
Enhanced Vacuity Detection in Linear
Temporal Logic

Alon Flaisher

Contents

1 Introduction 4
1.1 Related Work . 10

1.1.1 Vacuity Detection . 10
1.1.2 Coverage . 13

1.2 Organization . 15

2 Preliminaries 17
2.1 Automata . 17
2.2 Temporal Logic . 18
2.3 UQLTL . 19

I Subformula Vacuity 23

3 Alternative Definitions of Vacuity 24
3.1 Comparing the Alternative Definitions of Vacuity 25
3.2 Comparing the Alternative Definitions of Vacuity under Pure Po-

larity . 28

4 Algorithm and Complexity 31

II Regular Vacuity 34

5 RELTL 35
5.1 Language Definition . 35
5.2 Automata Construction . 36

i

6 Regular Vacuity Definition 39
6.1 A General Definition . 39
6.2 Alternative Definitions . 41

7 Algorithm and Complexity 44

III Pragmatic Aspects 49

8 Subformula Vacuity in Practice 50
8.1 Display of Results . 50
8.2 Occurrences vs. Subformulas . 52
8.3 Minimizing the Number of Checks 53
8.4 Implementation and Methodology 54

9 Regular Vacuity in Practice 56
9.1 Specifications of Pure Polarity 56
9.2 Weaker Definitions of Regular Vacuity 58

10 Conclusion 60

IV Appendixes 67

A The Correctness of the Construction for ALTL 68

B The Correctness of the Construction for QALTL 76

C Deciding does not affects is co-NP-hard 87

D Regular Vacuity Lower Bound 91

ii

List of Figures

2.1 Structure satisfaction does not imply trace satisfaction 21

3.1 Relating structure and formula vacuity. 26
3.2 Sensitivity of structure and formula vacuity to changes in the design. 27
3.3 Sensitivity of formula vacuity to the specification language. 27

4.1 Algorithm for checking if ψ affectst ϕ 32

8.1 Vacuous pass . 51

C.1 The structure Mθ . 89

iii

Abstract

The application of model-checking tools to complex systems involves a nontrivial
step of modelling the system by a finite-state model and a translation of the de-
sired properties into a formal specification. While a positive answer of the model
checker guarantees that the model satisfies the specification, correctness of the
modelling is not checked. Vacuity detection is a successful approach for finding
modelling errors that cause the satisfaction of the specification to be trivial. For
example, the specification “every request is eventually followed by a grant” is
satisfied vacuously in models in which requests are never sent. Previous works
have focused on detecting vacuity with respect to subformula occurrences in log-
ics such as LTL, CTL, and CTL∗. In this work we investigate vacuity detection
with respect to subformulas with multiple occurrences in industrial strength spec-
ification languages.

The generality of our framework requires us to re-examine the basic intuition
underlying the concept of vacuity, which until now has been defined as sensitivity
with respect to syntactic perturbation. We study sensitivity with respect to seman-
tic perturbation, which we model by monadic universal quantification. We show
that this yields a hierarchy of vacuity notions. We argue that the right notion is
that of vacuity defined with respect to traces and provide an algorithm for vacuity
detection. As recent industrial property-specification languages feature a regular
layer, which includes regular expressions and formulas constructed from regular
expressions, we extend vacuity detection to such a regular layer of linear-temporal
logics. We focus here on RELTL, which is the extension of LTL with a regular
layer. We define when a regular expression does not affect the satisfaction of an
RELTL formula by means of universally quantified intervals. Thus, the transition
to regular vacuity takes us from monadic quantification to dyadic quantification.
We show that regular-vacuity detection is decidable, but involves an exponential
blow-up (in addition to the standard exponential blow-up for LTL model check-
ing). Finally, we discuss pragmatic aspects of vacuity checking.

1

Acknowledgements

Studying for a master degree in computer science while working full time at Intel
and expanding the happy family is challenging. I would like to thank the following
people, who helped me so much, and made this happen.

My supervisor Prof. Orna Grumberg for being so understanding, open minded,
putting the right pressure on me and making this work enjoyable. Thanks for
many hours of work at the Technion and Mandarin.

My unofficial supervisor Prof. Moshe Vardi for his guidance and vision, and for
sharing his endless knowledge.

Dr. Doron Bustan and Nir Piterman for helping out, taking work to completion
and teaching me so much.

The folks at Intel’s Haifa development center - Roy Armoni, Limor Fix, Andreas
Tiemeyer, Ranan Fraer and others - for introducing me to the world of formal
verification and encouraging my studies.

Finally, to my family, for doing ”eights in the air” and giving up things just so I
can study. My wife Michal, her parents Bella and Kobi and my parents Shosh and
Gadi.

2

Notation and Abbreviations

UQLTL — Universally quantified linear temoral logic
QRELTL — Universally quantified regular expressions linear temoral logic
QALTL — Same as QRELTL, with regular expressions replaced by NFW

x — A propositional variable (associated with σ or α)
y — An interval variable (associated with β)

T (M) — Set of computations of M
σ — A structure assignment (σ : X → 2S)
α — A trace assignment (α : X → 2N)
β — An interval set (β ⊆ {(i, j)| i, j ∈ IN, j ≥ i})

AP — Set of atomic propositions
ϕ — A formula (e.g. LTL, RELTL, UQLTL)
ψ — Usually a subformula of ϕ
M — Model of a system (Kripke structure)
π — A computation (trace) of M

M,π |= ϕ — Trace π of M satisfies ϕ
M, π �|= ϕ — Trace π of M refutes ϕ
M, π |=s ϕ — Trace π of M structure satisfies ϕ
M, π |=t ϕ — Trace π of M trace satisfies ϕ

M, π, i, j|≡ e — Trace π of M tightly satisfies e between i and j
e — A regular expression

Zq — An NFW Z with an initial state q
NFW — Nondeterministic Finite Word Automaton
L(Z) — Language of the NFW Z
Aϕ — An NGBW for ϕ

NGBW — Nondeterministic Generalized Büchi Word automaton
ϕ [ψ ← ⊥] — The formula obtained from ϕ by replacing ψ by true or false

3

Chapter 1

Introduction

Temporal logics, which are modal logics geared towards the description of the
temporal ordering of events, have been adopted as a powerful tool for specifying
and verifying concurrent systems [Pnu77]. One of the most significant develop-
ments in this area is the discovery of algorithmic methods for verifying temporal-
logic properties of finite-state systems [CE81, CES86, LP85, QS81, VW86]. This
derives its significance both from the fact that many synchronization and commu-
nication protocols can be modeled as finite-state systems, as well as from the great
ease of use of fully algorithmic methods. In temporal-logic model checking, we
verify the correctness of a finite-state system with respect to a desired behavior by
checking whether a labeled state-transition graph that models the system satisfies
a temporal logic formula that specifies this behavior (for an in-depth survey, see
[CGP99]).

Beyond being fully-automatic, an additional attraction of model-checking tools
is their ability to accompany a negative answer to the correctness query with a
counterexample to the satisfaction of the specification in the system. Thus, to-
gether with a negative answer, the model checker returns some erroneous execu-
tion of the system. These counterexamples are very important and can be essential
in detecting subtle errors in complex designs [CGMZ95]. On the other hand, when
the answer to the correctness query is positive, most model-checking tools provide
no witness for the satisfaction of the specification in the system. Since a positive
answer means that the system is correct with respect to the specification, this may,
a priori, seem like a reasonable policy. In the last few years, however, industrial
practitioners have become increasingly aware of the importance of checking the
validity of a positive result of model checking. The main justification for suspect-
ing the validity of a positive result is the possibility of errors in the modeling of

4

the system or of the desired behavior, i.e., the specification.
Early work on “suspecting a positive answer” concerns the fact that temporal

logic formulas can suffer from antecedent failure [BB94]. For example, in veri-
fying a system with respect to the CTL specification ϕ = AG(req → AF grant)
(“every request is eventually followed by a grant”), one should distinguish be-
tween vacuous satisfaction of ϕ, which is immediate in systems in which requests
are never sent, and non-vacuous satisfaction, in systems where requests are some-
times sent. Evidently, vacuous satisfaction suggests some unexpected properties
of the system, namely the absence of behaviors in which the antecedent of ϕ is
satisfied.

Several years of practical experience in formal verification have convinced the
verification group at the IBM Haifa Research Laboratory that vacuity is a serious
problem [BBER97]. To quote from [BBER97]: “Our experience has shown that
typically 20% of specifications pass vacuously during the first formal-verification
runs of a new hardware design, and that vacuous passes always point to a real
problem in either the design or its specification or environment.” The usefulness
of vacuity analysis is also demonstrated via several case studies in [PS02]. Of-
ten, it is possible to detect vacuity easily by checking the system with respect
to hand-written formulas that ensure the satisfaction of the preconditions in the
specification [BB94, PP95].

These observations led Beer et al. to develop a method for automatic testing
of vacuity [BBER97]. Vacuity is defined as follows: a formula ϕ is satisfied in a
system M vacuously if it is satisfied in M , but some subformula ψ of ϕ does not
affect ϕ in M , which means that M also satisfies ϕ [ψ ← ψ ′] for all formulas ψ′

(ϕ [ψ ← ψ′] denotes the result of substituting ψ ′ for ψ in ϕ). Beer et al. proposed
testing vacuity by means of witness formulas. In the example above, it is not hard
to see that a system satisfies ϕ non-vacuously iff it also satisfies EF req . In gen-
eral, however, the generation of witness formulas is not trivial, especially when
we are interested in other types of vacuity passes, which are more complex than
antecedent failure. While [BBER97] nicely set the basis for a methodology for de-
tecting vacuity in temporal-logic specifications, the particular method described
in [BBER97] is quite limited (see also [BBER01]). The type of vacuity passes
handled is indeed richer than antecedent failure, yet it is still very restricted. Beer
et al. consider the subset w-ACTL of the universal fragment ACTL of CTL. The
logic w-ACTL consists of all ACTL formulas in which all the (Boolean or tem-
poral) binary operators have at least one operand that is a propositional formula.
Many natural specifications cannot be expressed in w-ACTL.

A general method for detection of vacuity for specifications in CTL∗ (and

5

hence also LTL, which was not handled by [BBER97]) was presented in [KV99,
KV03]. The key idea there is a general method for generating witness formulas. It
is shown in [KV03] that instead of replacing a subformulaψ by all subformulasψ ′,
it suffices to replace it by either true or false depending on whether ψ occurs in ϕ
with negative polarity (i.e., under an odd number of negations) or positive polarity
(i.e., under an even number of negations). Thus, vacuity checking amounts to
model checking witness formulas with respect to all (or some) of the subformulas
of the specification ϕ. It is important to note that the method in [KV03] is for
vacuity with respect to subformula occurrences. The key feature of occurrences is
that a subformula occurrence has a pure polarity (exclusively negative or positive).
In fact, it is shown in [KV03] that the method is not applicable to subformulas with
mixed polarity (both negative and positive occurrences).

Recent experience with industrial-strength property-specification languages
such as ForSpec [AFF+02] suggests that the restriction to subformula occurrences
of pure polarity is not negligible. ForSpec, which is a linear-time language, is sig-
nificantly richer syntactically (and semantically) than LTL. In particular, it has a
rich set of arithmetical and Boolean operators. As a result, even subformula occur-
rences may not have pure polarity, e.g., in the formulas p⊕q (⊕ denotes exclusive
or). While we can rewrite p⊕q as (p∧¬q)∨ (¬p∧q), it forces the user to think of
every subformula occurrence of mixed polarity as two distinct occurrences, which
is rather unnatural. Also, a subformula may occur in the specification multiple
times, so it need not have a pure polarity even if each occurrence has a pure po-
larity. For example, if the LTL formula G(p → p) holds in a system M then we
would expect it to hold vacuously with respect to the subformula p (which has a
mixed polarity), though not necessarily with respect to either occurrence of p, be-
cause both formulas G(true→ p) and G(p→ false) may fail in M . (Surely, the
fact thatG(true→ false) fails inM should not entail thatG(p→ p) holds inM
non-vacuously.) Our first goal in this thesis is to remove the restriction in [KV03]
to subformula occurrences of pure polarity, and consider vacuity with respect to
subformulas.

The generality of our framework requires us to re-examine the basic intuition
underlying the concept of vacuity. As defined, a formula ϕ is satisfied in a sys-
temM vacuously if it is satisfied inM but some subformula ψ of ϕ does not affect
ϕ in M . It is less clear, however, what does “does not affect” means. Intuitively,
it means that we can “perturb” ψ without affecting the truth of ϕ in M . Both
[BBER97] and [KV03] consider only syntactic perturbation, but no justification
is offered for this decision. We argue that another notion to consider is that of
semantic perturbation, where the truth value of ψ in M is perturbed arbitrarily.

6

The first part of this thesis is an examination in depth of this approach. We
model arbitrary semantic perturbation by a universal quantifier, which in turn is
open to two interpretations (cf. [Kup95]). It turns out that we get two notions of
“does not affect” (and therefore also of vacuity), depending on whether universal
quantification is interpreted with respect to the system M or with respect to its
computation tree. We refer to these two semantics as “structure semantics” and
“trace semantics”. Surprisingly, the original, syntactic, notion of perturbation falls
between the two semantic notions.

We argue then that trace semantics is the preferred one for vacuity checking.
Structure semantics is simply too weak, yielding vacuity too easily. Formula se-
mantics is more discriminating, but it is not robust, depending too much on the
syntax of the language. In addition, these two semantics yield notions of vacu-
ity that are computationally intractable. In contrast, trace semantics is not only
intuitive and robust, but it can be checked easily by a model checker.

In addition to a rich set of arithmetical and Boolean operators, industrial property-
specification languages offer a regular layer, which includes regular expressions
and formulas constructed from regular expressions. For example, the ForSpec for-
mula e seq θ, where e is a regular expression and θ is a formula, asserts that some
e sequence is followed by θ, and the ForSpec formula e triggers θ, asserts that all
e sequences are followed by θ. Our second goal in this thesis is to extend vacuity
detection to such a regular layer of linear-temporal logics. Rather than treat the
full complexity of industrial languages, we focus here on RELTL, which is the
extension of LTL with a regular layer. Thus, we need to define, and then check,
the notion of “does not affect,” not only for subformulas but also for regular ex-
pressions. We refer to the latter as regular vacuity. As an example, consider the
property ϕ = globally ((req · (¬ack)∗ · ack) triggers grant), which says that a
grant is given exactly one cycle after the cycle in which a request is acknowl-
edged. Note that if (¬ack)∗ · ack does not affect the satisfaction of ϕ in M (that
is, replacing (¬ack)∗ · ack by any other sequence of events does not cause M to
violate ϕ), we can learn that acknowledgments are actually ignored: grants are
given, and stay on forever, immediately after a request. Such a behavior is not
referred to in the specification, but can be detected by regular vacuity.

In order to understand our definition for regular vacuity, consider a formula ϕ
over a set AP of atomic propositions. Let Σ be the set of Boolean functions over
AP , and let e be a regular expression over Σ appearing in ϕ. The regular expres-
sion e induces a language – a set of finite words over Σ. For a word w ∈ Σω,
the regular expression e induces a set of intervals [AFF+02]: these intervals de-
fine subwords of w that are members in the language of e. By saying that e does

7

not affect ϕ in M , we want to capture the fact that we could modify e, replace
it with any other regular expression, and still ϕ would be satisfied in M . Once
again, we argue that the semantic approach to modifications of e, where “does
not affect” is captured by means of universal quantification, is preferred. Thus, in
RELTL vacuity there are two types of elements we need to universally quantify to
check vacuity. First, as in LTL, in order to check whether an RELTL subformula
ψ, which is not a regular expression, affects the satisfaction of ϕ, we quantify
universally over a proposition that replaces ψ. In addition, checking whether a
regular expression e that appears in ϕ affects its satisfaction, we need to quantify
universally over intervals. Thus, while LTL vacuity involves monadic quantifi-
cation (over the sets of points in which a subformula may hold), regular vacuity
involves dyadic quantification (over intervals – sets of pairs of points, in which a
regular expression may hold). We also discuss two weaker alternative definitions
of regular vacuity: a restriction of the universally quantified intervals to intervals
of the same duration as e (in case such a duration is well defined), and an approx-
imation of the dyadic quantification over intervals by monadic quantification over
the Boolean events referred to in the regular expressions.

In the second part of this thesis we show that regular vacuity is decidable, and
that the automata-theoretic approach to LTL [VW94] can be extended to handle
dyadic universal quantification. Unlike monadic universal quantification, which
can be handled with no increase in computational complexity, the extension to
dyadic quantification involves an exponential blow-up (in addition to the standard
exponential blow-up of handling LTL [SC85]), resulting in an EXPSPACE upper
bound, which should be contrasted with a PSPACE upper bound for RELTL model
checking. The NEXPTIME-hardness lower bound [AFF+03](Appendix A), while
leaving a small gap with respect to the upper bound, shows that an exponential
overhead on top of the complexity of RELTL model checking seems inevitable.

In the final part of this thesis we address several pragmatic aspects of vacu-
ity checking. We first discuss whether vacuity should be checked with respect to
subformulas or subformula occurrences and argue that both checks are necessary.
We then discuss how the number of vacuity checks can be minimized and how
vacuity results should be reported to the user. We argue that with respect to reg-
ular vacuity, one may need to restrict attention to specifications in which regular
expressions are of pure polarity. We show that under this assumption, the tech-
niques of [KV03] can be extended to regular vacuity, which can then be reduced
to standard model checking. Finally, we describe our experience of implement-
ing vacuity checking in the context of a ForSpec-based model checker. We found
vacuity detection useful in detecting wrong assumption (restricting the desired

8

model behavior), detecting bugs in the model and detecting inaccurate properties.
In fact, we only consider a verification task to be complete after vacuity analysis.

The thesis summarizes our work on vacuity detection covered in the following
papers:

• R. Armoni, L. Fix, A. Flaisher, O. Grumberg, N. Piterman, A. Tiemeyer, M.
Vardi. Enhanced Vacuity Detection in Linear Temporal Logic. CAV 2003.

• D. Bustan, A. Flaisher, O. Grumberg, O. Kupfreman, M. Vardi. Regular
Vacuity. Submitted.

Appendixes A and B prove the correctness of the construction for RELTL and
regular vacuity. They are given as appendixes due to significant enhancements
performed by Doron Bustan. Appendixes C and D prove lower bound of struc-
ture vacuity and regular vacuity. They were writen by Nir Piterman and Orna
Kupferman and included for the sake of completeness.

9

1.1 Related Work

1.1.1 Vacuity Detection

The problem of trivially valid formulas was first noted by Beatty and Bryant
[BB94], who termed it antecedent failure. It seems [BBER97] is the first attempt
to automatically detect trivial passes under symbolic model checking. In addi-
tion to antecedent failure, Beer at el. cover other kinds of trivially true formulas,
and call it a vacuous pass. They present interesting examples of vacuous passes,
such as AG(p → AX(q → AXr)). The formula passes vacuously not only if p
never occurs, but also if q never occurs at a next state of p. They define a subset
of ACTL, called w-ACTL (witness ACTL), for which it is possible to construct
a single formula w(ϕ) which detects all vacuous passes of ϕ. A side affect of
their method is that the witness formula which detects trivial passes, also provides
an interesting witness when false. Examining an interesting witness can provide
some confidence that the formal specification accurately reflects the intent of the
user.

Beer at el. report that typically 20% of formulas pass vacuously during the first
formal verification runs of new hardware designs, and that vacuous passes always
point to real problem in either the design, the specification or the environment.
They also report that of the formulas which pass non-vacuously, examination of
the interesting witnesses discovers a problem with approximately 10% of the for-
mulas. Examining such witnesses is orthogonal to vacuity detection.

According to Beer at el. vacuity occurs when one of the operands does not
affect the validity of the formula. Formally, a sub formula ξ does not affect the
truth value of ϕ in model M , if for every formula ξ ′, the truth value of ϕ in model
M is the same as the truth of ϕ in model M. Here, ϕ′ is the formula obtained by
replacing ξ with ξ ′ in ϕ. They say that a formula ϕ passes vacuously in model M
if it passes, and contains a subformula ξ such that ξ does not affect the truth of ϕ
in M .

As mentioned, [BBER97] is restricted to a subset of ACTL called w-ACTL.
They claim that in their experience, this subset is sufficient for expressing most
of the formulas used by engineers for specification. w-ACTL formulas are ACTL
formulas in which for all binary operators at least one of the operands is a propo-
sitional formula. For each operator, they define the important operand for which
vacuity will be detected. They restrict vacuous passes only to cases where the
non-affecting subformula is important. For example, in the formula AG(req →
AFgrant) they check the case where req never happens, but ignore the case in

10

which AFgrant always holds.
According to [BBER97], an interesting witness is a path showing one instance

of the truth of the formula, on which every important subformula affects the truth
of the formula. Beer at el. show how to construct an interesting witness for a
w-ACTL formula. They say that a formula w is a witness formula of ϕ, denoted
w(ϕ), if for any model M : (1) (M |= ϕ and M |= w(ϕ)) iff ϕ passes vacuously
in M . (2) If M |= ϕ and M �|= w(ϕ) then any cex of w(ϕ) in M is also an inter-
esting witness of ϕ in M . They show how to construct a witness formula for any
w-ACTL formula. Their construction algorithm replaces the smallest important
subformula with false.

Kupferman and Vardi [KV99, KV03] extend the work of [BBER97] by pre-
senting a general method for detecting vacuity for specifications in CTL∗. Be-
yond the extension of the method to a highly expressive specification language,
they also give a stronger definition of vacuity, in the sense that they check whether
all the subformulas of the specification affect its truth value. Given a formula ϕ
and a subformula ψ, they denote by ϕ [ψ ← ⊥] the formula obtained from ϕ by
replacing ψ by true if ψ is of negative polarity and by false if ψ is of positive
polarity. They show that for a subformula occurrence ψ of ϕ and for every system
M , if M |= ϕ[ψ ← ⊥], then for every formula ξ, we have M |= ϕ[ψ ← ξ]. It
follows that vacuity detection involves model checking of M with respect to at
most |ϕ| formulas, and can be checked in time O(CM(|ϕ| · |ϕ|)), where CM(|ϕ|)
is the complexity of the model checking problem. They show that for ϕ in CTL,
a subformula ψ of ϕ with multiple occurrences, and a system M , the problem of
deciding whether ψ does not affect ϕ in M is co-NP-complete.

Kupferman and Vardi also study the generation of interesting witnesses. Given
a formula ϕ in either LTL or CTL∗, they define witness(ϕ) = ϕ

∧
ψ∈cl(ϕ) ¬ϕ[ψ ←

⊥]. Intuitively, a path π satisfies witness(ϕ) if π satisfies ϕ and in addition, π
does not satisfy the formula ϕ[ψ ← ⊥] for all the subformulas ψ of ϕ. They show
that a counter example for ¬witness(ϕ) in M , is an interesting witness for ϕ in
M . They conclude that for ϕ in CTL∗, the problem of generating an interesting
witness for ϕ in M is PSPACE-complete.

Purandare and Somenzi [PS02] examine the practicality and usefulness of
[BBER97, KV03] for CTL. They show that a thorough vacuity check as in [KV03]
can be implemented efficiently for CTL, so that the overhead relative to plain
model checking is in practice very limited in spite of the worst case complexity.
Instead of checking ϕ and the witness formula generated by various replacements
in a sequential fashion, they check ϕ and all its replacements in a single bottom-up
pass over the parse tree or ϕ. At each node they exploit the relationships between

11

the sets of states satisfying the various formula. According to polarity, the satisfy-
ing set of a witness subformula is either a lower bound or an upper bound on the
satisfying set of the corresponding subformulas of ϕ. This allows them to speed
up fixpoint computations by accelerating convergence, or simplifying the compu-
tation of preimages. They also detect cases in which different replacements lead
to an equivalent formula.

Purandare and Somenzi provide several examples of vacuity, including one
where thorough vacuity detection is required. They consider the formulaAG(start∧
valid(x)∧ valid(y)→ valid(z)), where start holds in the first clock of the com-
putation, and valid() tells whether the inputs x and y or the output z are not
denormals (this is a floating point multiplier). They report that out of 24 replace-
ments, 20 produce vacuous passes. They revealed that (1) The environment of the
model lacks an assignment to start; (2) The MSB of the exponent could be incor-
rect due to overflow during its computation; and (3) The multiplier maintains the
invariant AGvalid(z). These bugs were found because each atomic proposition
was replaced separately, and the detection that the antecedent is redundant.

Two recent papers by Gurfinkel and Checkik examine additional aspects of
vacuity. In [GC04a] Gurfinkel and Checkik show the relation between vacuity
detection and the 3-valued Kleene logic. Simple vacuity detection is exactly the
3-valued model checking problem. They show generalizations of the vacuity prob-
lem to multi-valued model checking, such as four valued-model checking to de-
termine if a formula is vacuous and true, or vacuous and false. The paper deals
with subformula occurrences in CTL.

The idea of using multi-valued logic for encoding different degrees of vacuity
is also applicable to cases where we want to check vacuity of a formula ϕ with re-
spect to several subformulas, or multiple occurrences of the same formula. They
introduce the notion of mutual vacuity between different subformulas. Logic val-
ues encode different degrees of vacuity, such as ”ϕ is mutually true in a and b,
vacuous in c and independent of d, and non vacuous in e”.

In [GC04b] Gurfinkel and Checkik relate to the comparison between the three
alternative definitions of vacuity in [AFF+03] (see chapter 3), and claim that
although [AFF+03] shows that structure and formulas semantics are sensitive to
the model and specification language, the robustness of trace semantics is not for-
mally defined. They formalize the notion of robust vacuity and use our quantified
temporal logic formulation to extend semantic vacuity to CTL∗. Their definition
requires a vacuous pass in every model K ′ that is bisimilar to K. When moving
from LTL to CTL∗ [GC04b] move from traces to trees. They show that vacuity
detection for CTL∗ is expensive (2EXPTIME-complete) , and define fragments of

12

CTL∗ for which detecting vacuous satisfaction in not harder than model checking.
Gurfinkel and Checkik also show that vacuity is preserved by abstraction.

They show that vacuity detection is more precise than traditional abstract model
checking in the sense that sometimes, it is possible to determine that a formula
is vacuously satisfied by an abstract model, even if the result of abstract model
checking is inconclusive.

1.1.2 Coverage

The notions of coverage and vacuity are closely related. Coverage metrics are
based on modifications applied to the system (rather than the specification) in
order to check which parts of it were actually relevant for the verification process
to succeed. Chockler, Kupferman and Vardi [CKV01] suggest several coverage
metrics for model checking, and describe two alternative algorithms for finding
the uncovered parts of the system under these definitions.

Suspecting the system of containing an error even in the case model checking
succeeds, is the basis for both vacuity detection and coverage in temporal logic
model checking. Clearly, an erroneous behavior of the system can escape the
verification if this behavior is not captured by the specification. Coverage met-
ric techniques are common in simulation based verification [HMA95, HYHD95,
DGK96, MAH98, BH99, FAD99]. However, these metrics cannot be applied to
model checking as the process of model checking visits all states.

The idea of coverage in temporal logic model checking (coverage) is that a
state is uncovered if its labeling is not essential to the success of the model check-
ing process. There are two approaches for defining and developing algorithms
for coverage metrics in temporal logic model checking. The first approach, of
Katz et al. [KGG99], is based on a comparison of the system with a tableau of
the specification. This approach is somewhat strict, as we want specifications to
be much more abstract than their implementations, and as sometimes, only part
of the design is checked using model checking. A refinement of this approach
enables specifying which parts of the model are relevant. The second approach,
of Hoskote et al. [HKHZ99], is to define coverage by examining modifications
in the system on the satisfaction of the specification. A state w is q-covered by ϕ
if the Kripke structure obtained from K by flipping the value of q in w (denoted
K̃w,q) no longer satisfies ϕ. That is, the value of q in w is crucial for the satisfac-
tion of ϕ in K. By [HKHZ99], a state is covered if it belongs to q-cover(K,ϕ)
for some signal q. This approach resembles vacuity detection, where we examine
modifications in the specification on its satisfaction in the system.

13

Chockler et al. [CKV01] introduce two principals, which they believe should
be part of any coverage metric for model checking: a distinction between state-
based and logic-based coverage, and a distinction between the system and its
environment. The state based approach modifies q in every state of the Kripke
structure K. On the other hand, when the system is modeled as a circuit, flipping
the value of a signal in a state changes not only the label of the state but also the
transitions to and from the state. In the logic-based approach, the value of a signal
is fixed to 0,1 or don’t care everywhere in the circuit. These two approaches are
similar to the structure and trace semantics we examine for vacuity detection in
chapter 3. The second principal differentiates between closed and open systems,
the later having an interface with the environment. Clearly, there is no point to
talk about q-coverage for a signal q that corresponds to an input variable. Simi-
larly, there is no point in checking vacuity with respect to an input variable, as the
formula is already satisfied for every possible behavior of the input.

Two alternative definitions for the naive algorithm for coverage, which finds
the set of covered states or signals by model checking each of the modified sys-
tems, are presented in [CKV01]. The first alternative is a symbolic approach to
finding the uncovered parts of the system. Notice that changing q in several states
together may have a different affect than changing q in each state alone. The sec-
ond alternative is an algorithm that makes use of overlaps among the modified
systems. Since each modification involves a small change in the original system,
there is a great deal of work that can be shared when we model check all the
modified systems. Both algorithms work on full CTL.

Chockler et al. also relate to the presentation of output. For a circuit S and
a signal q let q-cover(S, ϕ) denote the set of states q-covered by ϕ in S. They
propose to check at first whether q-cover(S, ϕ) is empty for some q, before merg-
ing all results. An empty set may indicate vacuity in the specification. Another
interesting output are computations that contain no covered states or many state
that are not covered. Such computations correspond to behaviors of the circuit
that are not referred to by the specification. We refer to the presentation of vacuity
results in section 8.1.

Finally [CKV01] raise several open issues with respect to coverage metrics
to temporal logic model checking. One is incompleteness of the specification vs.
redundancies in the system. Another is the feasibility of coverage algorithms, as
their complexity is larger than model checking. Chockler, Kupferman, Kurshan
and Vardi address coverage metrics from a practical point of view in [CKKV01].
They suggest several definitions of coverage for LTL specifications, and describe
two algorithms for computing the parts of the system that are not covered by the

14

specification. The first algorithm is built on top of automata-based model check-
ing, and the second reduces the coverage problem to a model checking problem.

In [CKKV01] the three alternative definition of coverage for LTL specifica-
tions are structure coverage (”flipping always”), node coverage (”flipping once”)
and tree coverage (”flipping sometimes”). Each approach measures a different
sensitivity of the satisfaction of the specification to changes in the system. Chock-
ler at el. use SC(K,ϕ, q), NC(K,ϕ, q), TC(K,ϕ, q) to denote sets of states that
are structure q−covered, node q−covered and tree q−covered, respsectively inK.
They show that SC(K,ϕ, q) ⊆ TC(K,ϕ, q), NC(K,ϕ, q) ⊆ TC(K,ϕ, q), and
that SC(K,ϕ, q) �⊆ NC(K,ϕ, q), NC(K,ϕ, q) �⊆ SC(K,ϕ, q). The later rela-
tion resembles the occurrence-subformula relation described in section 8.2. In
vacuity, as in coverage, we cannot prefer one over the other as there are examples
where a vacuous pass is only detected when we check vacuity with respect to a
subformula, and vice versa.

Chockler at el. show easy implementation for node coverage in the tool COSPAN,
which is the engine of FormalCheck, and show that the implementation can be
modified in order to handle structure and tree coverage. The implementation is
done by introducing two new Boolean variables flip and flag, which flip the
value of q exactly once when both flip and flag are asserted. The increase in the
number of variables is only by 2, thus the complexity remains O(2n). The com-
plexity for structure and tree coverage is a function of the size of the state space
which is at most exponential in the number of state variables. For both tree and
structure coverage, Chockler at el. double the number of variables by introducing
n new variables that encode the flipped state. Thus the state-space size is O(22n)
instead of O(2n).

1.2 Organization

In the next chapter we give necessary background on automata theory and tempo-
ral logic, including UQLTL which augments LTL with quantification over propo-
sitional variables. The remainder of the thesis is organized in three parts. Part
1 covers subformula vacuity. We compare three alternative definitions of vacuity
and show an efficient algorithm for vacuity detection with respect to trace seman-
tics, which handles subformulas of mixed polarity. Part 2 covers regular vacu-
ity, which is vacuity detection with respect to regular expressions. We introduce
RELTL, a temporal logic that extends LTL with regular expressions, define regu-
lar vacuity, and provide an algorithm that determines regular vacuity (but involves

15

another exponential blow-up). Part 3 covers pragmatic aspects of both subfor-
mula vacuity and regular vacuity. Appendixes A and B prove the correctness of
the construction for RELTL and regular vacuity. Appendixes C and D prove lower
bound of structure vacuity and regular vacuity.

16

Chapter 2

Preliminaries

2.1 Automata

Definition 2.1.1 (NFW) A nondeterministic finite word automaton (NFW) is a
tuple Z = 〈Σ, Q,Δ, q0,W 〉 s.t. Σ is an alphabet, Q is a set of states, Δ : (Q ×
Σ) → 2Q is a transition relation, q0 is a single initial state and W ⊆ Q is the set
of accepting states.

Let π = π0, π1, . . . be a finite/infinite word over Σ. For i ∈ IN, let πi =
πi, πi+1, . . . denote the suffix of π from its ith letter. A sequence ξ = q0, q1, . . . qn
in Q∗ is a run of Z over a finite word π ∈ Σ∗, if q0 is the initial state, and for
every 0 ≤ i < n, we have qi+1 ∈ Δ(qi, πi). A run ξ of Z is accepting if qn ∈ W .
An NFW Z accepts a word π if Z has an accepting run over π. We use L(Z) to
denote the set of words that are accepted by Z. For q ∈ Q, we denote by Zq the
automaton Z with a single initial state q.

Definition 2.1.2 (NGBW) A nondeterministic generalized Büchi word automa-
ton (NGBW) is A = 〈Σ, S, S0, δ,F〉, where Σ is a finite set of alphabet letters, S
is a set of states, δ : S×Σ→ 2S is a transition function, S0 ⊆ S is a set of initial
states, and F ⊆ 2S is a set of sets of accepting states.

A sequence ρ = s0, s1, . . . in Sω is a run of A over an infinite word π ∈ Σω, if
s0 ∈ S0 and for every i > 0, we have si+1 ∈ δ(si, πi). We use inf(ρ) to denote
the set of states that appear infinitely often in ρ. A run ρ of A is accepting if for
every F ∈ F , we have inf(ρ) ∩ F �= ∅. An NGBW A accepts a word π if A has
an accepting run over π. We use L(A) to denote the set of words that are accepted
by A. For s ∈ S, we denote by As the automatonA with a single initial state s.

17

2.2 Temporal Logic

We define the temporal logic LTL over a set of atomic propositionsAP in positive
normal form. The syntax of LTL is as follows. An atom p ∈ AP is a formula and
so is ¬p. If ϕ1 and ϕ2 are LTL formulas, then so are ϕ1 ∧ ϕ2, ϕ1 ∨ ϕ2, next ϕ1,
ϕ1 until ϕ2, and ϕ1 release ϕ2. Each LTL formula ϕ induces a language L(ϕ) ⊆
(2AP)ω of exactly all the infinite words that satisfy ϕ.

The semantics of LTL is defined with respect to an infinite word π ∈ (2AP)ω.
We use π, i |= ϕ to indicate that the word πi satisfies the formula ϕ. The relation
|= is defined by induction on the structure of ϕ as follows.

• For p ∈ AP , we have π, i |= p iff p ∈ πi, and π, i |= ¬p iff p �∈ πi.
Let ϕ, ϕ1, ϕ2 be formulas.

• π, i |= ϕ1 ∧ ϕ2 iff π, i |= ϕ1 and π, i |= ϕ2.

• π, i |= ϕ1 ∨ ϕ2 iff π, i |= ϕ1 or π, i |= ϕ2.

• π, i |= next ϕ iff π, i+ 1 |= ϕ.

• π, i |= ϕ1 until ϕ2 iff there exists k ≥ i such that π, k |= ϕ2 and for all i ≤
j < k we have π, j |= ϕ1.

• π, i |= ϕ1 release ϕ2 iff either for some j ≥ i π, j |= ϕ1 and for every
i ≤ k ≤ j we have π, k |= ϕ2, or for every j ≥ i, π, j |= ϕ2.

We use the operator (eventually ϕ) as a shorthand for (true until ϕ), and we
use the operator (globally ϕ) as a shorthand for (false release ϕ). Finally we
define regular expression over an alphabet Σ. The syntax of regular expressions
is as follows. A letter a ∈ Σ is a regular expression. If e1 and e2 are regular
expressions, then so are e · e, e + e, and e∗. Each regular expression e induces a
language L(e) ⊆ Σ∗ of exactly all the finite words that satisfy e. The semantics
of regular expressions is defined as follows:

• For a ∈ Σ, L(a) is the single word a.
For regular expressions e1 and e2.

• L(e1 · e2) consists of all words formed by concatenating a word in L(e1)
with a word in L(e2).

• L(e1 + e2) is the union of L(e1) and L(e2).

18

• L(e∗) consists of all words formed by concatenating zero or more words
from L(e), and includes the empty word ε.

Definition 2.2.1 (Occurrence and Subformula Polarity) An occurrence of for-
mula ψ of ϕ is of positive polarity in ϕ if it is in the scope of an even number
of negations, and of negative polarity otherwise. The polarity of a subformula
is defined by the polarity of its occurrences as follows. Formula ψ is of positive
polarity if all occurrences of ψ in ϕ are of positive polarity, of negative polarity if
all occurrences of ψ in ϕ are of negative polarity, of pure polarity if it is either of
positive or negative polarity, and of mixed polarity if some occurrences of ψ in ϕ
are of positive polarity and some are of negative polarity.

Given a formulaϕ and a subformula of pure polarityψ we denote byϕ [ψ ← ⊥]
the formula obtained from ϕ by replacing ψ by true if ψ is of negative polarity
and by false if ψ is of positive polarity. Dually, ϕ [ψ ← �] denotes the formula
obtained from ϕ by replacing ψ by false if ψ is of negative polarity and by true
if ψ is of positive polarity.

2.3 UQLTL

The logic UQLTL augments LTL with universal quantification over propositional
variables. Let X be a set of propositional variables and let x ∈ X . The syntax of
LTL is extended as follows. If ϕ is an LTL formula over the extended set of atomic
propositionsAP ∪X , then ∀xϕ is a UQLTL formula. E.g., ∀x globally (x→ p)
is a legal UQLTL formula, while globally ∀x (x→ p) is not. UQLTL is a subset
of Quantified Propositional Temporal Logic [SVW85], where all the free vari-
ables are quantified universally. In the sequel, we use x to denote a propositional
variable. A closed formula is a formula with no free propositional variables.

We now give definitions of two semantics for UQLTL formulas. The first
is structure semantics where a propositional variable is bound to a subset of the
states of the Kripke structure. The second is trace semantics where a propositional
variable is bound to a subset of the locations on the trace. Structure semantics
is defined with respect to a Kripke structure K =< AP,W,R,w0, L >, where
AP is the set of atomic propositions, W is a set of states, R ⊆ W × W is the
transition relation that must be total (i.e. for every w ∈ W there exists w ′ ∈ W
s.t. R(w,w′)), w0 is an initial state, and L : W → 2AP maps each state to a
set of atomic propositions true in this state. A path of K is an infinite sequence

19

π = w0, w1, w2, · · · of states s.t. for all i ≥ 0 we have R(wi, wi+1). Let T (M)
denote the set of computations of M .

LetM be a Kripke structure with a set of states S, let π ∈ T (M), and letX be
a set of propositional variables. A structure assignment σ : X → 2S maps every
propositional variable x ∈ X to a set of states in S. We use si to denote the ith
state along π, and ϕ to denote UQLTL formulas.

Definition 2.3.1 (UQLTL Structure Semantics) The relation |=s is defined in-
ductively as follows:

• M,π, i, σ |=s x iff si ∈ σ(x).

• M,π, i, σ |=s ∀xϕ iff M,π, i, σ[x← S ′] |=s ϕ for every S ′ ⊆ S.

• For any other formula ϕ, M,π, i, σ |=s ϕ is defined as in LTL.

A closed UQLTL formula ϕ is structure satisfied at point i of trace π ∈ T (M),
denoted M,π, i |=s ϕ, iff M,π, i, σ |=s ϕ for some σ (choice is not relevant since
ϕ is closed). A closed UQLTL formula ϕ is structure satisfied in structure M ,
denoted M |=s ϕ, iff M,π, 0 |=s ϕ for every trace π ∈ T (M).

We now define the trace semantics for UQLTL. LetX be a set of propositional
variables. A trace assignment α : X → 2N maps a propositional variable x ∈ X
to a set of natural numbers (points on a path).

Definition 2.3.2 (UQLTL Trace Semantics) The relation |=t is defined induc-
tively as follows:

• M,π, i, α |=t x iff i ∈ α(x).

• M,π, i, α |=t ∀xϕ iff M,π, i, α[x← N ′] |=t ϕ for every N ′ ⊆ N.

• For any other formula ϕ, M,π, i, σ |=t ϕ is defined as in LTL.

A closed UQLTL formula ϕ is trace satisfied at point i of trace π ∈ T (M),
denoted M,π, i |=t ϕ, iff M,π, i, α |=t ψ for some α (choice is not relevant since
ϕ is closed). A closed UQLTL formula ϕ is trace satisfied in structureM , denoted
M |=t ϕ, iff M,π, 0 |=t ϕ for every trace π ∈ T (M).

We show that trace semantics is stronger than structure semantics in the fol-
lowing sense. Whenever a UQLTL formula holds according to trace semantics it
holds according to structure semantics. The opposite is not true. Indeed, a trace

20

assignment can assign a variable different values when the computation visits the
same state of M at different point in the trace. We observe that for LTL formulas
both semantics are identical. That is, if ϕ is an LTL formula, then M |=s ϕ iff
M |=t ϕ. We sometimes use |= to denote the satisfaction of an LTL formula,
rather than |=s or |=t.

Theorem 2.3.3 Given a structure M and a UQLTL formula ϕ:

• M |=t ϕ ⇒ M |=s ϕ

• M |=s ϕ �⇒ M |=t ϕ

The proof resembles the proofs in [Kup95] for the dual logic EQCTL. Kupfer-
man shows that a structure might not satisfy a formula, although the formula is
satisfied by its computation tree.

Proof: Assume in the way of contradiction that M |=t ϕ but M �|=s ϕ. Then
there exists a structure assignment σ and a trace π such that M,π, 0, σ �|=s ϕ.
Let π = s0, s1, s2, We build the assignment α(x) = {i| si ∈ σ(x)}, which
includes point i in the assignment α of a propositional variable x iff si is in σ(x).
Both assignments map all propositional variables in ϕ to the same truth values
along the trace π, thus M,π, 0, α �|=t ϕ. This implies that M �|=t ϕ, in contradic-
tion with the assumption.

For the other direction, consider the formula ϕ = ∀x globally (x → next x)
and a Kripke structure with a single state s0 that has a self loop.

s0

x !x !x

Figure 2.1: M |=s ϕ �⇒M |=t ϕ.

We show that M,σ |=s ϕ for every σ. There are two possible structure as-
signments, σ(x) = ∅ and σ(x) = s0. If s0 ∈ σ(x), then x is always satisfied and

21

M,σ |=s ϕ. If s0 �∈ σ(x), then X¬x is always satisfied and M,σ |=s ϕ. Thus
M |=s ϕ.

We now show that M �|=t ϕ. Notice that M has a single trace π. Consider the
trace assignmentα that maps x only to the first point along π. That is, α(x) = {0}.
For that assignment M,π, 0, α �|=t ϕ, which implies M �|=t ϕ.

22

Part I

Subformula Vacuity

23

Chapter 3

Alternative Definitions of Vacuity

Let ψ be a subformula of ϕ. We give three alternative definitions of when ψ
does not affect ϕ, and compare them. We refer to the definition of [BBER97] as
formula vacuity. We give two new definitions, trace vacuity and structure vacuity,
according to trace and structure semantics. Notice that we are only interested in
the cases where ϕ is satisfied in the structure.

Intuitively, ψ does not affect ϕ in M if we can perturb ψ without affecting
the truth of ϕ in M . In previous work, syntactic perturbation was allowed. Using
UQLTL we formalize the concept of semantic perturbation. Instead of changing
ψ syntactically, we directly change the set of points in a structure or on a trace in
which it holds. That is, we replace ψ by a propositional variable that can receive
any value (according to the relevant sematic definition).

Definition 3.0.4 (Does Not Affect) Let ϕ be a formula satisfied in M where ϕ
and M are both defined over AP. Let ψ be a subformula of ϕ.

• ψ does not affectf ϕ in M iff for every LTL formula ξ defined over AP, we
have M |= ϕ [ψ ← ξ] [BBER97].

• ψ does not affects ϕ in M iff M |=s ∀xϕ [ψ ← x].

• ψ does not affectt ϕ in M iff M |=t ∀xϕ [ψ ← x].

We say that ψ affectsf ϕ in M iff it is not the case that ψ does not affectf ϕ
in M. We say that ϕ is formula vacuous in M , if there exists a subformula ψ such
that ψ does not affectf ϕ. We define affectss, affectst, structure vacuity and trace
vacuity similarly.

24

3.1 Comparing the Alternative Definitions of Vacuity

In the following section we compare the three alternative definitions of vacuity.
We show that they are all different. We also argue why trace vacuity is the pre-
ferred definition. Notice that we do not restrict a subformula to occur once and it
can be of mixed polarity. We show that our three semantics form a hierarchy, with
structure semantics being the weakest and trace semantics the strongest.

We show that structure vacuity is weaker than formula vacuity. That is, ψ
might affectf ϕ in M , but not affects ϕ in M .

Lemma 3.1.1 (Relating Structure and Formula Vacuity) Let ϕ be an LTL for-
mula. If ψ does not affectf ϕ in M , then it does not affects ϕ in M as well. The
reverse implication does not hold.

In the following proof, we assume that every state has a unique representation
using the atomic propositions. That is, every state in the structure satisfies a dif-
ferent set of atomic propositions. This is a reasonable assumption for hardware
modeling.

Proof: First we prove that if a subformulaψ does not affectf ϕ inM , then it does
not affects ϕ inM as well. If ψ affectss ϕ, then there exists a structure assignment
σ and a computation π of M such that M,π, 0, σ �|=s ϕ [ψ ← x]. We construct a
formula ψ′ that behaves like x along π, that is, M,π, i |= ψ ′ iff M,π, i, σ |=s x.
Let s be a predicate over AP that is true only in state s ∈ S. Let ψ ′ be the
disjunction of s for all states in σ(x). The formula ψ ′ is well-defined since S is
finite. We show that M,π, i, σ |=s x iff M,π, i |= ψ′. If M,π, i, σ |=s x then, by
the definition of structure semantics, si ∈ σ(x). Therefore si is in the disjunction
ψ′. Since M,π, i |= si, we have M,π, i |= ψ′. On the other hand, if M,π, i, σ �|=s

x then si �∈ σ(x), and therefore si is not included in the disjunctionψ ′. Since every
state is uniquely labeled M,π, i |= sj iff sj = si. Consequently M,π, i �|= ψ′.
Thus we have shown that if M,σ �|=s ϕ [ψ ← x] then M �|= ϕ [ψ ← ψ′].

In the other direction, we construct an LTL formula ψ ′ that assumes different
values when visiting the same state. Let M be the Kripke structure in figure 3.1
and consider the following formula:

ϕ = p ∨ (globally eventually q) ∨ (eventually globally ¬p)

We examine if p affectsf ϕ. Consider the path π′ = s0, s1, s0, s0, s0 . . . and let
ψ′ = globally ¬q. Thus,ϕ [p← ψ′] = (globally ¬q)∨(globally eventually q)∨

25

p q

s0 s1

Figure 3.1: Relating structure and formula vacuity.

(eventually globally eventually q). Clearly, π′ �|= ϕ [p← ψ′] and p affectsf
ϕ.

On the other hand, for every trace π and every assignment σ, we haveM,π, 0, σ |=s

ϕ [ψ ← x]. That is,M,π, 0, σ |=s x∨(globally eventually q)∨(eventually globally ¬x).
If s0 ∈ σ(x) then the disjunct x is satisfied. If s0 �∈ σ(x) then for all traces that
from some point on remain in s0 eventually globally ¬x is satisfied, for all other
paths, globally eventually q is satisfied.

We now show that formula vacuity is weaker than trace vacuity. That is, ψ
might affectt ϕ in M , but not affectf ϕ in M .

Lemma 3.1.2 (Relating Trace and Formula) Let ϕ be an LTL formula. If ψ
does not affectt ϕ in M , then ψ does not affectf ϕ in M as well. The reverse
implication does not hold.

Proof: We show that if ψ affectsf ϕ, then it also affectst ϕ. If ψ affectsf ϕ, then
there exists a formula ψ′ such that M �|= ϕ [ψ ← ψ′]. Let π be a trace in M such
that π �|= ϕ [ψ ← ψ′]. Consider the assignment α(x) = {i| π, i |= ψ ′}. Clearly,
M,π, 0, α �|=t ϕ [ψ ← x], and therefore ψ affectst ϕ.

In the other direction, let M be a Kripke structure with a single state labeled
by p, with a self-loop. Let ϕ = (p → next p). It can be shown that M �|=t

∀xϕ [p← x], thus p affectst ϕ. We now show that there cannot exist an LTL
formula ψ′ such that M �|= ϕ [p← ψ′]. Notice that M has a single trace π, and
that tail(π) = π. This means that ψ ′ is either true along every suffix of π, or ψ′ is
false along every suffix of π. However M �|= ϕ [p← ψ′] only if ψ′ holds at time
zero but fails at time one.

Which is the most appropriate definition for practical applications? We show
that structure vacuity and formula vacuity are sensitive to changes in the design
that do not relate to the formula. As an example, consider the formula ϕ = p →
next p and models M1 and M2 in the figure below. In M2 we add a proposition q

26

whose behavior is independent of p’s behavior. We would not like formulas that
relate to p to change their truth value or their vacuity. Both M1 and its extension
M2 satisfy ϕ and ϕ relates only to the proposition p. While p does not affectf ϕ
in M1, it does affectf ϕ in M2 (and similarly for affectss). Indeed, the formula
ϕ [p← q] = q → next q does not hold inM2. Note that in both models p affectst
ϕ.

p p,!qp,q

M1 M2

Figure 3.2: Sensitivity of structure and formula vacuity to changes in the design.

Another disadvantage of formula vacuity is that it is sensitive to the specifica-
tion language. That is, a formula passing vacuously might pass unvacuously once
the specification language is extended. As an example, consider the following
Kripke structure M1 and the LTL formula ϕ = next q → next next q. For the

qp

M1

Figure 3.3: Sensitivity of formula vacuity to the specification language.

single trace π ∈ T (M1), it holds that tail(π1) = π1. Thus, every (future) LTL
formula is either true along every suffix of π1, or is false along every such suffix.
This implies that subformula q does not affectf ϕ. However, we get an oppo-
site result if the specification language is LTL augmented with the PAST operator
[LPZ85]. The PAST operator enables reference to the history of the computa-
tion. Formally, if ψ is an LTL formula then M,π, i |= PAST (ψ) iff i > 0 and
M,π, i − 1 |= ψ. Clearly, for every model M we have M,π, 0 �|= PAST (p). In
the example, M1 �|= ϕ [q ← PAST (p)] since M1, π, i |= PAST (p) iff i = 1, thus
q affectsfϕ.

To summarize, trace vacuity is preferable since it is less sensitive to changes
in the design (as opposed to structure and formula vacuity) and it is independent

27

of the specification language (as opposed to formula vacuity). In structure seman-
tics, the truth value of the propositional variable along the trace depends on the
model. Similarly, in formula semantics, the truth value depends on the specifi-
cation language. On the other hand, trace semantics can assign any value to the
propositional variable in every point along the trace. The following lemma shows
that changing model M in a way which is irrelevant to a formula ϕ (as in figure
3.2), does not alter the vacuity of ϕ in M .

Lemma 3.1.3 Let T (M)|AP (ϕ) denote the set of computations in M projected to
the set of atomic propositions in ϕ. Then for every formula ϕ and model M ′ s.t.
T (M ′)|AP (ϕ) = T (M)|AP (ϕ) we have that ϕ is trace vacuous in M iff it is trace
vacuous in M ′.

Proof: Assume M |=t ∀xϕ [ψ ← x] for every subformula ψ of ϕ, but M ′ �|=t

∀xϕ [ψ ← x]. Then there exists a trace π′, a subformula ψ and an assignment α
s.t. M ′, π′, 0, α �|=t ϕ [ψ ← x]. However, there also exists a trace π ∈ T (M)
s.t. π|AP (ϕ) = π′|AP (ϕ). Therefore M,π, 0, α �|=t ϕ [ψ ← x], which implies that
M �|=t ∀xϕ [ψ ← x] in contradiction to the assumption. The other direction is
identical.

Another reasoning for the superiority of trace vacuity is given in chapter 4
(Algorithm and Complexity).

3.2 Comparing the Alternative Definitions of Vacu-
ity under Pure Polarity

In the following section we show that if subformulas are restricted to pure polarity,
all the definitions of vacuity coincide. For that, we show that the replacement
of subformula ψ by ⊥ is adequate for vacuity detection according to all three
definitions. This result is an extension of the results in [KV03], where only single
occurrence was considered.

Lemma 3.2.1 For every structure M , LTL formula ϕ and subformula ψ of ϕ of
pure polarity,M |=t ϕ [ψ ← ⊥] iff M |=t ∀xϕ [ψ ← x].

The first direction (M |=t ϕ [ψ ← ⊥] if M |=t ∀xϕ [ψ ← x]) is immediate.
The other direction follows from the claim below. Let θ denote a subformula of ϕ
that may or may not contain the subformula ψ.

28

Claim 3.2.2 For every occurrence of θ, every trace π ∈ T (M) and location i,

• if θ is of positive polarity in ϕ then M,π, i |= θ [ψ ← ⊥] implies
M,π, i |=t ∀x θ [ψ ← x]

• if θ is of negative polarity in ϕ then M,π, i �|= θ [ψ ← ⊥] implies
M,π, i |=t ∀x¬θ [ψ ← x]

Proof: We prove the claim by induction on the structure of θ. We prove the case
that ψ is of positive polarity (i.e. in θ [ψ ← ⊥] the subformula ψ is replaced by
false). The case of negative polarity is dual. If ψ is not a subformula of θ the
claim follows. Assume that ψ is a subformula of θ.

Let θ = p for some proposition p. Clearly, also ψ = p and the claim fol-
lows. Let θ = θ1 ∧ θ2. Suppose that the polarity of θ in ϕ is positive. If
M,π, i |= θ [ψ ← false] then clearly M,π, i |= θ1 [ψ ← false] and M,π, i |=
θ2 [ψ ← false]. From the induction assumption we know thatM,π, i |=t ∀xθ1 [ψ ← x]
and M,π, i |=t ∀xθ2 [ψ ← x]. Clearly, the claim follows. Suppose that the po-
larity of θ in ϕ is negative. If M,π, i �|= θ [ψ ← false] then either M,π, i �|=
θ1 [ψ ← false] orM,π, i �|= θ2 [ψ ← false]. Wlog supposeM,π, i �|= θ1 [ψ ← false].
From the induction assumption we know that M,π, i |=t ∀x¬θ1 [ψ ← x]. It fol-
lows that M,π, i |=t ∀x¬θ [ψ ← x].

Let θ = θ1 ∨ θ2. Suppose that the polarity of θ in ϕ is positive. If M,π, i |=
θ [ψ ← false] then either M,π, i |= θ1 [ψ ← false] or M,π, i |= θ2 [ψ ← false].
Wlog suppose M,π, i |= θ1 [ψ ← false]. From the induction assumption we
know that M,π, i |=t ∀xθ1 [ψ ← x]. Clearly, the claim follows. Suppose that
the polarity of θ in ϕ is negative. If M,π, i �|= θ [ψ ← false] then both M,π, i �|=
θ1 [ψ ← false] and M,π, i �|= θ2 [ψ ← false]. From the induction assumption we
know that M,π, i |=t ∀x¬θ1 [ψ ← x] and M,π, i |=t ∀x¬θ2 [ψ ← x]. It follows
that M,π, i |=t ∀x¬θ [ψ ← x].

Let θ = ¬θ1. Suppose that the polarity of θ in ϕ is positive. Then the polarity
of θ1 in ϕ is negative. If M,π, i |= θ [ψ ← false] then M,π, i �|= θ1 [ψ ← false].
From the induction assumption we know that M,π, i |=t ∀x¬θ1 [ψ ← x]. How-
ever, ¬θ1 [ψ ← x] ≡ θ [ψ ← x] and the claim follows. Suppose that the polarity
of θ is negative. If M,π, i �|= θ [ψ ← false] then M,π, i |= θ1 [ψ ← false] and
from the induction assumption we know that M,π, i |=t ∀x¬θ1 [ψ ← x]. The
claim follows.

Let θ = next θ1. Suppose that the polarity of θ is positive. If M,π, i |=
θ [ψ ← false] then M,π, i+1 |= θ1 [ψ ← false]. From the induction assumption
we know that M,π, i + 1 |=t ∀xθ1 [ψ ← x]. The claim follows. Suppose that

29

the polarity of θ is negative. If M,π, i �|= θ [ψ ← false] then M,π, i + 1 �|=
θ1 [ψ ← false]. From the induction assumption we know that M,π, i + 1 |=t

∀x¬θ1 [ψ ← x]. The claim follows.
Let θ = θ1Uθ2. Suppose that the polarity of θ in ϕ is positive. If M,π, i |=

θ [ψ ← false] then there exists some j ≥ i such that M,π, j |= θ2 [ψ ← false]
and forall i ≤ k < j we have M,π, k |= θ1 [ψ ← false]. From the induction
assumption we know that M,π, j |=t ∀xθ2 [ψ ← x] and forall i ≤ k < j we have
M,π, k |=t ∀xθ1 [ψ ← x]. Clearly, the claim follows. Suppose that the polarity
of θ in ϕ is negative. If M,π, i �|= θ [ψ ← false] then either forall j ≥ i we
have M,π, j �|= θ2 [ψ ← false] or there exists some j ≥ i such that M,π, j �|=
θ1 [ψ ← false] and forall i ≤ k < j we have M,π, k �|= θ2 [ψ ← false]. In
the first case, from the induction assumption it follows that forall j ≥ i we have
M,π, j |=t ∀x¬θ2 [ψ ← x]. In this case M,π, i |=t ∀x¬θ [ψ ← x]. In the second
case, from the induction assumption it follows that M,π, j |=t ∀x¬θ1 [ψ ← x]
and forall i ≤ k < j we have M,π, k |=t ∀x¬θ2 [ψ ← x]. Again, the claim
follows.

Theorem 3.2.3 If ψ is of pure polarity in ϕ then the following are equivalent.

1. M,π, i |= ϕ [ψ ← ⊥]

2. M,π, i |=s ∀xϕ [ψ ← x]

3. for every formula ξ we have M,π, i |= ϕ [ψ ← ξ]

4. M,π, i |=t ∀xϕ [ψ ← x]

Proof: As we have shown in Lemmas 3.1.1 and 3.1.2, trace semantics is stronger
than formula semantics, and the latter is stronger than structure semantics. Since
M,π, i |=s ∀xϕ [ψ ← x] for all structure assignments, including σ(x) = S and
σ(x) = ∅, we also have 2 ⇒ 1. Thus 4 ⇒ 3 ⇒ 2 ⇒ 1. In the other direction,
Lemma 3.2.1 proves that 1⇒ 4.

Intuitively, the fact that a mapping can assign to a propositional variable oppo-
site values in different positions along a trace (or states in a structure) is insignif-
icant. Assigning the value ⊥ is sufficient, and since the subformula is of pure
polarity, ⊥ is uniquely defined to be constant true or constant false throughout
the trace. An outcome of Theorem 3.2.3 is that given a subformula ψ of pure po-
larity in an LTL formula ϕ, the following are equivalent: (1) ψ does not affectf ϕ
in M (2) ψ does not affects ϕ in M and (3) ψ does not affectt ϕ in M .

30

Chapter 4

Algorithm and Complexity

In this section we give algorithms for checking vacuity according to the different
definitions. As shown in previous sections, in the case of subformulas of pure
polarity, the algorithm of [KV03] works for the three, equivalent, definitions. We
show that this algorithm, which replaces a subformula by either true or false
(according to its polarity), cannot be applied to subformulas of mixed polarity.
We then study structure and trace vacuity. The question of how to decide formula
vacuity remains open.

As shown in the previous section, in the case of subformulas of pure polar-
ity the algorithm of [KV03] applies. We show that this algorithm cannot be ap-
plied to subformulas of mixed polarity. Consider the Kripke structure M2 in Fig-
ure 3.2 and the formula ϕ = p → next p. Formula ϕ is of mixed polarity as
the left-hand-side of the implies operator is of negative polarity, while the right-
hand-side is of positive polarity (ϕ can also be written as ¬p ∨ next p). Clearly,
M2 �|=s ∀xϕ [p← x] (with the structure assignment σ(x) including only the ini-
tial state), M2 �|=f ϕ [p← q], and M2 �|=t ∀xϕ [p← x] (with the trace assignment
α(x) = {0}). Hence, p affects ϕ according to all three definitions. On the other
hand, M |= ϕ [p← false] and M |= ϕ [p← true]. We conclude that the algo-
rithm of [KV03] cannot be applied to subformulas of mixed polarity.

We now solve trace vacuity. As mentioned, given an LTL formula ϕ, a model
M = 〈AP, S, S0, R, L〉 that satisfies ϕ, and a subformula ψ, we check whether ψ
affectst ϕ in M by a reduction to model checking. We want to model check the
UQLTL formula ϕ′ = ∀xϕ [ψ ← x] on M . If M |=t ϕ

′ then ψ does not affectt ϕ.
If M �|=t ϕ

′ then ψ affectst ϕ. The algorithm presented below detects if ψ affectst
ϕ in M .

The structureM ′ guesses at every step what the right assignment for the propo-

31

1. Compute the polarity of ψ in ϕ.
2. If ψ is of pure polarity, model check M |= ϕ[ψ ← ⊥].
3. Otherwise, construct M′ = 〈AP ∪ {x}, S × 2{x}, S0 × 2{x}, R′, L〉,

where for every X1,X2 ⊆ 2{x} and s1, s2 ∈ S we have
(s1 ×X1, s2 ×X2) ∈ R′ iff (s1, s2) ∈ R.

4. Model check M ′ |= ϕ[ψ ← x].
If passed, report “ψ does not affectt ϕ”, otherwise report “ψ affectst ϕ”.

Figure 4.1: Algorithm for checking if ψ affectst ϕ

sitional variable x is. Choosing a path inM ′ determines the truth values of x along
the path. Formally, we have the following claim.

Claim 4.0.4 M ′ |= ϕ[ψ ← x] iff M |=t ∀xϕ[ψ ← x]. 1

Proof: If M �|=t ∀xϕ [ψ ← x], then there exists a trace π = s0, s1, . . . and a
mapping α such that M,π, 0, α �|=t ϕ [ψ ← x]. Let xi be a predicate that is true
iff i ∈ α(x). The trace π′ = (s0, x0), (s1, x1) . . . ∈ T (M ′) according to the
construction of M ′. For every p ∈ AP ∪ {x}, the truth values of p along π and
π′ are identical. Thus M ′ �|= ϕ[ψ ← x]. The other direction is similar. If M ′ �|=
ϕ[ψ ← x], then there exists a path π′ = s0, s1, . . . in M ′ such that M ′, π′, 0 �|=
ϕ [ψ ← x]. According to the construction of M ′, a corresponding path π also
exists in M , apart from the labeling of x. Let α assign the truth values of x along
π′ for the propositional variable x in M . Since M,π, 0, α �|=t ϕ[ψ ← x], we have
M ′ |= ∀xϕ[ψ ← x].

We show that trace vacuity is linear in the structure and PSPACE-complete in
the formula.

Theorem 4.0.5 [VW94] Given a structure M and an LTL formula ϕ, we can
model check ϕ over M in time linear in the size of M and exponential in ϕ and in
space polylogarithmic in the size of M and quadratic in the length of ϕ.

Corollary 4.0.6 Given a structure M and an LTL formula ϕ such that M |= ϕ,
we can decide whether subformula ψ affectst ϕ in time linear in the size ofM and
exponential in ϕ and in space polylogarithmic in the size of M and quadratic in
the length of ϕ.

1Notice that x is a propositional variable in M , but an atomic proposition in M ′.

32

Recall that in symbolic model checking, the modified structureM ′ is not twice
the size of M but rather includes just one additional variable. The modified for-
mula ϕ [ψ ← x] is at most as long as ϕ. The corollary follows. In order to check
whether ϕ is trace vacuous we have to check whether there exists a subformula
ψ of ϕ such that ψ does not affectt ϕ. Given a set of subformulas {ψ1, . . . , ψn}
we can check whether one of these subformulas does not affectt ϕ by iterating the
above algorithm n times. The number of subformulas of ϕ is proportional to the
size of ϕ.

Theorem 4.0.7 Given a structure M and an LTL formula ϕ such that M |= ϕ.
We can check whether ϕ is trace vacuous in M in time O(|ϕ| · CM(ϕ)) where
CM(ϕ) is the complexity of model checking ϕ over M .

We show now that unlike trace vacuity, there does not exist an efficient al-
gorithm for structure vacuity. We show that deciding does not affects is co-NP-
complete in the structure. Notice, that co-NP-complete in the structure is much
worse than PSPACE-complete in the formula. Indeed, the size of the formula
is negligible when compared to the size of the model. Co-NP-completeness of
structure vacuity renders it completely impractical.

Lemma 4.0.8 (Deciding does not affects) For ϕ in LTL, a subformula ψ of ϕ
and a structure M , the problem of deciding whether ψ does not affects ϕ in M is
co-NP-complete with respect to the structure M .

Proof: We show membership in co-NP. We consider the complementary problem
of deciding affects. Consider a formula ϕ and a structure M = 〈AP, S, S0, R, L〉.
In order to check whether ψ affectss ϕ we have to model check ∀xϕ [ψ ← x]
over M . Guess a subset S ′ of S and set the structure assignment σ(x) = S ′. Now
model check the formulaϕ [ψ ← x] over the structureM ′ = 〈AP ∪ {x}, S, S0, R, L

′〉
where L′(x) = S ′ and L′(p) = L(p) for p �= x.

In Appendix C we give a reduction from 3CNF satisfiability to deciding affectss.
Given a 3CNF formula θ, we construct a structureMθ and a (fixed) formula ϕ such
that Mθ |= ϕ and the proposition q affectss ϕ in Mθ iff θ is satisfiable.

The complexity of deciding affectsf is unclear. As shown, in the case of sub-
formulas of pure polarity (or occurrences of subformulas) the algorithm of [KV03]
is correct. We have not found either a lower bound or an upper bound for deciding
affectsf in the case of mixed polarity.

33

Part II

Regular Vacuity

34

Chapter 5

RELTL

5.1 Language Definition

The linear temporal logic RELTL extends LTL with a regular layer. We con-
sider LTL in a positive normal form (see section 2.2). Let AP be a finite set of
atomic propositions, and let B denote the set of all Boolean functions b : 2AP →
{false, true} (in practice, members of B are expressed by Boolean expressions
over AP). Consider an infinite word π = π0, π1, . . . ∈ (2AP)ω. For integers
j ≥ i ≥ 0, and a language L ⊆ B∗, we say that πi, . . . , πj−1 tightly satisfies
L, denoted π, i, j|≡ L, if there is a word b0 · b1 · · · bj−1−i ∈ L such that for all
0 ≤ k < j − i, we have that bk(πi+k) = true. Note that when i = j, the interval
πi, . . . , πj−1 is empty, in which case π, i, j|≡ L iff ε ∈ L.

The logic RELTL contains two regular modalities: (e seq ϕ) and (e triggers ϕ),
where e is a regular expression over the alphabet B, and ϕ is an RELTL formula.
Intuitively, (e seq ϕ) asserts that some interval satisfying e is followed by a suffix
satisfying ϕ, whereas (e triggers ϕ) asserts that all intervals satisfying e are fol-
lowed by a suffix satisfying ϕ. Note that the seq and triggers connectives are
essentially the “diamond” and “box” modalities of PDL [FL79]. Formally, let π
be an infinite word over 2AP then,1

• π, i |= (e seq ϕ) if for some j ≥ i, we have π, i, j|≡ L(e) and π, j |= ϕ.

• π, i |= (e triggers ϕ) if for all j ≥ i s.t. π, i, j|≡ L(e), we have π, j |= ϕ.

1In industrial specification languages such as ForSpec and PSL the semantics is slightly differ-
ent. There, it is required that the last letter of the interval satisfying L(e) overlaps the first letter of
the suffix satisfying ψ.

35

5.2 Automata Construction

In the automata-theoretic approach to model checking, we translate temporal logic
formulas to automata [VW94]. We now describe a translation of RELTL formulas
to NGBW. The translation can be viewed as a special case of the translation of
ETL to NGBW [VW94] (see also [HT99]), but we need it as a preparation for our
handling of regular vacuity.

Theorem 5.2.1 Given an RELTL formulaϕ overAP , we can construct an NGBW
Aϕ over the alphabet 2AP such that L(Aϕ) = {π|π, 0 |= ϕ} and the size of Aϕ is
exponential in ϕ.

Proof: The translation of ϕ goes via an intermediate formula ψ in the temporal
logic ALTL. The syntax of ALTL is identical to the one of RELTL, only that
regular expressions over B are replaced by nondeterministic finite word automata
(NFW, for short) over 2AP . The adjustment of the semantics is as expected: let
π = π0, π1, . . . be an infinite path over 2AP . For integers i and j with 0 ≤ i ≤ j,
and an NFW Z with alphabet 2AP , we say that πi, . . . , πj−1 tightly satisfies L(Z),
denoted π, i, j|≡ L(Z), if πi, . . . , πj−1 ∈ L(Z). Then, the semantics of the seq
and triggers modalities are as in RELTL, with L(Z) replacing L(e).

A regular expression e over the alphabet B can be polynomially translated
to an equivalent NFW Ze with a single initial state [HU79]. To complete the
translation to ALTL, we need to adjust the constructed NFW to the alphabet 2AP .
Given the NFW Ze = 〈B, Q,Δ, q0,W 〉, let Z ′

e = 〈2AP , Q,Δ′, q0,W 〉, where for
every q, q′ ∈ Q, and a ∈ 2AP , we have that q′ ∈ Δ′(q, a) iff there exists b ∈ B
such that q′ ∈ Δ(q, b) and b(a) = true. It is easy to see that for all π, i, and j, we
have that π, i, j|≡ L(e) iff π, i, j|≡ L(Z ′

e). Let ψ be the ALTL formula obtained
from ϕ by replacing every regular expression e in ϕ by the NFW Z ′

e. It follows
that for every word π and i ≥ 0, we have that π, i |= ϕ iff π, i |= ψ.

It is left to show that ALTL formulas can be translated to NGBW. Let ψ
be an ALTL formula. For a state q ∈ Q of an NFW Z, we use Zq to de-
note Z with initial state q. Using this notation, ALTL formulas of the form
(Z ′

e seq ϕ) and (Z ′
e triggers ϕ) now become (Z ′

e
q0 seq ϕ) and (Z ′

e
q0 triggers ϕ).

The closure of ψ is defined as follows: cl(ψ) = {ξ|ξ is a subformula of ψ} ∪
{(Zq′ seq ξ)|(Zq seq ξ) ∈ cl(ψ) and q′ is a state of Zq} ∪ {(Zq′ triggers ξ)|
(Zq triggers ξ) ∈ cl(ψ) and q′ is a state of Zq}. Let seq(ψ) denote the set of
seq formulas in cl(ψ). A subset C ⊆ cl(ψ) is consistent if the following hold:
(1) if p ∈ C, then ¬p �∈ C, (2) if ϕ1 ∧ ϕ2 ∈ C, then ϕ1 ∈ C and ϕ2 ∈ C, and (3)
if ϕ1 ∨ ϕ2 ∈ C, then ϕ1 ∈ C or ϕ2 ∈ C.

36

Given ψ, we define the NGBW Aψ = 〈2AP , S, δ, S0,F〉, where S ⊆ 2cl(ψ) ×
2seq(ψ) is the set of all pairs (Ls, Ps) such that Ls is consistent, and Ps ⊆ Ls ∩
seq(ψ). Intuitively, when Aψ reads the point i of π and is in state (Ls, Ps), it
guesses that the suffix πi, πi+1, . . . of π satisfies all the formulas in Ls. In addi-
tion, as explained below, the set Ps keeps track of the seq formulas in Ls whose
eventuality needs to be fulfilled. Accordingly, S0 = {(Ls, ∅) ∈ S : ψ ∈ Ls}.

Before we describe the transition function δ, let us explain how subformulas
of the form (Zq seq ψ) and (Zq triggers ψ) are handled. In both subformulas,
something should happen after an interval that tightly satisfies Z q is read. In order
to “know” when an interval πi, πi+1, . . . πj−1 tightly satisfies Z q, the NGBW Aψ
simulates a run ofZq on it. The seq operator requires a single interval that tightly
satisfies Zq and is followed by a suffix satisfying ψ. Accordingly, Aψ simulates a
single run, which it chooses nondeterministically. For the triggers operator, the
requirement is for every interval that tightly satisfies Z q. Accordingly, here Aψ

simulates all possible runs of Z q. Formally, δ : (S × 2AP) → 2S is defined as
follows: (Lt, Pt) ∈ δ((Ls, Ps), a) iff the following conditions are satisfied:

• For all p ∈ AP , if p ∈ Ls then p ∈ a, and if ¬p ∈ Ls then p �∈ a.

• If (next ϕ1) ∈ Ls, then ϕ1 ∈ Lt.

• If (ϕ1 until ϕ2) ∈ Ls, then eitherϕ2 ∈ Ls, orϕ1 ∈ Ls and (ϕ1 until ϕ2) ∈ Lt.

• If (ϕ1 release ϕ2) ∈ Ls, thenϕ2 ∈ Ls and eitherϕ1 ∈ Ls, or (ϕ1 release ϕ2) ∈ Lt.

Let Z = 〈2AP , Q,Δ, q0,W 〉 be an NFW.

• If (Zq seq ψ) ∈ Ls, then either (a) q ∈W andψ ∈ Ls, or (b) (Zq′ seq ψ) ∈
Lt for some q′ ∈ Δ(q, a).

• If (Zq triggers ψ) ∈ Ls, then (a) if q ∈ W , thenψ ∈ Ls, and (b) (Zq′ triggers ψ) ∈
Lt for all q′ ∈ Δ(q, a).

• If Ps = ∅, then Pt = Lt ∩ seq(ϕ). Otherwise, for every (Zq seq ψ) ∈ Ps,
we have that either (a) q ∈ W and ψ ∈ Ls, or (b) (Z(q′) seq ψ) ∈ Pt ∩ Lt
for some q′ ∈ Δ(q, a).

Finally, the generalized Büchi acceptance condition is used to impose the fulfill-
ment of until and seq eventualities. Thus, F = {Φ1, . . . ,Φm,Φseq}, where
for every (ϕi until ψi) ∈ cl(ϕ), we have a set Φi = {(Ls, Ps) ∈ S|ψi ∈ Ls or
(ϕi until ψi) �∈ Ls}, and in addition we have the set Φseq = {(Ls, Ps) ∈ S|Ps =

37

∅}. As in [VW94], we count on the fact that as long as a seq formula has not
reached its eventuality, then some of its derivations appear in the successor state.
In addition, whenever Ps is empty, we fill it with new seq formulas that need to be
fulfilled. Therefore, the membership of Φseq inF guarantees that the eventualities
of all seq formulas are fulfilled. The correctness of the construction is proved in
appendix A.

The exponential translation of RELTL formulas to NGBW implies a PSPACE
model-checking procedure for it [VW94]. A matching lower bound is immediate
from LTL being a fragment of RELTL [SC85]. Hence the following theorem.

Theorem 5.2.2 The model-checking problem for RELTL is PSPACE-complete.

In Section 7, we elaborate on the construction described here in order to solve
the regular vacuity problem.

38

Chapter 6

Regular Vacuity Definition

In section 3.1 we compared alternative definitions of vacuity detection and con-
cluded that vacuity detection with respect to trace semantics is preferable. How-
ever, we did not handle vacuity of regular expressions, and it is not clear, a priori,
when a regular expression affects an RELTL formula. In this chapter we follow
the semantic approach to vacuity, i.e. replace the regular expression by a univer-
sally quantified variable, but also consider two alternative definitions to regular
vacuity.

6.1 A General Definition

Unlike a subformula ψ, which defines a set of points in a path π (those that satisfy
ψ), a regular expression e defines a set of intervals (that is, pairs of points) in π
(those that tightly satisfy e). Accordingly, we are going to define “does not affect”
for regular expressions by means of universally quantified interval variables. For
that, we first define the temporal logic QRELTL, which extends RELTL by uni-
versal quantification over a single interval variable.

Recall that the regular expressions of RELTL formulas are defined with respect
to the alphabet B of Boolean expressions over AP . Let y be the interval variable,
and letϕ be an RELTL formula whose regular expressions are defined with respect
to the alphabet B ∪ {y}. Then (∀y)ϕ and (∃y)ϕ are QRELTL formulas. For
example, (∀y) globally [(y seq ψ)∧ (ab∗ triggers ¬ψ)] is a well-formed RELTL
formula, while ψ ∨ [(∃y)(y seq ψ)] is not.

We now define QRELTL semantics. Let I = {(i, j)| i, j ∈ IN, j ≥ i} be a set
of all (natural) intervals. An interval set is a set β ⊆ I . The interval variable y

39

ranges over interval sets and is associated with β. Thus, (i, j) ∈ β means that y is
satisfied over an interval of length j− i that starts at i. For a universally quantified
formula, satisfaction is checked with respect to every interval set β. For an exis-
tentially quantified formula, satisfaction is checked with respect to some interval
set β. We first define when a word π̂ = πi . . . πj−1 over 2AP tightly satisfies, with
respect to β, a language L over B ∪ {y}. Intuitively, it means we can partition π̂
to sub-intervals that together correspond to a word w in L. Note that since some
of the letters in w may be y, the sub-intervals may be of arbitrary (possibly 0)
length, corresponding to intervals in β. Formally, we have the following.

Definition 6.1.1 Consider a language L ⊆ (B ∪ {y})∗, an infinite path π over
2AP , indices i and j with i ≤ j, and an interval set β ⊆ I . We say that πi, . . . , πj−1

and β tightly satisfies L, denoted π, i, j, β|≡ L iff there is w ∈ L such that either
w = ε and i = j, or w = w0, w1, . . . , wn and there is a sequence of integers
i = l0 ≤ l1 ≤ · · · ≤ ln+1 = j such that for every 0 ≤ k ≤ n, the following
conditions hold:

• If wk ∈ B, then wk(πlk) = true and lk+1 = lk + 1.

• If wk = y, then (lk, lk+1) ∈ β.

For example, if AP = {p}, β = {(3, 3), (3, 4)}, and π = {{p}, ∅}ω, then
π, 2, 4, β|≡ {p · y} since p({p}) = true and (3, 4) ∈ β. Also, π, 2, 4, β|≡
{p · y · ¬p}, since p({p}) = true, (3, 3) ∈ β, and ¬p(∅) = true. Note that when
the required w does not contain y, the definition is independent of β and coincides
with tight satisfaction for languages over B.

The semantics of the RELTL subformulas of a QRELTL formula is defined
inductively as in RELTL, only with respect to an interval set β. In particular, for
the seq and triggers modalities, we have

• π, i, β |= (e seq ϕ) iff for some j ≥ i, we have π, i, j, β|≡ L(e) and
π, j, β |= ϕ.

• π, i, β |= (e triggers ϕ) iff for all j ≥ i s.t. π, i, j, β|≡ L(e) we have
π, j, β |= ϕ.

In addition, for QRELTL formulas, we have

• π, i |= (∀y)ϕ iff for every interval set β ⊆ I , we have π, i, β |= ϕ.

• π, i |= (∃y)ϕ iff there exists an interval set β ⊆ I , such that π, i, β |= ϕ.

40

An infinite word π over 2AP satisfies a QRELTL formula ϕ, denoted π |= ϕ, if
π, 0 |= ϕ. A model M satisfies ϕ, denoted M |= ϕ, if all traces of M satisfy ϕ.

Definition 6.1.2 Consider a model M . Let ϕ be an RELTL formula that is satis-
fied in M and let e be a regular expression appearing in ϕ. We say that e does not
affect ϕ in M iff M |= (∀y)ϕ [e← y]. Otherwise, e affects ϕ in M . Finally, ϕ is
regularly vacuous in M if there exists a regular expression e that does not affect
ϕ.

As an example for regular vacuity, consider the property ϕ = globally ((req ·
true·true) triggers ack), which states that an ack is asserted exactly three cycles
after a req. When ϕ is satisfied in a M , one might conclude that all requests are
acknowledged, and with accurate timing. However, the property is also satisfied
in a model M that keeps ack high at all times. Regular vacuity of ϕ with respect
to (req · true · true) will be detected by showing that the QRELTL formula
(∀y)ϕ [(req · true · true)← y] is also satisfied in M . This can direct us to the
erroneous behavior.

In the previous example we considered regular vacuity with respect to the
entire regular expression. Sometimes, a vacuous pass can only be detected by
checking regular vacuity with respect to sub-regular expression. Consider the
property ϕ = globally ((req · (¬ack)∗ · ack) triggers grant), which states that
when an ack is asserted sometime after req, then grant is asserted one cycle later.
Regular vacuity on the sub-regular expression ((¬ack)∗ · ack) can detect that ack
is actually ignored, and that grant is asserted immediately after req and remains
high. On the other hand, regular vacuity would not be detected on the regular
expression e = (req · (¬ack)∗ · ack), as it does affect ϕ. This is because ϕ does
not hold if e is replaced by an interval (0, j), in which req does not hold in model
M .

6.2 Alternative Definitions

In this section we describe two alternative definitions for “does not affect” and
hence also for regular vacuity. We argue that the definitions are weaker, in the
sense that a formula that is satisfied vacuously with respect to Definition 6.1.2,
is satisfied vacuously also with respect to the alternative definitions, but not vice
versa. On the other hand, as we discuss in Section 9, vacuous satisfaction with
respect to the alternative definitions is computationally easier to detect.

41

Regular vacuity modulo duration Consider a regular expression e over B. We
say that e is of duration d, for d ≥ 0, if all the words in L(e) are of length d.
For example, a · b · c is of duration 3. We say that e is of a fixed duration if it is
of duration d for some d ≥ 0. Let e = a · b · c and let ϕ = e triggers ψ. The
property ϕ states that if the computation starts with the Boolean events a, b, and
c, then ψ should hold at time 3. Suppose now that in a model M , the formula
ψ does not hold at times 0,1, and 2, and holds at later times. In this case, ϕ
holds due to the duration of e, regardless of the Boolean events in e. According
to Definition 6.1.2, e affects ϕ (e.g., if β = {(0, 1)}). On the other hand, e does
not affect ϕ if we restrict the interval variable y to intervals of length 3. Thus, e
does not affect the truth of ϕ in M modulo its duration iff ϕ is still true when e
is replaced by an arbitrary interval of the same duration (provided e is of a fixed
duration). Formally, for a duration d, let Id = {(i, i + d) : i ∈ IN} be the set
of all natural intervals of duration d. The logic duration-QRELTL is a variant of
QRELTL in which the quantification of y is parametrized by a duration d, and y
ranges over intervals of duration d. Thus, π, i |= (∀dy)ϕ iff for every interval set
β ⊆ Id, we have π, i, β |= ϕ, and dually for (∃dy)ϕ.

Definition 6.2.1 Consider a model M . Let ϕ be an RELTL formula that is satis-
fied in M and let e be a regular expression of duration d appearing in ϕ. We say
that e does not affect ϕ in M modulo duration iff M |= (∀dy)ϕ[e ← y]. Finally,
ϕ is regularly vacuous in M modulo duration if there exists a regular expression
e of a fixed duration that does not affect ϕ modulo duration.

We note that instead of requiring e to have a fixed duration, one can restrict
attention to regular expressions of a finite set of durations (in which case e is re-
placed by intervals of the possible durations); in particular, regular expressions
of a bounded duration (in which case e is replaced by intervals shorter than the
bound). As we show in Section 9, vacuity detection for all these alternative defi-
nitions is similar.

Regular vacuity modulo expression structure Consider again the formulaϕ =
e triggers ψ, for e = a · b · c. The formula ϕ is equivalent to the LTL formula
ϕ′ = a → X(b → X(c → Xψ)). If we check the vacuity of the satisfaction of
ϕ′ in a system M , we check, for each of the subformulas a, b, and c whether they
affect the satisfaction of ϕ′. For that, [AFF+03] uses universal monadic quantifi-
cation. In regular vacuity modulo expression structure we do something similar
– instead of replacing the whole regular expression with a universally quantified

42

dyadic variable, we replace each of the Boolean functions in B that appear in
the expression by a universally quantified monadic variable (or, equivalently, by
a dyadic variable ranging over intervals of duration 1). Thus, in our example, ϕ
passes vacuously in the system M described above, as neither a, b, nor c affect its
satisfaction. Formally, we have the following1.

Definition 6.2.2 Consider a model M . Let ϕ be an RELTL formula that is satis-
fied in M and let e be a regular expression appearing in ϕ. We say that e does
not affect ϕ in M modulo expression structure iff for all b ∈ B that appear in e,
we have that M |= (∀1y)ϕ[b ← y]. Finally, ϕ is regularly vacuous in M modulo
expression structure if there exists a regular expression e that does not affect ϕ
modulo expression structure.

Note that since vacuity modulo duration/structure of expression replaces the
universal quantification on all intervals by a universal quantification over a sub-
set of them, Definitions 6.2.1 and 6.2.2 are weaker than Definition 6.1.2, in the
sense that more regular expressions do not affect ϕ in M according to Defini-
tions 6.2.1 and 6.2.2. Actually, these three definitions form a hierarchy: a vacuous
pass w.r.t regular vacuity implies a vacuous pass w.r.t regular vacuity modulo dura-
tion, which implies a vacuous pass w.r.t regular vacuity modulo expression struc-
ture. The reverse implications do not hold. For example, suppose (p→ next ψ),
(p → next next ψ), (q → next ψ) and (q → next next ψ) always hold in
model M . That is, ψ holds at the next two cycles after p or q. We check if
((p ∨ q) · (p ∨ q)) affects the formula ϕ = ((p ∨ q) · (p ∨ q)) triggers ψ. As
M |= (∀x)((x∨q)·(x∨q)) triggers ψ , andM |= (∀x)((p∨x)·(p∨x)) triggers ψ,
we conclude that both p and q do not affect ϕ in M . Therefore ((p ∨ q) · (p ∨ q))
does not affect ϕ in M , and ϕ passes vacuously inM w.r.t regular vacuity modulo
expression structure. On the other hand, M �|= (x · true) triggers ψ (assuming
there is at least one trace in M in which ψ does not hold without being triggered
by p or q). Therefore ((p∨q) ·(p∨q)) affects ϕ inM , and ϕ passes non vacuously
w.r.t regular vacuity modulo duration. It is difficult to make at this point definitive
statements about the overall usability of the weaker definitions, as more industrial
experience is needed.

1Note that Definition 6.2.2 follows our semantic approach. A syntactic approach, as the one
taken in [BBER01, KV03], would result in a different definition, where Boolean functions are
replaced by different Boolean functions.

43

Chapter 7

Algorithm and Complexity

In this chapter we study the complexity of the regular-vacuity problem. As dis-
cussed in Chapter 6, vacuity detection can be reduced to model checking of a
QRELTL formula of the form (∀y)ϕ. We describe an automata-based EXPSPACE
solution to the latter problem, and conclude that regular vacuity is in EXPSPACE.
Recall that we saw in chapter 4 that vacuity detection for LTL is not harder than
LTL model checking and can be solved in PSPACE, and saw in chapter 5 that
RELTL model checking is in PSPACE. Appendix D shows that regular vacu-
ity is NEXPTIME-hard. Thus, while the precise complexity of regular vacuity
is open, the lower bound indicates that an exponential overhead on top of the
complexity of RELTL model checking seems inevitable. We describe a model-
checking algorithm for QRELTL formulas of the form (∀y)ϕ. Recall that in the
automata-theoretic approach to LTL model checking, one constructs, given an
LTL formula ϕ, an automaton A¬ϕ that accepts exactly all paths that do not sat-
isfy ϕ. Model checking is then reduced to the emptiness of the product of A¬ϕ
with the model M [VW94]. For a QRELTL formula (∀y)ϕ, we need to con-
struct an automaton A(∃y)¬ϕ, which accepts all paths that do not satisfy (∀y)ϕ.
Since we considered RELTL formulas in a positive normal form, the construc-
tion of ¬ϕ has to propagate the negation inward to ϕ’s atomic propositions, using
De-Morgan laws and dualities. In particular, ¬(e seq ϕ) = (e triggers ¬ϕ) and
¬(e triggers ϕ) = (e seq ¬ϕ). It is easy to see that the length of ¬ϕ in positive
normal form is linear in the length of ϕ.

Theorem 7.0.3 Given an existential QRELTL formula (∃y)ϕ over AP , we can
construct an NGBW Aϕ over the alphabet 2AP such that L(Aϕ) = {π|π, 0 |=
(∃y)ϕ}, and the size of Aϕ is doubly exponential in ϕ.

44

Proof: Similarly to the proof of Theorem 5.2.1, we first translate the formula
(∃y)ϕ to the intermediate formula (∃y)ψ in the temporal logic QALTL. The syn-
tax of QALTL is identical to the one of QRELTL, only that regular expressions
over B ∪ {y} are replaced by NFW over 2AP ∪ {y}. The closure of QALTL
formulas is defined similarly to the closure of ALTL formulas. The adjustment
of the semantics is similar to the adjustment of RELTL to ALTL described in
Chapter 5. In particular, the adjustment of Definition 6.1.1 to languages over the
alphabet 2AP ∪ {y} replaces the condition “if wk ∈ B then wk(πlk) = true
and lk+1 = lk + 1” there by the condition “if wk ∈ 2AP , then wk = πlk and
lk+1 = lk + 1” here.

Given a QRELTL formula (∃y)ϕ, its equivalent QALTL formula (∃y)ψ is
obtained by replacing every regular expression e in (∃y)ϕ by Z ′

e, where Z ′
e is as

defined in Chapter 5. Note that the alphabet of Z ′
e is 2AP ∪ {y}. It is easy to see

that for all π, i, j, and β, we have that π, i, j, β|≡ L(e) iff π, i, j, β|≡ L(Z ′
e). Thus,

for every word π and i ≥ 0, we have that π, i |= (∃y)ϕ iff π, i |= (∃y)ψ.
The construction of the NGBW Aϕ from (∃y)ψ is based on the construction

presented in Chapter 5. As there, when Aϕ reads πi and is in state (Ls, Ps), it
guesses that the suffix πi, πi+1 . . . satisfies all the subformulas in Ls. Since, how-
ever, here Aϕ needs to simulate NFWs with transitions labelled by the interval
variable y, the construction here is more complicated. While a transition labelled
by a letter in 2AP corresponds to reading the current letter πi, a transitions labelled
by y corresponds to reading an interval πi, . . . , πj−1 in β. Recall that the seman-
tics of QALTL is such that (∃y)ψ is satisfied in π if there is an interval set β ⊆ I
for which π, β satisfies ψ. Note that triggers formulas are trivially satisfied for an
empty β, whereas seq formulas require β to contain some intervals. Assume that
Aϕ is in point i of π, it simulates a transition labelled y in an NFW that corre-
sponds to a seq formula in Ls, and it guesses that β contains some interval (i, j).
Then, Aϕ has to make sure that all the NFWs that correspond to triggers formulas
in Ls and that have a transition labelled y, would complete this transition when
point j is reached. For that, Ls has to be associated with a set of triggers formulas.

Formally, for a setLs ⊆ cl(ψ), we define wait(Ls) = {(Zq′ triggers ξ)|(Zq triggers ξ) ∈
Ls and q′ ∈ Δ(q, y)}. Intuitively, wait(Ls) is the set of triggers formulas that are
waiting for an interval in β to end. Once the interval ends, as would be enforced
by a seq formula, the members of wait(Ls) should hold. Let seq(ψ) and trig(ψ)
be the sets of seq and triggers formulas in cl(ψ), respectively. An obligation for
ψ is a pair o ∈ seq(ψ)× 2trig(ψ). Let obl(ψ) be the set of all the obligations for ψ.
Now, to formalize the intuition above, assume thatAϕ is in point i and it simulates
a transition labelled y in the NFW Z for some (Z q seq ξ) ∈ Ls. Then, Aϕ creates

45

the obligation o = ((Zq seq ξ),wait(Ls)) and propagates it until the end of the
interval.

The NGBW Aϕ = 〈2AP , S, δ, S0,F〉, where the set of states S is the set of
all pairs (Ls, Ps) such that Ls is a consistent set of formulas and of obligations,
and Ps ⊆ Ls ∩ (seq(ϕ) ∪ obl(ϕ)). Note that the size of Aϕ is doubly exponential
in ϕ. The set of initial states is S0 = {(Ls, Ps)|ψ ∈ Ls, Ps = ∅}. The accep-
tance condition is used to impose the fulfillment of until and seq eventualities,
and are similar to the construction is Chapter 5; thus F = {Φ1, . . . ,Φm,Φseq}
where Φi = {s ∈ S|(ϕ1 until ϕ2), ϕ2 ∈ Ls or (ϕ1 until ϕ2) �∈ Ls}, and Φseq =
{s ∈ S|Ps = ∅}. We define the transition relation δ as the set of all triples
((Ls, Ps), a, (Lt, Pt)) that satisfy the following conditions. Note that some of
these conditions also impose restrictions on the states.

1. For all p ∈ AP , if p ∈ Ls then p ∈ a.

2. For all p ∈ AP , if ¬p ∈ Ls then p �∈ a.

3. If (next ϕ1) ∈ Ls, then ϕ1 ∈ Lt.

4. If (ϕ1 until ϕ2) ∈ Ls, then either ϕ2 ∈ Ls, or ϕ1 ∈ Ls and (ϕ1 until ϕ2) ∈
Lt.

5. If (ϕ1 release ϕ2) ∈ Ls, thenϕ2 ∈ Ls and eitherϕ1 ∈ Ls, or (ϕ1 release ϕ2) ∈
Lt.

6. If (Zq seq ξ) ∈ Ls, then at least one of the following holds:

(a) q ∈W and ξ ∈ Ls.
(b) (Zq′ seq ξ) ∈ Lt for some q′ ∈ Δ(q, a).

(c) Δ(q, y) �= ∅ and o = ((Zq seq ξ),wait(Ls)) ∈ Ls. In this case we
say that there is a y-transition from (Z q seq ξ) to o in Ls.

If conditions a or b hold, we say that (Z q seq ξ) is strong in Ls w.r.t.
((Ls, Ps), a, (Lt, Pt)).

7. If (Zq triggers ξ) ∈ Ls, then the following holds:

(a) If q ∈W , then ξ ∈ Ls.
(b) (Zq′ triggers ξ) ∈ Lt for all q′ ∈ Δ(q, a).

46

8. For every (Zq seq ξ) ∈ Ps, at least one of the following holds:

(a) q ∈W and ξ ∈ Ls.
(b) (Zq′ seq ξ) ∈ Pt ∩ Lt for some q′ ∈ Δ(q, a).

(c) Δ(q, y) �= ∅ and o = ((Zq seq ξ),wait(Ls)) ∈ Ps. In this case we
say that there is a y-transition from (Z q seq ξ) to o in Ps.

If conditions a or b hold, we say that (Z q seq ξ) is strong in Ps w.r.t.
((Ls, Ps), a, (Lt, Pt)).

9. If o = ((Zq seq ξ),Υ) ∈ Ls then at least one of the following holds:

(a) For some q′ ∈ Δ(q, y), we have that (Zq′ seq ξ) ∈ Ls and Υ ⊆ Ls.
In this case we say that there is a y-transition from o to (Z q′ seq ξ) in
Ls.

(b) o ∈ Lt.

If condition b holds, we say that o is strong inLs w.r.t. ((Ls, Ps), a, (Lt, Pt)).

10. If o = ((Zq seq ξ),Υ) ∈ Ps then at least one of the following holds:

(a) For some q′ ∈ Δ(q, y), we have that (Zq′ seq ξ) ∈ Ps and Υ ⊆ Ls.
In this case we say that there is a y-transition from o to (Z q′ seq ξ) in
Ps.

(b) o ∈ Pt.

If condition b holds, we say that o is strong in Ps w.r.t. ((Ls, Ps), a, (Lt, Pt)).

11. If Ps = ∅, then Pt = Lt ∩ (seq(ϕ) ∪ obl).

12. If wait(Ls) ⊆ Ls, then for every element in Ls ∩ (seq(ϕ) ∪ obl(ϕ)) there
exists a path (possibly of length 0) of y transitions to a strong element w.r.t.
((Ls, Ps), a, (Lt, Pt)).

13. If wait(Ls) ⊆ Ls, then for every element in Ps ∩ (seq(ϕ) ∪ obl(ϕ)) there
exists a path (possibly of length 0) of y transitions to a strong element w.r.t.
((Ls, Ps), a, (Lt, Pt)).

47

We now explain the role of conditions 12 and 13 of δ. As explained above, for
every formula (Zq seq ξ) that should hold at point i, the NGBW Aϕ simulates a
run of Zq that should eventually accept an interval of π. Since Z q has transitions
labelled by y, it is possible for Z q to loop forever in (Li, Pi) (when (i, i) ∈ β).
Conditions 12 and 13 force the run of Zq to eventually reach an accepting state,
and prevent such an infinite loop. The correctness of the construction is proved in
Appendix B.

Given a model M and the NGBW Aϕ for (∃y)ϕ, the emptiness of their inter-
section can be tested in time polynomial or in space polylogarithmic in the sizes
of M and Aϕ (note that M and Aϕ can be generated on the fly) [VW94]. A path
in the intersection of M and Aϕ is a witness that e affects ϕ. It follows that the
problem of deciding whether a regular expression e affects ϕ in M can be solved
in EXPSPACE. Since the number of regular expressions appearing in ϕ is lin-
ear in the length of ϕ, we can conclude with the following upper bound to the
regular-vacuity problem.

Theorem 7.0.4 The regular-vacuity problem for RELTL can be solved in EX-
PSPACE.

In Section 9, we analyze the complexity of regular vacuity more carefully and
show that the computational bottle-neck is the length of regular expressions ap-
pearing in triggers formulas in ϕ. We also describe a fragment of RELTL for
which regular vacuity can be solved in PSPACE.

Alternating Automata Alternating Büchi automata have the same expressive
power as non-deterministic Büchi automata. With alternating Büchi automata, the
first construction closely resembles the formula, and the automata is exponentially
more succinct than a corresponding non-deterministic Büchi automata. At first,
we searched for a construction based on alternating Büchi automata, but it was
unclear how to synchronize relevant seq and triggers formulas. While in the
construction above an obligation can relate seq and triggers in a single state,
alternating Büchi automata have separate states for the seq and triggers sub-
formulas. The question whether a similar construction can be done for alternating
Büchi automata remains open.

48

Part III

Pragmatic Aspects

49

Chapter 8

Subformula Vacuity in Practice

In this chapter we give some pragmatic aspects of vacuity detection. We discuss
the different options for reporting vacuity. While previous works consider only
giving a yes / no answer, we advocate giving the users a simplified formula (see
below) as well so that they can best understand why the formula passes vacuously.
We also check what the relation is between subformulas and occurrences of sub-
formulas, and conclude that in order to get the most thorough vacuity detection
both should be accounted for. Guided by these two observations, we show how
we can achieve the most thorough vacuity detection while reducing the number
of model-checker runs. Finally, we report on our experience using vacuity detec-
tion in an industrial setting. All the work in this chapter relates to trace vacuity.
Therefore, we remove the subscript describing the type of affect.

8.1 Display of Results

When applying vacuity detection in an industrial setting there are two options. We
can either give the user a simple yes/no answer, or we can accompany a positive
answer (vacuity) with a simplified formula. Where ψ does not affect ϕ we supply
ϕ [ψ ← x] (or ϕ [ψ ← ⊥] where ψ is of pure polarity) as our explanation to the
vacuity of ϕ. When we replace a subformula by a constant, we propagate the
constants upwards. For example, if in subformula θ = ψ1 ∧ ψ2 we replace ψ1 by
false, then θ becomes false and we continue propagating this value above θ.

Previous works were interested only in providing a simple yes / no answer.
That is, whether the property is vacuous or not. In this case it suffices to check
whether the propositions affect the formula [BBER97, KV03]. Suppose that ψ

50

active := en ∧¬in ; rdy active := ¬ rdy out ∧¬ active ;
bsy active := ¬ bsy out ∧¬ active;

active inactive := rdy active ∧¬ bsy active ;
two consecutive := G[(reset ∧ active inactive)→ X¬active inactive];

Figure 8.1: Vacuous pass

does not affect ϕ. It follows that if ψ ′ is a subformula of ψ then ψ′ does not
affect ϕ as well. In view of the above, in order to get a yes / no answer only the
minimal subformulas of ϕ (i.e. the atomic propositions that appear in ϕ) have to
be checked. In contrast, when the goal is to give the user feedback on the source
of detected vacuity, it is often more useful to check non-minimal subformulas.

Consider for example the formula two consecutive in Figure 8.1. This is an
example of a formula that passed vacuously in one of the designs we checked.
The reason for the vacuous pass is that one of the signals in active inactive was set
to false by a wrong environmental assumption. The following is the simplified
formula showing that the second occurrence of active inactive does not affect
two consecutive.

two consecutive [active inactive2 ← ⊥] = globally ¬(reset ∧ active inactive)

From this simplified formula it is straightforward to understand what is wrong
with the formula. The simplified formula associated with the occurrence of the
proposition en under the second occurrence of rdy active (after constant propaga-
tion) is as follows. Note that this occurrence of en occurs positively in two consecutive.

two consecutive [en2 ← ⊥] = globally [(reset∧active inactive)→ X¬(¬rdy out∧¬bsy active)]

Clearly, this report is much less legible. This formula has very little connection
to the original formula. Thus, it is preferable to check vacuity of non-minimal
subformulas and subformula occurrences.

If we consider the formula as represented by a tree (rather than DAG – di-
rected acyclic graph) then the number of leaves (propositions) is proportional to
the number of nodes (subformulas). We apply our algorithm from top to bottom.
We check whether the maximal subformulas affect the formula. If a subformula
does not affect, there is no need to continue checking below it. If a subformula
does affect, we continue and check its subformulas. In the worst case, when all

51

the subformulas affect the formula, the number of model checker runs in order
to give the most intuitive counter example is double the size of the minimal set
(number of propositions). The yes / no view vs. the intuitive simplified formula
view offer a clear tradeoff between minimal number of model checker runs (in
the worst case) and giving the user the most helpful information. We believe that
the user should be given the most comprehensive simplified formula. In our im-
plementation we check whether all subformulas and occurrences of subformulas
affect the formula.

8.2 Occurrences vs. Subformulas

In chapter 4 we introduced an algorithm that can determine if a subformula with
multiple occurrences affects a formula. Indeed, in most cases it makes sense to
check if a subformula affects a formula, as in pratice, all occurrences of the sub-
formula will have the same truth value at a given point in time. Furthermore,
sometimes an errornous behavior can only be detected when all subformula oc-
currences are replaced simultaneously. For example, let ϕ = globally (p → p).
Intuitively, p does not affect ϕ since every expression (or variable) implies itself.
Indeed, according to all definitions p does not affect ϕ, regardless of the model.
However, every occurrence of p may affect ϕ, as both globally p = ϕ [p1 ← ⊥]
and globally ¬p = ϕ [p2 ← ⊥] may fail (here, pi denotes the ith occurrence of
p).

On the other hand, an errournous behavior might be masked by one (or more)
occurences of the subformula. Consider the formula ϕ = p ∧ globally (q → p).
Assume q is always false in model M because of a buggy assumption. Clearly,
the second occurrence of p does not affect ϕ in M and a vacuous trigger can be
detected. However, the subformula p does affect ϕ in M because of the first oc-
currence. Every assignment that gives x the value false at time 0 would falsify the
formula ϕ [p← x]. Thus in order to catch the bug, we would have to check vacu-
ity with respect to each occurrence separately. Recall the formula two consecutive
in Figure 8.1. The vacuous pass in this case is only with respect to occurrences
and not to subformulas.

We believe that a thorough vacuity-detection algorithm should detect both sub-
formulas and occurrences that do not affect the examined formula. It is up to the
user to decide which vacuity alerts to ignore.

52

8.3 Minimizing the Number of Checks

As explained above we choose to check whether all subformulas and all occur-
rences of subformulas affect the formula. Applying this policy in practice may
result in many runs of the model checker and may be impractical. In particu-
lar, when the formula is represented as a DAG, checking all occurrences involves
turning the DAG into a tree. We show that we can reduce the number of subfor-
mulas and occurrences for which we check vacuity by analyzing the structure of
the formula syntactically.

As mentioned before, if ψ′ is a subformula of ψ and ψ does not affect ϕ then
also ψ′ does not affect ϕ. Hence, once we know that ψ does not affect ϕ, there
is no point in checking subformulas of ψ. If ψ affects ϕ we have to check also
the subformulas of ψ. We show that in some cases for ψ ′ a subformula of ψ we
have ψ′ affects ϕ iff ψ affects ϕ. In these cases there is no need to check direct
subformulas of ψ also when ψ affects ϕ.

Suppose the formula ϕ is satisfied in M . Consider an occurrence θ1 of the
subformula θ = ψ1 ∧ ψ2 of ϕ. We show that if θ1 is of positive polarity then ψi
affects ϕ iff θ1 affects ϕ for i = 1, 2. As mentioned, θ1 does not affect ϕ impliesψi
does not affect ϕ for i = 1, 2. Suppose θ1 affects ϕ. Then M �|= ϕ [θ1 ← false].
However, ϕ [ψi ← false] = ϕ [θ1 ← false]. It follows that M �|= ϕ [ψi ← false]
and that ψi affects ϕ. In the case that θ1 is of negative (or mixed) polarity the
above argument is incorrect. Consider the formula ϕ = ¬(ψ1 ∧ ψ2) and a model
where ψ1 never holds. It is straightforward to see that ψ1 ∧ ψ2 affects ϕ while ψ2

does not affect ϕ.
Similarly consider the subformula θ = globally ψ1 and the occurrence θ1 of θ

of negative polarity. We show that θ1 affects ϕ iff ψ1 affects ϕ. Suppose θ1 affects
ϕ. Then M �|= ϕ [θ1 ← true]. As before ϕ [θ1 ← true] = ϕ [ψ1 ← true]. Sup-
pose that θ1 is of mixed polarity and that θ1 affects ϕ. Then M �|= ∀xϕ [θ1 ← x].
However, we can not prove that M �|= ∀xϕ [ψ1 ← x]. This is true only if there
exists a computation π of M , an assignment α such that for some i ≥ 0 we have
α(x) = {i, . . .} and π, 0, α �|= ϕ [θ1 ← x].

From the above discussion it follows that we can analyze the form of the for-
mula ϕ syntactically and identify occurrences θ1 such that θ1 affects ϕ iff the
subformulas of θ1 affect ϕ. In these cases it is sufficient to model check the for-
mula ∀xϕ [θ1 ← x]. Below the immediate subformulas of θ1 we have to continue
with the same analysis. For example, if θ = (ψ1 ∨ ψ2) ∧ (ψ3 ∧ ψ4) is of positive
polarity and θ affects ϕ we can ignore (ψ1 ∨ ψ2), (ψ3 ∧ ψ4), ψ3, and ψ4. We do
have to check ψ1 and ψ2. In Table 8.1 we list the operators under which we can

53

Operator Polarity Operands

∧ + all
∨ - all
¬ pure / mixed all
X pure / mixed all
U pure second

globally pure all
eventually pure all

Table 8.1: Operators for which checks can be avoided

apply such elimination. In the polarity column we list the polarities under which
the elimination scheme applies to the operator. In the operands column we list
the operands that we do not have to check. We stress that below the immediate
operands we have to continue applying the analysis.

The analysis that leads to the above table is quite simple. Using a richer set
of operators one must use similar reasoning to extend the table. Notice that we
distinguish between pure polarity and mixed polarity. As the above table is true
for occurrences, mixed polarity is only introduced in cases that the specification
language includes operators with no polarity (e.g. ⊕,↔).

8.4 Implementation and Methodology

We implemented the above algorithms in Intel’s formal verification environment.
We use the language ForSpec [AFF+02] with the BDD-based model checker Fore-
cast [FKZ+00] and the SAT-based bounded model checker Thunder [CFF+01].
We enable the users to decide whether they want thorough vacuity detection or
just to specify which subformulas / occurrences should be checked. In the case of
thorough vacuity detection, for every subformula and every occurrence (according
to the elimination scheme above) we create one witness formula. The vacuity al-
gorithm amounts to model checking each of the witnesses. Both model checkers
are equipped with a mechanism that allows model checking of many properties
simultaneously.

The current methodology of using vacuity is applying thorough vacuity on
every specification. The users prove that the property holds in the model; then,
vacuity of the formula is checked. If applying thorough vacuity is not possible

54

(due to capacity problems), the users try to identify the important subformulas
and check these subformulas manually. In our experience, vacuity checks proved
to be effective mostly when the pruning and assumptions used in order to enable
model checking removed some important part of the model, thus rendering the
specification vacuously true. However, vacuity detection also revealed RTL bugs
and faulty specifications.

One area where we applied formal verification was a complex power manage-
ment finite-state-machine (FSM). One set of properties verified correct transition
from state to state and included assertions of the following type:

assert ((state = si) ∧ cond)→ next state = sj

Vacuity detection reported that several such assertions passed vacuously and that
the right-hand-side (the next state) does not affect. In one case, the vacuous pass
resulted from an RTL bug which prevented the condition from happening. There-
fore, there was no transition from one specific state to another. Another vacuous
pass revealed a typo in one of the assumptions, which prevented the FSM from
reaching some states. The validator wrote:

assume (state = si)→ next state = (sj ∨ sk)

instead of:

assume (state = si)→ next ((state = sj) ∨ (state = sk))

The erroneous code performed a bit-wise or between sj and sk, and as sj was
encoded as binary 111, there were no transitions from si to sk.

55

Chapter 9

Regular Vacuity in Practice

The results in Section 7 suggest that, in practice, one may need to work with
weaker definitions of vacuity or restrict attention to specifications in which the
usage of regular expressions is constrained. In this section we show that under
certain polarity constraints, regular vacuity can be reduced to standard model
checking. In addition we show that even without polarity constraints, detection
of the weaker definitions of vacuity, presented in Section 6.2, is also not harder
than standard model checking.

9.1 Specifications of Pure Polarity

Examining industrial examples shows that in practice the number of trigger formu-
las that share a regular expression with a seq formula is quite small. One of the few
examples that use both describes a clock tick pattern and is expressed by the for-
mula tick pattern = (e seq true) ∧ globally (e triggers (e seq true)), where
e defines the clock ratio, e.g. e = clock low · clock low · clock high · clock high.

As shown in the previous section, the general case of regular vacuity adds an
exponential blow-up on top of the complexity of RELTL model checking. A care-
ful analysis of the state space of Aϕ shows that with every set Ls of formulas, we
associate obligations that are relevant to Ls. Thus, if Ls contains no seq formula
with an NFW that reads a transition labelled y, then its obligation is empty. Other-
wise, wait(Ls) contains only trigger formulas that appear in Ls and whose NFWs
read a transition labelled y. In particular, in the special case where seq and trigger
subformulas do not share regular expressions, we have|obl(ϕ)| = 0. For this type
of specifications, where all regular expressions have a pure polarity, regular vacu-

56

ity is much easier. Rather than analyzing the structure of Aϕ in this special case,
we describe here a direct algorithm for its regular-vacuity problem.

We first define pure polarity for regular expression. As formulas in RELTL
are in positive normal form, polarity of a regular expression e is not defined by
number of negations, but rather by the operator applied to e. Formally, an occur-
rence of a regular expression e is of positive polarity in ϕ if it is on the left hand
side of a seq modality, and of negative polarity if it is on the left hand side of a
triggers modality. The polarity of a regular expression is defined by the polarity
of its occurrences as follows. A regular expression e is of positive polarity if all
occurrences of e in ϕ are of positive polarity, of negative polarity if all occur-
rences of e in ϕ are of negative polarity, of pure polarity if it is either of positive
or negative polarity, and of mixed polarity if some occurrences of e in ϕ are of
positive polarity and some are of negative polarity.

Definition 9.1.1 Given a formula ϕ and a regular expression of pure polarity e,
we denote by ϕ [e← ⊥] the formula obtained from ϕ by replacing e by true∗, if
e is of negative polarity, and by false if e is of positive polarity.

We now show that for e with pure polarity in ϕ, checking whether e effects ϕ, can
be reduced to RELTL model checking:

Theorem 9.1.2 Consider a model M , RELTL formula ϕ, and regular expression
e of pure polarity. Then, M |= (∀y)ϕ [e← y] iff M |= ϕ [e← ⊥].

Proof: If M |= ∀yϕ [e← y] then M,β |= ϕ [e← y] for every assignment β,
including β∅ = ∅ and βI = I (the set of all intervals). M,β∅ |= ϕ [e← y] implies
M |= ϕ [e← false] since no interval satisfies false. M,βI |= ϕ [e← y] implies
M |= ϕ [e← true∗] since every interval satisfies true∗. Thus M |= ϕ [e← ⊥].

The other direction is proved by induction on the structure of ϕ (given in
positive normal form). As regular expression are only used on the left hand side of
seq and triggers , the base case and all operators apart from seq and triggers
are immediate.

Let ϕ = E seq ξ where E is a RELTL regular expression and e is a sub-
regular expression of E. The polarity of e is positive in ϕ and therefore ⊥ ≡
false. If M,π, i |= ϕ [e← false] then there exists some j ≥ i s.t. M,π, i, j|≡
E [e← false] andM,π, j |= ξ. Let b0, b1, . . . , bj−1−i be a word inL(E [e← false])
s.t. M,π, k |= bk−i for all i ≤ k < j. Clearly bk−i �= false. This implies that
M,π, i, j|≡ E regardless of e. Thus M,π, i |= ∀yϕ [e← y].

Let ϕ = E triggers ξ where E is a RELTL regular expression and e is a
sub-regular expression of E. The polarity of e is negative in ϕ and therefore

57

⊥ ≡ true∗. Assume that M,π, i �|= ∀yE [e← y] triggers ξ. This implies that
M,π, i |= ∃yE [e← y] seq ¬ξ. Thus M,π, i, j, β|≡ E [e← y] for some j ≥ i
and interval set β, and M,π, j |= ¬ξ. By the definition of tight satisfaction there
exists a wordw = b0, b1, . . . , bn overAP∪{y} s.t. M,π, i, j, β|≡ w. Furthermore,
if bm ∈ AP , 0 ≤ m ≤ n, then there exists a k s.t. i ≤ k ≤ j and M,π, k, k + 1|≡
bm. Otherwise bm = y and M,π, k, k′|≡ bm for some k′ s.t. i ≤ k ≤ k′ ≤ j.
We now show that there exists a word w′ ∈ L(E [e← true∗]) s.t. M,π, i, j|≡ w′.
The word w′ is equal to w except that every bm = y is replaced by k′m − km
concatenated true (where M,π, km, k

′
m|≡ bm). This implies that M,π, i, j|≡

E [e← true∗]. Since M,π, j |= ¬ξ we have M,π, i |= E [e← true∗] seq ¬ξ,
which implies M,π, i �|= E [e← true∗] triggers ξ.

Since the model-checking problem for RELTL can be solved in PSPACE-
complete, it follows that the regular-vacuity problem for the fragment of RELTL
in which all regular expressions are of pure polarity is PSPACE-complete.

9.2 Weaker Definitions of Regular Vacuity

In Section 6.2, we suggested two alternative definitions for regular vacuity. We
now show that vacuity detection according to these definitions is in PSPACE – not
harder than RELTL model checking.

We first show that the dyadic quantification in duration-QRELTL can be re-
duced to a monadic one. Intuitively, since the quantification in duration-QRELTL
ranges over intervals of a fixed and known duration, it can be replaced by a quan-
tification over the points where intervals start. Formally, we have the following:

Lemma 9.2.1 Consider a system M , an RELTL formula ϕ, a regular expression
e appearing in ϕ, and d > 0. Then, M |= (∀dy)ϕ[e ← y] iff M |= (∀x)ϕ[e ←
(x · trued−1)], where x is a monadic variable.

Universal quantification of monadic variables does not make model checking
harder: checking whether M |= (∀x)ϕ can be reduced to checking whether there
is a computation of M that satisfies (∃x)¬ϕ. As in chapter 4, when we construct
the intersection ofM with the NGBW for ¬ϕ, the values for x can be guessed, and
the algorithm coincides with the one for RELTL model checking. Since detection
of vacuity modulo duration and modulo expression structure are both reduced to
duration-QRELTL model checking, Theorem 5.2.2 implies the following.

58

Theorem 9.2.2 The problem of detecting regular vacuity modulo duration or mod-
ulo expression structure is PSPACE-complete.

We note that when the formula is of a pure polarity, no quantification is needed,
and e may be replaced, in the case of vacuity modulo duration, by false or trued

according its polarity. Likewise, in the case of vacuity modulo expression struc-
ture, the Boolean formulas in e may be replaced by false or true.

59

Chapter 10

Conclusion

In this work we investigated vacuity detection with respect to subformulas with
multiple occurrences and with respect to regular expressions. We were motivated
by the need to extend vacuity detection to industrial-strength property-specification
languages such as ForSpec [AFF+02] and Sugar [BBE+01], which is significantly
richer syntactically and semantically than LTL.

The generality of our framework required us to re-examine the basic intuition
underlying the concept of vacuity, which until now has been defined as sensitivity
with respect to syntactic perturbation. We studied sensitivity with respect to se-
mantic perturbation, which we modeled by universal quantification. We showed
that with respect to subformula vacuity, this yields a hierarchy of vacuity notions.
We argued that the right notion is that of vacuity defined with respect to traces and
described an algorithm for vacuity detection.

We then focused on RELTL, which is the extension of LTL with a regular
layer. We defined the notion of “does not affect,” for regular expressions in terms
of universal dyadic quantification. We showed that regular vacuity is decidable,
but involves an exponential blow-up (in addition to the standard exponential blow-
up for LTL model checking). We suggested two alternative definitions for regular
vacuity and showed that with respect to these definitions, even for formulas that
do not satisfy the polarity constraints, vacuity detection can be reduced to standard
model checking, which makes them of practical interest. The two definitions are
weaker than our general definition, in the sense that a vacuous pass according to
them may not be considered vacuous according to the general definition.

Finally, we discussed pragmatic aspects of vacuity detection, showed how the
number of checks can be minimized, and how vacuity results should be displayed
to the user. We presented examples from industrial designs where vacuity detec-

60

tion revealed both RTL bugs and erroneous assumptions on the environment. As
for regular vacuity, it is difficult to make at this point definitive statements about
the overall usability of the weaker definitions, as more industrial experience with
them is needed.

61

Bibliography

[AFF+02] R. Armoni, L. Fix, A. Flaisher, R. Gerth, B. Ginsburg, T. Kanza, A. Land-
ver, S. Mador-Haim, E. Singerman, A. Tiemeyer, M.Y. Vardi, and Y. Zbar.
The ForSpec temporal logic: A new temporal property-specification logic.
In Proc. 8th Int’l Conf/ on Tools and Algorithms for the Construction and
Analysis of Systems, volume 2280 of LNCS, pages 296–211, 2002.

[AFF+03] R. Armoni, L. Fix, A. Flaisher, O. Grumberg, N. Piterman, A. Tiemeyer,
and M.Y. Vardi. Enhanced vacuity detection in linear temporal logic. In
Computer Aided Verification, 15th Inte.l Conf., (CAV 2003), volume 2725 of
LNCS, pages 368–380, 2003.

[BB94] D. Beaty and R. Bryant. Formally verifying a microprocessor using a sim-
ulation methodology. In Proc. 31st Design Automation Conference, pages
596–602. IEEE Computer Society, 1994.

[BBE+01] I. Beer, S. Ben-David, C. Eisner, D. Fisman, A. Gringauze, and Y. Rodeh.
The temporal logic Sugar. In Proc. 13th Inte’l Conf. on Computer Aided
Verification, volume 2102 of LNCS, pages 363–367, 2001.

[BBER97] I. Beer, S. Ben-David, C. Eisner, and Y. Rodeh. Efficient detection of vacuity
in ACTL formulas. In Proc. 9th Conference on Computer Aided Verification,
volume 1254 of Lecture Notes in Computer Science, pages 279–290, 1997.

[BBER01] I. Beer, S. Ben-David, C. Eisner, and Y. Rodeh. Efficient detection of vacuity
in ACTL formulas. Formal Methods in System Design, 18(2):141–162, 2001.

[BH99] J.P. Bergmann and M.A. Horowitz. Improving coverage analysis and
test generation for large designs. In IEEE International Conference for
Computer-Aided Design, pages 580–584, November 1999.

[CE81] E.M. Clarke and E.A. Emerson. Design and synthesis of synchronization
skeletons using branching time temporal logic. In Proc. Workshop on Logic

62

of Programs, volume 131 of Lecture Notes in Computer Science, pages 52–
71. Springer-Verlag, 1981.

[CES86] E.M. Clarke, E.A. Emerson, and A.P. Sistla. Automatic verification of finite-
state concurrent systems using temporal logic specifications. ACM Transac-
tions on Programming Languages and Systems, 8(2):244–263, January 1986.

[CFF+01] F. Copty, L. Fix, R. Fraer, E. Giunchiglia, G. Kamhi, A. Tacchella, and
M.Y. Vardi. Benefits of bounded model checking at an industrial setting.
In Computer Aided Verification, Proc. 13th International Conference, vol-
ume 2102 of Lecture Notes in Computer Science, pages 436–453. Springer-
Verlag, 2001.

[CGMZ95] E.M. Clarke, O. Grumberg, K.L. McMillan, and X. Zhao. Efficient genera-
tion of counterexamples and witnesses in symbolic model checking. In Proc.
32nd Design Automation Conf., pages 427–432, 1995.

[CGP99] E.M. Clarke, O. Grumberg, and D. Peled. Model Checking. MIT Press, 1999.

[CKKV01] H. Chockler, O. Kupferman, R.P. Kurshan, and M.Y. Vardi. A practical ap-
proach to coverage in model checking. In Computer Aided Verification, Proc.
13th International Conference, volume 2102 of Lecture Notes in Computer
Science, pages 66–78. Springer-Verlag, 2001.

[CKV01] H. Chockler, O. Kupferman, and M.Y. Vardi. Coverage metrics for temporal
logic model checking. In Tools and algorithms for the construction and anal-
ysis of systems, number 2031 in Lecture Notes in Computer Science, pages
528 – 542. Springer-Verlag, 2001.

[DGK96] S. Devadas, A. Ghosh, and K. Keutzer. An observability-based code cov-
erage metric for functional simulation. In Proceedings of the International
Conference on Computer-Aided Design, pages 418–425, November 1996.

[FAD99] F. Fallah, P. Ashar, and S. Devadas. Simulation vector generation from HDL
descriptions for observability enhanced-statement coverage. In Proceedings
of the 36th Design Automation Conference, pages 666–671, June 1999.

[FKZ+00] R. Fraer, G. Kamhi, B. Ziv, M. Vardi, and L. Fix. Prioritized traversal: ef-
ficient reachability analysis for verication and falsification. In Proc. 12th
Conference on Computer Aided Verication, volume 1855 of Lecture Notes in
Computer Science, pages 389–402, Chicago, IL, USA, July 2000. Springer-
Verlag.

63

[FL79] M.J. Fischer and R.E. Ladner. Propositional dynamic logic of regular pro-
grams. J. of Computer and Systems Sciences, 18:194–211, 1979.

[GC04a] Arie Gurfinkel and Marsha Chechik. Extending extended vacuity. In Pro-
ceedings of FMCAD’04 (to appear), November 2004.

[GC04b] Arie Gurfinkel and Marsha Chechik. How vacuous is vacuous? In Proceed-
ings of TACAS’04, volume 2988 of LNCS, pages 92–102. Springer, March
2004.

[HKHZ99] Y. Hoskote, T. Kam, P.-H Ho, and X. Zhao. Coverage estimation for symbolic
model checking. In Proc. 36th Design automation conference, pages 300–
305, 1999.

[HMA95] Y. Hoskote, D. Moundanos, and J. Abraham. Automatic extraction of the
control flow machine and application to evaluating coverage of verification
vectors. In Proceedings of ICDD, pages 532–537, October 1995.

[HT99] J.G. Henriksen and P.S. Thiagarajan. Dynamic linear time temporal logic.
Annals of Pure and Applied Logic, 96(1–3):187–207, 1999.

[HU79] J.E. Hopcroft and J.D. Ullman. Introduction to Automata Theory, Languages,
and Computation. Addison-Wesley, 1979.

[HYHD95] R. Ho, C. Yang, M. Horowitz, and D. Dill. Architecture validation for pro-
cessors. In Proceedings of the 22nd Annual Symp. on Computer Architecture,
pages 404–413, June 1995.

[KGG99] S. Katz, D. Geist, and O. Grumberg. “Have I written enough properties ?”
a method of comparison between specification and implementation. In 10th
Advanced Research Working Conference on Correct Hardware Design and
Verification Methods, volume 1703 of Lecture Notes in Computer Science,
pages 280–297. Springer-Verlag, 1999.

[Kup95] O. Kupferman. Augmenting branching temporal logics with existential quan-
tification over atomic propositions. In Computer Aided Verification, Proc. 8th
International Conference, volume 939 of Lecture Notes in Computer Science,
pages 325–338, Liege, July 1995. Springer-Verlag.

[KV99] O. Kupferman and M.Y. Vardi. Vacuity detection in temporal model check-
ing. In 10th Advanced Research Working Conference on Correct Hardware
Design and Verification Methods, volume 1703 of Lecture Notes in Computer
Science, pages 82–96. Springer-Verlag, 1999.

64

[KV03] O. Kupferman and M.Y. Vardi. Vacuity detection in temporal model check-
ing. Software Tools for Technology Transfer, 4(2):224–233, 2003.

[LP85] O. Lichtenstein and A. Pnueli. Checking that finite state concurrent programs
satisfy their linear specification. In Proc. 12th ACM Symp. on Principles of
Programming Languages, pages 97–107, New Orleans, January 1985.

[LPZ85] O. Lichtenstein, A. Pnueli, and L. Zuck. The glory of the past. In Logics
of Programs, volume 193 of Lecture Notes in Computer Science, pages 196–
218, Brooklyn, June 1985. Springer-Verlag.

[MAH98] D. Moumdanos, J.A. Abraham, and Y.V. Hoskote. Abstraction techniques for
validation coverage analysis and test generation. IEEE Trans. on Computers,
January 1998.

[Pnu77] A. Pnueli. The temporal logic of programs. In Proc. 18th IEEE Symp. on
Foundation of Computer Science, pages 46–57, 1977.

[PP95] B. Plessier and C. Pixley. Formal verification of a commercial serial bus
interface. In Proc. of 14th Annual IEEE International Phoenix Conference
on Computers and Communications, pages 378–382, March 1995.

[PS02] M. Purandare and F. Somenzi. Vacuum cleaning CTL formulae. In Proc.
14th Conf. on Computer Aided Verification, volume 2404 of LNCS, pages
485–499, 2002.

[QS81] J.P. Queille and J. Sifakis. Specification and verification of concurrent sys-
tems in Cesar. In Proc. 5th International Symp. on Programming, volume
137 of Lecture Notes in Computer Science, pages 337–351. Springer-Verlag,
1981.

[SC85] A.P. Sistla and E.M. Clarke. The complexity of propositional linear temporal
logic. J. ACM, 32:733–749, 1985.

[SveB84] M. Savelsberg and P. van emde Boas. Bounded tiling, an alternative to satis-
fiability. In 2nd Frege conference, pages 354–363. Akademya Verlag, 1984.

[SVW85] A.P. Sistla, M.Y. Vardi, and P. Wolper. The complementation problem for
Büchi automata with applications to temporal logic. In Proc. 10th Interna-
tional Colloquium on Automata, Languages and Programming, volume 194,
pages 465–474, Nafplion, July 1985. Lecture Notes in Computer Science,
Springer-Verlag.

65

[VW86] M.Y. Vardi and P. Wolper. An automata-theoretic approach to automatic
program verification. In Proc. 1st Symp. on Logic in Computer Science,
pages 332–344, Cambridge, June 1986.

[VW94] M.Y. Vardi and P. Wolper. Reasoning about infinite computations. Informa-
tion and Computation, 115(1):1–37, 1994.

66

Part IV

Appendixes

67

Appendix A

The Correctness of the Construction
for ALTL

Theorem A.0.3 Let ϕ be an ALTL formula and let Aϕ be its automaton. Then,
L(Aϕ) = L(ϕ).

First Direction: L(ϕ) ⊆ L(Aϕ)

Definition A.0.4 Let π be an infinite word, i an index, and (Z q seq ξ) an ALTL
formula, s.t. π, i |= (Z q seq ξ). We define the minimum satisfying index of
π, i, (Zq seq ξ) denoted msi(π, i, (Zq seq ξ)) as the minimal index j ≥ i such
that π, i, j|≡ Zq and π, j |= ξ.

The minimal satisfying index determines the first index where the seq formula
could be released from its obligation.

Lemma A.0.5 Let π be in L(ϕ), then π ∈ L(Aϕ).

Proof: We construct a fair run ρ = (L0, P0), (L1, P1), . . . of Aϕ on π. For every
i ≥ 0 we define Li to be a subset of cl(ϕ) s.t. a subformula ϕ′ of cl(ϕ) is in Li
iff π, i, |= ϕ′. We define Pi to be a subset of seq(ϕ) ∩ Li. The subsets Pi are
inductively defined. For i = 0, P0 = ∅. For i > 0 we distinguish between two
cases:

1. If Pi−1 = ∅, then Pi = Li ∩ seq(ϕ).

68

2. Otherwise, Pi contains a formula (Zq′ seq ξ) iff it is in Li and there exists a
formula (Zq seq ξ) inPi−1 s.t. msi(π, i−1, (Zq seq ξ)) = msi(π, i, (Zq′ seq ξ)) ≥
i and q′ is in Δ(q, πi−1).

We need to prove that ρ is a fair run of Aϕ on π. Since π, 0 |= ϕ, we have that
L0 contains ϕ. The definition of ρ implies that P0 = ∅, thus, (L0, P0) is an initial
state. The following two propositions complete the proof of Lemma A.0.5.

Proposition A.0.6 For every i, we have that (Li, Pi) is in δ((Li−1, Pi−1), πi).

Proof: We show that all the conditions of δ are satisfied:

1. For all p ∈ AP , if p ∈ Li−1, then p ∈ πi−1.

2. For all p ∈ AP , if ¬p ∈ Li−1 then p �∈ πi−1

3. If (next ϕ1) ∈ Li−1, then since π, i−1 |= (next ϕ1) we have that π, i |= ϕ1

and thus ϕ1 ∈ Li.

4. If (ϕ1 until ϕ2) ∈ Li−1 then either π, i− 1 |= ϕ2, in which case ϕ2 ∈ Li−1,
or π, i − 1 |= ϕ1 and π, i |= (ϕ1 until ϕ2) in which case ϕ1 ∈ Li−1 and
(ϕ1 until ϕ2) ∈ Li.

5. If (ϕ1 release ϕ2) ∈ Li−1 then π, i−1 |= ϕ2 and thus ϕ2 ∈ Li−1 and either
π, i− 1 |= ϕ1 in which case ϕ1 ∈ Li−1, or π, i |= (ϕ1 release ϕ2) in which
case (ϕ1 release ϕ2) ∈ Li.

6. If (Zq seq ξ) ∈ Li−1, then we distinguish between two cases:

(a) If ε ∈ L(Zq) and π, i− 1 |= ξ, then q ∈ W and ξ is in Li−1.

(b) Otherwise, j = msi(π, i − 1, Zq seq ξ) ≥ i. Since there exists an
accepting run of Zq on πi−1, πi, . . . , πj−1 and π, j |= ξ, for the second
state q′ of the run, we have that q′ ∈ Δ(q, πi−1) and πi, πi+1, . . . , πj−1

is inL(Zq′). This implies that π, i |= (Z q′ seq ξ) and thatmsi(π, i, Zq′ seq ξ) =
j. Thus, (Zq′ seq ξ) in Li.

7. If (Zq triggers ξ) ∈ Li−1 then the following hold:

(a) If q ∈W , then ε ∈ L(Zq). As (Zq triggers ξ) ∈ Li−1, then π, i−1 |=
(Zq triggers ξ) and thus π, i− 1 |= ξ. This implies that ξ is in Li−1.

69

(b) For every q′ ∈ Δ(q, πi−1) we have that for every j ≥ i, if πi, πi+1, . . . πj−1

is in L(Zq′), then πi−1, πi, . . . πj−1 is in L(Zq), and π, j |= ξ. Thus
π, i |= (Zq′ triggers ξ). This implies that (Zq′ triggers ξ) is in Li for
all q′ ∈ Δ(q, a).

8. If Pi−1 = ∅, then Pi = Li ∩ seq(ϕ). Otherwise, for every (Zq seq ξ) ∈
Pi−1, we distinguish between two cases

(a) If ε ∈ L(Zq) and π, i− 1 |= ξ, then q ∈ W and ξ is in Li−1.

(b) Otherwise, msi(π, i − 1, Zq seq ξ) ≥ i. Since Pi−1 ⊆ Li−1, the
formula (Zq seq ξ) is in Li−1. By item 6b there exists a formula
(Zq′ seq ξ) in Li s.t. q′ ∈ Δ(q, πi−1) and msi(π, i, Zq′ seq ξ) =
msi(π, i− 1, Zq seq ξ). This implies that (Z q′ seq ξ) is in Pi.

Proposition A.0.7 ρ is a fair run of A.

Proof: First, we prove that for every i ≤ m we have that inf(ρ) ∩ Φi �= ∅. We
prove that for every j ≥ 0 there exists k ≥ j s.t. ρk ∈ Φi. Let ϕ1 until ϕ2 be the
until formula which corresponds to Φi, we distinguish between two cases:

1. If π, j �|= (ϕ1 until ϕ2) then (ϕ1 until ϕ2) is not in Lj , thus ρj ∈ Φi.

2. Otherwise, π, j |= (ϕ1 until ϕ2), thus there exists k ≥ j s.t. π, k |= ϕ2.
This implies that ϕ2 is in Lk, thus, ρk ∈ Φi.

Next, we prove that inf(ρ)∩Φseq �= ∅. We prove that for every j ≥ 0 there exists
k ≥ j such that ρk ∈ Φseq. We distinguish between two cases:

1. If Pj = ∅, then ρj ∈ Φseq.

2. Otherwise, Pj contains some seq formulas. Let i = maxϕ′∈Pj
msi(π, j, ϕ′).

We prove by induction that for every j ≤ k < i, we havemaxϕ′∈Pk
msi(π, k, ϕ′) =

i.

• The base case k = j is trivial.

70

• Assume that maxϕ′∈Pk−1
msi(π, k − 1, ϕ′) = i. Let (Zq seq ξ) be a

formula in Pk−1 s.t. msi(π, k− 1, (Zq seq ξ)) = i. Since i > k, there
exists a run q, q1, q2, . . . qi−k−1 of length> 1 ofZq on πk−1, πk, . . . πi−1,
and π, i |= ξ. This implies that the formula (Z q1 seq ξ) is in Lk. Since
q, q1, q2, . . . qi−k−1 is the shortest accepting run of Z q on a prefix of
πk−1, we havemsi(π, k, (Zq1 seq ξ)) = msi(π, k−1, Zq seq ξ) = i,
and that q1 ∈ Δ(q, πk−1), thus (Zq1 seq ξ) ∈ Pk. In addition, for
every other formula ϕ′ ∈ Pk there exists a formula ϕ′′ in Pk−1 s.t.
msi(π, k, ϕ′) = msi(π, k−1, ϕ′′) ≤ i. This implies thatmaxϕ′∈Pk

msi(π, k, ϕ′) =
i.

Thus, for every formula (Zq seq ξ) in Pi−1, we have thatmsi(π, i−1, (Zq seq ξ)) =
i. This implies that for every formula (Z q seq ξ) in Pi−1, we have that
q ∈W and π, i− 1 |= ξ. This implies that Pi = ∅, thus ρi ∈ Φseq.

Second Direction: L(Aϕ) ⊆ L(ϕ)

Lemma A.0.8 Let π be in L(Aϕ), then π ∈ L(ϕ).

Before we prove the lemma we present a few propositions.

Proposition A.0.9 Let ρ = (L0, P0,), (L1, P1), . . . be a run of Aϕ on π. Let i ≥ 0
be an index s.t. the formula (ϕ1 until ϕ2) is in Li. Then either for every j ≥ i, we
have {(ϕ1 until ϕ2), ϕ1} ⊆ Lj , or there exists k ≥ i s.t. ϕ2 ∈ Lk and for every
i ≤ j < k, we have ϕ1 ∈ Lj .

Proof: We prove with induction on k ≥ i that either there exists an index k ′ ≤ k
s.t. ϕ2 ∈ L′

k and for every i ≤ j < k′, ϕ1 ∈ Lj , or for every i ≤ j ≤ k,
{(ϕ1 until ϕ2), ϕ1} ⊆ Lj .

• Base case: k = i follows trivially from the definition of δ.

• Induction step: assume that the proposition holds for k − 1 we distinguish
between two cases:

1. If there exists k′ ≤ k − 1 s.t. ϕ2 ∈ L′
k and for every i ≤ j < k′,

ϕ1 ∈ Lj , then the lemma holds trivially.

2. Otherwise, for every i ≤ j ≤ k − 1, {(ϕ1 until ϕ2), ϕ1} ⊆ Lj .
Since ϕ2 �∈ Lk−1, the definition of δ implies that either ϕ2 ∈ Lk or
{(ϕ1 until ϕ2), ϕ1} ⊆ Lk, in both cases the induction holds for k.

71

Proposition A.0.10 Let ρ = (L0, P0,), (L1, P1), . . . be a run of Aϕ on π. Let
i ≥ 0 be an index s.t. the formula (ϕ1 release ϕ2) is in Li. Then either for every
j ≥ i, we have {(ϕ1 release ϕ2), ϕ2} ⊆ Lj , or there exists k ≥ i s.t. ϕ1 ∈ Lk
and for every i ≤ j ≤ k, we have ϕ2 ∈ Lj .

Proof: We prove with induction on k ≥ i that either there exists an index k ′ ≤ k
s.t. ϕ1 ∈ L′

k and for every i ≤ j ≤ k′, ϕ2 ∈ Lj , or for every i ≤ j ≤ k,
{(ϕ1 release ϕ2), ϕ2} ⊆ Lj .

• Base case: k = i follows trivially from the definition of δ.

• Induction step: assume that the proposition holds for k − 1 we distinguish
between two cases:

1. If there exists k′ ≤ k − 1 s.t. ϕ1 ∈ L′
k and for every i ≤ j ≤ k′,

ϕ2 ∈ Lj , then the lemma holds trivially.

2. Otherwise, for every i ≤ j ≤ k − 1, {(ϕ1 release ϕ2), ϕ2} ⊆ Lj .
Since ϕ1 �∈ Lk−1, the definition of δ implies that {(ϕ1 until ϕ2), ϕ2} ⊆
Lk thus, the induction holds for k.

Proposition A.0.11 Let ρ = (L0, P0,), (L1, P1), . . . be a run of Aϕ on π. Let
i ≥ 0 be an index s.t. the formula (Z q seq ξ) is in Li. Then one of the following
holds:

1. There exists k ≥ i s.t. there exists an accepting run q, q1, q2, . . . qk−i of Zq

over πi, πi+1, . . . , πk−1 s.t. for every i ≤ j ≤ k, we have (Zqj−i seq ξ) ∈
Lj , and ξ ∈ Lk.

2. There exists an infinite run q, q1, q2 . . . of Zq over πi, πi+1, . . . s.t. for every
j > i, we have (Zqj−i seq ξ) ∈ Lj , and either qj−i �∈W or ξ �∈ Lj .

Proof: We prove with induction on k ≤ i that one of the following conditions
holds:

1. There exists an index i ≤ k′ ≤ k s.t. there exists an accepting run q, q1, q2, . . . qk′−i
ofZq over πi, πi+1, . . . , πk′−1 s.t. for every i ≤ j ≤ k′, we have (Zqj−i seq ξ) ∈
Lj , and ξ ∈ Lk′ .

72

2. There exists a run q, q1, q2 . . . qk−i of Zq over πi, πi+1, . . . πk−1 s.t. for every
i ≤ j ≤ k, we have (Zqj−i seq ξ) ∈ Lj , and either qj−i �∈W or ξ �∈ Lj .

• Base case: k = i follows trivially from the definition of δ.

• Induction step: assume that the proposition holds for k − 1 we distinguish
between two cases:

1. There exists an index i ≤ k′ ≤ k − 1 s.t. there exists an accepting run
q, q1, q2, . . . qk′−i of Zq over πi, πi+1, . . . , πk′−1 s.t. for every i ≤ j ≤
k′, we have (Zqj−i seq ξ) ∈ Lj , and ξ ∈ Lk′ . Then the lemma holds
trivially.

2. Otherwise, there exists a run q, q1, q2 . . . qk−i−1 ofZq over πi, πi+1, . . . πk−2

s.t. for every i ≤ j ≤ k − 1, we have (Zqj−i seq ξ) ∈ Lj , and either
qj−i �∈ W or ξ �∈ Lj . If qk−i ∈ W and ξ ∈ Lk, then there exists an
accepting run q, q1, q2, . . . qk−i of Zq over πi, πi+1, . . . , πk−1 and the
lemma holds

Otherwise, the definition of δ implies thatLk contains a formula (Zqk−i seq ξ)
s.t. qk−i ∈ Δ(qk−i−1, πk−1), thus the lemma holds.

Proposition A.0.12 Let ρ = (L0, P0,), (L1, P1), . . . be a run of Aϕ on π. Let
i ≥ 0 be an index s.t. the formula (Z q seq ξ) is in Pi. Then one of the following
holds:

1. There exists k ≥ i s.t. there exists an accepting run q, q1, q2, . . . qk−i of Zq

over πi, πi+1, . . . , πk−1 s.t. for every i ≤ j ≤ k, we have (Zqj−i seq ξ) ∈
Pj, and ξ ∈ Lk.

2. There exists an infinite run q, q1, q2 . . . of Zq over πi, πi+1, . . . s.t. for every
j ≥ i, we have (Zqj−i seq ξ) ∈ Pj, and either qj−i �∈W or ξ �∈ Lj .

The proof of this proposition is similar to the proof of Proposition A.0.11, and
thus omitted.

Proposition A.0.13 Let ρ = (L0, P0,), (L1, P1), . . . be a run of Aϕ on π. Let
i ≥ 0 be an index s.t. the formula (Z q triggers ξ) is in Li. Then for every j ≥ i
and every run q, q1, q2, . . . qj−i of Z(q) on πi, πi+1, . . . , πj−1, we have that the
formula (Zqj−i triggers ξ) is in Lj . Furthermore, if qj−i ∈W , then ξ ∈ Lj .

73

Proof: We prove the proposition by induction on j ≥ i.

• Base case: j = i follows directly from the definition of δ.

• Assume that the proposition holds for j we prove it for j+1. Let q, q1, q2, . . . qj−i+1

of Z(q) on πi, πi+1, . . . , πj . The induction hypothesis implies that the for-
mula (Zqj−i triggers ξ) is in Lj . Since qj−i+1 ∈ Δ(qj−i, πj), δ implies that
the formula (Zqj−i+1 triggers ξ) is in Lj+1. If qj−i+1 ∈ W , then δ implies
that ξ ∈ Lj+1.

We now prove Lemma A.0.8. Let ρ = (L0, P0,), (L1, P1), . . . be a fair run of
Aϕ on π. We prove with induction over the structure of ϕ that for every i ≥ 0 and
every subformula ϕ′ we have that ϕ′ in Li iff π, i |= ϕ′. Since for every initial
state (L, P) of Aϕ, we have ϕ ∈ L, we have that π, 0 |= ϕ.

• Base case: For p and ¬p the definition of the automaton implies that the
lemma holds.

• Induction step: Assume that the lemma holds for ϕ1, ϕ2, and ξ.

– The consistency of the states of the automaton implies that the lemma
holds for the formulas (ϕ1 ∧ ϕ2) and (ϕ1 ∨ ϕ2).

– Let (next ϕ1) be a formula in Li. The definition of δ implies that
ϕ1 ∈ Li+1. The induction hypothesis implies that π, i+ 1 |= ϕ1, thus
π, i |= (next ϕ1).

– Let (ϕ1 until ϕ2) be a formula in Li. Proposition A.0.9 implies that
either there exists k ≥ i s.t. ϕ2 ∈ Lk and for every i ≤ j < k, we have
ϕ1 ∈ Lj or for every j ≥ i, we have {(ϕ1 until ϕ2), ϕ1} ⊆ Lj .

In the first case, the induction hypothesis implies that for all i ≤ j < k,
we have π, j |= ϕ1 and that π, k |= ϕ2. Thus π, i |= (ϕ1 until ϕ2).

As for the second case let Φl be the fairness set which corresponds to
(ϕ1 until ϕ2). Since ρ is fair, there exists k ≥ i such that ρk ∈ Φl.
Given that (ϕ1 until ϕ2) ∈ Lk, ρk ∈ Φl implies that ϕ2 ∈ Lk. Thus,
the induction hypothesis implies that for all i ≤ j < k, we have
π, j |= ϕ1 and that π, k |= ϕ2. Thus π, i |= (ϕ1 until ϕ2).

– Let (ϕ1 release ϕ2) be a formula in Li. Proposition A.0.10 implies
that either for every j ≥ i, we have {(ϕ1 release ϕ2), ϕ2} ⊆ Lj , or

74

there exists k ≥ i s.t. ϕ1 ∈ Lk and for every i ≤ j ≤ k, we have
ϕ2 ∈ Lj .
The induction assumption implies that either for all j ≥ i, we have
π, j |= ϕ2, or there or there exists k ≥ i s.t. for all i ≤ j ≤ k, we have
π, j |= ϕ2 and π, k |= ϕ1. Thus, π, i |= (ϕ1 release ϕ2).

– Let (Zq seq ξ) be a formula in Li. Proposition A.0.11 implies that
one of the following holds

1. There exists k ≥ i s.t. there exists an accepting run q, q1, q2, . . . qk−i
of Zq over πi, πi+1, . . . , πk−1 s.t. for every i ≤ j ≤ k, we have
(Zqj−i seq ξ) ∈ Lj , and ξ ∈ Lk. In this case the induction hy-
pothesis implies that π, k ′ |= ξ thus π, i |= (Zq seq ξ).

2. There exists an infinite run q, q1, q2 . . . of Zq over πi, πi+1, . . . s.t.
for every j ≥ i, we have (Zqj−i seq ξ) ∈ Lj , and either qj−i �∈W
or ξ �∈ Lj .
Since ρ is fair there exists k ≥ i s.t. Pk = ∅. This implies
that (Zqk+1−i seq ξ) ∈ Pk+1. By proposition A.0.12, one of the
following should hold:

(a) There exists k′ ≥ k + 1 s.t. there exists an accepting run
qk+1−i, qk+2−i, . . . qk′−i of Zqk+1−i over πk+1, πk+2, . . . , πk′−1

s.t. for every k + 1 ≤ j ≤ k′, we have (Zqj−k−1 seq ξ) ∈ Pj ,
and ξ ∈ Lk′ . In this case the induction hypothesis implies that
π, k |= ξ. Since the run q, q1, q2, . . . , qk−i, qk+1−i, . . . qk′−i is
accepting, we have π, i |= (Zq seq ξ).

(b) There exists an infinite run qk+1−i, qk+2−i, . . . ofZq over πk+1, πk+2, . . .
s.t. for every j > k + 1, we have (Zqj−k−1 seq ξ) ∈ Pj , and
either qj−k �∈ W or ξ �∈ Lj . In this case Pj is empty only
finitely many time in ρ, thus ρ is not fair, contradiction.

– Let (Zq triggers ξ) be a formula inLi. Proposition A.0.13 implies that
for every j ≥ i, if Zq has an accepting run over πi, πi+1, . . . πj−1, then
ξ ∈ Lj . In this case the induction hypothesis implies that π, j |= ξ.
This implies that π, i |= (Z q triggers ξ).

75

Appendix B

The Correctness of the Construction
for QALTL

Theorem B.0.14 L(Aϕ) = L((∃y)ϕ).

First Direction: L((∃yϕ)) ⊆ L(Aϕ)

We start by extending the definition of msi to obligations. We say that an
obligation o = ((Zq seq ξ),Υ) is possible for π, i, β if there exists an index j ≥ i
s.t. π, j, β |= Υ and for some q′ ∈ Δ(q, y), we have π, j, β |= (Zq′ seq ξ).

Definition B.0.15 Let π be a word, i an index, β an interval set, and (Z q seq ξ)
a formula in seq(ϕ) s.t. π, i, β |= (Z q seq ξ). Then msi(π, i, β, (Zq seq ξ)) =
min({j|π, i, j, β|≡ L(Zq) ∧ π, j, β |= ξ}). Let o = ((Zq seq ξ),Υ) be an obli-
gation that is possible for π, i, β. We define msi(π, i, β, o) = min({j|∃q ′ ∈
Δ(q, y)∃k ≥ i s.t. π, k, β |= Υ ∧ j = msi(π, k, (Zq′ seq ξ))}).

We now present a lemma, which defines the conditions for tight satisfaction of
L(Zq) in terms of states of Zq.

Lemma B.0.16 Let Zq be NFW, let π be an infinite word, let j ≥ i ≥ 0, and let
β ⊆ I be an interval assignment. Then π, i, j, β|≡ L(Z q) iff at least one of the
following holds:

1. j = i and q ∈W .

2. j > i and there exists q′ ∈ Δ(q, πi) s.t. π, i+ 1, j, β|≡ L(Zq′).

76

3. There exists some k, i ≤ k ≤ j and a state q ′ ∈ Δ(q, y) s.t. (i, k) ∈ β and
π, k, j, β|≡ L(Zq′).

Proof: π, i, j, β|≡ L(Zq) iff there is w ∈ L(Zq), w = x0, x1, . . . , xn and there is a
sequence of integers i0, i1, . . . , in, in+1, such that i0 = i and in+1 = j. Moreover,
for every 0 ≤ k ≤ n the following conditions hold:

• If xk ∈ 2AP then xk = πik and ik+1 = ik + 1.

• If xk = y then (ik, ik+1) ∈ β.

We partition this condition into three cases:

1. The case where w = ε. In this case j = i. Since w = ε ∈ L(Zq), we have
q ∈W . Thus the first condition of the lemma holds.

2. The case where |w| > 0 and x0 ∈ 2AP . In this case x0 = πi thus, for some
q′ ∈ Δ(q, πi) we have that x1, x2, . . . xn ∈ L(Zq′). Furthermore, for every
1 ≤ k ≤ n we have that the following conditions hold:

• If xk ∈ 2AP then xk = πik and ik+1 = ik + 1.

• If xk = y then (ik, ik+1) ∈ β.

Thus, π, i+ 1, j, β|≡ L(Zq′) and the second condition holds.

3. The case where |w| > 0 and x0 = y. For k = i1, we have that (i, k) ∈ β,
and for some q′ ∈ Δ(q, y), we have x1, x2, . . . xn ∈ L(Zq′). Furthermore,
for the sequence i1, i2, . . . , in+1 and for every 1 ≤ l ≤ n we have that the
following conditions hold:

• If xl ∈ 2AP then xl = πil and il+1 = il + 1.

• If xl = y then (il, il+1) ∈ β.

Thus π, k, j, β|≡ L(Zq′) and the third condition holds.

Lemma B.0.17 Let π be in L((∃y)ϕ), then π ∈ L(Aϕ).

Proof: We construct a fair run ρ of Aϕ on π. Let β be an interval set such that
π, 0, β|≡ ϕ. For every i ≥ 0 we define Li = {ϕ′|π, i, β |= ϕ′}∪{o|o is possible for π, i, β}.
We define Pi to be a subset of Li. The subsets Pi are inductively defined. For
i = 0, P0 = ∅. For i > 0 we distinguish between two cases:

77

1. If Pi−1 = ∅ , then Pi = Li ∩ (seq(ϕ) ∪ obl(ϕ)).

2. Otherwise, Pi contains a formula (Zq′ seq ξ) iff it is in Li and
msi(π, i, β, (Zq′ seq ξ)) ≤ max{msi(π, i − 1, β, x)|x ∈ Pi−1}. Pi con-
tains an obligation formula o = ((Z q seq ξ),Υ) iff it is inLi andmsi(π, i, β, o) ≤
max{msi(π, i− 1, β, x)|x ∈ Pi−1}.

The following two propositions complete the proof of Lemma B.0.17.

Proposition B.0.18 For every i, we have that (Li, Pi) is in δ((Li−1, Pi−1), πi−1).

Proof: We need to show that all the conditions for the transition relation are ful-
filled. The conditions for p, ¬p, ∧, ∨, until , release , and triggers are identical
to the condition for the automaton defined in the Section 5, and thus, can be proved
similarly to Proposition A.0.6. Next, we prove that the other conditions hold as
well.

1. If (Zq seq ξ) ∈ Li−1, then for some j ≥ i− 1, we have that π, i− 1, j, β|≡
L(Zq) and π, j, β |= ξ. Lemma B.0.16 implies that at least one of the
following holds:

(a) j = i− 1 and q ∈ W . In this case condition 6a of δ is satisfied.

(b) j ≥ i and there exists q′ ∈ Δ(q, πi−1) s.t. π, i, j, β|≡ L(Zq′). This im-
plies that π, i, β |= (Zq′ seq ξ), thus, (Zq′ seq ξ) ∈ Li, and condition
6b of δ is satisfied.

(c) There exists an index i − 1 ≤ k ≤ j and a state q′ ∈ Δ(q, y) s.t.
(i, k) ∈ β and π, k, j, β|≡ L(Zq′). Since i − 1 ≤ k and π, k, β |= ξ,
we have that o = ((Zq seq ξ),wait(Li−1)) is possible in π, i − 1, β.
Thus o ∈ Li−1 and condition 6c of δ is satisfied.

2. If (Zq seq ξ) ∈ Pi−1, then it is also in Li. Let j ≥ i − 1 be the minimal
index s.t. π, i− 1, j, β|≡ L(Zq) and π, j, β |= ξ. Lemma B.0.16 implies at
least one of the following holds:

(a) j = i− 1 and q ∈ W . In this case condition 8a of δ is satisfied.

(b) j ≥ i and there exists q′ ∈ Δ(q, πi−1) s.t. π, i, j, β|≡ L(Zq′). This im-
plies that π, i, β |= (Zq′ seq ξ), and thatmsi(π, i− 1, β, (Zq seq ξ)) =
msi(π, i, β, (Zq′ seq ξ)) = j. Thus, (Zq′ seq ξ) ∈ Pi, and condition
8b of δ is satisfied.

78

(c) There exists an index i−1 ≤ k ≤ j and a state q′ ∈ Δ(q, y) s.t. (i, k) ∈
β and π, k, j, β|≡ L(Zq′). Since π, k, j, β|≡ L(Zq′) and π, j, β |= ξ,
we have that the obligation o = ((Z q seq ξ),wait(Li−1)) is possible
in π, i−1, β. Furthermore,msi(π, i−1, β, o) ≤ msi(π, i− 1, β, (Zq seq ξ)) =
j. Thus o ∈ Pi−1 and condition 8c of δ is satisfied.

3. If o = ((Zq seq ξ),Υ) ∈ Li−1, then o is possible for π, i − 1, β. This
implies that there exists an index j ≥ i − 1 s.t. π, j, β |= Υ and for some
q′ ∈ Δ(q, y), we have π, j, β |= (Zq′ seq ξ). If j = i−1, then condition 9a
of δ is satisfied. Otherwise, j ≥ i. This implies that o is possible for π, i, β.
Thus, o ∈ Li and condition 9b of δ is satisfied.

4.

5. If o = ((y seq ξ),Υ) ∈ Pi−1, then o ∈ Li−1 , thus, o is possible for π, i −
1, β. This implies that j ′ = msi(π, i − 1, β, o) is defined. Thus, there
exists an index j ≥ i s.t. π, j, β |= Υ, and for some q ′ ∈ Δ(q, y), we have
π, j, β |= (Zq′ seq ξ), and msi(π, j, β, (Zq′ seq ξ)) = j′. We distinguish
between two cases:

(a) If j = i − 1, then π, j, β |= (Zq′ seq ξ) implies that (Zq′ seq ξ) ∈
Li−1. Since msi(π, i − 1, β, (Zq′ seq ξ)) = msi(π, i − 1, β, o), we
have that (Zq′ seq ξ) ∈ Pi−1, thus, condition 10a of δ is satisfied.

(b) Otherwise, j ≥ i. This implies that o is possible for π, i, β. Further-
more,msi(π, i−1, β, o) = msi(π, i, β, o). Thus, o ∈ Li and condition
10b of δ is satisfied.

6. The definitions of Pi implies that if Pi−1 = ∅, then Pi = Li ∩ (seq(ϕ) ∪
obl(ϕ)).

7. (Condition 12) Suppose that wait(Li−1) ⊆ Li−1. Let (Zq seq ξ) be in
Li−1. Then, π, i − 1, β |= (Zq seq ξ). This implies that for some j we
have that π, i − 1, j, β|≡ L(Zq) and π, j, β |= ξ. Then, the definition of
tight satisfaction implies that there is w ∈ L, w = x0, x1, . . . , xn and there
is a sequence of integers i0, i1, . . . , in, in+1, such that i0 = i and in+1 = j.
Moreover, for every 0 ≤ k ≤ n the following conditions hold:

• If xk ∈ 2AP then xk = πik and ik+1 = ik + 1.

• If xk = y then (ik, ik+1) ∈ β.

79

Let q, q1, qn, . . . qn+1 be an accepting run of Zq on w. We distinguish be-
tween three cases:

(a) If w = ε, then q ∈ W , and j = i − 1 thus condition 6a of delta is
satisfied and (Zq seq ξ) is strong in Li−1.

(b) If j = in+1 = i − 1, then w = yn and for every k ≤ n + 1 we
have that π, i − 1, β |= (Zqk seq ξ), and since wait(Li−1) ⊆ Li−1,
ok = ((Zqk seq ξ),wait(Li−1)) is possible in π, i− 1, β. This implies
that for every k ≤ n + 1 we have that (Zqk seq ξ) ∈ Li−1, and ok ∈
Li−1. This implies for every k ≤ n there exists a y transition from
(Zqk seq ξ) to ok and from ok to (Zqk+1 seq ξ). Furthermore, qn+1 ∈
W , thus (Zqn+1 seq ξ) is strong in Li−1 and the condition holds.

(c) If j > i − 1, then let l be the maximal index s.t. il = i0 = i − 1.
Then, for every k ≤ l we have that π, i − 1, β |= (Zqk seq ξ), and
since wait(Li−1) ⊆ Li−1, ok = ((Zqk seq ξ),wait(Li−1)) is possi-
ble in π, i − 1, β. This implies that for every k ≤ l we have that
(Zqk seq ξ) ∈ Li−1, and ok ∈ Li−1. This implies for every k <
l there exists a y transition from (Z qk seq ξ) to ok and from ok to
(Zqk+1 seq ξ). It is left to show that the path ends at a strong element
of Li−1. We distinguish between two cases:

i. If xl = y, then o = ((Zql seq ξ),wait(Li−1)) ∈ Li−1. Since
il+1 > i− 1, o is strong in Li−1.

ii. If xl ∈ 2AP , then (Zql seq ξ) is strong in Li−1.

8. The proof that condition 13 of δ holds is similar to the proof for condition
12, and thus omitted.

Proposition B.0.19 ρ is a fair run of Aϕ.

Proof: The proof that Φ1,Φ2, . . . ,Φm are satisfied is similar to the proof In Sec-
tion 5. For Φ seq we prove that for every i there exists j ≥ i s.t. Pj = ∅. We
distinguish between two cases:

1. If Pi = ∅, then we are done.

2. Otherwise, let k = max{l|l = msi(π, i, β, x) where x ∈ Pi}. Intuitively,
we show that the maximum msi k does not grow until P is empty, and that
P is eventually empty. We prove by induction on j that for every j ≥ i one
of the following holds:

80

(a) There exists i ≤ j ′ ≤ j s.t. Pj′ = ∅.
(b) max{l|l = msi(π, j, β, x) for some element in Pj} ≤ k.

• Base case: j = i, thus (b) holds trivially.

• Assume that the induction proposition holds for j. We distinguish
between two cases:

(a) There exists i ≤ j ′ ≤ j s.t. Pj′ = ∅, then the induction proposi-
tion holds for j + 1 as well.

(b) k′ = max{l|l = msi(π, j, β, x) for some element in Pj} ≤ k. If
Pj+1 = ∅, then the induction holds. Otherwise, by construction
of ρ, for every element x in Pj+1, we have msi(π, j + 1, β, x) ≤
k′ ≤ k.

Since msi of index j is greater or equal to j, for some i < j ≤ k + 1, we
have that Pj = ∅.

Second Direction: Aϕ ⊆ L((∃y)ϕ)

Lemma B.0.20 Let π be in L(Aϕ), then π ∈ L((∃y)ϕ).

In the rest of this section, we prove Lemma B.0.20. Let ρ = (L0, P0), (L1, P1), . . .
be a fair run of Aϕ on π. First we construct an interval set β according to ρ. Then,
we prove with induction over the structure of ϕ that for every i ≥ 0 and every
subformula ϕ′ in Li we have that π, i, β |= ϕ′. For the rest of this section, we fix
π and ρ.

We define β as follows: An interval (i, j) is in β iff the following conditions
hold:

1. There exists a formula (Zq seq ξ) ∈ Li, for which condition 6c holds.

2. For some q′ ∈ Δ(q, y) we have that (Zq′ seq ξ) ∈ Lj , and wait(Li) ⊆ Lj .

Lemma B.0.21 For every formula (Zq seq ξ) ∈ Li for which conditions 6c of δ
holds, there exists an index j ≥ i s.t. wait(Li) ⊆ Lj and for some q′ ∈ Δ(q, y)
we have that (Zq′ seq ξ) ∈ Lj .

Proof: Since condition 6c of δ holds, we have o = ((Zq seq ξ),wait(Li)) ∈
Li. First we prove that for every j ≥ i one of the following conditions holds:

81

1. There exists i ≤ j ′ ≤ j s.t. j ′ satisfies the conditions of the lemma.

2. o ∈ Lj .

• Base case: j = i holds trivially.

• Assume that the induction proposition holds for j. Then, if here exists i ≤
j′ ≤ j s.t. j ′ satisfies the conditions of the lemma, then the induction holds
for j + 1 as well. Otherwise, condition 9a of δ does not hold for o ∈ Lj .
This implies that condition 9b does, thus, o ∈ Lj+1.

This implies that either there exists an index j that satisfies the conditions of the
lemma, in which case the lemma holds, or for every j ≥ i, we have o ∈ Lj . Since
ρ is fair, there exists k ≥ i s.t. Pk = ∅. Then, since o ∈ Lk+1, we have that
o ∈ Pk+1. By the same induction we can prove that either there exists an index
j ≥ k + 1 that satisfies the conditions of the lemma, in which case the lemma
holds, or for every j ≥ k + 1, we have o ∈ Pj, this case however, contradicts the
fairness of ρ, thus the lemma holds.

Lemma B.0.21 implies that β is well defined.

Proposition B.0.22 Let (Zq seq ξ) be a formula in Li. Then, for every j ≥ i,
one of the following conditions holds:

1. There exists j ′ ≤ j s.t. π, i, j ′, β|≡ L(Zq), ξ ∈ Lj′ .

2. There exists a word w = x0, x1, . . . xn over 2AP ∪{y}, a run q, q1, . . . , qn+1

of Zq on w, and a sequence i0, i1, . . . in+1 s.t. i0 = i, in+1 = j, and for
every 0 ≤ k ≤ n, we have the following:

(a) If xk ∈ 2AP , then xk = πik , ik+1 = ik + 1, (Zqk seq ξ) ∈ Lik , and
(Zqk+1 seq ξ) ∈ Lik+1

.

(b) If xk = y, then qk+1 ∈ Δ(qk, y), and for every ik ≤ l ≤ ik+1, we have
o = ((Zqk seq ξ),wait(Lik)) ∈ Ll.

Proof: we prove the proposition by induction on j.

• Base case: j = i. Condition 6 of δ implies that one of the following should
hold:

1. q ∈ W and ξ ∈ Li. In this case the first condition of the proposition
holds for j ′ = i.

82

2. (Zq′ seq ξ) ∈ Li+1 for some q′ ∈ Δ(q, πi). In this case second condi-
tion holds for w = πi, the run q, q′ and the sequence i, i+ 1.

3. If Δ(q, y) �= ∅, and ((Zq seq ξ),wait(Li)) ∈ Li, then the second
condition holds for w = y, the run q, q ′ (for some q′ ∈ Δ(q, y)), and
the sequence i, i.

• Induction step: Assume that the proposition holds for j. If condition 1 of
proposition holds for j, then it holds for j + 1 as well. Otherwise, there
exists a word w = x0, x1, . . . xn over 2AP ∪ {y} a run q, q1, . . . , qn+1 of Zq

on w, and a sequence i0, i1, . . . in+1 s.t. i0 = i, in+1 = j, and for every
0 ≤ k ≤ n, we have the following:

1. If xk ∈ 2AP , then qk+1 ∈ Δ(qk, πik), ik+1 = ik+1, (Zqk seq ξ) ∈ Lik ,
and (Zqk+1 seq ξ) ∈ Lik+1

.

2. If xk = y, then qk+1 ∈ Δ(qk, y), and for every ik ≤ l ≤ ik+1, we have
o = ((Zqk seq ξ),wait(Lik)) ∈ Ll.

We distinguish between four cases:

1. If xn ∈ 2AP , and (Zqn+1 seq ξ) ∈ Lj is strong in Lj . Condition 6 of δ
implies that one of the following should hold:

(a) qn+1 ∈ W and ξ ∈ Lj . In this case condition 1 of the proposition
is satisfied with j ′ = j.

(b) (Zq′ seq ξ) ∈ Lj+1 for some q′ ∈ Δ(qn+1, πj). In this case
condition 2 of the proposition holds for w ′ = w · πj , the run
q, q1, . . . , qn+1, q

′, and the sequence i0, i1, . . . , in+1, j + 1.

2. If xn = y, and o = ((Zqn seq ξ),wait(Lin)) ∈ Lj is strong in Lj .
Then, Condition 9 of δ implies that o ∈ Lj+1. In this case the second
condition holds for w ′ = w, the run q, q1, . . . , qn+1, and the sequence
i0, i1, . . . , in, in+1 = j + 1 (note that we remove the old in+1).

3. If xn ∈ 2AP , and (Zqn+1 seq ξ)) ∈ Lj is not strong in Lj . Condition 6
of δ implies the following should hold: There exists q ′ ∈ Δ(qn+1, y),
and o = ((Zqn seq ξ),wait(Lj)) ∈ Lj . We distinguish between two
cases:

(a) If wait(Lj) �⊆ Lj , condition 9a of δ does not hold for o. This
implies that condition 9b of δ does hold for o. In this case the
second condition holds for w ′ = w · y, the run q, q1, . . . qn+1, q

′

(for some q′ ∈ Δ(q, y)) and the sequence i0, i1, . . . , in+1, j + 1.

83

(b) If wait(Lj) ⊆ Lj , then condition 12 of δ implies that there ex-
ists a path of y transitions from (Z qn+1 seq ξ) to a strong ele-
ment in Lj . Note that if there is a y transition from (Z q seq ξ) to
o = ((Zq seq ξ),Υ), and a y transition from o to (Zq′ seq ξ),
then q′ ∈ Δ(q, y). This implies that there exists a sequence
qn+1, qn+2, . . . qn+m s.t. for every n + 1 ≤ l < n + m, ql+1 ∈
Δ(ql, y), and either (Zqn+m seq ξ) is strong, or o = ((Zqn+m seq ξ),wait(Lj))
is strong. If (Zqn+m seq ξ) is strong, then we have the same proof
as in item 1 with w · ym, the run q, q1 . . . qn+m and the sequence
i0, i1, . . . , in+1, j, j, . . . , j, j+1. If o = ((Zqn+m seq ξ),wait(Lj))
is strong, we have the same proof as in item 2 with w · ym, the run
q, q1 . . . qn+m, and the sequence i0, i1, . . . , in+1, j, j, . . . , j, j + 1.

4. If xn = y, and o = ((Zqn seq ξ),wait(Lin)) ∈ Lj is not strong in
Lj . Then, Condition 9 of δ implies the following should hold: For
some q′ ∈ Δ(qn, y), we have that (Zq′ seq ξ) ∈ Lj and Υ ⊆ Lj . If
(Zq′ seq ξ) is strong, then the proof is as in item 1, otherwise it is as
in item 3.

Proposition B.0.23 Let (Zq seq ξ) be a formula in Li, and let l ≥ i be an index
s.t. Pl = ∅. Then, for every j ≥ l + 1, one of the following conditions holds:

1. There exists i ≤ j ′ ≤ j s.t. π, i, j ′, β|≡ L(Zq), ξ ∈ L′
j .

2. There exists a word w = x0, x1, . . . xn over 2AP ∪{y}, a run q, q1, . . . , qn+1

of Zq on w, and a sequence i0, i1, . . . in+1 s.t. i0 = i, in+1 = j, and for
every 0 ≤ k ≤ n, we have the following:

(a) If xk ∈ 2AP , then qk+1 ∈ Δ(qk, πik), ik+1 = ik+1, (Zqk seq ξ) ∈ Lik ,
(Zqk+1 seq ξ) ∈ Lik+1

, and if ik ≥ l + 1, then
(Zqk seq ξ) ∈ Pik , (Zqk+1 seq ξ) ∈ Pik+1

.

(b) If xk = y, then qk+1 ∈ Δ(qk, y), and for every ik ≤ l ≤ ik+1, we have
o = ((Zqk seq ξ),wait(Lik)) ∈ Ll, and if ik ≥ l + 1, then o ∈ Pik .

The proof of Proposition B.0.23 is similar to the proof of Proposition B.0.22, and
thus omitted. Proposition B.0.23 implies the following Corollary.

Corollary B.0.24 Let (Zq seq ξ) be a formula in Li, and let l ≥ i be an index
s.t. Pl = ∅. Then, one of the following conditions holds:

84

1. There exists j ≥ i s.t. π, i, j, β|≡ L(Zq), ξ ∈ Lj .

2. There exists an infinite sequence i0, i1, . . . s.t. i0 = i, and for every k ≥ 0,
we have the following:

(a) If xk ∈ 2AP and ik ≥ l + 1, then (Zqk seq ξ) ∈ Pik , (Zqk+1 seq ξ) ∈
Pik+1

.

(b) If xk = y and ik ≥ l + 1, then o ∈ Pik .

(c) For every j ≥ l there exists j ′ s.t. ij′ ≥ j.

We now complete the proof of Lemma B.0.20. We prove by induction over the
structure of ϕ that for every i ≥ 0 and every subformula ϕ′ in Li we have that
π, i, β |= ϕ′.

• Base case: For p and ¬p the definition of the automaton implies that the
lemma holds.

• Induction step: The induction step for the operators∧,∨, until , release , next
is identical to the proof of Lemma A.0.8. We prove the induction step for
the seq , and triggers operators.

– Let (Zq seq ξ) be a formula in Li. Since ρ is fair, there exists l ≥ i
s.t. Pl = ∅. Then, Corollary B.0.24 implies that one of the following
conditions holds:

1. There exists j ≥ i s.t. π, i, j, β|≡ L(Zq), ξ ∈ Lj . In this case
π, i, β |= (Zq seq ξ).

2. There exists an infinite sequence i0, i1, . . . s.t. i0 = i, and for
every k ≥ 0, we have the following:

(a) If xk ∈ 2AP and ik ≥ l+1, then (Zqk seq ξ) ∈ Pik , (Zqk+1 seq ξ) ∈
Pik+1

.

(b) If xk = y and ik ≥ l + 1, then o ∈ Pik .

(c) For every j ≥ l there exists j′ s.t. ij′ ≥ j.

In this case for every j ≥ l + 1, we have Pj �= ∅, thus ρ is not fair,
contradiction.

– Let (Zq triggers ξ) ∈ Li. We need to prove that for every j ≥ i s.t.
π, i, j, β|≡ L(Zq), we have ξ ∈ Lj . Suppose that for j ≥ i we have
that π, i, j, β|≡ L(Zq), then there is w ∈ L(Zq), w = x0, x1, . . . , xn

85

and there is a sequence of integers i0, i1, . . . , in, in+1, such that i0 = i
and in+1 = j. Moreover, for every 0 ≤ k ≤ n the following conditions
hold:

∗ If xk ∈ 2AP then xk = πik and ik+1 = ik + 1.

∗ If xk = y then (ik, ik+1) ∈ β.

Let q, q1, q2, . . . , qn+1 be an accepting run of Zq on w. We prove with
induction on 0 ≤ k ≤ n that (Z qk triggers ξ) ∈ Lik . Furthermore, if
qk ∈W , then ξ ∈ Lik .

∗ Base case k = 0, then i0 = i. By definition (Zq triggers ξ) ∈ Li.
If q ∈ W , condition 7a of δ implies that ξ ∈ Li0 .
∗ Assume that the lemma holds for k, then (Z qk triggers ξ) ∈ Lik .

we distinguish between two cases:

1. If xk = y, then the definition of β implies that for every j ≥ ik
s.t. (ik, j) ∈ β, in particular ik+1, we have (Zqk+1 triggers ξ) ∈
Lik+1

. Condition 7a of δ implies that if qk+1 ∈ W , then
ξ ∈ Lik+1

.

2. If xk ∈ 2AP , then condition 6b of δ implies that (Z qk+1 triggers ξ) ∈
Lik+1

and condition 7a of δ implies that if q + k + 1 ∈ W ,
then ξ ∈ Lik+1

.

86

Appendix C

Deciding does not affects is
co-NP-hard

Lemma C.0.25 For ϕ in LTL, a subformula ψ of ϕ and a structure M , the prob-
lem of deciding whether ψ does not affects ϕ inM is co-NP-complete with respect
to the structure M .

Proof: We show co-NP-hardness. We consider the complementary problem of
deciding affects. We give a reduction from 3CNF satisfiability. For every 3CNF

formula θ we construct a structure Mθ. We give a (fixed) LTL formula ϕ such that
Mθ |= ϕ and the proposition q affectss ϕ in Mθ iff θ is satisfiable. Consider the
formula ϕ′ = ∀xϕ [q ← x]. By definition, Mθ �|= ∀xϕ′ iff there exists an assign-
ment σ such that M,σ �|= ϕ′. We construct Mθ so that the set σ(x) represents a
satisfying assignment to θ.

For every proposition pi in θ we have a set of states that represent the assign-
ment pi = false and a set of states that represent the assignment pi = true. The
formula ϕ is constructed so that M,σ |= ϕ [q ← x] whenever σ chooses for x a
set of states that cannot represent a valid assignment to the propositions of θ. For
example, if σ chooses for x only some of the states that represent pi = false (or
pi = true) or if σ chooses for x some states that represent pi = false and some
states that represent pi = true for some proposition pi.

For every clause ci of θ we add one path to Mθ. If the clause ci uses propo-
sitions pa, pb, and pc we create a path linking a state representing proposition pa
to a state representing proposition pb to a state representing proposition pc. If pa
appears in ci positively, we choose a state that represents pa = true, otherwise
we choose a state that represents pa = false. Similarly for pb and pc. This way, if

87

σ(x) is a valid assignment that does not satisfy the clause ci then all the states on
the path of ci in Mθ are not in σ(x).

Let θ =
∧n
i=1

∨3
j=1 αi,j where αi,j is a literal in {p1, . . . , pk}∪{¬p1, . . . ,¬pk}.

For every proposition pi the structureMθ contains 2n states. The first n states rep-
resent the assignment pi = true and the other n states represent the assignment
pi = false. Then for every clause ci = αi,1 ∨ αi,2 ∨ αi,3, we create a path that
connects the literals in ci.

Let Mθ = 〈{c, pos, neg, q}, S, {s0}, R, L〉. The set of states S is the union of
the following sets.

• {s0} - the initial state.

• {ci,1, ci,2 | 1 ≤ i ≤ n} - two clausal states per clause. These states are
used in the path that represents clause i to separate the different proposition
states.

• {p+
l,i, p

−
l,i | 1 ≤ l ≤ k and 1 ≤ i ≤ n} - 2n propositional states per proposi-

tion, n positive and n negative.

The transition relation is the union of the following sets.

• R1 = {(s0, p
+
l,1) | 1 ≤ l ≤ k} - the initial state s0 is connected to every first

positive propositional state p+
l,1.

• R2 = {(p+
l,i, p

+
l,i+1), (p

−
l,i, p

−
l,i+1) | 1 ≤ l ≤ k and 1 ≤ i ≤ n − 1} - the

positive states related to proposition pl and the negative states related to
proposition pl form chains.

• R3 = {(p+
l,n, p

−
l,1), (p

−
l,n, p

−
l,n) | 1 ≤ l ≤ k} - The last positive state of pl is

connected to the first negative state. The last negative state of pl is connected
to itself.

• For every clause θi = β1 · pa ∨ β2 · pb ∨ β3 · pc where βo ∈ {+,−} for o ∈
{1, 2, 3}we add the transitionsR4,i = {(s0, p

β1
a,i), (p

β1
a,i, ci,1), (ci,1, p

β2

b,i), (p
β2

b,i, ci,2), (ci,2, p
β3
c,i)}

- there is a path connecting the literals of clause ci according to their polar-
ities. Between every two propositional states there is a clausal state. We
refer to this path as a clausal path. The only way to get from one proposi-
tion state to another proposition state in one step is by taking transitions in
R2 ∪ R3. Notice that the paths that correspond to different clauses do not
share transitions.

88

The labeling is L(c) = {ci,j}, L(pos) = {p+
i,l}, L(neg) = {p−i,l}, and L(q) = ∅.

In Figure C we have the ‘propositional’ part of Mθ without the clausal states and
transitions. The structure Mθ can be constructed in polynomial time.

p−1,1

p−2,np+
2,n

p+
k,1 p+

k,n p−k,1 p−k,n

s0

p+
1,1

p+
2,1

p+
1,n

p−2,1

p−1,n

Figure C.1: The structure Mθ

The formula ϕ is the disjunction of the following formulas.

• ϕ1 = F (pos ∧Xpos ∧ ((q ∧X¬q) ∨ (¬q ∧Xq))) - there are two positive
states associated with the same proposition (reachable in one step) assigned
with different values of q.

• ϕ2 = F (neg ∧Xneg ∧ ((q ∧X¬q) ∨ (¬q ∧Xq))) - there are two negative
states associated with the same proposition (reachable in one step) assigned
with different values of q.

• ϕ3 = F (pos ∧Xneg ∧ ((q ∧Xq) ∨ (¬q ∧X¬q))) - the last positive state
and the first negative state agree on the assignment of q.

• ϕ4 = X(¬q ∧ X(c ∧ X(¬q ∧ X(c ∧ X¬q)))) - all three literals are not
satisfied on a clausal path.

As L(q) = ∅ the formula ϕ3 holds in M and Mθ |= ϕ. We claim that
Mθ �|= ∀xϕ [q ← x] iff θ is satisfiable. Indeed, every assignment to x that does
not satisfy ϕ [q ← x] must include either all the positive states associated with
one proposition or all the negative states associated with one proposition (and not
both). Furthermore, as the assignment falsifies ϕ [q ← x] every path associated
with some clause must have at least one literal satisfied. Similarly, a satisfying

89

assignment to θ translates to a subset of the states S ′ assigning σ(x) = S ′ falsifies
ϕ [q ← x].

In [KV03] Kupferman and Vardi show that deciding affectsf for CTL formulas
is NP-complete. They give a reduction from SAT to deciding affectsf . In their
proof both the structure and the CTL formula depend on the SAT formula. Our
proof above can be used to show that for CTL formulas, deciding affectsf is NP-
hard in the structure even for a constant formula.

90

Appendix D

Regular Vacuity Lower Bound

In the exponential bounded-tiling problem we are given a fixed set T of tiles, two
relations H, V ⊆ T × T , two tiles tinit , tfin ∈ T , and an integer n. The goal is to
tile a (2n×2n)-square so that horizontal neighbors belong toH , vertical neighbors
belong to V , the first tile in the first row is tinit , and the first tile in the last row is
tfin . Thus, formally, a legal tiling is a function t : {0, . . . , 2n− 1}2 → T such that
the following hold:

• for all 0 ≤ i ≤ 2n−2 and 0 ≤ j ≤ 2n−1, we have thatH(t(i, j), t(i+1, j)),

• for all 0 ≤ i ≤ 2n−1 and 0 ≤ j ≤ 2n−2, we have that V (t(i, j), t(i, j+1)),

• t(0, 0) = tinit , and t(0, 2n − 1) = tfin .

The exponential bounded tiling problem is known to be NEXPTIME-hard [SveB84].

Theorem D.0.26 The regular vacuity problem for RELTL is NEXPTIME-hard.

Proof: We do a reduction from the exponential bounded tiling problem. Given a
tiling system T = 〈T,H, V, n, tinit , tfin〉, we construct a model MT of a fixed size
and an RELTL formula ϕ of length O(n) such that ¬ϕ is not regularly vacuous in
MT iff there is a legal tiling t for T .

We encode the tiles in T by a set AP (T) = {p1, . . . , pm} of atomic proposi-
tions. We define the formula ϕ over the set AP = AP (T) ∪ {b, c, d, r} of atomic
propositions. The task of the last four atoms will be explained shortly. Since T is
fixed, so is AP .

Consider an infinite word π over 2AP . For an atomic proposition p ∈ AP and
a point u in π, we use p(u) to denote the truth value of p at u. That is, p(u) is 1 if p

91

holds at u and is 0 if p does not hold at u. We divide the word π to blocks of length
2n. Every block corresponds to a single location in the (2n×2n)-square. Consider
a block u1, . . . , u2n that corresponds to location [i, j] of the square. We use the
point u1 to encode the tile in location [i, j]. Thus, the bit vector p1(u1), . . . , pm(u1)
encodes the tile t(i, j). We use the atomic proposition b to mark the beginning of
the block; that is, b holds on u1 and fails on u2, . . . , u2n. This is enforced by the
formula ϕ. Thus, ϕ contains a conjunct1

b ∧ (
∧

1≤k≤2n−1

next k¬b) ∧ globally (b↔ next 2nb).

The block u1, . . . , u2n also encodes the location of the tile in the square. Since
the square is of dimensions 2n × 2n, this location is a pair 〈i, j〉, for 0 ≤ i, j ≤
2n − 1, where i is the column of the tile and j is its row. Encoding the location
eliminates the need for exponentially many next operators when we attempt to
relate tiles that are vertical neighbors. Encoding is done by the atomic proposition
c, called counter. Let c(un), . . . , c(u1) encode i, and c(u2n), . . . , c(un+1) encode
j. Note that, for technical convenience, the least significant bits of the counters are
in u1 and un+1, and i is encoded before j. A sequence of 2n blocks corresponds
to 2n tiles and, when starts with i = 0, encodes some row j in the square. The
values of the counters along this sequence go from 〈0, j〉 to 〈2n − 1, j〉, and then
start again with i = 0, but with an increased j. Thus, the next sequence goes
from 〈0, j + 1〉 to 〈2n − 1, j + 1〉. The way we encode the counters guarantees
that an increase of the counter by one corresponds to either a transition from 〈i, j〉
to 〈i+ 1, j〉, in case i �= 2n − 1, or to a transition from 〈2n − 1, j〉 to 〈0, j + 1〉,
otherwise. A proper behavior of the counters is enforced by ϕ. Since we want the
length of ϕ to beO(n), we need also an atomic proposition d that acts as a “carry”
bit. Note that b ∨ d holds in a point ui iff c(ui) �= c(u′i), where u′ is the successor
block of u. Formally, ϕ contains the following conjuncts.

1. The counter starts at 0:
∧

0≤k≤2n−1 next k¬c.

2. The counter is increased properly. Note that as we always want to increase
the counter by 1 we take d as a carry to the least significant bit:

• globally (((b ∨ d) ∧ ¬c)→ (next (¬d) ∧ next 2nc)).

1Note that the formula is of quadratic length. An equivalent formula of a linear length replaces
conjuncts like

∧
1≤k≤2n−1X

kp byX(p∧X(p∧ · · · ∧Xp) · · ·). In order to keep the reference to
indices clear, we describe here and in the sequel the quadratic version.

92

• globally ((¬(b ∨ d) ∧ ¬c)→ (next (¬d) ∧ next 2n¬c)).
• globally (((b ∨ d) ∧ c)→ (next d ∧ next 2n¬c)).
• globally ((¬(b ∨ d) ∧ c)→ ((next ¬d) ∧ next 2nc)).

Since each location is encoded by a block of length 2n, the whole tiling is en-
coded in a finite prefix of π, namely π0, . . . π2n(2n)2−1. We use the atomic propo-
sition r in order to label this “relevant prefix.” More precisely, r holds exactly in
this prefix. Thus, ϕ contains a conjunct

(r until (b∧(
∧

0≤k≤2n−1

next k(r∧c))))∧ globally (b∧(
∧

0≤k≤2n−1

next kc))→ next 2n globally ¬r).

Let t0 . . . t2n−1, t
′
0 . . . t

′
2n−1 be two successive rows of the tiling t. For each i,

0 ≤ i ≤ 2n − 1, we know, given ti, the possible values for ti+1 (these for which
H(ti, ti+1), in case i < 2n − 1) and the possible values for t′i (these for which
V (ti, t

′
i)). Consistency with H and V gives us a necessary condition for a word to

encode a legal tiling. In addition, the tiling should satisfy the edge conditions; it
should start with tinit and has tfin in position [0, 2n − 1]. For a tile t ∈ T , let ρ(t)
be the propositional formula over AP that encodes t. That is, ρ(t) holds in point
u1 of exactly all blocks that encode the tile t. In order to make sure that the edge
conditions hold, ϕ contains the conjunct

ρ(tinit) ∧ globally ((b ∧ (
∧

0≤k≤n−1

next k¬c) ∧ (
∧

n+1≤k≤2n

next kc))→ ρ(tfin)).

Since the distance between the point where ti is encoded to the one where ti+1

is encoded is exactly 2n, it is also easy to specify the conditions for horizontal
neighbors. Note that the conditions are imposed only when i �= 2n − 1:

globally ((b ∧ (
∨

0≤k≤n−1

next k¬c) ∧ ρ(t))→ next 2n
∨

t′:H(t,t′)
ρ(t′)).

The difficult part in the reduction is in guaranteeing that the condition for
vertical neighbors hold. This is where regular vacuity comes into the picture.
They enable us to relate t[i, j] with t[i, j + 1], for all i and j. Let e be a regular
expression. Consider the formula ξ1 below. The formula says that whenever we
are in a beginning of a block u corresponding to position [i, j], for some i and j,
then the regular expressions e is tightly satisfied only in intervals that end when
the block u′ that corresponds to position [i, j + 1] starts. To see this, recall that
b ∨ d holds in a point ui iff c(ui) �= c(u′i), and note that the formula requires the

93

value of the counter in u′2n, . . . , u
′
n+1 (that is, the j-coordinate of u′) to be greater

by 1 than the value in u2n, . . . , un+1 (the j-coordinate of u), and requires the value
of the counter in u′n, . . . , u

′
1 (the i-coordinate of u′) to be equal to the value of the

counter in un, . . . , u1 (the i-coordinate of u). Note that the requirement is imposed
only when u is not in the last row, thus j �= 2n − 1:

ξ1 = globally ((b∧ next n
∨

0≤k≤n−1

next k¬c)→
∧

1≤k≤n
θk1∧θk2∧ next n(θk3∧θk4)), where

• θk1 = (next kc)→ e TRIGGERS next kc,

• θk2 = (next k¬c)→ e TRIGGERS next k¬c,

• θk3 = (next k((c ∧ ¬(b ∨ d)) ∨ (¬c ∧ (b ∨ d))))→ e TRIGGERS next kc,
and

• θk4 = (next k((¬c∧¬(b∨ d))∨ (c∧ (b∨ d))))→ e TRIGGERS next k¬c.

Consider now the formula ξ2 below. The formula says that whenever a block
u, not in the last row, starts, there is a block u′ in the relevant prefix of π that starts
when an interval satisfying e ends, and the blocks u and u′ encode tiles that are
related by V .

ξ2 =
∧

t∈T
globally ((r∧b∧(

∨

1≤k≤n
next n+k¬c)∧ρ(t))→ e SEQ(r∧

∨

t′:V (t,t′)
ρ(t′))).

The formula ϕ contains a conjunct ξ1 ∧ ξ2, with e = b (in fact any e �= true2n2n

will do). Note that for e = b, the formula ξ1 does not hold in a path in which the
counters are increased properly.

Let MT be a Kripke structure that generates all the computations over AP .
Thus, MT = 〈AP, 2AP , 2AP , 2AP × 2AP , L〉 with L(σ) = σ. We prove that ¬ϕ is
not regularly vacuous in MT iff there is a legal tiling t for T .

Assume first that there is a legal tiling t for T . Recall that ξ1 does not hold in a
path in which the counters are increased properly. Therefore, ϕ is not satisfiable,
and all the paths ofMT satisfy ¬ϕ. We show that all the regular expressions in ¬ϕ
affect it, thus ¬ϕ is not regularly vacuous in MT . The single regular expression is
¬ϕ is e = b. By the definition of ϕ, the path π that describes t satisfies (∃y).ϕ[e←
y]. Indeed, since π describes a legal tiling and since the distance between points
where successive points start is 2n2n, the interval set β that contains all intervals
of length 2n2n is such that π, 0, β |= ϕ. It follows that e affects ¬ϕ in MT , thus
¬ϕ is not regularly vacuous in MT .

94

For the other direction, assume that ¬ϕ is not regularly vacuous in MT . Since
e is the only regular expression in ϕ, it follows thatMT |= (∃y)ϕ[e← y]. Let β be
an interval set such that MT has a path π for which π, 0, β |= ϕ. The conjuncts of
ϕ that are independent of e (that is, all conjuncts except for ξ1∧ ξ2) guarantee that
the path π describes a tiling that satisfies the edge conditions and the conditions
for horizontal neighbors. By the definition of ξ1, the path π is such that whenever
we are in a beginning of a block u corresponding to position [i, j], for some i and
j, then the regular expressions e is tightly satisfied only in intervals that end when
the block u′ that corresponds to position [i, j + 1] starts. Therefore, β contains
only intervals of length 2n2n. Hence, ξ2 guarantees that π describes a tiling that
also satisfies the conditions for vertical neighbors. Thus, π describes a legal tiling
for T , and we are done.

95

