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Abstract

Model checking is an automatic verification method that gets a system model and a
specification, and checks whether the model satisfies the specification.

CTL is a branching time temporal logic suitable for specifying behaviors of both
software and hardware systems. It enables specifying properties that cannot be ex-
pressed in linear time logics, such as LT L. An example of such a property is restarta-
bility, which means that in every reachable state, the system may return to its initial
state, due to a reset or a recovery. Further, in many cases, C'I'L model checking algo-
rithms can be easily extended to handle the alternation-free fragment of the powerful
p-calculus logic.

In this work, we present a novel approach, OMG, that combines on-the-fly verifica-
tion with abstraction in order to obtain an efficient CT'L model checking algorithm.

On-the-fly verification ensures that only parts that are needed for determining the
satisfaction of the specification are developed. The abstraction is used to form inductive
invariants, allowing OMG to determine satisfaction of the CTL specification without
traversing the entire state-space.

We formalize the correctness of OMG, and present both an explicit version of the
algorithm and a symbolic one.

We implemented our algorithm on top of a combination of explicit and symbolic
representations, where symbolic representations are handled with SAT/SMT solvers.
Our experiments show that on a few examples, our algorithm outperforms a state-of-
the-art SAT-based algorithm for CTL.






Chapter 1

Introduction

In this work we present a novel CT'L model checking algorithm, called On-the-fly Model
checking with Guided abstraction (OMG). OMG combines an on-the-fly algorithm with
abstraction. Given a model and a specification, model checking [CGK™ 18] determines if
the model satisfies the specification. CT L [BPM83, CGK™18] is a significant branching
time specification language. It enables specifying properties that cannot be expressed in
linear time logics, such as LT'L [Pnu77]. An example of such a property is restartability,
which means that in every reachable state, the system may return to its initial state,
due to a reset or a recovery. Further, in many cases, C'I'L model checking algorithms
can be extended to handle the alternation-free fragment of the powerful p-calculus
logic [Koz83].

OMG is an on-the-fly algorithm. This means that it only analyzes parts of the
model, required in order to determine satisfaction of the examined property. Abstrac-
tion is used to enable termination (for infinite-state systems) or to obtain speedups (for
finite-state systems).

As an intuition, consider the case of reachability analysis, expressed in CTL by
formulas of the form AGp. Given a state s in a model M, checking M,s = AGp
amounts to checking that all states reachable from s in M satisfy the property p. OMG
explores the states reachable from s in an on-the-fly manner (i.e. lazily), checking if
they all satisfy p. If it finds a state that does not satisfy p, a counterexample is found
and the algorithm terminates with a negative answer.

Terminating with a positive answer, on the other hand, requires visiting all reachable
states. We note, however, that if all successors of a state s have been visited, and all
satisfy p, then no further analysis of s is required. If this property holds for all visited
states, then OMG terminates with a positive answer. However, analyzing all reachable
states may be infeasible. To overcome this issue, OMG uses abstraction. It associates
an abstract state § with each visited state s, and uses the abstract states when forming
an inductive invariant. This may accelerate convergence or even make it feasible, for
the infinite-state case.

To further explain OMG, consider formulas of the form FGp. Checking M, s = EGp



amounts to searching for an infinite path 7 from s such that every state along 7 satisfies
p. When analyzing states reachable from s, if OMG encounters a state ¢ that does not
satisfy p, it determines that no further analysis is required for ¢. This is because t
cannot be a part of a path that satisfies Gp. If an infinite path is not found and there
are no more states to analyze, OMG terminates with a negative answer.

For a positive answer, OMG seeks again an inductive invariant. However, now a
set of states D forms an inductive invariant for EGp, if every state in D, in addition
to satisfying p, has a successor in D. This is in contrast with the inductive invariant
for AGp, in which for each state, all successors need to remain in the invariant.

For both AGp and EGp, we use abstraction to form inductive invariants. When an
inductive invariant cannot be formed, we may refine the abstraction or further explore
parts of the concrete model.

The abstraction used by OMG defines both may and must transitions between ab-
stract states. May transitions over-approximate the set of concrete transitions. There-
fore, they are used in the inductive invariant for AGp, to show that all paths in the
model satisfy Gp. Must transitions under-approximate the set of concrete transitions.
Hence, they are used in the inductive invariant for EGp, to show that there exists a
path satisfying Gp.

These approximations allow OMG to handle general CTL formulas with nested
universal and existential path quantifiers. OMG analyzes a general CT'L formula re-
cursively. For example, to determine if s = p A AXFEGq, it checks if s = p and, in
addition, if all successors of s satisfy FGq.

OMG maintains an important feature that allows it to handle recursively any nest-
ing of C'T'L operators: For a state s, which is associated with an abstract state 3,
if s = ¢ has been determined, then all states associated with § agree with s on the
satisfaction of .

Our method is suitable for model checking systems that have a finite branching de-
gree, with either a finite or an infinite number of states. However, it may not terminate
for infinite state systems.

We formalize and prove the correctness of our algorithm and present both an explicit
version of OMG and a symbolic one.

We implemented our algorithm on top of a combination of explicit and symbolic
representations, where symbolic representations are handled with SAT/SMT solvers.
Our experiments show that on a few examples, OMG outperforms IICTL [HBS12], a
state-of-the-art SAT-based algorithm for C'TL.



Chapter 2

Preliminaries

A Kripke structure is a tuple M = (S, Sp, R, L), defined over a set of atomic propositions
AP. S is a set of states, Sy C S is a set of initial states, R C S x S is a transition
relation, and L : S — 247 is a labeling function. Note that, R is a total relation.
Namely, for every s € S there exists ¢ € S such that (s,t) € R. From now on, the
notations M, S, Sy, R, L refer to a Kripke structure M = (S, Sy, R, L) (a structure). We
sometimes refer to a Kripke structure as a Kripke model, or just a model. We use the
term cstate to abbreviate the term concrete state, which refers to states in S. A path
T = Sp, S1, S2, ... is an infinite sequence of states (that is, s; € S for every i € N), such
that (s;,5j4+1) € R for every j € N. We say that 7 is from s if s = s9. Given a cstate
s, a sequence of cstates sg,s1,..., Sk is a consecutive sequence from s if s = sg and
(8, 8i+1) € R for every 0 < i < k.

We next define CT'L.

Definition 2.0.1. (Computation Tree Logic)
We refer to the set P = {A, E} as path quantifiers, and to the temporal operators
X, V.U next, until and release, respectively. Let AP be a set of atomic propositions.

CTL formulas are defined in the following manner:
e T and 1 are C'T'L formulas.
e For every p € AP, pis a CTL formula.
e if 1,9 are C'T'L formulas, then p1 A p2, 1 V @9 and —yp; are C'T'L formulas.

o if 1,2 are C'TL formulas and P € P, then PX 1, Pp1Upy and Py Vs are
CTL formulas.

We identify formulas of the form ——¢p with .

CTL formulas are interpreted over Kripke structures. Given a Kripke structure
M = (5,50, R,L) and a state s € S, the semantics of CTL (that is, the satisfaction
relation =) are defined in the following manner [CGK118]:

. M,S’:T



o M,sp L

o forpe AP, M,sEp < p € L(s).

e M,sE—p < M,sl~p.

o M,sEwiNp2 <= M,s = ¢1 and M, s = po.

o M,sE w1V < M,skEp1or M,s | p.

o M,sEEXp <= there exists a path m = sg, s1,... from s s.t. M,s1 | ¢.
o M,sE AX¢ <= all paths m = s, s1,... from s satisfy M, s; = ¢.

o M,s = Ep1Upy <= there exists a path 7 = sg,1,... from s s.t. Ik >
0, such that M, s, = p2 and VO < i < k, M, s; = ¢1.

o M,s E Ap1Ups <= for all paths 7 = sg, $1,... from s it holds that Ik >
0s.t. M,sp = and VO < i<k, M,s; = p1.

e M,s E Ep1Vypy <= there exists a path m = sg,s1,... from ss.t. Vj >
0if Vi < j, (s; = 1) then s; = @o.

o M,s E Ap1Vpy <= for all paths 7 = sg, s1,... from s it holds that Vj >
0if Vi < j, (s; = 1) then s; = 9.

Note that the release temporal operator is the dual of the U operator. That is,
01V 2 = a(mo1U—pa) = G V U (p1 Apa). Other CT L operators can be expressed
using U and V, as Gy = (False)V (v) and Fy = TrueU.

For a set of states D C S, D | ¢ <= Vs € D, s = ¢. The notation s = ¢ is
sometimes used if M is clear from the context.

For a CTL formula ¢ and i € N, we write ¢’ to denote a sequence of i consecutive
occurances of . This is defined formally in the following manner: ¢ = € (the empty
formula) and 't = ip.

The following definitions are also used throughout this paper.

Definition 2.0.2. (Equi-labeled states)
Let M be a Kripke structure, and let s,¢ € S be cstates in M. Then, s,t are equi-labeled
if L(Sl) = L(SQ).

We denote s =¢ t if s,t are equi-labeled. We denote the equivalence class of a state s

under this relation by [s]o.

Definition 2.0.3. (Relation-induced function)

Let Q@ C A x B be a relation. We define the function @ A — 2BA so that for every
ac A Q)= {be B (a,b) € Q}. We also define the function Q:24 - 2B such
that for every D € 24, @(D) = Ugen @(d) By abuse of notations, we use Q,0,0
interchangeably.



Our work uses the notion of unwinding trees, defined in the following manner.

Definition 2.0.4. (Unwinding Tree)

Let » € S. Let T = (V,E) be a finite directed graph in the shape of a tree with
root vg € V. Let C : V — S be a concretization function. Then, T is an unwinding
tree of M from r, if C(vg) = r and for v € V which is not a leaf, it holds that
(u,v) € E <= (C(u),C(v)) € R.

The tree represents a finite unwinding of the model M from the cstate r. We refer
to r as the root of T, denoted root(T"). We use the notations n € V and n € T
interchangeably. The vertices of T" are called nodes. Edges in the tree connect a
node with each of its successors. A finite sequence of consecutive nodes in the tree,
ni,na,...,Nn; is called a trace. A trace is maximal in T if ny is a leaf. A noden € T is
labeled with s if C'(n) = s. The set of cstates that are labeled on the tree, {C(n) |n € V},
is denoted C(T').

We sometimes use the node n € T' and the cstate C(n) € S interchangeably. As
such, we write n = ¢ when C(n) = ¢. Note that any node n € T' is the root of an
unwinding tree of M from C(n), which is now the root.

Note also, for each node n € T which is not root(T) there exists a single node n’ € T
which is the parent of n in T (that is, (n/,n) € E), as T is a tree. For every node in
T which is not the root, we denote by parent(n) the parent of n in 7. This notation
is undefined for the root of T'. The depth of node n € T is the number of edges in
the (single) path from it to root(T"). The depth of root(T'), is defined to be zero, and
the depth of a node n, denoted depth(n) equal depth(parent(n)) + 1. The depth of an
unwinding tree T is defined as max,cr depth(n).

A path 7 = sg,s1,... extends a trace 7 = ng,...,ng if for every 0 < ¢ < k,
C(n;) = s;. Then, 7 is referred to as an extension of 7. Note that every trace can
be extended to an infinite path, as the transitions relation is total. Additionally, each
path 7 from C(root(T")) extends a single maximal trace.

We demonstrate our method over the running example, given in Figure 2.1. Con-
sider M over AP = {p,q,r}, presented on the left-hand-side of Figure 2.1. Assume
that sg is the initial state. The right-hand-side of Figure 2.1 presents an unwinding
tree T' of M from sp, such that for every node n; € T, it holds that C(n;) = s;, and
C(nf) = s2. Throughout this running example, we consider the model checking task
of checking whether M, sy = AX(ApVq). Note that s3 and s4 are unreachable from sg

and therefore are not represented in 7T'.

2.1 The full abstract structure

An important aspect of OMG is its use of abstraction. OMG builds an abstraction
on-the-fly. That is, along its run, the algorithm gradually builds an abstract structure

and keeps changing it according to the evolvement of the concrete structure using 7.



For M over AP, a set of abstract states S and an abstraction function abs : S — S ,
we present the notion of full abstract structure [SG04] (sometimes referred to as the full
abstract model), which is built by OMG lazily. Namely, we do not necessarily build the
full abstract model, but only parts of it, as needed. The full abstract model is defined
over the same set of atomic propositions AP. We require abs to satisfy for every s,t € S
that if abs(s) = abs(t) then L(s) = L(t). We use the term astate to abbreviate the
term abstract state.

Each abstract state § represents a set of concrete states that are mapped to it by
abs. That is, an abstract state § represents the set {s € S | abs(s) = §}. As such, we
use both these representations interchangeably, and use the notation s € § if abs(s) = 8.
Note that since abs is a function, each concrete state is mapped to a single abstract
state. Formally, for every §, ¢ it holds that § N = ().

The full abstract structure is defined as follows: M = (5’ , Rm“y,ﬁ’mwt,f)), where
L : § — 24P is the labeling function, defined for every § € S such that L(3) = L(s) for
some s € §. Note that this is well-defined as of the restriction on abs.

The definition of the relation R™45! requires the notion of hyper-transitions. Given
an astate § € S and a set D C S, a hyper-transition from § to D is a pair (8, ﬁ)
If D = {t} is a singleton, we refer to the hyper-transition (3, D) as a transition. We
identify a transition (3,%) with the hyper-transition (3, {}).

The transition relations of M are defined as follows:

« The set of may transitions R™% = {(3,{) € S x 5| 3s' € § ' € [(s,1) € R]}.

o The set of must hyper-transitions R™st = {(3,D) € § x 25 | Vs € § 3t €
2

UD [(s,t') € R]}. Note that, if (3, D) € R™"  then for every £ D D, (3,E) €
fzmust‘

OMG conducts iterative refinements of the abstract state space by applying splits op-

erations.

Definition 2.1.1. (Abstract state split)

Given a set S and an abstraction function abs, S’ is a split of S w.r.t. a property P and
an astate § € S if there exist §/,8" € &' s.t. & ={se€§|s |k P},§" ={scs|sk P}
and & = (5 \ {8}) U{#,§"}. Note that, ¥ U§”" = sand § N3 =0.

Figure 2.1: Kripke model (left) and its unwinding tree (right)



The abstraction abs’ that corresponds to S’ is defined as follows:

g, abs(s) =§AsEP
abs'(s) =< &, abs(s) =8 A s P
abs(s), otherwise

S is a split of S if there exist a property P and an astate § € S s.t. S is a split of S
w.r.t. P and 5. We refer to P as the split property, and say that § is split and &, 8" are
the splits of §.

Definition 2.1.2. (May closure)
A pair of the form (8, A), where A C S is a may closure if for every abstract state ¢
st. (5,1) € R™ it follows that { € A. That it, all may transitions from 4 lead to an

abstract state in A.

We define a notion of abstract state conformity in order to help future statements

and lemmas.

Definition 2.1.3. (Abstract state conformity) Let § be an abstract state and ¢ be a
CTL formula. Then, § conforms w.r.t. a formula ¢ if for every CTL subformula ¢’ of
@, it holds that: Vs € §, s E ¢/ <= s E ¢



10



Chapter 3
Main Algorithm Description

In this chapter we give a high-level description of our algorithm for CT' L model check-

ing. We also present the main data structures and techniques that are used.

3.1 Abstract models corresponding to the unwinding trees

Given an unwinding tree T of a structure M, we consider the astates that “appear”
on the tree. That is, the astates corresponding to concrete states that label the tree.
Formally, the abstraction function abs is extended to the nodes of T in the following
manner: Vn € T, abs(n) = abs(C(n)). Now, abs(T) represents the set of all astates
corresponding to nodes on 7. That is, abs(T) = {abs(n) | n € T}. Given a trace T
in T, abs(7) represents the set of all astates corresponding to nodes on 7. That is,
abs(t) = {abs(n) | n € 7}.

OMG assigns astates to nodes in 1" and updates them lazily. It builds the part of the
abstract model, induced by the abstraction that is currently used, without computing
the abstract model fully. In fact, OMG holds different abstract structures during its
run. We use a series of abstract structures ]T/[\j = (Sj,]%?ay,}?;”““,ﬁj), j € N, with
potentially different state spaces.

The set S*j only changes due to two reasons as the algorithm progresses:

o Abstract states are split: Along the run of the algorithm, an astate § may be split

into two parts, as described in Definition 2.1.1.

e New cstate is discovered: Along the run of the algorithm, it may be the case that
a node n is added to T due to unwinding, but there does not exists an astate
NS §j such that C'(n) € §. Then, OMG adds a new astate § = [C(n)]p. It is
shown next that, if C(n) ¢ US;, then for every cstate t € |JS;, it holds that

C(n) #o t. As such, the new astate and each of the existing astates are disjoint.

According to the changes in S'j, the rest of the components of the abstract model

change as well. For each j € N, the abstraction (partial) function abs; : S — Sj is

11



defined so that for every s € USj, abs;(s) is the (uniquely defined) 5 € Sj s.t. s € &.
The first set of abstract states, Sp, is the singleton {[C(root(T))]o} C {[s]o : s € S}.

Lemma 3.1.1. At every point along the run of the algorithm, the abstract state space
S satisfies that U S = U,.er [C(n)]o-

Proof. We prove the lemma by induction over the changes in the abstract state space.
For the base case, T contains a root node n, and it follows that S = {abs(n)} =
{[C(n)]o}, and so the claim follows. For the induction step, assume that the abstract
state space S satisfies that (JS = {[C(n)]o | n € T}, and that the state space now

changes. As explained above, the change may be caused by one of two reasons:

o Abstract state split: There exists an astate § € S that is split into §1, 82. Now,
the new set of astates S’ equals (S\ 8) U {31,32}. As of the fact that § = §; U 4y,

it follows that |J S = U S, and so the claim holds as of the induction assumption.

e Concrete state discovery: In this case, a new concrete state s is discovered and
added as a node in 7. In this case, abs(s) # § for every § € S. Thus, s ¢ |JS,
and by the induction assumption s ¢ U,cr [C(n)]o. In particular, we get that
for every n € T, L(s) # L(n). Now, when adding [s]y to S, the new abstract
state space is ' = SU{[s]o}. This new abstract state space satisfies the required

property. |

OMG maintains the following data about the abstract model, which is saved in

absStructure:

o Abstract states: Different astates are discovered as OMG progresses. However,
it may be the case that not all astates in the current S correspond to nodes on
T. For example, a split of an astate § may result in astates &,8” s.t. & or §”’

contains no cstates from 7. The abstract model contains all of the astates that

were discovered along the run of OMG.

e May transitions: New astates may be created when new cstates are discovered
by the algorithm and added to item, creating new may transitions between these
astates. The algorithm sometimes learns that an astate § has no may transitions
to some astate §. The abstract model records such pairs in a relation R, that
contains all pairs (8, §') for which it learns that there is no may-transition from §

to §.

e Must hyper-transitions: Like in the case of may-transitions, the abstract model
records pairs (8, D), for which it learns that (3, D) e R™ust,

o May closures: OMG records pairs of the form (8, A), for which it is inferred that

the pair is a may closure or that it is not a may closure.

12



The main purpose of absStructure is to maintain all information about the abstract
model that has been learned so far. This is important since otherwise an on-the-fly
algorithm may recompute again and again such information.

In addition to gathering data about the abstract model, information that is com-
puted during a run of OMG is saved even if it is not currently used. For example, after
computing the successors of a cstate s, they are recorded. Later, when computing the

successors of another node n s.t. C(n) = s, this information is re-used.

3.2 Recursive handling of CTL formulas

OMG is a recursive algorithm. We first define the notion of a goal.

Definition 3.2.1. (Goal)
A goal is a pair g = (n, ), where n € T and ¢ is a CTL formula. We say that g holds

if n = .

The model checking task of whether a node n satisfies ¢ is thus translated into
checking whether the goal (n, ) holds. For that matter, the algorithm decomposes
this goal into subgoals lazily, which are checked recursively. Unlike explicit model
checking (presented in [CGK"18]), where subformulas are checked in the entire model,
in our work, subgoals are only checked when needed. For example, to check the goal
(n,p N AX EGq), we check the goals (n,p) and (n/, EGq) for every successor n’ of n in
T. When OMG finishes checking a goal (n, ¢), it labels n with either ¢ or —p.

OMG is composed of subprocedures, each handles C'T'L formulas of a certain form,
according to the main connective of the formula. It contains subprocedures to handle
atomic propositions, logical connectives, and the operators EX, AV, EV. We also need

the following definition.

Definition 3.2.2. For an astate § € 3, § satisfies a formula ¢, denoted § |= ¢, if for
every s € § it holds that s = .

The following property is required when checking compound CTL formulas, and

OMG makes sure it holds. It is be further explained in later sections.

Property 3.2.3. Let g = (n, ¢) be a subgoal checked by OMG. Let ]\//Ij be the abstract
model obtained after OMG finishes to evaluate g. Let § € S*j be the astate that satisfies
C(n) € 8. Then, Vt € §, t = ¢ <= g holds.

As a consequence of the lemma, after checking a goal (n, @), OMG labels abs(n) as

well. Thus, checking goals of the form (n’, ¢) where abs(n) = abs(n’) becomes easy.

3.3 Initialization and Recursive Activation

The initialization procedure is presented in Algorithm 3.1 and explained below.

13



Algorithm 3.1 OMG
Input: Kripke structure M, cstate s € S, ¢ € CTL

Output: True if M, s |= ¢, False otherwise
1: global T' = initUnwinding Tree(M, s)
2: global abs = initAbstraction(M)
3: global absStructure = initAbstractStructure(M)
4
5

: Let g be the goal (root(T), )
: return RECURCTL(g) > See Algorithm 3.2

The initialization method is given a structure M, a cstate s € S and a specification
. The global data structures are initialized at the beginning of the run. The unwinding
tree 7' is initialized to a tree that contains a single node labeled with s. The abstraction
function abs is initialized to mapping s to [s]o. The abstract structure, absStructure,
is initialized to contain the astate [s]p. RECURCTL is then called over the root of T
and the specification, to check whether s = ¢.
The procedure RECURCTL is presented below.

Algorithm 3.2 RECURCTL
Input: Goal g = (n,¢)
Output: True if (n, ) holds, False otherwise
cif p € {T, L} then
Return the boolean value of ¢

1
2
3: Compute § = abs(n)

4: if § is labeled with ¢ or —¢ then > for every p € AP, p is decided for §
5: return the boolean value § = ¢
6
7
8
9

: Let # be the main connective of ¢
: Let McResult = HANDLE#(g)
: if McResult is True then
Label abs(n) with ¢
10: else
11: Label abs(n) with —p

12: return McResult

After initialization, RECURCTL analyzes the goal (root(T'), ¢), to check whether
s = ¢. Depending on the main connective of ¢, the appropriate subprocedure is called.
RECURCTL is called by every such subprocedure to further analyze subformulas of ¢.

Given a goal g = (n, ), every subprocedure updates absStructure by adding either
the label ¢ or the label —¢ to the astate abs(n). The formula ¢ is then said to be
decided w.r.t. state abs(n).

Note that along a run of OMG, if an astate is decided for some formula, it is also
decided for all of its subformulas, due to both Property 3.2.3 and the recursive nature
of OMG.

In the following chapters we first describe the subprocedures for checking ApV ¢ and
EpV q and then the subprocedures for the other operators.
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Chapter 4

Handling ApVq

We provide intuition for handing formulas of the form AGp, and then extend it to

formulas of the form ApVyg.

4.1 Intuition to AG

We explain the algorithm for AGp, and then extend it for formulas of the form ApVyg,
where p,q € CTL.

Consider the formula AGp. Given a cstate s, we explore the states reachable from it
in order to check whether they all satisfy p. For this purpose, we develop the unwinding
tree T' rooted at a node n. The unwinding tree is developed one node at a time,
according to some node-choosing heuristic. A promising heuristic is developing nodes
with minimal depths first, unless some node is marked as “urgent”, in which case it
is the next node to be developed. An example for the latter case can be found in the
procedure INDAV, described later in this chapter.

Whenever we develop a node m in the tree, we check whether m | p. If it does,
then the algorithm goes on and develops the tree further. Otherwise, the trace from n
to m is a violation of the statement n = AGp, and False is returned.

Up to this point, our method is most suitable for refutation. If S is finite, then
after developing at most |S| levels of the tree without halting, we may terminate with
a positive answer. However, we wish for our algorithm to terminate with a positive
answer before unwinding that many levels of the tree. For that, we use an inductive

invariant suitable for AGp, defined in the following manner:

Definition 4.1.1. (Inductive invariant for AGp)
Let p be a CTL formula. A set D C S is an inductive invariant for AGp if the following

conditions hold:
« for every § € D and for every £ such that (8,f) € R™%¥_ it holds that £ € D.
o for every $€ D, § = p.
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Recall that |J D consists of all cstates that are mapped to any § € D.

Observation 4.1.2. If D is an inductive invariant for AGp, then for every s € |J D,
it holds that s = p.

This holds as every cstate s € [JD is assigned an astate § € D s.t. § = p. As of
Property 3.2.3, we get that s = p.

Lemma 4.1.3. Letp be a CTL formula. If D is an inductive invariant for AGp, then
Vs € UD, s = AGp. By Definition 3.2.2, we also have ¥§ € D, § = AGp.

Before proving Lemma 4.1.3, we prove the following lemma.

Lemma 4.1.4. Let p be a CTL formula, D be an inductive invariant for AGp and
seUD. Letm = sg,81,... be a path from s. Thus, for every k > 0 it holds that
s, eUD.

Proof. We prove this by induction over k.

For the base case, k = 0. Indeed, as so = s, it follows that s € |J D, and so the base
case is proved.

We now prove the induction step. First, by the induction hypothesis, we get that
s € UD. We now prove that sy11 € UD.

As s € UD, there exists an astate §; € D s.t. s € S, Let §p41 € S be
abs(sk+1) (that is, sg41 € Sg+1). As (Sk, Sk+1) € R, we get that (8k, Sx11) € Rmay by
the definition of may transitions. By Definition 4.1.1, we get that §x41 € D, and so
sgr1 € UD, as required. |

We now prove Lemma 4.1.3

Proof. Let § € D, and assume by contradiction that it does not hold that § = AGp
Then, there exists s € § C (JD such that s = AGp. Thus, s = EF-p, and so there
exists a path m = sg, s1,...1in M, s.t. s = 59 and there exists k > 0 s.t. s; &= —p. Now,
consider the path 7. It holds that so = s € |JD, and so Lemma 4.1.4 applies for 7.
Thus, s; € UD. By Observation 4.1.2, we get that s; = p, which is a contradiction.
We conclude that s = AGp. [ |

Our algorithm checks whether abs(T') is an inductive invariant for AGp. If this is
the case, then all may-transitions, originating in an astate in D lead to astates in D.
Thus, D is an inductive invariant for AGp.

If abs(T') is not an inductive invariant, then there is an astate § € abs(T) that has
a may transition to an astate ¢ ¢ abs(T). In this case, either more unwinding should
be conducted or the abstraction is too coarse to prove the existence of an inductive
invariant. We explain how to handle these cases in the next section, in which the more

general case of ApVq is discussed.
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4.2 Extension to ApVq

We now extend the algorithm for AGp to the ApV ¢ case. We require all paths 7 from
s to satisfy either Gq or qU(q A p), which is a necessary and sufficient condition for
s = ApVq to hold.

For that, the unwinding is changed. A trace ng,...,nx is a counterexample to the
statement s = ApVq if for every i < k,n; = g A —p and ni = —q. If such a trace is
found, the algorithm returns a negative answer. If a node that satisfies ¢ A p is found,
this node is not further developed, as all paths that extend it satisfy qU(p A q).

We define the notion of an inductive invariant for ApVgq, which allows OMG to
prove that s = ApV ¢ without exploring the entire state-space.

Definition 4.2.1. (Inductive invariant for ApVq)
Let p,q be CTL formulas. Two sets of astates (D, B), are an inductive invariant for
ApV q if the following holds:

« Vse D,Vie R™¥(3): i e DUB.
e V5€ B,sEqAp.

. VtAED,f):q/\—\p.

The intuitive meaning of the invariant is that every state in it either satisfies g A p,

or it satisfies ¢ A =p and all of its successors are contained in the invariant.

Observation 4.2.2. If (D, B) is an inductive invariant for ApV¢, then for every s €
U D it holds that s = g A —p, and for every s € |J B it holds that s = ¢ A p.

This holds as every cstate s € |J D is assigned an astate § € D s.t. § = g A —p, and
as of Property 3.2.3, we get that s = ¢ A —p. Similarly, for s € |J B, it is assigned an
astate § € B s.t. § = ¢ A p, and as of Property 3.2.3, we get that s = q A p.

Lemma 4.2.3. Let p,q be CTL formulas. If (D,B) is an inductive invariant for
ApVyq, then for every s € |J(D U B) it holds that s = ApVq, and so for every § €
(DUB),s = ApVyg.

Before proving Lemma 4.2.3, we prove the following lemma.

Lemma 4.2.4. Let p,q be CTL formulas, (D, B) be an inductive invariant for ApVgq
and s € J(DUB). For every k > 0 and for every path m = s, s1,..., from s one of
the following holds:

e 0<j< kst s; € UB and s; € JD for every 0 < i < j.
e Vi>0,s €UD.
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Proof. We prove this by induction on k. For the base case, kK = 0. Let m be a path
from s. Indeed, so = s € |UD U B. Thus, either sg € D or sy € |JB, and so the
requirement holds.

For the induction step, let m be a path from s. By the induction hypothesis, we get
that one of the following holds:

e 10<j<kst. sjelUBands; € JD for every i < j. In this case, it also holds
that there exists j/ = j such that 0 < j’ < k+1, sy € UB and s; € | D for every
i < j', and so the claim holds.

e Vi < k,s; € UD. In this case, it holds in particular that s € |JD. Thus,
there exists an astate §; € D s.t. s € §;. Let §p41 € S be abs(sg+1) (that is,
Skt1 € Sp41). As (sk, Skt1) € R, we get that (3, 8511) € R™, by the definition
of may transitions. By Definition 4.2.1, we get that 5,1 € DU B. If §,11 € D,
the second requirement of this lemma holds. Otherwise, if §x11 € B, then the
first one holds. u

We now prove Lemma 4.2.3

Proof. Let s € |J(D U B), and assume by way of contradiction that s = ApV¢q. Thus,
s = E(—p)U(—q), and so there exist a path m = s, s1, ... from sand k > 0s.t. s = ¢,
and for every 0 < i < k it holds that s; &= —p.

Consider the path w. It holds that sg = s € |JD U B, and so Lemma 4.2.4 applies

for k. However, both possible consequences of the lemma do not hold, as shown below:

It does not hold that 30 < j <k s.t. s; € UB and s; € JD for every i < j:

— For every 0 < j < k, s; & p, and as of Observation 4.2.2 it holds that
sj € UB.
— For j =k, sj - qandsos; ¢ UB.

Either way, this possible consequence does not hold.

o It does not hold that for every 0 < i < k, s; € UD, as s [~ q and so s ¢ D
by Observation 4.2.2.

Neither of the possible results of Lemma 4.2.4 holds, which is a contradiction. Thus,
s = ApVyq. [

OMG returns a positive answer when abs(T') can be divided into two sets D, B s.t.
(D, B) is an inductive invariant for ApVgq.

As AGq = A(false)Vq, the algorithm for ApVgq is a proper generalization of the
algorithm for AGq. This is due to the fact that if p = False then B = (), in which case
Definition 4.2.1 is identical to Definition 4.1.1.
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Our algorithm does not change in case p,q, are general CTL formulas (and not
necessarily atomic propositions). This is due to the fact that the algorithm handles
subgoals by need, such that when querying whether a subgoal of the form (m, p) holds,

it recurs over that subgoal before going on.

4.3 The full algorithm

4.3.1 HandleAV description

Algorithm 4.1 HANDLEAV

Input: Goal g = (initNode, p = ApVq)

Output: True if initNode |= ¢, False otherwise
: ToVisit < {initNode} > Nodes to be visited
. while ToVisit # () do
: Choose nextNode from ToVisit

1

2

3

4: Let 7 be the trace from initNode to nextNode
5: UpdateAbstract(nextNode)

6 RECURCTL(nextNode, q)

7 if nextNode [~ q then

8

9

STRENGTHENTRACE(T)
: return Fualse
10: RECURCTL(nextNode, p) > nextNode = q
11: if nextNode [~ p then
12: Add successors of next Node to ToVisit
13: if INDAV (initNode, p) then
14: return True

15: STRENGTHENSUBTREE (initNode)
16: return True

HANDLEAYV is presented in Algorithm 4.1. In line 2 we iterate over all nodes in
ToVisit. In each iteration, HANDLEAYV picks a node nextNode from ToVisit. We say
that in this iteration, nextNode is examined. If ToVisit becomes empty, then there
are no more nodes to examine, and so we return True. An example of that is the
case where initNode = p A q. The strengthening conducted in line 15 (explained in
section 4.4) ensures that all astates in abs(T") satisfy ApVq as well. This information
is recorded in absStructure.

In line 5, the data structures of absStructure are updated. If absStructure con-
tains an astate § s.t. abs(nextNode) = §, nothing is changed. Otherwise, the astate
[nextNode]y is created and added to absStructure. Additionally, HANDLEAV sets
abs(nextNode) = [nextNode)y.

In line 6, RECURCTL is called to check whether nextNode |= q. If it does not, then
T proves that init Node [~ ApVq. In that case, T is strengthened (in order to guarantee
that abs(initNode) = ApV q as well) and False is returned. All astates in abs(7) after
strengthening do not satisfy ApVyq, and we record this in absStructure by labeling
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them with = ApVy.

If line 10 is reached, then it is known that nextNode |= q. Then, we check whether
nextNode = p. If it does, then we stop unwinding nextNode, as all paths from
C(initNode) that pass through nextNode (that is, all paths that extend 7) satisfy
qU(q A p), and in particular pVq. We then call INDAV. If, however, nextNode -~ p
(line 11), the successors of nextNode are computed and added to T. The new nodes
are added to ToVisit to be examined later in the run.

In line 13, INDAV is called to check whether abs(T") can be partitioned to (D, B)
which form an inductive invariant for ApVyq. If so, the algorithm returns True. In that
case, all astates in abs(T) are labeled with ApV¢ due to Lemma 4.2.3. Otherwise, it

goes on to the next iteration of the loop in line 2.

4.3.2 indAV description

The procedure INDAV is presented in Algorithm 4.2.

Algorithm 4.2 INDAV

Input: Unwinding tree T rooted at initNode, p € C'T'L

Output: True if abs(T') can be partitioned to an inductive invariant, False otherwise
1. toCheck < {5 € abs(T') | 5 i~ p} > We assume that every § € abs(T') satisfies ¢
2: while toCheck # () do
3: Choose abstract state § from toCheck, and let n € T s.t. abs(n) = §

4: isClosure < ISMAYCLOSURE(S, abs(T))

5: if isClosure is True then

6: Update absStructure with the may closure (8, abs(T)).
7: Remove § from toCheck

8: else

9: Let £ ¢ abs(T) such that (8,f) € R

10: if C'(n) has a successor t € f then

11: Continue to the next iteration of HANDLEAV with nextNode = n
12: else

13: SPLITEX (3, 1)

14: return False

15: return True

The algorithm INDAYV iterates (in line 2) over the set of astates toCheck. This set
is initialized to contain all astate in abs(T") which do not satisfy p. We attempt to prove
that each astate in that set has a may closure to abs(T"), in order to find an inductive
invariant.

Note that for every § € toCheck there exists n € T such that abs(n) = §, by
the definition of abs(T"). If several such nodes n exist, each of them may be chosen.
Heuristically, it is preferable to choose a node with a maximal depth.

INDAV checks (in line 4) whether (8, abs(T")) is a may closure (see Definition 2.1.2)

L. If it is a may closure (line 5), INDAV records it in absStructure and analyzes the

!Before conducting an explicit check, INDAV uses the fact that if there exists a may closure in
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next astate in toCheck after removing § from toCheck (so it is not chosen again). If
(8,toCheck) is a may closure for every § € toCheck, we return True in line 15.
Otherwise, there exists an astate § € toCheck such that (8,abs(T")) is not a may
closure. Before returning False (in line 14), we use the non-existence of the may closure
to proceed.
As a may closure does not exist, there exists an astate ¢ ¢ abs(T), s.t. (3,1) € R™%.

There are two possible reasons for that:

e There are reachable cstates which were not discovered, and for which there is no

matching astate in abs(T).

« The abstraction is too coarse, and the may transition (3, f) stems from unreachable

cstates that are mapped to §.

In line 10, the algorithm attempts to identify which of the two reasons holds. It
does so by checking whether C'(n) has a successor ¢ € . If it does, we further unwinds
T from n (line 11). Otherwise, refinement is required in order to separate the cstates
from § that have a concrete successor in ¢ from those which do not. For that, SPLITEX
is applied in line 13.

SpLITEX follows Definition 2.1.1, where the astate § is split into two new astates,
8Y 5N according to the property P = {s € S | 3t € ts.t.(s,t) € R}. Tt holds that
the cstates in §¥ satisfy P and the cstates in §V do not. We now show that both
new astates are not empty. As the if in line 10 is not taken, it holds that C(n) € §V.
Moreover, as (3,1) € R™, there exist s* € § and t* € f such that (s*,t*) € R. We
conclude that s* € 87, and so 5" # 0.

The abstract model absStructure is updated according to the split. All must hyper-
transitions of the form (8, (3‘) are replaced by the must hyper-transitions (5, é) and
(8N, @). Then, must hyper-transitions of the form (£, D) s.t. { is some astate and § € D
are replaced by must hyper-transitions (£, (D \ 8) U {8Y,3"})). Moreover, we add the
following data to absStructure: (3¥,f) € R™t and (5V,1) € R,

Recall that, in line 15, we return True, as this line is reached if and only if we
proved for every § € toCheck that (8,abs(T)) is a may closure. In this case, abs(T)

can be partitioned to (D, B) which form an inductive invariant for ApVgq.

Ezxample 4.3.1. We demonstrate HANDLEAV over the example in Figure 2.1. Consider
the subgoal (n1, ApVyq). Initially, ToVisit = {n1}, and nextNode = n; in the first
iteration. As ny | g and ny [~ p, the successors of s are computed and added to T'
(i.e., ng is added to T'). Let §; = [s1]o = {s € S| L(s) = {q,r}}. Next, HANDLEAV
checks whether ({31}, 0) is an inductive invariant for ApV¢q. The check fails due to the
transition (s3,s4) € R (s3 € §; and s4 ¢ 81). Since s; does not have a successor in

81, SPLITEX is applied over 81, resulting in 8] = {s1,s2} and §] = {s3}. HANDLEAV

absStructure of the form (8, D) s.t. D C abs(T), then (3, abs(T)) is also a may closure.
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proceeds to the next iteration, where nextNode = ngo. As s3 | g A —p it unwinds
na, adding nh to T. As abs(ni) = abs(ng) = 8§}, HANDLEAV checks if ({8}},0) is an

inductive invariant for ApV ¢, and terminates with a positive answer.

We now prove a lemma that is a part of the proof of soundness of OMG.

Lemma 4.3.2. (Soundness of Algorithm 4.2)

Let T be an unwinding tree for a model M and let p,q € CTL. Assume that for
every § € abs(T), § conforms w.r.t. p and q (Definition 2.1.3), and also that § |= q.
Then, INDAV returns True if abs(T') can be partitioned to (D, B), s.t. (D,B) forms

an inductive invariant for ApVq, and False otherwise.

Proof. INDAV contains a single loop in line 2. The set toCheck is initialized before the
loop, and in every iteration a single astate § is examined. In every iteration of the loop,
if the if statement in line 5 is taken, then § is removed from toCheck, and otherwise
the loop terminates and Fulse is returned in line 14.

Thus, True is returned if and only if the if statement in line 5 is taken for every
§ € toCheck, which means that toCheck becomes empty after all of the iterations of
the loop. On the other hand, False is returned if and only if there exists an astate
§ € toCheck for which that if statement is not taken.

Assume first that True is returned. Thus, in every iteration of the loop, it is proved
for some astate § € toCheck (in line 4) that (8,abs(T')) is a may closure. If True is
returned, then this is proved for all astates § € toCheck. We prove that this implies
that (D, B) is an inductive invariant for ApVgq, where D = {§ € abs(T)|§ [~ p} and
B ={5€abs(T)|5 = p}. Note that abs(T') = D U B.

First, for every § € abs(T), by the assumption, § = ¢. By the definitions of D, B,
we get that for every 3 € B, 8§ = ¢ A p and that for every £ € D, t = g A —p. Now,
let § € D, and let £ € R™¥(3). Recall that, § is in toCheck at the beginning of
Algorithm 4.2 (by the definition of toCheck). As the if is taken when § is examined,
we know that (8,abs(T)) is a may closure. By the definition of may closure, we get
that ¢ € abs(T) = DU B.

Assume now that False is returned. Thus, there exists an astate § € toCheck
s.t. the if statement is not taken, meaning that (8,abs(T")) is not a may closure. As
§ € toCheck, we get that § € D. However, by Definition 2.1.2, there exists ¢ ¢ abs(T)
s.t. (3,1) € R™_ In particular £ ¢ D U B. This is a contradiction to the definition of

an inductive invariant. Thus, abs(T") cannot be split to an inductive invariant. |

Lemma 4.3.3. (Termination of Algorithm 4.2) If M is a finite structure, then Algo-

rithm 4.2 terminates after a finite number of steps.

Proof. Note that, in every step in the run of the algorithm, the abstract state space
in absStructure is bounded by |S|, as no astate may be empty. As such, the number

of iterations of the loop in line 2 (in Algorithm 4.2) is at most the number of astates

22



recorded in absStructure, which is finite. In each iteration, INDAV checks whether
some astate § satisfies that (toClose,abs(T)) is a may closure (line 4 in Algorithm 4.2).
This check is done by retrieving data from absStructure, and possibly checking the
satisfiabiliy of some boolean formula without quantifiers. This check is equivalent to
solving SAT', which is decidable (that is, can be done in a finite number of steps). As
there is a finite amount of iterations, and every iteration is conducted in a finite number

of steps, the algorithm terminates in a finite number of steps as well. |

4.4 Strengthenings

Two types of strengthenings are performed by OMG. We first give motivation for the
strengthening, and then explain how it is done.

Recall that we wish for Property 3.2.3 to hold. It states that after checking a goal
g = (n,p), it holds that n = ¢ <= abs(n) = ¢. This lemma is essential for our
algorithm to handle general C'T'L formulas.

For instance, in order for D to be an inductive invariant for AGy, where ¢ is a
complex formula, each astate § € D is required to satisfy ¢, which is what the lemma

ensures.

4.4.1 Trace Strengthening

Consider line 8 in Algorithm 4.1, where 7, which proves that initNode = ApVyq, is
strengthened. The trace 7 alone does not ensure that every cstate ¢ € abs(initNode)
has a corresponding "violating” trace, and so it does not guarantee that Property 3.2.3
holds. The function STRENGTHENTRACE, presented in Algorithm 4.3, solves this prob-

lem.

Algorithm 4.3 STRENGTHENTRACE
Input: Trace 7 = (ng,n1,...,nk)
1: for eachi=k,...,1do
2: SPLITEX (abs(n;—1), abs(n;))
3: Let $¥, 8" be the splits of abs(n;_1).
4: Update abs(n;_1) to 8¥ > Explained below

Consider a trace of length one, denoted (n,n’), such that n’ & ¢q. Thus, abs(n)
has to be refined to only contain cstates that, like C'(n), have a successor in abs(n’) 2.
For traces of the form (ng,n1,...,nk), the refinement is done iteratively up the trace.
That is, the trace (n;—1,n;) is strengthened for every i = k, ..., 1. After every split, the
astates that appear on the trace change dynamically, based on the result of the split
applied in the previous iteration. Let § be abs(n;—1) before the split in line 2, which is

preformed w.r.t. the updated abs(n;). Then, abs(n;_1) is set to 8" after the split.

2This is equivalent to intersecting abs(n) with the pre-image of abs(n’) w.r.t. R.
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We prove the following lemma to assert the correctness of this algorithm.

Lemma 4.4.1. Let 7 = (ng,n1,...,ng) be a trace in M over which STRENGTHEN-
TRACE is applied. For every 0 < i < k, let §;_; be abs(ng—_;) after i iterations of the
loop in STRENGTHENTRACE. Then, for every 0 < ¢ < k, it holds for every s € §_;

there exists a series of cstates Sg—;, Sk—i+1,- - -, Sk Such that:
o 5= Sk
e (s4,5j41) € R for every k —i < j < k.
e s;€8; foreveryk —i < j<k.
Moreover, the algorithm terminates in a finite number of steps.

Proof. We prove the Lemma by induction over i. For the base case, i = 0 and indeed
the Lemma holds for the series s of length one.

Assume that the Lemma holds after ¢ iterations of the algorithm, and consider the
(4 + 1)* iteration. In this iteration, abs(nj_;_1) is split w.r.t. the property P = {s €
S 3t e S[(s,t) € RAt € 8;_4]}. Let § be abs(ng—_;—1) before the split. Note that
3x_i_1 is the astate abs(nj_;_1) after the split. It holds that 3;_;_; = §¥, which is the
split of § that satisfies P, as C(ng_;—1) € 8, (C(nk—;—1),C(ng—;)) € R and ng_; € 8x_;.
Due to the split, there exists a must hyper-transition from §;_; 1 to Sx_;.

Let s € 8;_;_1 (recall that after this split, §x_;_1 = abs(nk_;_1)). Then, there exists
t € 8 s.t. (s,t) € R. By the induction hypothesis, there exists a series of cstates
Sk—isSk—it+1,- - -, Sk such that ¢ = s;_; and s; € §; for every k—i < j < k. Additionally,
(sj,8j+1) for every k —i < j < k. Now, we show that the series s, sy, Sk—i+1,- -, Sk

is the required series:
e s is the first cstate in the series.

o We showed that (s,t) = (s,sx—;) € R, and for k —i < j < k, it holds that
(sj,8j+1) € R due to the induction hypothesis.

e 5 € §;_;_1 by the definition of s, and for £ — ¢ < j < k it holds by the induction
hypothesis that s; € ;.

Regarding termination, consider an iteration of the loop. It terminates as splitting
an astates and updating abs is done in a finite number of steps. As there are k iterations,

the algorithm terminates. |

Ezample 4.4.2. We demonstrate strengthening using the example in Figure 2.1. Con-
sider the goal (ns, ApV¢q). Assume OMG finds that the trace 7 = (ns,nz,ng) is a
counterexample to the statement ns = ApVq. Before returning Fulse, trace strength-
ening is applied to 7, in order for Property 3.2.3 to hold. In this case, it is vital as

abs(sg) = abs(ss) before strengthening, however sg = ApVq and s5 = ApVy.
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Thus, we need to split abs(ss) in a manner that distinguishes between s5, s9. The
split is done in two steps. First, we conduct SPLITEX to abs(n;) w.r.t. abs(ng).
Secondly, we split abs(ns) w.r.t, the updated abs(ny), which is updated and changed in

the previous step of the strengthening.

4.4.2 Subtree Strengthening

Subtree strengthening is required in line 15 of Algorithm 4.1, when unwinding of all
traces from initNode is terminated. In this case, it is guaranteed that initNode |=
ApVq, as initNode |= AqU (p A q). However, it is not guaranteed that this holds for all
states s s.t. s € abs(initNode). Recall that having all cstates in abs(init Node) satisfy
o = A(qU(p A q)) is important when ¢ is a subformula of the checked formula. In this
case, subtree strengthening is conducted.

Consider an unwinding tree T that is composed of a root node n with successors
t1,...,t;, which are leaves in 7. Assume that n = ¢ A —p, and that V1 < i < j, ¢; =
p A g. In such a case, n = ApVq since all transitions from n reach "good” states
(that is, states that satisfy p A ¢). Thus, we split abs(n) w.r.t. the property of having
all successors in the set of astates {abs(t1),abs(t2),...,abs(t;)}. Formally, we define
P={seS|VteR(s)te Ui:l abs(tr)}. Note that n satisfies this property.

This split is referred to as SPLITAX, and it is also used in chapter 6. In case of a
subtree of an arbitrary depth that should be strengthened, the generalization is done
bottom-up, in a post-order scan of the subtree. This guarantees that Property 3.2.3
holds.

The procedure is given in Algorithm 4.4.

Algorithm 4.4 STRENGTHENSUBTREE
Input: Subtree rooted at n

1: if n is a leaf then

2 return

3: for each successor n’ of n do
4

STRENGTHENSUBTREE(n’)

Ut

: SPLITAX(n)

We prove the following lemma to assert the correctness of this type of strengthening.

Lemma 4.4.3. Let T be an unwinding tree of M of depth k, over which STRENGTH-
ENSUBTREE is applied. Then, STRENGTHENSUBTREE terminates. Moreover, after its
termination, for every path m = s, s1, ... such that sy € abs(ng) there exists a maximal

trace T = (no,n1,...,ng) in T s.t. s; € abs(n;) for 0 <i <k.

Proof. We prove the Lemma by induction over k. Let n = root(T). For the base case,

k =0, and so T = {n}. Indeed, n is a leaf in 7" and so the algorithm terminates.
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Moreover, for each path m = sq, s1,. .. such that sy € abs(ng), there exists the maximal
trace (n) (of length 1), for which it holds that C'(n) € abs(n) by definition.

Assume that the Lemma holds for unwinding trees of depth at most k, and let T
be an unwinding tree of depth k& + 1. Let m = s, $1,82,... s.t. s9 € abs(ng), and
let t1,...,t; be the successors of n. We now prove termination of STRENGTHENSUB-
TREE for the induction step. First, as n is not of depth 0, it is not a leaf. Thus, the
if statement in line 1 is not taken. Next, as n has a finite amount of successor and
as each successor is the root of an unwinding tree of size at most k, we get by the
induction assumption that each of the recursive activations terminates. Later, SPLI-
TAX is applied for n and it terminates in a finite number of steps as well. Overall,
STRENGTHENSUBTREE terminates.

We now prove the rest of the claim in the Lemma. As SPLITAX is conducted for
no in line 5, it is guaranteed that for each s € abs(ng) and for each ¢t € R(s) it holds
that ¢ € ., abs(t;). In particular, for sq € abs(ng) and for s; € R(sg), it holds that
s1 € Ul abs(t;). Let 1 < j < I such that s; € abs(t;). Consider the subtree of T
rooted at ¢;. It is of length at most k, and so by the induction hypothesis for the path
51, 82,... there exists a maximal path ni,...,ng, ni1 such that ny = t; and for each
1 <i<k+1,s; € abs(n;). Now, as (sg,s1) € R, the trace ng,ni,...,ng, Ng+1 is
a maximal trace in T. Moreover, due to the induction hypothesis and the fact that

so € abs(ng) by its definition, we get that the Lemma holds. [

We now prove soundness of Algorithm 4.1.

Lemma 4.4.4. (Soundness of HANDLEAV )

Let g = (n,p) be a goal, where ¢ = ApVq and p,q € CTL. Assume that after
HANDLEAV checks a subgoal (m, f), it holds that abs(m) conforms w.r.t. f. Then,
if HANDLEAV terminates, it returns True if and only if g holds. Moreover, if it

terminates, abs(n) conforms w.r.t. ¢ after termination.

Proof. The loop in line 2 is conducted as long as ToVisit # (. It is initialized to
{initNode}. In every iteration, a node nextNode is chosen from it and examined. By
the structure of HANDLEAV, once a node is examined by the algorithm, it is never
examined again (in particular, it never enters ToV'isit again).

In every iteration, HANDLEAV recurs over the subgoal ¢’ = (nextNode, ¢) in line 6.
False is only returned from HANDLEAYV if it examines a node nextNode s.t. after this
recursive activation, it holds that nextNode [~ q.

We observe HANDLEAV returns False only if it examines a node that does not
satisfy q. Thus, if a node is not a leaf in 7', or it is not the last to be examined, then
it satisfies q.

Moreover, let n be a node in T which is not a leaf. Then, when it is examined, the
if statement in line 7 is not taken, as otherwise n would have been a leaf. Additionally,

the if statement in line 11 is taken, as otherwise n would have been a leaf. Thus, the
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subgoal (n,q) holds and the subgoal (n,p) does not hold. In particular, we conclude
that if a node is not a leaf in T, it does not satisfy p.

Assume first that False is returned by HANDLEAV. Then, there exists a node
nextNode for which the if statement in line 7 is taken. Denote 7 = ng,...,ng
(where ny = nextNode), and let m be an infinite path that extends 7. We prove
that 7 = (¢ A —p)U(—q), and so initNode [~ ApVq. By the observations above, we get
that VO < i < k, n; = ¢ A —p. As we know that nextNode [~ q, we get that indeed
7 = (¢ A —p)U(—q), and so initNode [~ ApVq. Thus, g does not hold.

We now prove that in this case, abs(initNode) conforms w.r.t. ¢ after False is
returned. Before False is returned (in line 9), STRENGTHENTRACE is applied over 7.
According to Lemma 4.4.1, for each s € abs(initNode), there exists a series of cstates
50, 81, - - - » Sk such that s = s, (s;,8i+1) € R for 0 <i < k and s; € §;, where §; equals
abs(n;) after i iterations of the STRENGTHENTRACE.

Let 0 < i < k, and let #; be the astate abs(ny_;) before calling STRENGTHENTRACE.
It holds that s; [~ p as ; does not satisfy p, and §; C #; (it is a split of ;). Due to
similar arguments, it holds that for 0 < i < k, s; = ¢ and s; = q. Let m be a path
that extends 7. Thus, 7 = (¢ A =p)U—q, and so s £~ . As this is true for every
s € abs(initNode), we get that abs(initNode) conforms w.r.t. .

Assume now that True is returned. As of the structure of the algorithm, True may
be returned either in line 14 or in line 16. We show that in both cases g holds and that
abs(n) conforms w.r.t. ¢ after HANDLEAV terminates.

e Assume True is returned in line 14. In this case, the function INDAV is called
and returns true. Let n € T. We show that n = ¢. As INDAV is called, n has
been examined, and the subgoal (n,q) has been checked. If n [~ ¢, the algorithm

would return False in line 9. Thus, n |= q.

As of the fact that for every astate § € abs(T") there exists n € T' s.t. n € §,
it holds that § = ¢ due to the conformity assumption of this Lemma. Thus, all
astates in abs(T') satisfy ¢, and in particular they conform w.r.t. g. Moreover,
by the structure of HANDLEAV we get that for every node n € T, the subgoal
(n,p) is checked when n is examined. Due to the conformity assumption of this

Lemma, we get that all astates in T conform w.r.t. p.

The prerequisites of Lemma 4.3.2 hold. Thus, we get that abs(T) can be parti-
tioned to (D, B) s.t. (D, B) is an inductive invariant for ApV¢. By Lemma 4.2.3,
we get that all astates § € abs(T) satisfy ApV¢q, and in particular they conform
w.r.t. ¢. Moreover, as n € abs(n), abs(n) € abs(T") (and so abs(n) = ¢), we get
that g holds. Thus, the Lemma holds in this case.

e Assume True is returned in line 16. In this case, ToVisit becomes empty. As
shown above, all nodes in T" which are not leaves satisfy ¢ A —=p. Additionally,
let n € T be a leaf. We show that n = p. As the successors of n are not added
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to ToVisit, the subgoal (n,p) is checked by HANDLEAV, which concludes that
it holds. Due to the conformity assumption of this Lemma, we get that for each
n €T, abs(n) |= q, and abs(n) =p <= pis a leaf.

We now show that g holds. Let m = s, s1, ... be a path from C(n). We show that
m = qU(p Aq). Let 7 = (ng,ni1,...,nk) be the single maximal trace in 7' (from
initNode) s.t. for every 0 < i < k, C(n;) = s;. As mentioned above, n; = ¢ for
every 0 < ¢ < k. Moreover, ny = p as nj is a leaf (as 7 is maximal) and n; = p
for every 0 < i < k. We thus get that 7 = qU(p A q). Thus, C(n) = AqU(p A q),
and in particular n = ApV ¢, meaning ¢ holds.

We now show that abs(n) conforms w.r.t. ¢. Let s € abs(n). It is sufficient
to show that s = ApVq. Let m = sp,s1,... be a path from s. We show that

7= qU(pAq).

According to Lemma 4.4.3, there exists a maximal trace (ng, ny,...,ng) in 7" such
that s; € abs(n;) for every 0 < i < k. As shown above, n; = ¢ for every 0 < i < k.
Moreover, ny |= p as ny is a leaf, and n; [~ p for every 0 < i < k. We thus get
that 7 = qU(p A q). Recall that, we assume that after checking all subgoals of
the form (n,p) and (n, q), the astate abs(n) conforms w.r.t. the formula checked.
Thus, we get that abs(n;) = ¢ A —p for i < k and that abs(ng) = g A p. As
si € abs(n;) for every 0 < i < k, we get that s; = ¢ A —p for 0 < i < k and that
sp = qAp. Thus, 7 = qU (g A p) by definition. |

We now prove termination of Algorithm 4.1 for finite structures.

Lemma 4.4.5. (Termination of HANDLEAV for finite models)

Let g = (n,¢) be a goal, where ¢ = ApVq and p,q € CTL. Assume that for every
goal of the form ¢ = (m,¢’), where m is a node and ¢’ is a proper subformula of ¢,
RECURCTL checks ¢’ in a finite number of steps. Then, HANDLEAV terminates in a

finite number of steps as well.

Proof. We show that HANDLEAV terminates for the goal (n,y). We first show that
INDAV is not called for more than 2 - |S| 4 1 times, where |S| is the number of states
in M.

Consider a run of INDAV in which Fulse is returned. By the structure of the
algorithm, INDAV reaches line 10. Then, one of the following two options occurs,

depending on whether the if statement in line 10 in INDAV is taken.

o If the if is taken, then there exist a cstate t s.t. abs(t) ¢ abs(T). This means
that there does not exist an astate § € abs(T') s.t. ¢ € §. Then, a new astate is
added to abs(T') which contains ¢. Thus, every astate that is added in this case
is not empty. As such, at most |S| astates may be added to abs(T), and so this

if may be taken at most |S| times.
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o If the if is not taken, we first show that both splits of § are not empty. Consider
the node n chosen in this iteration of INDAV. Then, as the if is not taken, it
holds that R(C(n)) Nt = (. However, as the if statement in line 5 is not taken,
then (3,1) € R™%_ and so there exist s € §,¢ € £ such that ¢ € R(s).

Then, after the split in line 13, the cstates s and C(n) belong to different splits,
as s has a successor in £ and C(n) does not, and the split is done according to

the property of having a successor in .

Thus, the execution can reach that split at most |S| times, as otherwise there

would have been created more than |S| non-empty astates, which is impossible.

We showed that there can be at most 2-|S| calls to INDAV in which False is returned.
Note that if INDAV returns True, then HANDLEAV returns True as well. Recall that,
INDAV and STRENGTHENSUBTREE are guaranteed to terminate due to Lemma 4.3.3
and to Lemma 4.4.3. Thus, all actions done in every iteration terminate, as of these
Lemmas and as of the induction assumption over the calls to RECURCTL over proper
subformulas of .

Now, consider an iteration of the loop in HANDLEAV in which neither True nor
False are returned. Thus, INDAV is called in this iteration. As shown before, this may
occur at most 2 - |S| + 1 times. Then, there may be at most 2 - |S| + 1 iterations of the
loop in HANDLEAV.

Consider a run of HANDLEAV. The initialization of T'oVisit in line 1 obviously
terminates. Then, if True or False are returned during the first 2 - |S| iteration of the
loop in line 2, then the algorithm terminates. Otherwise, more than 2 - |S| iterations
took place, which means that INDAV returned False 2 - |S| times.

Consider the next iteration of the loop. If True or False are returned before INDAV
is called, then the algorithm terminates. Otherwise, it necessarily returns True as
shown above. Then, HANDLEAV returns True as well, and so it terminates.

Note that, if True is not returned from inside the loop, then the execution eventually
proceeds to line 15, as shown above. There, STRENGTHENSUBTREE executed in a finite
number of steps (as shown in Lemma 4.4.3), and then HANDLEAV returns True.

Thus, in any case, the run of HANDLEAV terminates in a finite number of steps. W
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Chapter 5

Handling EpVq

We provide intuition by handing formulas of the form EGp, and then extend it to
formulas of the form EpVy.

5.1 Intuition to EG

Let ¢ = EGp. Assume p € AP (as explained in chapter 4, this assumption does not
change the generality of the explanation).

Similarly to the case of AGp in chapter 4, we explore the states reachable from a
given state s in order to determine whether there exists an infinite path m = sq, s1, ...
from s s.t. for every ¢ > 0 it holds that s; = p. We use the unwinding tree 7" differently.
If a node n s.t. n [~ p is found, further unwinding it is not needed, as no infinite path
that passes through n may satisfy Gp. Thus, we add the successors of n to T' if and
only if it satisfies p. If the successors of n are not added to T', we say that it is pruned.

Consider a run where there exists a trace 7 s.t. every s € C(7) satisfies p, and
there exists a cstate that appears twice in 7. This implies means that there is a lasso-
shaped path from C(root(T')), which extends 7 and satisfies Gp. Therefore, 7 proves
that s = EGp. If there are no more nodes to examine, it means that all leaves in
T were pruned. That means that root(T) | AF(—p). In other words, it means that
root(T') K= EGp.

As in the case of AGp, abstraction is used to infer that s | EGp without exploring
the entire model. We define a new kind of invariant, requiring that for each cstate s
in it, there erists a successor within the invariant. This guarantees that there exists
an infinite path 7 from s, which fully resides within the invariant. If all cstates in the

invariant satisfy ¢, then 7 = Gq. We formalize this notion with the following definition.

Definition 5.1.1. (Inductive invariant for EGq)
Let ¢ € CTL. A set of astates D is an inductive invariant for EGq if the following

conditions hold:

o for every § € D it holds that (8, D) € R™st,
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o forevery $€ D, §q.

Observation 5.1.2. If D is an inductive invariant for EGgq, then for every s € |J D,
it holds that s = gq.

This holds for the same reason Observation 4.1.2 holds. Since every cstate s € |J D
is assigned an astate § € D s.t. § = ¢, we get by Property 3.2.3 that s = q.

Lemma 5.1.3. Let g be a CTL formula. If D is an inductive invariant for EGq, then
for every § € D, § = EGq. In addition, for every s € |JD, it holds that s = EGq.

Before proving Lemma 5.1.3, we prove the following lemma.

Lemma 5.1.4. Let q be a CTL formula, D an inductive invariant for EGq and s €
UD. Let k>0 and let sg, s1, ..., sk be a consecutive sequence from s s.t. s; € |JD for
every 0 < j <k.

Then, there exists a cstate spyq1 such that (sk, sg11) € R and si11 € U D. Addition-
ally, the sequence so,s1,..., Sk, Sk+1 @5 a consecutive sequence that satisfies s; € |JD
for every 0 < j <k+1.

Proof. Let k > 0 and let sq, s1, ..., si be a consecutive sequence such that s; € |J D for
every 0 <1 < k.

Now, as s € U D, there exists an astate §; € D s.t. s; € §;. By Definition 5.1.1,
we get that (8, D) € Rmust, Now, due to the definition of must hyper-transitions,
there exists a cstate sxy1 € UD s.t. (sk,skv1) € R.

We conclude that the sequence of cstates sg, s1, ..., Sk, Sg+1 satisfies the required

properties, as of the proof above. |

We now prove Lemma 5.1.3

Proof. Let s € |JD. We define an infinite path sg, s1,... from s. The path is defined
recursively. We first define so = s. Now, let k¥ > 0, and assume that the s; is defined
for 0 < i < k. Consider the consecutive sequence sg, $1,...,Sk_1,Sk. Let t be a cstate
which is guaranteed to exist by Lemma 5.1.4. Then, we choose s;;1 to be t.

We prove that for every ¢ > 0, it holds that sg, s1, ..., s;_1 is a consecutive sequence
from s, and that s; is well defined. For the base case sy = s is well defined and satisfies
the requirements trivially. For the induction hypothesis, assume that sg,sq,...,8;_1
are well-defined cstates that form a consecutive sequence from s, and that s; € JD
for every 0 < j < i — 1. Now, as of Lemma 5.1.4, there exists a cstate s;, such that
50,51, - .-, 8; is a consecutive sequence from s such that s; € (JD for every 0 < j <.
Moreover, s; is well defined.

As of the proof above, we get that 7 is a legal path from s, and that for every j € N,
s; € UD. Then, by Observation 5.1.2, s; = q.

Thus, 7 is a legal path from s that satisfies Ggq, which means that s F EGq. By
Definition 3.2.2, conclude that for every § € D, § E EGg. |
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5.2 Extension to EpVq

The generalization from EGp to EpV q follows the same lines as the generalization from
AGp to ApVq. That is, instead of looking for a path 7 from s along which p is satisfied,
we wish 7 to satisfy Gq or qU(p A ¢). For that, HANDLEEV only unwinds nodes that
satisfy q. HANDLEEV uses abstraction only to prove the existence of an infinite path
that satisfies Ggq, whereas finding a path that satisfies qU(p A ¢q) is done using 7. In
the latter case, HANDLEEYV returns True if it finds a trace 7 = ng, ..., ng s.t. for every
0 <i<kn; Eqandng = p. In this case, 7 is strengthened to guarantee that the

property also holds for the corresponding astates.

5.3 The full algorithm

5.3.1 HandleEV description

HANDLEEYV is presented in Algorithm 5.1.

Algorithm 5.1 HANDLEEV
Input: Goal g = (initNode, p = EpVq)
Output: True if initNode = ¢, False otherwise

1: ToVisit < {initNode}

2: while ToVisit # () do

3: choose nextNode from ToVisit

4: UpdateAbstract(nextNode)

5: RECURCTL(nextNode, q)

6: if nextNode [ q then > nextNode is not developed
T continue

8: RECURCTL(nextNode, p) > nextNode = q
9: if nextNode = p then
10: STRENGTHENTRACE(initNode, nextNode)
11: return True
12: else > nextNode = g A —p
13: add successors of nextNode to ToVisit
14: if INDEV (initNode, nextNode) then
15: return True
16: STRENGTHENSUBTREE (initNode)

return False

,_.
o

The initialization, loop and choosing of nextNode of HANDLEEV are identical to
those of Algorithm 4.1. Let 7 be the trace from initNode to nextNode. If ToVisit
becomes empty, then all leaves in T' are pruned. Then, no path that satisfies pV ¢ can
be found. Thus, we return Fualse after applying subtree strengthening, to ensure that
all astates in abs(T") do not satisfy EpVygq.

In line 4, we update the global data structures in the same manner described in
Algorithm 4.1.
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In line 6, if next Node ~ q, then HANDLEEV does not apply unwinding to that node,
and continues to other nodes in T'oVisit. The reason is that no path that satisfies pVq
may pass through 7, as it satisfies =pU—q.

In line 8, if next Node |= p (recall that, as of the condition in line 5, next Node = q),
any path 7 that extends 7 satisfies qU(p/A¢q), and in particular pVq. We label init N ode
accordingly, strengthen 7 and return True. The strengthening is done in order to
guarantee that all astates in abs(7) satisfy EpVq. Otherwise, nextNode = g A —p, and
we further develop it.

In line 14, INDEV checks if 7 is an abstract lasso and abs(7) forms an inductive
invariant for FGq. If so, HANDLEEV returns True, and otherwise it goes on to the

next iteration of the loop.

5.3.2 indEV detailed description

The procedure INDEV is presented in Algorithm 5.2.

Algorithm 5.2 INDEV

Input: Trace 7 = ng,...,ng

Output: True if 7 is an abstract lasso, and abs(7) forms an inductive invariant for
EGq, False otherwise

1: while 3i < k s.t abs(n;) = abs(ni) do > Abstract lasso
2: Let D = {abs(n;), abs(nit1),...,abs(np_1)}

3: absToCheck + D

4: while absToCheck # () do

5: Choose § from absToCheck, and let n € T s.t. abs(n) = §
6: isMust +— ISMUSTHYPERTRANSITION(3, D)

7: if isMust is True then

8: Remove 5 from absT'oCheck

9: else

10: SPLITEX (3, D)

11: break

12: if absToCheck = () then

13: STRENGTHENTRACE((ng, n1, ..., 1))

14: return True

15: return Fulse

INDEV checks if abs(7) forms an inductive invariant for FGq (which implies that
initNode = EGq, and so in particular initNode = EpVq).

In order to avoid expensive testing, INDEV first checks whether a prerequisite for
the existence of an inductive invariant holds. For that, the algorithm uses the concept
of an abstract lasso. An abstract lasso is a trace 7 = tq1,...,t, such that there exist
i < ns.t. abs(t;) = abs(t,). Note that, if 7 contains an inductive invariant for EGq,
then extending the trace eventually yields an abstract lasso, as the invariant contains
a finite number of astates.

In line 1, INDEV checks whether 7 is an abstract lasso. Namely, it checks whether
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there exist i < k s.t. abs(t;) = abs(t).

Thus, if 7 is not an abstract lasso, INDEV returns Fualse. Otherwise, let n; be
denoted the base of the lasso. Now, INDEV checks whether the set absToCheck (ini-
tialized to ﬁ, which is computed in line 2) forms an inductive invariant for EGq. It
does so by iterating over absToCheck (in line 4). In every iteration, it examines an
astate § € absToCheck and checks (in line 6) whether (3, D) € R™" (like in INDAV,
data in absStructure is used and updated).

If (3,D) ¢ R™"t (line 9), then INDEV refines the abstraction by a split (described
below) and then breaks the inner while loop. The split induces the need to recompute
abs(T), as an astate in abs(7) is split. Now, INDEV returns to another iteration of the
loop in line 1.

In the refinement process, § is split w.r.t. the property P = {s € S | 3t € UbD :
(s,t) € R}. Thus, 5 is split into two new astates: §¥ and 8%.

The changes of T and to absStructure are similar to those described in Algo-
rithm 4.1. The information gained by the split is also used to update absStructure:
(8¥,D) € R™st and (3V,3) € R for every 4 € D.

If (8, f)) € R™ust for every § € D, an inductive invariant for EGq is found. INDEV
then strengthens the trace 7/ from the base of the abstract lasso to initNode (line 13),
labels all astates in abs(7) with EpVq and returns True. As before, 7/ is strengthened
in order to guarantee that not only initNode = EGq but also abs(initNode) = EGq.

We now prove a few Lemmas that are a part of the proof of soundness of our

algorithm.

Lemma 5.3.1. If INDEV returns False, then T does not form an abstract lasso.

Proof. Assume now that False is returned from INDEV. Then, it is returned in line 15.
In this case, 7 does not form an abstract lasso as the condition of the outer while loop

is not met. [}

Lemma 5.3.2. (Soundness of Algorithm 5.2)

Let T' be an unwinding tree for a model M and let T = (ng,n1,...,ng) be a trace in
T. Assume that for every § € abs(t), it holds that § = q. Assume also that for every
different i,j < k, abs(n;) # abs(n;) before INDEV is applied. Then, if Algorithm 5.2
returns True then T is an abstract lasso, and abs(T) forms an inductive invariant for

EGq. Otherwise, if Algorithm 5.2 returns False then T does not form an abstract lasso.

Proof. The while loop in line 1 goes on as long as 7 forms an abstract lasso. Recall
that, for every different 7, j < k it holds that abs(n;) # abs(n;) at the beginning of the
run of this procedure. Then, as astates may only change due to split operations in this
procedure, this inequality holds throughout the run. Thus, if an abstract lasso exists,
then there exists a single index 0 < ¢ < k such that abs(n;) = abs(ny). Whenever an

abstract lasso exists, we denote n; the base of the lasso.
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Consider the loop in line 4. In every iteration of that loop, if the if statement in
line 7 is taken, § is removed from absToCheck, and otherwise the inner loop (in line 4)
terminates. Thus, True is returned if and only if 7 is an abstract lasso, and the if
statement in line 7 is taken for every § € absToCheck, which means that absToCheck
becomes empty after all of the iterations of the inner loop. On the other hand, False
is returned if and only if 7 does not form an abstract lasso.

Assume first that True is returned. Thus, 7 is an abstract lasso at the point of
termination. We prove now that D is an inductive invariant for EGq. Let § € D.
By the assumption, § = ¢. Moreover, § belongs to absToCheck at the beginning of
Algorithm 5.2. In line 6, § is examined and it is proved that (8, D) is a must hyper-
transition. This holds for every § € D, and so D is an inductive invariant for EGq.

Note that D C abs(t). We now show that the activation of STRENGTHENTRACE
in line 13 guarantees that abs(7) also forms an inductive invariant for EGq. First,
note that for every j such that 0 < j < 4, it holds that abs(n;) ¢ D, as men-
tioned above. Now, according to Lemma 4.4.1, for each 0 < j < 4, it holds that
(abs(nj),{abs(njt1)}) € Rmust after j iterations of STRENGTHENTRACE. As each
astate only changes once in this case, this also holds after STRENGTHENTRACE termi-
nates. Now, for each § € 15, it still holds that (3, lA)) is a must hyper-transition, and thus
so is (8,abs(7)). For 5 € abs(t) \ D, there exists 0 < i < k such that abs(n;) = 8, and
so (8,{abs(ni+1)}) is a must hyper-transition. Then, (3, abs(7)) is also a must hyper-
transition. We get the abs(7) is an abstract lasso that forms an inductive invariant for
EGg.

Assume now that False is returned. Then, by Lemma 5.3.1, we get that 7 does not

form an abstract lasso. |

Lemma 5.3.3. (Termination of Algorithm 5.2)
If M is a finite structure and for every different i,j < k it holds that abs(n;) # abs(n;),

then Algorithm 5.2 terminates after a finite number of steps.

Proof. If there does not exist ¢ < k such that abs(n;) = abs(ny), then the algorithm
terminates immediately. Otherwise, let ¢ be such an index. Denote by D the set
{abs(n;),abs(niy1),...,abs(ng)}.

We first show that whenever the algorithm enter the outer while loop in line 1, it
executes the code in that loop in a finite number of step.

INDEV conducts at most &k — ¢ + 1 iterations of the inner while loop. The only
action in each such iteration which does not obviously terminate is checking whether
a pair (8, ﬁ) is a must hyper-transition. This check is done by retrieving data from
absStructure and possibly checking the satisfiability of a quantified boolean formula,
which is decidable. After the inner while loop, the rest of the code in the outer while
loop is also conducted in a finite number of steps, as shown in Lemma 4.4.1.

We now show that the number of iterations in the outer while loop is finite. As
shown before, for every different 4, j < k, it holds that abs(n;) # abs(n;) throughout
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the run. Then, n; is the base of the abstract lasso in every iteration.

In each iteration of loop in line 1, if True is not returned then a single split operation
is applied in line 10. As of the structure of the algorithm, the if in line 7 is not taken,
and so it holds that (8, D) is not a must hyper-transition. Thus, there exists a cstate
s € § such that R(s) N{JD = (). However, there exists an index j such that i < j <k
and abs(nj) = 5. However, (C(n;),C(njy1)) € R and so R(C(n;)) NUD # 0.

Thus, after the split, § is split to two non-empty astate, where each one is smaller
than 8. Let & be the split of 3 such that all cstates in 5§ have a successor in D.
However, note that there does not exist index j s.t. ¢ < j < k and abs(n;) = §\ §, as
(C(n;),C(nj+1) € R and abs(njy1) € D.

Now, let ﬁbefm«e,f)after be the astates in {abs(n;),...,abs(ng)} before and after
the loop, respectively. Then, as a split operation is applied, it holds that UDafter -
Uﬁbefore. As s e UD and s ¢ &, we get that s € Uﬁbefme and s ¢ Uﬁafter. We
conclude that |J ﬁa rter S U ﬁbe fore-

We showed that in every iteration of the loop in line 1, the size of |J D decreases.
As each astate never becomes empty in these splits (as shown above), there cannot be
more than ||J D| — |D| iterations of INDEV before it terminates.

Thus, the while loop in line 1 runs for a finite number of iteration. As each iteration

terminates, we deduce that INDEV terminates as well. |

Lemma 5.3.4. (Soundness of HANDLEEV )
Let g = (n, @) be a goal, where p = EpVq. Assume that after HANDLEEV checks a sub-
goal (m, f), it holds that abs(m) conforms w.r.t. f. Then, if HANDLEEV terminates,

it returns True if and only if g holds. Moreover, if it terminates, abs(n) conforms w.r.t.

@.

Proof. The loop in line 2 is conducted for as long as ToVisit # (). The set ToVisit is
initialized to {initNode}. In every iteration, a node nextNode is chosen from it and
examined. By the structure of HANDLEEV, once a node is examined by the algorithm,
it is never examined by it again (in particular, it never enters ToVisit again).

We observe that in every iteration of HANDLEEV, if next Node [~ q, then its succes-
sors are not added to T'oVisit. This means that if a node is not a leaf in T', it satisfies
q. Moreover, if a node is a leaf in T', and it is not examined in the last iteration before
halting, it satisfies —gq.

As the algorithm returns True if it examines a node that satisfies p A ¢, we conclude
that if a node is not a leaf, it does not satisfy p (as it satisfies q).

Assume first that False is returned by HANDLEEV. Let n be the last node that is
examined in the loop in line 2 (at least one node is examined, as T'oVisit is initialized
with init Node, which is examined first). It follows that T'oVisit becomes empty during
the run, after which False is returned in line 17. As mentioned above, every noden € T
which is not a leaf satisfies n = ¢ A —=p. Moreover, every leaf n’ € T' such that n’ # n

satisfies —q.
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We now show that n = —¢. Assume towards contradiction that n = ¢q. Thus, when
HANDLEEV examines n, the if in line 6 is not taken. If n |= p, then True is returned,
which is a contradiction to the assumption that False is returned. Then, n [~ p, and
so the successors of n are added to ToVisit. Note that, at least one node is added to

ToVisit, as the transition relation is total. Next, one of the following holds:

e True it returned in line 15, which is a contradiction to the assumption that False

is returned.

e The algorithm proceeds to line 2, and ToVisit # () as the successors of n were
added to it. This is a contradiction to the assumption that n is the last node to

be examined.

Either way, we get a contradiction, and so we deduce that n [~ g. Therefore, all
leaves in T" do not satisfy q.

STRENGTHENSUBTREE is applied in line 16. Let s € abs(root(T)), and let =
be a path from s. According to Lemma 4.4.3, there exists a maximal trace 7 =
(ng,m1,...,ng) in T s.t. s; € abs(n;) for every 0 < i < k. For each such i, the
subgoals (n;, p) and (n;, ¢) have been checked, and so by the assumption of this Lemma
(Lemma 5.3.4), it holds that abs(n;) E ¢ A —p for i < k and abs(ng) = —q. Thus,
si E g —pfor i < k and s; = —q, according to Definition 3.2.2. We deduce that
7 = —~pU—q, and so in particular s | A—pU—q, which implies that s = EpVq.

We get that abs(root(T")) = EpVgq, and in particular n = EpVq. Thus, the Lemma
holds in this case.

Assume now that True is returned, and let nextNode be the node examined in
the last iteration. Let 7 = (ng,ni,...,nk) be the trace from initNode (that is, ng =
init Node) to nextNode (that is, ny = nextNode). Due to the structure of HANDLEEV,
True may be returned either in line 11 or in line 15. We show that in both cases g

holds and abs(n) conforms w.r.t. ¢ after HANDLEEV terminates.

e Assume True is returned in line 15. In this case, the function INDEV is called

and returns True.

We show that the prerequisites of Lemma 5.3.2 hold.

— First, we show that every node n € 7 satisfies q. As proven before, every node
n € 7 s.t. n # nextNode satisfies ¢ as it is not a leaf. Moreover, nextNode =
q as otherwise, INDEV is not called when nextNode is examined. Due to the
conformity assumption of this Lemma, we get that all astates in 7 conform

w.r.t. ¢, and in particular they satisfy ¢ as the nodes in 7 satisfy q.

— We now show that for every i # j s.t. 4,5 < k, it holds that abs(n;) #
abs(n;). Let i be an index such that 0 < i < k. Then, n; is examined by
HANDLEEV before nextNode. As n; is not a leaf in T and is not the last

node to be examined, we get that the if statements in lines 6 and 9 are not
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taken. Then, INDEV is applied over the arguments initNode,n; and Fulse
is returned (otherwise, HANDLEEV would have returned True then, which

contradict our assumption). This is true for every 0 <i < k

We prove by induction over m that for every different i,7 < m, it holds
that abs(n;) # abs(nj). For m = 1,2, the claim holds vacuously. As-
sume the claim holds for m — 1, and we prove it for k. According to
the induction hypothesis, for every different 7,7 < m — 1, it holds that
abs(n;) # abs(n;). Now, consider the activation of INDEV over the two ar-
guments initNode, n,,. As False is returned by that function call, we get by
Lemma 5.3.1 that the trace (ng, ni, ..., ny) does not form an abstract lasso.
Thus, abs(ny) # abs(n;) for every 0 < j < k. Together with the induction

hypothesis, this proves the inductive claim.

We showed that the prerequisites of Lemma 5.3.2 hold. Thus, we get that abs(7)
forms an inductive invariant for EGq. By Lemma 5.1.3, we get that all astates
§ € abs(7) satisfy EGq, and in particular they conform w.r.t. ¢. Moreover, as
n € abs(n), abs(n) € abs(), we get that g holds. Thus, the Lemma holds in this

case.

Assume True is returned in line 11. Thus, there exist an iteration in which
nextNode is examined, in which True is returned. It holds that nextNode = gAp
and that for every i < k, n; = ¢ A —p. Due to the conformity assumption of this
Lemma, it holds that abs(ny) = p A ¢ and that for every i < k, abs(n;) = g A —p.

Recall that before True is returned, STRENGTHENTRACE is applied over 7 in
line 10. Let 3; be abs(n;) before the activation of STRENGTHENTRACE, for
0 <j <k. Let so € abs(ng). According to Lemma 4.4.1, there exists a series of
states s1,52,..., s such that (s;, sit1) € R for every 0 < i < k, and s; € abs(n;)
for every 0 < j < k. As for every j it holds that abs(n;) C 3;, we get that
sj = g —pfor j < k and that s; = ¢ Ap. Thus, s = EqU(q A p), and in
particular s = EpVy.

This is true for every s € abs(ng), and so abs(root(T)) = EpVyq. In particular,
we get that g holds. Thus, the Lemma holds in this case. |

Lemma 5.3.5. (Termination of HANDLEEV for finite models)

Assume M is a finite Kripke structure. Let g = (n, ) be a goal, where ¢ = EpVq and

p,q € CTL. Assume that for every goal of the form g' = (m,¢’), where m is a node

and ¢' is a proper subformula of ¢, RECURCTL checks ¢’ in a finite number of steps.

Then, HANDLEEV terminates in a finite number of steps as well.

Proof. We first show that the number of activations of INDEV over traces 7 which form

an abstract lasso, is at most |S| + 1 times. Consider a run of INDEV in which False is
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returned and in which 7 is an abstract lasso at the beginning of the run. Then, INDEV
reaches line 10 at least once (otherwise, True is returned). In that line, SPLITEX is
applied over § w.r.t. {abs(n;),abs(nit1),...,abs(ng)}.

We show that both splits of § are not empty. Consider the node n chosen in this
iteration of INDEV. Then, as the if in line 7 is not taken, it holds that there exists
s € § such that R(s) N U;?:Z- abs(nj) = 0. However, there exists i < j < k such that
n = nj. Now, n has a successor in U;-‘:Z- abs(nj), as if j < k, then C(n) has a successors
in abs(n;4+1) and if j = k then n; € abs(n;) = abs(ny), and C(n) has a successor in
abs(n;y1). Either way, R(C(n)) N U?:i abs(n;) # 0.

Then, after the split in line 10, the cstates s and C'(n) belong to different splits, as
C(n) has a successor in U;?:i abs(n;) and s does not, and the split is done according to
the property of having a successor in U?:i abs(nj).

Thus, the execution can reach that split at most |.S| times, as otherwise there would
have been created more than |S| non-empty astates, which is impossible. Then, there
can be at most |S|+ 1 calls to INDEV in which 7 is an abstract lasso at the beginning.

Let D be the maximal branching degree of M (which is finite by assumption).
Recall that, any node is examined by HANDLEEV at most once. Thus, every trace
7 = (ng,n1,...,nk) in T is also examined at most once, as it is examined only when ny,
is examined by HANDLEEV. Now, for any depth k, there is a finite number of traces of
length at most k, which is dj = Zf:o D?. Thus, for every k € N, after at most dj, + 1
iterations of the loop in HANDLEEV, all node that are examined are of depth at least
k.

For every trace 7 = (ng,n1,...,n;) whose length is more than |S|, there exists i # j
such that 4, j < |S| and C(n;) = C(n;), and in particular abs(n;) = abs(n;).

We show that the loop in HANDLEEV terminates after a finite number of iterations.
Consider the first d|g4; iterations of the loop. If the algorithm terminates after a
smaller number of iteration, then we are done. Otherwise, assume that more than
dis|+1 take place. Note that after that many iterations, every trace 7 forms an abstract
lasso as shown above.

Now, consider the i** iteration for i > dis|+1- Assume that there are n nodes in
ToVisit at that point. Then, if True or False are returned from the loop, the algorithm
terminates. Otherwise, either INDEV is called or the if in line 6 is taken. In the latter
case, in the next iteration, the size of T'oVisit becomes n — 1. Then, after at most n
iteration either the loop terminates or INDEV is called. Thus, after a finite number of
iterations, either the loop terminates or INDEV is called at a time where 7 forms an
abstract lasso.

Then, as INDEV can be applied that way at most |S| + 1 times, we get that the
loop in HANDLEEV always halts after a finite number of iterations.

Note that all actions done in every iteration terminate, as of the induction assump-
tion over the calls to RECURCTL over proper subformulas of ¢ and as of Lemma 4.4.1

and Lemma 5.3.3 (whose conditions are met, as shown in the proof of Lemma 5.3.4).
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Thus, every iteration is conducted in a finite number of steps.

Consider a run of HANDLEEV. The initialization of ToVisit in line 1 obviously
terminates. Then, if True or False are returned during some iteration of the loop in
line 2, then the algorithm terminates. Otherwise, as the loop terminates after a finite
number of iterations, and each iteration terminates in a finite number of steps, the
execution continues in line 16. Then, as STRENGTHENSUBTREE is executed in a finite
number of steps (as shown in Lemma 4.4.3, HANDLEEV returns True. Thus, in any

case, the run of HANDLEEYV terminates in a finite number of steps. |
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Chapter 6

Handling EX and logical

operators

6.1 Handling logical operators

The handling of formulas of the form ¢ o o where o € {A,V} is as expected. For
example, given the goal (n, p1 A p2), we recur over the subgoals (n, ¢1) and (n, p2). We
return True if both subgoals hold, and Fualse otherwise. Note that, if the first subgoal
checked does not hold, we do not check the second subgoal, and simply return False.
Handling negation is done simply as well. Let g be a goal of the form (n,—p). Then,
(n, ) is checked. If g holds we return False and vice versa. In all cases, it holds that

abs(n) conforms w.r.t. ¢ after termination.

6.2 Handling EX

The recursive handling of formulas of the form EXp is the following.

Algorithm 6.1 HANDLEEX
Input: Goal g = (initNode, p = EXp)
Output: True if initNode = ¢, False otherwise
1: Let ToVisit be the set of successors of init Node
2: while ToVisit # () do
3: choose nextNode from ToVisit
RECURCTL(nextNode, p)
if nextNode = p then
Let 7 be the trace (initNode, nextNode)
STRENGTHENTRACE(T)
return True
else
10: Remove nextNode from ToVisit
11: STRENGTHENSUBTREE (initNode) > ToVisit is empty
12: return Fualse
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To handle formulas of the form FXp, HANDLEEX computes (in line 1) the set
of successors of initNode and iterates over it. For each successor n’ of initNode,
HANDLEEX recurs on the subgoal (n’,p) (in line 4). If it finds a successor n’ for
which this subgoal holds, it strengthens the trace (initNode,n') (line 7), labels the
astate abs(initNode) with ¢ and returns True. Otherwise, initNode = EXp. HAN-
DLEEX then splits abs(initNode) to §,5” in such a way that § = =EXp, and defines
abs(initNode) = §'. For that purpose, we use STRENGTHENSUBTREE (in line 11). The
subtree we strengthen is rooted at init Node, and contains this node and its successors
only. As of Lemma 4.4.3, Property 3.2.3 holds after HANDLEEX terminates.

We now prove lemmas that are a part of the correctness proof of OMG.

Lemma 6.2.1. (Soundness of Algorithm 6.1)

Let g = (n, ) be a goal, where ¢ = EXq and g € CTL. Assume that after HANDLEEX
checks a subgoal (m, f), it holds that abs(m) conforms w.r.t. f after checking that
subgoal. Then, if HANDLEEX terminates, it returns True if and only if g holds.

Moreover, if it terminates then abs(n) conforms w.r.t. ¢ after termination.

Proof. In every iteration of the loop in line 2, a successor node n’ of n is chosen and
examined. HANDLEEX recurs over the subgoal (n’,p), and returns True if and only if
there exists a node nextNode € ToVisit s.t. nextNode |= p.

Assume first HANDLEEX returns True. Thus, there exists a node nextNode s.t.
(C(initNode),C(nextNode)) € R and nextNode = p. Thus, initNode = EXp. By
the conditions of the Lemma, it follows that after the recurring over the subgoal
(nextNode,p), it holds that abs(nextNode) = p. As nextNode = p, HANDLEEX
enters the if condition in line 5. The algorithm strengthens the trace 7 from init Node
to nextNode. We now shows that abs(initNode) = EXp. Let s € abs(initNode). As
STRENGTHENTRACE is applied over the trace 7 = (initNode,nextNode) of length
2, Lemma 4.4.1 guarantees that there exists a cstate ¢ such that (s,t) € R and
t € abs(nextNode). Recall that abs(nextNode) = p. As t € abs(nextNode), it follows
that ¢ = p. It then follows that s F EXp. We get that abs(initNode) = EXp.

Assume now that HANDLEEX returns False. Let nq,...,n; be the successors of
initNode. Thus, for every 1 <i < k, n; = p. Thus, initNode = AX—p =-EXp.

By the conditions of the Lemma, it follows that after recurring over the subgoals
(n1,p), (n2,p), ..., (ng,p), it holds that abs(n;) = p for every 1 < i < k. HANDLEEX
reaches line 11 and strengthens the subtree of initNode. In this case, T' contains the node
initNode and its successors, nq,...,n;. We now prove that abs(initNode) = AX—p.
Let s € abs(initNode). Let m = s, $1,. .. be a path from s. According to Lemma 4.4.3,
there exists a maximal trace 7 = (ng,n1,...,n;) s.t. s; € abs(n;) for every 0 < i < k.
Due to the structure of T, it follows that k = 1, and that there exists 1 < j < k s.t.
s1 € abs(nj). As shown above, abs(n;) = p and so s1 = —p. Thus, 7 = X—p and
s = AX-p. |
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Lemma 6.2.2. (Termination of HANDLEEX for finite models)

Let g = (n,p) be a goal, where ¢ = EXp and q € CTL. Assume that for every
goal of the form ¢ = (m,¢"), where m is a node and ¢’ is a proper subformula of ¢,
RECURCTL checks g’ in a finite number of steps. Then, HANDLEEV terminates in a

finite number of steps as well.

Proof. The initialization of T'oVisit in line 1 terminates. Let k& be the number of
successors of C'(initNode). Now, the loop in line 2 has at most k iterations, as in every
iteration a successor of C(initNode) is examined.

Note that all actions done in every iteration terminate, as of the inductive assump-
tion over the calls to RECURCTL over proper subformulas of ¢ and as of Lemma 4.4.1.

Then, either True is returned from inside the loop, or the execution continues to
line 11. This line terminates due to Lemma 4.4.3 and then HANDLEEX returns False
and terminates.

Thus, in any case, the run of HANDLEEX terminates in a finite number of steps. W
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Chapter 7

Symbolic formalization and

optimizations

State-of-the-art model checking algorithms use a symbolic representation of the model
and the state-space traversal. We note that the description in previous sections may
lead to state enumeration. In this section we suggest the required adaptations for
implementing OMG symbolically. In particular, we explain how the development of
the unwinding tree and the handling of abstract states should be changed. We refer to
the adapted algorithm as Symbolic OMG (SOMG).

Let M be a model, defined over a set of variables ¥ and input variables i. A literal is
a variable or a negation of a variable. A cube is a conjunction of variables. For p € AP,
let p(v) represent the set of states satisfying p. Let the formulas Init(v) and R(v,,7)
be formulas representing the initial states and transitions of M, respectively. A cstate
s € S is a valuation of T. A cstate s can be represented by a cube s(7) in a standard
manner. Given a cstate s and input values ig, there is exactly one valuation £ s.t. the
formula R(s,g,) evaluates to True. In other words, each valuation to i defines a single
transition from s. This property is important to conduct splits efficiently.

We treat a set of cstates D and the formula D(7) representing it, interchange-
ably. Given a set of cstates D, we define its image to be Ima[D](v) = (3,7 [D(v) A
R(v,4,v")])[v' « v] and its pre-image to be PREIMG[D](v) = 31,7’ [R(v,1,7") A D(V')].
The former represents the set of successors of the cstates in D and the latter, their set

of predecessors.

7.1 Symbolic representation of abstract states

We describe how to compute a symbolic representation for an astate §. If § is of the form
[s]o for s € S, then it is represented by the formula §(0) = A,cr(5) P(V) A Aggr(s) 79(D)-
Otherwise, it is created due to a split of an astate £ w.r.t. a property P, as explained

below.
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7.1.1 Abstract state representation using quantifiers

We first show how to represent splits of an astate using boolean formulas with quanti-
fiers. For each of the two kinds of splits (EX-split, AX-split), we show how to represent
the set of states that satisfy P using a formula P(7) with quantifiers. Then, the splits
of the astate § are §(7) A P(v) and § A =P (7). We show the formulas for each kind of
split.

o EX-split, where P = {s € S| 3t € S[(s,t) € RAt € {]} for { € S. In that case,
P(v) = 30'[R(,7") A ET)).

o AX-split, where P = {s € S|Vt € S[(s,t) € R = t € U #]} for abstract
states {£;}¥_,. In that case, P(v) = Vo'[R(7,7) = Vi, &(@)].

Checking whether s € § amounts to checking if §(v)[v < s| evaluates to true.
Checking whether (D, B) is an inductive invariant for ApV ¢ in HANDLEAV amounts
to checking whether (8, D) is a may-closure (see Definition 2.1.2), where § is an astate
and D is a set of astates. It holds that (8, 15) is a may-closure if and only if the formula
$(0) AR(0,4,0') A= Ve p E(¥') is unsatisfiable.

Checking for an inductive invariant for EGq is done similarly, as it amounts to
checking whether (3,D) € R™ Tt holds that (3,D) € R™! if and only if the
formula Vi, '[3(0) A [R(D,1,7') = = \;ep £(v')]] is unsatisfiable.

7.1.2 Quantifier-free representation of abstract states

To ease the computational difficulty that stems from the usage of quantifiers, we suggest
new operations that split an astate §. It is split to §¥ that contains only cstates
satisfying P, and to & \ ¥ that may still contain some cstates satisfying P, while
containing all cstates that do not satisfy P. Note that this usage of split does not fully
conform with Definition 2.1.1. We employ a method similar to [HBS12] to generalize a
cstate or a set of cstates (represented by a cube) into an astate representation without
quantifiers.

We first show how to conduct a variant of SPLITEX, denoted EX-NEG, in which
we generalize a cstate s € 4. In this variants, we compute a split ¥ of 3, such that
every cstate s € §¥ does not have a transition to any state in some astate f. Let s be
a cstate that satisfies this property. That is, there does not exists a cstate t € § s.t.
(5,t) € R. Then, the formula (7,4,7) = s(T) A R(7,,7') A£(?) is unsatisfiable. Note
that, s is a conjunction of literals {1, ...,l;. Using an unsat core of ¢, we find a subset
of the literals, li,, ..., li,, s.t. (AJ;li;) A R(0,7,7') A£(7) is unsatisfiable. Then, the

representation of ¥ in the split is Njey li; A 3(D).

Tm )

The second variant of SPLITEX, denoted EX-POS, is one in which we generalize
a cstate s € § such s has a transition to a cstate ¢t € £. As s has a successor t € £,

there exists an input iy s.t. (s,ig,t) € R. We compute i by computing a satisfying
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assignment to the formula s(7) A R(7,%,7') A (7). Then, similarly to EX-NEG, we

extract a subset l;,,...,l; of the literals of s using an unsat core of s(v) A (i) A

im
R(,i,7') A =t(7"), which is unsatisfiable. The representation of the split ¥ (which
contains cstates that have a transition to a cstate in t) is AJL; l;; A 3(D).

The corresponding variations of SPLITAX are dual to the variations of SPLITEX
presented above. For example, let s be a cstate and £ be an astate. Generalizing s
into an astate, s.t. all cstates in it have a transition to  (AX-POS), is equivalent to
generalizing s into an astate in which all cstates have no successor in =t(7) (EX-NEG).

Given these representations, checking whether there exists an inductive invariant
for ApVq (Definition 4.2.1) or for EGq is done in the same manner describe in the

previous section.

7.2 Symbolic unwinding

Unlike OMG, where a node in the unwinding tree T' corresponds to a single concrete
state, in SOMG every node in T corresponds to a set of concrete states. We denote
such a set as cSet. As a result, the concrete labeling C' maps each node to a cSet
C(n). The function abs is modified s.t. it can be applied to a cSet. Given a cSet D,
abs(D) = {abs(s) | s € D}. Equivalently, § € abs(D) <= D(v) A §(v) # L. For a
node n € T, abs(n) is naturally defined as abs(C'(n)).

Unwinding a node n in T is performed using the image operator on C(n). Yet,
there are cases where SOMG conducts a more fine-grained traversal of the state-space,
and only applies the image operator to a subset of C(n). This is achieved by splitting a
cSet, which resembles a split of astates. As an example, consider a run of HANDLEAV
where a node n € T' is examined, such that for every s € C'(n), it holds that s = q.
Assume C'(n) consists both of cstates that satisfy p and cstates that do not. In this
case, splitting C(n) to D1 ={s € C(n) | s = p} and Dy = C(n) \ Dy allows SOMG to
consider only cstates that are successors of Dy. Note that, cstates in D; do not need

further processing. We formally define the notion of a cSet split:

Definition 7.2.1. (cSet split)
Given a cSet D, the cSets D1 and Dy are a split of D if they are a non-trivial partition
of D. Namely, D # () and Do # ().

Let m,n € T s.t. n is a successor of m. When the cSet C(n) is split, n is replaced

by two fresh nodes, n; and no, s.t. the following holds:
e nj and ng are successors of m in 7.
o C(n1) and C(ng) are a split of C(n).

Note that splitting a cSet allows SOMG to partition the unwinding process. Namely,
instead of computing all successors of C'(n), it computes the successors of C'(n1) and

of C(ngy) separately.
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We emphasize the different purposes of splitting a cSet and splitting an astate.
Splitting an astate is done in order to create may or must transitions between different
astates. For example, SPLITEX in HANDLEAV is used to refine the abstraction, thus
allowing the algorithm to find an inductive invariant. In contrast, cSet splits only
allow SOMG to unwind different parts of T" separately, and is not related directly to
the abstract model.

It is to be pointed out that all cstates in the reachable cSets in T are reachable. The
symbolic unwinding only changes the manner in which the unwinding is conducted, and

not the set of cstates that are represented in T'.

7.3 Adapting the algorithm

The symbolic representation of the unwinding tree changes the way the state-space is
traversed. As a result, the algorithm needs to be adapted and take this change into
account. Let g = (n, ) be a goal. Since C(n) now represents a cSet, the return value
of the subprocedures in SOMG cannot be Boolean, as it may be the case that some
cstates in C'(n) satisfy ¢ and some do not. To solve this, each subprocedure returns a
Model Checking Result.

Definition 7.3.1. Let g = (n, ) be a goal. A model checking result (MC result) for g
is a pair of cSets (D, Dy,), s.t. D, = {s € C(n) | s = ¢} and D,, = C(n) \ D,. Note
that Dy, D,, form a possibly-trivial partition of C(n).

In what follows, we describe the main changes in the different subprocedures of

OMG, w.r.t. a goal g = (n, p).

Initialization, RecurCtl and logical connectives The only change in the initial-
ization is the value of the cSet C(root(T)), which is {s} when checking s = ¢ and is
So, when checking M E .

Consider RECURCTL. SOMG only analyzes cstates that belong to an astate for
which ¢ is not decided. Let Ay = {3 € abs(n) | § is decided for ¢} and A2 = abs(n)\ A.
Then, n is replaced by two fresh nodes ny,ns, s.t. C(n) = {s € C(n) | abs(s) € A}
and C(n?) = C(n) \ C(n). Unless C(n7) = (), RECURCTL continues by checking the
subgoal ¢ = (ne, ). After ¢’ is analyzed, the cstates in C'(n)) are added to the MC
result of ¢'.

The subprocedures that handle logical connectives unify the MC results of their
subgoals. For example, let ¢ = 1 A 2 and (DY, D}) and (DY, D%) be the MC results
of (n, 1) and (n, @2), respectively. SOMG returns the MC result (DY N DY, D} U DZ).

HandleEX Assume ¢ = EX f. HANDLEEX extends T with m, the successor of n s.t.
C(m) = IMG[C(n)]. Then, RECURCTL is called over the subgoal ¢’ = (m, f), returning
the MC result (Dj, D;,). Next, HANDLEEX defines its MC result (Dy, D,), where
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Dy = C(n)NPREIMG[D;] and D,, = C(n)\ Dy. Before returning (D, D;,), HANDLEEX
refines each astate in abs(n) to ensure that Property 3.2.3 holds. Refinement is done
in the following manner: let £, = {3 € abs(m) | 3 = f}. For each § € abs(Dy), 3 is
split using EX-POS w.r.t. E’y. For each § € abs(D,,), § is split using EX-NEG w.r.t.

A

E,. In both cases the cSet we generalize is C(n) A 5.

HandleAV and HandleEV Consider HANDLEAV, where ¢ = ApVq. The main
changes involve the recursive handling of p and ¢. Note that, as INDAV conducts checks
that only regard astates (and so, it is not related to the manner in which unwinding is
applied), it does not change.

Let ¢’ = (nextNode,q) be the subgoal checked in line 6 of HANDLEAV, and let
(Dy, Dy,) be the MC result for ¢'. If Dj, # 0, there exists a trace 7 from initNode
to nextNode and cstate s € C(nextNode) s.t. s [~ q. As s is reachable from
initNode, there exists so € C(initNode) s.t. so = ApVq. Thus, there exists a cSet
D,, C C(initNode), where D, = ApVq. No further analysis of D, is required, and
C(initNode) is split s.t. initNode is replaced by two fresh nodes, whose cSets are
D,,, D7, where D7 = C(initNode) \ D,,. After the cSet is split, all its successors must
be updated to maintain a valid unwinding tree. This is performed by applying a cSet
split for every node in 7, starting from nextNode backwards. After T is updated,
HANDLEAYV strengthens 7 in order to guarantee that Property 3.2.3 holds.

Then, it moves on to analyze the subgoal ¢ = (nextNode,p) (line 10 in Algo-
rithm 4.1). Analyzing ¢” is similar to the process described for ¢’. HANDLEAV splits
C(nextNode) into two cSets Dy, Dy, w.r.t. p. Then, Dy undergoes further unwinding.
We do not describe this process fully.

The changes applied to HANDLEEV are similar to the changes to HANDLEAV. The

full details are omitted.

7.4 General optimizations to OMG

When implementing both OMG and SOMG, several optimizations should applied to

increase efficiency.

o Awoiding trivial splits: A split of an astate is said to be trivial if one of its splits &
represents no concrete state. Namely, Vs € S : abs(s) # §. If this holds, no split
should be conducted, so that absStructure does not change. This optimization

may prevent many unnecessary split in the abstract state space.

o Brother unification: Consider a run of INDAV where abs(T) = {$1,...,8;}. If
31, 89 are the splits of , then we can replace abs(T) with the set {33,..., 3,1}
when checking for an inductive invariant. The new set of astates is smaller and
simpler, and so the checking for an inductive invariant is more efficient. This

action of replacement is called reduce. A set of astates is reduced if no reduce
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action can be performed over it. INDAV thus computes a reduced set from abs(7T),

with which it continues. This optimization can also be applied in INDEV.

Lazy splits: If a node n is assigned an astate § which undergoes a split, the value

abs(n) can be recomputed by need.

Checking multiple properties over a model: The same data structures may be used
to check multiple properties over the same model. The information retained from
the check of one specification speeds up the model checking process for the next

one.

Concrete state trimming: In Algorithm 4.1, it is redundant to explore (that is,
keep unwinding) a node n if a node n’ such that C(n) = C(n') has already been
explored. Thus, the algorithm maintains a set of the cstates that were explored to

avoid exploring such nodes n. A similar optimization is applicable in HANDLEEV.
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Chapter 8

Correctness of OMG

We now prove the correctness of OMG.

Theorem 8.1. (Partial correctness of OMG)
Let M = (S,1,R, L) be a Kripke structure and ¢ be a CTL formula. Let s € S be a
cstate. Then, OMG is sound. That is, if OMG terminates, it returns True if and only

if M,s = .

Proof. We prove that if OMG terminates, then its answer to the model checking task
is correct. That is, if OMG returns True, then M,s |= ¢, and if OMG returns False,
then M, s [~ .

Assume that OMG terminates. Let gi1,92,...,9r be the goals checked by RE-
CURCTL during the run of OMG, ordered such that ¢ < j if and only if the activation
of RECURCTL over g; terminates before the activation of RECURCTL over g;.

We first prove by induction over k that if RECURCTL returns True over g = (n, )
then g holds, and if False is returned then gx does not hold. Additionally, abs(n)
conforms w.r.t. ¢ after RECURCTL terminates over gy.

For the base of the induction we prove the claim for £ = 1. Assume towards
contradiction that ¢ ¢ APU{L, T}. Then, ¢ is a complex formula, and so there exists
a proper subformula ¢’ of ¢. Further, RECURCTL is applied over a subgoal ¢’ of the
form (m, ¢') for some node m. Then, RECURCTL finishes checking ¢’ before finishing to
check g, as of the structure of RECURCTL and the fact that OMG eventually terminates.
However, this is impossible as g # ¢’ and g is the only goal checked during the run of
OMG.

Thus, ¢ € APU{L, T}. If ¢ is not an atomic proposition, the if statement in line 1
of RECURCTL is taken and the boolean value of ¢ is returned in line 2. Moreover,
every astate conforms w.r.t. ¢ by definition. Thus, the base case of the Lemma holds
in this case.

Otherwise, ¢ € AP. In line 3 in RECURCTL, abs(n) is computed. In particular,
abs(n) is labeled with the same atomic propositions as C'(n). Therefore, the if state-

ment in line 4 (of RECURCTL) is taken, and True is returned <= ¢ € L(C(n)), which
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proves soundness. As mentioned above, astates conform w.r.t. atomic propositions by
the definition of the abstract structure. Thus, the base case of the Lemma holds in this
case as well.

Assume now that the claim holds for k, and let g1,92,..., gk, gr+r1 be a series of
subgoals as described above. Now, if ¢ € APU{T, L}, then the claim holds as proved
above. Otherwise, ¢ is a complex formula. We split to cases according to the main

connective of :

e Assume ¢ is of the form ¢ Vs or 1 Aps. Due to the structure of RECURCTL, we
conclude that it finishes checking the subgoals (n, ¢1) and (n, ¢2) before finishing
to check g. By the induction hypothesis, abs(n) conforms w.r.t. ¢1,ps. Then,
OMG returns the appropriate result according to the logical connective. Thus, g
holds. Afterwards, abs(n) is labeled (in RECURCTL) with ¢ or - according to
the result of the model checking, and in particular abs(n) conforms w.r.t. ¢. A

similar argument holds if ¢ is of the form —¢'.

o Assume ¢ is of the form Ap1Vq. Let giy, giy, - - -, ¢i, be the subgoals over which
HANDLEAV calls RECURCTL. It thus holds that RECURCTL finishes checking
these subgoal before checking gx11. Thus, for every 1 < j < [ it holds that
i; < k+ 1. Denote g;; = (n;;, ;) for 1 < j <. By the induction hypothesis,
for each 1 < j <[ it holds that abs(nij) conforms w.r.t. ¢;; after g;; is checked.
Then, the conditions of Lemma 4.4.4 hold, and so we get that True is returned
if gx11 holds and Fulse otherwise. Moreover, Lemma 4.4.4 guarantees that after

termination, abs(n) conforms w.r.t. ¢.

o For the cases where ¢ is of the form Fyi;Vpy or EX ¢y, the proof follows the
lines of the previous case, apart for the usage of Lemma 5.3.4 and Lemma 6.2.1,

respectively.

Now, let M, s |= ¢ be the model checking task checked by OMG. As OMG activates
RECURCTL over the goal g = (root(T),¢), it follows from the inductive claim that
OMG returns true if and only if g holds. Thus, OMG is sound. |

Theorem 8.2. (Termination of OMG for finite models)
Let M = (S,1,R, L) be a finite Kripke structure and ¢ be a CTL formula. Let s € S

be a cstate. Then, OMG terminates in a finite number of steps.

Proof. We prove that OMG terminates in a finite number of steps for every finite model
M, cstate s and a C'T'L formula ¢.

We show that the following property holds: for every ¢ € C'T'L, and for every node
n, when RECURCTL is applied over g = (n, ¢), it terminates in a finite number of steps.
We prove this by induction over the structure of (.

For the base case, p € APU{T, L}. If ¢ is boolean, then the if statement in line 1
of RECURCTL is taken. Then, RECURCTL returns in line 2. Otherwise, ¢ € AP, in
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which case the if statement in line 1 is not taken. As explained before, abs(n) is labeled
with the same atomic propositions as C'(n). Therefore, the if statement in line 4 is
taken, and the algorithm halts in the next line.

Now, assume that for every proper subformula ¢’ of ¢ and that for every node m,
if RECURCTL is applied over the subgoal (m,¢’), then it terminates in a final number
of steps. We prove that RECURCTL terminates when applied over g.

If o€ APU{T, L}, then the claim holds as proved in the base case. Otherwise, ¢

is a complex formula. We split to cases according to the main connective of ¢:

e Assume ¢ is of the form ¢ V 2 or ¢ A wo. By the induction hypothesis, RE-
CURCTL checks the subgoals (n, ¢1) and (n, p2) in a finite number of steps. Then,
OMG returns the appropriate result, and in particular, it halts. Thus, it halts for

¢ in a finite number of steps. A similar argument holds if ¢ is of the form —¢'.

e Assume @ is of the form Ap1Vys. According to the induction hypothesis, for
every node m and for every proper subformula ¢’ of ¢, it holds that RECURCTL
checks the goal (m,¢’) in a finite number of steps. Then, when it is applied over
p, the if statement in line 1 is not taken. Next, RECURCTL either terminates in
line 5, or it calls HANDLEAV which terminates according to Lemma 4.4.5. We
conclude that RECURCTL terminates.

o For the cases where ¢ is of the form Fy;Vpy or EX ¢y, the proof follows the
lines of the previous case, apart for the usage of Lemma 5.3.5 and Lemma 6.2.2,

respectively.

Now, let M, s = ¢ be the model checking task checked by OMG. As OMG activates
RECURCTL over the goal g = (root(T),¢), it follows from the inductive claim that
OMG terminates. Thus, OMG terminates in a finite number of steps. |
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Chapter 9

Related Work

The algorithm suggested in [HBS12] (IICTL) is the closest to our work. It conducts
CTL model checking in an incremental and inductive manner. For every subformula of
the specification it computes an over- and an under-approximation of the set of states
in which it holds, and progresses by refining them. This process goes on until the
algorithm halts with an answer.

The refinements that are applied in [HBS12] are used to make the approximation
more precise. The refinements use generalization techniques that are similar to the ones
presented in [Brall, BSHZ11]. The refinements in OMG use a similar generalization
technique to that of [HBS12]. However, it is used to achieve a different goal. OMG
applies refinements to conduct splits, that create either must hyper-transitions or may
closures.

Inductive proofs in [HBS12] are composed of lemmas, which prove relations between
different approximations. No abstraction is used. In contrast, in OMG inductiveness
is defined for abstract states, and is composed of different types of transitions (and
hyper-transitions) between abstract states.

For formulas of the form EGp, IICTL generalizes a “skeleton” of concrete states in
order to prove the existence of a lasso. In contrast, OMG uses must hyper-transitions
to prove the existence of an infinite path, without computing the concrete states that
form it. Additionally, OMG gathers and saves information on-the-fly, which is not done
in [HBS12].

On-the-fly and local model checking is applied in many contexts, for instance in
[BCGI5, BS92, SW89b, SW89a, CVWY90, BLW02]. All algorithms use the notions of
goals and subgoals. OMG uses abstraction to speed up proofs, unlike the other works.
For example, the algorithm presented in [SW89b] constructs a tableau on-the-fly and
unwinds the structure explicitly, until it finds an answer to the goal that it checks.

Lazy abstraction is used in [McM06, VGS12, HIMS02], as well as in OMG, although
it is defined and used differently. The work in [McMO06] uses interpolants for model
checking software. It creates an abstraction for the program and refines it by need.

Both this algorithm and OMG define notions of closure, though it is conceptually
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different. Our work is more general, as it handles the entire C'T'L.

S AT-based algorithms for model checking branching-time properties are suggested
in [PWZ02, JC18, OG07, Wan05]. They resemble OMG in its unwinding of the model
and search for witnesses. However, these methods do not use abstraction to speed
up convergence. Moreover, OMG uses inductive invariants to speed up termination.
In contrast, these methods only terminate after sufficient unwinding of the model is
conducted.

May and must transitions are used, e.g., in [SG07, GHJ01]. In [CGJT 03], a series of
abstract models with may transitions are used for ACTL* model checking, allowing to
prove but not refute properties. In [SG07], these transitions are combined with 3-valued
semantics for model checking. Given an abstract model that contains may and must
transitions, a game board is built to conduct model checking. The method in [GHJ01]
utilizes such transitions to define approximations for a model, in order to model check
the entire p-calculus. OMG uses such transitions as parts of proofs, but computes them
lazily. Moreover, it uses must hyper-transitions instead of must transitions, as also done
in [SGO4].

Abstraction is used for CTL and p-calculus model checking in [PH97, LA99]. These
methods compute a series of approximations of the model. The work in [LA99] employs
a compositional approach. Moreover, it computes an under- and an over-approximation
for subformulas of the original specifications. The work in [PH97] formalizes a notion
of conservative approximations, which is suitable for checking both universal and exis-
tential properties. The method proposed is based on abstraction-refinement. In OMG,
however, it is not guaranteed that the same abstraction is used in different parts of the
model. We lazily apply refinement only when and where needed.

The work in [CGM21] combines abstraction and compositional verification in order
to prove the existence of fair infinite paths in infinite-state systems. Both this work and
OMG use abstraction to prove the existence of infinite paths. However, the work in
[CGM21] entails a compositional approach and handles fairness, whereas our algorithm
is on-the-fly.

Different approaches for CT'L model checking are presented in [BPR16, INH96|. In
[BPR16], the model checking problem is translated to a set of Horn clauses using proof
rules. The method presented in [INH96] uses BDDs to traverse the model. Traditional
CTL model checking algorithms that use BDDs are presented in [CGK'18]. These
approaches are not on-the-fly, do not use abstraction and cannot handle infinite models,
as opposed to our work.

The method presented in [Pel94] combines partial order reductions with on-the-fly
model checking. Both algorithms implement on-the-fly verification, however minimiz-
ing the search space is done differently. [Pel94] uses partial order reduction, which
recognizes equivalent executions w.r.t. independent actions in the model, thus reduc-
ing the state space. OMG uses abstraction to compute some of the transitions in the

abstract state space, which is substantially smaller than the original state space.
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Chapter 10
Conclusion and future work

This work presents an on-the-fly algorithm for C'T'L model checking with abstraction.
Our algorithm minimizes the explored parts of the model in order to achieve efficiency.
OMG can be used for model checking finite models, as well as for model checking infinite
models with a finite branching degree. As a future work, we intend to incorporate
concepts from OMG into the IC8 algorithm. Another promising direction is generalizing

our algorithm to handle the alternation-free fragment of the powerful u-calculus logic.
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