
Memory Efficient All-Solutions SAT Solver
and its Application for Reachability Analysis

Orna Grumberg, Assaf Schuster, and Avi Yadgar

Computer Science Department, Technion, Haifa, Israel.

Abstract. This work presents a memory-efficient All-SAT engine which, given a
propositional formula over sets of important and non-important variables, returns
the set of all the assignments to the important variables, which can be extended
to solutions (satisfying assignments) to the formula. The engine is built using
elements of modern SAT solvers, including a scheme for learning conflict clauses
and non-chronological backtracking. Re-discovering solutions that were already
found is avoided by the search algorithm itself, rather than by adding blocking
clauses. As a result, the space requirements of a solved instance do not increase
when solutions are found. Finding the next solution is as efficient as finding the
first one, making it possible to solve instances for which the number of solutions
is larger than the size of the main memory.
We show how to exploit our All-SAT engine for performing image computation
and use it as a basic block in achieving full reachability which is purely SAT-
based (no BDDs involved).
We implemented our All-SAT solver and reachability algorithm using the state-
of-the-art SAT solver Chaff [19] as a code base. The results show that our new
scheme significantly outperforms All-SAT algorithms that use blocking clauses,
as measured by the execution time, the memory requirement, and the number of
steps performed by the reachability analysis.

1 Introduction

This work presents a memory-efficient All-SAT engine which, given a propositional for-
mula over sets of important and non-important variables, returns the set of all the as-
signments to the important variables, which can be extended to solutions (satisfying
assignments) to the formula. The All-SAT problem has numerous applications in AI
[21] and logic minimization [22]. Moreover, many applications require the ability to
instantiate all the solutions of a formula, which differ in the assignment to only a subset
of the variables. In [14] such a procedure is used for predicate abstraction. In [7] it is
used for re-parameterization in symbolic simulation. In [18, 6] it is used for reachability
analysis, and in [13] it is used for pre-image computation. Also, solving QBF is actually
solving such a problem, as shown in [15].

Most modern SAT solvers implement the DPLL[9, 8] backtrack search. These solvers
add clauses to the formula in order to block searching in subspaces that are known to
contain no solution. All-SAT engines that are built on top of modern SAT solvers tend
to extend this method by using additional clauses, called blocking clauses, to block so-
lutions that were already found [18, 6, 13, 14, 7, 20]. However, while the addition of
blocking clauses prevents repetitions in solution creation, it also significantly inflates

the size of the solved formula. Thus, the engine slows down corresponding to the num-
ber of solutions that were already found. Eventually, if too many solutions exist, the
engine may saturate the available memory and come to a stop.

In [6] an optimization is employed to the above method. The number of blocking
clauses and the run time are reduced significantly by inferring from a newly found solu-
tion a set of related solutions, and blocking them all with a single clause. This, however,
is insufficient when larger instances are considered. Moreover, the optimization is ap-
plicable only for formulae which originated from a model.

In this work we propose an efficient All-SAT engine which does not use blocking
clauses. Given a propositional formula and sets of important and non-important vari-
ables, our engine returns the set of all the assignments to the important variables, which
can be extended to solutions to the formula. Setting the non-important variables set to
be empty, yields all the solutions to the formula. Similar to previous works, our All-SAT
solver is also built on top of a SAT solver. However, in order to block known solutions,
it manipulates the backtracking scheme and the representation of the implication graph.
As a result, the size of the solved formula does not increase when solutions are found.
Moreover, since found solutions are not needed in the solver, they can be stored in ex-
ternal memory (disk or the memory of another computer), processed and even deleted.
This saving in memory is a great advantage and enables us to handle very large instances
with huge number of solutions. The memory reduction also implies time speedup, since
the solver handles much less clauses. In spite of the changes we impose on backtrack-
ing and the implication graph, we manage to apply many of the operations that made
modern SAT solvers so efficient. We derive conflict clauses based on conflict analysis,
apply non-chronological backtracking to skip subspaces which contain no solutions,
and apply conflict driven backtracking under some restrictions.

We show how to exploit our All-SAT engine for reachability analysis, which is
an important component of model checking. Reachability analysis is often used as a
preprocessing step before checking. Moreover, model checking of most safety tempo-
ral properties can be reduced to reachability analysis [1]. BDD-based algorithms for
reachability are efficient when the BDDs representing the transition relation and the set
of model states can be stored in memory [4, 5]. However, BDDs are quite unpredictable
and tend to explode on intermediate results of image computation. When using BDDs,
a great effort is invested in finding the optimal variables order. SAT-based algorithms,
on the other hand, can handle models with larger number of variables. However, they
are mainly used for Bounded Model Checking (BMC) [2].

Pure SAT-based methods for reachability [18, 6] and model checking of safety prop-
erties [13, 20] are based on All-SAT engines, which return the set of all the solutions to
a given formula. The All-SAT engine receives as input a propositional formula describ-
ing the application of a transition relation � to a set of states �. The resulting set of
solutions represents the image of � (the set of all successors for states in �). Repeating
this step, starting from the initial states, results in the set of all reachable states.

Similar to [18, 6], we exploit our All-SAT procedure for computing an image for a
set of states, and then use it iteratively for obtaining full reachability. Several optimiza-
tions are applied at that stage. Their goals are to reduce the number of found solutions

by avoiding repetitions between images; to hold the found solutions compactly; and to
keep the solved formula small.

An important observation is that for image computation, the solved formula is de-
fined over variables describing current states �, inputs � , next states � �, and some aux-
iliary variables that are added while transforming the formula to CNF. However, many
solutions to the formula are not needed: the only useful ones are those which give dif-
ferent values to ��. This set of solutions is efficiently instantiated by our algorithm by
defining �� as the important variables. Since the variables in � � typically constitute just
10% of all the variables in the formula [23], the number of solutions we search for,
produce, and store, is reduced dramatically. This was also done in [18, 6, 13, 20].

Other works also applied optimizations within a single image [6] and between im-
ages [18, 6]. These have similar strength to the optimization we apply between images.
However, within an image computation we gain significant reductions in memory and
time due to our new All-SAT procedure, and the ability to process the solutions outside
the engine before the completion of the search. This gain is extended to the reachability
computation as well, as demonstrated by our experimental results.

In [11], a hybrid of SAT and BDD methods is proposed for image computation.
This implementation of an All-SAT solver does not use blocking clauses. The known
solutions are kept in a BDD which is used to restrict the search space of the All-SAT
engine. While this representation might be more compact than blocking clauses, the All-
SAT engine still depends on the set of known solutions when searching for new ones.
Moreover, since our algorithm does not impose restrictions on learning, we believe it
can be used to enhance the performance of such hybrid methods as well.

In [3, 12] all the solutions of a given propositional formula are found by repeatedly
choosing a value to one variable, and splitting the formula accordingly, until all the
clauses are satisfied. However, in this method, all the solutions of the formula are found,
while many of them represent the same next state. Therefore, it can not be efficiently
applied for quantifier elimination and image computation.

We have built an All-SAT solver based on the state-of-the-art SAT solver Chaff [19].
Experimental results show that our All-SAT algorithm outperforms All-SAT algorithms
based on blocking clauses. Even when discovering a huge number of solutions, our
solver does not run out of memory, and does not slow down. Similarly, our All-SAT
reachability algorithm also achieves significant speedups over blocking clauses-based
All-SAT reachability, and succeeds to perform more image steps.

The rest of the paper is organized as follows. Section 2 gives the background needed
for this work. Sections 3 and 4 describe our algorithm and its implementation. Section
5 describes the utilization of our algorithm for reachability analysis. Section 6 shows
our experimental results, and Section 7 includes conclusions.

2 Background

2.1 The SAT Problem

The Boolean satisfiability problem (SAT) is the problem of finding an assignment �
to a set of Boolean variables � such that a Boolean formula ��� � will have the value
’true’ under this assignment. A is called a satisfying assignment, or a solution, for �.

We shall discuss formulae presented in the conjunctive normal form (CNF). That
is, � is a conjunction of clauses, while each clause is a disjunction of literals over � .
A literal � is an instance of a variable or its negation: � � �	
�	 � 	 � � �. We shall
consider a clause as a set of literals, and a formula as a set of clauses.

A clause �� is satisfied under an assignment � iff �� � ��
 ���� � ���. For a
formula � given in CNF, an assignment satisfies � iff it satisfies all of its clauses. Hence,
if, under an assignment � (or a partial assignment), all of the literals of some clause in
� are false, than � does not satisfy �. We call this situation a conflict.

2.2 Davis-Putnam-Logemann-Loveland Backtrack Search (DPLL)

We begin by describing the Boolean Constraint Propagation (bcp()) procedure. Given a
partial assignment� and a clause ��, if there is one literal � � �� with no value, while the
rest of the literals are all false, then in order to avoid a conflict, � must be extended such
that ���� � ���. �� is called a unit clause or an asserting clause, and the assignment
to � is called an implication. The bcp() procedure finds all the implications at a given
moment. This procedure is efficiently implemented in [19, 10, 26, 17, 16].

The DPLL algorithm [9, 8] walks the binary tree that describes the variables space.
At each step, a decision is made. That is, a value to one of the variables is chosen, thus
reaching deeper in the tree. Each decision is assigned with a new decision level. After a
decision is made, the algorithm uses the bcp() procedure to compute all its implications.
All the implications are assigned with the corresponding decision level. If a conflict is
reached, the algorithm backtracks in the tree, and chooses a new value to the most recent
variable not yet tried both ways. The algorithm terminates if one of the leaves is reached
with no conflict, describing a satisfying assignment, or if the whole tree was searched
and no satisfying assignment was found, meaning � is unsatisfiable.

2.3 Optimizations

Current state of the art SAT solvers use Conflict Analysis, Learning, and Conflict Driven
Backtracking to optimize the DPLL algorithm [27, 17]. Upon an occurrence of a con-
flict, the solver creates a conflict clause which implies the reverse assignment to some
variable in the highest level. This clause is added to the formula to prune the search
tree [27, 17]. In order to emphasize the recently gained knowledge, the solver uses con-
flict driven backtracking: Let � be the highest level of an assigned variable in the conflict
clause. The solver discards some of its work by invalidating all the assignments above �.
The implication of the conflict clause is then added to � [27]. This implies a new order of
the variables in the search tree. Note that the other variables for which the assignments
were invalidated, may still assume their original values, and lead to a solution.

Next we describe the implication graph, which is used to create conflict clauses. An
Implication Graph represents the current partial assignment during the solving process,
and the reason for the assignment to each variable. For a given assignment, the implica-
tion graph is not unique, and depends on the decisions and the order used by the bcp().
We denote the asserting clause that implied the value of � by �������, and refer to it as
the antecedent of �. If � is a decision, ������� � ����. Given a partial assignment �:

– The implication graph is a directed acyclic graph ���
��.

– The vertices are the literals of the current partial assignment: �� � �
 � � �	
�	 �
	 � � � ���� � ����.

– The edges are the reasons for the assignments: � �
�
���
 ��� � ��
 �� � �
 �� �

��������
�

. That is, for each vertex �, the incident edges represent the clause �������.
A decision vertex has no incident edge.

– Each vertex is also assigned with the decision level of the corresponding variable.

When a conflict occurs, there are both true and false vertices of some variable,
denoted conflicting variable. A Unique Implication Point (UIP) in an implication graph
is a vertex of the current decision level, through which all the paths from the decision
vertex of this level to the conflict pass. There may be more than one UIP, and we order
them starting from the conflict. The decision variable of a level is always a UIP. When
conflict driven backtracking is used, the conflict analysis creates a conflict clause which
is a unit clause. This clause implies the reverse assignment to one of the UIPs. After
backtracking, the opposite value of the UIP becomes an implication, and the conflict
clause is its antecedent [27]. Figure 1(a,b) shows an implication graph with a conflict
and two UIPs, and the pruning of the search tree by a conflict clause.

Conflict

level 1

level 2

level 1
level 1

level 1

level 2

level 2 level 2
level 2

level 1

x11

−x6
−x7

−x3

x5
x7

−x8

x9

x10

−x4

(a) Implication Graph

−x3x3

x1

−x3

−x2 x2

−x4

x3

−x4

(b) Pruning

Fig. 1. (a) An implication graph describing a conflict. The roots are decisions. ��� and ��� are
UIPs. (b) Adding the clause ���� ��� prunes the search tree of the subspace defined by �������.

2.4 The All-SAT Problem

Given a Boolean formula presented in CNF, we would like to find all of its solutions as
defined in the SAT problem.
The Blocking Clauses Method: A straight forward method to find all of the formula’s
solutions is to modify the DPLL SAT solving algorithm such that when a solution is
found, a blocking clause describing its negation is added to the solver, thus preventing
the solver from reaching the same solution again. The last decision is then invalidated,
and the search is continued normally. Once all of the solutions are found, there will be
no satisfying assignment to the current formula, and the algorithm will terminate.

This algorithm suffers from exponential space growth as it adds a clause at the
size of � for each solution found. Another problem is that the increasing number of

clauses in the system will slow down the bcp() procedure which will have to look for
implications in an increasing number of clauses.

3 Memory efficient All-SAT Algorithm
3.1 Conventions

Assume we are given a partition of the variables to important and non-important vari-
ables. Two solutions to the problem which differ in the non-important variables only are
considered the same solution. Thus, a solution is defined by a subset of the variables.

A subspace of assignments, defined by a partial assignment�, is the set of all assign-
ments which agree with � on its assigned variables. A subspace is called exhausted if
all of the satisfying assignments in it (if any) were already found. At any given moment,
the current partial assignment defines the subspace which is now being investigated.

We now present our All-SAT algorithm. A proof of its correctness is given in [25].

3.2 The All-SAT Algorithm

Our algorithm walks the search tree of the important variables. We call this tree the im-
portant space. Each leaf of this tree represents an assignment to the important variables
which does not conflict with the formula. When reaching such a leaf, the algorithm tries
to extend the assignment over the non-important variables. Hence, it looks for a solu-
tion within the subspace defined by the important variables. Note that the walk over the
important space should be exhaustive, while only one solution for the non-important
variables should be found. This search is illustrated in Figure 2(a).

We incorporate these two behaviors into one procedure by modifying the decision
and backtracking procedures of a conflict driven backtrack search, and the representa-
tion of the implication graph.

Important First Decision Procedure: We create a new decision procedure which looks
for an unassigned variable from within the important variables. If no such variable is
found, the usual decision procedure is used to choose a variable from the non-important
set. This way, at any given time, the decision variables are a sequence of important
variables, followed by a sequence of non important variables. At any given time, the
important decision level is the maximal level in which an important variable is a deci-
sion. An example is given in Figure 2(a).

Exhaustive Walk of the Important Space: An exhaustive walk of the important space
is performed by extending the original DPLL algorithm with the following procedures:
Chronological backtracking after a leaf of the important space is handled; Learning a
conflict clause and chronological backtracking upon an occurrence of a conflict; Non-
chronological backtracking when a subspace of the problem is proved to be exhausted.

Chronological backtracking, as in DPLL, is done by flipping the highest important
decision variable not yet flipped. This means that under the previous decisions, the
last decision variable must assume the reverse assignment. Hence, its new value is an
implication of the previous decisions. Therefore, in order to perform a chronological
backtrack, we flip the highest decision and assign it with the level below. This way,
the highest decision is always the highest decision not yet flipped. Higher decisions
which were already flipped are regarded as its implications. Note, though, that there is

y1

y2y4y1

Important

Level
Decision

x2 x3x3

x2x1

x3

y1

y4

(a) Important First

Conflict

level 1

 6

 4

level 2

 3

 5

 −7

 9

 −2

 −8

 −9

(b) Sub-Levels

Fig. 2. (a)Important First Decision. � variables are important and � are non-importnat. (b) An
implication graph in the presence of flipped decisions. � and � define new sub-levels.

no clause implying the values of the flipped decisions. Therefore, a new definition for
the implication graph is required.

We change the definition of the implication graph as follows: Root vertices in
the graph still represent the decisions, but also decisions flipped because of previous
chronological backtracking. Thus, for conflict analysis purposes, a flipped decision is
considered as defining a new decision sub-level. The result is a graph in which the nodes
represent actual assignments to the variables, and the edges represent real clauses, mak-
ing it a valid implication graph. This graph describes the current assignment, though not
the current decisions. An example for such a graph is given in Figure 2(b).

Given the modified graph, the regular conflict analysis is performed, and leads to
a UIP in the newly defined sub-level. The generated conflict clause is added to the
formula to prune the search tree, as for solving the SAT problem. Modifying the impli-
cation graph and introducing the new sub-levels may cause the conflict clause not to be
asserting. However, since we do not use conflict driven backtracking in the important
space, our solver does not require that the conflict clauses will be asserting.

We now consider the case in which a conflict clause is asserting. In this case, we
extend the current assignment according to it. Let �� be a conflict clause, and ��� its
implication. Adding ��� to the current assignment may cause a second conflict, for which
��� is the reason. Therefore, we are able to perform conflict analysis again, using ��� as
a UIP. The result is a second conflict clause, �� which implies ����. It is obvious now
that neither of the assignments to ��� will resolve the current conflict. The conclusion is
that the reason for this situation lies in a lower decision level, and that a larger subspace
is exhausted. We calculate �� 	 ������������
 ��� [9] and resolve the conflict by
backtracking to the decision level preceding the highest level of a variable in � �, which is
the level below the highest decision level of a variable in �� or ��. Note that backtracking
to any level higher than that would not resolve the conflict as both � � and �� would imply

��� and ���� respectively. Therefore, by this non-chronological backtracking, we skip a
large exhausted subspace.

Assigning Non-Important Variables: After reaching a leaf in the important space,
we have to extend the assignment to the non important variables. At this point, all the
important variables are assigned with some value. Note, that since we only need one
extension, we actually have to solve the SAT problem for the given formula with the
current partial assignment. This is done by allowing the normal work of the optimized
SAT algorithm, including decisions, conflict clause learning, and conflict driven back-
tracking. However, we allow backtracking down to the important decision level but not
below it, in order not to change the assignment to the important variables. If no solution
is found, the current assignment to the important variables can not be extended to a
solution for the formula, and should be discarded. On the other hand, if a solution to the
formula is found, its projection over the important variables is a valid output. In both
cases, we backtrack to the important decision level and continue the exhaustive walk of
the important space.

4 Implementation

We implemented our All-SAT engine using zChaff [19] as a base code. This SAT solver
uses the VSIDS decision heuristic [19], an efficient bcp() procedure, conflict clause
learning, and conflict driven backtracking. We modified the decision procedure to match
our important-first decision procedure, and added a mechanism for chronological back-
tracking. We implemented the exhaustive walk over the important space using chrono-
logical backtracking, and by allowing non-chronological backtracking when subspaces
without solutions are detected. We used the original optimized SAT solving procedures
above the important decision level, where it had to solve a SAT problem. Next, we
describe the modifications imposed on the solver in the important space.

The original SAT engine represents the current implication graph by means of an
assignment stack, hereafter referred to as stack. The stack consists of levels of assign-
ments. The first assignment in each level is the decision, and the rest of the assignments
in the level are its implications. Each implication is in the lowest level where it is im-
plied. Thus, an implication is implied by some of the assignments prior to it, out of
which at least one is of the same level. For each assigned variable, the stack holds its
value and its antecedent, where the antecedent of a decision variable is NULL.

In the following discussion, backtrack to level � refers to the following procedure:
a) Flipping the decision in level � � �. b) Invalidation of all the assignments in levels
��� and above, by popping them out of the stack. c) Pushing the flipped decision at the
end of level �, with NULL antecedent. d) Executing bcp() to calculate the implications
of the flipped decision.

We perform chronological backtracking from level � within the important space by
backtracking to level �
 �. This way, the flipped decisions appear as implications of
prior ones, and the highest decision not yet flipped is always the highest in the stack.
The assignments with NULL antecedents, which represent exhausted subspaces, remain
in the stack until a whole subspace which includes them is exhausted. An example for
this procedure is given in Figure 3(a,b).

Our stack now includes decision variables, implications, and flipped decisions, which
appear as implications but with no antecedents. Using this stack we can construct the
implication graph according to the new definition given in section 3.2. Thus we can
derive a conflict clause whenever a conflict occurs.

Decisions about exhausted subspaces are made during the process of resolving a
conflict, as described next. We define a generated clauses stack, which is used to tem-
porarily store clauses that are generated during conflict analysis 1. In the following ex-
planation, refer to Figure 3(b-e). (b) When a conflict occurs, we analyze it and learn
a new conflict clause according to the 1UIP scheme [27]. This clause is added to the
solver to prune the search tree, and is also pushed into the generated clauses stack to
be used later. (c) We perform a chronological backtrack. A pseudo code for this pro-
cedure is shown in Figure 4(’chronological backtrack’). If this caused another conflict,
we start the resolving process again. Otherwise, we start calculating the implications of
the clauses in the generated clauses stack.

(d) Let �� be a clause popped out of the generated clauses stack. If � � is not as-
serting, we ignore it. If it implies ���, we push ��� into the stack and run bcp(). For
simplicity of presentation, ��� is pushed to a new level in the stack. If a new conflict
is found, we follow the procedure described in Section 3.2 to decide about exhausted
subspaces. We create a new conflict clause, ��, with ��� as the UIP. �� and �� imply ���

and ���� respectively. We calculate �� 	 ������������
 ��� [9]. (e) We backtrack to
the level preceding the highest level of an assigned variable in � �. Thus, we backtrack
higher, skipping a large exhausted subspace. A pseudo code of this procedure is given
in Figure 4.

��������������

� �
�� �
�� � 	

 ��� ��
�� ���
��
��� �� ���

(a) A leaf

��������������

� �
�� �
�� � 	

 ��� ��
�� ���
�� �� �� -6

(b) Conflict

��������������

� �
�� �
�� � 	

 ��� ��
�� ��� ���

(c) Chronological
Backtrack

��������������

� �
�� �
�� � 	

 ��� ��
�� ��� ���
��� �	 ��
 -4

(d) Implication

��������������

� �
�� �
�� � 	 �

(e) Back-
track

Fig. 3. Important Space Resolve Conflict (a) Reaching a leaf of the important space. ’���’
has NULL antecedent (b) Chronological backtrack which causes a conflict. ‘��’ has NULL
antecedent, clause �� ���� ������ is generated. (c) Chronological backtrack. (d) ’���’,
the implication of clause ��, is pushed into the stack, and leads to a conflict. Clause ��
���� ���
� ��� is generated. �� � ����	
������� ��� ���� ���
����. (e) Backtracking
to the highest level in ��.

1 We still refer to the decision stack as stack.

Important Space resolve conflict() �
while (conflict � generated clauses.size � 0) �

if (conflict) �

chronological
backtrack

�
�����
�����

if (current level == 0)
return FALSE

�	� generate conflict clause with 1UIP
generated clauses.push(�)
backtrack one level

� else �

Implicate
Conflict
Clauses

����
���

�	� � generated clauses.pop()
if (�	� is asserting) �
	��� unit literal in �	�
push 	�� into the stack

Non-
Chronological
Backtracking

����������
���������

if (bcp() = CONFLICT) �
�	� � generate conflict clause with 	�� as UIP
�	� � ����	
��� �� ��	�� �	�)
�������� �	�
�����
����	��
backtrack to the level preceding the highest level in �	�

�
�

�
�
return TRUE

�

Fig. 4. Important Space resolve conflict

5 Reachability and Model Checking Using All Solution Solver

5.1 Reachability

We now present one application of our All-SAT algorithm. Given the set of initial states
of a model, and the transition relation, we would like to find the set of all the states
reachable from the initial states. We denote by � the vector of the model state variables,
and by ����� the set of states at distance � from the initial states. The transition relation
is given by � ��
 �
 ��� where � represents the current state, � represents the input and
�� represents the next state. For a given set of states ����, the set of reachable states
from them at distance 1 (i.e., their successors), denoted Image������, is

����������� � ��� � ��
 ��
 ���� � � ��
 �
 ���� (1)

Given ��, the set of initial states, calculating the reachable states is done by iteratively
calculating ��, and adding them to the reachable set � �, until �� contains no new states.
The rechability algorithm is shown in Figure 5(a).

5.2 Image Computation Using All-SAT

We would like to use our All-SAT algorithm in order to implement line 5 in the reach-
ability algorithm (Figure 5(a)). In order to do that, we have to find all of the solutions

for the following formula:

���� � � ��
 �
 ��� � ������� (2)

Each solution to (2) represents a valid transition from one of the states in the set
���� to a new state ��, which is not in ������. Including ������� in the image compu-
tation was also done in [6, 18].

We now have to construct a CNF representation for Formula 2. We represent each
state � as the conjunction of its literals. Therefore, � ����� is in DNF, and ������� is in
CNF. Creating the CNF representation for � is done by introducing auxiliary variables.
The translations of both sets are linear in the size of the sets. Representing T as a CNF
is also possible by introducing auxiliary variables [2].

Each solution is an assignment to all of the variables in the CNF, and its projection
over �� defines the new state. We avoid repetitive finding of the same � � by setting ��

to be the important variables in our All-SAT solver. A state is found once, regardless
of its predecessors, input, or the assignment to the auxiliary variables added during the
CNF construction. Making the decisions from within the model variables proved to be
efficient when solving SAT problems for BMC [23].

5.3 Minimization

Boolean minimization: A major drawback of the implementation described above is
the growth of �� between iterations of the algorithm, and of � during the image com-
putation. This poses a problem even when the solutions are held outside the solver.
Representing each state by a conjunction of literals is pricey when their number in-
creases. Therefore we need a way to minimize this representation. We exploit the fact
that a set of states is actually a DNF formula and apply Boolean minimization methods
to find a minimal representation for this formula. For example, the solutions represented
by ��� � ��� � ��� � ����, can be represented by ����.

In our tool, we use Berkeley’s ’Espresso’[24], which receives as an input a set of
DNF clauses and returns their minimized DNF representation. Our experimental results
show a reduction of up to 3 orders of magnitude in the number of clauses required to
represent the sets of solutions when using this tool.
On-The-Fly Minimization: Finding all the solutions for Formula (2), and then mini-

mizing them, is not feasible for large problems since their number would be too large
to store and for the minimizer to handle. Therefore, during the solving process, when-
ever a preset number of solutions is found, the solver work is suspended, and we use
the minimizer to combine them with the current � and � �. The output, then, is stored
again in � and �� respectively, to be processed with the next batch of solutions found
by the All-SAT solver. This way, we keep � �, � and the input to the minimizer small.
Note, also, that each batch of solutions includes new states only, due to the structure
of Formula 2. Employing logical minimization on-the-fly, before finding all the solu-
tions, is possible since previous solutions are not required when searching for the next
ones, and the work of the minimizer is independent of the All-SAT solver. Moreover,
the minimization and the computation of the next batch of solutions can be performed
concurrently. However, this is not implemented in our tool. Note, that this minimization
does not effect the performance of the All-SAT solver.

We now have a slightly modified reachability algorithm as shown in Figure 5(b).

��������	�������
�� �� � ��
�� � � ��

� ���	� �� � �� �
�� �� � �� 	 �
�� � � ��������
 ��

�� �
�� ���
���

(a) Reachability

��������	����������
�� � � ��
�� �� � ��

� ���	��� � ���

�� � � �������� ����� � ! ��� �� ��� � ��������
�� � � �

�� �������
�� ����� ��� ��� ����� �� ��	
���� ��� �� �
�� � � � 	 ����

	� �����"����
�� �� � �� 	 ����

��� �����"�����
��� � ���	������� � ��
��� �
�
� ���
� ��

(b) New Reachability

Fig. 5. Reachability Algorithms. (a) Regular reachability algorithm. (b) Reachability using out
All-SAT solver. Lines 5-11 are the implementation of the on-the-fly minimization.

6 Experimental Results

As the code base for our work, we use the zChaff SAT solver [19] which is one of
the fastest available state of the art solvers. zChaff implements conflict analysis with
conflict driven backtrack, and uses efficient data structures. Since zChaff is open source,
we were able to modify the code according to our method.

For comparison, we used the same code base to implement the blocking clauses
method. In order to avoid repetition of the same assignments to the important variables,
we constructed the blocking clauses from the important variables only. We improved
the blocking clauses by using the decision method described in Section 3.2. This way,
the blocking clauses can be constructed from only the subset of the important variables
which are decision variables, since the rest of the assignments are implied by them.
This improvement reduced space requirements as well as solution times of the blocking
clauses method substantially.

All experiments use dedicated computers with 1.7Ghz Intel Xeon cpu and 1GB
RAM, running Linux. The problem instances are from the ISCAS’89 benchmark.

6.1 All-SAT Solver

Figure 6 shows the performance of our new All-SAT solver. The problems are CNF
representations of the transition relations of the models in the benchmark. In cases
where a model name is followed by ’*’, the instance consists of multiple transitions
and initial conditions of a model. The important variables were arbitrarily chosen.

The table clearly shows a significant speedup for all problems that the blocking
clauses method could solve. Smaller number of clauses shortens the time of the bcp()
procedure, and also allows more work to be performed in higher levels of the memory
hierarchy (main memory and cache). The speedup increases with the hardness of the
problem and the computation time.

name Clauses Vars Sol T1 (s) T2 (s) S.U. name Clauses Vars Solutions T1 (s) T2(s) S.U.

s510 964 280 64 0.00 0.00 1.00 s641 10064 2338 224 0.03 0.16 5.81

s1488 983 286 64 0.00 0.00 1.00 s953 1279 271 1188 0.07 0.24 3.52

s1494 19153 4919 12 0.00 0.00 1.00 s1238 49699 13476 80 0.06 0.48 8.39

s15850 166 48 2 0.00 0.00 1.00 s9234.1 239 77 640 0.35 0.55 1.57

s208.1 47 22 11 0.00 0.00 1.00 s967 959 277 6504 0.14 0.59 4.35

s23 303 97 5 0.00 0.00 1.00 s38584 1302 299 2272 0.13 0.81 6.31

s298 437 137 8 0.00 0.00 1.00 s1423 1884 560 28590 0.45 29.9 66.44

s382 462 140 8 0.00 0.00 1.00 s1269 2191 679 32768 0.82 50 60.75

s400 462 96 2 0.00 0.00 1.00 s13207 18993 3890 24576 4.40 459 104.39

s420.1 498 153 5 0.00 0.00 1.00 s3271 4426 1349 6.70E+07 1191 M.O. -

s444 1620 129 2 0.00 0.00 1.00 s9234.1 10007 2317 3.50E+07 3411 M.O. -

s499 561 161 5 0.00 0.00 1.00 s1512 2320 657 1.30E+08 4601.5 M.O. -

s526 1528 192 3 0.00 0.00 1.00 s3330 2496 775 1.50E+08 4891 M.O. -

s635 1438 192 2 0.00 0.00 1.00 s38417 48783 13261 8.30E+06 11379 M.O. -

s838.1 1406 191 2 0.00 0.00 1.00 s5378 1072 4031 5.00E+08 26493 M.O. -

s938 558 160 5 0.00 0.00 1.00 s635* 1496 192 > 4E+09 107644 M.O. -

s526n 479 138 36 0.00 0.00 0.50 s6669 11963 3639 > 4E+09 172800 M.O. -

s208.1* 160 50 512 0.01 0.01 1.00 s13207.1 18774 3847 > 1E+09 T.O. M.O. -

s713 158 48 512 0.01 0.02 2.20 s15850.1 18957 4850 > 1.2E+09 T.O. M.O. -

s208.1* 190 61 512 0.01 0.02 2.67 s3384 5073 1784 > 4E+09 T.O. M.O. -

s832 454 136 183 0.01 0.02 1.29 s35932 55173 20155 > 7.5E+07 T.O. M.O. -

s820 404 129 344 0.01 0.03 3.11 s38584.1 49735 13449 > 2E+08 T.O. M.O. -

s208.1* 585 161 480 0.03 0.05 1.77 s4863 10470 3001 > 1.3E+09 T.O. M.O. -

s208.1* 610 167 960 0.06 0.10 1.64 s991 1635 560 > 5.5E+08 T.O. M.O. -

Fig. 6. All-SAT solving time. Vars: The number of variables in the problem. About half the
variables are important. Sol: The number of solutions found. T1: The time required for our new
All-SAT solver, T2: The time required for the blocking clauses-based algorithm. M.O.: Memory
Out. S.U.: Speedup - the ratio T2/T1. The timeout was set to 48 hours.

Our solver is capable of solving larger instances, for which the blocking clauses
method runs out of memory. The number of solutions for these instances is simply
too high to store in main memory as clauses. In contrast, using our new method, the
solutions can be stored on the disk or in the memory of neighboring machines.

The last seven rows in the table show instances for which our solver timed out. In
none of these cases, despite the huge number of solutions found (much larger than the
size of the main memory in the machine employed), did the solver run out of memory.

6.2 Reachability

Figure 7 shows the performance of our reachability analysis tool, calculating reacha-
bility for the benchmark models. Since [6] and [18] are the only reachability analysis
algorithms that, as far as we know, depend solely on SAT procedures, the table shows
a comparison with the performance reported in [6]. Figure 8 shows the instances for
which the reachability analysis did not complete. Here, again, a comparison to [6] is
shown. The tables show significant speedup for the completed problems, and deeper
steps for those not completed.

7 Conclusions

In this work we presented an All-SAT engine which efficiently finds all the assignments
to a subset of the variables, which can be extended to solutions to a given propositional

Model # FLOPS # steps # states T1 (sec) T2 (sec) Speedup

s386 6 8 13 0.1 0.21 2.10

s298 14 19 218 0.2 0.33 1.65

s832 5 11 25 0.1 0.47 4.70

s510 6 47 47 0.1 0.47 4.70

s820 5 11 25 0.2 0.48 2.40

s208.1 8 256 256 0.1 0.56 5.60

s1488 6 22 48 0.3 0.87 2.90

s1494 6 22 48 0.1 0.87 8.70

s499 22 22 22 0.3 1.74 5.80

s953 29 10 504 0.1 2.01 20.10

s641 19 7 1544 0.2 2.24 11.20

s713 19 7 1544 1 2.53 2.53

s967 29 10 549 0.2 3.12 15.60

s1196 18 3 2615 0.3 6.79 22.63

s1238 18 3 2615 0.2 7.26 36.30

s382 21 151 8865 4 7.7 1.93

s400 21 151 8865 4 7.8 1.95

s444 21 151 8865 4 8 2.00

s526n 21 151 8868 5 9.21 1.84

s526 21 151 8868 5 9.35 1.87

s349 15 7 2625 3 14.8 4.93

s344 15 7 2625 3 15.3 5.10

Fig. 7. Reachability Analysis Performance. #FLOPS is the number of flip-flops in the model.
#states is the total number of reachable states. T1 is the time required for our tool. T2 is the time
as given in [6] using 1.5Ghz dual AMD Athlon cpu with 3GB RAM.

Actual time for
max depth (sec)

Max depth
Completed

Time to reach
Depth 1 (sec)

Depth 1
(1000 sec')

#FLOPSModel

10 1 10 1 37 S1269
615 4 28 3 74 S1423
140 3 8 2 669 S13207
31761 23 70 4 57 S1512
251764 111 314 8 228 S9234
8467 7 192 5 597 S15850
2134 4 1 2 1452 S38584

Fig. 8. Reachability Analysis Performance. ’Depth 1’ is the maximal depth reached in [6] with
timeout of 1000 seconds. ’Time to reach Depth 1’ is the time required for our tool to complete
the same depth. The ’Max depth’ and the ’Actual time for max depth’ are the maximal steps
successfully completed by our tool, and the time required for it. The Timeout is generally 3600
seconds (1 hour), with longer timeouts for s1512, s9234 and s15850.

formula. We achieve this goal by incorporating a backtrack search and a conflict driven
search into one complete engine. Our engine’s memory requirements are independent
of the number of solutions. This implies that, during the computation, the number of
solutions already found does not become a parameter of complexity in finding further
solutions. It also implies that the size of the instance being solved fits in smaller and
faster levels of the memory hierarchy. As a result, our method is faster than blocking
clause-based methods, and can solve instances that produce solution sets too large to fit

in memory. We have demonstrated how to use our All-SAT engine for memory-efficient
reachability computation.

References

1. I. Beer, S. Ben-David, and A. Landver. On-the-fly model checking of RCTL formulas. In
10th Computer Aided Verification, pages 184–194, 1998.

2. A. Biere, A. Cimatti, E. M. Clarke, M. Fujita, and Y. Zhu. Symbolic model checking using
SAT procedures instead of BDDs. In DAC. IEEE Computer Society Press, June 1999.

3. Elazar Birnbaum and Eliezer L. Lozinskii. The good old davis-putnam procedure helps
counting models. Journal of Artificial Intelligence Research, 10:457–477, 1999.

4. R. E. Bryant. Graph-based algorithms for boolean function manipulation. IEEE transactions
on Computers, C-35(8):677–691, 1986.

5. J. R. Burch, E. M. Clarke, K. L. McMillan, D. L. Dill, and L. J. Hwang. Symbolic model
checking: ���� states and beyond. Information and Computation, 98(2):142–170, June 1992.

6. P. Chauhan, E. M. Clarke, and D. Kroening. Using SAT based image computation for reach-
ability analysis. Technical Report CMU-CS-03-151, Carnegie Mellon University, 2003.

7. P. P. Chauhan, E. M. Clarke, and D. Kroening. A SAT-based algorithm for reparameterization
in symbolic simulation. In DAC, 2004.

8. M. Davis, G. Logemann, and D. Loveland. A machine program for theorem proving. CACM,
5(7), July 1962.

9. M. Davis and H. Putnam. A computing procedure for quantification theory. JACM, 7(3):201–
215, July 1960.

10. E. Goldberg and Y. Novikov. Berkmin: A fast and robust SAT-solver. In DATE, 2002.
11. Aarti Gupta, Zijiang Yang, Pranav Ashar, and Anubhav Gupta. SAT-based image computa-

tion with application in reachability analysis. In FMCAD, LNCS 1954, 2000.
12. Roberto J. Bayardo Jr. and Joseph Daniel Pehoushek. Counting models using connected

components. In AAAI/IAAI, pages 157–162, 2000.
13. H. J. Kang and I. C. Park. SAT-based unbounded symbolic model checking. In DAC, 2003.
14. S. K. Lahiri, R. E. Bryant, and B. Cook. A symbolic approach to predicate abstraction. In

CAV. LLNCS 2725, July 2003.
15. R. Letz. Advances in decision procedures for quantified boolean formulas. In IJCAR, 2001.
16. Chu Min Li and Anbulagan. Heuristics based on unit propagation for satisfiability problems.

In IJCAI (1), pages 366–371, 1997.
17. J.P. Marques-Silva and K.A. Sakallah. Conflict analysis in search algorithms for proposi-

tional satisfiability. In IEEE ICTAI, 1996.
18. Ken L. McMillan. Applying SAT methods in unbounded symbolic model checking. In

Computer Aided Verification, 2002.
19. M.W. Moskewicz, C.F. Madigan, Y. Zhao, L. Zhang, and S. Malik. Chaff: engineering an

efficient SAT solver. In 39th Design Aotomation Conference (DAC’01), 2001.
20. D. Plaisted. Method for design verification of hardware and non-hardware systems. United

States Patents, 6,131, 078, October 2000.
21. D. Roth. On the hardness of approximate reasoning. Artificial Intelligence, 82(1-2), 1996.
22. S. Sapra, M. Theobald, and E. M. Clarke. SAT-based algorithms for logic minimization. In

ICCD, 2003.
23. Ofer Shtrichman. Tuning SAT checkers for bounded model checking. In CAV, 2000.
24. Berkeley University of California. Espresso, two level boolean minimizer, 1990.
25. A. Yadgar. Solving All-SAT problem for reachability analysis. M.Sc. thesis, Technion, Israel

Institute of Technology, Department of Computer Schience, 2004.
26. H. Zhang. SATO: An efficient propositional prover. In (CADE), 1997.
27. L. Zhang, C. F. Madigan, M. W. Moskewicz, and S. Malik. Efficient conflict driven learning

in boolean satisfiability solver. In ICCAD, 2001.

