checks if s |= p and, in
addition, if all successors of s satisfy EGq.

OMG maintains an important feature that allows it to handle recursively any nest-
ing of CTL operators: For a state s, which is associated with an abstract state ŝ,
if s |= φ has been determined, then all states associated with ŝ agree with s on the
satisfaction of φ.

Our method is suitable for model checking systems that have a finite branching de-
gree, with either a finite or an infinite number of states. However, it may not terminate
for infinite state systems.

We formalize and prove the correctness of our algorithm and present both an explicit
version of OMG and a symbolic one.

We implemented our algorithm on top of a combination of explicit and symbolic
representations, where symbolic representations are handled with SAT/SMT solvers.
Our experiments show that on a few examples, OMG outperforms IICTL [HBS12], a
state-of-the-art SAT-based algorithm for CTL.

4

Chapter 2

Preliminaries

AKripke structure is a tupleM = (S, S0, R, L), defined over a set of atomic propositions
AP . S is a set of states, S0 ⊆ S is a set of initial states, R ⊆ S × S is a transition
relation, and L : S → 2AP is a labeling function. Note that, R is a total relation.
Namely, for every s ∈ S there exists t ∈ S such that (s, t) ∈ R. From now on, the
notationsM,S, S0, R, L refer to a Kripke structureM = (S, S0, R, L) (a structure). We
sometimes refer to a Kripke structure as a Kripke model, or just a model. We use the
term cstate to abbreviate the term concrete state, which refers to states in S. A path
π = s0, s1, s2, . . . is an infinite sequence of states (that is, si ∈ S for every i ∈ N), such
that (sj , sj+1) ∈ R for every j ∈ N. We say that π is from s if s = s0. Given a cstate
s, a sequence of cstates s0, s1, . . . , sk is a consecutive sequence from s if s = s0 and
(si, si+1) ∈ R for every 0 ≤ i < k.
We next define CTL.

Definition 2.0.1. (Computation Tree Logic)
We refer to the set P = {A,E} as path quantifiers, and to the temporal operators
X,V, U next, until and release, respectively. Let AP be a set of atomic propositions.
CTL formulas are defined in the following manner:

• ⊤ and ⊥ are CTL formulas.

• For every p ∈ AP , p is a CTL formula.

• if φ1, φ2 are CTL formulas, then φ1 ∧ φ2, φ1 ∨ φ2 and ¬φ1 are CTL formulas.

• if φ1, φ2 are CTL formulas and P ∈ P, then PXφ1, Pφ1Uφ2 and Pφ1V φ2 are
CTL formulas.

We identify formulas of the form ¬¬φ with φ.
CTL formulas are interpreted over Kripke structures. Given a Kripke structure

M = (S, S0, R, L) and a state s ∈ S, the semantics of CTL (that is, the satisfaction
relation |=) are defined in the following manner [CGK+18]:

• M, s |= ⊤

5

• M, s ̸|= ⊥

• for p ∈ AP , M, s |= p ⇐⇒ p ∈ L(s).

• M, s |= ¬φ ⇐⇒ M, s ̸|= φ .

• M, s |= φ1 ∧ φ2 ⇐⇒ M, s |= φ1 and M, s |= φ2.

• M, s |= φ1 ∨ φ2 ⇐⇒ M, s |= φ1 or M, s |= φ2.

• M, s |= EXφ ⇐⇒ there exists a path π = s0, s1, . . . from s s.t. M, s1 |= φ.

• M, s |= AXφ ⇐⇒ all paths π = s0, s1, . . . from s satisfy M, s1 |= φ.

• M, s |= Eφ1Uφ2 ⇐⇒ there exists a path π = s0, s1, . . . from s s.t. ∃k ≥
0, such that M, sk |= φ2 and ∀0 ≤ i < k, M, si |= φ1.

• M, s |= Aφ1Uφ2 ⇐⇒ for all paths π = s0, s1, . . . from s it holds that ∃k ≥
0 s.t. M, sk |= φ2 and ∀0 ≤ i < k, M, si |= φ1.

• M, s |= Eφ1V φ2 ⇐⇒ there exists a path π = s0, s1, . . . from s s.t. ∀j ≥
0 if ∀i < j, (si ̸|= φ1) then sj |= φ2.

• M, s |= Aφ1V φ2 ⇐⇒ for all paths π = s0, s1, . . . from s it holds that ∀j ≥
0 if ∀i < j, (si ̸|= φ1) then sj |= φ2.

Note that the release temporal operator is the dual of the U operator. That is,
φ1V φ2 ≡ ¬(¬φ1U¬φ2) ≡ Gφ2∨φ2U(φ1∧φ2). Other CTL operators can be expressed
using U and V , as Gψ ≡ (False)V (ψ) and Fψ ≡ TrueUψ.

For a set of states D ⊆ S, D |= φ ⇐⇒ ∀s ∈ D, s |= φ. The notation s |= φ is
sometimes used if M is clear from the context.

For a CTL formula φ and i ∈ N, we write φi to denote a sequence of i consecutive
occurances of φ. This is defined formally in the following manner: φ0 = ϵ (the empty
formula) and φi+1 = φiφ.
The following definitions are also used throughout this paper.

Definition 2.0.2. (Equi-labeled states)
LetM be a Kripke structure, and let s, t ∈ S be cstates inM . Then, s, t are equi-labeled
if L(s1) = L(s2).

We denote s ≡0 t if s, t are equi-labeled. We denote the equivalence class of a state s
under this relation by [s]0.

Definition 2.0.3. (Relation-induced function)
Let Q ⊆ A × B be a relation. We define the function Q̂ : A → 2B so that for every
a ∈ A, Q̂(a) = {b ∈ B | (a, b) ∈ Q}. We also define the function ̂̂

Q : 2A → 2B such
that for every D ∈ 2A,

̂̂
Q(D) =

∪
d∈D Q̂(d). By abuse of notations, we use Q, Q̂, ̂̂

Q

interchangeably.

6

Our work uses the notion of unwinding trees, defined in the following manner.

Definition 2.0.4. (Unwinding Tree)
Let r ∈ S. Let T = (V,E) be a finite directed graph in the shape of a tree with
root v0 ∈ V . Let C : V → S be a concretization function. Then, T is an unwinding
tree of M from r, if C(v0) = r and for u ∈ V which is not a leaf, it holds that
(u, v) ∈ E ⇐⇒ (C(u), C(v)) ∈ R.

The tree represents a finite unwinding of the model M from the cstate r. We refer
to r as the root of T , denoted root(T). We use the notations n ∈ V and n ∈ T

interchangeably. The vertices of T are called nodes. Edges in the tree connect a
node with each of its successors. A finite sequence of consecutive nodes in the tree,
n1, n2, . . . , nk is called a trace. A trace is maximal in T if nk is a leaf. A node n ∈ T is
labeled with s if C(n) = s. The set of cstates that are labeled on the tree, {C(n) | n ∈ V },
is denoted C(T).

We sometimes use the node n ∈ T and the cstate C(n) ∈ S interchangeably. As
such, we write n |= φ when C(n) |= φ. Note that any node n ∈ T is the root of an
unwinding tree of M from C(n), which is now the root.

Note also, for each node n ∈ T which is not root(T) there exists a single node n′ ∈ T
which is the parent of n in T (that is, (n′, n) ∈ E), as T is a tree. For every node in
T which is not the root, we denote by parent(n) the parent of n in T . This notation
is undefined for the root of T . The depth of node n ∈ T is the number of edges in
the (single) path from it to root(T). The depth of root(T), is defined to be zero, and
the depth of a node n, denoted depth(n) equal depth(parent(n)) + 1. The depth of an
unwinding tree T is defined as maxn∈T depth(n).

A path π = s0, s1, . . . extends a trace τ = n0, . . . , nk if for every 0 ≤ i ≤ k,
C(ni) = si. Then, π is referred to as an extension of τ . Note that every trace can
be extended to an infinite path, as the transitions relation is total. Additionally, each
path π from C(root(T)) extends a single maximal trace.

We demonstrate our method over the running example, given in Figure 2.1. Con-
sider M over AP = {p, q, r}, presented on the left-hand-side of Figure 2.1. Assume
that s0 is the initial state. The right-hand-side of Figure 2.1 presents an unwinding
tree T of M from s0, such that for every node ni ∈ T , it holds that C(ni) = si, and
C(n′

2) = s2. Throughout this running example, we consider the model checking task
of checking whether M, s0 |= AX(ApV q). Note that s3 and s4 are unreachable from s0

and therefore are not represented in T .

2.1 The full abstract structure

An important aspect of OMG is its use of abstraction. OMG builds an abstraction
on-the-fly. That is, along its run, the algorithm gradually builds an abstract structure
and keeps changing it according to the evolvement of the concrete structure using T .

7

For M over AP , a set of abstract states Ŝ and an abstraction function abs : S → Ŝ,
we present the notion of full abstract structure [SG04] (sometimes referred to as the full
abstract model), which is built by OMG lazily. Namely, we do not necessarily build the
full abstract model, but only parts of it, as needed. The full abstract model is defined
over the same set of atomic propositions AP . We require abs to satisfy for every s, t ∈ S
that if abs(s) = abs(t) then L(s) = L(t). We use the term astate to abbreviate the
term abstract state.

Each abstract state ŝ represents a set of concrete states that are mapped to it by
abs. That is, an abstract state ŝ represents the set {s ∈ S | abs(s) = ŝ}. As such, we
use both these representations interchangeably, and use the notation s ∈ ŝ if abs(s) = ŝ.
Note that since abs is a function, each concrete state is mapped to a single abstract
state. Formally, for every ŝ, t̂ it holds that ŝ ∩ t̂ = ∅.

The full abstract structure is defined as follows: M̂ = (Ŝ, R̂may, R̂must, L̂), where
L̂ : Ŝ → 2AP is the labeling function, defined for every ŝ ∈ Ŝ such that L̂(ŝ) = L(s) for
some s ∈ ŝ. Note that this is well-defined as of the restriction on abs.

The definition of the relation R̂must requires the notion of hyper-transitions. Given
an astate ŝ ∈ Ŝ and a set D̂ ⊆ Ŝ, a hyper-transition from ŝ to D̂ is a pair (ŝ, D̂).
If D̂ = {t} is a singleton, we refer to the hyper-transition (ŝ, D̂) as a transition. We
identify a transition (ŝ, t̂) with the hyper-transition (ŝ, {t̂}).

The transition relations of M̂ are defined as follows:

• The set of may transitions R̂may = {(ŝ, t̂) ∈ Ŝ × Ŝ | ∃s′ ∈ ŝ ∃t′ ∈ t̂ [(s′, t′) ∈ R]}.

• The set of must hyper-transitions R̂must = {(ŝ, D̂) ∈ Ŝ × 2Ŝ | ∀s′ ∈ ŝ ∃t′ ∈∪
D̂ [(s′, t′) ∈ R]}. Note that, if (ŝ, D̂) ∈ R̂must, then for every Ê ⊇ D̂, (ŝ, Ê) ∈

R̂must.

OMG conducts iterative refinements of the abstract state space by applying splits op-
erations.

Definition 2.1.1. (Abstract state split)
Given a set Ŝ and an abstraction function abs, Ŝ′ is a split of Ŝ w.r.t. a property P and
an astate ŝ ∈ Ŝ if there exist ŝ′, ŝ′′ ∈ Ŝ′ s.t. ŝ′ = {s ∈ ŝ | s |= P}, ŝ′′ = {s ∈ ŝ | s ̸|= P}
and Ŝ′ = (Ŝ \ {ŝ}) ∪ {ŝ′, ŝ′′}. Note that, ŝ′ ∪ ŝ′′ = ŝ and ŝ′ ∩ ŝ′′ = ∅.

n0 n1

n6n5

n2

n8n7n9

n′
2

s0

q

q, r q, r q, r

qp, q
q

s1 s2 s3 s4

s5 s6 s7 s8s9

Figure 2.1: Kripke model (left) and its unwinding tree (right)

8

The abstraction abs′ that corresponds to Ŝ′ is defined as follows:

abs′(s) =


ŝ′, abs(s) = ŝ ∧ s |= P

ŝ′′, abs(s) = ŝ ∧ s ̸|= P

abs(s), otherwise

Ŝ′ is a split of Ŝ if there exist a property P and an astate ŝ ∈ Ŝ s.t. Ŝ′ is a split of Ŝ
w.r.t. P and ŝ. We refer to P as the split property, and say that ŝ is split and ŝ′, ŝ′′ are
the splits of ŝ.

Definition 2.1.2. (May closure)
A pair of the form (ŝ, A), where A ⊆ Ŝ is a may closure if for every abstract state t̂
s.t. (ŝ, t̂) ∈ R̂may, it follows that t̂ ∈ A. That it, all may transitions from ŝ lead to an
abstract state in A.

We define a notion of abstract state conformity in order to help future statements
and lemmas.

Definition 2.1.3. (Abstract state conformity) Let ŝ be an abstract state and φ be a
CTL formula. Then, ŝ conforms w.r.t. a formula φ if for every CTL subformula φ′ of
φ, it holds that: ∀s ∈ ŝ, s |= φ′ ⇐⇒ ŝ |= φ′.

9

10

Chapter 3

Main Algorithm Description

In this chapter we give a high-level description of our algorithm for CTL model check-
ing. We also present the main data structures and techniques that are used.

3.1 Abstract models corresponding to the unwinding trees

Given an unwinding tree T of a structure M , we consider the astates that “appear”
on the tree. That is, the astates corresponding to concrete states that label the tree.
Formally, the abstraction function abs is extended to the nodes of T in the following
manner: ∀n ∈ T, abs(n) = abs(C(n)). Now, abs(T) represents the set of all astates
corresponding to nodes on T . That is, abs(T) = {abs(n) | n ∈ T}. Given a trace τ
in T , abs(τ) represents the set of all astates corresponding to nodes on τ . That is,
abs(τ) = {abs(n) | n ∈ τ}.

OMG assigns astates to nodes in T and updates them lazily. It builds the part of the
abstract model, induced by the abstraction that is currently used, without computing
the abstract model fully. In fact, OMG holds different abstract structures during its
run. We use a series of abstract structures M̂j = (Ŝj , R̂

may
j , R̂must

j , L̂j), j ∈ N, with
potentially different state spaces.

The set Ŝj only changes due to two reasons as the algorithm progresses:

• Abstract states are split: Along the run of the algorithm, an astate ŝ may be split
into two parts, as described in Definition 2.1.1.

• New cstate is discovered: Along the run of the algorithm, it may be the case that
a node n is added to T due to unwinding, but there does not exists an astate
ŝ ∈ Ŝj such that C(n) ∈ ŝ. Then, OMG adds a new astate ŝ = [C(n)]0. It is
shown next that, if C(n) /∈

∪
Ŝj , then for every cstate t ∈ ∪

Ŝj , it holds that
C(n) ̸≡0 t. As such, the new astate and each of the existing astates are disjoint.

According to the changes in Ŝj , the rest of the components of the abstract model
change as well. For each j ∈ N, the abstraction (partial) function absj : S → Ŝj is

11

defined so that for every s ∈ ∪
Ŝj , absj(s) is the (uniquely defined) ŝ ∈ Ŝj s.t. s ∈ ŝ.

The first set of abstract states, Ŝ0, is the singleton {[C(root(T))]0} ⊆ {[s]0 : s ∈ S}.

Lemma 3.1.1. At every point along the run of the algorithm, the abstract state space
Ŝ satisfies that ∪

Ŝ =
∪

n∈T [C(n)]0.

Proof. We prove the lemma by induction over the changes in the abstract state space.
For the base case, T contains a root node n, and it follows that Ŝ = {abs(n)} =
{[C(n)]0}, and so the claim follows. For the induction step, assume that the abstract
state space Ŝ satisfies that ∪

Ŝ = {[C(n)]0 | n ∈ T}, and that the state space now
changes. As explained above, the change may be caused by one of two reasons:

• Abstract state split: There exists an astate ŝ ∈ Ŝ that is split into ŝ1, ŝ2. Now,
the new set of astates Ŝ′ equals (Ŝ \ ŝ)∪ {ŝ1, ŝ2}. As of the fact that ŝ = ŝ1 ∪ ŝ2,
it follows that ∪

Ŝ′ =
∪
Ŝ, and so the claim holds as of the induction assumption.

• Concrete state discovery: In this case, a new concrete state s is discovered and
added as a node in T . In this case, abs(s) ̸= ŝ for every ŝ ∈ Ŝ. Thus, s /∈ ∪

Ŝ,
and by the induction assumption s /∈

∪
n∈T [C(n)]0. In particular, we get that

for every n ∈ T, L(s) ̸= L(n). Now, when adding [s]0 to Ŝ, the new abstract
state space is Ŝ′ = Ŝ ∪{[s]0}. This new abstract state space satisfies the required
property. ■

OMG maintains the following data about the abstract model, which is saved in
absStructure:

• Abstract states: Different astates are discovered as OMG progresses. However,
it may be the case that not all astates in the current Ŝ correspond to nodes on
T . For example, a split of an astate ŝ may result in astates ŝ′, ŝ′′ s.t. ŝ′ or ŝ′′

contains no cstates from T . The abstract model contains all of the astates that
were discovered along the run of OMG.

• May transitions: New astates may be created when new cstates are discovered
by the algorithm and added to item, creating new may transitions between these
astates. The algorithm sometimes learns that an astate ŝ has no may transitions
to some astate ŝ′. The abstract model records such pairs in a relation Rmay

no , that
contains all pairs (ŝ, ŝ′) for which it learns that there is no may-transition from ŝ

to ŝ′.

• Must hyper-transitions: Like in the case of may-transitions, the abstract model
records pairs (ŝ, D̂), for which it learns that (ŝ, D̂) ∈ R̂must.

• May closures: OMG records pairs of the form (ŝ, A), for which it is inferred that
the pair is a may closure or that it is not a may closure.

12

The main purpose of absStructure is to maintain all information about the abstract
model that has been learned so far. This is important since otherwise an on-the-fly
algorithm may recompute again and again such information.

In addition to gathering data about the abstract model, information that is com-
puted during a run of OMG is saved even if it is not currently used. For example, after
computing the successors of a cstate s, they are recorded. Later, when computing the
successors of another node n s.t. C(n) = s, this information is re-used.

3.2 Recursive handling of CTL formulas

OMG is a recursive algorithm. We first define the notion of a goal.

Definition 3.2.1. (Goal)
A goal is a pair g = (n, φ), where n ∈ T and φ is a CTL formula. We say that g holds
if n |= φ.

The model checking task of whether a node n satisfies φ is thus translated into
checking whether the goal (n, φ) holds. For that matter, the algorithm decomposes
this goal into subgoals lazily, which are checked recursively. Unlike explicit model
checking (presented in [CGK+18]), where subformulas are checked in the entire model,
in our work, subgoals are only checked when needed. For example, to check the goal
(n, p ∧AXEGq), we check the goals (n, p) and (n′, EGq) for every successor n′ of n in
T . When OMG finishes checking a goal (n, φ), it labels n with either φ or ¬φ.

OMG is composed of subprocedures, each handles CTL formulas of a certain form,
according to the main connective of the formula. It contains subprocedures to handle
atomic propositions, logical connectives, and the operators EX,AV,EV . We also need
the following definition.

Definition 3.2.2. For an astate ŝ ∈ Ŝ, ŝ satisfies a formula φ, denoted ŝ |= φ, if for
every s ∈ ŝ it holds that s |= φ.

The following property is required when checking compound CTL formulas, and
OMG makes sure it holds. It is be further explained in later sections.

Property 3.2.3. Let g = (n, φ) be a subgoal checked by OMG. Let M̂j be the abstract
model obtained after OMG finishes to evaluate g. Let ŝ ∈ Ŝj be the astate that satisfies
C(n) ∈ ŝ. Then, ∀t ∈ ŝ, t |= φ ⇐⇒ g holds.

As a consequence of the lemma, after checking a goal (n, φ), OMG labels abs(n) as
well. Thus, checking goals of the form (n′, φ) where abs(n) = abs(n′) becomes easy.

3.3 Initialization and Recursive Activation

The initialization procedure is presented in Algorithm 3.1 and explained below.

13

Algorithm 3.1 OMG
Input: Kripke structure M , cstate s ∈ S, φ ∈ CTL
Output: True if M, s |= φ, False otherwise

1: global T = initUnwindingTree(M, s)
2: global abs = initAbstraction(M)
3: global absStructure = initAbstractStructure(M)
4: Let g be the goal (root(T), φ)
5: return RecurCtl(g) ▷ See Algorithm 3.2

The initialization method is given a structure M , a cstate s ∈ S and a specification
φ. The global data structures are initialized at the beginning of the run. The unwinding
tree T is initialized to a tree that contains a single node labeled with s. The abstraction
function abs is initialized to mapping s to [s]0. The abstract structure, absStructure,
is initialized to contain the astate [s]0. RecurCtl is then called over the root of T
and the specification, to check whether s |= φ.
The procedure RecurCtl is presented below.

Algorithm 3.2 RecurCtl
Input: Goal g = (n, φ)
Output: True if (n, φ) holds, False otherwise

1: if φ ∈ {⊤,⊥} then
2: Return the boolean value of φ
3: Compute ŝ = abs(n)
4: if ŝ is labeled with φ or ¬φ then ▷ for every p ∈ AP , p is decided for ŝ
5: return the boolean value ŝ |= φ

6: Let # be the main connective of φ
7: Let McResult = Handle#(g)
8: if McResult is True then
9: Label abs(n) with φ

10: else
11: Label abs(n) with ¬φ
12: return McResult

After initialization, RecurCtl analyzes the goal (root(T), φ), to check whether
s |= φ. Depending on the main connective of φ, the appropriate subprocedure is called.
RecurCtl is called by every such subprocedure to further analyze subformulas of φ.

Given a goal g = (n, φ), every subprocedure updates absStructure by adding either
the label φ or the label ¬φ to the astate abs(n). The formula φ is then said to be
decided w.r.t. state abs(n).

Note that along a run of OMG, if an astate is decided for some formula, it is also
decided for all of its subformulas, due to both Property 3.2.3 and the recursive nature
of OMG.

In the following chapters we first describe the subprocedures for checking ApV q and
EpV q and then the subprocedures for the other operators.

14

Chapter 4

Handling ApVq

We provide intuition for handing formulas of the form AGp, and then extend it to
formulas of the form ApV q.

4.1 Intuition to AG

We explain the algorithm for AGp, and then extend it for formulas of the form ApV q,
where p, q ∈ CTL.

Consider the formula AGp. Given a cstate s, we explore the states reachable from it
in order to check whether they all satisfy p. For this purpose, we develop the unwinding
tree T rooted at a node n. The unwinding tree is developed one node at a time,
according to some node-choosing heuristic. A promising heuristic is developing nodes
with minimal depths first, unless some node is marked as “urgent”, in which case it
is the next node to be developed. An example for the latter case can be found in the
procedure indAV, described later in this chapter.

Whenever we develop a node m in the tree, we check whether m |= p. If it does,
then the algorithm goes on and develops the tree further. Otherwise, the trace from n

to m is a violation of the statement n |= AGp, and False is returned.
Up to this point, our method is most suitable for refutation. If S is finite, then

after developing at most |S| levels of the tree without halting, we may terminate with
a positive answer. However, we wish for our algorithm to terminate with a positive
answer before unwinding that many levels of the tree. For that, we use an inductive
invariant suitable for AGp, defined in the following manner:

Definition 4.1.1. (Inductive invariant for AGp)
Let p be a CTL formula. A set D ⊆ Ŝ is an inductive invariant for AGp if the following
conditions hold:

• for every ŝ ∈ D and for every t̂ such that (ŝ, t̂) ∈ R̂may, it holds that t̂ ∈ D.

• for every ŝ ∈ D, ŝ |= p.

15

Recall that ∪
D consists of all cstates that are mapped to any ŝ ∈ D.

Observation 4.1.2. If D is an inductive invariant for AGp, then for every s ∈ ∪
D,

it holds that s |= p.
This holds as every cstate s ∈ ∪

D is assigned an astate ŝ ∈ D s.t. ŝ |= p. As of
Property 3.2.3, we get that s |= p.

Lemma 4.1.3. Let p be a CTL formula. If D is an inductive invariant for AGp, then
∀s ∈

∪
D, s |= AGp. By Definition 3.2.2, we also have ∀ŝ ∈ D, ŝ |= AGp.

Before proving Lemma 4.1.3, we prove the following lemma.

Lemma 4.1.4. Let p be a CTL formula, D be an inductive invariant for AGp and
s ∈

∪
D. Let π = s0, s1, . . . be a path from s. Thus, for every k ≥ 0 it holds that

sk ∈
∪
D.

Proof. We prove this by induction over k.
For the base case, k = 0. Indeed, as s0 = s, it follows that s ∈ ∪

D, and so the base
case is proved.

We now prove the induction step. First, by the induction hypothesis, we get that
sk ∈

∪
D. We now prove that sk+1 ∈

∪
D.

As sk ∈
∪
D, there exists an astate ŝk ∈ D s.t. sk ∈ ŝk. Let ŝk+1 ∈ Ŝ be

abs(sk+1) (that is, sk+1 ∈ ŝk+1). As (sk, sk+1) ∈ R, we get that (ŝk, ŝk+1) ∈ R̂may, by
the definition of may transitions. By Definition 4.1.1, we get that ŝk+1 ∈ D, and so
sk+1 ∈

∪
D, as required. ■

We now prove Lemma 4.1.3

Proof. Let ŝ ∈ D, and assume by contradiction that it does not hold that ŝ |= AGp

Then, there exists s ∈ ŝ ⊆ ∪
D such that s ̸|= AGp. Thus, s |= EF¬p, and so there

exists a path π = s0, s1, . . . in M , s.t. s = s0 and there exists k ≥ 0 s.t. sk |= ¬p. Now,
consider the path π. It holds that s0 = s ∈

∪
D, and so Lemma 4.1.4 applies for π.

Thus, sk ∈
∪
D. By Observation 4.1.2, we get that sk |= p, which is a contradiction.

We conclude that s |= AGp. ■

Our algorithm checks whether abs(T) is an inductive invariant for AGp. If this is
the case, then all may-transitions, originating in an astate in D lead to astates in D.
Thus, D is an inductive invariant for AGp.

If abs(T) is not an inductive invariant, then there is an astate ŝ ∈ abs(T) that has
a may transition to an astate t̂ /∈ abs(T). In this case, either more unwinding should
be conducted or the abstraction is too coarse to prove the existence of an inductive
invariant. We explain how to handle these cases in the next section, in which the more
general case of ApV q is discussed.

16

4.2 Extension to ApVq

We now extend the algorithm for AGp to the ApV q case. We require all paths π from
s to satisfy either Gq or qU(q ∧ p), which is a necessary and sufficient condition for
s |= ApV q to hold.

For that, the unwinding is changed. A trace n0, . . . , nk is a counterexample to the
statement s |= ApV q if for every i < k, ni |= q ∧ ¬p and nk |= ¬q. If such a trace is
found, the algorithm returns a negative answer. If a node that satisfies q ∧ p is found,
this node is not further developed, as all paths that extend it satisfy qU(p ∧ q).

We define the notion of an inductive invariant for ApV q, which allows OMG to
prove that s |= ApV q without exploring the entire state-space.

Definition 4.2.1. (Inductive invariant for ApV q)
Let p, q be CTL formulas. Two sets of astates (D,B), are an inductive invariant for
ApV q if the following holds:

• ∀ŝ ∈ D, ∀t̂ ∈ R̂may(ŝ) : t̂ ∈ D ∪B.

• ∀ŝ ∈ B, ŝ |= q ∧ p.

• ∀t̂ ∈ D, t̂ |= q ∧ ¬p.

The intuitive meaning of the invariant is that every state in it either satisfies q ∧ p,
or it satisfies q ∧ ¬p and all of its successors are contained in the invariant.

Observation 4.2.2. If (D,B) is an inductive invariant for ApV q, then for every s ∈∪
D it holds that s |= q ∧ ¬p, and for every s ∈ ∪

B it holds that s |= q ∧ p.
This holds as every cstate s ∈ ∪

D is assigned an astate ŝ ∈ D s.t. ŝ |= q ∧¬p, and
as of Property 3.2.3, we get that s |= q ∧ ¬p. Similarly, for s ∈ ∪

B, it is assigned an
astate ŝ ∈ B s.t. ŝ |= q ∧ p, and as of Property 3.2.3, we get that s |= q ∧ p.

Lemma 4.2.3. Let p, q be CTL formulas. If (D,B) is an inductive invariant for
ApV q, then for every s ∈

∪
(D ∪B) it holds that s |= ApV q, and so for every ŝ ∈

(D ∪B), ŝ |= ApV q.

Before proving Lemma 4.2.3, we prove the following lemma.

Lemma 4.2.4. Let p, q be CTL formulas, (D,B) be an inductive invariant for ApV q
and s ∈

∪
(D ∪B). For every k ≥ 0 and for every path π = s0, s1, . . . , from s one of

the following holds:

• ∃0 ≤ j ≤ k s.t. sj ∈
∪
B and si ∈

∪
D for every 0 ≤ i < j.

• ∀i ≥ 0, si ∈
∪
D.

17

Proof. We prove this by induction on k. For the base case, k = 0. Let π be a path
from s. Indeed, s0 = s ∈

∪
D ∪B. Thus, either s0 ∈

∪
D or s0 ∈

∪
B, and so the

requirement holds.
For the induction step, let π be a path from s. By the induction hypothesis, we get

that one of the following holds:

• ∃0 ≤ j ≤ k s.t. sj ∈
∪
B and si ∈

∪
D for every i < j. In this case, it also holds

that there exists j′ = j such that 0 ≤ j′ ≤ k+1, sj′ ∈
∪
B and si ∈

∪
D for every

i < j′, and so the claim holds.

• ∀i ≤ k, si ∈
∪
D. In this case, it holds in particular that sk ∈

∪
D. Thus,

there exists an astate ŝk ∈ D s.t. sk ∈ ŝk. Let ŝk+1 ∈ Ŝ be abs(sk+1) (that is,
sk+1 ∈ ŝk+1). As (sk, sk+1) ∈ R, we get that (ŝk, ŝk+1) ∈ R̂may, by the definition
of may transitions. By Definition 4.2.1, we get that ŝk+1 ∈ D ∪ B. If ŝk+1 ∈ D,
the second requirement of this lemma holds. Otherwise, if ŝk+1 ∈ B, then the
first one holds. ■

We now prove Lemma 4.2.3

Proof. Let s ∈ ∪
(D ∪B), and assume by way of contradiction that s ̸|= ApV q. Thus,

s |= E(¬p)U(¬q), and so there exist a path π = s0, s1, . . . from s and k ≥ 0 s.t. sk |= ¬q,
and for every 0 ≤ i < k it holds that si |= ¬p.

Consider the path π. It holds that s0 = s ∈
∪
D ∪B, and so Lemma 4.2.4 applies

for k. However, both possible consequences of the lemma do not hold, as shown below:

• It does not hold that ∃0 ≤ j ≤ k s.t. sj ∈
∪
B and si ∈

∪
D for every i < j:

– For every 0 ≤ j < k, sj ̸|= p, and as of Observation 4.2.2 it holds that
sj /∈

∪
B.

– For j = k, sj ̸|= q and so sj /∈
∪
B.

Either way, this possible consequence does not hold.

• It does not hold that for every 0 ≤ i ≤ k, si ∈
∪
D, as sk ̸|= q and so sk /∈

∪
D

by Observation 4.2.2.

Neither of the possible results of Lemma 4.2.4 holds, which is a contradiction. Thus,
s |= ApV q. ■

OMG returns a positive answer when abs(T) can be divided into two sets D,B s.t.
(D,B) is an inductive invariant for ApV q.

As AGq ≡ A(false)V q, the algorithm for ApV q is a proper generalization of the
algorithm for AGq. This is due to the fact that if p = False then B = ∅, in which case
Definition 4.2.1 is identical to Definition 4.1.1.

18

Our algorithm does not change in case p, q, are general CTL formulas (and not
necessarily atomic propositions). This is due to the fact that the algorithm handles
subgoals by need, such that when querying whether a subgoal of the form (m, p) holds,
it recurs over that subgoal before going on.

4.3 The full algorithm

4.3.1 HandleAV description

Algorithm 4.1 HandleAV
Input: Goal g = (initNode, φ = ApV q)
Output: True if initNode |= φ, False otherwise

1: ToV isit← {initNode} ▷ Nodes to be visited
2: while ToV isit ̸= ∅ do
3: Choose nextNode from ToV isit
4: Let τ be the trace from initNode to nextNode
5: UpdateAbstract(nextNode)
6: RecurCtl(nextNode, q)
7: if nextNode ̸|= q then
8: StrengthenTrace(τ)
9: return False

10: RecurCtl(nextNode, p) ▷ nextNode |= q
11: if nextNode ̸|= p then
12: Add successors of nextNode to ToV isit
13: if indAV(initNode, p) then
14: return True
15: StrengthenSubtree(initNode)
16: return True

HandleAV is presented in Algorithm 4.1. In line 2 we iterate over all nodes in
ToV isit. In each iteration, HandleAV picks a node nextNode from ToV isit. We say
that in this iteration, nextNode is examined. If ToV isit becomes empty, then there
are no more nodes to examine, and so we return True. An example of that is the
case where initNode |= p ∧ q. The strengthening conducted in line 15 (explained in
section 4.4) ensures that all astates in abs(T) satisfy ApV q as well. This information
is recorded in absStructure.

In line 5, the data structures of absStructure are updated. If absStructure con-
tains an astate ŝ s.t. abs(nextNode) = ŝ, nothing is changed. Otherwise, the astate
[nextNode]0 is created and added to absStructure. Additionally, HandleAV sets
abs(nextNode) = [nextNode]0.

In line 6, RecurCtl is called to check whether nextNode |= q. If it does not, then
τ proves that initNode ̸|= ApV q. In that case, τ is strengthened (in order to guarantee
that abs(initNode) ̸|= ApV q as well) and False is returned. All astates in abs(τ) after
strengthening do not satisfy ApV q, and we record this in absStructure by labeling

19

them with ¬ApV q.
If line 10 is reached, then it is known that nextNode |= q. Then, we check whether

nextNode |= p. If it does, then we stop unwinding nextNode, as all paths from
C(initNode) that pass through nextNode (that is, all paths that extend τ) satisfy
qU(q ∧ p), and in particular pV q. We then call indAV. If, however, nextNode ̸|= p

(line 11), the successors of nextNode are computed and added to T . The new nodes
are added to ToV isit to be examined later in the run.

In line 13, indAV is called to check whether abs(T) can be partitioned to (D,B)
which form an inductive invariant for ApV q. If so, the algorithm returns True. In that
case, all astates in abs(T) are labeled with ApV q due to Lemma 4.2.3. Otherwise, it
goes on to the next iteration of the loop in line 2.

4.3.2 indAV description

The procedure indAV is presented in Algorithm 4.2.

Algorithm 4.2 indAV
Input: Unwinding tree T rooted at initNode, p ∈ CTL
Output: True if abs(T) can be partitioned to an inductive invariant, False otherwise

1: toCheck ← {ŝ ∈ abs(T) | ŝ ̸|= p} ▷ We assume that every ŝ ∈ abs(T) satisfies q
2: while toCheck ̸= ∅ do
3: Choose abstract state ŝ from toCheck, and let n ∈ T s.t. abs(n) = ŝ
4: isClosure ← IsMayClosure(ŝ, abs(T))
5: if isClosure is True then
6: Update absStructure with the may closure (ŝ, abs(T)).
7: Remove ŝ from toCheck
8: else
9: Let t̂ /∈ abs(T) such that (ŝ, t̂) ∈ R̂may

10: if C(n) has a successor t ∈ t̂ then
11: Continue to the next iteration of HandleAV with nextNode = n
12: else
13: SplitEX(ŝ, t̂)
14: return False
15: return True

The algorithm indAV iterates (in line 2) over the set of astates toCheck. This set
is initialized to contain all astate in abs(T) which do not satisfy p. We attempt to prove
that each astate in that set has a may closure to abs(T), in order to find an inductive
invariant.

Note that for every ŝ ∈ toCheck there exists n ∈ T such that abs(n) = ŝ, by
the definition of abs(T). If several such nodes n exist, each of them may be chosen.
Heuristically, it is preferable to choose a node with a maximal depth.

indAV checks (in line 4) whether (ŝ, abs(T)) is a may closure (see Definition 2.1.2)
1. If it is a may closure (line 5), indAV records it in absStructure and analyzes the

1Before conducting an explicit check, indAV uses the fact that if there exists a may closure in

20

next astate in toCheck after removing ŝ from toCheck (so it is not chosen again). If
(ŝ, toCheck) is a may closure for every ŝ ∈ toCheck, we return True in line 15.

Otherwise, there exists an astate ŝ ∈ toCheck such that (ŝ, abs(T)) is not a may
closure. Before returning False (in line 14), we use the non-existence of the may closure
to proceed.

As a may closure does not exist, there exists an astate t̂ /∈ abs(T), s.t. (ŝ, t̂) ∈ R̂may.
There are two possible reasons for that:

• There are reachable cstates which were not discovered, and for which there is no
matching astate in abs(T).

• The abstraction is too coarse, and the may transition (ŝ, t̂) stems from unreachable
cstates that are mapped to ŝ.

In line 10, the algorithm attempts to identify which of the two reasons holds. It
does so by checking whether C(n) has a successor t ∈ t̂. If it does, we further unwinds
T from n (line 11). Otherwise, refinement is required in order to separate the cstates
from ŝ that have a concrete successor in t̂ from those which do not. For that, SplitEX
is applied in line 13.

SplitEX follows Definition 2.1.1, where the astate ŝ is split into two new astates,
ŝY , ŝN , according to the property P = {s ∈ S | ∃t ∈ t̂ s.t.(s, t) ∈ R}. It holds that
the cstates in ŝY satisfy P and the cstates in ŝN do not. We now show that both
new astates are not empty. As the if in line 10 is not taken, it holds that C(n) ∈ ŝN .
Moreover, as (ŝ, t̂) ∈ R̂may, there exist s∗ ∈ ŝ and t∗ ∈ t̂ such that (s∗, t∗) ∈ R. We
conclude that s∗ ∈ ŝY , and so ŝY ̸= ∅.

The abstract model absStructure is updated according to the split. All must hyper-
transitions of the form (ŝ, Ĝ) are replaced by the must hyper-transitions (ŝY , Ĝ) and
(ŝN , Ĝ). Then, must hyper-transitions of the form (t̂, D̂) s.t. t̂ is some astate and ŝ ∈ D̂
are replaced by must hyper-transitions (t̂, ((D̂ \ ŝ) ∪ {ŝY , ŝN})). Moreover, we add the
following data to absStructure: (ŝY , t̂) ∈ R̂must and (ŝN , t̂) ∈ R̂may

no .
Recall that, in line 15, we return True, as this line is reached if and only if we

proved for every ŝ ∈ toCheck that (ŝ, abs(T)) is a may closure. In this case, abs(T)
can be partitioned to (D,B) which form an inductive invariant for ApV q.

Example 4.3.1. We demonstrate HandleAV over the example in Figure 2.1. Consider
the subgoal (n1, ApV q). Initially, ToV isit = {n1}, and nextNode = n1 in the first
iteration. As n1 |= q and n1 ̸|= p, the successors of s1 are computed and added to T
(i.e., n2 is added to T). Let ŝ1 = [s1]0 = {s ∈ S | L(s) = {q, r}}. Next, HandleAV
checks whether ({ŝ1}, ∅) is an inductive invariant for ApV q. The check fails due to the
transition (s3, s4) ∈ R (s3 ∈ ŝ1 and s4 /∈ ŝ1). Since s1 does not have a successor in
ŝ1, SplitEX is applied over ŝ1, resulting in ŝ′

1 = {s1, s2} and ŝ′′
1 = {s3}. HandleAV

absStructure of the form (ŝ, D̂) s.t. D̂ ⊆ abs(T), then (ŝ, abs(T)) is also a may closure.

21

proceeds to the next iteration, where nextNode = n2. As s2 |= q ∧ ¬p it unwinds
n2, adding n′

2 to T . As abs(n1) = abs(n2) = ŝ′
1, HandleAV checks if ({ŝ′

1}, ∅) is an
inductive invariant for ApV q, and terminates with a positive answer.

We now prove a lemma that is a part of the proof of soundness of OMG.

Lemma 4.3.2. (Soundness of Algorithm 4.2)
Let T be an unwinding tree for a model M and let p, q ∈ CTL. Assume that for
every ŝ ∈ abs(T), ŝ conforms w.r.t. p and q (Definition 2.1.3), and also that ŝ |= q.
Then, indAV returns True if abs(T) can be partitioned to (D,B), s.t. (D,B) forms
an inductive invariant for ApV q, and False otherwise.

Proof. indAV contains a single loop in line 2. The set toCheck is initialized before the
loop, and in every iteration a single astate ŝ is examined. In every iteration of the loop,
if the if statement in line 5 is taken, then ŝ is removed from toCheck, and otherwise
the loop terminates and False is returned in line 14.

Thus, True is returned if and only if the if statement in line 5 is taken for every
ŝ ∈ toCheck, which means that toCheck becomes empty after all of the iterations of
the loop. On the other hand, False is returned if and only if there exists an astate
ŝ ∈ toCheck for which that if statement is not taken.

Assume first that True is returned. Thus, in every iteration of the loop, it is proved
for some astate ŝ ∈ toCheck (in line 4) that (ŝ, abs(T)) is a may closure. If True is
returned, then this is proved for all astates ŝ ∈ toCheck. We prove that this implies
that (D,B) is an inductive invariant for ApV q, where D = {ŝ ∈ abs(T) | ŝ ̸|= p} and
B = {ŝ ∈ abs(T) | ŝ |= p}. Note that abs(T) = D ∪B.

First, for every ŝ ∈ abs(T), by the assumption, ŝ |= q. By the definitions of D,B,
we get that for every ŝ ∈ B, ŝ |= q ∧ p and that for every t̂ ∈ D, t̂ |= q ∧ ¬p. Now,
let ŝ ∈ D, and let t̂ ∈ R̂may(ŝ). Recall that, ŝ is in toCheck at the beginning of
Algorithm 4.2 (by the definition of toCheck). As the if is taken when ŝ is examined,
we know that (ŝ, abs(T)) is a may closure. By the definition of may closure, we get
that t̂ ∈ abs(T) = D ∪B.

Assume now that False is returned. Thus, there exists an astate ŝ ∈ toCheck

s.t. the if statement is not taken, meaning that (ŝ, abs(T)) is not a may closure. As
ŝ ∈ toCheck, we get that ŝ ∈ D. However, by Definition 2.1.2, there exists t̂ /∈ abs(T)
s.t. (ŝ, t̂) ∈ R̂may. In particular t̂ /∈ D ∪ B. This is a contradiction to the definition of
an inductive invariant. Thus, abs(T) cannot be split to an inductive invariant. ■

Lemma 4.3.3. (Termination of Algorithm 4.2) If M is a finite structure, then Algo-
rithm 4.2 terminates after a finite number of steps.

Proof. Note that, in every step in the run of the algorithm, the abstract state space
in absStructure is bounded by |S|, as no astate may be empty. As such, the number
of iterations of the loop in line 2 (in Algorithm 4.2) is at most the number of astates

22

recorded in absStructure, which is finite. In each iteration, indAV checks whether
some astate ŝ satisfies that (toClose, abs(T)) is a may closure (line 4 in Algorithm 4.2).
This check is done by retrieving data from absStructure, and possibly checking the
satisfiabiliy of some boolean formula without quantifiers. This check is equivalent to
solving SAT , which is decidable (that is, can be done in a finite number of steps). As
there is a finite amount of iterations, and every iteration is conducted in a finite number
of steps, the algorithm terminates in a finite number of steps as well. ■

4.4 Strengthenings

Two types of strengthenings are performed by OMG. We first give motivation for the
strengthening, and then explain how it is done.

Recall that we wish for Property 3.2.3 to hold. It states that after checking a goal
g = (n, φ), it holds that n |= φ ⇐⇒ abs(n) |= φ. This lemma is essential for our
algorithm to handle general CTL formulas.

For instance, in order for D to be an inductive invariant for AGφ, where φ is a
complex formula, each astate ŝ ∈ D is required to satisfy φ, which is what the lemma
ensures.

4.4.1 Trace Strengthening

Consider line 8 in Algorithm 4.1, where τ , which proves that initNode ̸|= ApV q, is
strengthened. The trace τ alone does not ensure that every cstate t ∈ abs(initNode)
has a corresponding ”violating” trace, and so it does not guarantee that Property 3.2.3
holds. The function StrengthenTrace, presented in Algorithm 4.3, solves this prob-
lem.

Algorithm 4.3 StrengthenTrace
Input: Trace τ = (n0, n1, . . . , nk)

1: for each i = k, . . . , 1 do
2: SplitEX(abs(ni−1), abs(ni))
3: Let ŝY , ŝN be the splits of abs(ni−1).
4: Update abs(ni−1) to ŝY ▷ Explained below

Consider a trace of length one, denoted (n, n′), such that n′ ̸|= q. Thus, abs(n)
has to be refined to only contain cstates that, like C(n), have a successor in abs(n′) 2.
For traces of the form (n0, n1, . . . , nk), the refinement is done iteratively up the trace.
That is, the trace (ni−1, ni) is strengthened for every i = k, . . . , 1. After every split, the
astates that appear on the trace change dynamically, based on the result of the split
applied in the previous iteration. Let ŝ be abs(ni−1) before the split in line 2, which is
preformed w.r.t. the updated abs(ni). Then, abs(ni−1) is set to ŝY after the split.

2This is equivalent to intersecting abs(n) with the pre-image of abs(n′) w.r.t. R.

23

We prove the following lemma to assert the correctness of this algorithm.

Lemma 4.4.1. Let τ = (n0, n1, . . . , nk) be a trace in M over which Strengthen-
Trace is applied. For every 0 ≤ i ≤ k, let ŝk−i be abs(nk−i) after i iterations of the
loop in StrengthenTrace. Then, for every 0 ≤ i ≤ k, it holds for every s ∈ ŝk−i

there exists a series of cstates sk−i, sk−i+1, . . . , sk such that:

• s = sk−i.

• (sj , sj+1) ∈ R for every k − i ≤ j < k.

• sj ∈ ŝj for every k − i ≤ j ≤ k.

Moreover, the algorithm terminates in a finite number of steps.

Proof. We prove the Lemma by induction over i. For the base case, i = 0 and indeed
the Lemma holds for the series s of length one.

Assume that the Lemma holds after i iterations of the algorithm, and consider the
(i + 1)th iteration. In this iteration, abs(nk−i−1) is split w.r.t. the property P = {s ∈
S : ∃t ∈ S[(s, t) ∈ R ∧ t ∈ ŝk−i]}. Let ŝ be abs(nk−i−1) before the split. Note that
ŝk−i−1 is the astate abs(nk−i−1) after the split. It holds that ŝk−i−1 = ŝY , which is the
split of ŝ that satisfies P , as C(nk−i−1) ∈ ŝ, (C(nk−i−1), C(nk−i)) ∈ R and nk−i ∈ ŝk−i.
Due to the split, there exists a must hyper-transition from ŝk−i−1 to ŝk−i.

Let s ∈ ŝk−i−1 (recall that after this split, ŝk−i−1 = abs(nk−i−1)). Then, there exists
t ∈ ŝk−i s.t. (s, t) ∈ R. By the induction hypothesis, there exists a series of cstates
sk−i, sk−i+1, . . . , sk such that t = sk−i and sj ∈ ŝj for every k− i ≤ j ≤ k. Additionally,
(sj , sj+1) for every k − i ≤ j < k. Now, we show that the series s, sk−i, sk−i+1, . . . , sk

is the required series:

• s is the first cstate in the series.

• We showed that (s, t) = (s, sk−i) ∈ R, and for k − i ≤ j < k, it holds that
(sj , sj+1) ∈ R due to the induction hypothesis.

• s ∈ ŝk−i−1 by the definition of s, and for k − i ≤ j ≤ k it holds by the induction
hypothesis that sj ∈ ŝj .

Regarding termination, consider an iteration of the loop. It terminates as splitting
an astates and updating abs is done in a finite number of steps. As there are k iterations,
the algorithm terminates. ■

Example 4.4.2. We demonstrate strengthening using the example in Figure 2.1. Con-
sider the goal (n5, ApV q). Assume OMG finds that the trace τ = (n5, n7, n8) is a
counterexample to the statement n5 |= ApV q. Before returning False, trace strength-
ening is applied to τ , in order for Property 3.2.3 to hold. In this case, it is vital as
abs(s9) = abs(s5) before strengthening, however s9 |= ApV q and s5 ̸|= ApV q.

24

Thus, we need to split abs(s5) in a manner that distinguishes between s5, s9. The
split is done in two steps. First, we conduct SplitEX to abs(n7) w.r.t. abs(n8).
Secondly, we split abs(n5) w.r.t, the updated abs(n7), which is updated and changed in
the previous step of the strengthening.

4.4.2 Subtree Strengthening

Subtree strengthening is required in line 15 of Algorithm 4.1, when unwinding of all
traces from initNode is terminated. In this case, it is guaranteed that initNode |=
ApV q, as initNode |= AqU(p∧ q). However, it is not guaranteed that this holds for all
states s s.t. s ∈ abs(initNode). Recall that having all cstates in abs(initNode) satisfy
φ = A(qU(p ∧ q)) is important when φ is a subformula of the checked formula. In this
case, subtree strengthening is conducted.

Consider an unwinding tree T that is composed of a root node n with successors
t1, . . . , tj , which are leaves in T . Assume that n |= q ∧ ¬p, and that ∀1 ≤ i ≤ j, ti |=
p ∧ q. In such a case, n |= ApV q since all transitions from n reach ”good” states
(that is, states that satisfy p ∧ q). Thus, we split abs(n) w.r.t. the property of having
all successors in the set of astates {abs(t1), abs(t2), . . . , abs(tj)}. Formally, we define
P = {s ∈ S | ∀t ∈ R(s), t ∈

∪j
k=1 abs(tk)}. Note that n satisfies this property.

This split is referred to as SplitAX, and it is also used in chapter 6. In case of a
subtree of an arbitrary depth that should be strengthened, the generalization is done
bottom-up, in a post-order scan of the subtree. This guarantees that Property 3.2.3
holds.

The procedure is given in Algorithm 4.4.

Algorithm 4.4 StrengthenSubtree
Input: Subtree rooted at n

1: if n is a leaf then
2: return
3: for each successor n’ of n do
4: StrengthenSubtree(n’)
5: SplitAX(n)

We prove the following lemma to assert the correctness of this type of strengthening.

Lemma 4.4.3. Let T be an unwinding tree of M of depth k, over which Strength-
enSubtree is applied. Then, StrengthenSubtree terminates. Moreover, after its
termination, for every path π = s0, s1, . . . such that s0 ∈ abs(n0) there exists a maximal
trace τ = (n0, n1, . . . , nk) in T s.t. si ∈ abs(ni) for 0 ≤ i ≤ k.

Proof. We prove the Lemma by induction over k. Let n = root(T). For the base case,
k = 0, and so T = {n}. Indeed, n is a leaf in T and so the algorithm terminates.

25

Moreover, for each path π = s0, s1, . . . such that s0 ∈ abs(n0), there exists the maximal
trace (n) (of length 1), for which it holds that C(n) ∈ abs(n) by definition.

Assume that the Lemma holds for unwinding trees of depth at most k, and let T
be an unwinding tree of depth k + 1. Let π = s0, s1, s2, . . . s.t. s0 ∈ abs(n0), and
let t1, . . . , tl be the successors of n. We now prove termination of StrengthenSub-
tree for the induction step. First, as n is not of depth 0, it is not a leaf. Thus, the
if statement in line 1 is not taken. Next, as n has a finite amount of successor and
as each successor is the root of an unwinding tree of size at most k, we get by the
induction assumption that each of the recursive activations terminates. Later, Spli-
tAX is applied for n and it terminates in a finite number of steps as well. Overall,
StrengthenSubtree terminates.

We now prove the rest of the claim in the Lemma. As SplitAX is conducted for
n0 in line 5, it is guaranteed that for each s ∈ abs(n0) and for each t ∈ R(s) it holds
that t ∈ ∪l

i=1 abs(ti). In particular, for s0 ∈ abs(n0) and for s1 ∈ R(s0), it holds that
s1 ∈

∪l
i=1 abs(ti). Let 1 ≤ j ≤ l such that s1 ∈ abs(tj). Consider the subtree of T

rooted at tj . It is of length at most k, and so by the induction hypothesis for the path
s1, s2, . . . there exists a maximal path n1, . . . , nk, nk+1 such that n1 = tj and for each
1 ≤ i ≤ k + 1, si ∈ abs(ni). Now, as (s0, s1) ∈ R, the trace n0, n1, . . . , nk, nk+1 is
a maximal trace in T . Moreover, due to the induction hypothesis and the fact that
s0 ∈ abs(n0) by its definition, we get that the Lemma holds. ■

We now prove soundness of Algorithm 4.1.

Lemma 4.4.4. (Soundness of HandleAV)
Let g = (n, φ) be a goal, where φ = ApV q and p, q ∈ CTL. Assume that after
HandleAV checks a subgoal (m, f), it holds that abs(m) conforms w.r.t. f . Then,
if HandleAV terminates, it returns True if and only if g holds. Moreover, if it
terminates, abs(n) conforms w.r.t. φ after termination.

Proof. The loop in line 2 is conducted as long as ToV isit ̸= ∅. It is initialized to
{initNode}. In every iteration, a node nextNode is chosen from it and examined. By
the structure of HandleAV, once a node is examined by the algorithm, it is never
examined again (in particular, it never enters ToV isit again).

In every iteration, HandleAV recurs over the subgoal g′ = (nextNode, q) in line 6.
False is only returned from HandleAV if it examines a node nextNode s.t. after this
recursive activation, it holds that nextNode ̸|= q.

We observe HandleAV returns False only if it examines a node that does not
satisfy q. Thus, if a node is not a leaf in T , or it is not the last to be examined, then
it satisfies q.

Moreover, let n be a node in T which is not a leaf. Then, when it is examined, the
if statement in line 7 is not taken, as otherwise n would have been a leaf. Additionally,
the if statement in line 11 is taken, as otherwise n would have been a leaf. Thus, the

26

subgoal (n, q) holds and the subgoal (n, p) does not hold. In particular, we conclude
that if a node is not a leaf in T , it does not satisfy p.

Assume first that False is returned by HandleAV. Then, there exists a node
nextNode for which the if statement in line 7 is taken. Denote τ = n0, . . . , nk

(where nk = nextNode), and let π be an infinite path that extends τ . We prove
that π |= (q ∧¬p)U(¬q), and so initNode ̸|= ApV q. By the observations above, we get
that ∀0 ≤ i < k, ni |= q ∧ ¬p. As we know that nextNode ̸|= q, we get that indeed
π |= (q ∧ ¬p)U(¬q), and so initNode ̸|= ApV q. Thus, g does not hold.

We now prove that in this case, abs(initNode) conforms w.r.t. φ after False is
returned. Before False is returned (in line 9), StrengthenTrace is applied over τ .
According to Lemma 4.4.1, for each s ∈ abs(initNode), there exists a series of cstates
s0, s1, . . . , sk such that s = s0, (si, si+1) ∈ R for 0 ≤ i < k and si ∈ ŝi, where ŝi equals
abs(ni) after i iterations of the StrengthenTrace.

Let 0 ≤ i ≤ k, and let t̂i be the astate abs(nk−i) before calling StrengthenTrace.
It holds that si ̸|= p as t̂i does not satisfy p, and ŝi ⊆ t̂i (it is a split of t̂i). Due to
similar arguments, it holds that for 0 ≤ i < k, si |= q and sk ̸|= q. Let π be a path
that extends τ . Thus, π |= (q ∧ ¬p)U¬q, and so s ̸|= φ. As this is true for every
s ∈ abs(initNode), we get that abs(initNode) conforms w.r.t. φ.

Assume now that True is returned. As of the structure of the algorithm, True may
be returned either in line 14 or in line 16. We show that in both cases g holds and that
abs(n) conforms w.r.t. φ after HandleAV terminates.

• Assume True is returned in line 14. In this case, the function indAV is called
and returns true. Let n ∈ T . We show that n |= q. As indAV is called, n has
been examined, and the subgoal (n, q) has been checked. If n ̸|= q, the algorithm
would return False in line 9. Thus, n |= q.

As of the fact that for every astate ŝ ∈ abs(T) there exists n ∈ T s.t. n ∈ ŝ,
it holds that ŝ |= q due to the conformity assumption of this Lemma. Thus, all
astates in abs(T) satisfy q, and in particular they conform w.r.t. q. Moreover,
by the structure of HandleAV we get that for every node n ∈ T , the subgoal
(n, p) is checked when n is examined. Due to the conformity assumption of this
Lemma, we get that all astates in T conform w.r.t. p.

The prerequisites of Lemma 4.3.2 hold. Thus, we get that abs(T) can be parti-
tioned to (D,B) s.t. (D,B) is an inductive invariant for ApV q. By Lemma 4.2.3,
we get that all astates ŝ ∈ abs(T) satisfy ApV q, and in particular they conform
w.r.t. φ. Moreover, as n ∈ abs(n), abs(n) ∈ abs(T) (and so abs(n) |= φ), we get
that g holds. Thus, the Lemma holds in this case.

• Assume True is returned in line 16. In this case, ToV isit becomes empty. As
shown above, all nodes in T which are not leaves satisfy q ∧ ¬p. Additionally,
let n ∈ T be a leaf. We show that n |= p. As the successors of n are not added

27

to ToV isit, the subgoal (n, p) is checked by HandleAV, which concludes that
it holds. Due to the conformity assumption of this Lemma, we get that for each
n ∈ T , abs(n) |= q, and abs(n) |= p ⇐⇒ p is a leaf.

We now show that g holds. Let π = s0, s1, . . . be a path from C(n). We show that
π |= qU(p ∧ q). Let τ = (n0, n1, . . . , nk) be the single maximal trace in T (from
initNode) s.t. for every 0 ≤ i ≤ k, C(ni) = si. As mentioned above, ni |= q for
every 0 ≤ i ≤ k. Moreover, nk |= p as nk is a leaf (as τ is maximal) and ni ̸|= p

for every 0 ≤ i < k. We thus get that π |= qU(p ∧ q). Thus, C(n) |= AqU(p ∧ q),
and in particular n |= ApV q, meaning g holds.

We now show that abs(n) conforms w.r.t. φ. Let s ∈ abs(n). It is sufficient
to show that s |= ApV q. Let π = s0, s1, . . . be a path from s. We show that
π |= qU(p ∧ q).

According to Lemma 4.4.3, there exists a maximal trace (n0, n1, . . . , nk) in T such
that si ∈ abs(ni) for every 0 ≤ i ≤ k. As shown above, ni |= q for every 0 ≤ i ≤ k.
Moreover, nk |= p as nk is a leaf, and ni ̸|= p for every 0 ≤ i < k. We thus get
that π |= qU(p ∧ q). Recall that, we assume that after checking all subgoals of
the form (n, p) and (n, q), the astate abs(n) conforms w.r.t. the formula checked.
Thus, we get that abs(ni) |= q ∧ ¬p for i < k and that abs(nk) |= q ∧ p. As
si ∈ abs(ni) for every 0 ≤ i ≤ k, we get that si |= q ∧ ¬p for 0 ≤ i < k and that
sk |= q ∧ p. Thus, π |= qU(q ∧ p) by definition. ■

We now prove termination of Algorithm 4.1 for finite structures.

Lemma 4.4.5. (Termination of HandleAV for finite models)
Let g = (n, φ) be a goal, where φ = ApV q and p, q ∈ CTL. Assume that for every
goal of the form g′ = (m,φ′), where m is a node and φ′ is a proper subformula of φ,
RecurCtl checks g′ in a finite number of steps. Then, HandleAV terminates in a
finite number of steps as well.

Proof. We show that HandleAV terminates for the goal (n, φ). We first show that
indAV is not called for more than 2 · |S| + 1 times, where |S| is the number of states
in M .

Consider a run of indAV in which False is returned. By the structure of the
algorithm, indAV reaches line 10. Then, one of the following two options occurs,
depending on whether the if statement in line 10 in indAV is taken.

• If the if is taken, then there exist a cstate t s.t. abs(t) /∈ abs(T). This means
that there does not exist an astate ŝ ∈ abs(T) s.t. t ∈ ŝ. Then, a new astate is
added to abs(T) which contains t. Thus, every astate that is added in this case
is not empty. As such, at most |S| astates may be added to abs(T), and so this
if may be taken at most |S| times.

28

• If the if is not taken, we first show that both splits of ŝ are not empty. Consider
the node n chosen in this iteration of indAV. Then, as the if is not taken, it
holds that R(C(n)) ∩ t̂ = ∅. However, as the if statement in line 5 is not taken,
then (ŝ, t̂) ∈ R̂may, and so there exist s ∈ ŝ, t ∈ t̂ such that t ∈ R(s).

Then, after the split in line 13, the cstates s and C(n) belong to different splits,
as s has a successor in t̂ and C(n) does not, and the split is done according to
the property of having a successor in t̂.

Thus, the execution can reach that split at most |S| times, as otherwise there
would have been created more than |S| non-empty astates, which is impossible.

We showed that there can be at most 2·|S| calls to indAV in which False is returned.
Note that if indAV returns True, then HandleAV returns True as well. Recall that,
indAV and StrengthenSubtree are guaranteed to terminate due to Lemma 4.3.3
and to Lemma 4.4.3. Thus, all actions done in every iteration terminate, as of these
Lemmas and as of the induction assumption over the calls to RecurCtl over proper
subformulas of φ.

Now, consider an iteration of the loop in HandleAV in which neither True nor
False are returned. Thus, indAV is called in this iteration. As shown before, this may
occur at most 2 · |S|+ 1 times. Then, there may be at most 2 · |S|+ 1 iterations of the
loop in HandleAV.

Consider a run of HandleAV. The initialization of ToV isit in line 1 obviously
terminates. Then, if True or False are returned during the first 2 · |S| iteration of the
loop in line 2, then the algorithm terminates. Otherwise, more than 2 · |S| iterations
took place, which means that indAV returned False 2 · |S| times.

Consider the next iteration of the loop. If True or False are returned before indAV
is called, then the algorithm terminates. Otherwise, it necessarily returns True as
shown above. Then, HandleAV returns True as well, and so it terminates.

Note that, if True is not returned from inside the loop, then the execution eventually
proceeds to line 15, as shown above. There, StrengthenSubtree executed in a finite
number of steps (as shown in Lemma 4.4.3), and then HandleAV returns True.
Thus, in any case, the run of HandleAV terminates in a finite number of steps. ■

29

30

Chapter 5

Handling EpVq

We provide intuition by handing formulas of the form EGp, and then extend it to
formulas of the form EpV q.

5.1 Intuition to EG

Let φ = EGp. Assume p ∈ AP (as explained in chapter 4, this assumption does not
change the generality of the explanation).

Similarly to the case of AGp in chapter 4, we explore the states reachable from a
given state s in order to determine whether there exists an infinite path π = s0, s1, . . .

from s s.t. for every i ≥ 0 it holds that si |= p. We use the unwinding tree T differently.
If a node n s.t. n ̸|= p is found, further unwinding it is not needed, as no infinite path
that passes through n may satisfy Gp. Thus, we add the successors of n to T if and
only if it satisfies p. If the successors of n are not added to T , we say that it is pruned.

Consider a run where there exists a trace τ s.t. every s ∈ C(τ) satisfies p, and
there exists a cstate that appears twice in τ . This implies means that there is a lasso-
shaped path from C(root(T)), which extends τ and satisfies Gp. Therefore, τ proves
that s |= EGp. If there are no more nodes to examine, it means that all leaves in
T were pruned. That means that root(T) |= AF (¬p). In other words, it means that
root(T) ̸|= EGp.

As in the case of AGp, abstraction is used to infer that s |= EGp without exploring
the entire model. We define a new kind of invariant, requiring that for each cstate s
in it, there exists a successor within the invariant. This guarantees that there exists
an infinite path π from s, which fully resides within the invariant. If all cstates in the
invariant satisfy q, then π |= Gq. We formalize this notion with the following definition.

Definition 5.1.1. (Inductive invariant for EGq)
Let q ∈ CTL. A set of astates D is an inductive invariant for EGq if the following
conditions hold:

• for every ŝ ∈ D it holds that (ŝ, D) ∈ R̂must.

31

• for every ŝ ∈ D, ŝ |= q.

Observation 5.1.2. If D is an inductive invariant for EGq, then for every s ∈ ∪
D,

it holds that s |= q.
This holds for the same reason Observation 4.1.2 holds. Since every cstate s ∈ ∪

D

is assigned an astate ŝ ∈ D s.t. ŝ |= q, we get by Property 3.2.3 that s |= q.

Lemma 5.1.3. Let q be a CTL formula. If D is an inductive invariant for EGq, then
for every ŝ ∈ D, ŝ |= EGq. In addition, for every s ∈ ∪

D, it holds that s |= EGq.

Before proving Lemma 5.1.3, we prove the following lemma.

Lemma 5.1.4. Let q be a CTL formula, D an inductive invariant for EGq and s ∈∪
D. Let k ≥ 0 and let s0, s1, . . . , sk be a consecutive sequence from s s.t. sj ∈

∪
D for

every 0 ≤ j ≤ k.
Then, there exists a cstate sk+1 such that (sk, sk+1) ∈ R and sk+1 ∈

∪
D. Addition-

ally, the sequence s0, s1, . . . , sk, sk+1 is a consecutive sequence that satisfies sj ∈
∪
D

for every 0 ≤ j ≤ k + 1.

Proof. Let k ≥ 0 and let s0, s1, . . . , sk be a consecutive sequence such that si ∈
∪
D for

every 0 ≤ i ≤ k.
Now, as sk ∈

∪
D, there exists an astate ŝk ∈ D s.t. sk ∈ ŝk. By Definition 5.1.1,

we get that (ŝk, D) ∈ R̂must. Now, due to the definition of must hyper-transitions,
there exists a cstate sk+1 ∈

∪
D s.t. (sk, sk+1) ∈ R.

We conclude that the sequence of cstates s0, s1, . . . , sk, sk+1 satisfies the required
properties, as of the proof above. ■

We now prove Lemma 5.1.3

Proof. Let s ∈ ∪
D. We define an infinite path s0, s1, . . . from s. The path is defined

recursively. We first define s0 = s. Now, let k ≥ 0, and assume that the si is defined
for 0 ≤ i ≤ k. Consider the consecutive sequence s0, s1, . . . , sk−1, sk. Let t be a cstate
which is guaranteed to exist by Lemma 5.1.4. Then, we choose sk+1 to be t.

We prove that for every i ≥ 0, it holds that s0, s1, . . . , si−1 is a consecutive sequence
from s, and that si is well defined. For the base case s0 = s is well defined and satisfies
the requirements trivially. For the induction hypothesis, assume that s0, s1, . . . , si−1

are well-defined cstates that form a consecutive sequence from s, and that sj ∈
∪
D

for every 0 ≤ j ≤ i − 1. Now, as of Lemma 5.1.4, there exists a cstate si, such that
s0, s1, . . . , si is a consecutive sequence from s such that sj ∈

∪
D for every 0 ≤ j ≤ i.

Moreover, si is well defined.
As of the proof above, we get that π is a legal path from s, and that for every j ∈ N,

sj ∈
∪
D. Then, by Observation 5.1.2, sj |= q.

Thus, π is a legal path from s that satisfies Gq, which means that s |= EGq. By
Definition 3.2.2, conclude that for every ŝ ∈ D, ŝ |= EGq. ■

32

5.2 Extension to EpVq

The generalization from EGp to EpV q follows the same lines as the generalization from
AGp to ApV q. That is, instead of looking for a path π from s along which p is satisfied,
we wish π to satisfy Gq or qU(p ∧ q). For that, HandleEV only unwinds nodes that
satisfy q. HandleEV uses abstraction only to prove the existence of an infinite path
that satisfies Gq, whereas finding a path that satisfies qU(p ∧ q) is done using T . In
the latter case, HandleEV returns True if it finds a trace τ = n0, . . . , nk s.t. for every
0 ≤ i ≤ k, ni |= q and nk |= p. In this case, τ is strengthened to guarantee that the
property also holds for the corresponding astates.

5.3 The full algorithm

5.3.1 HandleEV description

HandleEV is presented in Algorithm 5.1.

Algorithm 5.1 HandleEV
Input: Goal g = (initNode, φ = EpV q)
Output: True if initNode |= φ, False otherwise

1: ToV isit← {initNode}
2: while ToV isit ̸= ∅ do
3: choose nextNode from ToV isit
4: UpdateAbstract(nextNode)
5: RecurCtl(nextNode, q)
6: if nextNode ̸|= q then ▷ nextNode is not developed
7: continue
8: RecurCtl(nextNode, p) ▷ nextNode |= q
9: if nextNode |= p then

10: StrengthenTrace(initNode, nextNode)
11: return True
12: else ▷ nextNode |= q ∧ ¬p
13: add successors of nextNode to ToV isit
14: if indEV(initNode, nextNode) then
15: return True
16: StrengthenSubtree(initNode)
17: return False

The initialization, loop and choosing of nextNode of HandleEV are identical to
those of Algorithm 4.1. Let τ be the trace from initNode to nextNode. If ToV isit
becomes empty, then all leaves in T are pruned. Then, no path that satisfies pV q can
be found. Thus, we return False after applying subtree strengthening, to ensure that
all astates in abs(T) do not satisfy EpV q.

In line 4, we update the global data structures in the same manner described in
Algorithm 4.1.

33

In line 6, if nextNode ̸|= q, then HandleEV does not apply unwinding to that node,
and continues to other nodes in ToV isit. The reason is that no path that satisfies pV q
may pass through τ , as it satisfies ¬pU¬q.

In line 8, if nextNode |= p (recall that, as of the condition in line 5, nextNode |= q),
any path π that extends τ satisfies qU(p∧q), and in particular pV q. We label initNode
accordingly, strengthen τ and return True. The strengthening is done in order to
guarantee that all astates in abs(τ) satisfy EpV q. Otherwise, nextNode |= q ∧¬p, and
we further develop it.

In line 14, indEV checks if τ is an abstract lasso and abs(τ) forms an inductive
invariant for EGq. If so, HandleEV returns True, and otherwise it goes on to the
next iteration of the loop.

5.3.2 indEV detailed description

The procedure indEV is presented in Algorithm 5.2.

Algorithm 5.2 indEV
Input: Trace τ = n0, . . . , nk

Output: True if τ is an abstract lasso, and abs(τ) forms an inductive invariant for
EGq, False otherwise

1: while ∃i < k s.t abs(ni) = abs(nk) do ▷ Abstract lasso
2: Let D̂ = {abs(ni), abs(ni+1), . . . , abs(nk−1)}
3: absToCheck ← D̂
4: while absToCheck ̸= ∅ do
5: Choose ŝ from absToCheck, and let n ∈ T s.t. abs(n) = ŝ
6: isMust ← IsMustHyperTransition(ŝ, D̂)
7: if isMust is True then
8: Remove ŝ from absToCheck
9: else

10: SplitEX(ŝ, D̂)
11: break
12: if absToCheck = ∅ then
13: StrengthenTrace((n0, n1, . . . , ni))
14: return True
15: return False

indEV checks if abs(τ) forms an inductive invariant for EGq (which implies that
initNode |= EGq, and so in particular initNode |= EpV q).

In order to avoid expensive testing, indEV first checks whether a prerequisite for
the existence of an inductive invariant holds. For that, the algorithm uses the concept
of an abstract lasso. An abstract lasso is a trace τ = t1, . . . , tn such that there exist
i < n s.t. abs(ti) = abs(tn). Note that, if τ contains an inductive invariant for EGq,
then extending the trace eventually yields an abstract lasso, as the invariant contains
a finite number of astates.

In line 1, indEV checks whether τ is an abstract lasso. Namely, it checks whether

34

there exist i < k s.t. abs(ti) = abs(tk).
Thus, if τ is not an abstract lasso, indEV returns False. Otherwise, let ni be

denoted the base of the lasso. Now, indEV checks whether the set absToCheck (ini-
tialized to D̂, which is computed in line 2) forms an inductive invariant for EGq. It
does so by iterating over absToCheck (in line 4). In every iteration, it examines an
astate ŝ ∈ absToCheck and checks (in line 6) whether (ŝ, D̂) ∈ R̂must (like in indAV,
data in absStructure is used and updated).

If (ŝ, D̂) /∈ R̂must (line 9), then indEV refines the abstraction by a split (described
below) and then breaks the inner while loop. The split induces the need to recompute
abs(τ), as an astate in abs(τ) is split. Now, indEV returns to another iteration of the
loop in line 1.

In the refinement process, ŝ is split w.r.t. the property P = {s ∈ S | ∃t ∈
∪
D̂ :

(s, t) ∈ R}. Thus, ŝ is split into two new astates: ŝY and ŝN .
The changes of T and to absStructure are similar to those described in Algo-

rithm 4.1. The information gained by the split is also used to update absStructure:
(ŝY , D̂) ∈ R̂must and (ŝN , ŝ) ∈ R̂may

no for every ŝ ∈ D̂.
If (ŝ, D̂) ∈ R̂must for every ŝ ∈ D̂, an inductive invariant for EGq is found. indEV

then strengthens the trace τ ′ from the base of the abstract lasso to initNode (line 13),
labels all astates in abs(τ) with EpV q and returns True. As before, τ ′ is strengthened
in order to guarantee that not only initNode |= EGq but also abs(initNode) |= EGq.

We now prove a few Lemmas that are a part of the proof of soundness of our
algorithm.

Lemma 5.3.1. If indEV returns False, then τ does not form an abstract lasso.

Proof. Assume now that False is returned from indEV. Then, it is returned in line 15.
In this case, τ does not form an abstract lasso as the condition of the outer while loop
is not met. ■

Lemma 5.3.2. (Soundness of Algorithm 5.2)
Let T be an unwinding tree for a model M and let τ = (n0, n1, . . . , nk) be a trace in
T . Assume that for every ŝ ∈ abs(τ), it holds that ŝ |= q. Assume also that for every
different i, j < k, abs(ni) ̸= abs(nj) before indEV is applied. Then, if Algorithm 5.2
returns True then τ is an abstract lasso, and abs(τ) forms an inductive invariant for
EGq. Otherwise, if Algorithm 5.2 returns False then τ does not form an abstract lasso.

Proof. The while loop in line 1 goes on as long as τ forms an abstract lasso. Recall
that, for every different i, j < k it holds that abs(ni) ̸= abs(nj) at the beginning of the
run of this procedure. Then, as astates may only change due to split operations in this
procedure, this inequality holds throughout the run. Thus, if an abstract lasso exists,
then there exists a single index 0 ≤ i < k such that abs(ni) = abs(nk). Whenever an
abstract lasso exists, we denote ni the base of the lasso.

35

Consider the loop in line 4. In every iteration of that loop, if the if statement in
line 7 is taken, ŝ is removed from absToCheck, and otherwise the inner loop (in line 4)
terminates. Thus, True is returned if and only if τ is an abstract lasso, and the if
statement in line 7 is taken for every ŝ ∈ absToCheck, which means that absToCheck
becomes empty after all of the iterations of the inner loop. On the other hand, False
is returned if and only if τ does not form an abstract lasso.

Assume first that True is returned. Thus, τ is an abstract lasso at the point of
termination. We prove now that D̂ is an inductive invariant for EGq. Let ŝ ∈ D̂.
By the assumption, ŝ |= q. Moreover, ŝ belongs to absToCheck at the beginning of
Algorithm 5.2. In line 6, ŝ is examined and it is proved that (ŝ, D̂) is a must hyper-
transition. This holds for every ŝ ∈ D̂, and so D̂ is an inductive invariant for EGq.

Note that D̂ ⊆ abs(τ). We now show that the activation of StrengthenTrace
in line 13 guarantees that abs(τ) also forms an inductive invariant for EGq. First,
note that for every j such that 0 ≤ j < i, it holds that abs(nj) /∈ D̂, as men-
tioned above. Now, according to Lemma 4.4.1, for each 0 ≤ j < i, it holds that
(abs(nj), {abs(nj+1)}) ∈ R̂must after j iterations of StrengthenTrace. As each
astate only changes once in this case, this also holds after StrengthenTrace termi-
nates. Now, for each ŝ ∈ D̂, it still holds that (ŝ, D̂) is a must hyper-transition, and thus
so is (ŝ, abs(τ)). For ŝ ∈ abs(τ) \ D̂, there exists 0 ≤ i < k such that abs(ni) = ŝ, and
so (ŝ, {abs(ni+1)}) is a must hyper-transition. Then, (ŝ, abs(τ)) is also a must hyper-
transition. We get the abs(τ) is an abstract lasso that forms an inductive invariant for
EGq.

Assume now that False is returned. Then, by Lemma 5.3.1, we get that τ does not
form an abstract lasso. ■

Lemma 5.3.3. (Termination of Algorithm 5.2)
If M is a finite structure and for every different i, j < k it holds that abs(ni) ̸= abs(nj),
then Algorithm 5.2 terminates after a finite number of steps.

Proof. If there does not exist i < k such that abs(ni) = abs(nk), then the algorithm
terminates immediately. Otherwise, let i be such an index. Denote by D̂ the set
{abs(ni), abs(ni+1), . . . , abs(nk)}.

We first show that whenever the algorithm enter the outer while loop in line 1, it
executes the code in that loop in a finite number of step.

indEV conducts at most k − i + 1 iterations of the inner while loop. The only
action in each such iteration which does not obviously terminate is checking whether
a pair (ŝ, D̂) is a must hyper-transition. This check is done by retrieving data from
absStructure and possibly checking the satisfiability of a quantified boolean formula,
which is decidable. After the inner while loop, the rest of the code in the outer while
loop is also conducted in a finite number of steps, as shown in Lemma 4.4.1.

We now show that the number of iterations in the outer while loop is finite. As
shown before, for every different i, j < k, it holds that abs(ni) ̸= abs(nj) throughout

36

the run. Then, ni is the base of the abstract lasso in every iteration.
In each iteration of loop in line 1, if True is not returned then a single split operation

is applied in line 10. As of the structure of the algorithm, the if in line 7 is not taken,
and so it holds that (ŝ, D̂) is not a must hyper-transition. Thus, there exists a cstate
s ∈ ŝ such that R(s) ∩

∪
D = ∅. However, there exists an index j such that i ≤ j < k

and abs(nj) = ŝ. However, (C(nj), C(nj+1)) ∈ R and so R(C(nj)) ∩
∪
D̂ ̸= ∅.

Thus, after the split, ŝ is split to two non-empty astate, where each one is smaller
than ŝ. Let ŝ′ be the split of ŝ such that all cstates in ŝ have a successor in D.
However, note that there does not exist index j s.t. i ≤ j < k and abs(nj) = ŝ \ ŝ′, as
(C(nj), C(nj+1) ∈ R and abs(nj+1) ∈ D̂.

Now, let D̂before, D̂after be the astates in {abs(ni), . . . , abs(nk)} before and after
the loop, respectively. Then, as a split operation is applied, it holds that ∪

D̂after ⊆∪
D̂before. As s ∈ ∪

D and s /∈ ŝ′, we get that s ∈ ∪
D̂before and s /∈

∪
D̂after. We

conclude that ∪
D̂after ⊊

∪
D̂before.

We showed that in every iteration of the loop in line 1, the size of ∪
D̂ decreases.

As each astate never becomes empty in these splits (as shown above), there cannot be
more than |∪ D̂| − |D̂| iterations of indEV before it terminates.

Thus, the while loop in line 1 runs for a finite number of iteration. As each iteration
terminates, we deduce that indEV terminates as well. ■

Lemma 5.3.4. (Soundness of HandleEV)
Let g = (n, φ) be a goal, where φ = EpV q. Assume that after HandleEV checks a sub-
goal (m, f), it holds that abs(m) conforms w.r.t. f . Then, if HandleEV terminates,
it returns True if and only if g holds. Moreover, if it terminates, abs(n) conforms w.r.t.
φ.

Proof. The loop in line 2 is conducted for as long as ToV isit ̸= ∅. The set ToV isit is
initialized to {initNode}. In every iteration, a node nextNode is chosen from it and
examined. By the structure of HandleEV, once a node is examined by the algorithm,
it is never examined by it again (in particular, it never enters ToV isit again).

We observe that in every iteration of HandleEV, if nextNode ̸|= q, then its succes-
sors are not added to ToV isit. This means that if a node is not a leaf in T , it satisfies
q. Moreover, if a node is a leaf in T , and it is not examined in the last iteration before
halting, it satisfies ¬q.

As the algorithm returns True if it examines a node that satisfies p∧q, we conclude
that if a node is not a leaf, it does not satisfy p (as it satisfies q).

Assume first that False is returned by HandleEV. Let n be the last node that is
examined in the loop in line 2 (at least one node is examined, as ToV isit is initialized
with initNode, which is examined first). It follows that ToV isit becomes empty during
the run, after which False is returned in line 17. As mentioned above, every node n ∈ T
which is not a leaf satisfies n |= q ∧ ¬p. Moreover, every leaf n′ ∈ T such that n′ ̸= n

satisfies ¬q.

37

We now show that n |= ¬q. Assume towards contradiction that n |= q. Thus, when
HandleEV examines n, the if in line 6 is not taken. If n |= p, then True is returned,
which is a contradiction to the assumption that False is returned. Then, n ̸|= p, and
so the successors of n are added to ToV isit. Note that, at least one node is added to
ToV isit, as the transition relation is total. Next, one of the following holds:

• True it returned in line 15, which is a contradiction to the assumption that False
is returned.

• The algorithm proceeds to line 2, and ToV isit ̸= ∅ as the successors of n were
added to it. This is a contradiction to the assumption that n is the last node to
be examined.

Either way, we get a contradiction, and so we deduce that n ̸|= q. Therefore, all
leaves in T do not satisfy q.

StrengthenSubtree is applied in line 16. Let s ∈ abs(root(T)), and let π
be a path from s. According to Lemma 4.4.3, there exists a maximal trace τ =
(n0, n1, . . . , nk) in T s.t. si ∈ abs(ni) for every 0 ≤ i ≤ k. For each such i, the
subgoals (ni, p) and (ni, q) have been checked, and so by the assumption of this Lemma
(Lemma 5.3.4), it holds that abs(ni) |= q ∧ ¬p for i < k and abs(nk) |= ¬q. Thus,
si |= q ∧ ¬p for i < k and sk |= ¬q, according to Definition 3.2.2. We deduce that
π |= ¬pU¬q, and so in particular s |= A¬pU¬q, which implies that s ̸|= EpV q.

We get that abs(root(T)) ̸|= EpV q, and in particular n ̸|= EpV q. Thus, the Lemma
holds in this case.

Assume now that True is returned, and let nextNode be the node examined in
the last iteration. Let τ = (n0, n1, . . . , nk) be the trace from initNode (that is, n0 =
initNode) to nextNode (that is, nk = nextNode). Due to the structure of HandleEV,
True may be returned either in line 11 or in line 15. We show that in both cases g
holds and abs(n) conforms w.r.t. φ after HandleEV terminates.

• Assume True is returned in line 15. In this case, the function indEV is called
and returns True.

We show that the prerequisites of Lemma 5.3.2 hold.

– First, we show that every node n ∈ τ satisfies q. As proven before, every node
n ∈ τ s.t. n ̸= nextNode satisfies q as it is not a leaf. Moreover, nextNode |=
q as otherwise, indEV is not called when nextNode is examined. Due to the
conformity assumption of this Lemma, we get that all astates in τ conform
w.r.t. q, and in particular they satisfy q as the nodes in τ satisfy q.

– We now show that for every i ̸= j s.t. i, j < k, it holds that abs(ni) ̸=
abs(nj). Let i be an index such that 0 ≤ i < k. Then, ni is examined by
HandleEV before nextNode. As ni is not a leaf in T and is not the last
node to be examined, we get that the if statements in lines 6 and 9 are not

38

taken. Then, indEV is applied over the arguments initNode, ni and False
is returned (otherwise, HandleEV would have returned True then, which
contradict our assumption). This is true for every 0 ≤ i < k

We prove by induction over m that for every different i, j < m, it holds
that abs(ni) ̸= abs(nj). For m = 1, 2, the claim holds vacuously. As-
sume the claim holds for m − 1, and we prove it for k. According to
the induction hypothesis, for every different i, j < m − 1, it holds that
abs(ni) ̸= abs(nj). Now, consider the activation of indEV over the two ar-
guments initNode, nm. As False is returned by that function call, we get by
Lemma 5.3.1 that the trace (n0, n1, . . . , nm) does not form an abstract lasso.
Thus, abs(nk) ̸= abs(nj) for every 0 ≤ j < k. Together with the induction
hypothesis, this proves the inductive claim.

We showed that the prerequisites of Lemma 5.3.2 hold. Thus, we get that abs(τ)
forms an inductive invariant for EGq. By Lemma 5.1.3, we get that all astates
ŝ ∈ abs(τ) satisfy EGq, and in particular they conform w.r.t. φ. Moreover, as
n ∈ abs(n), abs(n) ∈ abs(τ), we get that g holds. Thus, the Lemma holds in this
case.

• Assume True is returned in line 11. Thus, there exist an iteration in which
nextNode is examined, in which True is returned. It holds that nextNode |= q∧p
and that for every i < k, ni |= q ∧ ¬p. Due to the conformity assumption of this
Lemma, it holds that abs(nk) |= p∧ q and that for every i < k, abs(ni) |= q ∧¬p.

Recall that before True is returned, StrengthenTrace is applied over τ in
line 10. Let ŝj be abs(nj) before the activation of StrengthenTrace, for
0 ≤ j ≤ k. Let s0 ∈ abs(n0). According to Lemma 4.4.1, there exists a series of
states s1, s2, . . . , sk such that (si, si+1) ∈ R for every 0 ≤ i < k, and sj ∈ abs(nj)
for every 0 ≤ j ≤ k. As for every j it holds that abs(nj) ⊆ ŝj , we get that
sj |= q ∧ ¬p for j < k and that sk |= q ∧ p. Thus, s |= EqU(q ∧ p), and in
particular s |= EpV q.

This is true for every s ∈ abs(n0), and so abs(root(T)) |= EpV q. In particular,
we get that g holds. Thus, the Lemma holds in this case. ■

Lemma 5.3.5. (Termination of HandleEV for finite models)
Assume M is a finite Kripke structure. Let g = (n, φ) be a goal, where φ = EpV q and
p, q ∈ CTL. Assume that for every goal of the form g′ = (m,φ′), where m is a node
and φ′ is a proper subformula of φ, RecurCtl checks g′ in a finite number of steps.
Then, HandleEV terminates in a finite number of steps as well.

Proof. We first show that the number of activations of indEV over traces τ which form
an abstract lasso, is at most |S|+ 1 times. Consider a run of indEV in which False is

39

returned and in which τ is an abstract lasso at the beginning of the run. Then, indEV
reaches line 10 at least once (otherwise, True is returned). In that line, SplitEX is
applied over ŝ w.r.t. {abs(ni), abs(ni+1), . . . , abs(nk)}.

We show that both splits of ŝ are not empty. Consider the node n chosen in this
iteration of indEV. Then, as the if in line 7 is not taken, it holds that there exists
s ∈ ŝ such that R(s) ∩

∪k
j=i abs(nj) = ∅. However, there exists i ≤ j ≤ k such that

n = nj . Now, n has a successor in ∪k
j=i abs(nj), as if j < k, then C(n) has a successors

in abs(nj+1) and if j = k then ni ∈ abs(ni) = abs(nk), and C(n) has a successor in
abs(ni+1). Either way, R(C(n)) ∩

∪k
j=i abs(nj) ̸= ∅.

Then, after the split in line 10, the cstates s and C(n) belong to different splits, as
C(n) has a successor in ∪k

j=i abs(nj) and s does not, and the split is done according to
the property of having a successor in ∪k

j=i abs(nj).
Thus, the execution can reach that split at most |S| times, as otherwise there would

have been created more than |S| non-empty astates, which is impossible. Then, there
can be at most |S|+ 1 calls to indEV in which τ is an abstract lasso at the beginning.

Let D be the maximal branching degree of M (which is finite by assumption).
Recall that, any node is examined by HandleEV at most once. Thus, every trace
τ = (n0, n1, . . . , nk) in T is also examined at most once, as it is examined only when nk

is examined by HandleEV. Now, for any depth k, there is a finite number of traces of
length at most k, which is dk =

∑k
i=0D

i. Thus, for every k ∈ N, after at most dk + 1
iterations of the loop in HandleEV, all node that are examined are of depth at least
k.

For every trace τ = (n0, n1, . . . , nk) whose length is more than |S|, there exists i ̸= j

such that i, j ≤ |S| and C(ni) = C(nj), and in particular abs(ni) = abs(nj).
We show that the loop in HandleEV terminates after a finite number of iterations.

Consider the first d|S|+1 iterations of the loop. If the algorithm terminates after a
smaller number of iteration, then we are done. Otherwise, assume that more than
d|S|+1 take place. Note that after that many iterations, every trace τ forms an abstract
lasso as shown above.

Now, consider the ith iteration for i > d|S|+1. Assume that there are n nodes in
ToV isit at that point. Then, if True or False are returned from the loop, the algorithm
terminates. Otherwise, either indEV is called or the if in line 6 is taken. In the latter
case, in the next iteration, the size of ToV isit becomes n − 1. Then, after at most n
iteration either the loop terminates or indEV is called. Thus, after a finite number of
iterations, either the loop terminates or indEV is called at a time where τ forms an
abstract lasso.

Then, as indEV can be applied that way at most |S| + 1 times, we get that the
loop in HandleEV always halts after a finite number of iterations.

Note that all actions done in every iteration terminate, as of the induction assump-
tion over the calls to RecurCtl over proper subformulas of φ and as of Lemma 4.4.1
and Lemma 5.3.3 (whose conditions are met, as shown in the proof of Lemma 5.3.4).

40

Thus, every iteration is conducted in a finite number of steps.
Consider a run of HandleEV. The initialization of ToV isit in line 1 obviously

terminates. Then, if True or False are returned during some iteration of the loop in
line 2, then the algorithm terminates. Otherwise, as the loop terminates after a finite
number of iterations, and each iteration terminates in a finite number of steps, the
execution continues in line 16. Then, as StrengthenSubtree is executed in a finite
number of steps (as shown in Lemma 4.4.3, HandleEV returns True. Thus, in any
case, the run of HandleEV terminates in a finite number of steps. ■

41

42

Chapter 6

Handling EX and logical
operators

6.1 Handling logical operators

The handling of formulas of the form φ1 ◦ φ2 where ◦ ∈ {∧,∨} is as expected. For
example, given the goal (n, φ1∧φ2), we recur over the subgoals (n, φ1) and (n, φ2). We
return True if both subgoals hold, and False otherwise. Note that, if the first subgoal
checked does not hold, we do not check the second subgoal, and simply return False.
Handling negation is done simply as well. Let g be a goal of the form (n,¬φ). Then,
(n, φ) is checked. If g holds we return False and vice versa. In all cases, it holds that
abs(n) conforms w.r.t. φ after termination.

6.2 Handling EX

The recursive handling of formulas of the form EXp is the following.

Algorithm 6.1 HandleEX
Input: Goal g = (initNode, φ = EXp)
Output: True if initNode |= φ, False otherwise

1: Let ToV isit be the set of successors of initNode
2: while ToV isit ̸= ∅ do
3: choose nextNode from ToV isit
4: RecurCtl(nextNode, p)
5: if nextNode |= p then
6: Let τ be the trace (initNode, nextNode)
7: StrengthenTrace(τ)
8: return True
9: else

10: Remove nextNode from ToV isit

11: StrengthenSubtree(initNode) ▷ ToV isit is empty
12: return False

43

To handle formulas of the form EXp, HandleEX computes (in line 1) the set
of successors of initNode and iterates over it. For each successor n′ of initNode,
HandleEX recurs on the subgoal (n′, p) (in line 4). If it finds a successor n′ for
which this subgoal holds, it strengthens the trace (initNode, n′) (line 7), labels the
astate abs(initNode) with φ and returns True. Otherwise, initNode ̸|= EXp. Han-
dleEX then splits abs(initNode) to ŝ′, ŝ′′ in such a way that ŝ′ |= ¬EXp, and defines
abs(initNode) = ŝ′. For that purpose, we use StrengthenSubtree (in line 11). The
subtree we strengthen is rooted at initNode, and contains this node and its successors
only. As of Lemma 4.4.3, Property 3.2.3 holds after HandleEX terminates.

We now prove lemmas that are a part of the correctness proof of OMG.

Lemma 6.2.1. (Soundness of Algorithm 6.1)
Let g = (n, φ) be a goal, where φ = EXq and q ∈ CTL. Assume that after HandleEX
checks a subgoal (m, f), it holds that abs(m) conforms w.r.t. f after checking that
subgoal. Then, if HandleEX terminates, it returns True if and only if g holds.
Moreover, if it terminates then abs(n) conforms w.r.t. φ after termination.

Proof. In every iteration of the loop in line 2, a successor node n′ of n is chosen and
examined. HandleEX recurs over the subgoal (n′, p), and returns True if and only if
there exists a node nextNode ∈ ToV isit s.t. nextNode |= p.

Assume first HandleEX returns True. Thus, there exists a node nextNode s.t.
(C(initNode), C(nextNode)) ∈ R and nextNode |= p. Thus, initNode |= EXp. By
the conditions of the Lemma, it follows that after the recurring over the subgoal
(nextNode, p), it holds that abs(nextNode) |= p. As nextNode |= p, HandleEX
enters the if condition in line 5. The algorithm strengthens the trace τ from initNode

to nextNode. We now shows that abs(initNode) |= EXp. Let s ∈ abs(initNode). As
StrengthenTrace is applied over the trace τ = (initNode, nextNode) of length
2, Lemma 4.4.1 guarantees that there exists a cstate t such that (s, t) ∈ R and
t ∈ abs(nextNode). Recall that abs(nextNode) |= p. As t ∈ abs(nextNode), it follows
that t |= p. It then follows that s |= EXp. We get that abs(initNode) |= EXp.

Assume now that HandleEX returns False. Let n1, . . . , nk be the successors of
initNode. Thus, for every 1 ≤ i ≤ k, ni ̸|= p. Thus, initNode |= AX¬p ≡ ¬EXp.

By the conditions of the Lemma, it follows that after recurring over the subgoals
(n1, p), (n2, p), . . . , (nk, p), it holds that abs(ni) ̸|= p for every 1 ≤ i ≤ k. HandleEX
reaches line 11 and strengthens the subtree of initNode. In this case, T contains the node
initNode and its successors, n1, . . . , nk. We now prove that abs(initNode) |= AX¬p.
Let s ∈ abs(initNode). Let π = s0, s1, . . . be a path from s. According to Lemma 4.4.3,
there exists a maximal trace τ = (n0, n1, . . . , nk) s.t. si ∈ abs(ni) for every 0 ≤ i ≤ k.
Due to the structure of T , it follows that k = 1, and that there exists 1 ≤ j ≤ k s.t.
s1 ∈ abs(nj). As shown above, abs(nj) ̸|= p and so s1 |= ¬p. Thus, π |= X¬p and
s |= AX¬p. ■

44

Lemma 6.2.2. (Termination of HandleEX for finite models)
Let g = (n, φ) be a goal, where φ = EXp and q ∈ CTL. Assume that for every
goal of the form g′ = (m,φ′), where m is a node and φ′ is a proper subformula of φ,
RecurCtl checks g′ in a finite number of steps. Then, HandleEV terminates in a
finite number of steps as well.

Proof. The initialization of ToV isit in line 1 terminates. Let k be the number of
successors of C(initNode). Now, the loop in line 2 has at most k iterations, as in every
iteration a successor of C(initNode) is examined.

Note that all actions done in every iteration terminate, as of the inductive assump-
tion over the calls to RecurCtl over proper subformulas of φ and as of Lemma 4.4.1.

Then, either True is returned from inside the loop, or the execution continues to
line 11. This line terminates due to Lemma 4.4.3 and then HandleEX returns False
and terminates.
Thus, in any case, the run of HandleEX terminates in a finite number of steps. ■

45

46

Chapter 7

Symbolic formalization and
optimizations

State-of-the-art model checking algorithms use a symbolic representation of the model
and the state-space traversal. We note that the description in previous sections may
lead to state enumeration. In this section we suggest the required adaptations for
implementing OMG symbolically. In particular, we explain how the development of
the unwinding tree and the handling of abstract states should be changed. We refer to
the adapted algorithm as Symbolic OMG (SOMG).

LetM be a model, defined over a set of variables v and input variables i. A literal is
a variable or a negation of a variable. A cube is a conjunction of variables. For p ∈ AP ,
let p(v) represent the set of states satisfying p. Let the formulas Init(v) and R(v, i, v′)
be formulas representing the initial states and transitions of M , respectively. A cstate
s ∈ S is a valuation of v. A cstate s can be represented by a cube s(v) in a standard
manner. Given a cstate s and input values i0, there is exactly one valuation t s.t. the
formula R(s, i0, t) evaluates to True. In other words, each valuation to i defines a single
transition from s. This property is important to conduct splits efficiently.

We treat a set of cstates D and the formula D(v) representing it, interchange-
ably. Given a set of cstates D, we define its image to be Img[D](v) = (∃v, i [D(v) ∧
R(v, i, v′)])[v′ ← v] and its pre-image to be PreImg[D](v) = ∃i, v′ [R(v, i, v′) ∧D(v′)].
The former represents the set of successors of the cstates in D and the latter, their set
of predecessors.

7.1 Symbolic representation of abstract states

We describe how to compute a symbolic representation for an astate ŝ. If ŝ is of the form
[s]0 for s ∈ S, then it is represented by the formula ŝ(v) =

∧
p∈L(s) p(v)∧

∧
q /∈L(s) ¬q(v).

Otherwise, it is created due to a split of an astate t̂ w.r.t. a property P , as explained
below.

47

7.1.1 Abstract state representation using quantifiers

We first show how to represent splits of an astate using boolean formulas with quanti-
fiers. For each of the two kinds of splits (EX-split, AX-split), we show how to represent
the set of states that satisfy P using a formula P (v) with quantifiers. Then, the splits
of the astate ŝ are ŝ(v) ∧ P (v) and ŝ ∧ ¬P (v). We show the formulas for each kind of
split.

• EX-split, where P = {s ∈ S | ∃t ∈ S[(s, t) ∈ R ∧ t ∈ t̂]} for t̂ ∈ Ŝ. In that case,
P (v) = ∃v′[R(v, v′) ∧ t̂(v′)].

• AX-split, where P = {s ∈ S | ∀t ∈ S[(s, t) ∈ R =⇒ t ∈
∪k

i=1 t̂i]} for abstract
states {t̂i}ki=1. In that case, P (v) = ∀v′[R(v, v′) =⇒

∨k
i=1 t̂i(v′)].

Checking whether s ∈ ŝ amounts to checking if ŝ(v)[v ← s] evaluates to true.
Checking whether (D,B) is an inductive invariant for ApV q in HandleAV amounts
to checking whether (ŝ, D̂) is a may-closure (see Definition 2.1.2), where ŝ is an astate
and D̂ is a set of astates. It holds that (ŝ, D̂) is a may-closure if and only if the formula
ŝ(v) ∧R(v, i, v′) ∧ ¬

∨
t̂∈D t̂(v′) is unsatisfiable.

Checking for an inductive invariant for EGq is done similarly, as it amounts to
checking whether (ŝ, D̂) ∈ R̂must. It holds that (ŝ, D̂) ∈ R̂must if and only if the
formula ∀i, v′[ŝ(v) ∧ [R(v, i, v′)→ ¬

∨
t̂∈D t̂(v′)]] is unsatisfiable.

7.1.2 Quantifier-free representation of abstract states

To ease the computational difficulty that stems from the usage of quantifiers, we suggest
new operations that split an astate ŝ. It is split to ŝY that contains only cstates
satisfying P , and to ŝ \ ŝY that may still contain some cstates satisfying P , while
containing all cstates that do not satisfy P . Note that this usage of split does not fully
conform with Definition 2.1.1. We employ a method similar to [HBS12] to generalize a
cstate or a set of cstates (represented by a cube) into an astate representation without
quantifiers.

We first show how to conduct a variant of SplitEX, denoted EX-NEG, in which
we generalize a cstate s ∈ ŝ. In this variants, we compute a split ŝY of ŝ, such that
every cstate s ∈ ŝY does not have a transition to any state in some astate t̂. Let s be
a cstate that satisfies this property. That is, there does not exists a cstate t ∈ ŝ s.t.
(s, t) ∈ R. Then, the formula φ(v, i, v′) = s(v)∧R(v, i, v′)∧ t̂(v′) is unsatisfiable. Note
that, s is a conjunction of literals l1, . . . , lk. Using an unsat core of φ, we find a subset
of the literals, li1 , . . . , lim , s.t. (

∧m
j=1 lij) ∧ R(v, i, v′) ∧ t̂(v′) is unsatisfiable. Then, the

representation of ŝY in the split is ∧m
j=1 lij ∧ ŝ(v).

The second variant of SplitEX, denoted EX-POS, is one in which we generalize
a cstate s ∈ ŝ such s has a transition to a cstate t ∈ t̂. As s has a successor t ∈ t̂,
there exists an input i0 s.t. (s, i0, t) ∈ R. We compute i0 by computing a satisfying

48

assignment to the formula s(v) ∧ R(v, i, v′) ∧ t̂(v′). Then, similarly to EX-NEG, we
extract a subset li1 , . . . , lim of the literals of s using an unsat core of s(v) ∧ i0(i) ∧
R(v, i, v′) ∧ ¬t̂(v′), which is unsatisfiable. The representation of the split ŝY (which
contains cstates that have a transition to a cstate in t̂) is ∧m

j=1 lij ∧ ŝ(v).
The corresponding variations of SplitAX are dual to the variations of SplitEX

presented above. For example, let s be a cstate and t̂ be an astate. Generalizing s
into an astate, s.t. all cstates in it have a transition to t̂ (AX-POS), is equivalent to
generalizing s into an astate in which all cstates have no successor in ¬t̂(v) (EX-NEG).

Given these representations, checking whether there exists an inductive invariant
for ApV q (Definition 4.2.1) or for EGq is done in the same manner describe in the
previous section.

7.2 Symbolic unwinding

Unlike OMG, where a node in the unwinding tree T corresponds to a single concrete
state, in SOMG every node in T corresponds to a set of concrete states. We denote
such a set as cSet. As a result, the concrete labeling C maps each node to a cSet
C(n). The function abs is modified s.t. it can be applied to a cSet. Given a cSet D,
abs(D) = {abs(s) | s ∈ D}. Equivalently, ŝ ∈ abs(D) ⇐⇒ D(v) ∧ ŝ(v) ̸≡ ⊥. For a
node n ∈ T , abs(n) is naturally defined as abs(C(n)).

Unwinding a node n in T is performed using the image operator on C(n). Yet,
there are cases where SOMG conducts a more fine-grained traversal of the state-space,
and only applies the image operator to a subset of C(n). This is achieved by splitting a
cSet, which resembles a split of astates. As an example, consider a run of HandleAV
where a node n ∈ T is examined, such that for every s ∈ C(n), it holds that s |= q.
Assume C(n) consists both of cstates that satisfy p and cstates that do not. In this
case, splitting C(n) to D1 = {s ∈ C(n) | s |= p} and D2 = C(n) \D1 allows SOMG to
consider only cstates that are successors of D2. Note that, cstates in D1 do not need
further processing. We formally define the notion of a cSet split:

Definition 7.2.1. (cSet split)
Given a cSet D, the cSets D1 and D2 are a split of D if they are a non-trivial partition
of D. Namely, D1 ̸= ∅ and D2 ̸= ∅.

Let m,n ∈ T s.t. n is a successor of m. When the cSet C(n) is split, n is replaced
by two fresh nodes, n1 and n2, s.t. the following holds:

• n1 and n2 are successors of m in T .

• C(n1) and C(n2) are a split of C(n).

Note that splitting a cSet allows SOMG to partition the unwinding process. Namely,
instead of computing all successors of C(n), it computes the successors of C(n1) and
of C(n2) separately.

49

We emphasize the different purposes of splitting a cSet and splitting an astate.
Splitting an astate is done in order to create may or must transitions between different
astates. For example, SplitEX in HandleAV is used to refine the abstraction, thus
allowing the algorithm to find an inductive invariant. In contrast, cSet splits only
allow SOMG to unwind different parts of T separately, and is not related directly to
the abstract model.

It is to be pointed out that all cstates in the reachable cSets in T are reachable. The
symbolic unwinding only changes the manner in which the unwinding is conducted, and
not the set of cstates that are represented in T .

7.3 Adapting the algorithm

The symbolic representation of the unwinding tree changes the way the state-space is
traversed. As a result, the algorithm needs to be adapted and take this change into
account. Let g = (n, φ) be a goal. Since C(n) now represents a cSet, the return value
of the subprocedures in SOMG cannot be Boolean, as it may be the case that some
cstates in C(n) satisfy φ and some do not. To solve this, each subprocedure returns a
Model Checking Result.

Definition 7.3.1. Let g = (n, φ) be a goal. A model checking result (MC result) for g
is a pair of cSets (Dy, Dn), s.t. Dy = {s ∈ C(n) | s |= φ} and Dn = C(n) \Dy. Note
that Dy, Dn form a possibly-trivial partition of C(n).

In what follows, we describe the main changes in the different subprocedures of
OMG, w.r.t. a goal g = (n, φ).

Initialization, RecurCtl and logical connectives The only change in the initial-
ization is the value of the cSet C(root(T)), which is {s} when checking s |= φ and is
S0, when checking M |= φ.

Consider RecurCtl. SOMG only analyzes cstates that belong to an astate for
which φ is not decided. Let A! = {ŝ ∈ abs(n) | ŝ is decided for φ} and A? = abs(n)\A!.
Then, n is replaced by two fresh nodes n!, n?, s.t. C(n!) = {s ∈ C(n) | abs(s) ∈ A!}
and C(n?) = C(n) \ C(n!). Unless C(n?) = ∅, RecurCtl continues by checking the
subgoal g′ = (n?, φ). After g′ is analyzed, the cstates in C(n!) are added to the MC
result of g′.

The subprocedures that handle logical connectives unify the MC results of their
subgoals. For example, let φ = φ1 ∧ φ2 and (Dy

1 , D
n
1) and (Dy

2 , D
n
2) be the MC results

of (n, φ1) and (n, φ2), respectively. SOMG returns the MC result (Dy
1 ∩D

y
2 , D

n
1 ∪Dn

2).

HandleEX Assume φ = EXf . HandleEX extends T withm, the successor of n s.t.
C(m) = Img[C(n)]. Then, RecurCtl is called over the subgoal g′ = (m, f), returning
the MC result (D′

y, D
′
n). Next, HandleEX defines its MC result (Dy, Dn), where

50

Dy = C(n)∩PreImg[D′
y] and Dn = C(n)\Dy. Before returning (Dy, Dn), HandleEX

refines each astate in abs(n) to ensure that Property 3.2.3 holds. Refinement is done
in the following manner: let Êy = {ŝ ∈ abs(m) | ŝ |= f}. For each ŝ ∈ abs(Dy), ŝ is
split using EX-POS w.r.t. Êy. For each ŝ ∈ abs(Dn), ŝ is split using EX-NEG w.r.t.
Êy. In both cases the cSet we generalize is C(n) ∧ ŝ.

HandleAV and HandleEV Consider HandleAV, where φ = ApV q. The main
changes involve the recursive handling of p and q. Note that, as indAV conducts checks
that only regard astates (and so, it is not related to the manner in which unwinding is
applied), it does not change.

Let g′ = (nextNode, q) be the subgoal checked in line 6 of HandleAV, and let
(D′

y, D
′
n) be the MC result for g′. If D′

n ̸= ∅, there exists a trace τ from initNode

to nextNode and cstate s ∈ C(nextNode) s.t. s ̸|= q. As s is reachable from
initNode, there exists s0 ∈ C(initNode) s.t. s0 ̸|= ApV q. Thus, there exists a cSet
Dn ⊆ C(initNode), where Dn ̸|= ApV q. No further analysis of Dn is required, and
C(initNode) is split s.t. initNode is replaced by two fresh nodes, whose cSets are
Dn, D?, where D? = C(initNode) \Dn. After the cSet is split, all its successors must
be updated to maintain a valid unwinding tree. This is performed by applying a cSet
split for every node in τ , starting from nextNode backwards. After T is updated,
HandleAV strengthens τ in order to guarantee that Property 3.2.3 holds.

Then, it moves on to analyze the subgoal g′′ = (nextNode, p) (line 10 in Algo-
rithm 4.1). Analyzing g′′ is similar to the process described for g′. HandleAV splits
C(nextNode) into two cSets D′′

y , D
′′
n, w.r.t. p. Then, D′′

n undergoes further unwinding.
We do not describe this process fully.

The changes applied to HandleEV are similar to the changes to HandleAV. The
full details are omitted.

7.4 General optimizations to OMG

When implementing both OMG and SOMG, several optimizations should applied to
increase efficiency.

• Avoiding trivial splits: A split of an astate is said to be trivial if one of its splits ŝ′

represents no concrete state. Namely, ∀s ∈ S : abs(s) ̸= ŝ′. If this holds, no split
should be conducted, so that absStructure does not change. This optimization
may prevent many unnecessary split in the abstract state space.

• Brother unification: Consider a run of indAV where abs(T) = {ŝ1, . . . , ŝk}. If
ŝ1, ŝ2 are the splits of t̂, then we can replace abs(T) with the set {ŝ3, . . . , ŝk, t̂}
when checking for an inductive invariant. The new set of astates is smaller and
simpler, and so the checking for an inductive invariant is more efficient. This
action of replacement is called reduce. A set of astates is reduced if no reduce

51

action can be performed over it. indAV thus computes a reduced set from abs(T),
with which it continues. This optimization can also be applied in indEV.

• Lazy splits: If a node n is assigned an astate ŝ which undergoes a split, the value
abs(n) can be recomputed by need.

• Checking multiple properties over a model: The same data structures may be used
to check multiple properties over the same model. The information retained from
the check of one specification speeds up the model checking process for the next
one.

• Concrete state trimming: In Algorithm 4.1, it is redundant to explore (that is,
keep unwinding) a node n if a node n′ such that C(n) = C(n′) has already been
explored. Thus, the algorithm maintains a set of the cstates that were explored to
avoid exploring such nodes n. A similar optimization is applicable in HandleEV.

52

Chapter 8

Correctness of OMG

We now prove the correctness of OMG.

Theorem 8.1. (Partial correctness of OMG)
Let M = (S, I,R, L) be a Kripke structure and φ be a CTL formula. Let s ∈ S be a
cstate. Then, OMG is sound. That is, if OMG terminates, it returns True if and only
if M, s |= φ.

Proof. We prove that if OMG terminates, then its answer to the model checking task
is correct. That is, if OMG returns True, then M, s |= φ, and if OMG returns False,
then M, s ̸|= φ.

Assume that OMG terminates. Let g1, g2, . . . , gk be the goals checked by Re-
curCtl during the run of OMG, ordered such that i < j if and only if the activation
of RecurCtl over gi terminates before the activation of RecurCtl over gj .

We first prove by induction over k that if RecurCtl returns True over gk = (n, φ)
then gk holds, and if False is returned then gk does not hold. Additionally, abs(n)
conforms w.r.t. φ after RecurCtl terminates over gk.

For the base of the induction we prove the claim for k = 1. Assume towards
contradiction that φ /∈ AP ∪{⊥,⊤}. Then, φ is a complex formula, and so there exists
a proper subformula φ′ of φ. Further, RecurCtl is applied over a subgoal g′ of the
form (m,φ′) for some nodem. Then, RecurCtl finishes checking g′ before finishing to
check g, as of the structure of RecurCtl and the fact that OMG eventually terminates.
However, this is impossible as g ̸= g′ and g is the only goal checked during the run of
OMG.

Thus, φ ∈ AP ∪{⊥,⊤}. If φ is not an atomic proposition, the if statement in line 1
of RecurCtl is taken and the boolean value of φ is returned in line 2. Moreover,
every astate conforms w.r.t. φ by definition. Thus, the base case of the Lemma holds
in this case.

Otherwise, φ ∈ AP . In line 3 in RecurCtl, abs(n) is computed. In particular,
abs(n) is labeled with the same atomic propositions as C(n). Therefore, the if state-
ment in line 4 (of RecurCtl) is taken, and True is returned ⇐⇒ φ ∈ L(C(n)), which

53

proves soundness. As mentioned above, astates conform w.r.t. atomic propositions by
the definition of the abstract structure. Thus, the base case of the Lemma holds in this
case as well.

Assume now that the claim holds for k, and let g1, g2, . . . , gk, gk+1 be a series of
subgoals as described above. Now, if φ ∈ AP ∪ {⊤,⊥}, then the claim holds as proved
above. Otherwise, φ is a complex formula. We split to cases according to the main
connective of φ:

• Assume φ is of the form φ1∨φ2 or φ1∧φ2. Due to the structure of RecurCtl, we
conclude that it finishes checking the subgoals (n, φ1) and (n, φ2) before finishing
to check g. By the induction hypothesis, abs(n) conforms w.r.t. φ1, φ2. Then,
OMG returns the appropriate result according to the logical connective. Thus, g
holds. Afterwards, abs(n) is labeled (in RecurCtl) with φ or ¬φ according to
the result of the model checking, and in particular abs(n) conforms w.r.t. φ. A
similar argument holds if φ is of the form ¬φ′.

• Assume φ is of the form Aφ1V φ2. Let gi1 , gi2 , . . . , gil
be the subgoals over which

HandleAV calls RecurCtl. It thus holds that RecurCtl finishes checking
these subgoal before checking gk+1. Thus, for every 1 ≤ j ≤ l it holds that
ij < k + 1. Denote gij = (nij , φij) for 1 ≤ j ≤ l. By the induction hypothesis,
for each 1 ≤ j ≤ l it holds that abs(nij) conforms w.r.t. φij after gij is checked.
Then, the conditions of Lemma 4.4.4 hold, and so we get that True is returned
if gk+1 holds and False otherwise. Moreover, Lemma 4.4.4 guarantees that after
termination, abs(n) conforms w.r.t. φ.

• For the cases where φ is of the form Eφ1V φ2 or EXφ1, the proof follows the
lines of the previous case, apart for the usage of Lemma 5.3.4 and Lemma 6.2.1,
respectively.

Now, letM, s |= φ be the model checking task checked by OMG. As OMG activates
RecurCtl over the goal g = (root(T), φ), it follows from the inductive claim that
OMG returns true if and only if g holds. Thus, OMG is sound. ■

Theorem 8.2. (Termination of OMG for finite models)
Let M = (S, I,R, L) be a finite Kripke structure and φ be a CTL formula. Let s ∈ S
be a cstate. Then, OMG terminates in a finite number of steps.

Proof. We prove that OMG terminates in a finite number of steps for every finite model
M , cstate s and a CTL formula φ.

We show that the following property holds: for every φ ∈ CTL, and for every node
n, when RecurCtl is applied over g = (n, φ), it terminates in a finite number of steps.
We prove this by induction over the structure of φ.

For the base case, φ ∈ AP ∪{⊤,⊥}. If φ is boolean, then the if statement in line 1
of RecurCtl is taken. Then, RecurCtl returns in line 2. Otherwise, φ ∈ AP , in

54

which case the if statement in line 1 is not taken. As explained before, abs(n) is labeled
with the same atomic propositions as C(n). Therefore, the if statement in line 4 is
taken, and the algorithm halts in the next line.

Now, assume that for every proper subformula φ′ of φ and that for every node m,
if RecurCtl is applied over the subgoal (m,φ′), then it terminates in a final number
of steps. We prove that RecurCtl terminates when applied over g.

If φ ∈ AP ∪ {⊤,⊥}, then the claim holds as proved in the base case. Otherwise, φ
is a complex formula. We split to cases according to the main connective of φ:

• Assume φ is of the form φ1 ∨ φ2 or φ1 ∧ φ2. By the induction hypothesis, Re-
curCtl checks the subgoals (n, φ1) and (n, φ2) in a finite number of steps. Then,
OMG returns the appropriate result, and in particular, it halts. Thus, it halts for
φ in a finite number of steps. A similar argument holds if φ is of the form ¬φ′.

• Assume φ is of the form Aφ1V φ2. According to the induction hypothesis, for
every node m and for every proper subformula φ′ of φ, it holds that RecurCtl
checks the goal (m,φ′) in a finite number of steps. Then, when it is applied over
φ, the if statement in line 1 is not taken. Next, RecurCtl either terminates in
line 5, or it calls HandleAV which terminates according to Lemma 4.4.5. We
conclude that RecurCtl terminates.

• For the cases where φ is of the form Eφ1V φ2 or EXφ1, the proof follows the
lines of the previous case, apart for the usage of Lemma 5.3.5 and Lemma 6.2.2,
respectively.

Now, letM, s |= φ be the model checking task checked by OMG. As OMG activates
RecurCtl over the goal g = (root(T), φ), it follows from the inductive claim that
OMG terminates. Thus, OMG terminates in a finite number of steps. ■

55

56

Chapter 9

Related Work

The algorithm suggested in [HBS12] (IICTL) is the closest to our work. It conducts
CTL model checking in an incremental and inductive manner. For every subformula of
the specification it computes an over- and an under-approximation of the set of states
in which it holds, and progresses by refining them. This process goes on until the
algorithm halts with an answer.

The refinements that are applied in [HBS12] are used to make the approximation
more precise. The refinements use generalization techniques that are similar to the ones
presented in [Bra11, BSHZ11]. The refinements in OMG use a similar generalization
technique to that of [HBS12]. However, it is used to achieve a different goal. OMG
applies refinements to conduct splits, that create either must hyper-transitions or may
closures.

Inductive proofs in [HBS12] are composed of lemmas, which prove relations between
different approximations. No abstraction is used. In contrast, in OMG inductiveness
is defined for abstract states, and is composed of different types of transitions (and
hyper-transitions) between abstract states.

For formulas of the form EGp, IICTL generalizes a “skeleton” of concrete states in
order to prove the existence of a lasso. In contrast, OMG uses must hyper-transitions
to prove the existence of an infinite path, without computing the concrete states that
form it. Additionally, OMG gathers and saves information on-the-fly, which is not done
in [HBS12].

On-the-fly and local model checking is applied in many contexts, for instance in
[BCG95, BS92, SW89b, SW89a, CVWY90, BLW02]. All algorithms use the notions of
goals and subgoals. OMG uses abstraction to speed up proofs, unlike the other works.
For example, the algorithm presented in [SW89b] constructs a tableau on-the-fly and
unwinds the structure explicitly, until it finds an answer to the goal that it checks.

Lazy abstraction is used in [McM06, VGS12, HJMS02], as well as in OMG, although
it is defined and used differently. The work in [McM06] uses interpolants for model
checking software. It creates an abstraction for the program and refines it by need.
Both this algorithm and OMG define notions of closure, though it is conceptually

57

different. Our work is more general, as it handles the entire CTL.
SAT -based algorithms for model checking branching-time properties are suggested

in [PWZ02, JC18, OG07, Wan05]. They resemble OMG in its unwinding of the model
and search for witnesses. However, these methods do not use abstraction to speed
up convergence. Moreover, OMG uses inductive invariants to speed up termination.
In contrast, these methods only terminate after sufficient unwinding of the model is
conducted.

May and must transitions are used, e.g., in [SG07, GHJ01]. In [CGJ+03], a series of
abstract models with may transitions are used for ACTL∗ model checking, allowing to
prove but not refute properties. In [SG07], these transitions are combined with 3-valued
semantics for model checking. Given an abstract model that contains may and must
transitions, a game board is built to conduct model checking. The method in [GHJ01]
utilizes such transitions to define approximations for a model, in order to model check
the entire µ-calculus. OMG uses such transitions as parts of proofs, but computes them
lazily. Moreover, it uses must hyper-transitions instead of must transitions, as also done
in [SG04].

Abstraction is used for CTL and µ-calculus model checking in [PH97, LA99]. These
methods compute a series of approximations of the model. The work in [LA99] employs
a compositional approach. Moreover, it computes an under- and an over-approximation
for subformulas of the original specifications. The work in [PH97] formalizes a notion
of conservative approximations, which is suitable for checking both universal and exis-
tential properties. The method proposed is based on abstraction-refinement. In OMG,
however, it is not guaranteed that the same abstraction is used in different parts of the
model. We lazily apply refinement only when and where needed.

The work in [CGM21] combines abstraction and compositional verification in order
to prove the existence of fair infinite paths in infinite-state systems. Both this work and
OMG use abstraction to prove the existence of infinite paths. However, the work in
[CGM21] entails a compositional approach and handles fairness, whereas our algorithm
is on-the-fly.

Different approaches for CTL model checking are presented in [BPR16, INH96]. In
[BPR16], the model checking problem is translated to a set of Horn clauses using proof
rules. The method presented in [INH96] uses BDDs to traverse the model. Traditional
CTL model checking algorithms that use BDDs are presented in [CGK+18]. These
approaches are not on-the-fly, do not use abstraction and cannot handle infinite models,
as opposed to our work.

The method presented in [Pel94] combines partial order reductions with on-the-fly
model checking. Both algorithms implement on-the-fly verification, however minimiz-
ing the search space is done differently. [Pel94] uses partial order reduction, which
recognizes equivalent executions w.r.t. independent actions in the model, thus reduc-
ing the state space. OMG uses abstraction to compute some of the transitions in the
abstract state space, which is substantially smaller than the original state space.

58

Chapter 10

Conclusion and future work

This work presents an on-the-fly algorithm for CTL model checking with abstraction.
Our algorithm minimizes the explored parts of the model in order to achieve efficiency.
OMG can be used for model checking finite models, as well as for model checking infinite
models with a finite branching degree. As a future work, we intend to incorporate
concepts from OMG into the IC3 algorithm. Another promising direction is generalizing
our algorithm to handle the alternation-free fragment of the powerful µ-calculus logic.

59

60

Bibliography

[BCG95] Girish Bhat, Rance Cleaveland, and Orna Grumberg. Efficient on-the-fly
model checking for ctl*. In Proceedings, 10th Annual IEEE Symposium
on Logic in Computer Science, San Diego, California, USA, June 26-29,
1995, pages 388–397, 1995.

[BLW02] Benedikt Bollig, Martin Leucker, and Michael Weber. Local parallel model
checking for the alternation-free µ-calculus. In Model Checking of Software,
9th International SPIN Workshop, Grenoble, France, April 11-13, 2002,
Proceedings, pages 128–147, 2002.

[BPM83] Mordechai Ben-Ari, Amir Pnueli, and Zohar Manna. The temporal logic
of branching time. Acta Informatica, 20:207–226, 1983.

[BPR16] Tewodros A. Beyene, Corneliu Popeea, and Andrey Rybalchenko. Efficient
CTL verification via horn constraints solving. In John P. Gallagher and
Philipp Rümmer, editors, Proceedings 3rd Workshop on Horn Clauses for
Verification and Synthesis, HCVS@ETAPS 2016, Eindhoven, The Nether-
lands, 3rd April 2016, volume 219 of EPTCS, pages 1–14, 2016.

[Bra11] Aaron R. Bradley. SAT-based model checking without unrolling. In 12th
International Conference on Verification, Model Checking, and Abstract
Interpretation (VMCAI) 2011, Austin, TX, USA, pages 70–87, January
2011.

[BS92] Julian C. Bradfield and Colin Stirling. Local model checking for infinite
state spaces. Theor. Comput. Sci., 96(1):157–174, 1992.

[BSHZ11] Aaron R. Bradley, Fabio Somenzi, Zyad Hassan, and Yan Zhang. An incre-
mental approach to model checking progress properties. In International
Conference on Formal Methods in Computer-Aided Design, FMCAD ’11,
Austin, TX, USA, October 30 - November 02, 2011, pages 144–153, 2011.

[CGJ+03] Edmund M. Clarke, Orna Grumberg, Somesh Jha, Yuan Lu, and Helmut
Veith. Counterexample-guided abstraction refinement for symbolic model
checking. J. ACM, 50(5):752–794, 2003.

61

[CGK+18] E.M. Clarke, O. Grumberg, D. Kroening, D. Peled, and H. Veith. Model
Checking – Second Edition. MIT Press, 2018.

[CGM21] Alessandro Cimatti, Alberto Griggio, and Enrico Magnago. Proving the
existence of fair paths in infinite-state systems. In Fritz Henglein, Sharon
Shoham, and Yakir Vizel, editors, Verification, Model Checking, and
Abstract Interpretation - 22nd International Conference, VMCAI 2021,
Copenhagen, Denmark, January 17-19, 2021, Proceedings, volume 12597
of Lecture Notes in Computer Science, pages 104–126. Springer, 2021.

[CVWY90] Costas Courcoubetis, Moshe Y. Vardi, Pierre Wolper, and Mihalis Yan-
nakakis. Memory efficient algorithms for the verification of temporal prop-
erties. In Computer Aided Verification, 2nd International Workshop, CAV
’90, New Brunswick, NJ, USA, June 18-21, 1990, Proceedings, pages 233–
242, 1990.

[GHJ01] Patrice Godefroid, Michael Huth, and Radha Jagadeesan. Abstraction-
based model checking using modal transition systems. In Kim Guldstrand
Larsen and Mogens Nielsen, editors, CONCUR 2001 - Concurrency Theory,
12th International Conference, Aalborg, Denmark, August 20-25, 2001,
Proceedings, volume 2154 of Lecture Notes in Computer Science, pages
426–440. Springer, 2001.

[HBS12] Zyad Hassan, Aaron R. Bradley, and Fabio Somenzi. Incremental, inductive
CTL model checking. In Computer Aided Verification - 24th International
Conference, CAV 2012, Berkeley, CA, USA, July 7-13, 2012 Proceedings,
pages 532–547, 2012.

[HJMS02] Thomas A. Henzinger, Ranjit Jhala, Rupak Majumdar, and Grégoire Sutre.
Lazy abstraction. In John Launchbury and John C. Mitchell, editors, Con-
ference Record of POPL 2002: The 29th SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, Portland, OR, USA, January
16-18, 2002, pages 58–70. ACM, 2002.

[INH96] Hiroaki Iwashita, Tsuneo Nakata, and Fumiyasu Hirose. CTL model check-
ing based on forward state traversal. In Rob A. Rutenbar and Ralph H.
J. M. Otten, editors, Proceedings of the 1996 IEEE/ACM International
Conference on Computer-Aided Design, ICCAD 1996, San Jose, CA, USA,
November 10-14, 1996, pages 82–87. IEEE Computer Society / ACM, 1996.

[JC18] Chuan Jiang and Gianfranco Ciardo. Improving sat-based bounded model
checking for existential ctl through path reuse. In Gilles Barthe, Geoff
Sutcliffe, and Margus Veanes, editors, LPAR-22. 22nd International Con-
ference on Logic for Programming, Artificial Intelligence and Reasoning,
volume 57 of EPiC Series in Computing, pages 471–487. EasyChair, 2018.

62

[Koz83] Dexter Kozen. Results on the propositional mu-calculus. Theor. Comput.
Sci., 27:333–354, 1983.

[LA99] Jørn Lind-Nielsen and Henrik Reif Andersen. Stepwise CTL model checking
of state/event systems. In Nicolas Halbwachs and Doron A. Peled, editors,
Computer Aided Verification, 11th International Conference, CAV ’99,
Trento, Italy, July 6-10, 1999, Proceedings, volume 1633 of Lecture Notes
in Computer Science, pages 316–327. Springer, 1999.

[McM06] Kenneth L. McMillan. Lazy abstraction with interpolants. In 18th Interna-
tional Conference on Computer Aided Verification (CAV), pages 123–136,
Seattle, WA, USA, August 2006.

[OG07] Rotem Oshman and Orna Grumberg. A new approach to bounded model
checking for branching time logics. In Automated Technology for Verifi-
cation and Analysis, 5th International Symposium, ATVA 2007, Tokyo,
Japan, October 22-25, 2007, Proceedings, pages 410–424, 2007.

[Pel94] Doron A. Peled. Combining partial order reductions with on-the-fly model-
checking. In David L. Dill, editor, Computer Aided Verification, 6th In-
ternational Conference, CAV ’94, Stanford, California, USA, June 21-23,
1994, Proceedings, volume 818 of Lecture Notes in Computer Science, pages
377–390. Springer, 1994.

[PH97] Abelardo Pardo and Gary D. Hachtel. Automatic abstraction techniques for
propositional µ-calculus model checking. In Orna Grumberg, editor, Com-
puter Aided Verification, 9th International Conference, CAV ’97, Haifa,
Israel, June 22-25, 1997, Proceedings, volume 1254 of Lecture Notes in
Computer Science, pages 12–23. Springer, 1997.

[Pnu77] Amir Pnueli. The temporal logic of programs. In 18th Annual Symposium
on Foundations of Computer Science, Providence, Rhode Island, USA, 31
October - 1 November 1977, pages 46–57. IEEE Computer Society, 1977.

[PWZ02] Wojciech Penczek, Bozena Wozna, and Andrzej Zbrzezny. Bounded model
checking for the universal fragment of CTL. Fundam. Inform., 51(1-2):135–
156, 2002.

[SG04] Sharon Shoham and Orna Grumberg. Monotonic abstraction-refinement
for CTL. In Tools and Algorithms for the Construction and Analysis of
Systems, 10th International Conference, TACAS 2004, Held as Part of the
Joint European Conferences on Theory and Practice of Software, ETAPS
2004, Barcelona, Spain, March 29 - April 2, 2004, Proceedings, pages 546–
560, 2004.

63

[SG07] Sharon Shoham and Orna Grumberg. A game-based framework for CTL
counterexamples and 3-valued abstraction-refinement. ACM Trans. Com-
put. Log., 9(1):1, 2007.

[SW89a] Colin Stirling and David Walker. CCS, liveness, and local model checking
in the linear time mu-calculus. In Automatic Verification Methods for
Finite State Systems, International Workshop, Grenoble, France, June 12-
14, 1989, Proceedings, pages 166–178, 1989.

[SW89b] Colin Stirling and David Walker. Local model checking in the modal mu-
calculus. In TAPSOFT’89: Proceedings of the International Joint Confer-
ence on Theory and Practice of Software Development, Barcelona, Spain,
March 13-17, 1989, Volume 1: Advanced Seminar on Foundations of In-
novative Software Development I and Colloquium on Trees in Algebra and
Programming (CAAP’89), pages 369–383, 1989.

[VGS12] Yakir Vizel, Orna Grumberg, and Sharon Shoham. Lazy abstraction and
sat-based reachability in hardware model checking. In Gianpiero Cabodi
and Satnam Singh, editors, Formal Methods in Computer-Aided Design,
FMCAD 2012, Cambridge, UK, October 22-25, 2012, pages 173–181. IEEE,
2012.

[Wan05] Bow-Yaw Wang. Proving forall-µ-calculus properties with sat-based model
checking. In Formal Techniques for Networked and Distributed Systems -
FORTE 2005, 25th IFIP WG 6.1 International Conference, Taipei, Tai-
wan, October 2-5, 2005, Proceedings, pages 113–127, 2005.

64

שמורכבת שכזו שמורה נחפש קונקרטיים, ממצבים שמורכבת אינדוקטיבית שמורה לחפש במקום כעת,

משמעותית מאיץ זה שינוי ביקרנו. בהם הקונקרטיים למצבים שמשויכים האבסטקטיים מהמצבים

חיובית. תשובה עם לעצירה ההתכנסות את

על-מנת הלאה, המבנה את נפרוש אינדוקטיבית, שמורה מהווה לא האבסטקטיים המצבים קבוצת אם

האבסטקציה. את נעדן שלחילופין או נוספים, אבסטרקטיים מצבים לגלות

בשם אופרטור הוא V כאשר ,ApV q מהצורה לנוסחאות המתואר האלגוריתם את מרחיבים אנו

המטפל לאלגוריתם דומה המורחב האלגוריתם .pV q ≡ Gq ∨ (qU(p ∧ q)) המקיים ,release

.AGp מהצורה בנוסחאות

ביצוע .EGq מהצורה בנוסחאות הטיפול את נסביר יותר, טובה בצורה OMG את להבין על-מנת

המסלול לאורך מצב לכל כאשר , s מהמצב אינסופי מסלול בחיפוש מסתכם M, s |= EGq הבדיקה

התכונה את מקיים שלא במצב נתקל OMG אם , s מהמצב הישיגים המצבים ניתוח בעת .q מתקיים

אם . Gq שמספק ממסלול חלק להיות יכול לא שהוא היות המצב, אותו את לנתח מפסיק הוא , q

על-מנת שלילית. תשובה מחזיר האלגוריתם לנתח, שיש המצבים ואזלו נמצא, לא אינסופי מסלול

כלל כי מבטיחה האינדוקטיבית השמורה אינדוקטיבית. שמורה מחפש OMG חיובית, תשובה להחזיר

עצמה. בשמורה בן בעלי יהיו ,q שיספקו לכך פרט בה, המצבים

הבדיקה את לבצע על-מנת לדוגמה, רקורסיבי. הוא כלליות CTL בנוסחאות הטיפול

מספק s0 של מהבנים אחד כל והאם s0 |= p האם יבדוק האלגוריתם ,s0 |= p ∧ AXAGq
בדיקת על-ידי נעשה כלליות CTL נוסחאות של המודל בדיקת הזה, באופן .AGq הנוסחא את

בלבד. הצורך לפי מצבים מעל תתי-נוסחאות

מתקיים האם בודקים שאנו נניח הבאה. בתכונה הצורך את מעלה הרקורסיבי הטיפול אופן

המצבים כל אזי, בדיקה. אותה בתום s הקונקרטי למצב שמשויך האבסטרקטי המצב ŝ ויהי ,s |= φ

הווי .φ לסיפוק באשר s עם להסכים עליהם ,ŝ אבסטרקטי מצב אותו להם שמשויך הקונקרטיים

.t |= φ ⇐⇒ s |= φ כי לקיים עליו ,ŝ הוא לו שמשויך האבסטרקטי המצב אשר t מצב כל אומר,

האלגוריתם. ריצת לאורך שונים במקומות מבוצעים אשר ב"חיזוקים", הצורך את מעלה זו נקודה

כאשר מצב, לכל סופית יציאה דרגת בעלי מודלים לבדיקת מתאים מציעים אנו אשר האלגוריתם

שאינם מבנים עבור יעצור לא שהאלגוריתם יתכן זאת, עם אינסופי. או סופי הוא המצבים מספר

סופיים.

מבנים של סימבולי ייצוג לבין מפורש ייצוג בין ושילבנו שלנו, האלגוריתם את מימשנו זו, בעבודה

.SMT ובפותרי SAT בפותרי שימוש עשינו הסימבולי, הייצוג עבור האלגוריתם. משתמש בהם שונים

מאשר יותר טובות תוצאות משיג שלנו האלגוריתם עבורן דוגמאות שישנן מראים שלנו הניסויים

.CTL לנוסחאות מודל בדיקת לביצוע SAT מבוסס- חדיש אלגוריתם שהוא ,IICTL

סימבולית גרסא והן מפורשת גרסא הן והצגנו שלנו, האלגוריתם של פורמליזציה הגדרנו מכך, יתרה

.OMG של

iii

ואבסטרקציה. עצל אימות מודל: לבדיקת מרכזיות גישות שתי בין משלב מציעים שאנו האלגוריתם

הקושי את מתארת אשר המצבים, התפוצצות בעיית עם התמודדות היא אלו גישות שתי מטרת

מעריכית גדל במודל המצבים שמספר היות - הבא הוא העניין לב מודרניות. במערכות מודל בבדיקת

הופך מפורשת בצורה בזכרון כולו המודל ייצוג המודל, את שמגדירים המשתנים מספר גידול עם

יותר גדול חישובי קושי אחריהם שגוררים למודל, אלטרנטיביים ייצוגים נדרשים כך, עקב ישים. לא

אלו. גישות שתי בקצרה נתאר המודל. בדיקת בביצוע

במודל הנדרשים החלקים את ורק אך לפתח יש כי שגורסת מודל בבדיקת גישה הוא עצל אימות

את מפתחים זו בגישה שנוקטים רבים אלגוריתמים יוצא, כפועל עליו. הבדיקה את לבצע על-מנת

זו בגישה הנוקטים אימות אלגוריתמי מכך, יתרה הנבדק. המפרט ידי על שמונחה באופן המודל

כולו. המפרט בדיקת אופן את שמגדיר לתתי-נוסחאות הנוסחה של פירוק רבים במקרים מבצעים

אימות שמבצעים אלגוריתמים לפיכך, המודל. גבי על הנחוצות תתי-הנוסחאות ורק אך נבדקות כך,

המודל. של סופי חלק פיתוח תוך אינסופי, מודל על מודל בדיקת לבצע להצליח לעתים עשויים עצל

אבסטרקציה שמבצע אלגוריתם ,M מודל בהנתן הבאה. בצורה שפועלת כללית גישה הינה אבסטרקציה

אבסטרקטי''. ''מבנה מכונה זה מבנה בגודלו. ממנו וקטן המקורי המודל מתוך M ′ חלופי מודל יבנה

שמאפשרות רבות אבסטרקציות ישנן האבסטרקטי. המודל על מודל בדיקת תתבצע מכן, לאחר

שלו, המודל בדיקת מתבצעת ובכך המקורי, המודל אל המצומצם המודל בדיקת תוצאת של הכללה

אימות לבצע לעתים ניתן בלבד. יותר, הקטן האבסטרקטי, המודל בבדיקת חישוב כוח שהושקע תוך

המערכת מידול על-ידי נעשה האימות האבסטרקציה. טכניקת באמצעות אינסופיות למערכות פורמלי

המודל על מודל בדיקת וביצוע מצבים, של סופי מספר עם אבסטרקטי מודל באמצעות האינסופית

האבסטרקטי.

ניתוח עם ההתמודדות את - וספציפית שלנו, מהאלגוריתם חלק אינטואיטיבית בצורה נתאר כעת,

s0 התחלתי מצב בהינתן .AGp מהצורה הן ישיגות הבודקות נוסחאות ,CTL בלוגיקה ישיגות.

מקיימים M ב- s0 מ- הישגים המצבים כל כי לבדיקה שקולה M, s0 |= AGp הבדיקה ,M במודל

.p התכונה את

המצב מתוך המבנה של החישוב עץ של פרישה מבצע שלנו האלגוריתם זו, תכונה לבדוק על-מנת

האם ובודק ,s0 מ- הישיגים המצבים את מפתח האלגוריתם הבדיקה, לאורך עצלה. בצורה s0

נגדית, דוגמה שמצאנו הרי זו, תכונה מקיים שאינו מצב נמצא אם .p התכונה את מספקים כולם

בכל לבקר יש חיובית, תשובה עם לסיים על-מנת זאת, עם שלילית. תשובה עם מסיים והאלגוריתם

הישיגים. המצבים

דרוש. אינו שלו הפיתוח המשך במבנה, מצב של הבנים בכל ביקרנו כבר אם כי נבחין כן, פי על אף

במקרה חיובית. תשובה עם לעצור נוכל ביקרנו, בהם במבנה המצבים לכל מתקיימת זו תכונה אם

אינדוקטיבית. שמורה מהווה ביקרנו בהם המצבים קבוצת כי נאמר זה,

אבסטרקציה נשלב לפיכך, אינסופית. ואף מאד גדולה להיות עלולה הישגים המצבים קבוצת זאת, עם

אינסופי, מבנה של (ובמקרה שלנו האלגוריתם של ההתכנסות את להאיץ על-מנת שלנו, באלגוריתם

,ŝ אבסטרקטי מצב נבקר בו במבנה s מצב לכל נשייך לכן, לאפשרית). הזו ההתכנסות את להפוך

.s המצב כמו אטומיות נוסחאות באותן שמסומן

ii

תקציר

מודל "בדיקת בשם ,CTL המפרט לשפת מודל בדיקת לביצוע חדיש אלגוריתם נציג זו בעבודה

שימוש עם עצל אלגוריתם משלבת OMG .(OMG אותה (נכנה מונחית" אבסטרקציה באמצעות עצלה

באבסטרקציה.

הבעיה את לתאר ניתן מודל. בדיקת מכונה הפורמלי אימות לביצוע ביותר הבולטות השיטות אחת

המודל האם מכריע מודל לבדיקת אלגוריתם ,φ ומפרט M מערכת של מודל בהינתן הבאה: בצורה

המפרט לכך. נגדית דוגמה מספק האלגוריתם אותו, מקיים לא שהוא ובמידה המפרט, את מקיים

שעתיד הלקוח על-ידי והן שלה, המפתח על-ידי הן המערכת, מתכנן על-ידי הן מוגדר להיות עשוי

בה. להשתמש

שמערכות היא לכך מרכזית סיבה בימינו. וגדלה הולכת מודל בדיקת שמבצעים אלגוריתמים חשיבות

רבות מערכות מכך, יתרה הפרט. בחיי יותר מרכזי לחלק והופכות הולכות מודרניות וחומרה תוכנה

הצורך עולה אלו מכל כאלו. אכן שהן לוודא צורך ויש ולשיבושים, לתקלות עמידות להיות נדרשות

נכונה. ובצורה במהירות גדולות מערכות של מודל בדיקת לבצע שמסוגלים חדישים באלגוריתמים

ורק אך מטפלים מודל בדיקת אלגוריתמי כריעה, איננה פורמלי אימות של הכללית שהבעיה היות

בלוגיקות לבטא שניתן במפרטים ורק ואך מצבים, של סופי מספר בעלות ריאקטיביות במערכות

המפרט מצבים. מכונות לייצוג כללית צורה שמהווה קריפקה, כמבנה מתואר לרוב המודל מסוימות.

ו- ,CTL∗ ,LTL ,CTL דוגמת רבות, זמן לוגיקות ישנן זמן. בלוגיקת כנוסחה מבוטא לבדיקה

שמשמשים האלגוריתמים ובסיבוכיות שלהן הביטוי בכוח נבדלות השונות הלוגיקות .µ − calculus
עבורן. מודל לבדיקת

התנהגויות שמתארים מפרטים לכתיבת משמשת זו לוגיקה מתפצל. זמן לוגיקת היא CTL הלוגיקה

לתיאור ניתנות שאינן תכונות לתאר ניתן זו, לוגיקה באמצעות כאחד. וחומרה תוכנה מערכות של

קרי, האתחוליות, תכונת היא שכזו לתכונה דוגמה .LTL הלוגיקה דוגמת לינארי, זמן בלוגיקות

ניתן ,CTL בלוגיקה שיקום. תהליך או אתחול תהליך עקב תחילי, למצב לחזור מערכת של יכולתה

ששקולה נוסחה קיימת לא LTL בלוגיקה כאשר ,AGEFstart הנוסחה באמצעות זו תכונה לבטא

זו. לנוסחה

הלוגיקה של החילופים חסר לפרגמנט שלה היחסי בדימיון ביטוי לידי בא זו לוגיקה של נוסף יתרון

ניתנים CTL ל- מודל בדיקת שמבצעים רבים אלגוריתמים מכך, כתוצאה . µ−calculus העוצמתית
זה. לפרגמנט יחסית בקלות להרחבה

ידי על שמבוצע האימות תהליך שלנו. בעבודה המוצגים המרכזיים העקרונות את כעת נתאר

i

המחשב. למדעי בפקולטה גרימברג, ארנה פרופסור של בהנחייתה בוצע המחקר

תודות

היוו השבועיות הפגישות גרימברג. ארנה פרופסור שלי, למנחה להודות ברצוני ובראשונה, בראש

מהנה. להיות יכול הוא כמה ועד מהו, מחקר למדתי במהלכן, עבורי. השראה של בלתי-נדלה מקור

עולמי. ושם קומה שיעור בעלת מחוקרת וניסיון כלים לרכוש ההזדמנות לי נתנה המשותפת העבודה

חברותך. ועל הרבה התמיכה על בי, האמונה על לך תודה - ארנה

אותי ילווה בזכותך שרכשתי הידע ומוצלח. פורה פעולה שיתוף על ויזל יקיר לד"ר להודות ברצוני

במחקר, ועמיתותיי עמיתיי ליתר גם להודות ברצוני המשותפת. בעבודתנו מאד ונהנתי דרכי, בהמשך

ולהכוונה. לייעוץ אדיר ומקור השראה בעבורי היוו אשר

מוקיר אני לימודיי. אורך לכל בי תמיכתם ועל אמונתם על האהובה, למשפחתי להודות ברצוני

הן תמיכתם את ומעריך היסודי, בבית-הספר עוד בי שהחדירו ללמוד הרצון ואת המוטיבציה את

הקשים. בזמנים והן השמחים ברגעים

בהשתלמותי. הנדיבה הכספית התמיכה על לטכניון מודה אני

עצלה מודל בדיקת
מונחית אבסטרציה באמצעות

מחקר על חיבור

התואר לקבלת הדרישות של חלקי מילוי לשם

המחשב במדעי למדעים מגיסטר

שדה גל

לישראל טכנולוגי מכון — הטכניון לסנט הוגש

2021 פברואר חיפה התשפ"א אדר

עצלה מודל בדיקת
מונחית אבסטרציה באמצעות

שדה גל

	List of Figures
	Abstract
	1 Introduction
	2 Preliminaries
	2.1 The full abstract structure

	3 Main Algorithm Description
	3.1 Abstract models corresponding to the unwinding trees
	3.2 Recursive handling of CTL formulas
	3.3 Initialization and Recursive Activation

	4 Handling ApVq
	4.1 Intuition to AG
	4.2 Extension to ApVq
	4.3 The full algorithm
	4.3.1 HandleAV description
	4.3.2 indAV description

	4.4 Strengthenings
	4.4.1 Trace Strengthening
	4.4.2 Subtree Strengthening

	5 Handling EpVq
	5.1 Intuition to EG
	5.2 Extension to EpVq
	5.3 The full algorithm
	5.3.1 HandleEV description
	5.3.2 indEV detailed description

	6 Handling EX and logical operators
	6.1 Handling logical operators
	6.2 Handling EX

	7 Symbolic formalization and optimizations
	7.1 Symbolic representation of abstract states
	7.1.1 Abstract state representation using quantifiers
	7.1.2 Quantifier-free representation of abstract states

	7.2 Symbolic unwinding
	7.3 Adapting the algorithm
	7.4 General optimizations to OMG

	8 Correctness of OMG
	9 Related Work
	10 Conclusion and future work
	Bibliography
	Hebrew Abstract

