Enhanced Vacuity Detection in Linear
Temporal Logic

Alon Flaisher



Contents

Introduction 4
11 RelatedWork . . . ... ... ... . ... 10
111 VacuityDetection. . . ... ... ... ... ....... 10
112 Coverage . . . . . . i e 13
12 Organization. . . . . . . . .. . 15
Preliminaries 17
21 Automata . . . ... . e 17
22 Tempora Logic . . . ... .. . . . . e 18
23 UQLTL . . . e 19
Subformula Vacuity 23
Alternative Definitions of Vacuity 24
3.1 Comparing the Alternative Definitions of Vacuity . . . . . .. .. 25
3.2 Comparing the Alternative Definitions of Vacuity under Pure Po-
larity . . . 28
Algorithm and Complexity 31
Regular Vacuity 34
RELTL 35
51 LanguageDefinition . . .. ... ... ... ... ... .. ... 35

5.2 AutomataConstruction . . . . . . . . . .. 36



6 Regular Vacuity Definition
6.1 A Generd Definition . . . . . . . . . . . . .. ... .
6.2 Alternative Definitions . . . . . . . . .. . ..

7 Algorithm and Complexity

[11  Pragmatic Aspects

8 Subformula Vacuity in Practice
81 Displayof Results. . . . . .. .. ... ... ... ... ... ..
8.2 Occurrencesvs. Subformulas . . . . .. ... ... ........
8.3 Minimizingthe Numberof Checks . . . . ... ... ... ....
8.4 Implementationand Methodology . . . . ... ... .......

9 Regular Vacuity in Practice
9.1 Specificationsof PurePolarity . . . ... ... ..........
9.2 Wesker Definitionsof Regular Vacuity . . . . . ... ... ....

10 Conclusion

IV Appendixes

A TheCorrectness of the Construction for ALTL
B The Correctness of the Construction for QALTL
C Deciding does not affect, is co-NP-hard

D Regular Vacuity Lower Bound

50
50
52
53

56
56
58

60

67
68
76
87

91



List of Figures

21

3.1
3.2
3.3

4.1
8.1
C1l

Structure satisfaction does not imply trace satisfaction. . . . . . . 21
Relating structure and formulavacuity. . . . . . . ... ... ... 26
Sengitivity of structure and formulavacuity to changesinthedesign. 27
Sengitivity of formulavacuity to the specification language. . . . . 27
Algorithm for checking if ¢ affects, o . . . . . . ... ... ... 32
VaCUOUSPESS . . . . v v v e e e e e e 51

Thestructure My . . . . . . . . o e 89



Abstract

The application of model-checking toolsto complex systemsinvolvesanontrivial
step of modelling the system by a finite-state model and a trandlation of the de-
sired properties into aformal specification. While a positive answer of the model
checker guarantees that the model satisfies the specification, correctness of the
modelling is not checked. Vacuity detection is a successful approach for finding
modelling errors that cause the satisfaction of the specification to be trivial. For
example, the specification “every request is eventually followed by a grant” is
satisfied vacuously in models in which requests are never sent. Previous works
have focused on detecting vacuity with respect to subformula occurrences in log-
icssuch as LTL, CTL, and CTL*. In thiswork we investigate vacuity detection
with respect to subformulas with multiple occurrences in industrial strength spec-
ification languages.

The generality of our framework requires us to re-examine the basic intuition
underlying the concept of vacuity, which until now has been defined as sensitivity
with respect to syntactic perturbation. We study sensitivity with respect to seman-
tic perturbation, which we model by monadic universal quantification. We show
that this yields a hierarchy of vacuity notions. We argue that the right notion is
that of vacuity defined with respect to traces and provide an algorithm for vacuity
detection. Asrecent industrial property-specification languages feature a regular
layer, which includes regular expressions and formulas constructed from regular
expressions, we extend vacuity detection to such aregular layer of linear-temporal
logics. We focus here on RELTL, which is the extension of LTL with a regular
layer. We define when a regular expression does not affect the satisfaction of an
RELTL formula by means of universally quantified intervals. Thus, the transition
to regular vacuity takes us from monadic quantification to dyadic quantification.
We show that regular-vacuity detection is decidable, but involves an exponential
blow-up (in addition to the standard exponential blow-up for LTL model check-
ing). Finaly, we discuss pragmatic aspects of vacuity checking.
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Notation and Abbreviations

UQLTL — Universally quantified linear temoral logic
QRELTL — Universally quantified regular expressions linear temoral logic
QALTL — Same as QRELTL, with regular expressions replaced by NFW
X — A propositional variable (associated with o or «)
y — Aninterval variable (associated with ()
T (M) — Set of computations of M
o — A structure assignment (o : X — 2°)
a — A trace assignment (o : X — 2N)
B — Aninterva set (3 C {(7,7)|4,5 € N,j > i})
AP — Set of atomic propositions
¢ — A formula(e.g. LTL, RELTL, UQLTL)
1) — Usually a subformulaof
M — Modé of asystem (Kripke structure)
m — A computation (trace) of M
M, = ¢ — Trace 7 of M satisfies ¢
M, 7 W~ ¢ — Trace  of M refutes ¢
M, =, ¢ — Trace 7 of M structure satisfies ¢
M, =, ¢ — Trace w of M trace satisfies ¢
M, i, jEE e — Trace w of M tightly satisfies e between i and j
e — A regular expression
Z%7— An NFW Z with an initial state ¢
NFW — Nondeterministic Finite Word Automaton
L(Z) — Language of the NFW Z
A, — AnNGBW for ¢
NGBW — Nondeterministic Generalized Biichi Word automaton
¢ [ «— L] — Theformulaobtained from ¢ by replacing ¢ by true or false



Chapter 1

| ntroduction

Temporal logics, which are modal logics geared towards the description of the
temporal ordering of events, have been adopted as a powerful tool for specifying
and verifying concurrent systems [Pnu77]. One of the most significant develop-
mentsin thisareais the discovery of agorithmic methods for verifying temporal-
logic properties of finite-state systems[CE81, CES36, LP85, QS81, VW86]. This
derivesits significance both from the fact that many synchronization and commu-
nication protocols can be modeled asfinite-state systems, aswell asfrom the great
ease of use of fully algorithmic methods. In temporal-logic model checking, we
verify the correctness of afinite-state system with respect to adesired behavior by
checking whether a labeled state-transition graph that models the system satisfies
a temporal logic formula that specifies this behavior (for an in-depth survey, see
[CGP99)).

Beyond being fully-automatic, an additional attraction of model-checkingtools
is thelr ability to accompany a negative answer to the correctness query with a
counterexample to the satisfaction of the specification in the system. Thus, to-
gether with a negative answer, the model checker returns some erroneous execu-
tion of the system. These counterexamplesare very important and can be essential
in detecting subtle errorsin complex designs[CGM Z95]. On the other hand, when
the answer to the correctness query is positive, most model-checking tools provide
no witness for the satisfaction of the specification in the system. Since a positive
answer means that the system is correct with respect to the specification, this may,
apriori, seem like a reasonable policy. In the last few years, however, industrial
practitioners have become increasingly aware of the importance of checking the
validity of a positive result of model checking. The main justification for suspect-
ing the validity of a positive result is the possibility of errorsin the modeling of
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the system or of the desired behavior, i.e., the specification.

Early work on “suspecting a positive answer” concerns the fact that temporal
logic formulas can suffer from antecedent failure [BB94]. For example, in veri-
fying a system with respect to the CTL specification ¢ = AG(req — AF grant)
(“every request is eventually followed by a grant”), one should distinguish be-
tween vacuous satisfaction of ¢, which isimmediatein systemsin which requests
are never sent, and non-vacuous satisfaction, in systems where requests are some-
times sent. Evidently, vacuous satisfaction suggests some unexpected properties
of the system, namely the absence of behaviors in which the antecedent of ¢ is
satisfied.

Several years of practical experiencein formal verification have convinced the
verification group at the IBM Haifa Research Laboratory that vacuity is a serious
problem [BBER97]. To quote from [BBER97]: “Our experience has shown that
typically 20% of specifications pass vacuously during the first formal-verification
runs of a new hardware design, and that vacuous passes always point to a real
problem in either the design or its specification or environment.” The usefulness
of vacuity analysis is also demonstrated via several case studiesin [PS02]. Of-
ten, it is possible to detect vacuity easily by checking the system with respect
to hand-written formulas that ensure the satisfaction of the preconditions in the
specification [BB94, PP95].

These observations led Beer et al. to develop a method for automatic testing
of vacuity [BBER97]. Vacuity is defined as follows: aformula ¢ issatisfied in a
system M vacuoudly if it issatisfied in M, but some subformula ) of ¢ does not
affect ¢ in M, which means that M also satisfies ¢ [¢) < '] for al formulas ¢’
(¢ [ < v'] denotes the result of substituting ¢/’ for ¢ in ). Beer et al. proposed
testing vacuity by means of witness formulas. In the example above, it is not hard
to see that a system satisfies ¢ non-vacuoudly iff it also satisfies £ F'req. In gen-
eral, however, the generation of witness formulas is not trivial, especialy when
we are interested in other types of vacuity passes, which are more complex than
antecedent failure. While [BBER97] nicely set the basisfor amethodol ogy for de-
tecting vacuity in temporal-logic specifications, the particular method described
in [BBER97] is quite limited (see aso [BBERO1]). The type of vacuity passes
handled isindeed richer than antecedent failure, yet it isstill very restricted. Beer
et al. consider the subset w-ACTL of the universal fragment ACTL of CTL. The
logic w-ACTL consists of al ACTL formulas in which all the (Boolean or tem-
poral) binary operators have at least one operand that is a propositional formula.
Many natural specifications cannot be expressed in w-ACTL.

A genera method for detection of vacuity for specifications in CTL* (and
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hence also LTL, which was not handled by [BBER97]) was presented in [KV 99,
KVO03]. The key ideathereisageneral method for generating witnessformulas. It
isshownin [KV03] that instead of replacing asubformulat by all subformulas)’,
it sufficesto replaceit by either true or false depending on whether ) occursin
with negative polarity (i.e., under an odd number of negations) or positive polarity
(i.e., under an even number of negations). Thus, vacuity checking amounts to
model checking witness formulas with respect to al (or some) of the subformulas
of the specification . It isimportant to note that the method in [KV03] is for
vacuity with respect to subformulaoccurrences. The key feature of occurrencesis
that a subformulaoccurrence hasapure polarity (exclusively negative or positive).
Infact, itisshownin [KVO03] that the method is not applicableto subformulaswith
mixed polarity (both negative and positive occurrences).

Recent experience with industrial-strength property-specification languages
such as ForSpec [AFF+02] suggeststhat the restriction to subformulaoccurrences
of pure polarity isnot negligible. ForSpec, which isalinear-time language, issig-
nificantly richer syntactically (and semantically) than LTL. In particular, it has a
rich set of arithmetical and Boolean operators. Asaresult, even subformulaoccur-
rences may not have pure polarity, e.g., in theformulasp & ¢ (& denotes exclusive
or). Whilewe canrewritep® g as (pA—q) V (—pAq), it forces the user to think of
every subformula occurrence of mixed polarity as two distinct occurrences, which
is rather unnatural. Also, a subformula may occur in the specification multiple
times, so it need not have a pure polarity even if each occurrence has a pure po-
larity. For example, if the LTL formulaG(p — p) holdsin a system M then we
would expect it to hold vacuously with respect to the subformula p (which has a
mixed polarity), though not necessarily with respect to either occurrence of p, be-
cause both formulas G(true — p) and G(p — false) may fail in M. (Surely, the
fact that G(true — false) failsin A/ should not entail that G(p — p) holdsin M
non-vacuoudly.) Our first goal in thisthesisisto removethe restriction in [KV 03]
to subformula occurrences of pure polarity, and consider vacuity with respect to
subformulas.

The generality of our framework requires us to re-examine the basic intuition
underlying the concept of vacuity. As defined, a formula ¢ is satisfied in a sys-
tem M vacuoudly if itissatisfied in M but some subformulas) of  does not affect
pin M. Itisless clear, however, what does “does not affect” means. Intuitively,
it means that we can “perturb” ) without affecting the truth of ¢ in M. Both
[BBER97] and [KV03] consider only syntactic perturbation, but no justification
is offered for this decision. We argue that another notion to consider is that of
semantic perturbation, where the truth value of ) in M is perturbed arbitrarily.
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The first part of this thesis is an examination in depth of this approach. We
model arbitrary semantic perturbation by a universal quantifier, which in turn is
open to two interpretations (cf. [Kup99]). It turns out that we get two notions of
“does not affect” (and therefore aso of vacuity), depending on whether universal
guantification is interpreted with respect to the system M or with respect to its
computation tree. We refer to these two semantics as “ structure semantics” and
“trace semantics’. Surprisingly, the original, syntactic, notion of perturbation falls
between the two semantic notions.

We argue then that trace semantics is the preferred one for vacuity checking.
Structure semantics is simply too weak, yielding vacuity too easily. Formula se-
mantics is more discriminating, but it is not robust, depending too much on the
syntax of the language. In addition, these two semantics yield notions of vacu-
ity that are computationally intractable. In contrast, trace semantics is not only
intuitive and robust, but it can be checked easily by a model checker.

In additionto arich set of arithmetical and Boolean operators, industrial property-
specification languages offer aregular layer, which includes regular expressions
and formulas constructed from regular expressions. For example, the ForSpec for-
mulae seq 6, where e isaregular expression and ¢ isaformula, assertsthat some
e sequence isfollowed by 6, and the ForSpec formulace triggers 6, assertsthat al
e sequences are followed by 6. Our second goal in thisthesisisto extend vacuity
detection to such aregular layer of linear-temporal logics. Rather than treat the
full complexity of industrial languages, we focus here on RELTL, which is the
extension of LTL with aregular layer. Thus, we need to define, and then check,
the notion of “does not affect,” not only for subformulas but also for regular ex-
pressions. We refer to the latter as regular vacuity. As an example, consider the
property ¢ = globally ((req - (—ack)* - ack) triggers grant), which saysthat a
grant is given exactly one cycle after the cycle in which a request is acknowl-
edged. Notethat if (—ack)* - ack does not affect the satisfaction of ¢ in M (that
is, replacing (—ack)* - ack by any other sequence of events does not cause M to
violate ), we can learn that acknowledgments are actually ignored: grants are
given, and stay on forever, immediately after a request. Such a behavior is not
referred to in the specification, but can be detected by regular vacuity.

In order to understand our definition for regular vacuity, consider aformula
over aset AP of atomic propositions. Let 3 be the set of Boolean functions over
AP, and let e be aregular expression over X appearing in . The regular expres-
sion e induces a language — a set of finite words over . For aword w € ¢,
the regular expression e induces a set of intervals [AFFT02]: these intervals de-
fine subwords of w that are members in the language of e. By saying that e does
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not affect p in M, we want to capture the fact that we could modify e, replace
it with any other regular expression, and still ¢ would be satisfied in M. Once
again, we argue that the semantic approach to modifications of e, where “does
not affect” is captured by means of universal quantification, is preferred. Thus, in
RELTL vacuity there are two types of elementswe need to universally quantify to
check vacuity. First, asin LTL, in order to check whether an RELTL subformula
1, which is not a regular expression, affects the satisfaction of p, we quantify
universally over a proposition that replaces . In addition, checking whether a
regular expression e that appearsin ¢ affects its satisfaction, we need to quantify
universally over intervals. Thus, while LTL vacuity involves monadic quantifi-
cation (over the sets of pointsin which a subformula may hold), regular vacuity
involves dyadic quantification (over intervals — sets of pairs of points, in which a
regular expression may hold). We also discuss two weaker alternative definitions
of regular vacuity: arestriction of the universally quantified intervalsto intervals
of the same duration as e (in case such aduration iswell defined), and an approx-
imation of the dyadic quantification over intervals by monadic quantification over
the Boolean events referred to in the regular expressions.

In the second part of this thesis we show that regular vacuity is decidable, and
that the automata-theoretic approach to LTL [VW94] can be extended to handle
dyadic universal quantification. Unlike monadic universal quantification, which
can be handled with no increase in computational complexity, the extension to
dyadic quantification involves an exponential blow-up (in addition to the standard
exponential blow-up of handling LTL [SC85]), resulting in an EXPSPACE upper
bound, which should be contrasted with a PSPACE upper bound for RELTL model
checking. The NEXPTIME-hardnesslower bound [AFF+03](Appendix A), while
leaving a small gap with respect to the upper bound, shows that an exponential
overhead on top of the complexity of RELTL model checking seemsinevitable.

In the final part of this thesis we address severa pragmatic aspects of vacu-
ity checking. We first discuss whether vacuity should be checked with respect to
subformulas or subformula occurrences and argue that both checks are necessary.
We then discuss how the number of vacuity checks can be minimized and how
vacuity results should be reported to the user. We argue that with respect to reg-
ular vacuity, one may need to restrict attention to specifications in which regular
expressions are of pure polarity. We show that under this assumption, the tech-
niques of [KV03] can be extended to regular vacuity, which can then be reduced
to standard model checking. Finally, we describe our experience of implement-
ing vacuity checking in the context of a ForSpec-based model checker. We found
vacuity detection useful in detecting wrong assumption (restricting the desired
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model behavior), detecting bugs in the model and detecting inaccurate properties.
In fact, we only consider a verification task to be complete after vacuity analysis.

The thesis summarizes our work on vacuity detection covered in the following
papers:

e R.Armoni, L. Fix, A. Flaisher, O. Grumberg, N. Piterman, A. Tiemeyer, M.
Vardi. Enhanced Vacuity Detection in Linear Temporal Logic. CAV 2003.

e D. Bustan, A. Flaisher, O. Grumberg, O. Kupfreman, M. Vardi. Regular
Vacuity. Submitted.

Appendixes A and B prove the correctness of the construction for RELTL and
regular vacuity. They are given as appendixes due to significant enhancements
performed by Doron Bustan. Appendixes C and D prove lower bound of struc-
ture vacuity and regular vacuity. They were writen by Nir Piterman and Orna
Kupferman and included for the sake of completeness.



1.1 Reated Work

1.1.1 Vacuity Detection

The problem of trivialy valid formulas was first noted by Beatty and Bryant
[BB94], who termed it antecedent failure. It seems [BBER97] is the first attempt
to automatically detect trivial passes under symbolic model checking. In addi-
tion to antecedent failure, Beer at el. cover other kinds of trivially true formulas,
and call it avacuous pass. They present interesting examples of vacuous passes,
suchas AG(p — AX(q — AXr)). The formula passes vacuously not only if p
never occurs, but also if ¢ never occurs at a next state of p. They define a subset
of ACTL, called w-ACTL (witness ACTL), for which it is possible to construct
a single formula w(y) which detects all vacuous passes of ¢. A side affect of
their method isthat the witness formulawhich detectstrivial passes, also provides
an interesting witness when false. Examining an interesting witness can provide
some confidence that the formal specification accurately reflects the intent of the
user.

Beer at €. report that typically 20% of formulas pass vacuously during thefirst
formal verification runs of new hardware designs, and that vacuous passes always
point to real problem in either the design, the specification or the environment.
They aso report that of the formulas which pass non-vacuously, examination of
the interesting witnesses discovers a problem with approximately 10% of the for-
mulas. Examining such witnessesis orthogonal to vacuity detection.

According to Beer at €. vacuity occurs when one of the operands does not
affect the validity of the formula. Formally, a sub formula ¢ does not affect the
truth value of ¢ inmodel M, if for every formula¢’, the truth value of ¢ in model
M isthe same as the truth of © in model M. Here, ¢’ isthe formula obtained by
replacing &€ with ¢ in ¢. They say that aformula ¢ passes vacuously in model M
if it passes, and contains a subformula ¢ such that ¢ does not affect the truth of ¢
in M.

As mentioned, [BBER97] is restricted to a subset of ACTL called w-ACTL.
They claim that in their experience, this subset is sufficient for expressing most
of the formulas used by engineers for specification. w-ACTL formulasare ACTL
formulasin which for all binary operators at least one of the operandsis a propo-
sitional formula. For each operator, they define the important operand for which
vacuity will be detected. They restrict vacuous passes only to cases where the
non-affecting subformula is important. For example, in the formula AG(req —
AFgrant) they check the case where req never happens, but ignore the case in
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which AF grant always holds.

According to [BBER97], an interesting witnessis a path showing oneinstance
of the truth of the formula, on which every important subformula affects the truth
of the formula. Beer at el. show how to construct an interesting witness for a
w-ACTL formula. They say that a formula w is a witness formula of ¢, denoted
w(ep), if for any model M: (1) (M = ¢ and M = w(y)) iff ¢ passes vacuously
inM. (2) If M = pand M = w(y) then any cex of w(y) in M isaso an inter-
esting witness of ¢ in M. They show how to construct a witness formulafor any
w-ACTL formula. Their construction algorithm replaces the smallest important
subformulawith false.

Kupferman and Vardi [KV99, KV03] extend the work of [BBER97] by pre-
senting a general method for detecting vacuity for specifications in CTL*. Be-
yond the extension of the method to a highly expressive specification language,
they also give astronger definition of vacuity, in the sense that they check whether
al the subformulas of the specification affect its truth value. Given aformula ¢
and a subformula 1, they denote by ¢ [¢) < L] the formula obtained from ¢ by
replacing ¢ by true if v is of negative polarity and by false if ¢ is of positive
polarity. They show that for a subformulaoccurrence ) of ¢ and for every system
M, if M = ¢ty — 1], then for every formula ¢, we have M = o[y — £]. It
follows that vacuity detection involves model checking of M with respect to at
most || formulas, and can be checked in time O(Cy(|¢| - |¢|)), where C(|¢|)
is the complexity of the model checking problem. They show that for ¢ in CTL,
a subformula v of ¢ with multiple occurrences, and a system M, the problem of
deciding whether +) does not affect © in M is co-NP-complete.

Kupferman and Vardi a so study the generation of interesting withesses. Given
aformulay ineither LTL or CTL*, they define witness(v) = © Ayeap) ~2[Y —
L]. Intuitively, a path = satisfies witness(y) if = satisfies ¢ and in addition, 7
does not satisfy the formula[y) < L] for al the subformulas ) of . They show
that a counter example for —witness(y) in M, is an interesting witness for ¢ in
M. They conclude that for ¢ in CTL*, the problem of generating an interesting
witnessfor ¢ in M is PSPACE-complete.

Purandare and Somenzi [PS02] examine the practicality and usefulness of
[BBER97, KVV03] for CTL. They show that athorough vacuity check asin [KV 03]
can be implemented efficiently for CTL, so that the overhead relative to plain
model checking isin practice very limited in spite of the worst case complexity.
Instead of checking ¢ and the witness formula generated by various replacements
in asequential fashion, they check  and al itsreplacementsin a single bottom-up
pass over the parse tree or . At each node they exploit the relationships between
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the sets of states satisfying the variousformula. According to polarity, the satisfy-
ing set of awitness subformulais either alower bound or an upper bound on the
satisfying set of the corresponding subformulas of ¢. This allows them to speed
up fixpoint computations by accelerating convergence, or simplifying the compu-
tation of preimages. They aso detect cases in which different replacements lead
to an equivalent formula.

Purandare and Somenzi provide several examples of vacuity, including one
where thorough vacuity detectionisrequired. They consider theformula AG (startA
valid(x) Avalid(y) — valid(z)), where start holdsin the first clock of the com-
putation, and valid() tells whether the inputs = and y or the output > are not
denormals (thisis a floating point multiplier). They report that out of 24 replace-
ments, 20 produce vacuous passes. They reveaed that (1) The environment of the
model lacks an assignment to start; (2) The MSB of the exponent could be incor-
rect due to overflow during its computation; and (3) The multiplier maintains the
invariant AG valid(z). These bugs were found because each atomic proposition
was replaced separately, and the detection that the antecedent is redundant.

Two recent papers by Gurfinkel and Checkik examine additional aspects of
vacuity. In [GCO04a] Gurfinkel and Checkik show the relation between vacuity
detection and the 3-valued Kleene logic. Simple vacuity detection is exactly the
3-valued model checking problem. They show generalizations of the vacuity prob-
lem to multi-valued model checking, such as four valued-model checking to de-
termine if a formulais vacuous and true, or vacuous and false. The paper deals
with subformula occurrencesin CTL.

Theidea of using multi-valued logic for encoding different degrees of vacuity
isalso applicable to cases where we want to check vacuity of aformulap with re-
spect to several subformulas, or multiple occurrences of the same formula. They
introduce the notion of mutual vacuity between different subformulas. Logic val-
ues encode different degrees of vacuity, such as "¢ is mutualy true in a and b,
vacuous in ¢ and independent of d, and non vacuousin e”.

In [GCO04b] Gurfinkel and Checkik relate to the comparison between the three
alternative definitions of vacuity in [AFFT03] (see chapter 3), and claim that
athough [AFF*03] shows that structure and formulas semantics are sensitive to
the model and specification language, the robustness of trace semanticsis not for-
mally defined. They formalize the notion of robust vacuity and use our quantified
temporal logic formulation to extend semantic vacuity to CTL*. Thelr definition
requires a vacuous pass in every model K’ that is bisimilar to K. When moving
from LTL to CTL* [GC04b] move from traces to trees. They show that vacuity
detection for CTL* isexpensive (2EXPTIME-complete) , and define fragments of
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CTL* for which detecting vacuous satisfaction in not harder than model checking.

Gurfinkel and Checkik also show that vacuity is preserved by abstraction.
They show that vacuity detection is more precise than traditional abstract model
checking in the sense that sometimes, it is possible to determine that a formula
is vacuoudly satisfied by an abstract model, even if the result of abstract model
checking isinconclusive.

1.1.2 Coverage

The notions of coverage and vacuity are closely related. Coverage metrics are
based on modifications applied to the system (rather than the specification) in
order to check which parts of it were actually relevant for the verification process
to succeed. Chockler, Kupferman and Vardi [CKV01] suggest several coverage
metrics for model checking, and describe two aternative algorithms for finding
the uncovered parts of the system under these definitions.

Suspecting the system of containing an error even in the case model checking
succeeds, is the basis for both vacuity detection and coverage in temporal logic
model checking. Clearly, an erroneous behavior of the system can escape the
verification if this behavior is not captured by the specification. Coverage met-
ric techniques are common in simulation based verification [HMA95, HY HD95,
DGK96, MAH98, BH99, FAD99]. However, these metrics cannot be applied to
model checking as the process of model checking visitsall states.

The idea of coverage in temporal logic model checking (coverage) is that a
state isuncovered if itslabeling is not essential to the success of the model check-
ing process. There are two approaches for defining and developing algorithms
for coverage metrics in temporal logic model checking. The first approach, of
Katz et al. [KGG99], is based on a comparison of the system with a tableau of
the specification. This approach is somewhat strict, as we want specifications to
be much more abstract than their implementations, and as sometimes, only part
of the design is checked using model checking. A refinement of this approach
enables specifying which parts of the model are relevant. The second approach,
of Hoskote et a. [HKHZ99], is to define coverage by examining modifications
in the system on the satisfaction of the specification. A state w is g-covered by ¢
if the Kripke structure obtained from K by flipping the value of ¢ in w (denoted
f(qu) no longer satisfies . That is, the value of ¢ in w is crucia for the satisfac-
tion of ¢ in K. By [HKHZ99], a state is covered if it belongs to g-cover(K, )
for some signal ¢. This approach resembles vacuity detection, where we examine
modifications in the specification on its satisfaction in the system.
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Chockler et al. [CKV01] introduce two principals, which they believe should
be part of any coverage metric for model checking: a distinction between state-
based and logic-based coverage, and a distinction between the system and its
environment. The state based approach modifies ¢ in every state of the Kripke
structure K. On the other hand, when the system is modeled as a circuit, flipping
the value of asignal in a state changes not only the label of the state but also the
transitionsto and from the state. In the logic-based approach, the value of asignal
isfixed to 0,1 or don't care everywhere in the circuit. These two approaches are
similar to the structure and trace semantics we examine for vacuity detection in
chapter 3. The second principal differentiates between closed and open systems,
the later having an interface with the environment. Clearly, there is no point to
talk about g-coverage for a signal ¢ that corresponds to an input variable. Simi-
larly, thereis no point in checking vacuity with respect to an input variable, asthe
formulais already satisfied for every possible behavior of the input.

Two alternative definitions for the naive algorithm for coverage, which finds
the set of covered states or signals by model checking each of the modified sys-
tems, are presented in [CKVO01]. The first alternative is a symbolic approach to
finding the uncovered parts of the system. Notice that changing ¢ in several states
together may have a different affect than changing ¢ in each state alone. The sec-
ond aternative is an algorithm that makes use of overlaps among the modified
systems. Since each modification involves a small change in the original system,
there is a great deal of work that can be shared when we model check all the
modified systems. Both algorithmswork on full CTL.

Chockler et al. also relate to the presentation of output. For a circuit S and
asigna q let g-cover(S, ¢) denote the set of states g-covered by ¢ in S. They
propose to check at first whether g-cover(S, ) isempty for some g, before merg-
ing al results. An empty set may indicate vacuity in the specification. Another
interesting output are computations that contain no covered states or many state
that are not covered. Such computations correspond to behaviors of the circuit
that are not referred to by the specification. We refer to the presentation of vacuity
resultsin section 8.1.

Finally [CKVO01] raise severa open issues with respect to coverage metrics
to temporal logic model checking. One isincompleteness of the specification vs.
redundancies in the system. Another isthe feasibility of coverage algorithms, as
their complexity is larger than model checking. Chockler, Kupferman, Kurshan
and Vardi address coverage metrics from a practical point of view in [CKKVO01].
They suggest several definitions of coverage for LTL specifications, and describe
two algorithms for computing the parts of the system that are not covered by the
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specification. The first algorithm is built on top of automata-based model check-
ing, and the second reduces the coverage problem to amodel checking problem.

In [CKKVO01] the three alternative definition of coverage for LTL specifica-
tions are structure coverage (" flipping always’), node coverage (" flipping once”)
and tree coverage ("flipping sometimes’). Each approach measures a different
sensitivity of the satisfaction of the specification to changesin the system. Chock-
leratel. use SC(K, ¢, q), NC(K, p,q), TC(K, ¢, q) to denote sets of states that
are structure g—covered, node ¢—covered and tree ¢g—covered, respsectively in K.
They show that SC(K, ¢, q) C TC(K,¢,q), NC(K,¢,q) C TC(K,¢,q), and
that SC(K,¢,q) € NC(K,,q), NC(K,p,q) £ SC(K,p,q). The later rela-
tion resembles the occurrence-subformula relation described in section 8.2. In
vacuity, asin coverage, we cannot prefer one over the other as there are examples
where a vacuous pass is only detected when we check vacuity with respect to a
subformula, and vice versa.

Chockler at el. show easy implementation for node coveragein thetool COSPAN,
which is the engine of FormalCheck, and show that the implementation can be
modified in order to handle structure and tree coverage. The implementation is
done by introducing two new Boolean variables flip and flag, which flip the
value of ¢ exactly once when both flip and flag are asserted. Theincreasein the
number of variablesis only by 2, thus the complexity remains O(2™). The com-
plexity for structure and tree coverage is a function of the size of the state space
which is a most exponentia in the number of state variables. For both tree and
structure coverage, Chockler at el. double the number of variables by introducing
n new variables that encode the flipped state. Thus the state-space sizeis O(2%")
instead of O(2").

1.2 Organization

In the next chapter we give necessary background on automata theory and tempo-
ral logic, including UQLTL which augments LTL with quantification over propo-
sitional variables. The remainder of the thesis is organized in three parts. Part
1 covers subformula vacuity. We compare three aternative definitions of vacuity
and show an efficient algorithm for vacuity detection with respect to trace seman-
tics, which handles subformulas of mixed polarity. Part 2 covers regular vacu-
ity, which is vacuity detection with respect to regular expressions. We introduce
RELTL, atemporal logic that extends LTL with regular expressions, define regu-
lar vacuity, and provide an algorithm that determines regular vacuity (but involves
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another exponential blow-up). Part 3 covers pragmatic aspects of both subfor-
mula vacuity and regular vacuity. Appendixes A and B prove the correctness of
the construction for RELTL and regular vacuity. Appendixes C and D prove lower
bound of structure vacuity and regular vacuity.
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Chapter 2

Preliminaries

2.1 Automata

Definition 2.1.1 (NFW) A nondeterministic finite word automaton (NFW) is a
tuple Z = (3,Q, A, g0, W) st. ¥ isan alphabet, ) isa set of states, A : (Q x
¥) — 29 isatransition relation, ¢, isa singleinitial stateand W C Q isthe set
of accepting states.

Let # = my,m1,... be a finite/infinite word over . For i € IN, let n¢ =
i, Tis1, - - - denote the suffix of = from itsith letter. A sequenceé = qo, ¢1, - - - qn
in Q* isarun of Z over afinite word 7 € X*, if ¢o isthe initia state, and for
every 0 < i < n,wehave g, € A(g;, ). Aruné of Z isaccepting if ¢, € W.
An NFW Z accepts aword 7 if Z has an accepting run over 7. We use L(Z) to
denote the set of words that are accepted by Z. For ¢ € ), we denote by 79 the
automaton Z with asingleinitial state q.

Definition 2.1.2 (NGBW) A nondeterministic generalized Buchi word automa-
ton (NGBW) is A = (X, S, Sy, 0, F), where ¥ is a finite set of alphabet |etters, S
isaset of states, § : S x ¥ — 2% isatransition function, S, C S isa set of initial
states, and F C 2° isa set of sets of accepting states.

A sequence p = sg, s1,...InS¥ isarun of A over an infinite word 7 € ¢, if
sp € Sy and for every i > 0, we have s;.; € 0(s;, ™). Weuseinf(p) to denote
the set of states that appear infinitely oftenin p. A run p of A isaccepting if for
every F' € F,wehaveinf(p) N F # (). An NGBW A accepts aword 7 if A has
an accepting run over . We use L(.A) to denote the set of words that are accepted
by A. For s € S, we denote by .4° the automaton .4 with asingleinitial state s.
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2.2 Temporal Logic

We define the temporal logic LTL over aset of atomic propositions AP in positive
normal form. The syntax of LTL isasfollows. Anatomp € AP isaformulaand
sois—p. If ¢ and p, are LTL formulas, then so are 1 A g, 01 V o, NEXt oy,
1 until ¢, and ¢, release ¢y. Each LTL formulay induces alanguage L(p) C
(247)« of exactly all the infinite words that satisfy ¢.

The semantics of LTL is defined with respect to an infinite word = € (247)~,
Weuse,i = ¢ toindicate that the word 7* satisfies the formula ¢. The relation
= is defined by induction on the structure of ¢ asfollows.

o Forpc AP,wehaver,i = piffpc m, andx,i = —piff p & m,.
Let ¢, 1, o beformulas.

i 7T,Z' ):()01/\()02 Iffﬂ—7Z ):901 andﬂ-vi ):()02

i 7T,Z' ):()01\/()02 Iffﬂ—7Z ):901 Orﬂ—?i ):902

T nexteiff i+ 1 .

7,1 = 1 until ¢, iff thereexists k > i such that 7, k = ¢ and for all i <
j<kwehaver,j = ;.

T,1 | @) release o, iff ether for some j > i 7,5 = ¢, and for every
i<k <jwehaver, k = ¢, orforevery j > i, m, j = ¢

We use the operator ( eventually ) as a shorthand for (true until ¢), and we
use the operator ( globally ) as a shorthand for (false release ¢). Finaly we
define regular expression over an alphabet Y. The syntax of regular expressions
isas follows. A letter a« € X isaregular expression. If e; and e, are regular
expressions, thenso aree - ¢, e + ¢, and e*. Each regular expression e induces a
language L(e) C X* of exactly al the finite words that satisfy e. The semantics
of regular expressionsis defined as follows:

e Fora € ¥, L(a) isthesingleword a.
For regular expressions e; and e;.

e L(e; - e9) congists of all words formed by concatenating a word in L(e;)
withawordin L(es).

e L(e; + ey) istheunionof L(e;) and L(ez).
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e L(e*) consists of al words formed by concatenating zero or more words
from L(e), and includes the empty word e.

Definition 2.2.1 (Occurrence and Subformula Polarity) An occurrence of for-
mula ¢ of ¢ isof positive polarity in ¢ if it is in the scope of an even number
of negations, and of negative polarity otherwise. The polarity of a subformula
is defined by the polarity of its occurrences as follows. Formula v is of positive
polarity if all occurrences of ¢ in  are of positive polarity, of negative polarity if
all occurrences of ¢ in ¢ are of negative polarity, of pure polarity if it iseither of
positive or negative polarity, and of mixed polarity if some occurrencesof ¢ in ¢
are of positive polarity and some are of negative polarity.

Given aformulay and asubformulaof pure polarity «» wedenoteby ¢ [¢) «— L]
the formula obtained from ¢ by replacing v by true if ¢ is of negative polarity
and by false if ¢ is of positive polarity. Dually, ¢ [¢) < T| denotes the formula
obtained from ¢ by replacing ¢ by false if 1 is of negative polarity and by true
if ¢ is of positive polarity.

2.3 UQLTL

Thelogic UQLTL augments LTL with universal quantification over propositional
variables. Let X be a set of propositional variablesand let € X. The syntax of
LTL isextended asfollows. If ¢ isan LTL formulaover the extended set of atomic
propositions AP U X, then Vzp isaUQLTL formula. E.g., Vz globally (z — p)
isalegal UQLTL formula, while globally Va (z — p)isnot. UQLTL isasubset
of Quantified Propositional Temporal Logic [SVW85], where all the free vari-
ables are quantified universally. In the sequel, we use z to denote a propositional
variable. A closed formulais aformulawith no free propositional variables.

We now give definitions of two semantics for UQLTL formulas. The first
is structure semantics where a propositional variable is bound to a subset of the
states of the Kripke structure. The second istrace semanticswhere apropositional
variable is bound to a subset of the locations on the trace. Structure semantics
is defined with respect to a Kripke structure K =< AP, W, R, wqy, L >, where
AP isthe set of atomic propositions, IV is a set of states, R C W x W isthe
transition relation that must be total (i.e. for every w € W there existsw’ € W
st. R(w,w')), wy is an initial state, and L : W — 247 maps each state to a
set of atomic propositions true in this state. A path of K is an infinite sequence
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T = wp, Wy, W, - - - Of states sit. for al i > 0 we have R(w;, w;11). Let T (M)
denote the set of computations of M.

Let M beaKripke structurewith a set of states .S, let m € 7 (M), and let X be
aset of propositional variables. A structure assignment o : X — 2° maps every
propositional variable x € X to aset of statesin S. We use s; to denote the ith
state along 7, and ¢ to denote UQLTL formulas.

Definition 2.3.1 (UQLTL Structure Semantics) The relation =, is defined in-
ductively as follows:

o M,m i, 0= xiffs; € o(z).
o M, i,o =4 Vepiff M 7 i, o[z — S| &, ¢ for every S” C S.
e For any other formula ¢, M, m,i,0 =5 ¢ isdefined asin LTL.

A closed UQLTL formulay isstructure satisfied at point i of tracew € 7 (M),
denoted M, ,i =, o, iff M, 7,i,0 =, ¢ for some o (choiceisnot relevant since
p isclosed). A closed UQLTL formula ¢ is structure satisfied in structure M,
denoted M |=; o, iff M, 7,0 =, ¢ for every tracem € 7 (M).

We now define the trace semanticsfor UQLTL. Let X be aset of propositional
variables. A trace assignment o : X — 2N maps a propositional variable z € X
to aset of natural numbers (points on a path).

Definition 2.3.2 (UQLTL Trace Semantics) The relation |, is defined induc-
tively as follows:

o M,mi,a = xiffi € a(x).
o M 7 i, = Ve iff M7 i, afx — N'| |, ¢ for every N’ C N.
e For any other formula ¢, M, 7, i, 0 =; ¢ isdefined asin LTL.

A closed UQLTL formula ¢ is trace satisfied at point i of trace 7 € 7 (M),
denoted M, i =, o, iff M, 7 i, =4 4 for some « (choiceis not relevant since
pisclosed). A closed UQLTL formulay istrace satisfied in structure M, denoted
M = o, iff M, 7,0 =, ¢ for every tracem € 7(M).

We show that trace semantics is stronger than structure semantics in the fol-
lowing sense. Whenever a UQLTL formula holds according to trace semantics it
holds according to structure semantics. The opposite is not true. Indeed, a trace
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assignment can assign a variable different values when the computation visits the
same state of M at different point in the trace. We observe that for LTL formulas
both semantics are identical. That is, if ¢ isan LTL formula, then M =, ¢ iff
M E; p. We sometimes use |~ to denote the satisfaction of an LTL formula,
rather than =, or ;.

Theorem 2.3.3 Given a structure M and a UQLTL formula ¢:
o M ):t ¥ = M ):s ¥
e MEp # Mgy

The proof resembles the proofsin [Kup95] for the dual logic EQCTL. Kupfer-
man shows that a structure might not satisfy a formula, athough the formulais
satisfied by its computation tree.

Proof: Assume in the way of contradiction that M =, ¢ but M =, ¢. Then
there exists a structure assignment o and a trace 7 such that M, 7,0,0 [~ .
Let 7 = sg, $1, S2,.... We build the assignment a(x) = {i|s; € o(x)}, which
includes point ¢ in the assignment « of a propositional variable x iff s; isino(x).
Both assignments map al propositiona variables in ¢ to the same truth values
along thetrace 7, thus M, 7,0, v [, . Thisimpliesthat M %, o, in contradic-
tion with the assumption.

For the other direction, consider the formula ¢ = Vz globally (z — next x)
and a Kripke structure with asingle state s, that has a self loop.

@

So

OOz O=

Figure2.1: M =, p A M =, .

We show that M, o =, ¢ for every o. There are two possible structure as-
signments, o(xz) = 0 and o(z) = so. If so € o(z), then x isaways satisfied and
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M, o =5 @. If 59 & o(z), then Xz isalways satisfied and M, o =5 ¢. Thus
M = .

We now show that M £, ¢. Noticethat M hasasingle trace 7. Consider the
trace assignment « that maps x only to thefirst pointalong 7. That is, a(x) = {0}.

For that assignment M, 7,0, o £, o, which implies M £, .
Il
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Subformula Vacuity
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Chapter 3

Alternative Definitions of Vacuity

Let ¢ be a subformula of . We give three aternative definitions of when
does not affect ¢, and compare them. We refer to the definition of [BBER97] as
formula vacuity. We give two new definitions, trace vacuity and structure vacuity,
according to trace and structure semantics. Notice that we are only interested in
the cases where ¢ is satisfied in the structure.

Intuitively, ¢ does not affect ¢ in M if we can perturb ) without affecting
the truth of  in M. In previous work, syntactic perturbation was allowed. Using
UQLTL we formalize the concept of semantic perturbation. Instead of changing
1 syntactically, we directly change the set of pointsin a structure or on atracein
which it holds. That is, we replace v by a propositional variable that can receive
any value (according to the relevant sematic definition).

Definition 3.0.4 (Does Not Affect) Let ¢ be a formula satisfied in M where ¢
and M are both defined over AP. Let ¢ be a subformula of .

e ) does not affect; ¢ in M iff for every LTL formula ¢ defined over AP, we
have M = ¢ [) — ¢] [BBER97].

e ) doesnot affect, p in M iff M =, Vap [1p «— z].

e ) doesnot affect; ¢ in M iff M |, Vo [¢p — .

We say that v affectsy ¢ in M iff it is not the case that v/ does not affect; ¢
in M. We say that ¢ isformula vacuousin M, if there exists a subformula ) such
that +) does not affect; . We define affects,, affects,, structure vacuity and trace
vacuity smilarly.
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3.1 Comparingthe Alternative Definitions of Vacuity

In the following section we compare the three alternative definitions of vacuity.
We show that they are all different. We also argue why trace vacuity is the pre-
ferred definition. Notice that we do not restrict a subformulato occur once and it
can be of mixed polarity. We show that our three semantics form a hierarchy, with
structure semantics being the weakest and trace semantics the strongest.

We show that structure vacuity is weaker than formula vacuity. That is, ¢
might affect; ¢ in M, but not affect; ¢ in M.

Lemma 3.1.1 (Relating Structure and Formula Vacuity) Let ¢ bean LTL for-
mula. If 1) does not affect; ¢ in M, then it does not affect; ¢ in M aswell. The
reverse implication does not hold.

In the following proof, we assume that every state has a unique representation
using the atomic propositions. That is, every state in the structure satisfies a dif-
ferent set of atomic propositions. This is a reasonable assumption for hardware
modeling.

Proof: First we provethat if asubformulas) doesnot affect; » in A, thenit does
not affect, o in M aswell. If ) affects, ¢, then there exists a structure assignment
o and a computation = of M such that M, x,0,0 -, ¢ [t < x]. We construct a
formula )’ that behaves like x along 7, that is, M, m,i |= ¢ iff M, 7 i, 0 = .
Let 5 be a predicate over AP that is true only in state s € S. Let v’ be the
digunction of 5 for all statesin o(z). The formula v’ is well-defined since S is
finite. We show that M, 7,i,0 =, « iff M, 7, i =" If M, 7, i,0 =, x then, by
the definition of structure semantics, s; € o(x). Therefores; isin the disunction
Y'. Since M, m,i |=3;, wehave M, i = ¢'. Onthe other hand, if M, 7,7, 0 P,
xthens; ¢ o(x), andtherefores; isnot included inthe disunction«)’. Since every
state is uniquely labeled M, 7, i |= 5; iff s; = s;. Consequently M, m i = 9.
Thuswe have shown that if M, o £, ¢ [ «— x] then M = o [ — ¢/].

In the other direction, we construct an LTL formula )’ that assumes different
values when visiting the same state. Let M be the Kripke structure in figure 3.1
and consider the following formula:

¢ =pV (globally eventually ¢) V ( eventually globally —p)

We examine if p affects; ¢. Consider the path 7’ = s, s1, S0, So, So - . . and let
Y = globally —¢q. Thus, ¢ [p < '] = ( globally —¢)V( globally eventually ¢)Vv
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Figure 3.1: Relating structure and formula vacuity.

(eventually globally eventually ¢). Clearly, @’ [~ ¢ [p <+ ¢'] and p affects;

P©.
Ontheother hand, for every trace = and every assignment o, wehave M, 7,0, 0 =,

¢ [ — x]. Thatis, M, 7,0,0 =, xV( globally eventually ¢)Vv( eventually globally —z).

If sp € o(z) then the digunct z is satisfied. If sy & o(z) then for al traces that

from somepointonremainin s, eventually globally -z issatisfied, for all other

paths, globally eventually g is satisfied. (]

We now show that formula vacuity is weaker than trace vacuity. That is, v
might affect,  in M, but not affect; ¢ in M.

Lemma 3.1.2 (Relating Trace and Formula) Let ¢ be an LTL formula. If ¢
does not affect; ¢ in M, then +) does not affect; ¢ in M as well. The reverse
implication does not hold.

Proof: We show that if ¢ affects; ¢, then it also affects; . If ¢ affects; ¢, then
there existsaformula«)’ such that M (= ¢ [t < ¢']. Let m beatracein M such
that m [~ ¢ [ < 1)']. Consider the assignment a(x) = {i| 7,7 = ¢'}. Clearly,
M, 7,0, « - ¢ [t — x|, and therefore  affects; .

In the other direction, let M be a Kripke structure with a single state labeled
by p, with a self-loop. Let ¢ = (p — nextp). It can be shown that M 4,
Vo [p « x|, thus p affects, . We now show that there cannot exist an LTL
formula ¢’ such that M = ¢ [p < «']. Notice that M has a single trace =, and
that tail(7) = w. Thismeansthat ¢’ is either true along every suffix of 7, or ¢’ is
false along every suffix of =. However M = ¢ [p < '] only if ¢’ holds at time
zero but fails at time one. (]

Which is the most appropriate definition for practical applications? We show
that structure vacuity and formula vacuity are sensitive to changes in the design
that do not relate to the formula. As an example, consider the formulay = p —

next p and models M, and M; in the figure below. In M, we add a proposition ¢
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whose behavior is independent of p’s behavior. We would not like formulas that
relate to p to change their truth value or their vacuity. Both M, and its extension
M, satisfy ¢ and ¢ relates only to the proposition p. While p does not affect; ¢
in My, it does affect; ¢ in M, (and similarly for affects;). Indeed, the formula
¢ [p < q] = ¢ — next g doesnot hold in M,. Note that in both models p affects,
@.

1 M2

Figure 3.2: Sensitivity of structure and formula vacuity to changesin the design.

Another disadvantage of formulavacuity isthat it is sensitive to the specifica-
tion language. That is, aformula passing vacuously might pass unvacuously once
the specification language is extended. As an example, consider the following
Kripke structure M; and the LTL formula = next ¢ — next next ¢. For the

M,

Figure 3.3: Sengitivity of formula vacuity to the specification language.

single trace m € T (M), it holds that tail(7') = ='. Thus, every (future) LTL
formulais either true along every suffix of 7%, or is false along every such suffix.
This implies that subformula ¢ does not affect; ¢. However, we get an oppo-
siteresult if the specification language is LTL augmented with the PAST operator
[LPZ85]. The PAST operator enables reference to the history of the computa-
tion. Formally, if ¢» isan LTL formulathen M, 7, i = PAST (v) iff ¢ > 0 and
M,m,i—1 = . Clearly, for every model M we have M, 7,0 = PAST(p). In
the example, M; (= ¢ [q «— PAST(p)] since My, m,i = PAST (p) iff i = 1, thus
q affectsyp.

To summarize, trace vacuity is preferable since it is less sensitive to changes
in the design (as opposed to structure and formula vacuity) and it is independent
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of the specification language (as opposed to formulavacuity). In structure seman-
tics, the truth value of the propositional variable along the trace depends on the
model. Similarly, in formula semantics, the truth value depends on the specifi-
cation language. On the other hand, trace semantics can assign any value to the
propositional variable in every point along the trace. The following lemma shows
that changing model A in away which isirrelevant to aformula ¢ (asin figure
3.2), does not alter the vacuity of ¢ in M.

Lemma3.1.3 Let 7 (M)|ap(,) denote the set of computationsin M projected to
the set of atomic propositionsin . Then for every formula ¢ and model M’ st.
T(M")|ap) = T(M)|ap(,) We have that ¢ istrace vacuousin M iff it is trace
vacuousin M.

Proof: Assume M |, Vazp [¢p <« x| for every subformula ¢ of ¢, but M’ -,
Vo [t < z]. Then there exists atrace 7', a subformula ) and an assignment «
st. M, 7,0, W~ ¢« x]. However, there also existsatrace 7 € 7 (M)
St. Tlap) = 7|ap). Therefore M, 7,0, a W& ¢ [¢ < x], which implies that
M £, Yz [ « 2] in contradiction to the assumption. The other direction is
identical. 0

Another reasoning for the superiority of trace vacuity is given in chapter 4
(Algorithm and Complexity).

3.2 Comparing the Alternative Definitions of Vacu-
ity under Pure Polarity

In the following section we show that if subformulasare restricted to pure polarity,
all the definitions of vacuity coincide. For that, we show that the replacement
of subformula ) by 1 is adequate for vacuity detection according to all three
definitions. Thisresult is an extension of the resultsin [KVV 03], where only single
occurrence was considered.

Lemma 3.2.1 For every structure M, LTL formula ¢ and subformula ) of ¢ of
pure polarity, M =, ¢ [¢p «— L] iff M =, Vap [ — x].

The first direction (M =; ¢ [ «— L] if M | Yoy [t < z]) is immediate.
The other direction follows from the claim below. Let ¢ denote a subformulaof ¢
that may or may not contain the subformula ).
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Claim 3.2.2 For every occurrence of ¢, every trace m € 7 (M) and location ¢,

e if 0 isof positive polarity in ¢ then M, 7, i |= 0 [¢p «— L] implies
M, 7, i= Va0 [ — ]

e if 0 isof negative polarity in ¢ then M, 7w, i £~ 0 [y — L] implies
M, 7, i f= Va0 [ — z]

Proof: We prove the claim by induction on the structure of ¢. We prove the case
that ¢ is of positive polarity (i.e. in 6 [y — L] the subformula v is replaced by
false). The case of negative polarity is dua. If ¢ is not a subformula of 6 the
claim follows. Assume that v is a subformulaof 6.

Let & = p for some proposition p. Clearly, also » = p and the claim fol-
lows. Let § = 6; A 0y,. Suppose that the polarity of 6 in ¢ is positive. If
M,m,i | [ «— false] then clearly M, 7,i = 6, [¢) — false] and M, 7,i =
0, [t < false|. From theinduction assumptionweknow that M, 7, i |=; Va6, [¢) «— z]
and M, 7,i |4 Yaby [ < x]. Clearly, the claim follows. Suppose that the po-
larity of 6 in ¢ is negative. If M, m i [~ 0[) < false| then either M, 7 i (-
0, [ « false|or M, m,i [~ 05 [1p < false]. Wlog suppose M, , i [~ 6, [ < false].
From the induction assumption we know that M, 7, i |=; Yx—6, [¢) < z]. It fol-
lowsthat M, 7, i = Va0 [ — z].

Let & = 0, Vv 6,. Suppose that the polarity of ¢ in ¢ is positive. If M, 7, i |=
0 [ « false] then either M, i |= 0, [¢) < false] or M, 7, i |= 0, [¢p < false].
WIlog suppose M, m,i |= 6, [ < false]. From the induction assumption we
know that M, 7,i =, V6, [t < z]. Clearly, the claim follows. Suppose that
the polarity of 6 in ¢ isnegative. If M, i |~ 0 [ < false] then both M, 7, i (£
0, [ « false| and M, i [~ 6, [t < false|. From the induction assumption we
know that M, m,i = Va—0, [ < ] and M, ;i =; Ve—by [¢ < z]. It follows
that M, 7,1 = Ya—0 [¢p «— z].

Let & = —6,. Suppose that the polarity of 6 in ¢ is positive. Then the polarity
of 6, in p isnegative. If M, 7,i = 0 [1p « false| then M, m i = 6, [¢) + false].
From the induction assumption we know that M, 7,7 =, Ya—6, [ < x]. How-
ever, -6, [ < z] = 0 [¢p «— 2| and the claim follows. Suppose that the polarity
of 6 isnegative. If M, i [~ 0 « false] then M, w i |= 0, [¢p < false] and
from the induction assumption we know that M, 7,i |=; Vo—6, [ < z]. The
clam follows.

Let & = next#;. Suppose that the polarity of ¢ is positive. If M, 7,i =
0 [ « false| then M, 7,i+ 1 |= 6, [ < false|. From theinduction assumption
we know that M, 7,i + 1 |=; Va6, [» < z]|. The claim follows. Suppose that
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the polarity of 6 is negative. If M, 7 i [~ 6y < false| then M, 7 i + 1 [~
6, [ « false|. From the induction assumption we know that M, 7, i + 1 =
V=6, [t «— z]. The claim follows.

Let & = 6,U6,. Suppose that the polarity of 6 in ¢ is positive. If M, w i =
0 [¢) «— false] then there exists some j; > i such that M, x,j | 05 [¢) < false]
and forall ¢ < k < j wehave M,k = 6, [y « false|]. From the induction
assumption we know that M, 7, j =, Va0, [ < z] and forall i < k < j we have
M, m, k = Vaby [ — z]. Clearly, the claim follows. Suppose that the polarity
of 6 in ¢ is negative. If M, 7 i [~ 0[) < false] then either foral j > i we
have M, 7, j W~ 0, [t < false| or there exists some j; > ¢ such that M, 7, j W~
0, [ < false| and forall i < k < j we have M, w k [~ 0] < false]. In
the first case, from the induction assumption it follows that forall j > i we have
M, j |t Vo—0y [0 — z]. Inthiscase M, 7, i |=; Vo—60 [ «— z]. In the second
case, from the induction assumption it follows that M, 7, j = Vo—6, [ «— 2]
and forall i« < k < j we have M, 7w,k = Yx—b6y[¢p < z]. Again, the claim
follows. [

Theorem 3.2.3 If ¢ is of pure polarity in ¢ then the following are equivalent.
1. M,m,i =@l — 1]
2. M,m,i = Ve[« 7]
3. for every formula ¢ wehave M, 7, i = ¢ [1p «— &]
4. M,m,i = Ve[ — 2]

Proof: Aswe haveshowninLemmas3.1.1 and 3.1.2, trace semanticsis stronger
than formula semantics, and the latter is stronger than structure semantics. Since
M, m,i =, Vo [ip « x| for dl structure assignments, including o(z) = S and
o(z) = 0, weasohave2 = 1. Thus4 = 3 = 2 = 1. In the other direction,
Lemma 3.2.1 provesthat 1 = 4. [

Intuitively, the fact that a mapping can assign to a propositional variable oppo-
site valuesin different positions along a trace (or states in a structure) isinsignif-
icant. Assigning the value L is sufficient, and since the subformula is of pure
polarity, L is uniquely defined to be constant true or constant false throughout
the trace. An outcome of Theorem 3.2.3 isthat given a subformula ) of pure po-
larity in an LTL formula ¢, the following are equivalent: (1) > does not affect; ¢
in M (2) v does not affect, p in M and (3) » does not affect; ¢ in M.
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Chapter 4

Algorithm and Complexity

In this section we give algorithms for checking vacuity according to the different
definitions. As shown in previous sections, in the case of subformulas of pure
polarity, the algorithm of [KV 03] works for the three, equivalent, definitions. We
show that this algorithm, which replaces a subformula by either true or false
(according to its polarity), cannot be applied to subformulas of mixed polarity.
We then study structure and trace vacuity. The question of how to decide formula
vacuity remains open.

As shown in the previous section, in the case of subformulas of pure polar-
ity the algorithm of [KV 03] applies. We show that this agorithm cannot be ap-
plied to subformulas of mixed polarity. Consider the Kripke structure M, in Fig-
ure 3.2 and the formula p = p — nextp. Formula ¢ is of mixed polarity as
the left-hand-side of the implies operator is of negative polarity, while the right-
hand-side is of positive polarity (o can also be written as —p vV next p). Clearly,
M, s Y [p < x] (with the structure assignment o (x) including only the ini-
tia state), My ¢ ¢ [p < ¢], and My B, Voo [p < ] (with the trace assignment
a(x) = {0}). Hence, p affects ¢ according to all three definitions. On the other
hand, M = ¢ [p < false] and M = ¢ [p < true]. We conclude that the algo-
rithm of [KV03] cannot be applied to subformulas of mixed polarity.

We now solve trace vacuity. As mentioned, given an LTL formula ¢, a model
M = (AP, S, Sy, R, L) that satisfies o, and a subformula ), we check whether
affects; ¢ in M by areduction to model checking. We want to model check the
UQLTL formulay’ = Va ¢ [¢p «— z] on M. If M =, ¢’ then ) does not affect; .
If M £, ¢ then ) affects, p. The algorithm presented below detects if ¢ affects,
pin M.

Thestructure M’ guesses at every step what the right assignment for the propo-
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1. Compute the polarity of v in¢.
. If ¢ isof pure polarity, model check M = [y « 1].
3. Otherwise, construct M’ = (AP U {z}, S x 21#} Sy x 2{#} R/ L),
wherefor every X, X, C 2%} and 51, 59 € S we have
(81 X X1, 89 X XQ) c R iff (81,82) € R.
4. Model check M’ |= ¢[¢) — x].
If passed, report “1) does not affect, ", otherwise report “v affects ¢”.

Figure 4.1: Algorithm for checking if ) affects;

sitional variable x is. Choosing apathin M’ determinesthe truth values of = along
the path. Formally, we have the following claim.

Claim 4.0.4 M' |= o[y « 2] iff M = Vaz pltp « z].1

Proof: If M £, Vx o[y < z], then there exists atrace 7 = s¢,s1,... and a
mapping a such that M, 7,0, « & ¢ [¢ < x|. Let T; be apredicate that is true
iff i € a(x). Thetrace 7' = (so, 7o), (s1,71) ... € T(M') according to the
construction of M’. For every p € AP U {x}, the truth values of p along 7 and
n" areidentical. Thus M’ [~ ¢[¢ « x]. The other direction issimilar. If M’ [~
pl «— xl, then there exists a path 7’ = s¢, s1, ... in M’ such that M', 7', 0 [~
¢ [t < x]. According to the construction of A’, a corresponding path = also
existsin M, apart from the labeling of z. Let o assign the truth values of = aong
7' for the propositional variable z in M. Since M, 7,0, « [~ o[t «— x|, we have
M' =Yz — z]. 1

We show that trace vacuity is linear in the structure and PSPACE-complete in
the formula.

Theorem 4.0.5 [VW94] Given a structure M and an LTL formula ¢, we can
model check ¢ over M intimelinear in the size of M and exponential in ¢ andin
space polylogarithmic in the size of M and quadratic in the length of .

Corollary 4.0.6 Given a structure M and an LTL formula ¢ such that M |= ¢,
we can decide whether subformula v affects; ¢ intimelinear in the size of M and
exponential in ¢ and in space polylogarithmic in the size of M and quadratic in
the length of .

'Noticethat z is a propositional variablein M, but an atomic propositionin M .
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Recall that in symbolic model checking, the modified structure M’ isnot twice
the size of M but rather includes just one additional variable. The modified for-
mulay [ < x] isat most aslong as ¢. The corollary follows. In order to check
whether ¢ is trace vacuous we have to check whether there exists a subformula
1 of ¢ such that ¢ does not affect; ». Given a set of subformulas {¢1,...,1,}
we can check whether one of these subformulas does not affect; ¢ by iterating the
above agorithm n times. The number of subformulas of ¢ is proportional to the
sizeof .

Theorem 4.0.7 Given a structure M and an LTL formula ¢ such that M = .
We can check whether ¢ is trace vacuous in M in time O(|¢| - Cy(p)) Where
C () isthe complexity of model checking ¢ over M.

We show now that unlike trace vacuity, there does not exist an efficient al-
gorithm for structure vacuity. We show that deciding does not affect, is co-NP-
complete in the structure. Notice, that co-NP-complete in the structure is much
worse than PSPACE-complete in the formula. Indeed, the size of the formula
is negligible when compared to the size of the model. Co-NP-completeness of
structure vacuity renders it completely impractical.

Lemma 4.0.8 (Deciding does not affect,) For ¢ in LTL, a subformula v of ¢
and a structure M, the problem of deciding whether ) does not affect, o in M is
co-NP-complete with respect to the structure M.

Proof: We show membershipin co-NP. We consider the complementary problem
of deciding affect;. Consider aformulay and astructure M = (AP, S, Sy, R, L).
In order to check whether 1) affects, ¢ we have to model check Yz [¢) « z]
over M. Guessasubset S’ of S and set the structure assignment o(z) = S’. Now
model check theformulayp [¢) < x| over thestructure M' = (AP U {z}, S, So, R, L)
where L'(z) = S" and L' (p) = L(p) for p # x.

In Appendix C we giveareduction from 3CNF satisfiability to deciding affects;.
Given a3cNF formulad, we construct a structure M, and a (fixed) formula ¢ such
that M, |= ¢ and the proposition ¢ affects, ¢ in M, iff 0 is satisfiable. ]

The complexity of deciding affects; is unclear. As shown, in the case of sub-
formulas of pure polarity (or occurrences of subformulas) the algorithm of [KV 03]
iscorrect. We have not found either alower bound or an upper bound for deciding
affects; in the case of mixed polarity.
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Chapter 5
RELTL

5.1 Language Definition

The linear tempora logic RELTL extends LTL with a regular layer. We con-
sider LTL in a positive normal form (see section 2.2). Let AP be afinite set of
atomic propositions, and let B denote the set of all Boolean functions b : 247 —
{false, true} (in practice, members of 15 are expressed by Boolean expressions
over AP). Consider an infinite word 7 = 7y, 7m1,... € (247)“. For integers
j > i >0,and alanguage L C B*, we say that 7;,...,m;_; tightly satisfies
L, denoted 7, 4, j|= L, if thereisaword by - by ---bj_1_; € L such that for all
0 <k < j—i, wehavethat b (m;1x) = true. Notethat wheni = j, theinterval
T, ..., mj—1 isempty, inwhich caser,i, ji= Liff e € L.

Thelogic RELTL containstwo regular modalities: (e seq ) and (e triggers ¢),
where e isaregular expression over the alphabet 3, and ¢ isan RELTL formula.
Intuitively, (e seq ) assertsthat someinterval satisfying e isfollowed by a suffix
satisfying ¢, wheress (e triggers ) asserts that all intervals satisfying e are fol-
lowed by a suffix satisfying . Note that the seq and triggers connectives are
essentially the “diamond” and “box” modalities of PDL [FL79]. Formally, let =
be an infinite word over 247 then,?

e 7,i = (eseq ) if forsome; > i,wehaver,i, jE L(e) and 7, j E .

e 7,1 |= (etriggers ) if foral j >ist 7, i, jE L(e), wehaver, j = ¢.

Ynindustrial specification languages such as ForSpec and PSL the semanticsis slightly differ-
ent. There, it isrequired that the last letter of theinterval satisfying L(e) overlapsthefirst letter of
the suffix satisfying .
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5.2 Automata Construction

In the automata-theoretic approach to model checking, wetransate temporal logic
formulasto automata[VW94]. We now describe atranslation of RELTL formulas
to NGBW. The trandation can be viewed as a special case of the trandation of
ETL to NGBW [VW94] (seeaso [HT99]), but we need it as a preparation for our
handling of regular vacuity.

Theorem 5.2.1 Givenan RELTL formula ¢ over AP, we can construct an NGBW
A, over the alphabet 247 such that L(A,) = {r|r,0 = ¢} and thesize of A, is
exponential in .

Proof: The trandation of ¢ goes via an intermediate formula ¢ in the temporal
logic ALTL. The syntax of ALTL is identica to the one of RELTL, only that
regular expressions over B are replaced by nondeterministic finite word automata
(NFW, for short) over 247, The adjustment of the semantics is as expected: let
7 = Ty, 71, ... bean infinite path over 247, For integersi and j with0 < i < j,
and an NFW Z with alphabet 247, we say that 7r;, . . ., m;_; tightly satisfies L(Z),
denoted 7,4, j= L(Z), if m;, ..., mj—1 € L(Z). Then, the semantics of the seq
and triggers modalitiesare asin RELTL, with L(Z) replacing L(e).

A regular expression e over the alphabet B can be polynomially translated
to an equivalent NFW 7. with a single initial state [HU79]. To complete the
translation to ALTL, we need to adjust the constructed NFW to the al phabet 27
Giventhe NFW Z, = (B,Q, A, qo, W), let Z! = (248, Q, A, qo, W), where for
every ¢,¢ € Q, and a € 247, we havethat ¢ € A'(q, a) iff there exists b € B
suchthat ¢’ € A(q,b) and b(a) = true. It iseasy to seethat for al =, i, and j, we
have that 7,4, j|= L(e) iff m,4, jlI= L(Z.). Let ¢ be the ALTL formula obtained
from ¢ by replacing every regular expression e in ¢ by the NFW Z!. It follows
that for every word = and i > 0, we havethat 7, i |= ¢ iff i = 9.

It is left to show that ALTL formulas can be transated to NGBW. Let ¢
be an ALTL formula. For a state ¢ € ) of an NFW Z, we use Z? to de-
note Z with initia state ¢. Using this notation, ALTL formulas of the form
(Z! seq ) and (Z. triggers ¢) now become (Z.% seq ¢) and (Z.% triggers ¢).
The closure of ¢ is defined as follows: cl(v) = {£|¢ isasubformulaof ¢} U
{(Z7 seq €)|(Z7seq €) € cl(x) and ¢’ isastate of Z7} U {(Z7 triggers &)
(Zatriggers &) € cl(y) and ¢ isastateof Z9}. Let seq(y)) denote the set of
seq formulasin ci(y). A subset C' C cl(v) is consistent if the following hold:
Q) ifpeC,then—p & C, (2 if p; Ay € C,thenp; € C and g, € C, and (3)
if o1 Ve C,thenp, € Coryg, € C.
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Given 1, we define the NGBW A,, = (24755, Sy, F), where S C 2¢1¥) x
2:¢a(¥) js the set of all pairs (L, P,) such that L, is consistent, and P, C L, N
seq(1). Intuitively, when A, reads the point ; of = and is in state (L, P;), it
guesses that the suffix m;, m;.1, ... of © satisfies al the formulasin L. In addi-
tion, as explained below, the set P, keeps track of the seq formulasin L, whose
eventuality needsto be fulfilled. Accordingly, So = {(Ls,0) € S : ¢ € Lg}.

Before we describe the transition function §, let us explain how subformulas
of the form (Z7 seq ¢)) and (Z9 triggers 1)) are handled. In both subformulas,
something should happen after aninterval that tightly satisfies Z? isread. In order
to “know” when an interval m;, w41, ... m;—; tightly setisfies Z9, the NGBW A,
simulatesarunof Z7 onit. The seq operator requiresasingleinterval that tightly
satisfies Z7 and is followed by a suffix satisfying ). Accordingly, A,, smulatesa
single run, which it chooses nondeterministically. For the triggers operator, the
requirement is for every interval that tightly satisfies Z4. Accordingly, here A,
simulates all possible runs of Z49. Formally, 6 : (S x 24F) — 29 is defined as
follows: (L., P;) € §((Ls, Ps), a) iff the following conditions are satisfied:

e Foradlpe AP,ifpe L thenp € a,andif —p € L, thenp & a.

o If (nexty,) € L, thenp, € L.

o If (py until p3) € Ly, theneither o, € Ly, 0r ¢ € Ly and (p; until o) € L.

o If (¢ release ¢y) € Ly, theny, € Ly andeither o € Ly, or (¢ release ¢s) € L.
Let Z = (247 ,Q, A, qo, W) be an NFW.

o If (Z7seq 1) € L,, theneither (8) ¢ € W andy € L, or (b) (Z7 seq ) €
L, forsomeq' € A(q,a).

o If (Z9 triggers ¥) € L, then(a)if ¢ € W, thenv € L,, and (b) (Z7 triggers ) €
L, foral ¢ € A(g,a).

o If P, =0, then P, = L; N seq(y). Otherwise, for every (7% seq ¢) € P,
we have that either (a) ¢ € W and ¢ € Ly, or (b) (Z'9) seq ) € PN L,
for some ¢’ € A(q,a).

Finally, the generalized Biichi acceptance condition is used to impose the fulfill-
ment of until and seq eventualities. Thus, 7 = {®4,...,®,,, P, }, Where
for every (y; until ;) € cl(p), we have aset ®; = {(L,, P,) € Sh; € Ly or
(i until ¢;) ¢ L}, and in addition we have the set @, = {(Ls, Ps) € S|P;s =
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0}. Asin [VW94], we count on the fact that as long as a seq formula has not
reached its eventuality, then some of its derivations appear in the successor state.
In addition, whenever P, is empty, wefill it with new seq formulasthat need to be
fulfilled. Therefore, the membership of @, in 7 guarantees that the eventualities
of all seq formulas are fulfilled. The correctness of the construction is proved in
appendix A. (]

The exponential transation of RELTL formulas to NGBW implies a PSPACE
model -checking procedure for it [VW94]. A matching lower bound isimmediate
from LTL being afragment of RELTL [SC85]. Hence the following theorem.

Theorem 5.2.2 The model-checking problemfor RELTL is PSPACE-complete.

In Section 7, we e aborate on the construction described here in order to solve
the regular vacuity problem.
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Chapter 6

Regular Vacuity Definition

In section 3.1 we compared alternative definitions of vacuity detection and con-
cluded that vacuity detection with respect to trace semantics is preferable. How-
ever, we did not handle vacuity of regular expressions, and it is not clear, apriori,
when a regular expression affects an RELTL formula. In this chapter we follow
the semantic approach to vacuity, i.e. replace the regular expression by a univer-
sally quantified variable, but aso consider two aternative definitions to regular
vacuity.

6.1 A General Definition

Unlike a subformula ), which defines a set of pointsin a path 7 (those that satisfy
1), aregular expression e defines a set of intervals (that is, pairs of points) in 7
(thosethat tightly satisfy e). Accordingly, we are going to define “does not affect”
for regular expressions by means of universally quantified interval variables. For
that, we first define the temporal logic QRELTL, which extends RELTL by uni-
versal quantification over asingleinterval variable.

Recall that theregular expressionsof RELTL formulas are defined with respect
to the alphabet 5 of Boolean expressionsover AP. Let y be the interval variable,
and let ¢ bean RELTL formulawhoseregular expressions are defined with respect
to the alphabet B U {y}. Then (Vy)¢ and (Jy)y are QRELTL formulas. For
example, (Vy) globally [(y seq i) A (ab* triggers —))] isawell-formed RELTL
formula, whiley v [(Jy)(y seq )] is not.

We now define QRELTL semantics. Let I = {(7,5)|4,j € IN,j > i} beaset
of al (natural) intervals. Aninterval setisaset § C I. Theinterva variable y
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ranges over interval setsand is associated with 5. Thus, (i, j) € # meansthat y is
satisfied over an interval of length j — i that startsat 7. For auniversally quantified
formula, satisfaction is checked with respect to every interval set 5. For an exis-
tentially quantified formula, satisfaction is checked with respect to some interval
set 3. Wefirst define when aword # = ;... ;_; over 247 tightly satisfies, with
respect to /3, alanguage L over BU {y}. Intuitively, it means we can partition 7
to sub-intervals that together correspond to aword w in L. Note that since some
of the letters in w may be y, the sub-intervals may be of arbitrary (possibly 0)
length, corresponding to intervalsin 5. Formally, we have the following.

Definition 6.1.1 Consider a language L C (B U {y})*, an infinite path = over
24P 'indicesi and j withi < j, andaninterval set 3 C I. Wesaythat 7;, . . ST
and g3 tightly satisfies L, denoted 7, i, j, SEE L iff thereisw € L such that either
w=candi = j, or w = wy,wy,...,w, and there is a sequence of integers
1 =1 <l <---<l,.1 = jsuchthat for every 0 < k < n, the following
conditions hold:

o Ifw, € B, thenwy(m, ) = true and [ = [ + 1.
° Ifwk =, then (lk,lk+1) € ﬁ

For example, if AP = {p}, 8 = {(3,3),(3,4)}, and 7 = {{p},0}*, then
m,2,4,8|= {p -y} since p({p}) = true and (3,4) € [. Also, m,2,4,3|=
{p-y-—p},sincep({p}) = true, (3,3) € 3, and =p(0) = true. Note that when
the required w does not contain y, the definition isindependent of 5 and coincides
with tight satisfaction for languages over B.

The semantics of the RELTL subformulas of a QRELTL formula is defined
inductively asin RELTL, only with respect to an interval set 3. In particular, for
the seq and triggers modalities, we have

e 4,0 = (eseqy) iff for some j > i, we have 7,i,j,5|= L(e) and

T, 5,0 F .

e 7,1, = (etriggers ) iff for al j > ¢ st. m,4,j,3|= L(e) we have
™, 3,8 E ¢

In addition, for QRELTL formulas, we have
o 7,1 = (Vy)yiff for every interval set 5 C I, wehaver, i, 5 = ¢.

e 7,1 = (Jy)y iff there existsan interval set 5 C I, suchthat 7,4, 5 = .
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An infinite word 7 over 247 satisfies a QRELTL formula ¢, denoted 7 = ¢, if
7,0 = ¢. Amodel M satisfies ¢, denoted M = o, if al traces of M satisfy .

Definition 6.1.2 Consider a model M. Let ¢ be an RELTL formula that is satis-
fiedin M and let e be aregular expression appearing in . We say that e does not
affect p in M iff M = (Yy)p [e < y]. Otherwise, e affects ¢ in M. Finally, ¢ is
regularly vacuousin M if there exists a regular expression e that does not affect

@.

As an example for regular vacuity, consider the property ¢ = globally ((req -
true-true) triggers ack), which statesthat an ack isasserted exactly three cycles
after areq. When ¢ is satisfied in a M, one might conclude that all requests are
acknowledged, and with accurate timing. However, the property is also satisfied
inamodel M that keeps ack high at all times. Regular vacuity of ¢ with respect
to (req - true - true) will be detected by showing that the QRELTL formula
(Vy)p [(req - true - true) «— y] is aso satisfied in M. This can direct us to the
erroneous behavior.

In the previous example we considered regular vacuity with respect to the
entire regular expression. Sometimes, a vacuous pass can only be detected by
checking regular vacuity with respect to sub-regular expression. Consider the
property ¢ = globally ((req - (—ack)* - ack) triggers grant), which states that
when an ack is asserted sometime after req, then grant isasserted one cycle | ater.
Regular vacuity on the sub-regular expression ((—ack)* - ack) can detect that ack
isactually ignored, and that grant is asserted immediately after req and remains
high. On the other hand, regular vacuity would not be detected on the regular
expression e = (req - (—ack)* - ack), asit does affect . Thisis because ¢ does
not hold if e isreplaced by an interval (0, 7), in which req does not hold in model
M.

6.2 Alternative Definitions

In this section we describe two alternative definitions for “does not affect” and
hence also for regular vacuity. We argue that the definitions are weaker, in the
sense that a formula that is satisfied vacuously with respect to Definition 6.1.2,
is satisfied vacuously also with respect to the aternative definitions, but not vice
versa. On the other hand, as we discuss in Section 9, vacuous satisfaction with
respect to the aternative definitions is computationally easier to detect.
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Regular vacuity modulo duration Consider aregular expression e over B. We
say that e is of duration d, for d > 0, if all the wordsin L(e) are of length d.
For example, a - b - c is of duration 3. We say that e is of afixed duration if itis
of duration d for somed > 0. Lete = a-b-candlet ¢ = etriggers . The
property ¢ states that if the computation starts with the Boolean events a, b, and
¢, then ¢ should hold at time 3. Suppose now that in a model M, the formula
1) does not hold at times 0,1, and 2, and holds at later times. In this case, ¢
holds due to the duration of e, regardiess of the Boolean eventsin e. According
to Definition 6.1.2, e affects ¢ (e.g., if 5 = {(0,1)}). On the other hand, ¢ does
not affect o if we restrict the interval variable y to intervals of length 3. Thus, e
does not affect the truth of ¢ in A modulo its duration iff ¢ is still true when e
is replaced by an arbitrary interval of the same duration (provided e is of a fixed
duration). Formally, for a duration d, let I; = {(i,i + d) : i € IN} be the set
of all natura intervals of duration d. The logic duration-QRELTL is a variant of
QRELTL in which the quantification of y is parametrized by a duration d, and y
ranges over intervals of duration d. Thus, 7, i = (Vay)yp iff for every interval set
8 C I;,wehaver,i, 3 = ¢, and dualy for (3,y)e.

Definition 6.2.1 Consider a model M. Let ¢ be an RELTL formula that is satis-
fied in M and let e be a regular expression of duration d appearing in ¢. We say
that ¢ does not affect ¢ in M modulo duration iff M = (Vay)ple < y]. Finally,
w isregularly vacuousin M modulo duration if there exists a regular expression
e of a fixed duration that does not affect o modulo duration.

We note that instead of requiring e to have a fixed duration, one can restrict
attention to regular expressions of afinite set of durations (in which case e isre-
placed by intervals of the possible durations); in particular, regular expressions
of a bounded duration (in which case e is replaced by intervals shorter than the
bound). Aswe show in Section 9, vacuity detection for al these alternative defi-
nitionsis similar.

Regular vacuity modulo expression structure Consider againtheformulay =
e triggers ¢, fore = a - b - ¢. Theformula ¢ is equivalent to the LTL formula
¢ =a— X(b— X(c — Xv)). If wecheck the vacuity of the satisfaction of
¢’ inasystem M, we check, for each of the subformulas a, b, and ¢ whether they
affect the satisfaction of ’. For that, [AFF"03] uses universal monadic quantifi-
cation. In regular vacuity modulo expression structure we do something similar
— instead of replacing the whole regular expression with a universally quantified
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dyadic variable, we replace each of the Boolean functions in B that appear in
the expression by a universally quantified monadic variable (or, equivalently, by
a dyadic variable ranging over intervals of duration 1). Thus, in our example, ¢
passes vacuously in the system M described above, as neither a, b, nor ¢ affect its
satisfaction. Formally, we have the following?.

Definition 6.2.2 Consider a model M. Let o be an RELTL formula that is satis-
fied in M and let e be a regular expression appearing in . We say that e does
not affect ¢ in M modulo expression structure iff for all b € B that appear in e,
we havethat M = (V1y)e[b < y]. Finally, ¢ isregularly vacuousin A modulo
expression structure if there exists a regular expression e that does not affect ¢
modul 0 expression structure.

Note that since vacuity modulo duration/structure of expression replaces the
universal quantification on all intervals by a universal quantification over a sub-
set of them, Definitions 6.2.1 and 6.2.2 are weaker than Definition 6.1.2, in the
sense that more regular expressions do not affect ¢ in M according to Defini-
tions6.2.1 and 6.2.2. Actually, these three definitionsform a hierarchy: avacuous
passw.r.t regular vacuity impliesavacuous passw.r.t regular vacuity modul o dura-
tion, which implies a vacuous pass w.r.t regular vacuity modulo expression struc-
ture. The reverse implications do not hold. For example, suppose (p — next ),
(p — next nextv), (¢ — nexty) and (¢ — next next) always hold in
model M. That is, v holds at the next two cycles after p or q. We check if
((pVaq) - (pVq) dfectsthe formulap = ((pV q) - (p V q)) triggers ¢». As
M E (Va)((zVq)-(xVq)) triggers ¢, and M  (Va)((pVar)-(pva)) triggers ¢,
we conclude that both p and ¢ do not affect ¢ in M. Therefore ((p VvV q) - (p V q))
does not affect v in M, and o passes vacuously in M w.r.t regular vacuity modulo
expression structure. On the other hand, M [~ (z - true) triggers « (assuming
thereis at least one trace in M in which  does not hold without being triggered
by p or ¢). Therefore ((pVq)-(pV q)) affects in M, and ¢ passes non vacuously
w.r.t regular vacuity modulo duration. It isdifficult to make at this point definitive
statements about the overall usability of the weaker definitions, as more industrial
experience is needed.

INote that Definition 6.2.2 follows our semantic approach. A syntactic approach, as the one
taken in [BBERO1, KV03], would result in a different definition, where Boolean functions are
replaced by different Boolean functions.
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Chapter 7

Algorithm and Complexity

In this chapter we study the complexity of the regular-vacuity problem. Asdis-
cussed in Chapter 6, vacuity detection can be reduced to model checking of a
QRELTL formulaof theform (Vy ). We describe an automata-based EXPSPACE
solution to the latter problem, and conclude that regular vacuity isin EXPSPACE.
Recall that we saw in chapter 4 that vacuity detection for LTL is not harder than
LTL model checking and can be solved in PSPACE, and saw in chapter 5 that
RELTL model checking is in PSPACE. Appendix D shows that regular vacu-
ity is NEXPTIME-hard. Thus, while the precise complexity of regular vacuity
is open, the lower bound indicates that an exponential overhead on top of the
complexity of RELTL model checking seems inevitable. We describe a model-
checking algorithm for QRELTL formulas of the form (Vy)y. Recal that in the
automata-theoretic approach to LTL model checking, one constructs, given an
LTL formula ¢, an automaton A, that accepts exactly all paths that do not sat-
isfy ¢. Model checking is then reduced to the emptiness of the product of A,
with the model M [VW94]. For a QRELTL formula (Vy)e, we need to con-
struct an automaton A s, which accepts all paths that do not satisfy (Vy)e.
Since we considered RELTL formulas in a positive normal form, the construc-
tion of -y has to propagate the negation inward to (’s atomic propositions, using
De-Morgan laws and dualities. In particular, —(e seq ¢) = (e triggers —) and
—(e triggers ¢) = (e seq —p). Itiseasy to see that the length of — in positive
normal form islinear in the length of .

Theorem 7.0.3 Given an existential QRELTL formula (Jy) over AP, we can
construct an NGBW A, over the alphabet 247 such that L(A,) = {x|r,0 |
(Jy)¢}, and the size of A, is doubly exponential in ¢.
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Proof: Similarly to the proof of Theorem 5.2.1, we first tranglate the formula
(Jy) to the intermediate formula (3y )« in the temporal logic QALTL. The syn-
tax of QALTL isidentical to the one of QRELTL, only that regular expressions
over BU {y} are replaced by NFW over 247 U {y}. The closure of QALTL
formulas is defined similarly to the closure of ALTL formulas. The adjustment
of the semantics is similar to the adjustment of RELTL to ALTL described in
Chapter 5. In particular, the adjustment of Definition 6.1.1 to languages over the
aphabet 247 U {y} replaces the condition “if w, € B then wy(m,) = true
and [, = I, + 1" there by the condition “if w, € 247, then w, = m, and
lk:—i—l = +1 here.

Given a QRELTL formula (3y)¢, its equivalent QALTL formula (3y)1 is
obtained by replacing every regular expression e in (Jy)¢ by Z!, where Z! isas
defined in Chapter 5. Note that the alphabet of 7! is 247 U {y}. It is easy to see
that for all , 4, j, and 3, we havethat , i, j, 5= L(e) iff w4, j, BE L(Z!). Thus,
for every word 7w and i > 0, we havethat 7, i = (3y)p iff m,i = (Jy)v.

The construction of the NGBW A, from (Jy)1 is based on the construction
presented in Chapter 5. As there, when A, reads 7; and isin state (L, P;), it
guesses that the suffix m;, m;, 1 . . . satisfies all the subformulasin L,. Since, how-
ever, here A, needs to simulate NFWs with transitions labelled by the interval
variable y, the construction here is more complicated. While atransition labelled
by aletter in 247 corresponds to reading the current letter r;, atransitionslabelled
by y corresponds to reading an interval ;, ..., m;_; in 3. Recall that the seman-
ticsof QALTL issuchthat (Jy)v issatisfied in 7 if thereisan interval set 5 C [
for which 7, 5 satisfies ¢). Note that triggers formulas are trivially satisfied for an
empty [, whereas seq formulas require  to contain some intervals. Assume that
A, isin point ¢ of 7, it simulates a transition labelled y in an NFW that corre-
sponds to a seq formulain L, and it guesses that 3 contains some interval (i, j).
Then, A, hasto make sure that all the NFWsthat correspond to triggers formulas
in L, and that have a transition labelled y, would complete this transition when
point ;7 isreached. For that, L, hasto be associated with aset of triggers formulas.

Formally, for aset L, C cl(v), wedefine wait(L,) = {(Z¢ triggers &)|(Z triggers ¢) €
Lsand ¢’ € A(q,y)}. Intuitively, wait(Ly) isthe set of triggers formulas that are
waiting for an interval in 3 to end. Once the interval ends, as would be enforced
by a seq formula, the members of wait(L) should hold. Let seq(v) and trig(1))
be the sets of seq and triggers formulasin cl(v), respectively. An obligation for
Yisaparo € seq(1)) x 2"9W) Let obl(v)) be the set of all the obligationsfor ).
Now, to formalize the intuition above, assumethat A, isin point ¢ and it simulates
atransition labelled y inthe NFW Z for some (Z9 seq &) € L,. Then, A, creates
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the obligation o = ((Z9 seq &), wait(L)) and propagates it until the end of the
interval.

The NGBW A, = (247,54, Sy, F), where the set of states S is the set of
all pairs (Ls, Ps) such that L, is a consistent set of formulas and of obligations,
and P; C L, N (seq(p) U obl(yp)). Note that the size of A, is doubly exponential
in p. The set of initial statesis Sy = {(Ls, P,)|v € Ls, P, = 0}. The accep-
tance condition is used to impose the fulfillment of until and seq eventualities,
and are similar to the construction is Chapter 5; thus 7 = {®4,...,®,,, Py}
where ®; = {s € S|(¢1 until p3), 92 € L or (o1 until ) & Ly}, and &y, =
{s € S|P, = 0}. We define the transition relation ¢ as the set of all triples
((Ls, Ps),a, (L, P;)) that satisfy the following conditions. Note that some of
these conditions also impose restrictions on the states.

=

. Fordlpe AP,ifpe L, thenp € a.
Foradlpe AP,if -p e L,thenp € a.

If (nexty,) € L, then o, € L.

> w D

If (o1 until o) € Ly, then either ¢, € Ly, or o1 € L, and (o7 until @) €
L;.

5. If (p; release ;) € Ly, thenp, € L andeither o, € L, or (¢ release ;) €
L.

6. If (Z9seq ) € L, then at least one of the following holds:

@ geWand¢ € L.
(b) (Z7 seq €) € L, for someq’ € A(q, a).

(©) A(q,y) # 0ando = ((Z%seq €), wait(L,)) € L. In this case we
say that thereis ay-transition from (79 seq &) to o in L.

If conditions a or b hold, we say that (Z?seq &) is strong in L, W.r.t.
((Lsa Ps>7 a, (Lta Pt))

7. If (Z71triggers &) € Ly, then the following holds:

@ If ge W,then¢ € L,.
(b) (27 triggers €) € L, foral ¢’ € A(q, a).
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8.

10.

11.
12.

13.

For every (Z9seq &) € P, at least one of the following holds:

@ ge Wand¢ € L,.

(b) (27 seq¢) € P,n L, for someq' € A(q, a).

(© A(q,y) # 0 and o = ((Z%seq &), wait(L,)) € P;. In this case we
say that thereis ay-transition from (Z9 seq &) too in Ps.

If conditions a or b hold, we say that (7% seq &) is strong in P, w.r.t.
((L87 PS)7 a, (Lta Pt))

Ifo=((Z7seq¢),Y) € L, then at least one of the following holds:

(@) For someq € A(q,y), we have that (79 seq¢) € Lyand Y C L,.
In this case we say that there isa y-transition from o to (24 seq ¢) in
L.

(b) o€ L.
If condition b holds, we say that o isstrongin L, w.r.t. ((Ls, Ps), a, (L, P)).
Ifo=((Z%seq¢),T) € P then at least one of the following holds:

(8) For some ¢ € A(q,y), we havethat (Z9 seq ¢) € P,and Y C L,.
In this case we say that there is ay-transition from o to (Z9 seq &) in
P,.

(b) o€ P.
If condition b holds, we say that o isstrongin P, w.r.t. ((Ls, Ps), a, (L, P,)).
If P, =0,then P, = L; N (seq(yp) U obl).

If wait(Ls) C L, then for every element in L, N (seq(p) U obl(p)) there
exists a path (possibly of length 0) of y transitions to a strong element w.r.t.
((L87 PS)7 a, (Lta Pt))

If wait(Ls) C Lg, then for every element in P, N (seq(p) U obl(p)) there
exists a path (possibly of length 0) of y transitions to a strong element w.r.t.
((L87 PS)7 a, (Lta Pt))
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We now explain the role of conditions 12 and 13 of §. As explained above, for
every formula (Z9 seq ¢) that should hold at point ¢, the NGBW A, simulates a
run of Z¢ that should eventually accept an interval of 7. Since Z? has transitions
labelled by vy, it is possible for Z7 to loop forever in (L;, P;) (when (i,7) € ().
Conditions 12 and 13 force the run of Z9 to eventually reach an accepting state,
and prevent such an infinite loop. The correctness of the construction isproved in
Appendix B. (]

Given amodel M and the NGBW A, for (Jy)¢, the emptiness of their inter-
section can be tested in time polynomial or in space polylogarithmic in the sizes
of M and A, (note that M and A, can be generated on the fly) [VW94]. A path
in the intersection of M and A, is awitness that e affects ¢. It follows that the
problem of deciding whether aregular expression e affects ¢ in M can be solved
in EXPSPACE. Since the number of regular expressions appearing in ¢ is lin-
ear in the length of ¢, we can conclude with the following upper bound to the
regular-vacuity problem.

Theorem 7.0.4 The regular-vacuity problem for RELTL can be solved in EX-
PSPACE.

In Section 9, we analyze the complexity of regular vacuity more carefully and
show that the computational bottle-neck is the length of regular expressions ap-
pearing in triggers formulas in . We also describe a fragment of RELTL for
which regular vacuity can be solved in PSPACE.

Alternating Automata Alternating Biichi automata have the same expressive
power as non-deterministic Buichi automata. With alternating Biichi automata, the
first construction closely resemblesthe formula, and the automatais exponentially
more succinct than a corresponding non-deterministic Buchi automata. At first,
we searched for a construction based on alternating Buchi automata, but it was
unclear how to synchronize relevant seq and triggers formulas. While in the
construction above an obligation can relate seq and triggers in a single state,
aternating Buchi automata have separate states for the seq and triggers sub-
formulas. The question whether asimilar construction can be done for alternating
Biichi automata remains open.
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Part |11

Pragmatic Aspects
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Chapter 8

Subfor mula Vacuity in Practice

In this chapter we give some pragmatic aspects of vacuity detection. We discuss
the different options for reporting vacuity. While previous works consider only
giving ayes / no answer, we advocate giving the users a simplified formula (see
below) aswell so that they can best understand why the formula passes vacuously.
We aso check what the relation is between subformulas and occurrences of sub-
formulas, and conclude that in order to get the most thorough vacuity detection
both should be accounted for. Guided by these two observations, we show how
we can achieve the most thorough vacuity detection while reducing the number
of model-checker runs. Finally, we report on our experience using vacuity detec-
tion in an industrial setting. All the work in this chapter relates to trace vacuity.
Therefore, we remove the subscript describing the type of affect.

8.1 Display of Results

When applying vacuity detection in anindustrial setting there are two options. We
can either give the user a simple yes/no answer, or we can accompany a positive
answer (vacuity) with asimplified formula. Where ¢) does not affect ¢ we supply
[ — x] (or ¢ [t «— L] where ¢ is of pure polarity) as our explanation to the
vacuity of ». When we replace a subformula by a constant, we propagate the
constants upwards. For example, if in subformulad = ¥, A 1y we replace ¢, by
false, then # becomes false and we continue propagating this value above 6.
Previous works were interested only in providing a ssmple yes / no answer.
That is, whether the property is vacuous or not. In this case it suffices to check
whether the propositions affect the formula [BBER97, KV03]. Suppose that v
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active:=en A—in; rdy_active:= — rdy_out A— active ;
bsy_active := — bsy_out A— active;
active_inactive := rdy_active A— bsy active ;
two_consecutive := G|[(reset A active_inactive ) — X —active_inactive];

Figure 8.1: Vacuous pass

does not affect ¢. It follows that if ¢’ is a subformula of v then v’ does not
affect o aswell. Inview of the above, in order to get ayes/ no answer only the
minimal subformulas of ¢ (i.e. the atomic propositions that appear in ) have to
be checked. In contrast, when the goal is to give the user feedback on the source
of detected vacuity, it is often more useful to check non-minimal subformulas.

Consider for example the formula two_consecutive in Figure 8.1. Thisis an
example of a formula that passed vacuously in one of the designs we checked.
The reason for the vacuous passis that one of the signalsin active_inactive was set
to false by a wrong environmental assumption. The following is the simplified
formula showing that the second occurrence of active_inactive does not affect
two_consecutive.

two_consecutive [active inactive, < 1| = globally —(reset A active inactive)

From this ssimplified formula it is straightforward to understand what is wrong
with the formula. The ssmplified formula associated with the occurrence of the
proposition en under the second occurrence of rdy_active (after constant propaga-
tion) isasfollows. Notethat thisoccurrence of en occurs positively in two_consecutive.

two_consecutive[en, < L] = globally [(resetAactive_inactive) — X —(—rdy_outA—bsy_active)]

Clearly, this report is much less legible. This formula has very little connection
to the original formula. Thus, it is preferable to check vacuity of non-minimal
subformulas and subformula occurrences.

If we consider the formula as represented by a tree (rather than DAG — di-
rected acyclic graph) then the number of leaves (propositions) is proportional to
the number of nodes (subformulas). We apply our algorithm from top to bottom.
We check whether the maximal subformulas affect the formula. If a subformula
does not affect, there is no need to continue checking below it. If a subformula
does affect, we continue and check its subformulas. In the worst case, when all
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the subformulas affect the formula, the number of model checker runs in order
to give the most intuitive counter example is double the size of the minimal set
(number of propositions). The yes/ no view vs. the intuitive simplified formula
view offer a clear tradeoff between minimal number of model checker runs (in
the worst case) and giving the user the most helpful information. We believe that
the user should be given the most comprehensive simplified formula. In our im-
plementation we check whether all subformulas and occurrences of subformulas
affect the formula.

8.2 Occurrencesvs. Subformulas

In chapter 4 we introduced an algorithm that can determine if a subformula with
multiple occurrences affects a formula. Indeed, in most cases it makes sense to
check if a subformula affects aformula, asin pratice, all occurrences of the sub-
formula will have the same truth value at a given point in time. Furthermore,
sometimes an errornous behavior can only be detected when all subformula oc-
currences are replaced simultaneously. For example, let ¢ = globally (p — p).
Intuitively, p does not affect ¢ since every expression (or variable) impliesitself.
Indeed, according to all definitions p does not affect ¢, regardless of the model.
However, every occurrence of p may affect o, as both globally p = ¢ [p; «— L]
and globally =p = ¢ [p, «— 1] may fail (here, p; denotes the ith occurrence of
p).

On the other hand, an errournous behavior might be masked by one (or more)
occurences of the subformula. Consider the formula = p A globally (¢ — p).
Assume ¢ is aways false in model M because of a buggy assumption. Clearly,
the second occurrence of p does not affect ¢ in M and a vacuous trigger can be
detected. However, the subformula p does affect ¢ in M because of the first oc-
currence. Every assignment that gives = the value false at time 0 would falsify the
formulay [p < x]. Thusin order to catch the bug, we would have to check vacu-
ity with respect to each occurrence separately. Recall the formulatwo_consecutive
in Figure 8.1. The vacuous passin this case is only with respect to occurrences
and not to subformulas.

We believethat athorough vacuity-detection algorithm should detect both sub-
formulas and occurrences that do not affect the examined formula. It is up to the
user to decide which vacuity alertsto ignore.
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8.3 Minimizing the Number of Checks

As explained above we choose to check whether al subformulas and all occur-
rences of subformulas affect the formula. Applying this policy in practice may
result in many runs of the model checker and may be impractical. In particu-
lar, when the formulais represented as a DAG, checking all occurrences involves
turning the DAG into atree. We show that we can reduce the number of subfor-
mulas and occurrences for which we check vacuity by analyzing the structure of
the formula syntactically.

As mentioned before, if ¢’ is asubformula of ¢» and 1) does not affect ¢ then
also v’ does not affect . Hence, once we know that ) does not affect o, there
is no point in checking subformulas of . If ¢ affects ¢ we have to check also
the subformulas of ). We show that in some cases for ¢/’ a subformula of 1) we
have ¢’ affects  iff ¢ affects p. In these cases there is no need to check direct
subformulas of ) also when v affects ¢.

Suppose the formula ¢ is satisfied in M. Consider an occurrence 6, of the
subformula = 1, A 15 of ©. We show that if 6, is of positive polarity then ),
affects o iff 0, affectsp for: = 1, 2. Asmentioned, ¢, does not affect  implies;
does not affect ¢ for i = 1,2. Suppose 0, affects p. Then M [~ ¢ [0, < false].
However, ¢ [¢; < false] = ¢ [0, « false]. It followsthat M = ¢ [¢; < false]
and that ¢; affects ¢. In the case that ¢, is of negative (or mixed) polarity the
above argument isincorrect. Consider the formula ¢ = —(; A 15) and a model
where v); never holds. It is straightforward to see that 1), A v affects ¢ while iy
does not affect ¢.

Similarly consider the subformula# = globally ¢, and the occurrence 6, of 0
of negative polarity. We show that 6, affects o iff ¢, affects p. Suppose 6, affects
. Then M £ ¢ [0 <+ true]. Asbefore ¢ [, — true] = ¢ [i); < true|. Sup-
pose that ¢, is of mixed polarity and that 0, affects . Then M £ Vo [0 «— ).
However, we can not prove that M - Vayp [y < z|. Thisistrue only if there
exists a computation = of M, an assignment « such that for some: > 0 we have
alz) ={i,...} and 1,0, & ¢ [0 — z].

From the above discussion it follows that we can analyze the form of the for-
mula ¢ syntactically and identify occurrences ¢, such that 6; affects  iff the
subformulas of 0, affect p. In these cases it is sufficient to model check the for-
mulaVzy [0, < x]. Below the immediate subformulas of 6; we have to continue
with the same analysis. For example, if § = (¢ V 15) A (13 A 1)4) isof positive
polarity and 6 affects » we can ignore (i1 V 1), (13 A 1), 13, and 1. We do
have to check ¢, and . In Table 8.1 we list the operators under which we can
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| Operator | Polarity | Operands |

A + al
\Y - al
- pure/ mixed all
X pure / mixed al

U pure second
globally pure al
eventually pure al

Table 8.1: Operators for which checks can be avoided

apply such elimination. In the polarity column we list the polarities under which
the elimination scheme applies to the operator. In the operands column we list
the operands that we do not have to check. We stress that below the immediate
operands we have to continue applying the analysis.

The analysis that |eads to the above table is quite smple. Using a richer set
of operators one must use similar reasoning to extend the table. Notice that we
distinguish between pure polarity and mixed polarity. As the above table is true
for occurrences, mixed polarity is only introduced in cases that the specification
language includes operators with no polarity (e.g. ®, «).

8.4 Implementation and Methodology

We implemented the above algorithmsin Intel’s formal verification environment.
We use the language ForSpec [AFF*02] with the BDD-based model checker Fore-
cast [FKZ100] and the SAT-based bounded model checker Thunder [CFF+01].
We enable the users to decide whether they want thorough vacuity detection or
just to specify which subformulas / occurrences should be checked. In the case of
thorough vacuity detection, for every subformulaand every occurrence (according
to the elimination scheme above) we create one witness formula. The vacuity al-
gorithm amounts to model checking each of the witnesses. Both model checkers
are equipped with a mechanism that allows model checking of many properties
simultaneously.

The current methodology of using vacuity is applying thorough vacuity on
every specification. The users prove that the property holds in the model; then,
vacuity of the formulais checked. If applying thorough vacuity is not possible
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(due to capacity problems), the users try to identify the important subformulas
and check these subformulas manually. In our experience, vacuity checks proved
to be effective mostly when the pruning and assumptions used in order to enable
model checking removed some important part of the model, thus rendering the
specification vacuously true. However, vacuity detection also revealed RTL bugs
and faulty specifications.

One areawhere we applied formal verification was a complex power manage-
ment finite-state-machine (FSM). One set of properties verified correct transition
from state to state and included assertions of the following type:

assert ((state = s;) A cond) — next state = s,

Vacuity detection reported that several such assertions passed vacuously and that
the right-hand-side (the next state) does not affect. In one case, the vacuous pass
resulted from an RTL bug which prevented the condition from happening. There-
fore, there was no transition from one specific state to another. Another vacuous
pass revealed a typo in one of the assumptions, which prevented the FSM from
reaching some states. The validator wrote:

assume (state = s;) — next state = (s; V sy)
instead of:
assume (state = s;) — next ((state = s;) V (state = si))

The erroneous code performed a bit-wise or between s; and s;, and as s; was
encoded as binary 111, there were no transitions from s; to sy.
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Chapter 9

Regular Vacuity in Practice

The results in Section 7 suggest that, in practice, one may need to work with
weaker definitions of vacuity or restrict attention to specifications in which the
usage of regular expressions is constrained. In this section we show that under
certain polarity constraints, regular vacuity can be reduced to standard model
checking. In addition we show that even without polarity constraints, detection
of the weaker definitions of vacuity, presented in Section 6.2, is also not harder
than standard model checking.

9.1 Specificationsof Pure Polarity

Examining industrial examples showsthat in practice the number of trigger formu-
lasthat share aregular expression with aseq formulaisquite small. One of the few
examples that use both describes a clock tick pattern and is expressed by the for-
mulatick_pattern = (e seq true) A globally (e triggers (e seq true)), where
e definesthe clock ratio, e.g. e = clock_low - clock_low - clock_high - clock _high.

As shown in the previous section, the general case of regular vacuity adds an
exponentia blow-up on top of the complexity of RELTL model checking. A care-
ful analysis of the state space of A,, shows that with every set L, of formulas, we
associate obligations that are relevant to L,. Thus, if L, contains no seq formula
with an NFW that reads atransition labelled i, then its obligation is empty. Other-
wise, wait(Ls) containsonly trigger formulas that appear in L, and whose NFWs
read atransition labelled y. In particular, in the special case where seq and trigger
subformulas do not share regular expressions, we have|obl(y)| = 0. For thistype
of specifications, where all regular expressions have a pure polarity, regular vacu-
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ity is much easier. Rather than analyzing the structure of A, in this special case,
we describe here a direct algorithm for its regular-vacuity problem.

We first define pure polarity for regular expression. As formulas in RELTL
are in positive normal form, polarity of a regular expression e is not defined by
number of negations, but rather by the operator applied to e. Formally, an occur-
rence of aregular expression e is of positive polarity in ¢ if it is on the left hand
side of a seq modality, and of negative polarity if it is on the left hand side of a
triggers modality. The polarity of aregular expression is defined by the polarity
of its occurrences as follows. A regular expression e is of positive polarity if all
occurrences of e in ¢ are of positive polarity, of negative polarity if all occur-
rences of e in ¢ are of negative polarity, of pure polarity if it is either of positive
or negative polarity, and of mixed polarity if some occurrences of e in ¢ are of
positive polarity and some are of negative polarity.

Definition 9.1.1 Given a formula ¢ and a regular expression of pure polarity e,
we denote by ¢ [e «+ L] the formula obtained from ¢ by replacing e by true*, if
e is of negative polarity, and by false if e is of positive polarity.

We now show that for e with pure polarity in ¢, checking whether e effects ¢, can
be reduced to RELTL model checking:

Theorem 9.1.2 Consider a model M, RELTL formula ¢, and regular expression
e of pure polarity. Then, M = (Vy)p e < y] iff M = ¢ [e «— L].

Proof: If M = Vyple < y| then M, |= ¢[e <« y] for every assignment (3,
including 3y = 0 and 3; = I (the set of all intervals). M, By = ¢ [e < y] implies
M = ¢ |e < false| since no interval satisfies false. M, 3; | ¢[e < y] implies
M E ple < true*| since every interval satisfies true*. Thus M = ¢ [e — L].

The other direction is proved by induction on the structure of ¢ (given in
positive normal form). Asregular expression are only used on the left hand side of
seq and triggers , the base case and all operators apart from seq and triggers
areimmediate.

Let p = Eseq& where F isa RELTL regular expression and e is a sub-
regular expression of . The polarity of e is positive in ¢ and therefore | =
false. If M, 7,1 = ¢ [e « false] then there existssome j > i st. M, 7,1, j|=
Ele « false]and M, m, j |= €. Letby, by, ..., b;—1_; beawordin L(E [e < false])
st. M,m k |= by_; fordl i < k < j. Clearly b,_; # false. Thisimplies that
M, m,i,jE FE regardlessof e. Thus M, 7,1 = Yyp [e «— y].

Let ¢ = E'triggers ¢ where F is a RELTL regular expression and ¢ is a
sub-regular expression of E. The polarity of e is negative in ¢ and therefore
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1 = true*. Assumethat M, i [~ VyFE [e < y| triggers £. Thisimplies that
M,m,i = JyE e — y|] seq =&, Thus M, i, j, 5= F e < y| for some j > ¢
and interval set 5, and M, 7, j = —¢. By the definition of tight satisfaction there
existsaword w = by, by, . .., b, over APU{y} st. M, .1, j, BE w. Furthermore,
if b, € AP,0 < m < n,thenthereexistsak st.i <k <jand M, 7, k, k+ 1E
by,. Otherwise b, = y and M, 7, k, k'|= b, forsomek’ st. i < k < k' < j.
We now show that there existssaword w’ € L(E [e « true*]) st. M, m, i, jJE w'.
The word v’ is equal to w except that every b,, = y isreplaced by &, — k,,
concatenated true (where M, m, k,,, k! |= b,,). Thisimplies that M, i, j|=
Ele «— true*]. Since M, 7, j = —~¢ wehave M, r,i = FE [e < true*] seq —¢,
whichimplies M, 7, i [= E [e < true*] triggers &. [

Since the model-checking problem for RELTL can be solved in PSPACE-
complete, it follows that the regular-vacuity problem for the fragment of RELTL
in which all regular expressions are of pure polarity is PSPACE-compl ete.

9.2 Weaker Definitions of Regular Vacuity

In Section 6.2, we suggested two alternative definitions for regular vacuity. We
now show that vacuity detection according to these definitionsisin PSPACE — not
harder than RELTL model checking.

We first show that the dyadic quantification in duration-QRELTL can be re-
duced to amonadic one. Intuitively, since the quantification in duration-QRELTL
ranges over intervals of afixed and known duration, it can be replaced by a quan-
tification over the points where intervals start. Formally, we have the following:

Lemma9.2.1 Consider a system M, an RELTL formula ¢, a regular expression
e appearing in ¢, and d > 0. Then, M = (Vqy)ple <« y| iff M = (Vz)ple —
(z - true?=!)], where x is a monadic variable.

Universal quantification of monadic variables does not make model checking
harder: checking whether M |= (V)¢ can be reduced to checking whether there
isacomputation of M that satisfies (3z)—p. Asin chapter 4, when we construct
theintersection of M withthe NGBW for —y, the valuesfor = can be guessed, and
the algorithm coincides with the one for RELTL model checking. Since detection
of vacuity modulo duration and modulo expression structure are both reduced to
duration-QRELTL model checking, Theorem 5.2.2 implies the following.
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Theorem 9.2.2 The problemof detecting regular vacuity modulo duration or mod-
ulo expression structure is PSPACE-compl ete.

We note that when the formulais of apure polarity, no quantification is needed,
and e may be replaced, in the case of vacuity modulo duration, by false or true
according its polarity. Likewise, in the case of vacuity modulo expression struc-
ture, the Boolean formulasin e may be replaced by false or true.
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Chapter 10

Conclusion

In this work we investigated vacuity detection with respect to subformulas with
multiple occurrences and with respect to regular expressions. We were motivated
by the need to extend vacuity detection to industrial-strength property-specification
languages such as ForSpec [AFFT02] and Sugar [BBE'01], whichissignificantly
richer syntactically and semantically than LTL.

The generality of our framework required us to re-examine the basic intuition
underlying the concept of vacuity, which until now has been defined as sensitivity
with respect to syntactic perturbation. We studied sensitivity with respect to se-
mantic perturbation, which we modeled by universal quantification. We showed
that with respect to subformula vacuity, thisyields a hierarchy of vacuity notions.
We argued that the right notion isthat of vacuity defined with respect to traces and
described an algorithm for vacuity detection.

We then focused on RELTL, which is the extension of LTL with a regular
layer. We defined the notion of “does not affect,” for regular expressionsin terms
of universal dyadic quantification. We showed that regular vacuity is decidable,
but involves an exponential blow-up (in addition to the standard exponential blow-
up for LTL model checking). We suggested two alternative definitions for regular
vacuity and showed that with respect to these definitions, even for formulas that
do not satisfy the polarity constraints, vacuity detection can be reduced to standard
model checking, which makes them of practical interest. The two definitions are
weaker than our general definition, in the sense that a vacuous pass according to
them may not be considered vacuous according to the general definition.

Finally, we discussed pragmatic aspects of vacuity detection, showed how the
number of checks can be minimized, and how vacuity results should be displayed
to the user. We presented examples from industrial designs where vacuity detec-
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tion revealed both RTL bugs and erroneous assumptions on the environment. As
for regular vacuity, it is difficult to make at this point definitive statements about
the overall usability of the weaker definitions, as more industrial experience with
them is needed.
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Appendix A

The Correctness of the Construction
for ALTL

Theorem A.0.3 Let ¢ be an ALTL formula and let A, be its automaton. Then,
L(Ap) = L(y).

First Direction: L(¢) C L(A,)

Definition A.0.4 Let 7 be an infinite word, i an index, and (77 seq &) an ALTL
formula, st. 7,7 = (Z7seq&). We define the minimum satisfying index of
7,1, (27 seq &) denoted msi(w, i, (Z7seq )) as the minimal index ;7 > ¢ such
that 7,7, jE Z%9and 7, j | €.

The minimal satisfying index determines the first index where the seq formula
could be released from its obligation.

LemmaA.0.5 Let 7 bein L(y), thenm € L(A,).

Proof: We construct afair run p = (Lo, Fy), (L1, P), ... of A, on 7. For every
i > 0 we define L; to be a subset of cl(y) sit. asubformula ¢’ of cl(y) isin L;
iff 7,4, ¢'. We define P, to be a subset of seq(p) N L;. The subsets P; are
inductively defined. Fori = 0, P, = (). For ¢ > 0 we distinguish between two
Ccases:

1. If P,y =0, then P, = L; N seq(p).
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2. Otherwise, P; containsaformula (Z¢ seq &) iff itisin L, and there existsa
formula(Z9 seq €)in P,_; st. msi(n,i—1, (2 seq €)) = msi(r, i, (Z7 seq&)) >
iand g isin A(g, m;—1).

We need to prove that p isafair run of A, on7. Since 7,0 = ¢, we have that
Ly contains ¢. The definition of p impliesthat Py = 0, thus, (Lo, Py) isan initial
state. The following two propositions complete the proof of LemmaA.0.5.

Proposition A.0.6 For every i, we have that (L;, P;) isin§((L;_1, P—1), ;).
Proof: We show that al the conditions of ¢ are satisfied:

1. Fordlpe AP,ifpe L, i, thenp € m;_;.

2. Fordlpe AP,if -pe L,_1thenp & m;_1

3. If(nexty,) € L;_1,thensincen,i—1 = ( next ;) wehavethat 7, i = ¢,
andthusp, € L;.

4. If (1 until py) € L;_ theneither 7,7 — 1 |= ¢y, inwhich case g, € L;_1,
orm,i—1F ¢ andmi = (@ until pg) in which case ¢, € L;_; and
(1 until q) € Lj.

5. If (¢ release ¢3) € L,y thenm,i—1 |= ¢y andthusp, € L, and either
m,i— 1 prinwhichcasep, € L;_1,0r7,i = (¢ release y,) inwhich
case (p release o) € L;.

6. If (Z9seq &) € L,;_1, then we distinguish between two cases:

@ lfee L(Z9)andm,i —1 &, theng e Wand{isin L;_;.

(b) Otherwise, j = msi(m,i — 1,Z9seq &) > i. Since there exists an
accepting runof Z? onm;_y,7;,...,mj—y and r, j |= &, for the second
state ¢’ of the run, we havethat ¢ € A(q, m;—q) and 7, 41, ..., i1
isin L(Z7). Thisimpliesthat 7, i |= (29 seq ¢) and that msi(7, i, Z9 seq €) =
j. Thus, (Z9 seq €)in L;.

7. If (Z9triggers &) € L,;_, then the following hold:

(@ If g€ W,thene € L(Z9). As(Z9 triggers &) € Ly, thenm,i—1 =
(Z4 triggers &) andthus,i — 1 = £. Thisimpliesthat £ isin L;_;.
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(b) Foreveryq € A(q, m—1)wehavethatforevery j > i, if m;, 41, ... 151
isin L(Z7), then m;_y, m;,...m;_1 isin L(Z9), and 7, j |= £. Thus
m,i = (Z9 triggers &). Thisimpliesthat (Z9 triggers &) isin L; for
al ¢ € A(q,a).

8. If P,y = 0, then P, = L; N seq(p). Otherwise, for every (Z7seq &) €
P;_1, we distinguish between two cases

@ Ifee L(Z9) andm,i — 1 &, theng e Wand{isin L;_;.

(b) Otherwise, msi(m,i — 1,Z%seq&) > i. Since P,_; C L, 4, the
formula (Z?seq &) isin L;_;. By item 6b there exists a formula
(Zz9 seq &) in L; st. ¢ € A(q,mi_1) and msi(m,i, 29 seq §) =
msi(m,i — 1,79 seq ¢). Thisimpliesthat (Z9 seq &) isin P,.

O

Proposition A.0.7 pisafair run of A.

Proof: First, we prove that for every i < m we havethat inf(p) N ®; # 0. We
prove that for every j > 0 thereexistsk > j st. pr. € @;. Let ¢y until p, bethe
until formula which corresponds to @, we distinguish between two cases.

1. If 7,5 = (1 until @q) then (¢q until p,) isnotin L;, thusp; € @;.

2. Otherwise, 7,7 = (@1 until ¢3), thus there exists k > j st. 7,k = vs.
Thisimpliesthat ¢, isin Ly, thus, pi, € P,.

Next, we provethat in f(p) N ®,., # 0. We provethat for every j > 0 there exists
k > j suchthat p, € ®,.,. We distinguish between two cases:

1. If Pj = (), then pj € q)seq-

2. Otherwise, P; containssome seq formulas. Leti = maxcp,msi(m, j,¢').
We prove by induction that for every j < k < i, wehavemax cpmsi(m, k,¢') =

1.

e Thebasecasek = jistrivial.
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e Assume that max,cp, msi(m,k —1,¢") =i. Let (Z?seq&) bea
formulain P,_; st. msi(m, k—1,(Z%seq§)) = i. Sincei > k, there
existsarung, qi,qs, . .. gi_r—1 Of length> 1 of Z%onm,_1, mp, ... m_1,
and 7, i = £. Thisimpliesthat theformula(Z % seq &) isin L. Since
q,q1,q2, - - - ¢i—r—1 1S the shortest accepting run of Z¢ on a prefix of
7+t wehavemsi(r, k, (Z% seq €)) = msi(m, k—1,Zseq &) = 1,
and that ¢; € A(q,m,—1), thus (Z9* seq &) € Fy. In addition, for
every other formula ¢’ € P, there exists a formula ¢” in P,_; st.
msi(m, k,¢') = msi(m, k—1,¢") <i. Thisimpliesthat max e p,msi(m, k, ¢') =
1.

Thus, for every formula(Z? seq &) in P,_;, wehavethat msi(r,i—1, (Z? seq §)) =
i. Thisimplies that for every formula (79 seq ) in P,_;, we have that
g€ Wandr,i— 1 & Thisimpliesthat P; = (), thus p; € . O

Second Direction: L(A,) C L(p)

LemmaA.0.8 Let 7 bein L(A,), thenm € L(y).
Before we prove the lemmawe present afew propositions.

Proposition A.0.9 Let p = (Lo, Py, ), (L1, 1), ... bearunof A,onr. Leti >0
be an index s.t. the formula (¢ until ;) isin L;. Then either for every j > i, we
have { (1 until v2), 1} C L;, or thereexists k > i St. o € Ly, and for every
1 <j <k, wehavey, € L,.

Proof: We prove with induction on k£ > i that either there existsan index £’ < k
st. ¢, € Ly andforeveryi < j < k', o, € L;, or forevery ¢ < j < k,
{(¢1 until o), 1} C L.

e Basecase k = i followstrivialy from the definition of 6.

e Induction step: assume that the proposition holds for £ — 1 we distinguish
between two cases:

1. If thereexistsk’ < k —1st ¢, € Lj andforevery i < j < K/,
1 € Lj, then thelemmaholdstrivially.

2. Otherwise, for every i < j < k — 1, {(¢1 until @9), 1} C Lj.
Since ¢, ¢ L _1, the definition of 6 implies that either ¢, € L, or
{(¢1 until p2), 1} C Ly, in both cases the induction holds for k.
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[

Proposition A.0.10 Let p = (Lo, Py, ), (L1, P1),... bearun of A, on 7. Let
i > 0 beanindex st. theformula (¢, release ¢,) isin L;. Then either for every
J > i, we have {(¢; release ¢s), po} C L;, or thereexistsk > i st. ¢ € Ly
and for every i < j < k, wehave p, € L;.

Proof: We prove with induction on k£ > i that either there existsan index £’ < k
st. ¢ € Ly andforeveryi < j < k', o, € L;, or forevery ¢ < j < k,
{(¢1 release @), o2} C Lj.

e Basecase: k = i followstrivialy from the definition of 6.

e Induction step: assume that the proposition holds for £ — 1 we distinguish
between two cases:

1. If thereexistsk’ < k—1st. ¢, € L, andforevery i < j < K/,
2 € Lj, then thelemmaholdstrivially.

2. Otherwise, for every @ < j < k — 1, {(¢; release ¢,), p2} C Lj.
Since vy € Ly_1, thedefinition of § impliesthat {(¢; until ¢3), o} C
L;, thus, the induction holdsfor k.

[

Proposition A.0.11 Let p = (Lo, Py, ), (L1, P1),... bearun of A, on 7. Let
i > 0 beanindexst. theformula (Z? seq &) isin L;. Then one of the following
holds:

1. Thereexists k > i s.t. there exists an accepting run q, q1, o, . . . qx—; of Z4
over m;, miv1, .., T_1 St. for every i < j < k, we have (7% seq§) €
Lj,and§ € L.

2. There existsan infiniterun ¢, q1, g . .. of Z9 over m;, m; 11, ... St. for every
J > i, wehave (Z%-iseq¢) € L;, andeither ¢;_; ¢ Wor& & L,.

Proof: We prove with induction on £ < ¢ that one of the following conditions
holds:

1. Thereexistsanindex: < k' < k st. thereexistsan acceptingrung, g1, go, . . . Grr—;
of Z7over m;, mit1, ..., mw—1 St. foreveryi < j < k/,wehave(Z%- seq¢) €
Lj,and¢ € Ly
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2. Thereexistsarung, qi,qs . .. qx_; Of Z2over m;, w11, ... Tx_1 St. for every
i <j<k wehave(Z%seq¢) e L;, andeitherq;,_, g Woré & L,.

e Basecase k = i followstrivialy from the definition of 6.

e Induction step: assume that the proposition holds for £ — 1 we distinguish
between two cases:

1. Thereexistsanindexi < k' < k — 1 st. there exists an accepting run
q4,q1,q2, - - - qu—; OF Z7 over my, miq,...,m_1 St forevery i < j <
k', we have (Z%- seq§) € L;,and{ € L. Then the lemma holds
trivialy.

2. Otherwise, thereexistsarunq, q1,qs . . . qx—;—1 Of Z9over m;, mivq, ... T2
st. forevery i < j < k —1,wehave (Z%- seq§) € L;, and either
gi—i ¢ Worg g L. If g, € Wand¢ € Ly, then there exists an
accepting run q, q1, q2, - - . qx—; Of Z9 over m;, m;iy 1, ..., mx_1 and the
lemma holds
Otherwise, the definition of ¢ impliesthat L, containsaformula(Z%-i seq ¢)
St qr—i € A(qr—i—1, mx—1), thusthe lemmaholds.

[

Proposition A.0.12 Let p = (Lo, Py, ), (L1, P1),... bearun of A, on 7. Let
i > 0 beanindex st. theformula (277 seq ¢) isin P,. Then one of the following
holds:

1. Thereexists k > i st. there exists an accepting run ¢, q1, g2, . . . q._; of Z4
over m;, mir1, .., T_1 St. for every i < j < k, we have (7% seq §) €
P;,and € € L.

2. There existsan infiniterun ¢, q1, ¢o . .. of Z7 over m;, m; 11, ... St. for every
Jj > i, wehave (Z% seq§) € Pj,andeither ¢;_; ¢ Wor& & L.

The proof of this proposition is similar to the proof of Proposition A.0.11, and
thus omitted.

Proposition A.0.13 Let p = (Lo, Py, ), (L1, P1),... bearun of A, on 7. Let
i > 0 beanindex st. the formula (Z1 triggers &) isin L;. Then for every j > i
and every run ¢, qi, gs, - .. q;—; Of Z(g) on m;, w41, ..., mj—1, we have that the
formula (Z9%-+ triggers ) isin L;. Furthermore, if ¢;_; € W, then& € L;.
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Proof: We prove the proposition by induction on j > .
e Basecase j =i followsdirectly from the definition of §.

o Assumethat the proposition holdsfor j weproveitfor j+1. Letq, ¢1, g2, . . . ¢j—it1
of Z(q) onm;, mi11, ..., m;. Theinduction hypothesisimplies that the for-
mula (Z%-¢ triggers §) isin L;. Since g;_;+1 € A(gj—i, 7;), d implies that
the formula (Z%-++ triggers §) isin L. If ¢;_;11 € W, then ¢ implies
that § € Lj;.

[

We now prove LemmaA.0.8. Let p = (Lo, P, ), (L1, P1), ... beafair run of
A, on 7. We prove with induction over the structure of  that for every : > 0 and
every subformula ¢’ we have that ' in L; iff 7,7 |= ¢’. Since for every initial
state (L, P) of A,, wehavey € L, wehavethat 7,0 = ¢.

e Base case: For p and —p the definition of the automaton implies that the
lemmaholds.

e Induction step: Assume that the lemmaholdsfor 1, s, and &.

— The consistency of the states of the automaton impliesthat the lemma
holds for the formulas (1 A ¢2) and (1 V ¢2).

— Let (next p;) be aformulain L;. The definition of § implies that
1 € Liy1. Theinduction hypothesisimpliesthat 7,7 + 1 |= ¢4, thus
T, = (next ).

— Let (¢ until o) beaformulain L;. Proposition A.0.9 implies that

either thereexistsk > i st. 5 € L, andforevery i < j < k, we have
¢y € L; or for every j > i, we have {(p; until v2), 1} C L;.
Inthefirst case, theinduction hypothesisimpliesthat foral : < j < k,
wehaver, j = ¢, andthat m, k |= ¢o. Thus 7, = (¢q until ).
As for the second case let @, be the fairness set which corresponds to
(1 until o). Since p isfair, there exists £ > ¢ such that p, € ;.
Given that (o until ps) € Ly, pr, € ¢, impliesthat o € Ly. Thus,
the induction hypothesis implies that for all @ < j < k, we have
m,j E prandthat T,k = ¢o. Thus,i = (1 until o).

— Let (p, release ;) be aformulain L;. Proposition A.0.10 implies
that either for every j > i, we have {(¢; release ¢,), 2} C L;, or
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there exists k > i st. ¢, € L, and for every i < j < k, we have
P9 € Lj.

The induction assumption implies that either for al j > i, we have
T, J = o, Or there or thereexists k > ¢ st. foral i < j < k, wehave
T, ] Epeandm k= ¢1. Thus, 7,0 |= (¢ release ).

— Let (Z7seq &) beaformulain L;. Proposition A.0.11 implies that
one of the following holds

1. Thereexistsk > i st. thereexistsanacceptingrung, q1, qo, - . - Qi
of Z7 over m;, miy1,...,mx_1 St. forevery i < j < k, we have
(Z9-iseq &) € Lj, and ¢ € Ly. In this case the induction hy-
pothesisimpliesthat =, k' |= ¢ thus 7, i |= (Z9 seq €).

2. Thereexistsaninfiniterun ¢, ¢1,qs . .. of Z9 over m;, w11, . .. St.
forevery j > i, wehave (Z%- seq ¢) € L;, andeitherg,_, ¢ W
oré ¢ L.

Since p is fair there exists £ > i st. P, = (). Thisimplies

that (Z%+1-i seq &) € Pyy1. By proposition A.0.12, one of the

following should hold:

(& There exists ' > k + 1 st. there exists an accepting run
Qret1—is Qotr2—is - - - Qor—i OF ZU41-1 OVEN Tppy, Mo, . oy Thi—1
st. forevery k +1 < j < k/, wehave (Z%-+-1 seq &) € P},
and¢ € Ly . Inthiscasetheinduction hypothesisimpliesthat

m k = & Sincetherun ¢, qi, 2, - - - s Qr—is Qrr1—ir - - - Qir—i 1S
accepting, we have i = (Z?seq ).

(b) Thereexistsaninfiniterun g1, G2, ... Of Z9 OVer w1, Tpaa, - - .

st. forevery j > k + 1, we have (Z%-+-1 seq §) € P;, and
either g;_, & W or & ¢ L;. Inthiscase P; is empty only
finitely many timein p, thus p is not fair, contradiction.

— Let (79 triggers &) beaformulain L;. Proposition A.0.13 impliesthat
for every j > ¢, if Z9 has an accepting run over m;, m;41, ... 7,;_1, then
¢ € L;. Inthis case the induction hypothesis implies that 7, j = &.
Thisimpliesthat 7, i = (Z9 triggers &).

O
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Appendix B

The Correctness of the Construction
for QALTL

Theorem B.0.14 L(A,) = L((3y)y).
First Direction: L((Jyy)) € L(A,)

We start by extending the definition of msi to obligations. We say that an
obligationo = ((Z%seq ¢), T) ispossiblefor 7, i, 3 if thereexistsanindex j > i
st. 7, 4,8 = YT and for some ¢’ € A(q,y), wehaver,j, 3 |= (27 seq¢).

Definition B.0.15 Let = be aword, i an index, § an interval set, and (79 seq ¢)
aformulain seq(y) st. m,i, 8 | (Z7seq ). Then msi(w,i, 3, (Z9seq€)) =
man({j|m,i,7, 0= L(Z9) ANm, 4,0 E £}). Leto = ((Z9seq &), T) be an obli-
gation that is possible for 7,7, 3. We define msi(m,i,5,0) = min({j|3¢" €
Alq,y)Tk >ist.m kB EYAG=msi(n k, (279 seq £))}).

We now present a lemma, which defines the conditions for tight satisfaction of
L(Z7) interms of states of Z4.

LemmaB.0.16 Let Z7 be NFW, let 7 be an infinite word, let 7 > ¢ > 0, and let
B C I bean interval assignment. Then =, 4, j, 5|= L(Z?) iff at least one of the
following holds:

1l j=diandqg e .

2. j >iandthereexists ¢’ € A(q,m;) st. i+ 1,3, B L(Z9).
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3. Thereexistssome k, i < k < j and astate ¢’ € A(q,y) st. (i, k) € g and
m, k, j, BE L(Z7).

Proof: m, 14,7, BE L(Z9) iff thereisw € L(Z9), w = xy, x4, ..., z, and thereisa
sequence of integersig, iy, . . ., iy, int1, SUCh that ig = ¢ and i,,.; = 7. Moreover,
for every 0 < k < n thefollowing conditions hold:

o If z, € 24P thenwy, = m;, and g,y = iy + 1.
o Ifa, = Y then (Zk, ik+1) € .
We partition this condition into three cases:

1. Thecasewherew = e. Inthiscase j = i. Sincew = ¢ € L(Z7), we have
g € W. Thusthefirst condition of the lemmaholds.

2. The case where |w| > 0 and zy € 24F. Inthiscase ry = ; thus, for some
¢ € A(q, ;) wehavethat 2,25, ...z, € L(Z7). Furthermore, for every
1 < k < n we have that the following conditions hold:
o If ), € 24P thenwy, = m;, and g,y = iy + 1.

o If T =19 then (Zk, ik+1) € ﬂ
Thus, 7,3 + 1,4, B L(Z9) and the second condition holds.

3. The case where |w| > 0 and =y = y. For k = i;, we have that (i, k) € £,
and for some ¢’ € A(q,y), we have z,, 25, ...z, € L(Z9). Furthermore,
for the sequence iy, 7o, ..., 7,41 and for every 1 < [ < n we have that the
following conditions hold:

o |f X € 24P then Ty = T and 1 =1 + 1.
o |Ifu; = Y then (il,il+1) € f.

Thus, k, j, BE L(Z9) and the third condition holds. O
LemmaB.0.17 Let 7 bein L((Jy)y), thenm € L(A,).

Proof: We construct a fair run p of A, on 7. Let 3 be an interval set such that
7,0, BE ¢. Foreveryi > Owedefine L; = {¢'|r, 1, 8 E ¢’ }U{o|oispossiblefor 7,1, 3}.
We define P; to be a subset of ;. The subsets P; are inductively defined. For

i =0, Py = (. For i > 0 we distinguish between two cases:

77



1. If Py =0,then P, = L; N (seq(v) U obl(p)).

2. Otherwise, P, containsaformula (Z¢' seq ¢) iff itisin L; and
msi(r, i, 3, (Z7 seq €)) < maz{msi(n,i —1,3,z)|xz € P,_}. P; con-
tainsan obligationformulao = ((Z9 seq &), T) iffitisin L; andmsi(m, i, 5, 0) <
max{msi(m,i — 1,0, x)|z € Pi_1}.

The following two propositions compl ete the proof of LemmaB.0.17.
Proposition B.0.18 For every i, we havethat (L;, P;) isino((L;—1, P;_1), mi—1)-

Proof: We need to show that all the conditions for the transition relation are ful-
filled. Theconditionsfor p, =p, A, V, until, release , and triggers areidentical
to the condition for the automaton defined in the Section 5, and thus, can be proved
similarly to Proposition A.0.6. Next, we prove that the other conditions hold as
well.

1. If (Z%seq¢) € L;_1,thenfor somej > i — 1, wehavethat 7,i — 1, j, B[
L(Z%) and 7, j,0 = ¢ Lemma B.0.16 implies that at least one of the
following holds:

(@ j=i—1andqg € W. Inthiscase condition 6a of ¢ is satisfied.

(b) j > iandthereexists¢’ € A(q,m;_1) St. 7,14, j, B L(Z). Thisim-
pliesthat 7,4, 3 = (Z9 seq ), thus, (Z¢ seq ¢) € L;, and condition
6b of ¢ issatisfied.

(c) Thereexistsanindex i — 1 < k < j and astate ¢ € A(q,y) st.
(i,k) € Band m, k,j, B= L(Z7). Sincei — 1 < kand 7, k, 3 = &,
we havethat o = ((Z9seq &), wait(L;_1)) ispossiblein7,i — 1, 3.
Thuso € L;_; and condition 6¢ of ¢ is satisfied.

2. 1f (Z7seq¢) € Py, thenitisasoin L;. Let 5 > ¢ — 1 be the minimal
indexst. m,i — 1,5, 8= L(Z9) and 7, j, § = £. LemmaB.0.16 implies at
least one of the following holds:

(@ j=1i—1andq e W. Inthiscase condition 8 of ¢ is satisfied.

(b) j >iandthereexistsq’ € A(q,m_1) st. m,4, 7, = L(Z7). Thisim-
pliesthat 7, i, 3 = (Z7 seq &), andthat msi(r,i — 1, 3, (Z9seq &)) =
msi(m,i, 3, (Z7 seq €)) = j. Thus, (Z9 seq &) € P;, and condition
8b of ¢ issatisfied.
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() Thereexistsanindexi—1 < k < jandastateq’ € A(q,y)st. (i,k) €
pandr k,j,B= L(Z7). Since, k,j,Bl= L(Z7) and 7, 7,8 |= &,
we have that the obligation o = ((Z9 seq &), wait(L;_1)) is possible
inm,i—1, 5. Furthermore, msi(w,i—1, 3,0) < msi(m,i — 1,3, (Z9seq §)) =
j. Thuso € P;,_; and condition 8¢ of ¢ is satisfied.

3. Ifo=((Z7seq&),Y) € L;_4, then o is possible for 7,7 — 1,3. This
impliesthat there existsanindex j > i — 1 st. 7,4, = T and for some
¢ € A(q,y),wehaver,j, 3 = (Z9 seq €). If j = i — 1, then condition 9a
of § issatisfied. Otherwise, j > i. Thisimpliesthat o ispossiblefor =, 7, 3.
Thus, 0 € L; and condition 95 of ¢ is satisfied.

5 Ifo=((yseq¢),Y) € P_y,theno € L;,_; , thus, oispossiblefor 7,7 —
1,3. Thisimpliesthat j’ = msi(m,i — 1,3, 0) is defined. Thus, there
existsanindex j > i st. 7, 4,0 = Y, and for some ¢’ € A(q,y), we have
7, 5,8 = (Z9 seq €), and msi(r, j, 3, (Z7 seq &)) = j/. We distinguish
between two cases:

(@ If j =i—1,thenr,j,8 = (Z7 seq &) impliesthat (79 seq ¢) €
Li_y. Since msi(m,i — 1,3,(Z9 seq €)) = msi(m,i — 1,3,0), we
havethat (77 seq &) € P;_,, thus, condition 10a of ¢ is satisfied.

(b) Otherwise, j > i. Thisimpliesthat o is possible for =, 7, 3. Further-
more, msi(mw,i—1, 3,0) = msi(n, i, 3,0). Thus, o € L; and condition
106 of ¢ is satisfied.

6. The definitions of P; impliesthat if P;,_; = 0, then P, = L; N (seq(y) U
obl(0)).

7. (Condition 12) Suppose that wait(L; 1) C L; ;. Let (Z9seq¢) bein
L; 1. Then, i — 1,0 = (Z%seq&). Thisimplies that for some j we
have that w,i — 1, j,6|= L(Z?) and 7, j, 5 | £. Then, the definition of
tight satisfaction impliesthat thereisw € L, w = xg, x4, ..., x, and there
is a sequence of integersig, i1, . . ., in, iny1, SUCh that ig = i and i, = j.
Moreover, for every 0 < k < n the following conditions hold:

o |f T € 247 then Tp = T, and Tpr1 = g + 1.
o If 1, = Yy then (Zk, ik+1) € f.
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Let ¢, q1,Gn, - - - gurr bE an accepting run of Z9 on w. We distinguish be-
tween three cases.

(@ If w=¢thenqg € W, and j = i — 1 thus condition 6a of deltais
satisfied and (79 seq &) isstrongin L;_;.

(L) If j =4y =1—1,thenw = y™ and for every £k < n + 1 we
have that w,i — 1,3 = (Z% seq¢), and since wait(L;—1) C L;_q,
or = ((Z% seq &), wait(L;—1)) ispossiblein, i — 1, 3. Thisimplies
that for every £ < n + 1 we havethat (7% seq &) € L;,_1, and oy, €
L;_1. Thisimplies for every k < n there exists a y transition from
(Z% seq &) to oy, and from o, to (Z%+1 seq &). Furthermore, ¢,.1 €
W, thus (Z%+ seq &) isstrong in L;_; and the condition holds.

(¢ If 5 > i—1,thenlet [ be the maximal index st. iy = 7p = 7 — 1.
Then, for every k£ < [ we havethat 7,i — 1,5 | (Z% seq¢), and
since wait(L;—1) C Ly, o = ((Z% seq¢), wait(L;_1)) isS possi-
blein 7,i — 1,3. Thisimplies that for every £ < [ we have that
(Z1% seq &) € L;_1, and o, € L;_;. Thisimplies for every k <
[ there exists a y transition from (Z% seq &) to o, and from o, to
(Z%+1 seq &). It isleft to show that the path ends at a strong element
of L;_,. We distinguish between two cases:

i. If 2, = y, theno = ((Z% seq &), wait(L;—1)) € L;—y. Since
i1 >1—1,0isstrongin L;_;.
ii. If 2, € 247, then (Z% seq €) isstrongin L;_;.

8. The proof that condition 13 of § holdsis similar to the proof for condition
12, and thus omitted. L]

Proposition B.0.19 pisafair runof A,.

Proof: The proof that &, ®,, ..., d,, are satisfied is similar to the proof In Sec-
tion 5. For ® seq we prove that for every i there exists j > i st. P; = 0. We
distinguish between two cases:

1. If P, = (, then we are done.

2. Otherwise, let k = max{l|l = msi(w,i, 3, z) wherez € P;}. Intuitively,
we show that the maximum msi £ does not grow until P is empty, and that
P iseventualy empty. We prove by induction on j that for every j > ¢ one
of the following holds:

80



(@ Thereexistsi < j' < jst. Pj = 0.
(b) maz{l|l = msi(m,j, 3, ) for some element in P;} < k.

e Basecase j = i, thus(b) holdstrivialy.

e Assume that the induction proposition holds for j. We distinguish
between two cases:

(@ Thereexistsi < j' < j st. P; = (), then the induction proposi-
tion holdsfor j + 1 aswell.

() & = maz{l|l = msi(r, j,3,z) for someelementin P;} < k. If
Pj41 = 0, then the induction holds. Otherwise, by construction
of p, for every element = in P; 1, we have msi(m, j + 1, 5,x) <
kK < k.

Since msi of index j is greater or equal to j, for somei < j < k + 1, we
havethat P; = (). N

Second Direction: A, C L((3y)¢)

LemmaB.0.20 Let 7 bein L(A,), thenm € L((3y)y).

Intherest of thissection, we prove LemmaB.0.20. Let p = (Lg, Py), (L1, P1), - - .
be afair run of A, on . First we construct an interval set 5 according to p. Then,
we prove with induction over the structure of ¢ that for every i > 0 and every
subformula ¢’ in L; we havethat 7,4, 5 |= ¢'. For therest of this section, we fix
mand p.

We define 3 as follows: Aninterva (i, j) isin j iff the following conditions
hold:

1. Thereexistsaformula(Z9 seq &) € L;, for which condition 6¢ holds.
2. For someq’ € A(q,y) we havethat (29 seq €) € L;, and wait(L;) C L;.

LemmaB.0.21 For every formula (Z9 seq &) € L; for which conditions 6¢ of ¢
holds, there exists an index j > i st. wait(L;) C L, and for some ¢’ € A(q,y)
we havethat (27 seq ¢) € L;.

Proof: Since condition 6¢ of § holds, we have o = ((Z? seq &), wait(L;)) €
L,. First we prove that for every j > 7 one of the following conditions holds:
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1. Thereexistsi < j' < j st. j’ satisfies the conditions of the lemma.
2. o0 &€ Lj.
e Basecase: j =i holdstrivialy.

e Assume that the induction proposition holds for j. Then, if here existsi <
j' < jst. j' satisfies the conditions of the lemma, then the induction holds
for j + 1 aswell. Otherwise, condition 9a of ¢ does not hold for o € L;.
Thisimpliesthat condition 9b does, thus, o € L.

Thisimplies that either there exists an index j that satisfies the conditions of the
lemma, in which case the lemma holds, or for every j > i, wehaveo € L;. Since
p isfair, there exists k > i st. P, = (). Then, sinceo € L, we have that
o € Py1. By the same induction we can prove that either there exists an index
j > k + 1 that satisfies the conditions of the lemma, in which case the lemma
holds, or for every j > k£ + 1, we have o € P;, this case however, contradicts the
fairness of p, thus the lemmaholds. (]

LemmaB.0.21 impliesthat (5 iswell defined.

Proposition B.0.22 Let (Z9seq &) be aformulain L;. Then, for every j > 1,
one of the following conditions holds:

1. Thereexists j' < j st. m, 4, ', B L(Z9),§ € Lj.

2. Thereexistsaword w = g, 71, ...z, over 247 U{y},arung, qi, ..., g1
of Z? on w, and a sequence ig, i1, . ..i,41 St. i = 4, i, 1 = j, and for
every 0 < k < n, we have the following:

(@ Ifz, € 247 then vy, = 7, ipey = i + 1, (Z9% seq§) € L;,, and

(Zw+1seq ) € L

(b) If 2, = y, then g1 € A(qx,y), and for every i, <1 < iy, We have
o= ((Z% seq¢),wait(L;,)) € L.

i

Thot1”

Proof: we prove the proposition by induction on ;.

e Basecase: j = i. Condition 6 of § impliesthat one of the following should
hold:

1l g€ Wand§ € L;. Inthis case the first condition of the proposition
holdsfor ;' = i.
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2. (77 seq &) € Ly, forsomeq’ € A(q, ;). Inthis case second condi-
tion holdsfor w = m;, therun ¢, ¢’ and the sequence i, i + 1.

3. If A(q,y) # 0, and ((Z?seq ), wait(L;)) € L;, then the second
condition holds for w = y, therun ¢, ¢’ (for some ¢ € A(q,y)), and
the sequencei, i.

e Induction step: Assume that the proposition holds for j. If condition 1 of
proposition holds for j, then it holds for j + 1 as well. Otherwise, there
existsaword w = xg, 71, . ..z, over 24 U {y}arungq,q, ..., g1 Of Z9
on w, and a sequence iy, i1, . . . i,y+1 St. g = 1, i,.1 = j, and for every
0 < k < n, we have the following:

1. 1f oy € 247 thenqryy € A(qr, mi, )y irr = ir+1, (Z9% seq €) € L;,,
and (Z%+1 seq§) € L;, .

2. If x, =y, then qx11 € A(qr,y), and for every i, <1 < i1, We have
o= ((Z% seq &), wait(L;,)) € L.

We distinguish between four cases:

1. If z, € 247, and (Z%+ seq £) € L; isstrongin L;. Condition 6 of §
impliesthat one of the following should hold:

(@) gny1 € Wand§ € L;. Inthiscase condition 1 of the proposition
is satisfied with j' = ;.

(b) (27 seq¢) € L, for some ¢ € A(gni1,7;). In this case
condition 2 of the proposition holds for w’ = w - 7;, the run
q,q,---,qns1, ¢, and the sequence i, iq, . . ., iny1,J + 1.

2. If z, = y,and o = ((Z% seq &), wait(L;,)) € L;isstrongin Lj;.
Then, Condition 9 of ¢ impliesthat o € L,.4. In this case the second
condition holdsfor w’ = w, therun ¢, ¢1, . . ., ¢,+1, and the sequence
10,91, - - -, in, tns1 = J + 1 (Note that we removethe old 7,, ;1).

3. If z, € 247, and (Z9+ seq €)) € L; isnot strongin L;. Condition 6
of 6 implies the following should hold: There exists ¢’ € A(gu+1,9),
and o = ((Z% seq &), wait(L;)) € L;. We distinguish between two
Cases:

(@ If wait(L;) € L;, condition 9a of ¢ does not hold for o. This
implies that condition 96 of ¢ does hold for o. In this case the
second condition holds for w’ = w - y, therun ¢, q1, . . . gui1, ¢
(for some ¢’ € A(q,y)) and the sequenceig, i1, . . ., int1,7 + 1.

83



(b) If wait(L;) C L;, then condition 12 of § implies that there ex-
ists a path of y transitions from (Z%+! seq ) to a strong ele-
ment in L;. Note that if thereisay transition from (Z¢ seq &) to
o = ((Z%seq¢),Y), and a y transition from o to (Z¢ seq ¢),
then ¢ € A(q,y). This implies that there exists a sequence
Gnit, Qna2s - - Guim SE fOreveryn+1 <1l < n+m, g1 €
A(q,y), and either (Z9+m seq &) isstrong, or o = ((Z9+™ seq &), wait(L;))
isstrong. If (Z9+m seq &) isstrong, then we have the same proof
asinitem 1 withw - y™, therun ¢, q; . . . ¢+, @nd the sequence
10y 81y - o« s bnt1y Js Js - -5 0, J L. Ifo= ((Zq"+m seq g), UJ(IZt(L]))
is strong, we have the same proof asinitem 2 with w - y™, the run
q,q1 - - - Gnim, aNd the sequenceio, i1, . . ., iny1, 5,75 -5 J, J + 1.

4. If z, = y,and o = ((Z9 seq§), wait(L;,)) € L; isnot strong in

L;. Then, Condition 9 of ¢ implies the following should hold: For

some ¢ € A(g,y), wehavethat (Z¢ seqé) € Lyand Y C L;. If

(27 seq ) is strong, then the proof isasin item 1, otherwiseit is as

initem 3.

[

Proposition B.0.23 Let (77 seq ¢) beaformulain L;, and let [ > i be an index
st. P, = (). Then, for every ; > [ + 1, one of the following conditions holds:

1. Thereexistsi < j' < j st. 7, i, 7', BE L(Z27),§ € L},

2. Thereexistsaword w = g, 71, ...z, over 247 U{y},arung, qi, ..., gns1
of Z? on w, and a sequence g, i1, . ..in11 St. 79 = 4, ine1 = j, and for
every 0 < k < n, we have the following:

(@) Ifzy, € 247, then g1 € Alqr, ), ik = ix+1, (Z9% seq €) € L,
(Z®+rseq§) € L;,,,, andifi, > 141, then
(Z% seq ) € P, (Z%+ seqf) € P, ,.

(b) If 2, =y, then g1 € A(qx,y), and for every i, <1 < ij,1, we have
o= ((Z% seq¢),wait(L;,)) € L;, andifi, > 1+ 1,theno € P, .

k!

The proof of Proposition B.0.23 is similar to the proof of Proposition B.0.22, and
thus omitted. Proposition B.0.23 implies the following Corollary.

Corollary B.0.24 Let (Z9seq &) beaformulain L;, and let [ > ¢ be an index
st. P, = (). Then, one of the following conditions holds:
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1. Thereexistsj > i st. 7,4, 7, BE L(Z9), € € L;.

2. There exists an infinite sequence g, i1, . . . St. 7 = ¢, and for every k > 0,
we have the following:

(@) Ifzp € 24P and iy > 1 + 1, then (Z% seq &) € P, (Z%+ seq ) €
P;

(b) Ifxy, =yandi, > 1+ 1,theno € P, .

(c) For every j > [ thereexists j' st. i;; > j.

k+1°

We now complete the proof of Lemma B.0.20. We prove by induction over the
structure of  that for every i > 0 and every subformula ¢’ in L; we have that

T, 0 F ¢

e Base case: For p and —p the definition of the automaton implies that the
lemma holds.

¢ Induction step: Theinduction step for the operators A, Vv, until , release , next
isidentical to the proof of Lemma A.0.8. We prove the induction step for
the seq, and triggers operators.

— Let (Z7seq &) beaformulain L;. Since p isfair, there exists | > i
st. P, = (). Then, Corollary B.0.24 implies that one of the following
conditions holds:

1. Thereexists j > i st. 7,4, 7, 0|= L(Z9), ¢ € L;. Inthiscase
™1, 0 = (Z7seqf).

2. There exists an infinite sequence i, i1, ... St. ig = ¢, and for
every k > 0, we have the following:
@ Ifz;, € 2P and iy > I+1,then (Z% seq &) € P, (Z9%+1 seq &) €

Py

(b) If ), =yandi, > 1+ 1,theno € P;,.
(c) Forevery j > [ thereexists j’ sit. i, > j.

In this case for every j > | + 1, we have P; # (), thus p is not fair,
contradiction.

— Let (Z2triggers &) € L;. We need to prove that for every j > i st.
71,7, b= L(Z9), we have ¢ € L,. Suppose that for j > i we have
that 7,1, j, B|= L(Z9), thenthereisw € L(Z%), w = xg,T1,..., %y
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and there is a sequence of integersig, iy, . . ., iy, ini1, SUCh that ig = i
andi,.; = j. Moreover, forevery 0 < k£ < n thefollowing conditions
hold:
« 1f 25, € 24P thenz, = m;, andigy =iy, + 1.
x If oy, = Yy then (ik,ik+1) € f.
Letq,q1,q2,- .-, q,.1 bean accepting run of Z¢ on w. We prove with
inductionon 0 < k < n that (Z% triggers &) € L;,. Furthermore, if
g € W,then € L, .
* Basecase k = 0, theni, = 7. By definition (Z9 triggers §) € L,.
If ¢ € W, condition 7a of § impliesthat £ € L;,.
« Assume that the lemma holds for k, then (Z9 triggers &) € L, .
we distinguish between two cases:
1. If z;, = y, thenthedefinition of 5 impliesthat for every j > i,
st. (ix, J) € B, inparticular ix |, wehave (Z%+! triggers ) €
L;,,,. Condition 7a of ¢ implies that if ¢,,1 € W, then
e L,
2. If z;, € 24%, then condition 6b of § impliesthat (Z9+ triggers ¢) €
L;, ., and condition 7a of ¢ impliesthat if ¢ + k+1 € W,
then{ € L

lgt1”

[
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Appendix C

Deciding does not affect is
co-NP-hard

Lemma C.0.25 For ¢ in LTL, a subformula ) of ©x and a structure M, the prob-
lem of deciding whether ) does not affect, ¢ in M isco-NP-complete with respect
to the structure M.

Proof: We show co-NP-hardness. We consider the complementary problem of
deciding affect,. We give a reduction from 3CNF satisfiability. For every 3CNF
formulad we construct a structure M,. We give a (fixed) LTL formula ¢ such that
My | ¢ and the proposition ¢ affects, ¢ in M, iff 0 is satisfiable. Consider the
formula ¢’ = Vay [q < z|. By définition, M, £ Vxy' iff there exists an assign-
ment o such that M, o [~ ¢’. We construct M, so that the set o(x) represents a
satisfying assignment to 6.

For every proposition p; in # we have a set of states that represent the assign-
ment p; = false and a set of states that represent the assignment p; = true. The
formula ¢ is constructed so that M, o = ¢ [¢ < x| whenever o chooses for = a
set of states that cannot represent a valid assignment to the propositions of 6. For
example, if o chooses for = only some of the states that represent p;, = false (or
p; = true) or if o chooses for 2 some states that represent p;, = false and some
states that represent p; = true for some proposition p;.

For every clause ¢; of # we add one path to M. If the clause ¢; uses propo-
sitions p,, py, and p. we create a path linking a state representing proposition p,
to a state representing proposition p, to a state representing proposition p... If p,
appears in ¢; positively, we choose a state that represents p, = true, otherwise
we choose a state that represents p, = false. Similarly for p, and p.. Thisway, if
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o(z) isavalid assignment that does not satisfy the clause ¢; then all the states on
the path of ¢; in M, arenotino(x).

Letd = A, Vi, a;j Where o ; isaliteral in {py, ..., pe }U{-p1, ..., —px}.
For every proposition p; the structure M, contains 2n states. Thefirst n statesrep-
resent the assignment p; = true and the other n states represent the assignment
p; = false. Then for every clause ¢; = a1 V a2 V «; 3, we create a path that
connectstheliteralsin ¢;.

Let My = ({c, pos,neg, q}, S, {so}, R, L). The set of states S is the union of
the following sets.

e {s0} -theinitial state.

o {¢i1,¢i2 |1 < i < n} -two clausal states per clause. These states are
used in the path that represents clause i to separate the different proposition
states.

o {pp; |1 <I<kandl <i<n}-2n propostiona states per proposi-
tion, n positive and n negative.

The transition relation is the union of the following sets.

o Ry ={(s0,p/7) |1 <1<k} -theinitial state s, is connected to every first
positive propositional state p;’;.

o Ry = {0 0lis1) ippiag) |1 <1< kandl < i < n— 1} - the
positive states related to proposition p; and the negative states related to
proposition p;, form chains.

o Ry = {0/ pi1), Wi Pin) | 1 < 1 < k} - The last positive state of p; is
connected to thefirst negative state. Thelast negative state of p, isconnected
to itsalf.

e Forevery clauset; = 31 - po V B2 - p» V 5 - p. Where 3, € {+, —} foro €
{1,2,3} weadd thetransitions i ; = {(507295,11')7 (plg,lia ci), (ci,l,p’fﬁ), (pbﬂi, Ciz2), (Ci,z,Pcﬁ,B;)}
- there is a path connecting the literals of clause ¢; according to their polar-
ities. Between every two propositional states there is a clausal state. We
refer to this path as a clausal path. The only way to get from one proposi-
tion state to another proposition state in one step is by taking transitionsin
Ry U R3. Notice that the paths that correspond to different clauses do not
share transitions.
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Thel

abeling is L(c) = {ci;}, L(pos) = {pi;}, L(neg) = {p;;}, and L(q) = 0.

In Figure C we have the ‘ propositional’ part of M, without the clausal states and
transitions. The structure M, can be constructed in polynomial time.

D e
G

EN S

Figure C.1: The structure My

The formula ¢ isthe digunction of the following formulas.

w1 = F(pos N Xpos A ((g AN X—q) V (—qg A Xq))) - there are two positive
states associated with the same proposition (reachable in one step) assigned
with different values of q.

w2 = F(neg A Xneg A ((g AN X—q) V (—g A Xq))) - there are two negative
states associated with the same proposition (reachable in one step) assigned
with different values of q.

o o3 = F(pos A Xneg A ((g A Xq) V (—g A X—q))) - thelast positive state

and the first negative state agree on the assignment of q.

o v = X(—g A X(cNX(=gAX(chX=q)))) - al three literals are not

satisfied on a clausal path.

As L(q) = 0 the formula ¢3 holds in M and M, = ¢. We claim that

My

K Vap [q — ] iff 0 is satisfiable. Indeed, every assignment to = that does

not satisfy ¢ [¢ < x] must include either all the positive states associated with
one proposition or all the negative states associated with one proposition (and not
both). Furthermore, as the assignment falsifies ¢ [¢ < x| every path associated

with

some clause must have at least one literal satisfied. Similarly, a satisfying
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assignment to ¢ translates to a subset of the states S’ assigning o (z) = S’ falsifies
¢lg < a. [

In[KV03] Kupferman and Vardi show that deciding affects; for CTL formulas
is NP-complete. They give a reduction from SAT to deciding affects;. In their
proof both the structure and the CTL formula depend on the SAT formula. Our
proof above can be used to show that for CTL formulas, deciding affects; is NP-
hard in the structure even for a constant formula.
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Appendix D

Regular Vacuity Lower Bound

In the exponential bounded-tiling problem we are given afixed set 7" of tiles, two
relations H,V C T x T, two tiles t;,;;, L5, € T, and an integer n. The goal isto
tilea (2" x 2")-square so that horizontal neighborsbelongto H, vertical neighbors
belongto V, thefirst tile in the first row ist;,;;, and thefirst tilein the last row is
tan- Thus, formally, alegal tilingisafunctiont : {0,...,2" — 1}* — T such that
the following hold:

o forall 0 <i<2"—2and0 < j < 2"—1,wehavethat H(t(i, ), t(i+1, 7)),
o forall 0 <i<2"—1land0 < j < 2"—2,wehavethat V (t(i, j), t(i, j+1)),
e 1(0,0) = tiy, and t(0,2" — 1) = tz,.
The exponential bounded tiling problem isknownto be NEXPTIME-hard [ SveB84].
Theorem D.0.26 The regular vacuity problem for RELTL is NEXPTIME-hard.

Proof: We do areduction from the exponential bounded tiling problem. Given a
tiling system 7 = (T, H, V, n, tin:t, t ), We construct amodel My of afixed size
and an RELTL formula ¢ of length O(n) such that — isnot regularly vacuousin
M iff thereisalegal tiling ¢ for 7.

We encode the tilesin 7" by aset AP(T") = {p1,...,pm} Of aomic proposi-
tions. We define the formula ¢ over theset AP = AP(T) U {b, c,d,r} of atomic
propositions. The task of the last four atoms will be explained shortly. Since T is
fixed, sois AP.

Consider an infinite word 7 over 24, For an atomic propositionp € AP and
apoint u inm, weuse p(u) to denotethetruth valueof p at u. Thatis, p(u) islifp
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holdsat v and is0 if p doesnot hold at «. We divide the word 7 to blocks of length
2n. Every block correspondsto asinglelocationinthe (2" x 2™)-square. Consider
ablock uy, ..., us, that corresponds to location [z, j] of the square. We use the
point u; to encodethetileinlocation [i, j|. Thus, the bit vector p;(u1), . . ., pm(u1)
encodesthetile (i, j). We use the atomic proposition b to mark the beginning of
the block; that is, b holds on u; and failson us, ..., us,. Thisisenforced by the
formula . Thus, ¢ contains a conjunct*

bA(  /\  next"-b) A globally (b < next?"b).

1<k<2n—1

Theblock uq, . . ., us, asoencodesthelocation of thetilein the square. Since
the square is of dimensions 2™ x 2", this location is a pair (i, j), for 0 < i,5 <
2" — 1, where i is the column of thetile and j isitsrow. Encoding the location
eliminates the need for exponentially many next operators when we attempt to
relatetilesthat are vertical neighbors. Encoding is done by the atomic proposition
¢, caled counter. Let c(u,), ..., c(u;) encode i, and c(uay,), - - ., c(u,+1) encode
j. Notethat, for technical convenience, theleast significant bits of the countersare
inu, and u,, and i is encoded before j. A sequence of 2™ blocks corresponds
to 2" tiles and, when starts with i = 0, encodes some row j in the square. The
values of the counters along this sequence go from (0, j) to (2" — 1, j), and then
start again with ¢+ = 0, but with an increased j. Thus, the next sequence goes
from (0,5 + 1) to (2 — 1,5 + 1). The way we encode the counters guarantees
that an increase of the counter by one corresponds to either atransition from (i, j)
to (i+1,7),incasei # 2" — 1, or to atransition from (2" — 1,5) to (0,5 + 1),
otherwise. A proper behavior of the countersis enforced by . Since we want the
length of ¢ to be O(n), we need also an atomic proposition d that actsasa“ carry”
bit. Notethat b \V d holdsin apoint u; iff c¢(u;) # c(u}), where v’ is the successor
block of ». Formally, ¢ contains the following conjuncts.

1. The counter startsat 0: A\g<g<on_1 NEXt “—c.

2. The counter isincreased properly. Note that as we always want to increase
the counter by 1 wetake d asacarry to the least significant bit:

e globally (((bV d) A —c) — (next (=d) A next?"c)).

INote that the formulais of quadratic length. An equivalent formulaof alinear length replaces
conjunctslike A, <, <o, X*pby X(pAX(pA---AXp)---). Inorder to keep the referenceto
indices clear, we describe here and in the sequel the quadratic version.
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e globally ((—=(bV d) A =c) — ( next (—~d) A next?"—c)).
e globally (((bV d) Ac) — (nextd A next*—c)).
e globally ((=(bV d) Ac) — (( next =d) A next?"c)).

Since each location is encoded by a block of length 2n, the wholetiling is en-
coded in afinite prefix of 7, namely m, . . . T9,,(2n)2_1. We use the atomic propo-
sition r in order to label this “relevant prefix.” More precisely, » holds exactly in
this prefix. Thus, ¢ contains a conjunct

(runtl bA( A\ next®(rAc))))Aglobally (bA( A next®c)) — next>" globally —r).

0<k<2n—1 0<k<2n—1

Lettg...ton_1,1;...1h._, betwo successive rows of thetiling t. For each i,
0 <i < 2" —1, weknow, given ¢;, the possible values for ¢, (these for which
H(t;,ti11), incasei < 2" — 1) and the possible values for ¢, (these for which
V (t;,t:)). Consistency with H and V' gives us a necessary condition for aword to
encode alegal tiling. In addition, the tiling should satisfy the edge conditions; it
should start with ¢,,;; and has ¢, in position [0, 2" — 1]. For atilet € T, let p(t)
be the propositional formula over AP that encodest. That is, p(¢) holdsin point
up of exactly al blocks that encode thetile ¢. In order to make sure that the edge
conditions hold, ¢ contains the conjunct

p(tii) A globally (bA( A\ next"c)A( A next¥c)) — p(tp))-

0<k<n—1 n+1<k<2n

Since the distance between the point where ¢; is encoded to the one wheret;
is encoded is exactly 2n, it is also easy to specify the conditions for horizontal
neighbors. Note that the conditions are imposed only when i # 2™ — 1.

globally (bA (\/ nextf=c)Ap(t)) — next® \/ p(t)).

0<k<n—1 t':H(t,t')

The difficult part in the reduction is in guaranteeing that the condition for
vertical neighbors hold. This is where regular vacuity comes into the picture.
They enable us to relate t[i, j] with t[i, 7 + 1], for al ¢ and j. Let e be aregular
expression. Consider the formula &; below. The formula says that whenever we
are in a beginning of a block « corresponding to position [, j], for some i and j,
then the regular expressions e is tightly satisfied only in intervals that end when
the block «’ that corresponds to position [i, j + 1] starts. To see this, recall that
bV d holdsin apoint u; iff ¢(u;) # c(u}), and note that the formula requires the
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value of the counter inus,,, ..., u, ., (that is, the j-coordinate of u') to be greater
by 1 thanthevaueinusy,, ..., u,; (the j-coordinate of ), and requires the value
of thecounter inu/,, ..., u| (thei-coordinate of «’) to be equal to the value of the
counter inu,,, . .., uy (thei-coordinate of ). Note that the requirement isimposed
only when « isnot in the last row, thus j # 2" — 1.

& = globally (bAnext™ \/ nextf-c)— A OA05A next™(05705)), where
0<k<n—1 1<k<n

e 0¥ = (next*c) — e TRIGGERS next “c,
e 05 = (next*-c) — e TRIGGERS next ",

o 05 = (next®((cA=(bVvd)V (mcA(bVd))) — e TRIGGERS next‘c,
and

o 0% = (next®((—mcA=(bVvd))V(cA(bVd)))) — e TRIGGERS next*—c.

Consider now the formula &, below. The formula says that whenever a block
u, not inthe last row, starts, thereisablock «’ in the relevant prefix of 7 that starts
when an interval satisfying e ends, and the blocks v and ’ encode tiles that are
related by V.

& = /\ globally (rAbA( \/  next ™ —c)np(t)) — e SEQ(rA \/  p(t))).

teT 1<k<n tV(t,t)

The formula ¢ contains a conjunct &; A &, with e = b (in fact any e # true®"?”
will do). Note that for e = b, the formula &; does not hold in a path in which the
counters are increased properly.

Let M+ be a Kripke structure that generates all the computations over AP.
Thus, My = (AP, 248 24P 24P 5 2AP "I} with L(o) = 0. We provethat -y is
not regularly vacuousin M iff thereisalegal tiling ¢ for 7.

Assumefirst that thereisalegal tiling ¢t for 7. Recall that £; doesnot holdina
path in which the counters are increased properly. Therefore, ¢ is not satisfiable,
and al the paths of M satisfy —¢. We show that all the regular expressionsin —¢
affect it, thus = is not regularly vacuousin M7 . The singleregular expressionis
—pise = b. By thedefinition of , the path 7 that describes ¢ satisfies (Jy).ple —
y]. Indeed, since 7 describes a legal tiling and since the distance between points
where successive points start is 2n2", the interval set 3 that contains al intervals
of length 2n2™ issuch that 7,0, 3 |= . It followsthat e affects - in M7, thus
- isnot regularly vacuousin M.
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For the other direction, assume that —¢ is not regularly vacuousin M. Since
eistheonly regular expressionin ¢, it followsthat M+ = (Jy)ple < y|. Let 5 be
aninterval set such that M+ hasapath = for which 7,0, 5 = ¢. The conjuncts of
 that are independent of e (that is, al conjuncts except for £; A &) guarantee that
the path = describes a tiling that satisfies the edge conditions and the conditions
for horizontal neighbors. By the definition of &, the path 7 is such that whenever
we are in abeginning of ablock « corresponding to position [i, 5], for some: and
7, thenthe regular expressions e istightly satisfied only in intervals that end when
the block «’ that corresponds to position [i, j + 1] starts. Therefore, 5 contains
only intervals of length 2n2™. Hence, &, guarantees that = describes a tiling that
also satisfies the conditions for vertical neighbors. Thus, = describes alegal tiling
for 7', and we are done. (]
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