
New Approaches to Model Checking
and to 3-Valued Abstraction and

Refinement

Avraham Yadgar

New Approaches to Model Checking
and to 3-Valued Abstraction and

Refinement

Research Thesis

In Partial Fulfillment of the
Requirements for the

Degree of Doctor of Philosophy

Avraham Yadgar

Submitted to the Senate of the
Technion - Israel Institute of Technology

Adar, 5770 Haifa March 2010

The Research Thesis Was Done Under The Supervision
of Prof. Orna Grumberg and Prof. Assaf Schuster in the
Department of Computer Science.

The generous financial help of the Technion is gratefully
acknowledged.

I thank Orna and Assaf for their guidance and help
which allowed the creation of this work.

I especially thank my parents, Yardena and Menashe
Yadgar, and my wife, Gala Yadgar, for their infinite sup-
port during my studies and research.

Contents

Abstract 7

Abbreviations and Notations 9

1 Introduction 11

2 Preliminaries 15
2.1 Kripke Structures . 15
2.2 Circuits . 15

2.2.1 Transition Relation Graphs 16
2.3 Linear Time Logic . 17
2.4 Checking Safety Properties 17
2.5 The Automata-Theoretic Approach to Model Checking 18

2.5.1 Büchi Automata . 18
2.5.2 Büchi Automata for LTL 19
2.5.3 Model Checking using Büchi Automata 20

2.6 Bounded Model Checking . 20
2.7 Unbounded Model Checking 21
2.8 Quaternary Logic . 22
2.9 Symbolic Trajectory Evaluation (STE) 22
2.10 Binary Decision Diagrams . 25
2.11 The SAT Problem . 27
2.12 Davis-Putnam-Logemann-Loveland Backtrack Search (DPLL) 27

2.12.1 Optimizing DPLL . 28
2.13 The All-SAT Problem . 28

2.13.1 Blocking by Clauses 28
2.13.2 Blocking by BDDs . 29
2.13.3 “Front” Based All-SAT 30

2.14 Circuit SAT Solvers . 31
2.14.1 Justification of Assignments 31
2.14.2 Circuit SAT . 31

2.15 Dual Rail Encoding . 31

4

3 Hybrid BDD and All-SAT Model Checking 33
3.1 Hybrid BDD and All-SAT Based Pre-Image Computation . . 35

3.1.1 Propositional Representation of TRGs 35
3.1.2 Justification of Assignments 36
3.1.3 Maximally Justifying a Given Assignment to v′ 38
3.1.4 All Justifications for a Given Assignment to v′ 41
3.1.5 Justifying All the Assignments to v′ 42
3.1.6 Optimizations . 46

3.2 Model Checking Using Hybrid BDD and All-SAT Pre-Image
Computation . 50
3.2.1 Dynamic Transition Relation 51
3.2.2 Incremental Learning 51

3.3 Experimental Results and Conclusions 51
3.4 Related Work . 55

4 3-Valued Circuit SAT for STE 56
4.1 3-Valued Justification . 58

4.1.1 not-0 and not-1 Variables 58
4.1.2 3-Valued Justification Algorithm 60

4.2 STE with 3-Valued Justification 62
4.2.1 Constructing Circuits for STE Assertions 62
4.2.2 Running STE . 64

4.3 Experimental Results . 66
4.4 Related Work . 68

5 Automatic Refinement for Symbolic Trajectory Evaluation 70
5.1 Refinement in STE . 70

5.1.1 Related Work . 71
5.2 Automatic Refinement for Circuit-SAT-Based STE 72
5.3 Automatic Refinement for STE Using Responsibility 74

5.3.1 Causality and responsibility 74
5.3.2 Responsibility in STE Graphs 76
5.3.3 Applying Responsibility to Automatic Refinement . . 81
5.3.4 Experimental Results 82

6 Automata Theoretic Approach to 3-Valued Model Checking 89
6.1 Automata Approach for 3-Valued Model Checking 90

6.1.1 3-Valued Kripke Structures and LTL Semantics 90
6.1.2 Bisimulation of 3-Valued Kripke Structures 91
6.1.3 3-Valued Abstract Circuits 91
6.1.4 3-Valued Büchi Automata 92
6.1.5 Model Checking of 3-Valued Circuits 93

6.2 3-Valued Bounded Model Checking 96
6.2.1 Related Work . 98

6.2.2 X-BMC . 98
6.2.3 X-BMC: Implementation 99
6.2.4 Experimental Results 100

6.3 3-Valued Unbounded Model Checking 103

7 Conclusion 105

Abstract

Model Checking is the problem of verifying the correctness of a system
with respect to temporal logic properties [20]. This is an important prob-
lem, which is constantly becoming more critical, as software and hardware
systems are growing rapidly. Complex systems are more prone to implemen-
tation errors, thus demanding a thorough validation. The high time and
space requirements of the checking makes the verification of large systems
hard to perform. Despite recent advancement in model checking algorithms
and tools, efficient model checking remains a critical problem, due to the
growing complexity of software and hardware systems.

In this work we present new approaches to symbolic model checking
of hardware systems. Our approaches are aimed at increasing the perfor-
mance of model checkers. We address the size of the systems that are being
checked, the verification runtime, and its memory requirements. Our work
is also aimed at increasing the automatization of model checking methodolo-
gies, thus decreasing human effort and required expertise of the verification
engineer.

In our work we propose a memory efficient hybrid SAT and BDD based
algorithm for model checking of circuits. This algorithm exploits the advan-
tages of both SAT and BDD approaches, while avoiding their drawbacks as
much as possible.

We also present a 3-valued-SAT based approach for Symbolic Trajectory
Evaluation (STE). In this approach, STE is performed by using a novel
3-valued SAT solver, instead of the conventional, BDD-based, approach.

A common approach for addressing the capacity problem in model check-
ing is using abstraction and refinement. In this work we present different
methods for automatic refinement in STE, instead of the common manual
refinement. These methods require less user effort and expertise, and are
less error prone.

We also present an automata theoretic approach to 3-Valued model
checking, which can be used for explicit and symbolic model checking. We
implement this approach in 3-valued Bounded Model Checking (BMC). Our
BMC abstraction outperforms conventional abstraction in BMC both in the
sizes of the systems being checked, and in the runtime of the verification
tool. We propose a new methodology for using BMC for very large systems,
based on our 3-valued abstraction. Our methodology requires significantly
less user effort and expertise than the common methodologies for BMC of
large designs, and is less error prone.

7

8

Abbreviations and Notations

AP — Set of atomic propositions
M = 〈S, I0, R, L〉 — Kripke structure
1 — Truth value ‘true’
0 — Truth value ‘false’
X — Truth value ‘unknown’
⊥ — Truth value ‘bottom’
AP2 — {p = 0, p = 1|p ∈ AP}
AP3 — {p = 0, p = 1, p = X|p ∈ AP}
C = 〈V, I0, P I, F 〉 — Hardware circuit
N — Circuit nodes
(n, t) — Value of circuit node n at time t
[n, d] — Circuit node n and a quaternary value d
TRG — Transition relation graph of a circuit
COI — Cone of influence
BCOI — Bounded cone of influence
LTL — Linear time logic
P — LTL property
ψ — LTL path formula
|= — Satisfies
B= 〈Σ, Q, qin, ρ, α〉 — Büchi automaton
L(B) — The language of automaton B
B¬ψ — Automaton that accepts runs that contradict the

path formula ψ
E — Product of a Kripke structure with a Büchi

automaton
BMC — Bounded model checking
UBMC — Unbounded model checking
Q — Quaternary domain {0, 1, X,⊥}
T — Ternary domain {0, 1, X}
w — Partial order in the quaternary and ternary

domains
f̂ — Ternary function obtained by syntactically replacing Boolean

variables and operators in a Boolean function f by ternary

9

variables and opertators
º — Abstraction relation
STE — Symbolic Trajectory Evaluation
X-possible(node) — Exists a run for which the node evaluates to X
ϕ — Propositional formula
|!0 — not− 0. A ternary variable that cannot be

assigned 0
|!1 — not− 0. A ternary variable that cannot be

assigned 1
dr — Degree of Responsibility
C0(n) — Number of changes in the environment that imply n = 0
C1(n) — Number of changes in the environment that imply n = 1

10

Chapter 1

Introduction

In this work we present new approaches to symbolic model checking of hard-
ware systems. Our approaches are aimed at increasing the performance of
model checkers. We address the size of the systems that are being checked,
the verification runtime, and its memory requirements. Our work is also
aimed at increasing the automatization of model checking methodologies,
thus decreasing human effort and required expertise of the verification en-
gineer.

In our work we propose a memory-efficient SAT and BDD based algo-
rithm for model checking of circuits, and a SAT based approach for Sym-
bolic Trajectory Evaluation. We also address the capacity problem of model
checkers by proposing new approaches to abstraction and refinement. We
present automatic refinement methods for symbolic trajectory evaluation,
instead of the common manual refinement. We also present an automata
theoretic approach to 3-Valued model checking, and propose a new method-
ology for using Bounded Model Checking based on this approach.

Model Checking is the problem of verifying the correctness of a system
with respect to temporal logic properties [20]. This is an important prob-
lem, which is constantly becoming more critical, as software and hardware
systems are growing rapidly. Complex systems are more prone to implemen-
tation errors, thus demanding a thorough validation. The high time and
space requirements of the checking makes the verification of large systems
hard to perform. Despite recent advancement in model checking algorithms
and tools, model checking remains a critical problem, due to the growing
complexity of software and hardware systems.

In this work we discuss symbolic model checking of hardware designs.
Symbolic algorithms hold some symbolic representation of the system’s states
and transitions, and perform operations over this representation. Often,
symbolic algorithms can handle systems for which the explicit represen-
tation is too large to fit into a given machine’s memory [10, 5]. Common
approaches to symbolic model checking are BDD and SAT based algorithms.

11

Each of these approaches has different advantages and disadvantages.
Binary Decision Diagrams (BDDs)[9] are a compact representation of

boolean functions. BDDs are used to represent sets of states, and the sys-
tem’s transition relation. The model checking algorithms can then perform
boolean operations, as well as quantifications on these sets. BDD-based
model checking algorithms are usually quite efficient when the transition
relation and the set of system states can be represented with BDDs [10].
This is because applying Boolean operations is polynomial in the size of
the BDDs. However, quantification is exponential in the size of the BDDs.
Therefore, BDDs are quite unpredictable and tend to explode on interme-
diate results of operations which require quantification.

An alternative symbolic approach exploits the significant recent improve-
ment of SAT solvers. SAT solvers are memory efficient, and are less sen-
sitive to the size of the problem at hand than BDDs. Sets of states, and
the system’s transition relation are represented as boolean formulae, usually
given in CNF. These formulae are given as an input to a SAT solver when
performing Bounded Model Checking (BMC) [5], induction based model
checking [74, 6], or interpolation based model checking [58]. Several works
[57, 12, 31, 44] perform symbolic model checking by using an All-SAT solver,
which instantiates all the solutions for a given Boolean formula.

Apart from the approaches described above, other works such as [35]
make a hybrid use of both BDDs and SAT methods for model checking.

In this work we present a hybrid BDD and all-SAT approach to model
checking of hardware circuits. In our approach, the SAT algorithm uses
a propositional symbolic representation of the system, as well as a graph
representation of the circuit being checked. By using the combination of
BDD, propositional, and graph representations of the system, we are able
to exploit the benefits of each representation, while avoiding their drawbacks
as much as possible. We also presented this approach in [83].

One of the most efficient approaches for increasing the capacity of model
checking tools is by abstraction. In this approach, some of the information
about the system is abstracted out, resulting in a new abstract system, which
does not accurately describe the original concrete system. The abstract
system is smaller than the concrete one, and therefore is easier to represent
or manipulate. In many cases, the abstract system is enough for reasoning
about the concrete one.

Different works such as [47, 19, 13, 21, 27] suggested algorithms for ab-
straction and refinement. Most of the abstraction-refinement algorithms
construct an over-approximated system and follow the CounterExample
Guided Abstraction Refinement (CEGAR) approach [47, 19]. In this ap-
proach, model checking starts with a small abstract system. Checking such
a system may yield a spurious counterexample. This is an erroneous trace
of the abstract system, which does not represent an actual behavior of the
concrete system. In that case, the abstract system is refined according to

12

the spurious counterexample. That is, some of the details of the system,
that were abstracted out, are added back. This results in a larger abstract
system, which describes the concrete system more accurately.

In this work we discuss 3-valued abstraction and refinement in model
checking. In this abstraction, circuit nodes are ternary instead of Boolean.
The third value, X, stands for “unknown”. Abstraction is performed by
assigning the value X to nodes, thus abstracting out the logic that drives
them. We discuss 3-valued abstraction in Symbolic Trajectory Evaluation
(STE), and in automata theoretic based model checking.

A 3-Valued abstraction-refinement framework for CTL was introduced in
[75], and for µ-calculaus in [29] and [30]. 3-valued model checking has been
used in other works both for abstracting out parts of the model [8, 84, 37]
and for indicating that it is impossible to give a definite result [69, 14, 71]. In
[71], 3-valued bounded model checking of µ−calculus properties is presented,
where the third value ⊥ represents indefinite results due to the bound. 3-
Valued abstraction-refinement is also used for symbolic simulation in STE
[72] and SAT-based STE

STE [72] is a successful method for formally verifying very large hardware
circuits with wide data paths [73, 70, 86]. STE is a symbolic symbolic sim-
ulation which uses 3-valued abstraction. In STE, X is used for abstracting
out nodes, and the logic that drives them. STE is traditionally performed
by using BDDs to represent the values of circuit nodes at different times.
In order to represent ternary circuit nodes, the dual rail encoding is used.
In this method, two BDDs are used for representing the value of each node.
Refinement in STE is a critical task, which is traditionally done manually.
This task is labor intensive, and requires user’s expertise.

In this work we present a SAT-based approach for STE. Our approach
makes use of a novel 3-valued circuit SAT algorithm, which is capable of
representing ternary circuit nodes without using the dual rail encoding. In
many cases, using our SAT solver increases the capability of STE, compared
to using of BDDs. We also presented this work in [32]

We also present two approaches for automatic refinement in STE. The
first approach is based on our 3-valued circuit SAT solver, and is applicable
for our SAT-based STE algorithm. We presented this approach in [32]. The
second approach uses the notion of responsibility [17] in order to refine too
abstract systems. We also presented this approach in [16].

Finally, we present an automata theoretic approach to 3-Valued model
checking. Similarly to STE, our ternary domain includes the value X, which
is used for abstracting out nodes and the logic that drives them. For our 3-
valued model checking approach, we follow the automata theoretic approach
to model checking [80], and adapt it to the ternary domain. Our 3-valued
approach is applicable both for explicit and symbolic model checking.

In this work we use our 3-valued approach for a SAT-based, 3-valued,
BMC algorithm. Our 3-valued BMC algorithm outperforms current ab-

13

straction methods for BMC, in terms of the sizes of the systems that can
be checked, and in terms of runtime. We also present a new methodology
for abstraction in BMC of very large systems, based on this approach. Our
methodology requires significantly less expertise and familiarity of the user
with the system, compared to the common methodologies. Therefore, the
validation process requires significantly less effort and time, and is much less
error prone.

The rest of this work is organized as follows. In Chapter 2 we give the
background to our work. In Chapter 3 we present a hybrid BDD and all-
SAT approach to model checking. In Chapter 4 we present a SAT-based STE
approach, and in Chapter 5 we present approaches for automatic refinement
in STE. In Chapter 6 we present our automata theoretic approach to 3-
valued model checking, and its BMC implementation, and conclude our
work in Chapter 7.

14

Chapter 2

Preliminaries

Given a model M , and a specification ϕ, the model checking problem is the
problem of deciding whether M satisfies ϕ or not. In Part I of this chapter
we present the definitions of models and the specification language, and
describe various approaches to model checking. In Part II of this chapter,
we describe data structures and algorithms that are used for solving the
model checking problem.

Part I: Model Checking

2.1 Kripke Structures

In this work we discuss verification of systems that are modelled as Kripke
structures. Given a set of atomic propositions AP , we slightly change the
standard notion, and define AP2 = {p = 0, p = 1|p ∈ AP}. A Kripke
structure is a tuple M = 〈S, I0, R, L〉, where S is a finite set of states, and
I0 ⊆ S is a set of initial states. R ⊆ S × S is a total transition relation.
That is, ∀s ∈ S ∃s′ ∈ S, (s, s′) ∈ R. L : S → P(AP2) is a labelling
function such that for every s ∈ S, and for every p ∈ AP , exactly one of
p = 0, p = 1 is in L(s). A path in M is an infinite set of states s0, s1 . . . such
that ∀i, (si, si+1) ∈ R. For a path π = s0, s1 . . . , πi is the suffix si, si+1 . . .
of π.

2.2 Circuits

A hardware circuit C is a directed graph. The graph’s nodes N are primary
input and internal nodes, where internal nodes are latches and combinational
gates. A node can get a Boolean value, and a combinational gate represents
a Boolean operator. There is a directed edge from node n1 to node n2 if
n1 is an input to n2 in the circuit. The value of a node n is the result
of applying its operator on its inputs at each clock cycle. The graph of C

15

may contain circles, but not combinational circles. We formally define a
circuit C = 〈V, I0, P I, F 〉, where V is the set of latches in C, I0 is a set of
possible initial values to V, PI is the set of primary inputs, and F is a set
of transition functions such that ∀vi ∈ V, fi : 2V×2PI → {0, 1} defines the
value of vi in the next state as a function of the current values of V and
PI. Since F consists of a set of functions, it is called a partitioned transition
relation. We give an example of a partitioned transition relation in Figure
2.1(a).

The cone of influence (COI) of a node n, Cn, is the set of all the nodes
in the circuit that may influence the value of n, and is defined recursively
as follows: the COI of a combinational node is the union of the COI of its
inputs, and the COI of a latch or an input is the empty set.

We denote by (n, t) the value of node n at time t. The bounded cone
of influence (BCOI) of a node n at time t contains all (n′, t′) with t′ ≤ t
that may influence the value of (n, t), and is defined recursively as follows:
the BCOI of a combinational node at time t is the union of the BCOI of its
inputs at time t, and the BCOI of a latch at time t is the union of the BCOI
of its inputs at time t− 1. The BCOI of an input is the empty set.

A circuit can be viewed as a Kripke structure M = 〈S, I0, R, L〉 where
AP = V. A state s in M is an assignment of values to every latch, s : V→
{0, 1}. The transition relation R is given by F , where (s, s′) ∈ R ⇔ ∃in ∈
2PI , ∀vi ∈ V, s′(vi) = fi(s, in). We abuse the notation of F and use it as
a function F : S × 2PI → S, where s′ = F (s, in). L : S → P(AP2) is a
labelling function such that (vi = c) ∈ L(s) ⇔ s(vi) = c, for c ∈ {0, 1}. A
path π ∈ M describes a run of the circuit C.

2.2.1 Transition Relation Graphs

As described above, a partitioned transition relation consists of a set of
functions F , such that for each next-state variable v′i ∈ v′, v′i = fi(v, I).
The transition relation can be represented as a DAG, where the roots are
the next-state variables v′, and the terminal nodes are the current-state
variables v, and the input variables I. Each internal node in the graph
is associated with a Boolean variable, and corresponds to a subexpression
of the formulae that define the transition relation. Each internal node is
associated with a Boolean operation, and the node’s value is the result of
applying the corresponding operation on its successors. The graph in Figure
2.1(b) corresponds to the transition relation given in Figure 2.1(a). Nodes
y1, y2 and y3 are auxiliary variables for the subexpressions of the function
that computes v′ out of v and I.

We refer to the graph of the transition relation as a Transition Relation
Graph (TRG). We refer to a node in the TRG by the name of its corre-
sponding variable.

16

v′1 = (v1 ∧ (v2 ∧ i3)) ∨ ((v2 ∧ i3) ∨ i2)
v′2 = i3 ∨ i1

(a) Transition Relation

+
v1’

y1

+ *

y3
*

i2 i3 v2 v1i1

v2’
+

y2

(b) TRG

Figure 2.1: (a) Partitioned Transition Relation. v′1 and v′2 are given as func-
tions of v1, v2, i1, i2, i3. (b) The TRG corresponding to the transition relation
given in (a). v = {v1, v2}, I = {i1, i2, i3} and v′ = {v′1, v′2}. y1, y2 and y3 are
auxiliary variables representing the subexpressions of the transition relation.

2.3 Linear Time Logic

Next we define Linear Time Logic (LTL)[65] and its semantics. An LTL
path formula ψ is recursively defined as follows, where ψ1 and ψ2 are LTL
path formulae:

ψ = p|¬ψ1|ψ1 ∧ ψ2|Nψ1|ψ1Uψ2

p ∈ AP , U stands for the “Until” time operator, and N stands for the “Next”
time operator. Note that throughout this work we denote the “Next” time
operator by N , rather than the common notation X.

For a path π = s0, s1 . . . , π satisfies a path formula ψ, denoted by π |= ψ,
is defined as follow:
π |= p ∈ AP ⇔ p = 1 ∈ L(s0)
π |= ¬ψ1 ⇔ ¬[π |= ψ1]
π |= ψ1 ∧ ψ2 ⇔ π |= ψ1 and π |= ψ2

π |= Nψ1 ⇔ π1 |= ψ1

π |= ψ1Uψ2 ⇔ ∃j, πj |= ψ2 ∧ (∀i 0 ≤ i < j, πi |= ψ1)
An LTL formula is of the form P = Aψ, where ψ is a path formula. A

Kripke structure M satisfies P , denoted by M |= P , iff ∀π = s0, s1 . . . ∈ M
such that s0 ∈ I0, π |= ψ.

2.4 Checking Safety Properties

Temporal properties are typically divided to safety and liveness properties.
Checking safety properties is considered to be simpler than checking live-
ness properties, and therefore translation from liveness properties to safety
properties has been suggested [4]. In this section we discuss checking of
safety properties of the form P = AGe, where e is a Boolean expression over

17

ModelCheck(I0, R,¬E)
1) S∗ ← φ
2) new ← ¬E
3) while (new 6= φ) {
4) if new ∩ I0 6= φ
5) return 0
6) S∗ ← S∗ ∪ new
7) new ← Pre− Image(new) \ S∗

8) }
9) return 1

Figure 2.2: Model Checking Algorithm for P = AGe. The pre-image computation
at line 7 is performed only for the newly found states, in order not to search for the
predecessors of a state more than once. The algorithm returns 1 if M |= P , and 0
otherwise.

the atomic formulae. Checking of a large class of safety properties can be
reduced to checking of invariants of this form [2].

Let M = (S, I0, R, L) be a Kripke structure, over a set of atomic formulae
AP . For a given set of states S′, the set of all the predecessors of states in
S′, denoted Pre-Image(S′), is

Pre− Image(S′) = {s | ∃s′ ∈ S′, R(s, s′)} (2.1)

Using the pre-image operation, the symbolic algorithm for model check-
ing given in Figure 2.2 can be constructed. The input for the Algorithm is
I0, R, and ¬E, which is the set of states where the Boolean expression e does
not hold. Note that ¬E is trivial to compute. The model checking algorithm
determines whether there is a path from some s0 ∈ I0 to some s¬e ∈ ¬E. If
such a path exist, we conclude that M 2 P . Otherwise, M |= P .

In order to find such a path, the algorithm performs an iterative backward
search, starting from ¬E. In each iteration, pre-image computation is done
for the states which were found in the previous iteration. This way, there
is a path from every state which is found by the algorithm, to some state
in ¬E. The algorithm terminates if at some point, a state s0 ∈ I0 is found,
which implies that M 2 P , or if no new states are found, which implies that
there is no path from a state in I0, to an error state in ¬E, and thus M |= P .

2.5 The Automata-Theoretic Approach to Model
Checking

2.5.1 Büchi Automata

An infinite word w over an alphabet Σ is an infinite sequence w = σ0, σ1 . . . ,
where σi ∈ Σ. A Büchi automaton on infinite words is a tuple B=

18

〈Σ, Q, qin, ρ, α〉 where Σ is the input alphabet, Q is a finite set of states,
ρ : Q × Σ → 2Q is the transition function, qin ∈ Q is an initial state, and
α ⊆ Q is an acceptance condition. ρ(q, σ) is the set of states that B can
move to from state q, with the input letter σ.

A run of B on a word w = σ0, σ1 . . . is a function r : N → Q where
r(0) = qin, and ∀i ≥ 0, r(i + 1) ∈ ρ(r(i), σi). That is, a run is a series
of states starting from the initial state and obeying the transition function.
Since Q is finite, there is a set of states that appear infinitely often in r,
denoted by inf(r). inf(r) = {q ∈ Q| for infinitely many i ∈ N, r(i) = q}.

A run r on a word w accepts w iff inf(r) ∩ α 6= ∅. Since B is nonde-
terministic, there are multiple runs on w. A Büchi automaton accepts w if
there exists a run that accepts w. The language of an automaton B, denoted
by L(B), is the set of words that B accepts.

Throughout this work we assume that the states of Büchi automata are
represented by a Boolean encoding. Let B= 〈Σ, Q, qin, ρ, α〉 be a Büchi
automaton, and let Y be a set of Boolean state variables. A state q ∈ Q is
an assignment q : Y → {0, 1} to the variables in Y .

For practical encoding of B, it is useful to represent ρ as a Boolean
function, rather than a relation, over the states Q and the alphabet Σ.
It is possible to construct this representation of the transition relation by
using an additional integer variable d. The value of d determines which
of the possible transitions will be taken next. Let D = {1 . . . |Q|}. The
transition function is now defined as ρD : Q× Σ×D → Q. ρD can also be
represented by a set of Boolean functions F such that ∀yi ∈ Y , the value
of yi in the next state q′, denoted by q′(yi), is given by a Boolean function
fyi : Q× Σ×D → {0, 1}.

2.5.2 Büchi Automata for LTL

For a path formula ψ over a set of atomic propositions AP , it is possible to
construct a Büchi automaton over infinite words A= 〈Σ, Q, qin, ρ, α〉 such
that L(A) is the set of all infinite words over Σ that satisfy ψ [80]. Σ ⊆
P(AP2), such that for every σ ∈ Σ, and for every p ∈ AP , exactly one of
p = 0, p = 1 is in σ.

In order to reduce the size of A, its transition function is constructed
such that for every letter σ ∈ Σ, and for each transition, it considers only the
atomic propositions that are required in order to determine if w should be
accepted, rather than all the atomic propositions in σ. If for some p ∈ AP ,
neither p = 0 nor p = 1 appears in σ, it means that p can take any value in
w [55]. We later show that the reduced alphabet is helpful for our work.

19

2.5.3 Model Checking using Büchi Automata

Let M = 〈SM , IM
0 , RM , LM 〉 be a Kripke structure over a set of atomic

formulae AP , and let P = Aψ be an LTL formula over AP .

• A counterexample for P is a path π ∈ M such that π |= ¬ψ.

• Let B¬ψ= 〈Σ, Q, qin, ρ, α〉 be the Büchi automaton corresponding to
¬ψ.

• Let E = 〈SE , IE
0 , RE , LE , αE〉 be the product of M and B¬ψ, where

SE = SM × Q, IE
0 = IM

0 × {qin}, RE = {((s, q), (s′, q′))|(s, s′) ∈
RM , q′ ∈ ρ(q, LM (s))}, LE(s, q) = LM (s) and αE = SM × α.

• A fair path π ∈ E is a path such that inf(π) ∩ αE 6= ∅.

A fair path in E represents a path in M , and a word accepted by B¬ψ. It
therefore represents a counterexample for P in M . Thus, the model checking
problem is reduced to finding a fair path in E.

2.6 Bounded Model Checking

Bounded Model Checking (BMC) [5] is an iterative process for checking
models against LTL formulae. Let M and P = Aψ be a Kripke structure
and an LTL property, respectively. For BMC, M and P are represented by
propositional formulae. At iteration i, BMC uses a SAT solver for finding
a counterexample to P in M , consisting of i states, or for determining that
there is no such counterexample. If no counterexample is found, BMC ter-
minates when the desired bound k is reached, thus proving that there is no
counterexample of k or less states in M .

Unbounded model checking is possible by using induction [74, 6] or inter-
polation [58]. However, in many practical cases these methods are infeasible,
and BMC terminates when the conclusion if there is a bug of length i be-
comes too hard to compute.

Next we show how BMC is used to implement automata-based model
checking. Let E = 〈SE , IE

0 , RE , L, αE〉 be the product of M and B¬ψ, as
described in Section 2.5.3. For ease of presentation in the following sections,
we suggest a slightly different description of E. Following the definition of
E, R can be represented as

• RE = RE
M ∩ RE

B, where RE
M = {((s, q), (s′, q′))|(s, s′) ∈ RM}, and

RE
B = {((s, q), (s′, q′))|q′ ∈ ρ(q, L(s))}

Similarly,

• IE
0 = IME

0 ∩ IBE
0 , where IME

0 = IM
0 ×Q, and IBE

0 = SM × {qin}

20

For BMC, IME
0 , IBE

0 , RE
M , RE

B and αE are encoded as propositional formulae,
as described in [5]. When clear from the context, we do not distinguish
between these sets and their propositional representation.

We define the propositional formula ϕi as follows:

fairi(e0 . . . ei) =
∨

0≤l<i

(el = ei) ∧

∨

l≤j<i

αE(ej)

 (2.2)

ϕei(e0 . . . ei) = IBE
0 (e0) ∧

∧

0≤j<i

RE
B(ej , ej+1) ∧ fairi(e0 . . . ei) (2.3)

ϕπi(e0 . . . ei) = IME
0 (e0) ∧

∧

0≤j<i

RE
M (ej , ej+1) (2.4)

ϕi(e0 . . . ei) = ϕπi(e0 . . . ei) ∧ ϕei(e0 . . . ei) (2.5)

A satisfying assignment to ϕi is a path π in M , which is also a path in
E. π passes infinitely often in states in αE , and therefore is a fair path in E.
Thus, π represents a path in M where ψ does not hold. Consequently, ϕi

represents all the erroneous runs with up to i different states in M . In the
ith iteration of BMC, a SAT solver is used to determine if ϕi is satisfiable.
If SAT (ϕi), then BMC terminates and returns the satisfying assignment as
a counterexample to P . Otherwise, there is no such counterexample, and i
is increased.

2.7 Unbounded Model Checking

We give a brief description of SAT-based Unbounded Model Checking (UBMC)
of safety properties, as presented in [74] and [6]. While BMC is mainly used
for bug hunting, UBMC can provide full verification of LTL properties. As
before, let M = 〈S, I0, R, L〉 be a Kripke structure over a set of atomic
propositions AP . Let P = AGexp be a safety property such that exp is a
Boolean expression over the atomic formulae. For an index k, ϕk

b and ϕk
ind

are defined as follows:

ϕk
b (s0 . . . sk) = I0(s0) ∧

k−1∧

i=0

R(si, si+1) ∧
k∨

i=0

¬exp(si) (2.6)

loop freek(s0 . . . sk) =
∧

0 ≤ i, j ≤ k
i 6= j

(si 6= sj) (2.7)

ϕk
ind(s0 . . . sk+1) =

k∧

i=0

(R(si, si+1) ∧ exp(si))∧loop freek(s0 . . . sk)∧¬exp(sk+1)

(2.8)

21

∧ X 0 1 ⊥
X X 0 X ⊥
0 0 0 0 ⊥
1 X 0 1 ⊥
⊥ ⊥ ⊥ ⊥ ⊥

∨ X 0 1 ⊥
X X X 1 ⊥
0 X 0 1 ⊥
1 1 1 1 ⊥
⊥ ⊥ ⊥ ⊥ ⊥

¬
X X
0 1
1 0
⊥ ⊥

Figure 2.3: Quaternary Operations

UBMC is an iterative algorithm. At iteration k , satisfiability of ϕk
b

represents a bug in M . Unsatisfiability of ϕk
b implies that there is no path

of length k from an initial state with a state that does not satisfy exp.
Unsatisfiability of ϕk

ind implies that for every loop free path (not necessarily
from an initial state) of length k + 1, if exp is satisfied along the first k
states, then exp is satisfied in the k + 1 state. If both ϕk

b and ϕk
ind are

unsatisfiable, then there is no path from an initial state in M , for which
Gexp does not hold, and therefore M |= AGexp. If ϕk

ind is satisfiable, the
algorithm proceeds to the next iteration.

2.8 Quaternary Logic

10

X

Figure 2.4: Quaternary Lat-
tice

Let Q be a quaternary domain Q =
{0, 1, X,⊥}, where X is “unknown” and ⊥
is “over constrained”. Let ∧, ∨ and ¬ be
quaternary operators, with the truth tables
given in Figure 2.3. Let w be a partial order
on Q, defined by X w 0 , X w 1, 0 w ⊥,
and 1 w ⊥. (w,Q) is the lattice depicted
in Figure 2.4. The quaternary operators are
monotonic with respect to w. That is, if
d′1 w d1 and d′2 w d2, then d′1 ∧ d′2 w d1 ∧ d2, d′1 ∨ d′2 w d1 ∨ d2, and
¬d′1 w ¬d1. Throughout this work, when referring to monotonicity of func-
tions, it is with respect to w.

2.9 Symbolic Trajectory Evaluation (STE)

Symbolic Trajectory Evaluation (STE) [72] is a symbolic simulation of hard-
ware circuits with abstraction. In STE, a circuit node can get a value in a
quaternary domain Q = {0, 1, X,⊥}. A node whose value cannot be deter-
mined by its inputs is given the value X(”unknown”). ⊥ is used to describe
an over constrained node. This might occur when there is a contradiction
between an external assumption on the circuit and its actual behavior.

For a circuit C in STE, a state s in C is an assignment of values from
Q to every node, s : N → Q. Note that this definition of a state is different

22

than the general definition given in Section 2.2, where a state is defined only
over the latches of a circuit. Note also, that the values of the latches and
primary inputs of a circuit, determine the values of the rest of its nodes. A
trajectory π is an infinite series of states, describing a run of M . We denote
by π(i), i ∈ N, the state at time i in π, and by π(i)(n), i ∈ N, n ∈ N , the
value of node n in the state π(i). πi, i ∈ N, denotes the suffix of π starting
at time i.

Let W be a set of symbolic Boolean variables over the domain {0, 1}.
A symbolic expression over W is an expression consisting of quaternary
operations, applied to W ∪Q. The truth tables of the quaternary operators
are given in Figure 2.3. A symbolic state overW is a mapping from each node
of M to a symbolic expression. A symbolic state represents a set of states,
one for each assignment to W. A symbolic trajectory over W is an infinite
series of symbolic states, compatible with the circuit. It represents a set of
trajectories, one for each assignment to W. Given a symbolic trajectory π
and an assignment φ to W, φ(π) denotes the trajectory that is received by
applying φ to all the symbolic expressions in π.

For specification in STE we use Trajectory Evaluation Logic (TEL). A
formula in TEL is defined recursively over W as follows:

f ::= n is p | f1 ∧ f2 | p → f | Nf

where n ∈ N , p is a Boolean expression over W, and N is the next time
operator. The maximal depth of a TEL formula f is the maximal number
of nested N operators in f plus 1.

Given a TEL formula f over W, a symbolic trajectory π over W, and
an assignment φ to W, we define the satisfaction of f as in [79]:
[φ, π |= f] = ⊥ ↔ ∃i ≥ 0, n ∈ N : φ(π)(i)(n) = ⊥. Otherwise:
[φ, π |= n is p] = 1 ↔ φ(π)(0)(n) = φ(p)
[φ, π |= n is p] = 0 ↔ φ(π)(0)(n) 6= φ(p) and φ(π)(0)(n) ∈ {0, 1}
[φ, π |= n is p] = X ↔ φ(π)(0)(n) = X
φ, π |= p → f ≡ ¬φ(p) ∨ φ, π |= f
φ, π |= f1 ∧ f2 ≡ (φ, π |= f1 ∧ φ, π |= f2)
φ, π |= Nf ≡ φ, π1 |= f

Note that given an assignment φ to W, φ(p) is a constant (0 or 1).
We define the truth value of π |= f as follows:
[π |= f] = 0 ↔ ∃φ : [φ, π |= f] = 0
[π |= f] = X ↔ ∀φ : [φ, π |= f] 6= 0 and ∃φ : [φ, π |= f] = X
[π |= f] = 1 ↔ ∀φ : [φ, π |= f] 6∈ {0, X} and ∃φ : [φ, π |= f] = 1
[π |= f] = ⊥ ↔ ∀φ : [φ, π |= f] = ⊥

This definition creates levels of importance between 0 and X. If there
exists an assignment such that [φ, π |= f] = 0, the truth value of π |= f is
0, even if there are other assignments such that [φ, π |= f] = X.

STE assertions are of the form A ⇒ C, where A (the antecedent) and
C (the consequent) are TEL formulae. A expresses constraints on circuit

23

 1n
 4n

 5n
 6n

 3n

 2n

A = (n4 is 0)
C = N(n5 is 1)

(a) A circuit M

 4n

 5n
 6n

 3n

 2n
 1n

 4n

 5n
 6n

 3n

 2n
 1n t = 1t = 0

(b) An Unrolling of M to depth 2

Figure 2.5: Circuits in STE. n4 is an “AND” gate, n6 is an “OR” gate, n5

is a “NOT” gate, and n6 is a latch.

t n1 n2 n3 n4 n5 n6

0 X X X 0 X 0
1 X X 0 X 1 X

Figure 2.6: Symbolic Simulation

nodes at specific times, and C expresses requirements that should hold on
circuit nodes at specific times. We define the truth value of [M |= A ⇒ C]
as follows:
[M |=A⇒C]=⊥ ↔ ∀π :[π |=A]=⊥
[M |=A⇒C]=1 ↔ [M |=A⇒C] 6=⊥ and ∀π :[π |=A]=1 implies [π |=C]=1
[M |=A⇒C]=0 ↔ ∃π :[π |=A]=1 and [π |=C]=0
[M |=A⇒C]=X ↔ [M |=A⇒C] 6=0 and ∃π :[π |=A]=1 and [π |=C]=X

We denote by (n, t) the value of node n at time t. When applying A to
M , if a node (n, t) is evaluated to X, but is also constrained to a Boolean
value 0 or 1 by A, then (n, t) is assigned with the value imposed by A.
As in [79], an antecedent failure is the case where [M |= A ⇒ C] = ⊥.
for a node n at time t we say that “(n, t) is X-possible” if there exists a
trajectory π and an assignment φ such that φ(π)(t)(n), the value of n at
time t, is X. If (n, t) is X-possible, and is also constrained to a Boolean
value by C, then we say that (n, t) is undecided. This is the case where
[M |= A ⇒ C] = X. Consider the circuit in Figure 2.5(a), and the STE
assertion A ⇒ C, where A = ((n4, 0) is 0) and C = ((n5, 1) is 1)). The
table in Figure 2.6 corresponds to the symbolic simulation of this assertion.
n5 at time 1 is evaluated to 1, and thus the assertion holds.

Most STE implementations use the dual rail encoding in order to repre-
sent the 4 values. In this encoding, the value of each node (n, t) is determined
by the evaluations of two Boolean functions f1

n,t, f
2
n,t : W → {0, 1} over the

set of symbolic variablesW. We further discuss dual rail encoding in Section
2.15.

24

Part II: Tools and Implementation

2.10 Binary Decision Diagrams

We give a short description of Binary Decision Diagrams (BDDs) and the
way they are used to represent models.

A BDD is a data structure which is used to represent sets. A Boolean
function f : {0, 1}|v| → {0, 1} over a set of variables v, represents the set
of assignments for which it evaluates to ’true’. A BDD represents such
a function, and thus represents the corresponding set of assignments. We
denote by S(v), a BDD of a set of assignments to a set of variables v. The
order of the variables in v is of no importance for the evaluation of the
Boolean function1. Therefore, throughout this work, we shall refer to v as
a set of variables.

A BDD is a directed Acyclic graph (DAG) where the following holds:

• There is one root node, with no incoming edges.

• There are one or two terminal nodes with no outgoing edges. A ter-
minal node is labeled ’0’ or ’1’, and there are no two terminal nodes
with the same label.

• All the nodes except for the terminal nodes have two outgoing edges.
Each such node is associated with a variable of the function represented
by the BDD.

• Each path from the root to one of the terminal nodes contains no more
than one node which is associated with a given variable.

• The nodes in all the paths from the root node to the terminal nodes
are associated with variables in the same (partial) order.

The outgoing edges of a node are labeled ’right’ and ’left’, and are asso-
ciated with the values ’1’ and ’0’ of the corresponding variable respectively.
A path from the root of the BDD to one of the terminal nodes represents
an assignment to the variables which are associated with the nodes in the
path. If the terminal node of the path is labled ’1’, then f = 1 for the
corresponding assignment. If the terminal node is labeled ’0’, then f = 0
for the corresponding assignment. Thus, by the value of the terminal node
of a path, we know if the corresponding assignment is in the set which is
represented by the function.

Note that a given path may include nodes associated with only a subset
of the function’s variables. In that case, the value of the formula is de-
termined by the corresponding partial assignment. This partial assignment

1The order of the variables in the BDD effects its size. However, this order is not
related to the order of the variables in the definition of the Boolean function.

25

01

v4

v3

v1

v2

(a)

π1 : ¬v4,¬v2, v1

{
a1,1 : ¬v4,¬v3,¬v2, v1

a1,2 : ¬v4, v3,¬v2, v1

π2 : ¬v4,¬v3,¬v1

{
a2,1 : ¬v4,¬v3,¬v2,¬v1

a2,2 : ¬v4,¬v3, v2,¬v1

(b)

Figure 2.7: (a) A BDD representing the function f = ¬v4∧((v1∧¬v2)∨(¬v1∧¬v3)).
Solid lines represent the ’right’ successors of nodes, and dashed lines represent the
’left’ successors of nodes. (b) The assignments corresponding to the paths from the
root to the terminal node ’1’.

represents all the complete assignments which agree with it on the values of
the variables on the path. This way, multiple assignments are represented
by a single path. An example of a BDD, and the assignments it represents
is given in Figure 2.7.

Given a model, a common way of representing its states is by an encod-
ing over a set of Boolean state variables V. In that case, a function f(V)
evaluates to 1 for values of V that represent states in the model. f is then
represented by a BDD over V. Similarly, a transition relation of a model is
represented by a BDD which represents pairs of current and next states.

Ordered BDD - An Ordered BDD (OBDD) is a BDD where on all the
paths from the root node to a terminal node, the variables agree with a
given order v1 < v2 < · · · < vn.

Reduced OBDD - A Reduced OBDD (ROBDD) is an OBDD where the
following holds:

• No two nodes are associated with the same variable and agree on the
right and left successors.

• No node has the same right and left successors.

Note that the given conditions eliminate redundant nodes and isomor-
phic subgraphs, and thus reduce the size of the BDD. In this work, when
referring to a BDD, we refer to an ROBDD. Though BDDs are considered a
compact representation for sets, we do not have a bound on their size tighter
than 2|v|. The order of the variables within a BDD has a major effect on
its size. Therefore, a great effort is made for choosing such an order which
would yield a compact BDD.

26

Applying the logical operators ¬,∧ and ∨ is polynomial in the size of the
BDDs. Universal and existential quantification might be exponential in the
size of the BDD. For S1 and S2, sets of assignments, which are represented
by the BDDs B1 and B2 respectively, the set S1 ∪ S2 is represented by the
BDD B1 ∨B2, and the set S1 ∩ S2 is represented by the BDD B1 ∧B2

2.11 The SAT Problem

The Boolean satisfiability problem (SAT) is defined as follows: Given a
Boolean formula φ over a set of Boolean variables V , find an assignment
A to V such that φ(V) has the value ’true’ under this assignment. A is
called a satisfying assignment, or a solution, for φ. If no such assignment
exists, we say that φ is unsatisfiable, denoted by unSAT.

We shall discuss formulae presented in Conjunctive Normal Form (CNF).
That is, φ is a conjunction of clauses, where each clause is a disjunction
of literals over V . A literal l is an instance of a variable or its negation:
l ∈ {v,¬v | v ∈ V }. We regard a clause as a set of literals, and a formula as
a set of clauses.

A clause cl is satisfied under an assignment A iff ∃l ∈ cl, A(l) = 1. For
a formula φ given in CNF, an assignment satisfies φ iff it satisfies all of its
clauses. Hence, if, under a (partial) assignment A all of the literals of some
clause in φ are false, than A does not satisfy φ. We call this situation a
conflict.

For two clauses cl1 = (w1, v1 . . . vn) and cl2 = (¬w1, z1 . . . zm) ((v1 . . . vn)
and (z1 . . . zm) are not necessarily disjoint), their resolvent is clres = (v1 . . . vn)∪
(z1 . . . zm). It is easy to show that cl1 ∧ cl2 ∧ clres is satisfiable iff cl1 ∧ cl2 is
satisfiable. For an unSAT formula, there exists a series of resolutions that
leads to the empty clause. This series is the proof of the formula’s unsat-
isfiability. This series is called resolution tree, where the root is the empty
clause, and the rest of the nodes are the clauses in the series that led to it.
The antecedents of a node are the clauses that are involved in the resolution
that creates it. The leaves are a subset of the original clauses of the formula.
This subset of clauses is called an unSAT core.

We refer to an assignment by the values it assigns to the variables. That
is, the assignment {x0 = 1, x1 = 0, x2 = 0} is referred to as {x0,¬x1,¬x2}.

2.12 Davis-Putnam-Logemann-Loveland Backtrack
Search (DPLL)

In this section we describe the Davis-Putnam-Logemann-Loveland Backtrack
Search (DPLL) [23, 22], which is the basis for most of the modern SAT
solving algorithms and tools.

27

We begin by describing the Boolean Constraint Propagation (bcp()) pro-
cedure. During SAT solving, given a partial assignment A and a clause cl,
if there is one literal l ∈ cl with no value, while the rest of the literals are
all false, then in order to avoid a conflict, A must be extended such that
A(l) = 1. cl is called a unit clause or an asserting clause, and the assignment
to l is called an implication. The bcp() procedure iteratively finds all the
implications at a given moment. This procedure is efficiently implemented
in [59, 28, 87, 56, 52].

The DPLL algorithm walks the binary tree that describes the variables
space. At each step, the algorithm assigns a value to one of the variables,
thus branching in the tree. Each branch is assigned with a new decision
level. After branching, the algorithm uses the bcp() procedure to compute
all its implications. All the implications are assigned with the corresponding
decision level. Note that at a given time, both truth values of a given variable
may be implied by two different clauses. In that case, only one of the clauses
can be satisfied, and we reach a conflict. If a conflict is reached, the algorithm
backtracks in the tree, and chooses a new value for the most recent decision
variable not yet tried both ways. The algorithm terminates if one of the
leaves is reached with no conflict, or if the whole tree was searched, but
no leaf was reached. In the first case, the path from the root to the leaf
describes a satisfying assignment for φ. In the latter case, φ is unsatisfiable.

Pseudo code of DPLL is shown in Figure 2.8.

2.12.1 Optimizing DPLL

Modern SAT solvers apply several optimization on the basic DPLL backtrack
search. Such optimizations are conflict based learning, conflict driven back-
tracking, non-chronological backtracking for empty sub-spaces, restarts and
more. These optimizations result in a significant speedup of the SAT solving
tools. We shall not describe these optimizations in this work. However, our
All-SAT tool employs conflict based learning, and non-chronological back-
tracking over empty sub-spaces.

2.13 The All-SAT Problem

Given a Boolean formula presented in CNF, the All-SAT problem is to find
all of its solutions as defined in the SAT problem.

2.13.1 Blocking by Clauses

A straightforward method to find all of the formula’s solutions is to modify
the DPLL SAT solving algorithm such that when a solution is found, a
blocking clause describing its negation is added to the solver. This clause
prevents the solver from reaching the same solution again. The last branch

28

1) bool satisfiability decide() {
2) while (true) {
3) if (!branch())
4) return SATISFIABLE
5) while (bcp() == CONFLICT) {
6) if (current level==0)
7) return UNSATISFAIABLE
8) back-track one level
9) }
10 }
11)}

Figure 2.8: DPLL Backtrack Search. The function branch() chooses a value
for one of the unassigned variables, or returns ’false’ if all the variables are
already assigned.

is then invalidated, and the search is continued with a new branch. At
any given time, the solver holds the original formula, conjuncted with the
negation of all of the solutions found so far. Once all the solutions are found,
there is no satisfying assignment to the current formula, and the algorithm
terminates.

This algorithm suffers from a rapid space growth as it adds a clause of
the size of v for every solution that is found. Another problem is that the
increasing number of clauses in the system slows down the bcp() procedure,
which has to compute implications in an increasing number of clauses.

An improvement for this algorithm can be achieved by generating a
clause consisting of the negation of the branching literals only. This is correct
because all the rest of the assignments are implications, and are forced by the
assignment of the branches. This reduces the size of the generated clauses
dramatically (1-2 orders of magnitude) but does not affect their number.

Pseudo code of the blocking clauses algorithm with the described opti-
mization is shown in Figure 2.9. Variations of this algorithm are used in
[57, 12, 44], where the All-SAT problem is solved for model checking.

2.13.2 Blocking by BDDs

Another method for preventing repetitive instantiation of the same solution
is by a BDD.

First we show how to constraint a SAT solver by using a BDD. Given
a BDD B, defined over a subset of the variables of the SAT problem, we
would like the solution found by the SAT solver to agree with B. That is, we
would like the projection of the solution over the variables of B to be in B.
During the SAT solving, whenever a variable which exists in B is assigned,
we search B for a path from its root to the terminal node labelled ’1’, which

29

Blocking Clauses All-SAT:
A ← φ
while (true){

if (!branch()) {
if (handle solution() == EXHAUSTED)

return A
}
while (bcp() == CONFLICT) {

if (current level==0)
return A

back-track one level
}

}

handle solution() {
A ← A∪{current assignment}
if (current level == 0)

return EXHAUSTED
cl ← create a clause with the

negation of all of the
assignments in the branches

add cl to the solver
backtrack one level
return NOT EXHAUSTED

}

Figure 2.9: All SAT algorithm using blocking clauses to prevent multiple instan-
tiations of the same solution. The procedure bcp() and branch() are the same as
defined for DPLL in section 2.12.

agrees with the current partial assignment of the SAT solver. The existence
of such a path means that the current partial assignment agrees with B.
If no such path exists, the SAT solver backtracks. We call this procedure
BDD agree(B), where B is the BDD which constraints the search. This
procedure has to be invoked at the end of the bcp() procedure of DPLL, if
any variable which appears in B was given an assignment.

Similarly to the blocking clauses methods, we can use a blocking BDD
in order to instantiate all the solutions of a SAT problem. We initialize
a BDD B to the empty set. During the search, the SAT solver executes
BDD agree(¬B) at the end of each bcp(). Whenever a solution is found, it
is added to B. The solver then backtracks, and continues the search. This
way, no solution is found more than once.

The BDD representation of B is more compact than its CNF represen-
tation which is used in the blocking clauses method. This method has been
presented and used in [33] and [35].

2.13.3 “Front” Based All-SAT

A different approach to solving the all-SAT problem is a “Front” Based
All-SAT [31]. In this approach, a more restricted order is imposed on the
branching scheme of a SAT solver, such that the solver holds the “front”
of the search within the search space. This way, finding the next solution
does not require storing the previous solutions that were found, and they
do not have to be held within the solver. This method significantly reduces
the memory requirements of the all-SAT solver, and consequently reduces
its time requirements.

30

2.14 Circuit SAT Solvers

2.14.1 Justification of Assignments

For a circuit node n and value d, we say that [n, d] is justified by the inputs to
n if d is implied by them according to the semantics of n. In that case, we say
that n is justified by its inputs. For example, consider a node n, associated
with an “AND” operator, and its inputs in1 . . . inm. [n, 0] is justified iff ∃ i
such that ini = 0, regardless of the values of the rest of the inputs. [n, 1] is
justified iff ∀ i, ini = 1. We generalize this definition for the set of nodes in
the graph that may effect the value of n. When given a (partial) assignment
to the inputs of a circuit, we say that [n, d] is justified if d is implied by those
inputs. An input is thus trivially justified. Throughout the rest of this work,
we do not distinguish between an assignment and a partial assignment. We
further discuss justification of assignments in Section 3.1.2.

2.14.2 Circuit SAT

A Circuit SAT Solver [25, 54, 42] is a solver that uses a graph representation
of the circuit instead of a CNF formula. Given a circuit, a node n and a
value d. A circuit SAT solver returns a justification for [n, d] if one exists,
or “unjustifiable” otherwise. Branching, bcp, learning and other procedures
are performed over the graph.

The graph is a higher level description of the problem than CNF. There-
fore, for many practical BMC instances, a circuit solver is more efficient than
a CNF SAT solver. The main advantage of a circuit solver is the ability to
follow the justification of the roots of the circuit as a branching heuristic. By
doing so, the solver is able to make ”smarter” branchings, and assign values
only to the subset of the circuit nodes that is required for the justification.
The rest of the nodes remain unassigned.

2.15 Dual Rail Encoding

In Section 6.2.3 we use a propositional representation of 3-valued variables
and operators. This representation is then processed by a Boolean SAT
solver. In order to represent 3-valued variables in a Boolean SAT solver
context, we use a dual rail encoding. In this encoding, a ternary variable v
is represented by two Boolean variables (vh, vl), such that (vh, vl) = (0, 1) ⇔
v = 0, (vh, vl) = (1, 0) ⇔ v = 1 and (vh, vl) = (1, 1) ⇔ v = X. Dual railed
propositional formulae were used in [7] and [67] for STE. We assume that
all the formulae throughout the rest of this work are dual rail encoded.

The expression e = u is equivalent to the expression (e → u) ∧ (u → e).
For a ternary expression e, the value of the expression e = X is always X,
regardless of the value of e. This is because X is “unknown”, and therefore

31

it is impossible to determine if it is equal to the value of e. For e and u
represented in dual rail, we say that the value of the Boolean expression
e =b u is 1 if eh = uh ∧ el = ul, and 0 otherwise. For example, the value of
X =b X is 1. We use =b for checking if the value of a variable is X, which
cannot be done with the operator =.

32

Chapter 3

Hybrid BDD and All-SAT
Model Checking

In the following sections we present a hybrid, symbolic model checking algo-
rithm for temporal safety properties, composed of both BDD and All-SAT
procedures. This algorithm exploits the strengths of both BDD-based and
SAT-based approaches, while trying to avoid their respective drawbacks. In
addition to the common representation of the model being checked as a CNF
formula or as a BDD structure, we also make use of a graph representation,
which we use to prune the search space and improve performance in several
ways.

We first suggest an efficient implementation of the pre-image computa-
tion using the All-SAT procedure. We then use the pre-image computation
in a backward search algorithm to perform full model checking of temporal
safety properties. The resulting algorithm uses BDDs for all operations,
except for the pre-image computation, where the All-SAT method is used
instead.

SAT-based methods for image and pre-image computation [57, 12, 31]
are based on All-SAT engines, which return the set of all the solutions to
a given formula (all satisfying assignments). The All-SAT engine for pre-
image computation receives as input a propositional formula describing the
application of a transition relation R to a set of “next-states” S′. The
resulting set of solutions represents the pre-image of S′, which is the set of
all predecessors for states in S′, also referred to as “current-states”.

Most modern SAT solvers implement the DPLL [22] backtrack search.
These solvers learn and add conflict clauses to the formula in order to block
searching in subspaces that are known to contain no solution. SAT solvers
also implement efficient Boolean propagation procedures, as in [59]. How-
ever, when used for model checking, these algorithms do not make use of
available knowledge about the structure of the model which is being checked.
Thus, SAT-based model checking still suffers from the exponential complex-

33

ity of search procedures that explore too many potential assignments.
We propose an All-SAT algorithm that makes use of two representations

of the model’s transition relation R: a propositional CNF formula and a
graph of the hardware gates. We exploit the two representations for effi-
cient search in the pre-image computation: the CNF representation is used
for the usual backtrack search of SAT algorithms, whereas the graph repre-
sentation is used to extract information about the structure of the design.
We dynamically modify the graph representation according to the currently
searched sub-space, thus exploiting more information than by static analysis
of the model.

Our algorithm uses the information extracted from the structure of the
model to do the following:

1. Process whole sets of next states instead of processing them one by
one, unlike other All-SAT based image/pre-image algorithms [57, 12,
63, 31].

2. Each set of next-states is represented by a partial assignment to the
next-state variables. The values of these variables can be justified by
using only a subset of the current-state variables of the model. In
every iteration of the model checking, when pre-image computation
is performed, our algorithm assigns values only to variables that are
required for the justification. This is done by our algorithm without
computational overhead.

3. Similar to [12, 62, 53, 41, 45, 43], our algorithm uses the graph repre-
sentation of the model to find partial assignments to the current state
variables, instead of complete ones, thus saving time and space. How-
ever, unlike other works, the required analysis of the graph transition
relation is carried on-the-fly, costing O(1) operations for the branching
procedure.

4. Detect independent sub-spaces and solve them independently.

5. Detect sub-spaces where solving SAT instead of All-SAT problem is
sufficient.

Built on top of a SAT algorithm, our All-SAT algorithm benefits from
the mechanisms incorporated in the original SAT algorithm for learning
conflict clauses. Moreover, when used for pre-image computation, our All-
SAT algorithm is capable of learning conflict clauses incrementally. Thus, in
each iteration of the backward search model checking, the algorithm exploits
the knowledge that was gained in earlier iterations.

The set of states S′ is given to the All-SAT engine in the form of a BDD.
Similar to [35], our All-SAT algorithm stores the negation of the solutions
which were already found in a BDD structure. Consequently, both S′ and

34

S, the input and the output of our All-SAT algorithm, consist of BDD
structures only. This allows us to easily use the All-SAT algorithm in the
BDD based model checking algorithm.

3.1 Hybrid BDD and All-SAT Based Pre-Image
Computation

In this section we describe an algorithm for an All-SAT based pre-image
computation of circuits. This algorithm is based on the DPLL backtrack
search [23, 22] and uses conflict based learning of clauses. Apart from the
CNF description of the problem, the algorithm uses a graph representation of
the model’s transition relation. The added information about the structure
of the model allows finding sets of solutions instead of instantiating them
one by one. Additionally, it is used to speed up the search by reducing the
number of sets that are instantiated.

In Section 3.2 we describe our model checking algorithm. In order to im-
plement it using SAT methods, we have to build an All-SAT engine which
will perform the pre-image computation by solving Equation 2.1. For a cir-
cuit C = 〈V, I0, P I, F 〉, we denote by v a set of Boolean variables associated
with the latches in V. Note that the variables in v are not ordered. Let S′

be a given set of next-states, and S∗ be the set of previously found states in
a backward search. In order to perform pre-image computation, we have to
find all the solutions of the formula

ϕ(v) = ∃v′∃I[(v′ = F (v, I)) ∧ S′(v′) ∧ ¬S∗(v)] (3.1)

That is, we have to find all the assignments to v that can be extended
to a solution of the formula

ϕ(v, I, v′) = (v′ = F (v, I)) ∧ S′(v′) ∧ ¬S∗(v) (3.2)

Each solution for this formula represents a current-state s(v), which is
not in S∗, and is a predecessor of some state in S′. The fact that s(v) is
not in S∗ implies that the algorithm finds only states which were not found
before.

In our model checking algorithm, S′ and S∗ are given to the All-SAT
algorithm as BDDs, and F is given both in CNF and as a graph (see below).
The set of solutions S(v) is returned by the algorithm as a BDD.

3.1.1 Propositional Representation of TRGs

Given a hardware circuit, our algorithm uses its transition relation graph
(TRG), and requires a propositional reperesntation of it. this representation
is constructed as described in [5]. Each subexpression of the transition

35

+
v1’

y1

+ *

y3
*

i2 i3 v2 v1i1

v2’
+

y2

(a) TRG

(y3 = v2 ∧ i3) ≡
(y3 ∨ ¬v2 ∨ ¬i3) ∧
(¬y3 ∨ v2) ∧
(¬y3 ∨ i3)

(b) CNF

Figure 3.1: Transition Relation Graph. (a) The TRG corresponding to
the transition relation given in Figure 3.2(a). v = {v1, v2}, I = {i1, i2, i3}
and v′ = {v′1, v′2}. y1, y2 and y3 are auxiliary variables representing the
subexpressions of the transition relation. (b) The CNF description for the
operator of node y3.

relation function is associated with an auxiliary variable, which represents
it in a CNF formula. These variables correspond to the variables of the
internal nodes in the TRG. Thus, for each node in the TRG, the CNF
representation of the transition relation has a corresponding variable, and
clauses which describe the node’s Boolean operation. For example, in the
TRG shown in Figure 3.1(a), v3 is associated with the Boolean operation
’And’. In Figure 3.1(b) we show the clauses corresponding v3.

3.1.2 Justification of Assignments

As mentioned above, the transition relation of a circuit is a set of functions
F , such that for each next-state variable v′i ∈ v′, v′i = fi(v, I). For a next-
state variable v′i, fi depends only on ṽi ⊆ v and Ĩi ⊆ I, subsets of the state
variables and the inputs to the model, respectively. An example for such a
transition relation is given in Figure 3.2(a).

For v′i ∈ v′, the support set of v′i, suppv′i , is:

suppv′i = ṽi ∪ Ĩi

In Figure 3.2(b) we show the support sets of the variables defined in Figure
3.2(a). For an assignment a to v′i, and an assignment b to suppv′i , we say
that

a is justified by b ↔ a(vi) = fi(b(suppv′i))

We generalize this definition for A, an assignment to v′, and B, an assign-

36

v′1 = (v1 ∧ (v2 ∧ i3)) ∨ ((v2 ∧ i3) ∨ i2)
v′2 = i3 ∨ i1

(a) Transition Relation

suppv′1 = {v1, v2, i2, i3}
suppv′2 = {i1, i3}

(b) Support Sets

A = {v′1, v′2}
B1 = {¬v1, v2,¬i1,¬i2, i3}
B2 = {¬v1, v2, i1, i2,¬i3}
B3 = {¬v1,¬v2, i1,¬i2, i3}

(c) Justifying Assignments

A = {v′1, v′2}
B′

1 = {v2, i3}
B′

2 = {¬v1, v2, i1, i2}
B′

3 = {v2}
(d) Maximally Justifying As-
signments

Figure 3.2: (a) Partitioned Transition Relation. v′1 and v′2 are given as
functions of v1, v2, i1, i2, i3. (b) The support set of a variable is that set of
variables in the function which defines its value. (c) B1 and B2 justify A.
B3 does not. (d) B′

1 and B′
2 are partial assignments that justify A. B′

1

maximally justifies A.

ment to v ∪ I.

A is justified by B ↔ ∀v′i ∈ v′, A(v′i) = fi(B(suppv′i))

In Figure 3.2(c), B1 and B2 justify A, and B3 does not justify it.
A partial assignment b′ to ŝuppv′i

⊆ suppv′i represents all the assignments
to suppv′i which agree with b′ on the assignment to ŝuppv′i

. b′ justifies an
assignment a to v′i if all the assignments that it represents justify a. In Figure
3.2(d), B′

1 and B′
2 are partial assignments that justify A. B′

3 is a partial
assignment which does not justify A. We say that a partial assignment b′

maximally justifies a if b′ justifies a, and for every variable which is assigned
by b′, removing it from b′ will make b′ not justify a anymore. Note that
such an assignment is not unique. In Figure 3.2(d), B′

1 maximally justifies
A, and B′

2 does not.
Recall that we are looking for all the assignments to v which can be

extended to a solution (a satisfying assignment) of the formula v′ = F (v, I)∧
S′(v′) ∧ ¬S∗(v) (see Equation 3.2). We are actually looking for all the
assignments to v, for which there is an assignment to I such that they
justify some assignment to v′, which is in S′. The assignments to v should
also not conflict with ¬S∗. We discuss the last constraint in section 3.1.5.

We find these assignments to v by finding all the justifying assignments
for all the assignments in S′. Each such justifying assignment is an assign-
ment to v ∪ I. However, we only look for assignments that differ in values
of v.

We first describe a SAT based algorithm for finding a single maximally
justifying assignment to v∪I, for a given assignment in S′. We then describe
an All-SAT based algorithm which finds all the maximally justifying assign-

37

ments to v ∪ I that differ on the assignment to v, for a single assignment in
S′. Finally, we extend it to find all the maximally justifying assignments to
v ∪ I that differ on their assignment to v, for all of the assignments in S′.

3.1.3 Maximally Justifying a Given Assignment to v′

We incorporate the TRG into a SAT based search algorithm, along with the
CNF representation of the transition relation. In this section we describe
a SAT based algorithm which uses the TRG for pruning the search space
for a SAT engine, such that it will find a maximally justifying assignment
to v ∪ I, for a given assignment to v′. The assignment to v′ is given as an
initial partial assignment to the SAT solver before the search begins.

We introduce a new branching procedure into a SAT solver. This pro-
cedure uses the TRG to choose the next variable to assign as part of the
regular DPLL. The branching procedure also detects that a solution to the
problem is found. The rest of the search algorithm is not changed, and uses
the CNF representation of the problem. In particular, conflict based learn-
ing, and non-chronological backtracking for empty subspaces, are performed
as in regular SAT solving. Furthermore, the efficient bcp() procedure of the
SAT solver is used. Throughout the rest of this work, we use the term back-
track to refer to the backtrack of the SAT algorithm in the search tree, as
opposed to the operations performed on the TRG or BDDs.

Our new branching procedure is a variation of [24]. It performs a traver-
sal of the TRG, assigning the variables with values in a pre-order manner.
Each branch is taken such that it justifies the previous one, until the traver-
sal is completed.

Consider a node v1 in the TRG, and its successors y1 . . . yn. Assume v1 is
associated with the Boolean operator op ∈ {AND, OR, NAND,NOR, NOT},
and assume that it was assigned with the Boolean value b at decision level
i. According to op and b, there are two possibilities for justifying v1

• The values of y1 . . . yn are all implied by b at decision level i. For
example, op = AND and b = 1 imply that y1 . . . yn are 1.

In that case, v1 is already justified by its sons at decision level i, and the
next branch will be chosen such that it justifies y1. After completing
the traversal of the subgraph of y1, the branching procedure will move
on to justify y2, and so on.

We demonstrate this case in Figure 3.3(a). The branch at level i was
v1. This branch implies y1 . . . y5. The implications are calculated by
the bcp() procedure of the SAT algorithm. Since the value v1 is already
justified by its sons, the next branch, at level i+1, is z1, which justifies
y1.

38

• None of the values of y1 . . . yn is implied by b at decision level i, and it
is enough to give a value to one of y1 . . . yn in order to justify v1. For
example, if op = AND and b = 0 then it is enough to give one of the
nodes y1 . . . yn the value 0 in order to justify b.

In that case, the branching procedure assigns y1 with the appropriate
value in decision level i+1. The branch in decision level i+2 is made
such that it justifies the assignment to y1, and so on. y2 . . . yn are not
required for justifying v1, and thus do not have to be assigned with a
value. Therefore, they are disconnected from v1, and do not take part
in the rest of the traversal of the TRG. We demonstrate this case in
Figure 3.3(b). The branch at level i was ¬v1. The next branch, at
level i + 1 is ¬y1, which is enough in order to justify ¬v1. Therefore,
we can remove the edges to y2 through y5 from the TRG. When a new
branch is required at level i + 2, we continue the traversal of the TRG
over the connected successors only, trying to justify ¬y1.

When backtracking in the SAT search space, we also go backwards in
the traversal of the TRG. If we cannot justify ¬y1, and backtrack to
decision level i + 1, we change the value of y1 as in regular DPLL. In
our example, y1 will assume the value 1. The new branch at level i+1
will be ¬y2, thus justifying ¬v1 by the next successor. This is shown
in Figure 3.3(c).

We conclude that a justifying assignment for v1 was found when we
complete the traversal of its subgraph. Note that due to disconnection of
nodes during the process, we do not necessarily traverse all the nodes in the
subgraph.

Recall that we are trying to find a justifying assignment to a given as-
signment to v′. Each v′ ∈ v′ is a root in the TRG. By justifying all the
nodes v′ ∈ v′, we get a justifying assignment to v′. The result of this is that
instead of satisfying all the clauses of the CNF formula, or assigning values
to all of the variables in the TRG, as in regular SAT procedures, we only
assign variables that are actually required for the justification. The returned
result is the partial assignment to v ∪ I, obtained at the termination of the
algorithm.

Consider a partial assignment to v ∪ I returned by the algorithm. The
branching procedure only traverses parts of the TRG that are required to
justify the assignment to v′. Therefore, each value in the partial assign-
ment takes part in the justification, and removing it would make the partial
assignment not justifying the assignment to v′ anymore. Therefore, this par-
tial assignment maximally justifies the assignment to v′, and thus we have
found the required result.

39

*

+ + + * *

+ *

v1=1

y1=1 y2=1 y3=1 y4=1 y5=1

z1z1=1

(a) No Branch

+
y2

+ +
y3

*
y4

*
y5y1=0

v1=0
*

(b) 1st Branch

*

++ +
y1=1

* *

v1=0

y2=0 y3 y4 y5

(c) 2nd Branch

Figure 3.3: Branching over an ’AND’ gate. (a) The current assignment v1

implies y1 . . . y5. Therefore, no branching over these variables is made. The
next branch is then z1, which justifies y1. (b) The assignment so far is ¬v1.
The branch ¬y1 justifies this assignment. Therefore, the edges to y2 . . . y5

can be removed. (c) After backtracking, y1 = 1, because all of the solutions
that include y1 = 0 were already found. This value to y1 does not justify
¬v1, and therefore does not have to be justified. The next branch is ¬y2,
and it justifies the assignment ¬v1. Again, the other edges can be removed.

40

+

i3 v1

+
v2’=1

+
v1’=0

i1=1 i2=0 v2=0

y3=0
*

y1=0y2=0
*

(a) (i1,¬i2,¬v2) ⇒ (¬v′1, v
′
2)

+

v1

+
v2’=1

+
v1’=0

i2=0 v2=0

y3=0
*

y1=0y2=0
*

i1 i3=1

(b) (¬i2, i3,¬v2) ⇒ (¬v′1, v
′
2)

Figure 3.4: Justifying Assignments. Two maximally justifying assignments
which differ only in the assignments to I. The dotted edges are those that
were removed from the TRG by the branching procedure, and the dotted
nodes are the variables for which a value is not instantiated.

3.1.4 All Justifications for a Given Assignment to v′

We define a solution for a given assignment a′ to v′ as an assignment to v,
for which there is some assignment to I, such that they justify a′. In this
section we describe an algorithm for finding all the solutions for a given a′.

Note that every extension of a maximally justifying assignment over
all the variables in v is a solution for a′. Thus, a maximally justifying
assignments actually represents a set of solutions to a′.

We build an All-SAT algorithm on top of the SAT algorithm presented in
the previous section, in order to find all the maximally justifying assignments
to v, and thus find all the solutions to our problem. This algorithm uses a
blocking BDD Snot(v), as in [35], which is initialized to 1. When a justifying
assignment is found by the SAT algorithm, we consider its projection a over
v. The conjunction of the literals in a is negated, and then conjuncted with
Snot(v). The SAT algorithm backtracks one level, and the search is resumed.
We use the procedure BDD agree(Snot(v)) in order to check the solutions
during their creation, making sure that they agree with Snot, meaning that
they were not produced before. Thus, this procedure blocks the solver from
finding the same partial assignment to v again. The algorithm terminates
when no new solution is found.

Next we explain the reason for using only the projections of the solutions
over v in the blocking BDD. Each maximally justifying assignment which
is found by the algorithm is a partial assignment to v ∪ I. This poses the
following problem: Multiple maximally justifying assignments might give
the same assignments to the variables in v, and differ in the assignment
to variables in I only. This is demonstrated in Figure 3.4. Moreover, we
might reach the same maximally justifying assignment by choosing different
values for the internal nodes in the TRG. This is demonstrated in Figure 3.5.

41

v1=1 v2=1

*
y3=1

*
y1=1

*

+
v1’=1

y2

(a) (v1, xv) ⇒ v′1

v2=1

*
y3=1

*
y1

*
y2=1

+
v1’=1

v1=1

(b) (v1, v2) ⇒ v′1

Figure 3.5: Two maximally justifying assignments corresponding to different
assignments for the internal nodes. The dotted parts of the graph are those
cut by the branching procedure.

However, we are interested in all the maximally justifying assignments which
differ on their assignment to v. Therefore, we use only the assignments to
variables in v for blocking future solutions.

Note that Snot is defined over v, which constitute about 10% of the total
number of variables [76]. This reduces the overhead of using BDD agree(Snot).
Note, also, that by constructing Snot, we actually get the BDD S(v) of the
solutions to the problem. This is because S = ¬Snot, which is obtained by
an O(1) operation. Thus, the algorithm results in S(v), as required.
This algorithm is given in Figure 3.6.

3.1.5 Justifying All the Assignments to v′

In the previous section we showed how to find all the solutions for a given as-
signment to the next-state variables. In this section we find all the solutions
to all of the partial assignments represented by a given BDD S′(v′). The
All-SAT algorithm then returns all the maximally satisfying assignments for
all the assignments in S′, which is the solution to our problem.

Note that the branching procedures that were presented in the previous
sections are applicable also to partial assignments to v′.

We exploit the fact that S′(v′) is given as a BDD. The assignments to v′
are represented by paths from the root of the BDD to the terminal node ’1’.
In Figure 3.7(a,b) we show a BDD and its corresponding assignments. For
a path π in the BDD of S′(v′), U(π), the set of variables in π, is a subset of
v′. We can refer to π as an assignment to U(π), where a variable u ∈ U(π)
is assigned 1 if π includes the edge to the “right” son of u, and 0 otherwise.

By finding all the maximally justifying assignments to every π in the
BDD of S′, we find representations for all the justifications to all of the

42

Graph All-SAT:
Snot(v) ← ′1′

while (true){
if (!branch()) {

if (handle solution() == EXHAUSTED)
return ¬Snot(v)

}
while (bcp() == CONFLICT) {

if (current level==0)
return ¬Snot(v)

backtrack one level
}

}

handle solution() {
Snot(v) ← Snot(v)∩
{¬(current assignment to v)}

if (current level == 0)
return EXHAUSTED

backtrack one level
return NOT EXHAUSTED

}

Figure 3.6: All SAT algorithm using a blocking BDD. The procedure bcp() also
calls BDD agree(Snot(v)) if a variable from v is assigned, and returns CONFLICT
if either the boolean propagation resulted in a conflict, or if BDD agree(Snot(v))
finds a conflict between the current partial assignment and the BDD Snot. When
the computation is completed, the set of solutions is returned by computing ¬(Snot),
which is an O(1) operation.

assignments in S′. We now show how to introduce all the paths in S′ into
the All-SAT solver.

If we reverse the direction of the edges in S′, and traverse it in a DFS-like
manner, starting from the terminal node ’1’, we will get all the paths from
the root of S′ to the terminal node ’1’ in reverse order. The value of a node
on the path is ’1’ if we reached it from its ’right’ successor, and ’0’ otherwise.
A straightforward approach for finding the maximally justifying assignments
for the paths in the BDD is to apply the algorithm given in Section 3.1.4 for
each π found in the DFS. However, this may cause unnecessary duplicated
work. For example, consider two assignments to v′, π1 = {v′1, v′2, v′3} and
π2 = {v′1, v′2,¬v′4}. Applying this approach over these assignment would
require justifying v′1 and v′2 twice, once for each assignment to v′.

In order to avoid the repetition, we integrate the DFS in the BDD into
the All-SAT branching procedure. At decision level i + 1, if the branch
in level i is not justified yet, the branching procedure uses the TRG for
choosing an assignment to a variable that will justify the branch at level
i. This is done as described in the Section 3.1.3. Otherwise, if there is
no unjustified branch, then a value for one of the (unassigned yet) roots of
the TRG is chosen, based on the DFS over the BDD. When backtracking
in the All-SAT procedure, we also backtrack in the DFS over the BDD
of S′ respectively. Thus, a new path in the BDD is explored, and a new
assignment to (v′) is justified. We demonstrate this procedure in Figure
3.7(c,d). The pseudo code for the branching procedure is given in Figure
3.8.

By integrating the DFS with the branching procedure, the All-SAT algo-

43

01

v4

v3

v1

v2

(a) BDD

π1 : ¬v4¬v2, v1

{
a1,1 : ¬v4,¬v3,¬v2, v1

a1,2 : ¬v4, v3,¬v2, v1

π2 : ¬v4,¬v3,¬v1

{
a2,1 : ¬v4,¬v3,¬v2,¬v1

a2,2 : ¬v4,¬v3, v2,¬v1

(b) Paths

D

A

B

C

F

Ev4=0 v3 v2=0 v1=1

(c) Branching Sequence

J

IG

H

v4=0 v3=0 v2 v1=0

(d) Branching Sequence

Figure 3.7: (a) A BDD representing S′(v′). Solid lines represent the ’right’ suc-
cessor of a node, while dashed lines represent the ’left’ successor of a node. (b)
The assignments corresponding to the paths from the root to the terminal node ’1’.
(c) A,B...F are the branching sequence of the All-SAT. Branches A,C, and E are
imposed on the All-SAT engine by the DFS over the BDD. B,D and F represent
the branches which are taken for justifying A,C and E respectively. (d) After we
backtrack, the branch G corresponds to the DFS search, followed by branching
sequences H,I and J. The justification of ¬v4 is performed only once.

44

branch AND node():
n ← PTRG

if (¬justified(n)) { - n has to be justified
n′ ← next son(n)
PTRG ← n′ - Point to next son of n
if (value(n) == 1) - n′ already implied by n

return branch() - Recursive call: justify n′

else - Sons of n are not implied by ¬n
return (value(n′) ← 0) - Justify ¬n by ¬n′

} else { - n already justified
PTRG ← next node traversing the TRG - Continue the DFS
if (PTRG! = null) { - Next node in DFS is not null

return branch() - Justify the next node
} else { - Current root justified

PBDD ← next node in DFS of the BDD - Ask BDD for a new root
if (PBDD == null) { - No more roots to justify

return null - Solution found
} else { - BDD returned a root to justify
PTRG ← PBDD - Point to the new root
return branch() - Justify the new root
}

}
}

Figure 3.8: Branching Procedure over an AND node. PTRG is a pointer
for the traversal of the TRG, initialized to null. This algorithm describes
the branching procedure when PTRG points to a node which is associated
with AND operator. The procedure branch() calls the specific branching
procedure according the the node pointed by PTRG. PBDD is a pointer for
the DFS over the BDD, initialized to the terminal node ’1’. The procedure
traverses the TRG and the BDD of S′ as described in Section 3.1.5, and
updates PTRG and PBDD accordingly. The procedure returns a value to
some variable, or null, if no further justification is required, and a justifying
assignment was found.

45

rithm assigns v′ with every assignment corresponding to some π in S′, and
them only. Since π corresponds to a partial assignment, some of the TRG
roots will not be assigned and therefore will not have to be justified. As a re-
sult, only the parts of the TRG which are reachable from the assigned roots
are traversed, and work is saved. This is similar to using dynamic transition
relation, as explained in the next section, with finer resolution. Altogether,
the All-SAT algorithm receives partial assignments, representing subsets of
next-states (from S′) and returns partial assignments, representing subsets
of current-states.

Blocking S∗(v)
Recall that we would like the solutions found by our search engine to

agree with ¬S∗(v), as defined in Equation (3.2). ¬S∗(v) is given to our
solver as a BDD. Therefore, we use BDD agree(¬S∗(v)) to constraint the
All-SAT engine. Thus, all the assignments generated by the All-SAT engine
agree with ¬S∗(v) and the requirement is met .

3.1.6 Optimizations

The incorporation of the TRG into the All-SAT solver allows us to apply
additional optimizations on the search. In this section we describe how the
information extracted from the TRG is used in order to detect independent
subproblems, and to reduce All-SAT subproblems to SAT problems.

Independent roots
For a node v in the TRG, and for a subgraph of the TRG, G, we say

that v is the root of G if G consists of exactly v and all of its descendants.
We say that v is an Independent Root of G, if v is the root of G, and all
the paths from outside of G into G pass through v. That is, For every v1,
an ancestor of a vertex v2 in G, v1 is either a descendant of v, or v is on
all the paths from v1 to v2. This property can be decided statically before
starting the All-SAT solving process. However, when using the TRG for
branching during the search, we disconnect nodes that are not required for
justifying the current partial assignment. When backtracking in the All-
SAT procedure, we reconnect these nodes. Therefore, independent roots
should also be detected dynamically during the solving process. Note that
the terminal nodes in the TRG are, by their definition, independent roots.
Given an assignment to the root v of subgraph G, a solution for v in G
is an assignment to the terminal nodes in G, which maximally justifies the
assignment to v. In Figure 3.10(a), only the terminal nodes are independent
roots.

For a node v which is an independent root of a subgraph G, all the
nodes in suppv are in the cone of influence of no other node. Therefore,
the assignment to these nodes effect v only. For a given assignment to v,

46

finding all the justification for it is independent of the rest of the nodes in
the TRG. Therefore, when we reach an independent root, we can solve the
All-SAT problem of its corresponding subgraph independently of the rest
of the TRG. The solutions of the complete problem are the product of the
partial solutions. In Figure 3.10(b), the edge from v′2 to i3 is disconnected,
and v3 becomes an independent root. Thus, for any assignment to v3, i3 and
v2 should be assigned so that they justify it, regardless of the assignments
to the other variables.

A node which is found to be an independent root by the static analysis
of the TRG, is always an independent root, regardless of the current partial
assignment. On the other hand, a node which was dynamically found to be
an independent root, is only independent in the context of the current partial
assignment to the variables. This is demonstrated in Figure 3.10(a,b,c).

The algorithm in Figure 3.9 statically determines if a node v0, a root
of a subgraph G, is an independent root. The algorithm performs a DFS
over G, starting from v0. For each node v ∈ G, the algorithm counts the
number of edges into v which are reachable from v0. The score of a node
v is the number of edges into v, and into all of its descendants, which are
not reachable from v0. Thus, the score of v0 is the sum of all the edges into
G which are not reachable from v0. If the score of v0 is 0, then no node in
G has an edge not reachable from v0, and v0 is an independent node. For
complete static analysis, we have to apply this algorithm on all the nodes
in the TRG. This is an O(|TRG|2) operation, which has to be done once,
prior to the solving process.

In order to dynamically find independent roots, we dynamically change
the score which was calculated in the static analysis. During the solving
process, edges are removed from the TRG, or added to it, in correspondence
to the current partial assignment. When an edge into a node v is removed,
or put back, we decrease/increase the score of v respectively, and notify all
the predecessors of v. Each node which is notified updates its score, and
notifies its predecessors, until all the ancestors of v are notified. A node
updates its score no more than once for each change in the graph, even if it
is notified of it by more than one decedent. This operation involves all the
ancestors of v.

Note that there is a trade-off between the time spent on dynamically
detecting independent roots and the time saved on solving subproblems
independently. We elaborate on this in Section 3.3.

Non-Important Roots
We say that a node v in the TRG is a Non-Important Root if it is an

independent root of a sub-graph G, where all the terminal nodes are input
variables (in I). As with independent roots, this property can be decided
statically or dynamically. In Figure 3.10(a), only the terminal nodes of the
input variables are non-important roots. In Figure 3.10(b), v3 is also a

47

Is independent root(v0, G) :
∀v ∈ G

v.edges ← #predecessors of v
v.visited ← false

v0.edges ← 0
dec ante edges(v0)
∀v ∈ G

v.score ← 0
v.visited ← false

sum scores(v0)
if (v0.score == 0)

return TRUE
else

return FALSE

dec ante edges(v)
v.edges ← v.edges− 1
if(v.visited == true)

return
v.visited = true
∀u, direcet descendent of v

dec ante edges(u)
sum scores(v)

if(v.visited == true)
return v.score

v.visited = true
∀u, direcet descendent of v
v.score ← v.score +

sum scores(u)
return v.score

Figure 3.9: Algorithm for static analysis of independent roots. For a node
v0, a root of a subgraph G, the value of v0.score at the end of the execution
is the number of edges from outside G into G, not reachable from v0. If
v0.score = 0, then v0 is an independent root.

non-important root.
For a node v, which is a non-important root of a subgraph G, v is,

by its definition, an independent root. Therefore we can solve the All-
SAT problem of G independently on the rest of the TRG. Moreover, the
solutions returned by our All-SAT algorithm are defined as all the partial
assignments to v for which there is some assignment to I such that they
justify the current assignment to v′. All the terminal nodes in G are in I,
and thus are not a part of any of the solutions. Therefore, we only have
to find one assignment to the terminal nodes of G which justify the current
value of v. Consequently, it is enough to solve the SAT problem, rather than
All-SAT, for G, with the current value of v.

A node v, found to be a non-important root of a subgraph G by the
static analysis of the TRG, is always a non-important root, regardless of the
current assignment to the rest of the variables. Therefore, we can solve the
SAT problem for G to justify the values ’true’ and ’false’ for v only once,
on the first time that they are required, store the result, and reuse it when
v is reached again.

The static detection of non-important roots is straightforward. For each
node v in the TRG, we perform a DFS from v, counting v.r count, the
number of current-state nodes reachable from v. If v is an independent root,
and v.r count = 0, then v is a non-important root. This is an O(|TRG|2)
operation, which has to be performed once, at the beginning of the checking

48

+
v1’

y1y2
+ *

y3
*

i2 i3 v1i1

v2’
+

v2

(a)

+
v1’

y1y2
+ *

y3
*

i2 i3 v2 v1i1

+
v2’=1

(b)

y1

i1=1 i2=1 i3 i4 v1

*+
y2=1

+
v1’=1

+
v2’=1

y3
*

(c)

Figure 3.10: Independent and Non-Important Roots. (a) Only the terminal
nodes are independent roots. The terminal nodes of input variables are the
only non-important roots (b) After the assignment to v′2 and i1, v′1 and v3 are
also independent roots. v3 is also a non-important root. (c) The additional
assignments to v′1, v2 and i2 make v1 also an independent root.

49

process.
We dynamically modify r count, which was calculated in the static anal-

ysis, for dynamic detection of non-important roots. During the solving pro-
cess, if a current-state variable is given an assignment, we notify all its
ancestors to decrease their r count, as with the independent roots. When
the All-SAT algorithm backtracks, and nullifies an assignment to a current-
state variable, we notify its ancestors to increase their r count. At any given
moment, an independent root v for which v.r count = 0 is a non-important
root. As with independent roots, there is a trade-off between the time spent
on dynamically detecting non-important roots and the time saved on solving
SAT instead of All-SAT subproblems.

From the implementation point of view, given an independent subgraph
of the TRG, G, solving the SAT and the All-SAT problems for G does not
require any duplication of it outside of the TRG, and can be performed in
the context of the global All-SAT solver. Since G is independent of the rest
of the TRG, assigning values to the variables in G does not effect, and is
not effected by the rest of the variables of the problem. A solution in G is
identified by our TRG based branching procedure, and therefore also does
not involve the variables outside of G. This way, we avoid wasting time and
memory for replicating the subproblem of G for solving it independently.

3.2 Model Checking Using Hybrid BDD and All-
SAT Pre-Image Computation

In this section we show how our hybrid pre-image computation algorithm
can be used to enhance the performance of the model checking algorithm.

In Section 2.4 we discuss a backward search algorithm for checking safety
properties. The pseudo code of this algorithm is given in Figure 2.2. When
this algorithm is implemented with BDDs, its bottleneck is the pre-image
computation performed in line 7. This is because intermediate results of
quantification might be one or two orders of magnitude larger than the
initial and resulting BDDs.

In order to avoid the bottleneck of pre-image computation, we replace
the BDD-based image computation with our hybrid pre-image computation,
presented in Section 3.1. Refer to the algorithm in Figure 2.2. We represent
S0,¬P, S∗ and new as BDDs. The operations in lines 3, 4 and 6 of the
algorithm are performed directly on their BDD representation. The pre-
image operation, on the other hand, is performed with the hybrid All-SAT
algorithm, which solves Equation 3.2, in which S′ is replaced with new.
Thus, pre-image computation is now all-SAT based, and does not depend
on quantification in BDDs.

We describe two additional advantages to our new algorithm, apart from
avoiding quantification in BDDs: using dynamic transition relation, and

50

dynamic learning.

3.2.1 Dynamic Transition Relation

A set S′(x′) is defined by a set of partial assignments to some of the state
variables y ⊆ x′. In order to apply a pre-image to S′, only a subset of
formulae of the partitioned transition relation T y ⊆ T should be involved
in the computation. This subset includes those functions that define the
next values for the variables in y. The reduced transition relation is called
a dynamic transition relation, since it is defined dynamically for each S′.
Dynamic transition relations are used as an optimization in BDD-based
pre-image computation.

We further enhance this method by using the TRG and the BDD of S′

for branching in the All-SAT process. For each path π in the BDD of S′,
our branching procedure considers only the subset of T which is necessary
for justifying the assignment induced by π. Thus, we actually use different
parts of the transition relation for different subsets of states in S′. This is
achieved without computational overhead.

3.2.2 Incremental Learning

For pre-image computation, we apply our All-SAT algorithm on F, S′ (where
S′ = new) and S∗. Only F is given to the algorithm as a CNF formula.
Therefore, the same CNF formula is given to the SAT solver in every it-
eration. As a result, clauses that were deduced by conflict based learning
in one iteration, can be used in subsequent ones, thus contributing to the
speedup of the All-SAT solver.

3.3 Experimental Results and Conclusions

We implemented our algorithm on top of the zChaff SAT solver [59], and
CUDD BDD library [77]. zChaff is a state of the art SAT solver, known to
be one of the fastest solvers available. CUDD is a BDD library, common
in many BDD based applications. Both zChaff and CUDD are open source
tools, which allowed us to interface them with the graph representation of
the transition relation.

There are many optimizations common in model checking that are not
incorporated in our prototype implementation. Thus, for the sake of a fair
comparison, we also implemented a model checking framework that is based
on BDD backward search. This framework uses partitioned transition rela-
tion, and computes the cone of influence for the properties that are checked.

For experiments we used ISCAS89 and ISCAS99 benchmarks, which are
large “real-life” problems. We checked each model against a set of properties
of the form AGp, using the hybrid and the BDD based tools. All experiments

51

use dedicated computers with 1.7Ghz Intel Xeon CPU, and 1GB RAM,
running Linux operating system. Timeout for each property was set to 24
hours.

The results of our experiments are presented in Table 3.1, and continues
in Table 3.2. In order to mask initialization effects, we omit the results
for the smaller models which take only a few seconds to solve. For each
model and property, the tables show the number of iterations of the back-
ward search which were completed by each tool, until either the checking is
completed, timeout is reached, or memory out is reached. The tables also
show the computation time for each completed check, the memory usage,
and the percentage of the run time that was spent on quantification.

While the hybrid tool does not consistently outperform the BDD model
checker, in half of the models it does better than the BDD tool for almost
all the properties checked. In some cases where checking is not completed,
the hybrid tool is able to perform the same number of pre-image iterations
faster, or even perform more pre-image iterations. In most of the cases
where none of the algorithms outperformed the other, the hybrid algorithm
required less memory than the BDD algorithm.

For many of the models, the BDD tool suffers memory exhaustion while
the hybrid tool continues until timeout, and even succeeds to complete ad-
ditional iterations. This demonstrates the inherent space problem of BDDs
that is discussed in Section 2.10: when performing quantification, interme-
diate results of a single pre-image computation commonly blow up to an
order of magnitude larger than the eventual BDD size [39]. In contrast, the
hybrid tool uses the All-SAT engine for quantification, and thus memory
blowup does not become an issue, except for one model.

The table shows a strong correlation between the models for which the
hybrid algorithm is faster, and the models for which it requires less memory
than the BDD algorithm. This is rather than a trade-off between these
characteristics. It is also shown that in these problems the BDD algorithm
usually spent a higher percentage of the solving time on quantification than
in other problems. We therefore conclude that there are models for which
the hybrid algorithm is inherently better, and achieves the goal of reducing
the effort required for quantification.

In some of the problems where the hybrid algorithm uses more memory
than the BDD algorithm, we observe that the time which was spent by the
hybrid algorithm on quantification is relatively low. This means that the
Boolean operations on the BDDs, other than the pre-image, required a larger
part of the computation time. We believe that this is the result of the BDD
order that we impose on the All-SAT solver during the quantification, which
may not be optimal. Further research should be conducted on adapting our
method to other data structures, possibly not canonical, in order to avoid
this problem.

52

 BDD Hybrid

No Op Op 1 Op1 + Op2

Model # FF Result # It Time (s) Mem Quant # It Time (s) Quant # It Time (s) Quant # It Time (s) Mem Quant

fail 8 527 31 60 8 500 50 8 436 43 8 423 29 41

fail 2 143 15 13 2 183 40 2 187 41 2 193 18 43

fail 3 10 5 20 3 0 10 3 0 5 3 0 3 5

S1269 37 fail 8 T.O. 60 99 9 6544 56 9 5791 50 9 5702 49 50

pass 9 8064 64 99 9 6264 60 9 5580 55 9 5373 52 53

- 10 M.O. > 1GB 46 10 T.O. 77 10 T.O. 71 10 T.O. 617 75

fail 30 253 43 43 30 300 52 30 290 50 30 286 60 50

pass 38 24 11 52 38 50 51 38 47 48 38 47 20 48

S1512 57 pass 2 0 < 1MB 10 2 10 10 2 10 10 2 10 < 1MB 10

- 30 M.O. > 1GB 99 102 T.O. 80 102 T.O. 73 102 T.O. 243 63

- 9 T.O. 422 95 3 T.O. 96 3 T.O. 95 3 T.O. 510 95

- 11 T.O. 418 94 11 T.O. 93 11 T.O. 91 11 T.O. 541 90

fail 9 10106 266 48 9 13812 51 9 13790 51 9 13054 242 48

S1423 74 fail 6 4300 312 70 6 4532 62 6 4504 62 6 4483 302 62

fail 4 4150 247 50 4 8113 74 4 7949 73 4 8045 394 74

- 11 T.O. 517 92 8 T.O. 99 8 T.O. 99 9 T.O. 412 99

- 10 T.O. 498 93 7 T.O. 99 7 T.O. 99 7 T.O. 387 99

pass 258 8322 261 95 258 7741 87 258 5710 82 258 5337 194 81

S9234 228 pass 3 1284 12 83 3 527 49 3 495 46 3 487 6 45

fail 123 40 4 99 123 10 34 123 10 34 123 10 4 34

- 7 T.O. 691 92 9 T.O. 75 9 T.O. 72 9 T.O. 483 69

- 5 T.O. 721 94 6 T.O. 71 6 T.O. 70 6 T.O. 522 67

pass 4 12284 426 65 4 27331 72 4 24053 68 4 23125 510 67

pass 3 7630 551 73 3 8121 76 3 7930 75 3 8043 643 77

pass 3 3961 743 88 3 5403 92 3 5320 92 3 5394 861 90

S15850 597 pass 2 0 3 17 2 0 24 2 0 0 2 0 5 0

- 6 T.O. 640 87 6 T.O. 42 6 T.O. 41 6 T.O. 543 41

- 4 T.O. 746 87 4 T.O. 99 4 T.O. 99 4 T.O. 674 99

- 12 T.O. 432 86 12 T.O. 82 12 T.O. 85 12 T.O. 462 86

- 8 T.O. 843 76 8 T.O. 69 8 T.O. 65 8 T.O. 684 60

S13207 669 - 6 T.O. 630 99 5 T.O. 84 5 T.O. 87 5 T.O. 690 86

- 8 T.O. 455 82 8 T.O. 86 8 T.O. 85 8 T.O. 489 86

- 5 T.O. 924 91 5 T.O. 90 5 T.O. 89 5 T.O. 751 87

pass 1 2791 439 99 1 1023 99 1 914 99 1 849 210 99

S38584 1452 - 7 T.O. 792 94 7 T.O. 96 7 T.O. 96 7 T.O. 750 95

- 8 T.O. 564 95 8 T.O. 96 8 T.O. 95 8 T.O. 498 95

 T.O.: Time Out Hybrid method outperforms the BDD method
 M.O: Memory Out BDD method outperforms the hybrid method

Table 3.1: A Comparison of Model Checking Run Times. #FF is the number
of state variables, #It is the number of pre-image steps completed, Quant is the
percentage of time spent on quantification, and Mem is the size of the memory used
by the tool in MB. Timeout is set to 24hr, and Memory limit is 1GB.

53

 BDD Hybrid

No Op Op 1 Op1+Op2

Model # FF Result # It Time (s) Mem Quant # It Time (s) Quant # It Time (s) Quant # It Time (s) Mem Quant

fail 214 16924 54 54 214 18302 65 214 17860 64 214 17808 49 64

B12 121 - 21 T.O. 98 64 17 T.O. 64 17 T.O. 65 18 T.O. 102 66

- 32 T.O. 109 61 30 T.O. 72 30 T.O. 70 30 T.O. 133 71

- 143 T.O. 45 27 131 T.O. 56 131 T.O. 50 131 T.O. 51 50

pass 260 10943 150 60 260 12139 65 260 12130 65 260 11941 130 64

fail 45 790 144 56 45 2166 66 45 2166 83 45 2166 312 83

B14_1 245 fail 32 22611 625 86 28 T.O. 84 28 T.O. 85 28 T.O. 483 82

- 91 T.O. 124 66 84 T.O. 82 84 T.O. 80 84 T.O. 412 78

- 6 T.O. 741 91 6 T.O. 88 6 T.O. 81 6 T.O. 720 77

pass 13 4532 134 73 13 6234 75 13 5794 73 13 5730 120 73

B15_1 449 fail 9 6190 771 86 9 6906 79 9 6882 79 9 6649 674 78

pass 17 8980 378 83 17 1037 79 17 868 75 17 532 400 59

- 7 T.O. 683 90 6 T.O. 84 6 T.O. 84 6 T.O. 664 83

- 19 M.O. > 1GB 99 19 T.O. 87 19 T.O. 84 19 T.O. 798 82

fail 45 3104 250 64 45 1756 48 45 1700 46 45 1940 194 53

B21_1 490 - 6 T.O. 774 97 8 T.O. 78 8 T.O. 69 8 T.O. 527 67

- 6 M.O. > 1GB 99 6 T.O. 76 6 T.O. 74 6 T.O. 618 70

- 9 M.O. > 1GB 99 13 T.O. 82 13 T.O. 77 13 T.O. 437 74

fail 37 9437 418 72 37 11030 64 37 11002 64 37 12106 491 67

B20_1 490 fail 19 8204 728 98 19 6310 94 19 5629 93 19 5283 534 93

- 5 M.O. > 1GB 99 7 T.O. 95 7 T.O. 89 7 T.O. 559 87

- 12 T.O. 681 96 15 T.O. 95 15 T.O. 90 15 T.O. 573 87

pass 9 21045 826 97 9 13349 90 9 12174 89 9 10631 613 87

B22_1 735 - 6 T.O. 324 91 7 T.O. 90 7 T.O. 87 7 T.O. 271 85

- 6 M.O. > 1GB 98 7 T.O. 96 7 T.O. 95 7 T.O. 685 95

- 8 T.O. 442 99 8 T.O. 99 8 T.O. 99 8 T.O. 420 99

pass 6 39702 620 91 6 43005 84 6 42930 84 6 42882 607 84

B17_1 1415 - 2 T.O. 714 90 1 T.O. 99 1 T.O. 99 1 T.O. 681 99

- 3 T.O. 661 95 3 T.O. 95 3 T.O. 98 3 T.O. 494 98

fail 18 5277 97 96 18 3700 94 18 2892 92 18 2431 76 91

B18_1 3320 - 1 T.O. 862 94 1 M.O. 99 1 M.O. 99 1 M.O. > 1GB 99

- - T.O. 637 99 1 T.O. 95 1 T.O. 90 1 T.O. 729 89

fail 3 7546 340 87 3 10184 80 3 10041 80 3 11032 560 82

B19_1 6642 - 3 M.O. > 1GB 99 4 T.O. 92 4 T.O. 90 4 T.O. 674 88

- 4 M.O. > 1GB 99 4 T.O. 99 4 T.O. 99 4 T.O. 639 99

 T.O.: Time Out Hybrid method outperforms the BDD method
 M.O: Memory Out BDD method outperforms the hybrid method

Table 3.2: A Comparison of Model Checking Run Times. #FF is the number
of state variables, #It is the number of pre-image steps completed, Quant
is the percentage of time spent on quantification, and Mem is the size of the
memory used by the tool in MB. Timeout is set to 24hr, and Memory limit
is 1GB.

54

3.4 Related Work

All-SAT engines that are built on top of modern SAT solvers tend to block
solutions that were already found by adding their negation to the formula
during the search [57, 12, 48, 63]. In [31] a specific order of the search
prevents the solver from instantiating the same solution more than once,
without adding clauses. In our work, as in [35], the negation of the solutions
is kept in a BDD. When performing pre-image computation, the set of next-
states is also given to our All-SAT algorithm as a BDD, which decreases
the size of the problem substantially relative to clausal representation of the
states. The size of the problem is also addressed in the following works: In
[49], a ZBDD is used to store solutions found by an All-SAT solver. In [11],
a method for managing ZBDDs is suggested. In [26], solutions are stored by
using an or-inverter graph. Representing sets by these data structures is not
necessarily more compact than using BDDs. However, if desired, we believe
that it is straightforward to adapt our new hybrid algorithm, described in
Section 3.1.5, to other data structures instead of BDDs.

When using All-SAT for image and pre-image computation in [12, 62,
53, 41, 45, 43], after a solution is found, it is analyzed in order to generalize
it to represent a set of solutions. In our algorithm, the branching procedure
instantiates maximally justifying assignments, which represent sets of solu-
tions, without actually instantiating assignments to all the variables, and
without the overhead of generalizing them.

Hybrid SAT and non-clausal procedures were presented in [3, 25, 46,
42, 78]. In these methods, the non clausal representation of the problem
is used to guide the search, learning over the non-clausal representation is
performed, and some pruning of empty subspaces is done. However, these
branching heuristics are aimed at finding a single solution to the formula,
and do not perform best when looking for all of the solutions. In addi-
tion, pruning empty subspaces using these procedures implies a significant
computational overhead.

55

Chapter 4

3-Valued Circuit SAT for
STE

Symbolic Trajectory Evaluation (STE) is a successful method for formally
verifying very large models with wide data paths [73, 70, 86]. We present
the theory of STE in Section 2.9. The common method for performing
STE is by representing the values of each node in the circuit by Binary
Decision Diagrams (BDDs) that depend on the symbolic variables [73]. In
this method, the dual rail representation is used, where two BDDs represent
the three possible values of a node. The main drawback of this method is
the unpredictability of the BDDs’ sizes, and their tendency to explode when
a large number of symbolic variables is used. Another limitation in common
STE methods is the need for manual refinement, which is time consuming
and requires close familiarity with the checked circuit.

For general model checking problems, it has been recognized for quite
some time that SAT-based algorithms can often handle much larger models
than BDD-based ones. It is therefore very appealing to try and implement
SAT-based algorithms for STE as well. However, only a few works took this
direction. In [85], non-canonical Boolean expressions are used instead of
BDDs during the simulation, and a SAT solver is used to check if the result-
ing expressions meet the requirements of the STE assertion. The Boolean
expressions used in this method might be too large to handle, and might
require a theorem prover for reducing their size. In [7] and [67], the dual rail
encoding is used to create a CNF formula for STE. This representation uses
two Boolean variables. In [66], a 3-valued SAT solver was suggested, which
did not perform well. Additionally in [66], an approximation for a 3-valued
SAT solver is computed. This approximation, however, does not completely
correspond to the semantics of STE.

Particularly interesting for hardware verification is the Circuit-SAT method,
which gets its input in the form of a circuit rather than a CNF formula. A
circuit SAT solver is based on justification of nodes, as described in Section

56

2.14. For a node n in a circuit, and a Boolean value d, it searches for a
justification for [n, d]. That is, it looks for a (partial) assignment to some of
the circuit inputs, under which n evaluates to d.

In the following sections we give a novel framework for STE, which is
based on a 3-valued justification algorithm. Our algorithm exploits the ab-
straction induced by using X values, without using the dual rail encoding.
It is far less sensitive to the number of symbolic variables than BDD meth-
ods. Furthermore, it provides automatic refinement, which we describe in
Section 5.2.

For a circuit M and an STE assertion A ⇒ C, we create a circuit that
represents M ∧ A ∧ ¬C. A justification to the value 1 at the output of the
circuit represents a run of M that agrees with the constraints of A, and does
not satisfy the requirements of C. This implies that the STE assertion does
not hold on M . If no such justification exists, it implies either that A ⇒ C
holds on M , or that the abstraction implied by A is too coarse for verifying
A ⇒ C. If no justification is found, our algorithm produces a core for the
proof of un-justifiability. If this proof does not depend on variables whose
values are X, then we conclude that A ⇒ C holds. Otherwise, the core
indicates which variables should be refined.

Our 3-valued justification algorithm, denoted 3VJA, uses a hybrid rep-
resentation of the problem: as a set of constraints in CNF, and as the
DAG of the circuit. The CNF representation is used for efficient Boolean
Constraint Propagation and for learning, as in common SAT solvers. The
DAG representation is a higher level description of the circuit than the CNF
representation. It is used for branching, propagating X values, and for ter-
mination.

We exploit the fact that for each variable, a Boolean solver holds three
possible values, 0, 1 and unspecified. Thus, we can represent each circuit
node by a single variable in the CNF formula. Additional information is
used to distinguish between the case the variable has the value X and the
case it is unspecified. An X value at a specific node is marked so in the
DAG. Additionally, it is represented by special constraints added to the
CNF formula. New X values can be learnt both on the DAG and on the
CNF formula. They are used to avoid traversal of abstracted parts of the
circuit, thus reducing the amount of work.

We implemented 3VJA on top of zChaff [59], which is a state of the art
CNF SAT solver. We employed our tool for solving several STE problems,
and compared it to other methods. It is our opinion that 3VJA is a valuable
complement to BDD based STE, especially for falsification, as is the case
in other model checking problems. 3VJA is far less sensitive to the number
of symbolic variables than BDD methods. Moreover, for falsification, 3VJA
may find an erroneous path quickly, while a BDD-based STE engine has
to compute the values of all the nodes in all the iterations prior to the
contradiction.

57

We also compared 3VJA to other SAT based algorithms and in many
cases showed a significant speedup. This is the result of introducing the
notion of X into the Boolean context, without doubling the number of vari-
ables that are used, by propagating X values over a graph representation
of the circuit, and by learning X values trough 3-valued resolution. While
BMC is a powerful model checking method, it is considered useful mainly
for falsification of “shallow” bugs. Exploiting the abstraction used in STE,
3VJA may extend the capabilities of BMC as well.

4.1 3-Valued Justification

In this section we describe our 3-valued algorithm for justifying a value of
a node in a circuit. Our algorithm uses a dual representation of the circuit.
The first is the transition relation graph (TRG) of the circuit, denoted G .
The second representation of the circuit is a CNF description G, denoted ϕ.
ϕ is built as described in [5]. ψ1

and in Figure 4.5 is an example for a CNF
description of an “AND” gate n, with inputs in1 and in2. There is a 1-1
mapping between the variables of ϕ and the nodes of G. Thus, we can refer
to a node by its corresponding variable and vice versa. The graph and the
CNF representations are maintained throughout the computation in order
to keep the correlation between them. Throughout this Section we refer to
the example in Figure 4.1

4.1.1 not-0 and not-1 Variables

When working in a 3-valued domain, a variable being not-1 does not imply
being 0, and vice versa. Therefore, we introduce the notions of not-0 and
not-1. A variables is not-0 or not-1 if it is not allowed to be assigned 0 or 1,
respectively. Consequently, a node which is both not-0 and not-1 can only
be assigned X. Such constraints can be derived from external constraints,
or learned during the search. We denote not-0 and not-1 by |!0 and |!1
respectively.

In the graph representation G we have a mechanism for marking |!0 and
|!1 nodes. We need a mechanism for marking and manipulating |!0 and |!1
variables in ϕ. Therefore, we do not consider the clauses to be sets of literals,
as defined in Section 2.11. Instead, we consider the clauses to be multi-sets
of literals. The definition of a conflict and constraint propagation remain as
in Section 2.12. A variable with a constraint |!0 or |!1 is marked by the clause
(n ∨ n) or (¬n ∨ ¬n) respectively. When applying constraint propagation,
each of these clauses causes a conflict if we try to assign n with a value 0 or
1, respectively. However, since they never become unit clauses, neither of
the clauses forces any value on n. In the Boolean domain, the propositional
formula (n ∨ n) ∧ (¬n ∨ ¬n) is not satisfiable. In contrast, in the 3-valued
setting, these clauses correctly represent the fact that “n is not 0”, and “n

58

 5n
 7n

 8n

10n

 6n

 !0 !1

 !0 !1

 !0

 !0

 !0

1

i2

i3
i4

 11n

i

 9n

Figure 4.1: Circuit Graph

is not 1”, and thus “n is X”. Our algorithm does not necessarily satisfy
all the clauses in ϕ. In particular, our algorithm does not assign a value to
a variable that is both |!0 and |!1. Note that though a variable may have
multiple instances in a clause, we only have to distinguish between single
and multiple instances. Thus, if a variable has more than one instance in a
clause, we only keep two instances.

|!0 and |!1 constraints are propagated on G. Consider n5 in the example.
i1 is |!0. Therefore, n5 cannot be assigned 0, and is also |!0. Similarly, n6 is
also |!0. In addition, since all the inputs to n7 are |!0, n7 is also |!0. We do not
propagate the constraints directly on ϕ. However, when propagating them
on G, we also create the appropriate clauses for the implied constraints, and
add them to ϕ.

We demonstrate the propagation of |!0 and |!1 constraints in our example,
where |!0 and |!1 constraints are given for the inputs i1 and i3. i1 is |!0 implies
that n5 is |!0. Thus we add the clause (n5, n5). Additionally, i1 is |!1 changes
the relation between i2 and n5: Since i1 is |!1, n5 = 1 implies i2 = 1. This
new relation is expressed by the clause (i2,¬n5,¬n5). Note that i2 is only
one of the inputs to an “OR” gate, and therefore i2 = 0 should not imply
n5 = 0. The two instances of ¬n5 in the clause (i2,¬n5,¬n5) prevent that.
Similarly, the constraint n6 is |!0, and the clause (n9,¬n6,¬n6) are created,
as a result of propagating the given constraints i3 is |!0 and i3 is |!1.

In section 2.11 we defined the resolution tree for clauses that are created
by resolution. In our context, clauses can be also created by propagating
|!0 and |!1 on G. The propagation on G corresponds to the semantics of the
nodes, which is also expressed by the clauses of the nodes in ϕ. Thus, the
generated clauses are considered as the result of applying resolution on the
relevant clauses in ϕ. In the example, the clause (n5, n5) can be created by
applying resolution on the clauses (i1, i1) and (¬i1, n5), resulting in (i1, n5),
and applying resolution on (i1, n5) and (¬i1, n5) again. The definition of the

59

3VJA (G,ϕ,n,d)
1) while true
2) if (branch() == null) // All nodes justified
3) return justification // Return assignment to leaves
4) if (bcp on ϕ ⇒conflict){
5) learn conflict clause
6) if learned X clause { // |!1 or |!0 clauses
7) mark X on G
8) propagate X on G
9) add clauses to ϕ
10) }
11) if possible
12) backtrack
13) else
14) return unjustifiable
15) }

Figure 4.2: 3VJA. Lines 2, 7 and 8 are executed on G. Lines 4, 5 and 9 are
executed on ϕ.

resolution tree thus remains unchanged.

4.1.2 3-Valued Justification Algorithm

Given a DAG G of a circuit, a CNF description ϕ of it, a node r ∈ G, and
a Boolean value d, our 3-valued justification algorithm (3VJA) returns a
justifying assignment for [r, d], or unjustifiable if [r, d] is not justifiable. We
call r the root of G. 3VJA performs an iterative backtrack search over G.
The information in G about the structure of the model is used for branching
during the search, and allows propagation of |!0 and |!1 constraints. It is
also used for correct termination of the algorithm. The CNF representation
ϕ is used for efficient constraint propagation, detection of conflicts, and for
learning. We exploit the fact that a value of a variable in a Boolean SAT
solver can be either 1, 0, or unassigned in order to represent 3 values in
a Boolean context. The value X for a node n is not explicitly assigned to
it, but rather is represented by n being marked as |!1 and |!0. |!1 and |!0
constraints can be learned during the solving process. Next we describe and
explain 3VJA. We refer to the pseudo-code given in Figure 4.2.

We begin by describing the branching procedure used in line (2) of 3VJA.
This is a 3-valued variation of the justification procedure described in [24].
Our branching procedure traverses G, assigning the nodes with values in a
pre-order manner, starting from the root. For each node it chooses values
only to its inputs that are needed in order to justify it. The rest of the input

60

nodes are not assigned and are not traversed. The branching procedure
does not assign |!0 and |!1 nodes with the values 0 and 1, respectively. In the
example, justification of [n8, 0] will not be done by assigning n7 = 0. If it
is impossible to justify a node with any of its inputs, 3VJA invalidates the
last branching and tries another path. The root of G is assigned either 1 or
0. Therefore, we never justify an X value, nor do we have to assign a node
with the value X for justification of a node.

After each branch, the assigned value has to be propagated through
the variables (line 4). We use ϕ to propagate the branching assignment
through the circuit. The propagation and the definition of a conflict remain
as defined for Boolean SAT. If the propagation does not cause a conflict,
3VJA continues to the next iteration. If a conflict occurs, 3VJA learns a
new conflict clause, and backtracks accordingly.

We conclude that a justifying assignment for [r, d] is found when we
complete the traversal of G (line 3). This traversal does not necessarily
include all the nodes in G, but rather only the nodes that were required for
this justification. Alternatively, if the traversal can not be completed, that
is, a conflict occurs but there is no way to backtrack, then we conclude that
[r, d] can not be justified.

Next we discuss conflict driven learning in our algorithm. When a con-
flict occurs, the resolvent of the clauses that were involved in the conflict
is added to the problem (line 5). In the 3-valued context, we define the
resolvent of clauses cl1 = (w1, v1 . . . vn) and cl2 = (¬w1, z1 . . . zm) to be
cl3res = (v1 . . . vn, z1 . . . zm). Note that the clauses are considered to be
multi-sets, and may have multiple instances of a variable. For example,
the resolvent of (v1, v2, v3) and (¬v1, v3, v4) is (v2, v3, v3, v4). Considering
the clauses as multi-sets results in clauses that do not change the set of
justifying assignments to [r, d] [66].

It is possible in our setting to learn conflict clauses such as (n, n) and
(¬n,¬n). As described in lines (6-9), when learning such clauses, we mark
the corresponding nodes in G as |!0 and |!1 respectively. We propagate this
information on G, thus extracting additional information from the learned
conflict clause. We then generate the appropriate clauses, and thus maintain
the correlation between G and ϕ.

By learning (n, n) and (¬n,¬n) clauses we can conclude that a node is
forced to X even if such a conclusion cannot be explicitly derived from G.
This is an important result, because it prevents the branching procedure
from trying to use the constrained node for justification in the future. It
also helps detecting conflicts earlier. We demonstrate this on our example.
Assume that the branching procedure assigned n8 = 1. A possible series of
implications from this assignment is n7 = 1, n5 = 1, n6 = 1, n9 = 1, i2 = 0.
Other series could be computed, depending on the order of computing the
implications. The result of these implication is that all the literals in the
clause (i2,¬n5,¬n5) are 0. That is, a conflict has occurred. We show the

61

1. (i2,¬n5,¬n5)
2. (¬n9,¬i2)
3. (n9,¬n6,¬n6)
4. (¬n7, n6)
5. (¬n7, n5)
6. (¬n8, n7)

7. 1
⊎

2 = (¬n9,¬n5,¬n5)
8. 7

⊎
3 = (¬n5,¬n5,¬n6,¬n6)

9. (8
⊎

4)
⊎

4 = (¬n7,¬n7,¬n5,¬n5)
10. (9

⊎
5)

⊎
5 = (¬n7,¬n7)

11. (¬n8,¬n8)
12. (¬n11,¬n11)

Figure 4.3: Learning X clauses.
⊎

denotes the resolution operation. Refer to
the circuit in Figure 4.1, and to the initial constraints that are applied to it.
Clauses 1, 3 originate from propagating |!1 for i1 and i3. Clause 2 is a part of
the description of the “NOT” gate. Clauses 4, 5 and 6 are the relevant clauses
of the “AND” and “OR” gates. Suppose that the branching procedure
assigns n8 = 1. This implies n7 = 1, n5 = 1, n6 = 1, n9 = 1, i2 = 0. In
that case, all the literals in clause 1 are 0, and we have a conflict. Clauses
7−10 are created by applying resolution on the original clauses, where clause
10 is the derived conflict clause. Note that clause 10 means that n7 is |!1.
This constraint propagates on G, and implies that n8 and n11 are |!1. We
therefore create clauses 11 and 12.

series of resolutions that is performed upon this occurrence in Figure 4.3.
The learned conflict clause is (¬n7,¬n7), and it is added to ϕ. We also mark
that n7 is |!1 in G and propagate it, implying n8 is |!1 and n11 is |!1. These
implications are also added as the clauses (¬n8,¬n8) and (¬n11,¬n11) to ϕ.
The result is that n7 is X, and n8 and n11 are |!1.

Note that unlike implications computed by constraint propagation, nodes
that are assigned X remain X throughout the solving process, and are not
effected by backtracking. This is because the conclusion about X nodes is
derived from the problem itself, regardless of the branching or the current
partial assignment. Thus, the information about X nodes, as well as |!0 and
|!1, is available explicitly throughout the rest of the search. Additionally, a
mechanism for invalidating X assignments is not required.

4.2 STE with 3-Valued Justification

In this section we show how to employ 3VJA for STE. We start by describing
the construction of circuits to represent an STE problem, and then show how
to use the algorithm from Section 4.1 for solving it.

4.2.1 Constructing Circuits for STE Assertions

Consider a circuit with the TRG G, and an STE assertion A ⇒ C. A and
C are given in TEL, as described in Section 2.9. In order to prove or falsify
the assertion, M has to be simulated k times, where k is the maximal depth
of A and C.

62

 5n
 7n

 8n

10n

 6n

 5n
 7n

 8n

 10n

 6n

1

i2

i3
i4

 11n

i4
i3

1

i2

 11n

2t1t

i i

 9n 9n

Figure 4.4: An Unrolled Circuit

We create a new graph by unrolling G k times. Each node n ∈ G has k
instances in the new graph. The ith instance of node n represents node n
at time i. In the new graph, the connectivity of the input and gate nodes
remains the same. The latches are connected such that the input to a latch
at time t are the nodes at time t − 1, and the latch at time t is an input
to nodes at time t. Due to the new connectivity of the latches, and since
G does not have circles, the unrolled graph is a DAG. The inputs to the
new graph are k instances of each of the inputs to the circuit. In Figure 4.4
we show an unrolling of the circuit given in Figure 4.1. t1 and t2 are two
instances of the circuit. The inputs to the latch n11 at t2 are the nodes of
t1, thus eliminating the circle in t1. The inputs to the new circuit are the
two instances of i1− i4. From herein we denote by M the unrolled graph of
the circuit.

As mentioned before, A and C are given in TEL. Therefore, we can
construct combinational circuits that represent them. The inputs to these
circuits are nodes in M , and new constructed nodes that represent the sym-
bolic variables W of the STE assertion. The output of each circuit, denoted
the root of the circuit, equals to the evaluation of the corresponding TEL
formula. For example, consider the TEL formula A = (n, i) is V1, where
(n, i) is the result of applying the next operator i times. The input to the
circuit of A is the ith instance of the circuit node n in M , and a node as-
sociated with the symbolic variable V1 ∈ W. The root of the circuit is 1
if the input values are equal, and 0 otherwise. The construction of circuits
for n is p, f1 ∧ f2 and p ⇒ f are straightforward. The circuit for f = Nf ′

is derived by constructing the circuit for f ′, and replacing each of its input
nodes (n, t) by the node (n, t + 1). Note that each symbolic variable from
W has only one instance. Constructing a circuit for C is done is the same
manner as for A. Note that the constructed circuits for A and C are DAGs.
From herein we denote by A and C the corresponding circuits, respectively.

63

ψ1
and = (n,¬in1,¬in2) ∧ (¬n, in1) ∧ (¬n, in2)

ψ2
and = (n,¬in1,¬in1,¬in2,¬in2) ∧ (¬n, in1, in1) ∧ (¬n, in2, in2)

Figure 4.5: A CNF representation of an “AND” gate n = in1 ∧ in2. ψ1
and

propagates unit clause implications in both directions. ψ2
and propagates

implications only forwards.

Also, we refer to a node n at time i by the name of the ith instance of n in
M , instead of by (n, i).

We construct a circuit that represents M , with the restrictions imposed
on it by A. This is done by connecting the relevant nodes in M to the inputs
of A. We abuse the notation of ∧ and denote this circuit M ∧A. The inputs
to M ∧A are the k instances of the inputs to the hardware model, and the
symbolic variables W, used in A. A is in fact an assumption on the circuit.
As defined in Section 2.9, a node n is assigned the Boolean value imposed
on it by A, even if its evaluation on the circuit is X. In our algorithm,
this means that the values of n do not have to be justified, and should not
propagate from n to its inputs. We mark nodes that are given a value by
A in the graph, such that X values do not propagate through them, and
the branching procedure considers them justified, not trying to assign their
inputs. Additionally, we construct the CNF clauses for an asserted node
such that when bcp() is applied, they allow forward propagation only. This
is demonstrated in Figure 4.5. For a node n = in1 ∧ in2, we create ψ2

and

instead of ψ1
and. For example, if n is assigned the value 1 by A, applying

bcp() does not propagate this value to in1 and in2. On the other hand,
forward propagation is still implied.

We construct a circuit that represents the runs M , that satisfy the re-
strictions of A, do not satisfy the requirements of C. This is done by con-
necting the relevant nodes in M ∧ A to the inputs of C. We abuse the
notation of ∧ and denote the new circuit Γ = M ∧A∧¬C. As with M ∧A,
the inputs to the new circuit are the inputs to M and the symbolic variables.
We create a new “AND” node such that its inputs are the roots of A and
¬C. This node is considered the root of Γ. An example for such a con-
struction is given in Figure 4.6. The node associated with “=” represents a
combinational circuit that evaluates to 1 if the values in the inputs are equal,
and 0 otherwise. Consider an assertion A ⇒ C such that A = (n5, 1) is V1,
and C = (n6, 2) is ¬V1. t1 and t2 are the unrolled circuit. The node A is
the root of the circuit that corresponds to A. The inputs to this circuit are
(n5, 1) and V1. !C is the root of the circuit that corresponds to ¬C. The
inputs to this circuit are (n6, 2) and V1. The node g is the evaluation of Γ.

4.2.2 Running STE

In order to execute STE, we first have to verify that A does not cause an
antecedent failure with M . Therefore, we have to verify that there is at
least one run of the model that does not conflict with the constraints from

64

 5n
 7n

 8n

10n

 6n

 5n
 7n

 8n

 10n

 6n

2t1t =

=

1

i2

i3
i4

 11n

i4
i3

1

i2

 11n

V1
!C

A g

i i

 9n 9n

Figure 4.6: An unrolled circuit with an STE assertion

A. Consider the circuit M ∧A, described in the previous section. We apply
3VJA for justifying [a, 1], where a is the root of A. A justifying assignment
for this problem represents a run of M that satisfies the constraints imposed
by A. Therefore, if such an assignment is found, we conclude that there is no
antecedent failure. If the problem is unjustifiable, then no such run exists,
which means an antecedent failure.

Assuming no antecedent failure was found, we run STE by applying
3VJA on [γ, 1], where γ is the root of Γ, defined in the previous section.
The pseudo code of our algorithm is given in Figure 4.7, and it is explained
below.

If a justifying assignment is found by 3VJA (line 3), it represents an
assignment to the inputs of Γ that makes γ evaluate to 1. This assignment
represents a run of M that satisfies the constraints imposed by A, but con-
tradicts the requirements of C. Such an assignment means that the STE
assertion A ⇒ C does not hold in M , and the STE returns this assignment
as a counterexample.

If [γ, 1] is unjustifiable, then there is no counterexample for the assertion
in M . However, we have to determine if the result of STE is 1 or X.
Since [γ, 1] is unjustifiable, then an empty clause was learned during the
unsuccessful justification process. We extract the unSAT core from the
resolution tree of the empty clause (line 5), and check if it contains clauses
for |!0 or |!1 nodes, that originate from A (line 6). Such nodes indicate
Xs that were implied by the antecedent of the STE assertion. If there are
no such clauses in the core, then no X value has participated in proving
the unjustifiability of [γ, 1]. Therefore, we conclude that there is no run
of M that complies with the restrictions of A, but does not satisfy the
requirements of C. That is, the STE assertion A ⇒ C holds in M , and STE
returns 1 (line 8). On the other hand, if the unSAT core includes clauses

65

1) 3VJA STE(Γ)
2) a ← 3V JA([γ, 1])
3) if (a! = null)
4) return a // a is a counterexample
5) core ← unSAT − core([γ, 1]) // [γ, 1] is unjustifiable
6) if (∃ |!1 clause ∈ core ∨ ∃ |!0 clause ∈ core) // possibly due to Xs
7) return X
8) return 1 // [γ, 1] is unjustifiable

// regardless of Xs

Figure 4.7: STE using 3VJA.

for |!0 or |!1 nodes that originate from A, then the proof for unjustifiability
depends on X values. In that case, it might be that we did not find a
counterexample for A ⇒ C due to a too coarse abstraction. Therefore, we
have to refine the model in order to prove or falsify the STE assertion, and
STE returns X (line 7).

Note that we return X when a proof for unjustifiability of [γ, 1], that
depends on X values from A is found. However, there might exist another
proof for unjustifiability of [γ, 1], that does not depend on X values. There-
fore, it might be possible to prove the STE assertion without refining the
model. In our current algorithm, we choose to perform this light-weight jus-
tification and refine the model if needed. We discuss automatic refinement
in Section 5.2.

4.3 Experimental Results

For evaluating our justification algorithm 3VJA, presented in Section 4.1.2,
we implemented it on top of zChaff [59], a state of the art SAT solver,
and [83], a circuit-SAT justification framework. We used 3VJA for STE, as
described in Section 4.2. For comparison, we used the dual rail encoding
for solving SAT based STE [66], and Forte, a BDD based STE tool by Intel
[73]. Additionally, we used BMC for solving the benchmarks, considering the
STE assertions as LTL formulae (without abstraction). For the SAT based
STE and for BMC, we used the same SAT solver zChaff, on top of which
we implemented our algorithm. All experiments use dedicated computers
with 3.2Ghz Intel Pentium CPU, and 3GB RAM, running Linux operating
system. Time out was set to one hour.

For our experiments we used the Memory and CAM circuits from Intel’s
GSTE tutorial, which are large enough to demonstrate various character-
istics of the algorithm. The Content Addressable Memory (CAM) has 16
entries, 64 bits data width, and 8 bits tag width. The memory circuit has a
6 bits address width and 128 bits data width.

66

The results of our experiments are presented in Table 4.3. We verified the
associative read property of the CAM by using “full”, “plain” and “cam”
symbolic indexing schemes, as defined in [61]. Additionally, we checked
the CAM and the memory against series of multiple write and read opera-
tions. Each assertion has a different set of symbolic variables and a different
depth. Assertions 1− 14 were verified, whereas assertions 15− 25 were fal-
sified. Columns 3V, BDD, DR and BMC present the solving time of our
3VJA based STE, BDD based STE, Dual Rail SAT based STE, and BMC,
respectively.

3VJA has outperformed the BDD-based algorithm on most of the asser-
tions, especially the harder ones. Compared to the BDD algorithm, 3VJA
is far less sensitive to the number of symbolic variables. Consider assertions
1− 3 and 4− 6. These assertions are different encodings for the associative
read operation of CAM, defined for depth 2 and 6 respectively. Each encod-
ing of the assertion requires a different number of symbolic variables. On
both depths, the BDD algorithm timed out for “full” and “plain” encodings,
while 3VJA solved the problems in seconds.

On the other hand, 3VJA is more sensitive to the number of nodes in
the circuit, and thus to the depth of the assertions, than BDDs. This is also
a characteristic of the other SAT based algorithms, and is demonstrated
by assertions 4 and 10 − 11, relatively to 1 and 9, respectively. In each of
these cases, a similar assertion is checked to different depths. The number of
symbolic variables is about the same, but the number of nodes in the circuit
grows. This affects the SAT based algorithms more than it affects the BDD
based algorithm because the sizes of the BDDs depends on the number of
the symbolic variables, whereas the size of the SAT problem depends on the
number of nodes in the unrolled circuit. Note, however, that in case of a
failed assertion with many symbolic variables, the BDD method may fail
due to the need to compute the values of all nodes up to the depth of the
contradiction, while a SAT based justification algorithm only has to find one
erroneous path. This is demonstrated by assertions 15, 16 and 21− 25.

We see that BMC outperforms the dual rail method in most of the cases,
especially for verification. The dual rail representation uses two Boolean
variables to represent each node. The result is a very large SAT instance,
which is harder to solve. This result matches the results in [66]. On the
other hand, 3VJA outperforms BMC in most cases, especially in falsification.
While not very sensitive to the number of symbolic variables, BMC does not
use X values, and thus does not use an abstraction. This makes BMC more
sensitive to the width of data paths and the depth of the assertions. For
verification, we expected 3VJA to return “unjustifiable” faster than BMC,
since the justification is constrained by the X nodes. However, in a few
cases, such as 10, we had to refine the model multiple times until a concrete
proof for unjustifiability was found. In these experiments, refinement was
performed manually. In 11, we could not find such a proof within the time

67

Verification Time (s) Falsification Time (s)
Assertion D # vars #N x103 3V BDD DR BMC Assertion D # Vars #N x103 3V BDD DR BMC

1 CAM cam 2 124 5 4 0.5 5 1 15 CAM 3 4 320 10 10 437 5 1
2 CAM plain 2 204 5 2 T.O 1 1 16 CAM 4 4 260 10 14 209 19 13
3 CAM full 2 1160 5 1 T.O 1 1 16 CAM 5 5 72 10 32 3 12 3
4 CAM cam 6 128 15 31 1 94 87 17 Mem 3 2 134 110 280 282 832 327
5 CAM plain 6 208 15 15 T.O 27 30 18 Mem 3 5 134 260 536 436 T.O 2753
6 CAM full 6 1164 15 14 T.O 26 34 19 Mem 3 10 134 550 1943 641 T.O T.O
7 CAM 1 10 152 25 349 5 513 493 20 Mem 3 15 134 770 T.O 943 T.O T.O
8 CAM 2 10 242 25 45 T.O 537 473 21 Mem 4 5 168 260 536 T.O 343 2854
9 Mem 1 2 86 110 5 1 9 2 22 Mem 4 10 168 550 1765 T.O 2248 3004
10 Mem 1 5 104 260 773 3 413 320 23 Mem 4 15 168 770 2064 T.O 3440 T.O
11 Mem 1 11 164 550 T.O. 9 T.O T.O 24 Mem 5 10 670 550 3276 T.O 3555 T.O
13 Mem 2 5 304 260 54 455 72 52 25 Mem 5 15 670 770 T.O T.O T.O T.O
14 Mem 2 11 334 550 77 523 142 81

Table 4.1: Experimental Results. D is the depth of the STE assertion, #Vars
is the number of symbolic variables, #N is the number of circuit nodes in
thousands, and 3V, BDD, DR and BMC are the times required by 3VJA,
BDD STE, Dual Rail SAT STE, and BMC, respectively.

limit. For falsification, we see a clear advantage to 3VJA. This can be
explained by the fact that 3VJA does not try to assign values to X nodes,
and thus does not traverse large portions of the circuits. This advantage
increases with the number of nodes that are abstracted out by the STE
assertion, and is demonstrated by assertions 17− 25.

4.4 Related Work

SAT based methods for STE were previously suggested in [7], [85] [67], and
[66].

In [85], non-canonical Boolean expressions are used to represent the sym-
bolic expressions of the circuit’s nodes during the simulation. At the end
of the simulation, a SAT solver is used to check if the resulting expressions
meet the requirements of the STE assertion. In this method, the expres-
sions associated with the nodes may grow very large, and even become too
large to handle. In such cases, a theorem prover has to be used in order to
simplify them, which is done to a limited degree of success. This method is
inherently different than 3VJA.

In [7], the dual rail encoding is used to create a CNF formula for STE.
This construction is referred to in [67] as simulation based SAT STE. In [67],
a different construction is suggested, and is referred to as constraint based
STE. The constraint based construction is equivalent to the construction
presented in [5], that we used in our work. This construction forces prop-
agation of Boolean values through the gates of the circuit. The simulation
based construction forces propagation of X values as well, and results in
much larger CNF formulae. In [67], it is shown that the constraint based

68

construction outperforms the simulation based construction. As mentioned
above, both constraint based and simulation based constructions use the
dual rail encoding. As such, they use 2 variables to represent each circuit
node. The SAT problem is exponential in the size of the input, and thus
using dual rail encoding incurs a significant overhead on the SAT solver.
We experimentally compared 3VJA to the constraint based construction in
Section 4.3.

In [66], the constraint based construction is solved by a 3-valued SAT
solver. In that work, Boolean variables of a SAT solver represent 3 values,
considering an “unassigned” variable as X. The definition of satisfiability
is changed respectively. In [66], clauses are regarded as multi-sets, and the
definition of the resolution is also changed. Note that in our work we do
not change the definition of the satisfiability of a formula. Instead, our
algorithm does not satisfy the formula, but rather justifies the root of the
graph. Moreover, in our work we distinguish between unassigned nodes
and nodes assigned with X. This distinction allows us to propagate X
values, and to suggest an automatic refinement for too coarse abstractions.
Additionally, while the 3-valued resolution defined in our work is similar to
the resolution defined in [66], the reasons for their correctness are different.
As described in [66], modifying the SAT solver to fit the new definition of
satisfaction and resolution did not yield good performance.

Additionally in [66], an approximation to 3-valued SAT is computed.
This algorithm corresponds to a different semantics than the STE seman-
tics, and an assertion that holds by this algorithm might not hold in STE
semantics. This algorithm is also not suitable for refining STE assertions.

69

Chapter 5

Automatic Refinement for
Symbolic Trajectory
Evaluation

In this chapter we present automatic refinement methods for STE. In Section
5.1 we describe the abstraction - refinement flow in STE. In sections 5.2 we
describe an algorithm for automatic refinement for circuit-SAT based STE.
We presented this method in [32]. In Section 5.3 we describe an automatic
refinement algorithm, which is based on the notion of responsibility. We
presented this algorithm in [16].

5.1 Refinement in STE

A major strength of STE is the use of abstraction. For a model M , and
an STE assertion A ⇒ C, the abstraction is determined by the assignment
of the value X to nodes in M by A. However, if the abstraction is too
coarse, then there is not enough information for proving or falsifying the
STE assertion. That is, [M |= A ⇒ C] = X.

The common abstraction and refinement process in STE consists of the
following steps: the user writes an STE assertion A ⇒ C for M . A explicitly
assigns Boolean values or free Boolean variables to nodes in M in different
times. All the inputs to M that are not explicitly assigned by A are assigned
X. The user then receives a result from STE. If [M |= A ⇒ C] = ⊥
(an antecedent failure), then there is a contradiction between A and M ,
and the user has to write a new assertion. If [M |= A ⇒ C] = 0, or
[M |= A ⇒ C] = 1, the process ends with the corresponding result. If
[M |= A ⇒ C] = X, a refinement is required. In this case, there is some
X-possible node (n, t) which is undecided. The user has to decide how to
refine the specification such that the X truth value will be eliminated. That
is, the user adds assignments of Boolean values or free Boolean variables to

70

nodes in M that were not assigned by A, thus replacing the X value in these
nodes.

The main challenge in this setting is to choose an appropriate subset of
these inputs, that will help to eliminate the “unknown” STE result. Select-
ing a “right” set of inputs for refinement is crucial for the success of STE:
refining too many inputs may result in memory and time explosion. On the
other hand, selecting too few inputs or selecting inputs that do not affect
the result of the verification will lead to many iterations with an “unknown”
STE result.

The common approach to this problem is to manually choose the inputs
for refinement. This, however, is labor-intensive and error-prone. Thus, an
automatic refinement is desired.

An automatic refinement can be obtained by creating a new antecedent
for the STE assertion. The refinement of A should preserve the semantics
of A ⇒ C. Formally, let Anew ⇒ C denote the refined assertion, and let
runs(M) denote the set of all concrete trajectories of M . We require that
if Anew ⇒ C holds in M , then so does A ⇒ C. Also, if Anew ⇒ C yields a
counterexample ce, then ce is also a counterexample with respect to A ⇒ C.

In [79], refinement steps add constraints to A by forcing the values of
some input nodes at certain times to the value of fresh symbolic variables
that are not already in V. By initializing an input (in, t) with a fresh sym-
bolic variable instead of X, the value of (in, t) is accurately represented, and
knowledge about its effect on M is added. It is important to note that the
new variable does not constrain input behavior that was allowed by A, nor
does it allow input behavior that was forbidden by A. Thus, the semantics
of A is preserved. In [79] it is proven that this refinement method satisfies
the requirement discussed above. That is, if Anew ⇒ C holds in M , then so
does A ⇒ C. Also, if Anew ⇒ C yields a counterexample ce, then ce is also
a counterexample with respect to A ⇒ C.

In Section 5.2 and Section 5.3 we present automatic refinement methods
for STE, which are also based on substituting X values at the inputs to the
circuit with fresh symbolic variables.

5.1.1 Related Work

In [82], an automatic abstraction-refinement for symbolic simulation is sug-
gested. However, the first automatic refinement for STE has been suggested
in [79]. This work is the closest to ours, and we compare our results to
this work in Section 5.3.4. In [15], an automatic refinement for GSTE is
suggested. This method, like [79], traverses the circuit nodes after running
STE, and performs a model and an assertion refinement. This method is
also essentially different from ours, as it is aimed at solving GSTE prob-
lems, where an assertion graph describes the specification, and is used in
the refinement process.

71

SAT based refinement was suggested in [68] , where it is used for assisting
manual refinement. In [1], a method for automatic abstraction without
refinement is suggested.

5.2 Automatic Refinement for Circuit-SAT-Based
STE

In this section we present a “CEGAR” approach for refining too coarse
STE assertions. This approach is applicable for the STE implementation
described in Chapter 4, which is based on 3-Valued Circuit SAT.

The STE method presented in Section 4 runs 3VJA for justifying [γ, 1],
where γ is the root of Γ = M ∧ A ∧ ¬C. A justifying assignment for [γ, 1]
represents a counterexample for the assertion A ⇒ C. If [γ, 1] is unjustifi-
able, than either the assertion holds, or the abstraction implied by A is too
coarse.

The description of A that is given to 3VJA includes |!0 and |!1 clauses
which correspond to the nodes that are assigned X by A. For an unjusti-
fiable instance, 3VJA returns a resolution tree, which is a proof that the
instance is unjustifiable. Note that such a proof is not unique, and depends
on the the branching heuristic of 3VJA, and on its implementation. We
define a spurious proof to be a resolution tree returned by 3VJA, where the
unSAT core defined by it includes |!1 or |!0 clauses that originate from A.
That is, a spurious proof is a proof that depends on the X assignments in
A. We denote such unSAT cores X-unSAT. For example, the unSAT core
(n1, n1), (¬n1, n2), and (¬n2,¬n2) includes clauses that describe assignment
of X to n1 and n2. Therefore, it is an X-unSAT, and its corresponding proof
is spurious.

We refine A if 3VJA returns a spurious proof of unjustifiability of [γ, 1].
This is done by introducing fresh symbolic variables for the nodes for which
there exist |!1 or |!0 clauses in X-unSAT. Thus, we invalidate the current
spurious proof.

By refining only X nodes that are in the unSAT core, we refine only the
variables that are needed for eliminating the current spurious proof. This
means that we add fresh symbolic variables only for X nodes that took part
in implying X on γ, rather than all the X nodes in the cone of influence of γ.
Refer to the example in Figure 5.1. Consider an antecedent A that does not
assign a Boolean value or a symbolic variable to i1, i3 and i4, which implies
that they are all assigned X. Assume, also, that A assigns 1 to n11. This
implies n10 = 1, and n8 is |!0. When trying to justify n8 = 1, as described in
Section 4.1.2, we learn that n7 = X, and n8 is |!1. Therefore, n8 = X. Note
that the conclusion that n8 is |!1 is independent of i2, i4 and n10. If n8 = X
takes part in the proof that the whole circuit is unjustifiable, i1 and i3 will
be in the unSAT core, while i2 and i4 will not. Thus, when refining, we will

72

 5n
 7n

 8n

10n

 6n

 !0 !1

 !0 !1

 !0

 !0

 !0

1

i2

i3
i4

 11n
 !0 !1

 !0

 !0

i

 9n

1 1

Figure 5.1: A circuit with the implications of the antecedent A = n11 is 1.

3-Valued Circuit SAT STE (M,A,C)
1) while (true) {
2) Γ ← M ∧A ∧ ¬C
3) (solution, resolution tree) ← 3V JA(γ, 1)
4) if (resolution tree = NULL)
5) return (0, solution) // solution is a counterexample
6) if (no |!1 or |!0 clauses from A in resolution tree)
7) return (1, resolution tree) // resolution tree is a proof
8) A ← refine antecedent by X-unSAT
9) }

Figure 5.2: CEGAR framework for 3-Valued circuit-SAT based STE with
automatic refinement. 3VJA returns a justifying assignment if one exists,
or a resolution tree if the problem is unjustifiable. If the assertion holds
in the model, the algorithm returns a resolution tree which is a proof of
correctness. If the assertion fails, the algorithm returns a counterexample.

not add a variables for i2 and i4.
Our refinement eliminates the proof of unjustifiability that was returned

by 3VJA. Running 3VJA again, we either find another spurious proof that
has to be refined, a concrete proof of unjustifiability, or proof of justifiability
(a justifying assignment). The pseudo code for the complete automatic
framework is given in Figure 5.2.

Note that in line 8 of the algorithm we refine A when 3VJA returns
a spurious proof for unjustifiability of [γ, 1]. However, there might exist
another non-spurious proof for unjustifiability of [γ, 1]. Therefore, it might
be possible to prove the STE assertion without refining the model. We could
avoid this by changing the justification heuristic of 3VJA, and by traversing
larger portions of the circuit. Thus, we have a trade-off between light-

73

weight justification with more refinements, and heavy-weight justification
with fewer refinements. In our current algorithm, we choose to perform the
light-weight justification and refine the model more often.

5.3 Automatic Refinement for STE Using Respon-
sibility

In this section we present a CEGAR approach to automatic refinement for
STE, which is based on the notion of responsibility. When STE returns an
“unknown” result, for each input with X value, we compute its Degree of
Responsibility (DoR) to the “unknown” STE result. We then refine those
inputs whose DoR is maximal. The algorithm we present in completely
independent of the implementation of the STE engine or its data structures.

5.3.1 Causality and responsibility

In this section, we review the definitions of causality and responsibility. We
start with causality. The most intuitive definition of causality is counterfac-
tual causality, going back to Hume [40],which is formally defined as follows.

We say that an event J is a counterfactual cause of event K if the
following conditions hold: (a) both J and K are true, and (b) if we assign
J the value false, then K becomes false. That is, had J not happened, then
K would not have happened. We refer to the dependence of K on J as a
counterfactual dependence.

In this work, we use a simplified version of the definition of causality
from [38]. In order to define causality formally, we start with the definition
of causal models (again, due to [38]).

A causal model M is a tuple 〈U ,D,R,F〉, where U is the set of exogenous
variables (that is, variables whose value is determined by constraints outside
of the model), D is the set of endogenous variables (that is, variables whose
value is determined by the model and the current assignment to D), R
associates with each variable in U ∪D a nonempty range of values, and the
function F associates with every variable Y ∈ D a function FY that describes
how the value of Y is determined by the values of all other variables in U∪D.

A context ~d is an assignment for variables in D (the values of variables
in U are considered constant).

In this work we restrict our attention to models in which variables do
not depend on each other.

A causal formula ϕ is a formula over the set of variables U ∪D. A causal
formula ϕ is true or false in a causal model given a context ~d. We write
(M, ~d) |= ϕ if ϕ is true in M given a context ~d. We write (M, ~d) |= [~Z ← ~z]ϕ
if ϕ holds in the model M given the context ~d and the assignment ~z to the
variables in the set ~Z ⊂ D, such that ~z overrides ~d for variables in ~Z.

74

With these definitions in hand, we can give the simplified definition of
cause based on the definition in [38]. The main simplification is due to
the fact that in our models, variables do not depend on each other, and
thus there is no need to explicitly check various cases of mutual dependence
between variables.

We say that Y = y is a cause of ϕ in (M, ~d) if the following conditions
hold:

AC1. (M, ~d) |= (Y = y) ∧ ϕ.

AC2. There exists a partition (~Z, ~W) of D with Y ∈ ~Z and some setting
(y′, ~w′) of the variables in Y ∪ ~W such that:

(a) (M, ~d) |= [Y ← y′, ~W ← ~w′]¬ϕ. That is, changing (Y, ~W) from
their original assignment (y, ~w) (where ~w ⊂ ~d) to (y′, ~w′) changes
ϕ from true to false.

(b) (M, ~d) |= [Y ← y, ~W ← ~w′]ϕ. That is, setting ~W to ~w′ should
have no effect on ϕ as long as Y has the value y.

Essentially, this definition of a cause says that Y = y is a cause of ϕ if
both Y = y and ϕ hold in the current context ~d, and there exists a change
in ~d that creates a counterfactual dependence between Y = y and ϕ.

The definition of responsibility introduced in [17] refines the “all-or-
nothing” concept of causality by measuring the degree of responsibility of
Y = y for the truth value of ϕ in (M, ~d). The following definition is due to
[17]:

Let k be the size of the smallest ~W ⊂ D such that ~W satisfies the
condition AC2. Then, the degree of responsibility (DoR) of Y = y for the
value of ϕ in (M, ~d), denoted dr((M, ~d), Y = y, ϕ), is 1/(k + 1).

Thus, the degree of responsibility measures the minimal number of changes
that have to be made in ~d in order to make Y = y a counterfactual cause of
ϕ. If Y = y is not a cause of ϕ in (M, ~d), then the minimal set ~W is taken
to have cardinality ∞, and thus the degree of responsibility of Y = y is 0.
If ϕ counterfactually depends on Y = y, its degree of responsibility is 1. In
other cases the degree of responsibility is strictly between 0 and 1. Note
that Y = y is a cause of ϕ iff the degree of responsibility of Y = y for the
value of ϕ is greater than 0.

As we argue in Section 5.3.2, in our setting it is reasonable to attribute
weights to the variables in order to capture the cost of changing their value.
Thus, we use the weighted version of the definition of the degree of respon-
sibility, also introduced in [17]:

Let wt(Y) be the weight of Y and wt(~W) the sum of the weights of
variables in the set ~W . Then, the weighted degree of responsibility of Y = y
for ϕ is wt(Y)/(k + wt(Y)), where k is the minimal wt(~W) of a ~W ⊂ D for

75

which AC2 holds. This definition agrees with the non-weighted definition of
degree of responsibility if the weights of all variables are 1.

We note that in general, there is no connection between the degree of
responsibility of Y = y for the value of ϕ and a probability that ϕ counter-
factually depends on Y = y. Basically, responsibility is concerned with the
minimal number of changes in a given context that creates a counterfactual
dependence, whereas probability is measured over the space of all possible
assignments to variables in D.

5.3.2 Responsibility in STE Graphs

In section 5.3.3 we show how to refine STE assertions by using the degree
of responsibility (dr) of inputs for X-possible nodes. Consider a circuit M ,
and an STE assertion A ⇒ C, such that [M |= A ⇒ C] = X and let r be an
undecided node. In this section we show how M can be viewed as a causal
model, and present an algorithm for computing the degree of responsibility
of an input to M for “r is X-possible”.

STE circuits as causal models

In order to verify the assertion A ⇒ C, M has to be simulated k times,
where k is the maximal depth of A and C. We create an unrolling of the
TRG of M , as described in Section 4.2.1. We assume that the only nodes
assigned by A are leaves. It is straightforward to extend the discussion to
internal nodes that are assigned by A, and to nodes that get their value
from propagating the assignments of A.

Regarding M as a causal model requires the following definitions:

1. A set of variables and their partition into U and D, the exogenous and
endogenous variables, respectively.

2. R, the range of the endogenous variables.

3. Values for the exogenous variables U .

4. A context ~d, which is an assignment to the variables in D.

5. F , a function which associates each variable Y ∈ D with a function
FY that describes its dependence in all the other variables.

Following are the required definitions:

1. The inputs of M are defined to be the variables of the causal model.
The inputs that are assigned 1 or 0 by the antecedent A are consid-
ered the exogenous variables U . The values of these variables cannot
change, and are viewed as part of the model M . The rest of the inputs
to M are the endogenous variables D.

76

2. The range of the variables in D is {0, 1, X} ∪ V, where V is the set of
symbolic variables used by A.1

3. The values of the exogenous variables are the Boolean values given to
them by A.

4. The context ~d is the current assignment to D, imposed by the an-
tecedent A. This assignment is either an association with a symbolic
Boolean variable, or with the value X.

5. The function F associates each variable with the identity function.
We use this definition since the variables are inputs to a circuit, and
therefore their values do not depend on each other.

Next we have to define a causal formula ϕ. For an undecided node r, we
want to compute the responsibility of the leaves having X values for “r is
X-possible”. We define the causal formula ϕ to be “r is X-possible”. Since
the context ~d is imposed by the antecedent A, and Since “r is X-possible”
holds under A, we have (M, ~d) |= ϕ.

We will compute a weighted degree of responsibility, as described in Sec-
tion 5.3.1. We choose wt(n) = 1 if ~d(n) ∈ V, and wt(n) = 2 if ~d(n) = X.
Next we explain this choice of weights. For computing the degree of respon-
sibility, we consider changes in the context ~d that replace the assignments
to some of the variables in D from X or vi ∈ V to a Boolean value. When
running STE, a symbolic variable may assume either of the Boolean values.
On the other hand, a leaf that is assigned X cannot take a Boolean value
without changing the antecedent of the STE assertion. Therefore, we con-
sider changing ~d for a variable n such that ~d(n) ∈ V to be easier than for
a variable n such that ~d(n) = X. Thus, our choice of weights takes into
account the way in which STE regards X and vi ∈ V.

We have shown how an unrolled model M can be viewed as a causal
model. Let IX(r) and IV (r) be the sets of leaves in BCOI(r), for which A
assigns X and symbolic variables, respectively. From herein, for l ∈ IX(r),
we denote by dr(M, l, r) the degree of responsibility of “l is X” for “r is
X-possible”. Next we present an algorithm that computes an approximate
degree of responsibility of each leaf in IX(r) for “r is X-possible”.

Computing Degree of Responsibility in Trees

Computing responsibility in circuits is known to be FPΣP
2 [log n]-complete 2

in general [17], and thus intractable. In order to achieve an efficiently
1For simplicity of presentation, we do not distinguish between a symbolic variable

vi ∈ V and its corresponding element in R.
2FPΣP

2 [log n] is the class of functions computable in polynomial time with log n queries
to oracle in Σ2.

77

computable approximation, our algorithm is inspired by the algorithm for
read-once formulae in [18]. It involves one traversal of the circuit for each
l ∈ IX(r), and its overall complexity is only quadratic in the size of M .
We start by describing an exact algorithm for M which is a tree, and then
introduce the changes for M which is a DAG. The latter approach returns
approximated results.

We define the following values that are used by our algorithm.

• c0(n,M): the minimal sum of weights of leaves in IX(r) ∪ IV (r) that
we have to assign 0 or 1 in order to make n evaluate to 0.

• c1(n,M): the minimal sum of weights of leaves in IX(r) ∪ IV (r) that
we have to assign 0 or 1 in order to make n evaluate to 1.

• s(n, M, l): the minimal sum of weights of leaves in IX(r)∪IV (r) that we
have to assign 0 or 1 in order to make “n is X-possible” counterfactually
depend on “l is X”. If there is no such number, that is, there is
no change in the context that causes this dependability, we define
s(n, M, l) = ∞.

If clear from the context, we omit M from the notation of c0, c1 and s.
We would like to compute the degree of responsibility of every leaf

l ∈ IX(r) for “r is X-possible”. Therefore, for each l ∈ IX(r), our algo-
rithm computes s(r, l). We denote by A(n) the assignment to node n in
M , imposed by A. We discuss a model M with AND and NOT operators.
Extending the discussion to OR, NAND and NOR operators is straightfor-
ward. Given r and l ∈ IX(r), our algorithm computes s(r, l) by starting at
r, and executing the recursive computation described next. Note that only
values that are actually needed for determining s(r, l) are computed.
For a node n, s(n, l) is recursively computed by:

• For n a leaf: if (n = l) then s(n, l) = 0, because the value of l counter-
factually depends on itself. Otherwise, s(n, l) = ∞ since a leaf does
not depend on other leaves.

• For n = n1∧ . . .∧nm: W.l.o.g. we assume that l belongs to the subtree
of M rooted in n1 (since M is a tree, l belongs to a subtree of only one
input of n). In order to make the value of n counterfactually depend
on the value of l, all input to n, except for n1, should be 1, and the
value of n1 should counterfactually depend on the value of l. Thus,
s(n, l) = s(n1, l) +

∑m
i=2 c1(ni).

• For n = ¬n1: s(n, l) = s(n1, l), since “n is X-possible” iff “n1 is
X-possible”.

For a node n, c0(n) and c1(n) are recursively computed by:

78

• For n a leaf:

– If A(n) = 0, c0(n) = 0, because no change in the assignments to
IX(r) ∪ IV (r) is required. c1(n) = ∞, because no change in the
assignments to IX(r) ∪ IV (r) will change the value of n.

– Similarly, if A(n) = 1, c1(n) = 0 and c0(n) = ∞.

– If A(n) = X, c0(n) = c1(n) = 2, because only the value of n has
to be changed, and the weight of n is 2.

– If n is associated with a symbolic variable, c0(n) = c1(n) = 1,
because only the value of n has to be changed, and the weight of
n is 1.

• For n = n1,∧ . . . ∧ nm:

– It is enough to change the value of one of its inputs to 0 in order
to change the value of n to 0, thus c0(n) = mini∈{1,...,n} c0(ni).

– The values of all the inputs of n should be 1 in order for n to be
1, thus c1(n) =

∑n
i=1 c1(ni).

• For n = ¬n1

– c1(n) = c0(n1) and c0(n) = c1(n1), as any assignment that gives
n1 the value 0 or 1, gives n the value 1 or 0, respectively.

The computation above directly follows the definitions of c0, c1 and s,
and thus its proof of correctness is straightforward. For a node r and leaf l,
computing the values c0(n), c1(n) and s(n, l) for all n ∈ BCOI(r) is linear
in the size of M . Therefore, computing s(r, l) for all l ∈ IX(r) is at most
quadratic in the size of M . Note that when computing s(r, l) for all leaves
l, for a node n, each of c0(n) and c1(n) is computed once at most. This
is because the values of c0(n) and c1(n) do not depend on the relationship
between l and r.

We demonstrate the computations done by our algorithm on the circuit
in Figure 5.3. The antecedent associates l2, l4 with symbolic variables, and
l1, l3 with X. For node out, “out is X-possible” holds. We want to compute
s(out, l3). l3 is in the subtree of n2. Therefore, s(out, l3) = c1(n1)+s(n2, l3).
Since n1 is an AND gate, c1(n1) = c1(l1) + c1(l2). n2 is also an AND
gate, and therefore s(n2, l3) = c1(l4) + s(l3, l3). The weight of the leaves is
according to their assignment. Therefore, c1(l2) = c1(l4) = 1 and c1(l1) = 2.
Additionally, s(l3, l3) = 0.

Finally, the degree of responsibility of “l is X” for “r is X-possible” is
defined according to the weighted responsibility, dr(M, l, r) = 2

s(r,l)+2 . If
s(r, l) = ∞, then dr(M, l, r) = 0.

79

l4=V2 l1=X1 l2=V1

^

n2

^

out

^

n1

s(n1,l3)=∞
c1(n1)=3

s(n2,l3)=1

s(out,l3) = 4

l3=X

Figure 5.3: Computing Responsibility

Computing an Approximate Degree of Responsibility in DAGs

We now introduce a change to the definition of s(n, l), resulting in an effi-
ciently computable approximation of the degree of responsibility in DAGs,
as required for STE.

For a DAG M , and a node n = n1∧ . . .∧nm, we no longer assume that l
belongs to a subtree of only one input of n. Let NS = {ni|s(ni, l) 6= ∞, i ∈
{1, . . . , m}}, and let N∞ = {ni|s(ni, l) = ∞, i ∈ {1, . . . , m}}. That is, NS is
the set of inputs to n whose subtrees contain l, and N∞ is the set of inputs
to n whose subtrees do not contain l.

We define s(n, l) to be:

s(n, l) =
∑

ni∈NS

s(ni, l)
|NS | +

∑

ni∈N∞
c1(ni)

The definitions of dr(M, l, n) remains the same, and therefore dr(M, l, n)
is inversely proportional to s(n, l). Our new definition is aimed at giving
higher degree of responsibility to leaves that belong to subtrees of multi-
ple inputs to n. Such leaves are likely to be control signals, or otherwise
more effective candidates for refinement than other variables. Our empirical
experience supports this choice.

We demonstrate the effect of this definition on the multiplexer in Figure
5.4. d1 and d2 are the data inputs to the multiplexer, and c is its control
input. If c = 1, then out = d1, else, out = d2. The value s(out, d1) is
given by s(out, d1) = c0(n2) + s(n1, d1) = 4. The same computation applies
to d2. On the other hand, c belongs to the subtrees of both n1 and n2.
Therefore, s(out, c) = s(n1,c)+s(n2,c)

2 = 2. Consequently, dr(c, out) = 1
2 ,

whereas dr(d1, out) = dr(d2, out) = 1
3 . That is, the dr of the control signal

is higher than that of the data signals.
The rest of the algorithm remains as in Section 5.3.2. Note that since

M is a DAG, rather than a tree, not changing the computation of c0 and

80

d2=X d1=X c=X

^

n2

out

^

n1

n3

c0(n1)=2
s(n1,d1)=2
s(n1,c)=2

c0(n2)=2
s(n2,d2)=2
s(n2,c)=2

s(out,d1) =4
s(out,d2)=4
s(out,c)=2

out = (c ∧ d1) ∨ (¬c ∧ d2)

Figure 5.4: A multiplexer.

c1 makes it an approximation, as it does not take into account possible
dependencies between inputs of nodes.

5.3.3 Applying Responsibility to Automatic Refinement

Refinement of an STE assertion is required when the return value of an
STE run is X. In that case, the set of undecided nodes is returned by STE.
The goal of the refinement is to add information such that undecided nodes
become decided. In this section we show how we employ the concept of
responsibility for efficiently refining STE assertions.

The outline of the refinement algorithm follows the discussion in section
5.1: First, a refinement goal r is selected from within the set of undecided
nodes. Then, a set of input nodes in IX(r) is chosen, to be initialized to
new symbolic variables.

Choosing a Refinement goal

Our refinement algorithm chooses a single refinement goal in each refinement
iteration. This way, the verification process might be stopped early if the
STE requirement of a single node does not hold, without handling the other
undecided nodes. Additionally, conceptual relations between the undecided
nodes may make them depend on a similar set of inputs. Thus, refinement
targeted at one node may be useful for the other nodes as well. For example,
all bits of a data vector are typically affected by the same set of control
signals.

We would like to add as little symbolic variables as possible. Thus, from
within the set of undecided nodes, we choose the node with the minimal

81

RespSTE(M,A, C)
1) while ([M |= A ⇒ C] = X) {
2) r ← choose refinement target
3) for all l ∈ IX(r)
4) compute dr(l, r)
5) max←max{dr(l, r))|l ∈ IX(r)}
6) Iref←{l|l ∈ IX(r), dr(l, r)=max}
7) for all li∈Iref

8) add a symbolic variable vli to A
9) }

Figure 5.5: RespSTE. Iref is the set of inputs with the lowest degree of
responsibility for “r is X-possible”.

number of inputs in its BCOI, and among these we choose the one with the
minimal number of nodes in its BCOI. This approach has also been taken
in [79].

Choosing Input Nodes

Given a refinement goal r, we have to choose a subset of nodes Iref ⊆ IX(r)
that will be initialized to new symbolic variables, trying to prevent the
occurrence of “r is X-possible”. We choose the nodes in IX(r) with the
highest degree of responsibility for “r is X-possible”, as computed by the
algorithm in Section 5.3.2. These nodes have the greatest effect on “r is
X-possible”, and are likely to be the most effective nodes for refinement.
Our experimental results support this choice of nodes, as shown in Section
5.3.4.

Given the refinement algorithm described above, we construct RespSTE,
an iterative algorithm for verifying STE assertions: for a model M and an
STE assertion A ⇒ C, while STE returns [M |= A ⇒ C] = X, RespSTE
iteratively chooses a refinement root r ∈ M , computes the degree of re-
sponsibility of each leaf l ∈ IX(r) for “r is X-possible” and introduces new
symbolic variables to A, for all leaves with the highest degree of responsi-
bility. A pseudo code of RespSTE is given in Figure 5.5.

5.3.4 Experimental Results

For evaluating our algorithm RespSTE, we implemented and used it in
conjunction with Forte, a BDD based STE tool by Intel [73].

For our experiments we used the Content Addressable Memory (CAM)
module from Intel’s GSTE tutorial, and IBM’s Calculator 2 design [81].

82

hitTAG MEMORY

DATA MEMORY

16

16

64

aread

dwrite
dout

daddr[0..3]

datain[0..63]

8

tagin[0..8]

taddr[0..3]

twrite

Figure 5.6: Content Addressable Memory module

These models and their specifications are interesting and challenging for
model checking. We briefly described these models in Section 4.3. For ana-
lyzing our experiments with automatic refinement, it is required to further
understand the structure and operation of these models, and therefore we
give a more through description of them. All experiments used dedicated
computers with 3.2Ghz Intel Pentium CPU, and 3GB RAM, running Linux
operating system.

Verifying CAM Module

A CAM is a memory module that for each data entry holds a tag entry.
Upon receiving an associative read (aread) command, the CAM samples
the input “tagin”. If a matching tag is found in the CAM, it gives the
“hit” output signal the value 1, and outputs the corresponding data entry
to “dout”. Otherwise, “hit” is given the value 0. The verification of the
aread operation using STE is described in [61]. The CAM that we used is
shown in Figure 5.6. It contains 16 entries. Each entry has a data size of
64 bits and a tag size of 8 bits. It contains 1152 latches, 83 inputs and 5064
combinational gates.

We checked the CAM against three assertions. The refinement steps of
these assertions are presented in Table 5.1. Each row in the table describes
a single refinement iteration, the name of the goal node, and the name and
time of the inputs for which symbolic variables were added.

Given
−−−→
TAG and

−→
A , vectors of symbolic variables, Assertion 1 is:

(tagin is
−−−→
TAG)∧(taddr is

−→
A)∧(twrite is 1)∧N ((aread is 1)∧(tagin is

−−−→
TAG))

=⇒ N (hit is 1). This is to check that if a tag value
−−−→
TAG is written to an

address
−→
A in the tag memory at time 0, and at time 1

−−−→
TAG is read, then

it should be found in the tag memory, and hit should be 1. If at time 1
there is no write operation to the tag memory ((twrite, 1) = 0), then

−−−→
TAG

83

As. It Goal Added Vars
1,2 1 hit,1 twrite,1
1,2 2 hit,1 taddr [0:3], 1

2 3 dout[0],1 dwrite,1
2 4 dout[0],1 daddr [0:3], 1
2 5 dout[0],1 din [0], 1

3 1 dout[0],2 tagmem_0 [0:7], 0

Table 5.1: Refinement steps for CAM module. Each line represents a single
refinement iteration. Added Vars (n, t) represents the association of node n
at time t with a symbolic variable. The first two iterations of Assertion 2
are the same as those of Assertion 1.

should be found in address
−→
A . If (twrite, 1) = 1,

−−−→
TAG should still be found,

since it is written again to the tag memory. Therefore, Assertion 1 should
pass. However, since twrite and taddr at time 1 are X, the CAM cannot
determine whether to write the value of (tagin, 1) to the tag memory, and
to which tag entry to write it. As a result, the entire tag memory at time 1
is X, causing (hit, 1) to be X. Thus, [M |= A ⇒ C] = X. In two consec-
utive refinement iterations, (twrite, 1) and (tadder, 1) are associated with
new symbolic variables, and the assertion passes.

Assertion 2 extends Assertion 1 by adding the constraint
(datamem[

−→
A], 0) is

−→
D to the antecedent, and the requirement (dout,1) is

−→
D

to the consequent. That is, in addition to (hit, 1) = 1, the assertion checks
if the data at the output is equal to the data in the corresponding entry
at time 0. This specification is erroneous. If new data is written at time 1
to the data entry associated with

−−−→
TAG, then dout at time 1 will be equal

to the new data. The first two refinements are the same as for Assertion
1. The variables that are added in the consecutive refinement iterations
allow STE to generate a counterexample in which dwrite at time 1 equals 1,
daddr at time 1 equals taddr at time 0, and din[0] at time 1 is different from
D[0]. Thus, the assertion fails. Note that IX((dout[0], 1)) includes dwrite,
daddr and din[0], all at times 0 and 1, the initial values of all tag memory
entries and of bit number 0 of all data memory entries. However, symbolic
variables were added to the least number of inputs required for falsifying
the assertion.

Assertion 3 is:
(tagin is

−−−→
TAG)∧ (taddr is

−→
A)∧(twrite is 1)∧(datamem[

−→
A] is

−→
D) ∧

N((twrite is 0) ∧ (dwrite is 0)) ∧
N2((aread is 1) ∧ (tagin is

−−−→
TAG) ∧ (twrite is 0) ∧ (dwrite is 0)) ⇒

N2((hit is 1) ∧ (dout is
−→
D)).

This assertion checks that if at time 0
−−−→
TAG is written to address

−→
A , and

datmem[
−→
A] is

−→
D , and no other write operation is performed, then reading

84

SHIFT PIPELINE

PIPELINE

ADD/SUB

reset

c_clk

req1_cmd_in[0:3]
req1_data_in[0:31]
req1_tag_in[0:1]

req2_cmd_in[0:3]
req2_data_in[0:31]
req2_tag_in[0:1]

req3_cmd_in[0:3]
req3_data_in[0:31]
req3_tag_in[0:1]

req4_cmd_in[0:3]
req4_data_in[0:31]
req4_tag_in[0:1]

out_resp1[0:1]

out_data1[0:31]
out_tag1[0:1]

out_resp2[0:1]
out_data2[0:31]
out_tag2[0:1]

out_resp3[0:1]
out_data3[0:31]

out_resp4[0:1]
out_data4[0:31]
out_tag4[0:1]

out_tag3[0:1]

Figure 5.7: Calculator 2 modlue

−−−→
TAG at time 2 results in hit = 1 and dout =

−→
D . Assertion 3 fails after

one iteration, which adds symbolic variables for tag entry 0 at time 0. This
allows STE to find a counterexample in which the initial value of tag entry
0 is equal to

−−−→
TAG, and the data entry that is associated with it is returned

by the CAM, instead of
−→
D . Assertion 3 was refined by adding the smallest

number of symbolic variables required for falsifying it.

Verifying Calculator 2

The Calculator 2 design [81], shown in Figure 5.7, is used as a case study
design in simulation based verification. It contains 2781 latches, 157 inputs
and 56960 combinational gates. The calculator has two internal arithmetic
pipelines: one for add/sub and one for shifts. It receives commands from 4
different ports, and outputs the results accordingly. The calculator supports
4 types of commands: add, sub, shift right and shift left. The response is
1 for good, 2 for underflow, overflow or invalid command, 3 for an internal
error and 0 for no response. When running the calculator, reset has to be 1
for the first 3 cycles.

We checked the calculator against four assertions. For all but one of
the assertions, RespSTE added the smallest number of symbolic variables
required for proving or falsifying the assertion. The refinement steps of these
assertions are presented in Table 5.2. Each row in the table describes a single
refinement iteration, the name of the goal node, and the name and time of
the inputs for which symbolic variables were added. In all the assertions,
reset is 1 for the first 3 cycles, as required by the calculator design. Also,
a vector

−→
P of symbolic variables is used to choose the port sending the

85

As. It Goal Added Vars
1 1 out_resp1 [0],7 req1_data_in [0],4
1 2 out_resp1 [0],7 req1_data_in [31],4
1 req1_data_in [31],3
1 req1_data_in [1],4
1 3 out_resp1 [0],7 req1_data_in [0],3

2 1 out_resp2 [0],7 req1_cmd [0:2],3
2 2 out_resp2 [0],7 req1_cmd [3],3
2 3 out_resp2 [0],7 req2_cmd [0:3],3

3 1 out_resp1 [0],9 req4_tag_in [0:7],3

4 1 out_resp1 [0],7 req1_cmd [0:3],3
4 2 out_resp1 [0],7 req2_cmd [0:3],3
4 3 out_resp1 [0],7 req3_cmd [0:3],3
4 4 out_resp1 [0],7 req4_cmd [0:3],3

Table 5.2: Refinement steps for Calculator 2 module. Each line represents a
single refinement iteration. Added Vars (n, t) represents the association of
node n at time t with a symbolic variable.

command. This parametric encoding allows checking all four ports of the
module in a single STE run.

Assertion 1 checks that if a port Pi sends an add or sub command at
cycle 3 (after reset), and the other ports send any other, or no command,
then Pi receives a “good” response with the appropriate tag at cycle 7.
This specification is incorrect. By adding symbolic variables for the msb
of req1 data in at times 3 and 4, STE generated a counterexample with
a data overflow for port 1, which triggers an invalid response at cycle 7.
IX((out resp1[0], 7)) contains all command, tag and data inputs of all ports
at different times. The smallest set of inputs for producing a counterexam-
ple is {(req1 data in[0],3),(req1 data in[0],4)}. RespSTE added these inputs
and additional 3 input bits.

Assertion 2 sets the command sent by a port Pi to add. The msb bits of
the sent data are constrained to 0 to avoid an overflow. No constraints are
imposed on the commands sent by other ports. The requirement is that the
output data for Pi would match the expected data. Assertion 2 fails due to
an erroneous specification. The calculator gives priority to the lower indexed
ports. Thus, if both ports 1 and 3 send an add command, port 3 does not
receive a response at the first possible cycle. Due to the implementation
of the priority queue, commands of at least 3 ports have to be definite for
falsifying the assertion. IX((out resp2[0], 7)) contains cmd, data and tag
inputs of all ports at cycles 3 and 4. Out of them, RespSTE added the least
number of inputs required for falsifying the assertion.

In Assertion 3, a port Pi sends an add or sub command, followed by an
add command with a certain tag and data arguments, while limiting the

86

msb of the data to 0 to avoid a possible overflow. All other ports do not
send an add or sub command during this time. The requirement is that Pi

receives a response with the appropriate tag value and the expected output
data. IX((resp out1[0], 9)) includes all data and tag inputs of all ports, out
of which RespSTE chose the tag of port 1 at cycle 3, which is the minimum
for generating a counterexample. In the counterexample, the tag values of
port 1 at cycles 3 and 5 are not consecutive, and out rep1 is “invalid”. This
counterexample stems from a planted design bug documented in [81]: while
there supposed to be no restriction on tag ordering, commands whose tags
are out of order are treated as invalid.

Assertion 4 checks that if a port sends an invalid command, it receives
and invalid command response at the first possible cycle. In order to prove
this assertion, and due to the implementation of the priority queue, the
commands of the other ports are also required to be definite. For all the
ports, IX(out resp) includes all the cmd, data and tag inputs at cycles 3
and 4. RespSTE added symbolic variables for the cmd inputs at cycle 3.
This is the least number of variables required for verifying the assertion.

Evaluation of Results

In [79], an algorithm called autoSTE for automatic refinement in STE, is
presented. autoSTE exploits the results of the STE run, as computed by
Forte, in order to identify trajectories along which all nodes have the value
X. The input nodes of these trajectories are the candidates for refinement.
Heuristics are used for choosing subsets of these candidates.

Note that autoSTE is completely dependent on the implementation of
the STE engine and its data structures, whereas RespSTE is completely
independent of it. Furthermore, since autoSTE uses the BDDs of the STE
engine, it effects the performance of the STE engine as well. This is demon-
strated by the number of BDD nodes that Forte holds during the process.

We compared our experimental results with those obtained by autoSTE.
For the sake of comparison, we used in our experiments the same parametric
representation of the STE assertions as in [79]. The final results of RespSTE
and its comparison with autoSTE are shown in Table 5.3.

In the comparison, RespSTE shows a significant speedup in all of the as-
sertions with respect to autoSTE, and up to ×20 speedup in the larger ones.
A significant reduction in BDD nodes is also gained in most of the assertions.
For some of the assertions, RespSTE added fewer symbolic variables or re-
quired fewer refinement iterations than autoSTE. The overall performance
of RespSTE was better than autoSTE even when this was not the case.

Altogether, our experiments demonstrated that using the degree of re-
sponsibility as a measure for refinement is a good choice. It provides a
quantitative measure of the importance of each input to an undecided node
being X-possible. By examining these values, we conclude that this quan-

87

RespSTE AutoSTE
result Iterations Vars BDD Nodes Time Iterations Vars BDD Nodes Time

1 pass 2 5 3201 2 2 5 4768 3
2 fail 5 11 30726 5 7 11 57424 20
3 fail 1 8 14127 3 3 13 29006 17

1 fail 2 5 7735 32 2 2 6241 87
2 fail 3 8 19717 25 2 8 20134 100
3 fail 1 8 262201 43 1 8 530733 220
4 pass 4 16 14005 27 11 16 17323 494

C
al

c
2

C
A

M

Table 5.3: Experimental Results. AutoSTE is the algorithm presented in
[79]. “Iterations” is the number of refinement iterations that were performed,
“Time” is the total runtime in seconds until verification / falsification of the
property, ”Vars” is the total number of symbolic variables that were added
by the refinements, and “BDD Nodes” is the number of BDD nodes used by
Forte.

titative measure reflects the actual importance of the inputs in the model.
The results obtained by RespSTE agree with the decisions of a user who is
familiar with the circuit. When using these results for automatic refinement,
the quality of the results demonstrates itself in the number of refinement it-
erations that were required, and in the total number of symbolic variables
that were added to the antecedent.

88

Chapter 6

Automata Theoretic
Approach to 3-Valued Model
Checking

In this section we present an automata approach to 3-valued model check-
ing, following the automata theoretic approach to LTL model checking [80].
We introduce the “unknown” constant value X into the model checking of
LTL formulae. We use a ternary (0, 1, X) encoding for the states of Kripke
Structures and Büchi automata, where X is “unknown”. We also extend the
definitions of Büchi automata to be able to handle words over the ternary
alphabet. Consequently, model checking may now return either 1, 0 or X
(“unknown”) as a result. The new 3-valued framework can be implemented
within explicit or symbolic model checking.

The abstraction we present is similar to the 3-valued abstraction used
in symbolic trajectory evaluation (STE) [72]. As mentioned before, STE
is indeed a powerful technique, and is being used in the industry to prove
large data-path blocks. However, the approach presented in this chapter
supports full LTL specifications, while STE only supports a small subset
of LTL, limited to describing fixed latency. From the practical point of
view, writing STE assertions is labor intensive, which makes it more error
prone. Additionally, STE specification cannot share the modelling of the
environment of the design with other validation methods.

For automatic refinement, it is straightforward to apply the responsibility-
based refinement method presented in Section 5.3.3 for STE. We do not
elaborate on this method in this chapter.

89

6.1 Automata Approach for 3-Valued Model Check-
ing

6.1.1 3-Valued Kripke Structures and LTL Semantics

In this section we define 3-valued Kripke structures. Our ternary domain is
T = {0, 1, X}, and is a subset of Q, defined in Section 2.8. The ternary op-
erators are as defined in Section 2.8 for the values in T . These operators are
monotonic with respect to w. The definition of 3-valued Kripke structures
follows the definition of Kripke structures in Section 2.1.

For two ternary assignments a′ and a to a set of variables V , we write
a′ w a, if ∀v ∈ V , a′(v) = 0 ⇒ a(v) = 0, and a′(v) = 1 ⇒ a(v) = 1.

For two ternary functions f : T k → T and g : T k → T , where k ∈ N,
we say that f º g if for every two assignments d1 ∈ T k and d2 ∈ T k,
d1 w d2 ⇒ f(d1) w g(d2). For F = {f1, . . . fk} and G = {g1, . . . gk}, we say
that F º G if ∀i, 1 ≤ i ≤ k, fi º gi.

Let f : {0, 1}|V | → {0, 1} be a Boolean function, defined by means
of operators ¬,∨,∧ applied to variables in V . The ternary function f̂ :
T |V | → T is the function obtained from replacing the Boolean variables
and operators in f by ternary ones. It immediately follows that f̂ º f().
For a set of Boolean functions F , we denote F̂ the set of ternary functions
F̂ = {f̂ |f ∈ F}. It immediately follows that F̂ º F .

Given a set of atomic propositions AP , we define AP3 = {p = 0, p =
1, p = X|p ∈ AP}. Let a 3-valued Kripke structure be a tuple M̂ =
〈S, I0, R, L̂〉, where the labelling function L̂ : S → AP3 is defined such that
for every s ∈ S, and for every p ∈ AP , exactly one of p = 0, p = 1, p = X is
in L̂(s). The rest of the definitions remain as in Section 2.1.

For a path π = s0, s1 . . . and a path formula ψ, [π |= ψ] ∈ T . The 3-
valued semantics of LTL formulae is defined with respect to a 3-value Kripke
structure M̂ as follows:

[π |= p] = d, for p ∈ AP, d ∈ T ⇔ (p = d) ∈ L(s0)
[π |= ¬ψ1] = ¬[π |= ψ1]
[π |= ψ1 ∧ ψ2] = [π |= ψ1] ∧ [π |= ψ2]
[π |= Nψ1] = [π1 |= ψ1]

[π |= ψ1Uψ2] =

1 ∃j([πj |= ψ2] = 1 ∧ (∀i 0 ≤ i < j, [πi |= ψ1] = 1))
0 ∀j([πj |= ψ2] = 0 ∨ ∃i 0 ≤ i < j([πi |= ψ1] = 0))
X otherwise

where ∧,∨ and ¬ are ternary operators.
Let Π be the set of all paths from an initial state. For an LTL formula

P = Aψ, [M̂ |= P] ∈ T , and is defined as follows:

90

[M̂ |= P] =

1 ∀π ∈ Π, [π |= ψ] = 1
0 ∃π ∈ Π, [π |= ψ] = 0
X otherwise

6.1.2 Bisimulation of 3-Valued Kripke Structures

In this section we define bisimulation relation between 3-valued Kripke struc-
tures.

Let M = 〈S, I0, R, L〉 and M ′ = 〈S′, I ′0, R′, L′〉 be 3-valued Kripke struc-
tures, over a set of atomic propositions AP . We say that L′(s′) º L(s) iff
for every p, (p = 0) ∈ L′(s′) ⇒ (p = 0) ∈ L(s), and (p = 1) ∈ L′(s′) ⇒ (p =
1) ∈ L(s). A relation B ⊆ S × S′ is an X-bisimulation between M and M ′

if for every s, s′, if B(s, s′), then the following conditions hold:
1. L′(s′) º L(s)
2. ∀s1 ∈ S, R(s, s1) ⇒ ∃s′1 ∈ S′ such that R′(s′, s′1) ∧B(s1, s

′
1)

3. ∀s′1 ∈ S′, R′(s′, s′1) ⇒ ∃s1 ∈ S such that R(s, s1) ∧B(s1, s
′
1)

We say that M ′ is an abstraction of M , denoted M ′ º M , if there is an
X-bisimulation relation B ⊆ S × S′, for which ∀s ∈ I0, ∃s′ ∈ I ′0 such that
B(s, s′), and ∀s′ ∈ I ′0, ∃s ∈ I0 such that B(s, s′).

Theorem 6.1.1 If M ′ º M then for every LTL formula P , [M ′ |= P] =
0 ⇒ [M |= P] = 0, and [M ′ |= P] = 1 ⇒ [M |= P] = 1.

The proof of Theorem 6.1.1 is similar to the proof of Theorem 14 in [20],
and relies on the following lemmas.

Lemma 6.1.2 For two 3-valued models M ′ º M , ∀π = s0, s1 · · · ∈ M such
that s0 ∈ I0, ∃π′ = s′0, s

′
1 · · · ∈ M ′ such that s′0 ∈ I ′0 and ∀i ≥ 0, B(si, s

′
i)

Lemma 6.1.3 For two 3-valued models M ′ º M , ∀π′ = s′0, s
′
1 · · · ∈ M ′ such

that s′0 ∈ I ′0, ∃π = s0, s1 · · · ∈ M such that s0 ∈ I0 and ∀i ≥ 0, B(si, s
′
i)

6.1.3 3-Valued Abstract Circuits

Given a Boolean circuit C = 〈V, I0, P I, F 〉, and the sets PIX ⊆ PI and
FX ⊆ F , the 3-valued abstract circuit C ′ = 〈V, I ′0, P I ′, F ′〉 is an abstraction
of C w.r.t. PIX , FX , where I ′0 and F ′ are defined as follows. For a state

s ∈ I0, let s′ be a ternary state s′(vi) =
{

X fi ∈ FX

s(vi) else

I ′0 = {s′|s ∈ I0}

For fi ∈ F , let f̂iPIX
be the function obtained from f̂i by replacing each

input in PIX with the value X. We define f ′i =
{

X fi ∈ FX

f̂iPIX
else

F ′ = {f ′|f ∈ F}

91

Note that a state in C ′ is an assignment s : V→ T , and that for each
s ∈ I0, s′ w s. Note, also, that for or each fi ∈ F , f ′i º fi, and therefore
F ′ º F .

For s and s′, 3-valued states of a circuit, we say that s′ is an abstraction
of s, denoted s′ º s, if s′ w s. It immediately follows that s′ º s ⇒ L(s′) º
L(s).

For a circuit C = 〈V, I0, P I, F 〉, let C1 = 〈V, I0, P I1, F 1〉 be an abstrac-
tion of C w.r.t. PI1

X ⊆ PI and F 1
X ⊆ F , and let C2 = 〈V, I0, P I2, F 2〉 be

an abstraction of C w.r.t. PI2
X ⊆ PI and F 2

X ⊆ F . Let M1 and M2 be the
Kripke structures corresponding to C1 and C2.

Theorem 6.1.4 If PI1
X⊇PI2

X and F 1
X ⊇ F 2

X , then M1 º M2.
Proof: Let B = {(s1, s2)|s1 º s2}. We show that B is an X-bisimulation
between M1 and M2.

1. ∀(s1, s2) ∈ B, s1 º s2. Therefore, L(s1) º L(s2).

2. Given that F 1
X ⊇ F 2

X and PI1
X ⊇ PI2

X , from the definitions of F 1 and
F 2 it holds that for or each fi ∈ F , f1

i º f2
i . Therefore, F 1 º F 2.

For s1 º s2 and for in2, an assignment to PI2, let t2 = F 2(s2, in2).
Let t1 = F 1(s1, in1), where in1 is obtained from in2 by replacing each
input in PI1

X with X. It holds that s1 º s2, in1 º in2, and F 1 º F 2.
Therefore, t1 º t2.

3. For s1 º s2, and for in1, an assignment to PI1, let t1 = F 1(s1, in1).
Let t2 = F 2(s2, in2), where in2 is obtained from in1 by replacing each
input in PI1

X \ PI2
X with an arbitrary Boolean value. It holds that

s1 º s2, in1 º in2, and F 1 º F 2. Therefore, t1 º t2.

From 1,2 and 3 it holds that B is an X-bisimulation between M1 and M2.
The definitions of I1

0 and I2
0 follow the definition of 3-valued circuit given

above, and depend on F 1
X , F 2

X , and I0. Since F 1
X ⊇ F 2

X , it immediately
follows that ∀s1 ∈ I1

0 , ∃s2 ∈ I2
0 such that s1 º s2, and ∀s2 ∈ I2

0 , ∃s1 ∈ I1
0

such that s1 º s2. Therefore, ∀s1 ∈ I0, ∃s2 ∈ I0 such that (s1, s2) ∈ B, and
∀s2 ∈ I0, ∃s1 ∈ I0 such that (s1, s2) ∈ B.

We thus conclude that M1 º M2. 2

6.1.4 3-Valued Büchi Automata

Given a Büchi automaton B over AP2, we construct a 3-valued Büchi au-
tomaton B′ over AP3.

For a set of atomic propositions AP , let Σ = P(AP2). For a set of
state variables Y , and D = {1 . . . 2|Y |}, let B= 〈Σ, Q, qin, ρ, α〉 be a Büchi
automaton, where Q = 2Y . The acceptance condition α can be considered

92

as a function α : 2Y → {0, 1}, which evaluates to 1 for fair states in B.
Let F be the set of functions fyi : Q × Σ ×D → Q, corresponding to ρ, as
described in Section 2.5.1.

Let Σ′ = P(AP3), and Q′ = T Y . Let ρ′ be the transition function
corresponding to F̂ . Note that F̂ is a set of functions f ′yi

: Q′×Σ′×D′ → Q′,
where D′ = {1 . . . 3|Y |}. The 3-valued Büchi automaton for B is the tuple
B′= 〈Σ′, Q′, qin, ρ′, α̂〉.

6.1.5 Model Checking of 3-Valued Circuits

In this section we show how 3-valued Büchi automata can be used for check-
ing 3-valued circuits.

Let Ĉ = 〈V̂ , Î0, P̂ I, F̂C〉 be an abstraction of a circuit C = 〈V, I0, P I, FC〉.
Let M = 〈S, I0, R, L〉 be the Kripke structure corresponding to C, and let
M̂ = 〈Ŝ, Î0, R̂, L̂〉 be the Kripke structure corresponding to Ĉ. For an LTL
property P = Aψ, let B¬ψ = 〈Σ, QB, qin, ρ, α〉 be the Büchi automaton for
¬ψ, and let B̂¬ψ = 〈Σ̂, Q̂B, qin, ρ̂, α̂〉 be the 3-valued Büchi automaton for
B. Let FB and F̂B be the sets of functions corresponding to ρ and ρ̂. Let
E, be the product of M and B¬ψ, as defined in Section 2.5.3. Similarly, let

Ê = 〈ŜE , ÎE
0 , R̂E , L̂E , α̂E〉 be the product of M̂ and B̂¬ψ. Recall that a state

e in E is a pair (s, q) where s ∈ S and q ∈ QB. Similarly, a state ê in Ê is
a pair (ŝ, q̂).

A strongly connected component (SCC) ¯ in a graph is a set of nodes
such that there is a path within ¯ between every two nodes in ¯. Note that
since the number of states in E and Ê is finite, every infinite path π in E
or Ê consists of a finite prefix πs connected to an SCC ¯. We denote this
by π = πs · ¯.

A lasso in Ê is a path π̂ = êl0 . . . êlk , where êl0 ∈ ÎE
0 , and there exists

some i, 0 ≤ i < k such that êlk = êli . We denote a lasso by π̂i · ©, where
π̂i is the finite prefix êi0 . . . êli , and © is the cycle êli+1 . . . êlk . A 1-lasso is
a lasso π̂c · © where there exists êla ∈ © such that α̂(êla) = 1. Similarly, in
an X-lasso, α̂(êla) = X.

For a path π = el0 . . . elk , first(π) is el0 , and last(π) is elk .

Next we reduce checking M̂ with respect to ψ to finding lassos in Ê.

Theorem 6.1.5
(1) If there exists a 1-lasso in Ê, then there exists a fair path in E.
(2)If there is no 1-lasso and no X-lasso in Ê, then there is no fair path in
E.

Proof:

93

(1) We first prove that if there exists a 1-lasso in Ê, then there exists a fair
path in E.

Lemma 6.1.6 For every (ê, ê′) ∈ R̂E, and for every e ∈ SE, such that
ê º e, there exists e′ ∈ SE, such that (e, e′) ∈ RE, and ê′ º e′.

Proof of Lemma 6.1.6: For ê = (ŝ, q̂) and ê′ = (ŝ′, q̂′) such that (ê, ê′) ∈ R̂E ,
let e = (s, q) such that ŝ º s and q̂ º q.

Since q̂′ ∈ ρ̂(q̂), there exists a number c such that q̂′ = F̂B(q̂, ŝ, c). Let
q′ = FB(q, s, c). F̂B º FB, q̂ º q, and ŝ º s. Therefore q̂′ º q′.

Since (ŝ, ŝ′) ∈ R̂M , and M̂ is defined for Ĉ, there exists some assignment
în to the inputs to Ĉ such that ŝ′ = F̂C(ŝ, în). For some in ∈ 2PI such that
în º in, let s′ = FC(s, in). F̂C º FC , ŝ º s, and în º in. Therefore, ŝ′ º s′.
Thus, ê′ º e′, and the lemma holds. 2

From Lemma 6.1.6 it holds that for every finite path π̂ = êl0 . . . êln in
Ê, there exits a corresponding finite path π = em0 . . . emn in E, such that
∀i, êli º emi .

Next we show that for every 1-lasso in Ê there exists a corresponding
1-lasso in E.

Let π̂ = π̂s ·© be a 1-lasso in Ê, where ŝ0 = first(π̂s). ŝ0 was obtained
from a state s0 ∈ I0, by replacing some of the Boolean assignments to the
state variables with the value X. Therefore, ŝ0 º s0. From Lemma 6.1.6
it holds that there is a finite path πs in E, corresponding to π̂s, where
first(πs) = s0, and therefore first(πs) ∈ IE

0 . From Lemma 6.1.6 it holds
that there is a path in E, corresponding to ©. However, this path may not
form a cycle in E, and may not be unique. Next we show how a cycle in
E that corresponds to © can be created. For that purpose, we concatenate
paths that correspond to © in E. Since there is a finite number of states
in E, the number of concatenations is finite, and must result in a cycle in
E. Formally, let Πc be the set of all finite paths πi

c that correspond to ©
in E. Let the path πc be a concatenation of paths πi

c from Πc, such that
first(π0

c) = last(πs), and for every i, first(πi+1
c) = last(πi

c). Since there is
a finite number of states in E, there is a finite number of states enk

such
that êlk º enk

in E. Therefore, there exists a finite number j such that the
path πc = π0

c . . . πj
c is a cycle in E.

Let êla ∈ © be a state in Ê such that α̂E(êla) = 1. For every πi
c, let

ena be the corresponding state to êla . α̂E º αE , and êla º ena . Therefore,
αE(ena) = 1.

We conclude that πc is a cycle in E which includes a fair state. Let the
infinite path π in E, be the concatenation of πs and πc. π is a fair path in
E.

(2) Next we show that if there is no 1-lasso and no X-lasso in Ê, then there
is no fair path in E.

94

Lemma 6.1.7 If there is no 1-lasso and no X-lasso in Ê, then for every
path π̂ = π̂s · ¯ in Ê, ∀ê ∈ ¯[α̂E(ê) = 0]
Proof of Lemma 6.1.7: Assume to the contrary that there is no 1-lasso and
no X-lasso in Ê, but there is some path π̂ = π̂s · ¯ in Ê, and a state êa ∈ ¯
such that α̂E(êa) 6= 0. Let π̂1 be a header of π̂ that ends in êa. Since êa ∈ ¯,
then there is a cycle π̂2 = êa . . . êa. The result of the concatenation of π̂1

and π̂2 is a 1-lasso or an X-lasso in Ê, depending on the value of α̂E(êa).
Thus, the assumption is contradicted, and the Lemma holds 2

Lemma 6.1.8 For a path π = em0 , em1 . . . in E, where em0 ∈ IE
0 , there

exits a path π̂ = êl0 , êl1 . . . in Ê, where êl0 ∈ ÎE
0 , such that ∀i(êli º emi).

Proof of Lemma 6.1.8: We prove Lemma 6.1.8 by induction on the length
of π.

• For paths of length 0, em0 ∈ IE
0 . Therefore, emo is of the form emo =

(sm0 , qin), where sm0 ∈ I0. Let ŝ0 ∈ Î0 be the corresponding state
to s0, with respect the abstraction between M and M̂ . The state
êm0 = (ŝ0, qin) is in IE

0 . Since ŝ0 º s0, it holds that êm0 º em0 .

• Assuming that the proposition is correct for paths of length n, we show
that it is correct for paths of length n + 1.

Let emn = (s, q), emn+1 = (s′, q′) and êln = (ŝ, q̂). There exists a
number c such that q′ = FB(q, s, c). Let q̂′ = F̂B(q̂, ŝ, c). F̂B º FB,
ŝ º s, and q̂ º q. Therefore, q̂′ º q′.

There exists some assignment in to the inputs to C such that s′ =
FC(s, in). Let ŝ′ = F̂C(ŝ, in). F̂C º FC , and ŝ º s. Therefore, ŝ′ º s′.

q̂′ = F̂B(q̂, ŝ, c), and ŝ′ = F̂C(ŝ, in). Therefore, for the state êln+1 =
(ŝ′, q̂′) it holds that (êln , êln+1) ∈ R̂E .

ŝ′ º s′ and q̂′ º q′. We thus conclude that êln+1 º emn+1 .

From the above we conclude that the Lemma holds. 2

Lemma 6.1.9 If for every path π̂ = π̂s ·¯ in Ê, ∀q̂ ∈ ¯[α̂(q̂) = 0], then
there is no fair path in E.

Proof of Lemma 6.1.9: Assume to the contrary that for every path π̂ = π̂s ·¯
in Ê, ∀q̂ ∈ ¯[α̂(q̂) = 0], but there is a fair path π = qm0 , qm1 . . . in E.

Let π = qm0 , qm1 . . . be a fair path in E, and let π̂ = q̂l0 , q̂l1 . . . be
its corresponding path in Ê. There are infinitely many states qmi in π
such that αE(qmi) = 1. From the monotonicity of α̂E it holds that either

95

α̂E(q̂li) = 1 or α̂E(q̂mi) = X. This contradicts the assumption that for every
path π̂ = π̂s · ¯ in Ê, ∀q̂ ∈ ¯[α̂(q̂) = 0], and the Lemma holds 2

From Lemma 6.1.7 and Lemma 6.1.9 it holds that if there is no 1-lasso
and no X-lasso in Ê, then there is no fair path in E. This concludes the
proof of Theorem 6.1.5. 2

As a result of theorem 6.1.5, checking Ĉ is now reduced to finding 1-lasso
and X-lasso in Ê. Note that this result is independent of the model checking
method that is used. In the next section we show how checking Ĉ is done
by 3-valued BMC

6.2 3-Valued Bounded Model Checking

As discussed in Section 2, Bounded model checking (BMC) is one of the most
efficient methods for formal verification, but even state of the art BMC tools
cannot cope with today’s large CPU blocks. Thus, verification engineers
are required to extract small enough designs under test (DUT) for formal
verification. This involves the application of various model reductions and
abstractions. On large industrial CPU designs, these tasks usually cannot
be carried out entirely by automated tools. In most cases it requires a lot
of manual work, and close familiarity of the verification engineer with the
design. A significant effort is also spent on modelling an environment for the
DUT, and on identifying and debugging false negatives, which are mainly
due to over-approximating abstractions. Since the DUT is low level, it usu-
ally includes internal signals and interfaces which may change often during
the development and verification cycle of an industrial design. Thus, keeping
up with even minor changes in the design may require costly maintenance
of the formal verification environment.

In order to keep up with the growing design complexity, users must be
able to apply formal verification on large designs. When working on the
natural block boundaries, as opposed to working on a small DUT, the inter-
faces are well defined, and modelling the environment is simpler. Working
at this level enables proving higher level properties, the cost of maintenance
drops significantly, and proofs become more portable. Additionally, the
environment for the block boundaries can be shared with other validation
techniques (e.g. simulation).

In this section we show how 3-valued model checking enables applying
formal verification to very large industrial designs, using their natural inter-
faces instead of extracting small DUTs. Given a large design and an LTL
property, the verification engineer chooses a set of inputs to the circuit that
are in the cone of influence of the property being checked, but are irrelevant
to it. These inputs are assigned the value X. The Xs propagate through the
design and eliminate irrelevant parts of it, and thereby simplify the model
checking problem. This is done without defining a DUT explicitly or accu-

96

X

m

M

Figure 6.1: High Level Checking

rately. Choosing irrelevant inputs can be done automatically (e.g. by static
analysis) or manually. However, even if done manually, the user is only re-
quired to be familiar with the interface of the large design, rather than with
its internal details. This interface is likely to be well defined, and it does not
change during the development and verification cycle. We demonstrate this
in Figure 6.1. Instead of extracting the small unit m out of the design M ,
we assign some of the inputs to M with X. This cuts out irrelevant parts of
M without extracting m explicitly. The user does not have to be familiar
with the internal details of M , and does not have to model the environment
of m, which is already implemented in M . Our method returns true or
false if the property holds or fails on the design, or X if it is impossible to
determine whether the property holds or not, due to too many X’s assigned
to inputs.

We developed our technique within Intel’s BMC framework, implemented
on top of a state-of-the-art CNF SAT solver [60]. We refer to this imple-
mentation as X-BMC. We used X-BMC for checking real life assertions on
next-generation CPU designs currently being developed, as well as on a set
of smaller benchmarks. In our experiments we obtained outstanding results.
We were able to run verification on huge designs, up to an order of mag-
nitude larger than the models that current industrial-strength methods can
handle.

In addition to the advantages mentioned above, X-BMC can enhance
the performance of standard formal verification methods that do involve
extracting DUTs. Extracting a DUT from a large design is typically done
by defining a set of cut-points, and removing the logic that drives them. This
task is based on various manual and automatic abstraction methods such
as localization reduction [47]. The user then has to build an environment to
model the behavior of the internal cut-points, or leave them as free inputs
to the DUT. X-BMC, on the other hand, does not leave cut-points as free
inputs, but rather assigns them the constant X. This way, the DUT is
further simplified, as the Xs propagate through the model. This leads to
a significant speedup in the checking procedure, both in terms of faster

97

iterations, and fewer iterations required for finding a bug. X-BMC also
gives immediate indication of too coarse abstractions, and enables tracing
the reason for an X result returned by model checking.

6.2.1 Related Work

The common approach to abstraction and refinement for BMC of circuits
is localization reduction. Various methods based on this approach were sug-
gested in works such as [34, 51, 36] and [50]. In these methods, abstract
models are created by choosing cut-points in the circuit, and removing the
logic that drives them, leaving them as free inputs to the new abstract cir-
cuit. This way, a reduction in the size of the model is achieved. These
methods only allow internal nodes to be cut-points. Therefore, they do not
allow defining the abstraction on the boundaries of the design that is being
checked, as with X-BMC. Additionally, X-BMC enhances these abstraction
methods by assigning X to cut-points. As explained above, this results in a
further simplified model, which leads to faster and fewer checking iterations.
Leaving the cut-points as free inputs to the abstract models also results in
an over-approximating abstraction, which may yield false negative results.
X-BMC, on the other hand, never returns a false negative result, but rather
returns X as an indication of a too coarse abstraction.

Works such as [88, 64] gain reduction in the size of circuits by looking
for observability don’t cares. These are nodes in the cone of influence of
the property being checked, that have no effect on whether it is satisfied by
the circuit or not. However, the method for finding such nodes imposes a
significant computational overhead. It is only roughly under-approximated,
and is not feasible for very large designs.

6.2.2 X-BMC

X-BMC is an iterative algorithm, similar to BMC, for checking bounded
paths in an abstract model. In each iteration of X-BMC, all the paths of
length k in an abstract model M̂ are checked against an LTL property P .
If a bug is found, X-BMC returns 0. Otherwise, X-BMC checks if there is
any run of M̂ for which it is impossible to decide if P holds. If no such
path exists, X-BMC concludes that there is no erroneous path of length k in
M̂ , and the bound is increased. If such a path exists, the model is refined.
Alternatively, it is possible to increase the length k, and refine the abstract
model only if a bug is not found in longer paths.

The abstraction in X-BMC is derived by choosing a set of cut-points
in the circuit. These nodes may be chosen by any abstraction scheme, ei-
ther automatic, manual, or a combination of the two, allowing the user to
incorporate his knowledge about the model into the abstraction. X-BMC re-
places the functions corresponding to the cut-points with the constant value

98

X, thus removing the logic that drives them. Inputs to the circuit may
also be chosen as cut-points. Assigning these inputs with the constant X
and propagating their value forward abstracts out parts of the circuit that
depend on them. This is obtained without defining the abstracted parts
explicitly or accurately.

6.2.3 X-BMC: Implementation

For a circuit C, an abstraction Ĉ for C, and an LTL formula P = Aψ, let M
be the Kripke structure corresponding to C, let M̂ be the Kripke structure
corresponding to Ĉ, and let B̂¬ψ be the Büchi automaton corresponding to
¬ψ. Let Ê be the product of M̂ and B̂¬ψ, as defined in Section 6.1.5.

Let Y be a set of state variables, representing the states of Ê. For
ê, ê′ ∈ ŜE , we say that ê′ =b ê iff ∀yi ∈ Y [ê′(yi) =b ê(yi)]. By using the
operator =b we can conclude that two ternary assignments to Y represent
the same state in Ê.

We construct the ternary formulae f̂airi, ϕ̂πi, and ϕ̂ei following the con-
struction of fairi, ϕei, and ϕπi given in Equations 2.2, 2.3 and 2.4. Note
that since we are comparing abstract states in Ê, we replace (el = ei) in
fairi, by (êl =b êi) in f̂airi.

f̂airi(e0 . . . ei) =
∨

0≤l<i

(êl = êi) ∧

∨

l≤j<i

α̂E(êj)

 (6.1)

ϕ̂ei(ê0 . . . êi) = ÎBE
0 (ê0) ∧

∧

0≤j<i

R̂E
B(êj , êj+1) ∧ f̂airi(ê0 . . . êi) (6.2)

ϕ̂πi(ê0 . . . êi) = ÎME
0 (ê0) ∧

∧

0≤j<i

R̂E
M (êj , êj+1) (6.3)

We define
ϕ̂(1,i) = (ϕ̂πi =b 1) ∧ (ϕ̂ei =b 1)

ϕ̂(X,i) = (ϕ̂πi =b 1) ∧ (ϕ̂ei =b X)

Note that ϕ̂(1,i) and ϕ̂(X,i) are Boolean, and their satisfiability can be
checked by a SAT solver. An assignment satisfying ϕ̂(1,i) represents a 1-lasso
in Ê. An assignment satisfying ϕ̂(X,i) represents an X-lasso in Ê.

The pseudo code for X-BMC is given in Figure 6.2, and complies with
Theorem 6.1.5. The SAT calls in lines 3 and 5 search for 1-lasso and
X- lasso in Ê. A satisfying assignment found by the SAT call in line 3
represents a 1-lasso in Ê, and thus represent a counterexample in M . If
neither of the SAT calls in line 3 and 5 return a satisfying assignment, then
there are no 1-lasso and no X-lasso in Ê, and thus it is definite that there
is no counterexample of the current length in M . If there is no 1-lasso, but

99

0. X −BMC(M̂, P) {
1. k ← 0
2. while(true) {
3. if SAT (ϕ̂(1,k))
4. return false
5. if SAT (ϕ̂(X,k))
6. refine M̂ or inc(k)
7. inc(k)
8. }
9. }

Figure 6.2: X-BMC

there is an X-lasso, then the result of X-BMC is X. This is due to M̂ not
containing enough information for reaching a definite conclusion. At this
point (line 6), M̂ should be refined, in order to try and get a definite result,
or k should be increased, trying to find a deeper counterexample. Note
that the satisfying assignment for ϕ′(X,i) is in fact a trace that leads to the
unknown result due to the X’s in the cut-points.

6.2.4 Experimental Results

For evaluating X−BMC we incorporated it into Intel’s framework for BMC,
implemented on top of the state of the art CNF SAT solver [60].

We conducted our first experiments on IBM’s Calculator 2 design [81],
a few arithmetic modules, and the Content Addressable Memory (CAM)
module from Intel’s GSTE tutorial. These designs have 1150 to 2850 latches.
All of these experiments use dedicated computers with a 3.2Ghz Intel Xeon
CPU and 8GB RAM.

The results of these experiments are given in the tables in Figure 6.3(a,b).
The assertions in (a) hold up to the computed bound, whereas the assertions
in Figure (b) fail. The columns “BMC Depth” and “X-BMC Depth” present
the bound that was reached by each algorithm with a timeout of 1 hour.
For a given bound reached by BMC, the column “Speedup to BMC Depth”
in (a) shows the speedup of X-BMC over BMC for reaching this bound. In
cases where BMC reaches deeper than X-BMC, speedup < 1. The column
“Speedup” in (b) presents the speedup of X-BMC over BMC for falsifying
the properties.

For most of the properties that we checked, X-BMC significantly out-
performed BMC both in terms of depth reached and in run times. These
experiments also show that the overhead incurred by the dual rail encoding
was negligible relative to the advantages of X-BMC.

Next we discuss running X-BMC on a very large industrial design. For

100

Pass BMC X-BMC Speedup to
Model Depth Depth BMC depth

1 CAM 432 20 0.022
2 27 21 0.029
3 51 13 0.046
4 Calc2 16 21 23.2
5 11 14 8.6
6 ar1_32_b 112 142 17.1
7 46 63 3.9
8 88 88 2.3
9 ar1_64_b 37 50 19.1

10 20 24 11.7
11 5 149 96.8
12 bar_32_b 45 48 12.3
13 15 23 32.3

(a) Properties verified up to the reached
bound

BMC X-BMC
Model Depth Time Time Speedup

14 CAM 12 25 107 0.23
15 36 226 431 0.52
16 Calc2 19 35 30 1.17
17 14 87 95 0.92
18 ar1_32_b 9 7 12 0.58
19 9 10 13 0.77
20 ar1_64_b 17 431 323 1.33
21 16 > 1hr 1778 ----
22 5 21 26 0.81
23 15 108 79 1.37
24 bar_32_b 14 2241 209 10.72
25 15 > 1hr 2610 ----
26 25 > 1hr 3103 ----
27 50 > 1hr > 1hr ----

Fail

(b) Failed Properties

Model ALU Abs 1 Abs 2 Abs 3 Abs 4 Abs 5
Latches 133K 132K 115K 108K 74K 71K
Gates 6.1M 6.0M 5.9M 5.8M 0.6M 0.5M

P Result Run Time (s)
P1 fail 266 281 270 254 103 105
P2 pass 262 271 265 244 212 205
P3 fail 264 280 249 282 285 103
P4 pass 412 365 342 323 X X
P5 fail 278 267 252 264 110 108
P6 pass 654 640 631 615 587 552
P1 fail M/O M/O M/O 12280 525 168
P2 pass M/O M/O M/O 479 411 235
P3 fail M/O M/O M/O M/O M/O 408
P4 F/N M/O M/O M/O M/O F/N F/N
P5 fail M/O M/O M/O M/O 908 632
P6 pass M/O M/O M/O M/O 2241 199

X
B

M
C

B
M

C

(c) Large ALU Verification

Figure 6.3: X-BMC run time. (a),(b) The number of latches in CAM, Calc2,
ar1 21 b, ar 64 b, and bar 32 b is 1152, 2781, 572, 1914, and 2813 respectively. (c)
Checking a large ALU on a 32GB RAM machine. P stands for property, M/O
stands for memory out, and F/N stands for false negative. Abs 1 to Abs 5 are
abstractions of the ALU, where Abs 5 is the smallest abstract model. #FF and
#Gates are the number of flip flops (in thousands) and the number of combinational
gates (in millions) in each model.

101

these experiments we used a large ALU from a core of a next-generation
CPU, which is currently being developed at Intel. All experiments used a
dedicated machine with an Intel Xeon 3Ghz CPU and 32GB RAM.

We checked the design against 6 different properties, all to depth 32.
Since there is no automatic BMC-based tool that can handle such a large
design, we followed the common methodology in the industry, and cut out
parts of the design until a solvable instance was reached. This was done
manually, based on our familiarity with the model. Each column in the table
describes a smaller abstract model, where ALU is the complete design, and
Abs 5 is the smallest model required for getting concrete results. The sizes
of the models that are shown in the table include only latches and gates that
are in the cone of influence of the checked property.

Figure 6.3(c) shows the results of using BMC and X-BMC on the different
models. As seen in the table, BMC is capable of handling only the smallest
abstract models that were extracted from the original design, and suffers
from a memory blowout on the larger ones. That is, using BMC requires a
significant manual work for achieving solvable DUTs. In contrast, X-BMC
could tackle the whole ALU, simply by assigning some of its inputs to be
X. This is a relatively simple task at the level of the whole ALU, where the
interface is simple and well defined, and it does not require familiarity with
the design itself. Note that the ALU is an order of magnitude larger than
models that are handled by the methods discussed in Section 4.4.

Apart from the methodological difference, X-BMC also shows a signifi-
cant speedup in run-times over the abstract models that BMC could solve.
This shows that assigning cut-points with the constant X simplifies the work
of the SAT solver, as opposed to assigning them with free variables. Note
that for each counterexample returned by BMC for the abstract models, we
have to verify that it is not spurious. We did not add the time required for
this check to the run times of BMC. These checks are not required in X-
BMC, which returns X if the model is too abstract. This indeed happens in
P4, where BMC returns a spurious counterexample, while X-BMC returns
X. In that case, Abs3 is used for obtaining a concrete result in X-BMC,
whereas BMC can not obtain a concrete result.

In order to avoid masking of marginal cases, we conducted the same
experiments on a machine with 64GB RAM, and a timeout of 10 hours. The
results of these experiments are presented in Figure 6.4. These experiments
show that the run times of BMC grows exponentially with the size of the
model, while the additional memory allows only a few additional abstract
models to be handled. In contrast, X-BMC is almost insensitive to the
addition of irrelevant parts of the model.

102

0

2000

4000

6000

8000

10000

12000

14000

16000

Time (s)

Abs 5 Abs 4 Abs 3 Abs 2 Abs 1 ALU

Model

P1 BMC
P2 BMC

P6 BMC

P5 BMC
P3 BMC

P1 BMC
P2 BMC

P6 BMC

P5 BMC
P3 BMC

P1 XBMC
P2 XBMC
P3 XBMC
P5 XBMC
P6 XBMC

P1 BMC
P2 BMC
P3 BMC
P5 BMC
P6 BMC

Figure 6.4: BMC and X-BMC run times on a 64GB RAM machine. Abs 1. . . Abs
5 are abstractions of ALU.

6.3 3-Valued Unbounded Model Checking

Let C be a circuit, and let P = AGexp be a safety property, where exp is
a Boolean expression over atomic formulae. Let Ĉ be an abstraction of C,
and let M̂ = 〈Ŝ, Î0, R̂, L̂〉 be the Kripke structure corresponding to Ĉ. We
follow the definitions in equations 2.6, 2.7 and 2.8.

ϕ̂k
b (ê0 . . . êk) = ÎE

0 (ê0) ∧
k−1∧

i=0

R̂(êi, êi+1) ∧
k∨

i=0

¬êxp(êi) (6.4)

̂loop freek(ê0 . . . êk) =
∧

0 ≤ i, j ≤ k
i 6= j

¬(êi = êj) (6.5)

ϕ̂k
ind(ê0 . . . êk) =

k∧

i=0

(
R̂E(êi, êi+1) ∧ êxp(êi)

)
∧ ̂loop freek(ê0 . . . êk)∧¬êxp(êk+1)

(6.6)

The pseudo code of our 3-valued UBMC algorithm is given in Figure 6.5.
At iteration k, satisfiability of ϕ̂k

b =b 1 implies that there is a path of length
k from an initial state in M̂ , where ¬êxp is 1, and therefore [M̂ |= P] = 0.
In lines 8, 9 the algorithm proceeds to the next iteration. This is the case
where there is no erroneous path of length k from an initial state in M̂ , but
k consequent states where êxp is 1 do not yet imply that êxp is 1 in the
next state as well. If ϕ̂k

b =b X or ϕ̂k
ind =b X are satisfiable, then there is not

103

0. X − UBMC(M̂, P)
1. k ← 0
2. while(1) {
3. if SAT (ϕ̂k

b =b 1)
4. return false
5. if SAT (ϕ̂k

b =b X)
6. refine M̂

7. if SAT (ϕ̂k
ind =b 1)

8. inc(k)
9. do next iteration
10. if SAT (ϕ̂k

ind =b X)
11. refine M̂
12. return true
13. }

Figure 6.5: M is a model, M ′ º M , and P is a safety property.

enough information on paths of length k, and M̂ has to be refined. If none
of the formulae is satisfiable, then [M̂ |= P] = 1.

104

Chapter 7

Conclusion

We presented new approaches to symbolic model checking of hardware mod-
els.

We presented SAT and all-SAT algorithms for model checking. Our al-
gorithms use propositional representation, as well as a graph representation,
of the models. We also adapt our SAT algorithm for solving 3-valued prob-
lems. Our SAT and all-SAT methods allow us to increase the performance
of various model checking algorithms, and solve problems more efficiently
than was done before. We also combine SAT based algorithms with BDD
representation, and exploit the benefits of both approaches.

We presented different methods for automatic refinement in STE, instead
of the common manual refinement. Our SAT based automatic refinement
complements our SAT based STE algorithm. Our responsibility based STE
refinement is independent of the STE method, and gives high quality results.
Automatic refinement requires far less user effort and expertise, which are
the current bottleneck in practical usage of STE.

Last, we presented an automata theoretic approach to 3-Valued model
checking. We defined 3-valued models, and gave 3-valued semantics to the
LTL specification language. Our approach can be used for explicit or sym-
bolic model checking.

We implemented this approach in 3-valued Bounded Model Checking.
This implementation allowed us to propose a new methodology for BMC of
very large circuits. In our methodology, a lot of the manual work that is
performed in the common approach to BMC is avoided, by allowing the user
to generate efficient abstract models without explicitly defining them. Our
3-valued implementation also speeds up the SAT solving process in BMC.
Therefore, it can also be used to speedup the SAT solving process when
other, either manual or automatic, abstraction methodologies for BMC are
used.

105

Bibliography

[1] Sara Adams, Magnus Bjork, Tom Melham, and Carl Seger. Automatic Ab-
straction in Symbolic Trajectory Evaluation . In FMCAD ’07, 2007.

[2] Roy Armoni, Sergey Egorov, Ranan Fraer, Dmitry Korchemny, and Moshe Y.
Vardi. Efficient LTL compilation for sat-based model checking. In International
Conference on Computer-Aided Design (ICCAD’05), pages 877–884, 2005.

[3] Clark Barrett and Jacob Donham. Combining SAT methods with non-clausal
decision heuristics. In Proceedings of the CADE-20 Workshop: Pragmatics of
Decision Procedures in Automated Reasoning (PDPAR’04), July 2004. Cork,
Ireland.

[4] Armin Biere, Cyrille Artho, and Viktor Schuppan. Liveness checking as safety
checking. Electr. Notes Theor. Comput. Sci., 66(2), 2002.

[5] Armin Biere, Alessandro Cimatti, Edmund M. Clarke, Masahiro Fujita, and
Yunshan Zhu. Symbolic model checking using sat procedures instead of bdds.
In DAC, pages 317–320, 1999.

[6] Per Bjesse and Koen Claessen. Sat-based verification without state space
traversal. In Formal Methods in Computer-Aided Design, Third International
Conference, FMCAD 2000, Proceedings, pages 372–389, 2000.

[7] Per Bjesse, Tim Leonard, and Abdel Mokkedem. Finding bugs in an alpha
microprocessor using satisfiability solvers. In Computer Aided Verification,
13th International Conference, CAV 2001, Proceeding, pages 454–464, 2001.

[8] Glenn Bruns and Patrice Godefroid. Model checking partial state spaces with
3-valued temporal logics. In Computer Aided Verification, 11th International
Conference, CAV ’99, Proceedings, pages 274–287, 1999.

[9] Randal E. Bryant. Graph-based algorithms for boolean function manipulation.
IEEE Trans. Computers, 35(8):677–691, 1986.

[10] Jerry R. Burch, Edmund M. Clarke, Kenneth L. McMillan, David L. Dill, and
L. J. Hwang. Symbolic model checking: 1020 states and beyond. Information
and Computation, 98(2):142–170, June 1992.

[11] Kameshwar Chandrasekar and Michael S. Hsiao. State set management for sat-
based unbounded model checking. In ICCD, pages 585–590. IEEE Computer
Society, 2005.

[12] Pankaj Chauhan, Edmund M. Clarke, and Daniel Kroening. Using SAT based
image computation for reachability analysis. Technical Report CMU-CS-03-
151, Carnegie Mellon University, School of Computer Science, 2003.

106

[13] Pankaj Chauhan, Edmund M. Clarke, James H. Kukula, Samir Sapra, Hel-
mut Veith, and Dong Wang. Automated abstraction refinement for model
checking large state spaces using sat based conflict analysis. In Formal Meth-
ods in Computer-Aided Design, 4th International Conference, FMCAD 2002,
Proceedings, pages 33–51, 2002.

[14] Marsha Chechik and Wei Ding. Lightweight reasoning about program correct-
ness. In Proceedings of the 2001 conference of the Centre for Advanced Studies
on Collaborative Research, CASCON’01, page 1, 2001.

[15] Yan Chen, Yujing He, Fei Xie, and Jin Yang. Automatic abstraction refine-
ment for generalized symbolic trajectory evaluation. In Formal Methods in
Computer-Aided Design, 7th International Conference, FMCAD 2007, Pro-
ceedings, pages 111–118, 2007.

[16] Hana Chockler, Orna Grumberg, and Avi Yadgar. Efficient automatic ste
refinement using responsibility. In Tools and Algorithms for the Construction
and Analysis of Systems, 14th International Conference, TACAS 2008, Held
as Part of the Joint European Conferences on Theory and Practice of Software,
ETAPS 2008. Proceedings, pages 233–248, 2008.

[17] Hana Chockler and Joseph Y. Halpern. Responsibility and blame: A
structural-model approach. J. Artif. Intell. Res. (JAIR), 22:93–115, 2004.

[18] Hana Chockler, Joseph Y. Halpern, and Orna Kupferman. What causes a
system to satisfy a specification?. ACM Trans. Comput. Log., 9(3),
2008.

[19] Edmund M. Clarke, Orna Grumberg, Somesh Jha, Yuan Lu, and Helmut Veith.
Counterexample-guided abstraction refinement for symbolic model checking.
J. ACM, 50(5):752–794, 2003.

[20] Edmund M. Clarke, Orna Grumberg, and Doron A. Peled. Model Checking.
MIT press, December 1999.

[21] Edmund M. Clarke, Anubhav Gupta, James H. Kukula, and Ofer Strichman.
Sat based abstraction-refinement using ilp and machine learning techniques.
In Computer Aided Verification, 14th International Conference, CAV 2002,
Proceedings, pages 265–279, 2002.

[22] Martin Davis, George Logemann, and Donald Loveland. A machine program
for theorem-proving. Commun. ACM, 5(7):394–397, 1962.

[23] Martin. Davis and Hilary. Putnam. A computing procedure for quantification
theory. JACM, 7(3):201–215, July 1960.

[24] Hideo Fujiwara and Takeshi Shimono. On the acceleration of test generation
algorithms. IEEE Trans. Computers, 32(12):1137–1144, 1983.

[25] Malay K. Ganai, Pranav Ashar, Aarti Gupta, Lintao Zhang, and Sharad Malik.
Combining Strengths of Circuit-Based and CNF-Based Algorithms for a High-
Performance SAT Solver. In DAC ’02: Proceedings of the 39th conference on
Design automation, pages 747–750, New York, NY, USA, 2002. ACM Press.

[26] Malay K. Ganai, Aarti Gupta, and Pranav Ashar. Efficient sat-based un-
bounded symbolic model checking using circuit cofactoring. In ICCAD, pages
510–517. IEEE Computer Society / ACM, 2004.

107

[27] Marcelo Glusman, Gila Kamhi, Sela Mador-Haim, Ranan Fraer, and Moshe
Vardi. Multiplecounterexample guided iterative abstraction refinement: An
industrial evaluation. In TACAS’03, 2003.

[28] Eugene Goldberg and Yakov Novikov. Berkmin: A fast and robust sat-solver.
In DATE ’02, page 142, Washington, DC, USA, 2002. IEEE Computer Society.

[29] Orna Grumberg, Martin Lange, Martin Leucker, and Sharon Shoham. Don’t
know in the µ-calculus. In VMCAI’05, volume 3385 of Lecture Notes in Com-
puter Science. Springer, 2005.

[30] Orna Grumberg, Martin Lange, Martin Leucker, and Sharon Shoham. When
not losing is better than winning: Abstraction and refinement for the full
mu-calculus. Inf. Comput., 205(8):1130–1148, 2007.

[31] Orna Grumberg, Assaf Schuster, and Avi Yadgar. Memory efficient all-
solutions sat solver and its application for reachability analysis. In 5th Con-
ference on Formal Methods in Computer Aided Design (FMCAD’04), pages
275–289, 2004.

[32] Orna Grumberg, Assaf Schuster, and Avi Yadgar. 3-valued circuit sat for ste
with automatic refinement. In ATVA’07, pages 457–473, 2007.

[33] Aarti Gupta and Pranav Ashar. Integrating a boolean satisfiability checker
and bdds for combinational equivalence checking. In VLSID ’98: Proceedings
of the Eleventh International Conference on VLSI Design: VLSI for Signal
Processing, page 222, Washington, DC, USA, 1998. IEEE Computer Society.

[34] Aarti Gupta, Malay Ganai, Zijiang Yang, and Pranav Ashar. Iterative ab-
straction using sat-based bmc with proof analysis. In ICCAD ’03: Proceedings
of the 2003 IEEE/ACM international conference on Computer-aided design,
page 416, Washington, DC, USA, 2003. IEEE Computer Society.

[35] Aarti Gupta, Zijiang Yang, Pranav Ashar, and Anubhav Gupta. Sat-based im-
age computation with application in reachability analysis. In FMCAD, volume
1954 of Lecture Notes in Computer Science, 2000.

[36] Anubhav Gupta and Ofer Strichman. Abstraction refinement for bounded
model checking. In Computer Aided Verification, 17th International Confer-
ence, CAV 2005, Proceedings, pages 112–124, 2005.

[37] Arie Gurfinkel and Marsha Chechik. Why waste a perfectly good abstrac-
tion? In Holger Hermanns and Jens Palsberg, editors, TACAS, volume 3920
of Lecture Notes in Computer Science, pages 212–226. Springer, 2006.

[38] Josef Y. Halpern and Juda Pearl. Causes and explanations: A structural-
model approach — part 1: Causes. In Uncertainty in Artificial Intelligence:
Proceedings of the Seventeenth Conference (UAI-2001), pages 194–202, San
Francisco, CA, 2001. Morgan Kaufmann Publishers.

[39] Tamir Heyman, Daniel Geist, Orna Grumberg, and Aassaf Schuster. A scal-
able parallel algorithm for reachability analysis of very large circuits. Formal
Methods in System Design, 21(3):317 – 338, November 2002.

[40] David Hume. A treatise of human nature. John Noon, London, 1739.

108

[41] Madhu K. Iyer, Ganapathy Parthasarathy, and Kwang-Ting Cheng. SATORI
- A Fast Sequential SAT Engine for Circuits. In ICCAD ’03: Proceedings
of the 2003 IEEE/ACM international conference on Computer-aided design,
page 320, Washington, DC, USA, 2003. IEEE Computer Society.

[42] HoonSang Jin, Mohammad Awedh, and Fabio Somenzi. CirCUs: A Satisfia-
bility Solver Geared towards Bounded Model Checking. In CAV, volume 3114
of Lecture Notes in Computer Science, pages 519–522. Springer, 2004.

[43] HoonSang Jin and Fabio Somenzi. Prime clauses for fast enumeration of sat-
isfying assignments to boolean circuits. In DAC ’05: Proceedings of the 42nd
annual conference on Design automation, pages 750–753, New York, NY, USA,
2005. ACM Press.

[44] Hyeong-Ju Kang and In-Cheol Park. Sat-based unbounded symbolic model
checking. In DAC, 2003.

[45] Andreas Kuehlmann. Dynamic Transition Relation Simplification for Bounded
Property Checking. In IEEE/ACM International Conference on Computer
Aided Design (ICCAD’04), San Jose, California, November 2004.

[46] Andreas Kuehlmann, Malay K. Ganai, and Viresh Paruthi. Circuit-based
boolean reasoning. In DAC ’01: Proceedings of the 38th conference on Design
automation, pages 232–237, New York, NY, USA, 2001. ACM Press.

[47] Robert P. Kurshan. Computer-Aided Verification of coordinating processes -
the automata theoretic approach. Princeton Univ. Press, 1994.

[48] Shuvendu K. Lahiri, Randal E. Bryant, and Byron Cook. A symbolic ap-
proach to predicate abstraction. In Warren A. Hunt Jr. and Fabio Somenzi,
editors, CAV, volume 2725 of Lecture Notes in Computer Science, pages 141–
153. Springer, 2003.

[49] Bin Li, Michael S. Hsiao, and Shuo Sheng. A novel sat all-solutions solver for
efficient preimage computation. In DATE ’04: Proceedings of the conference
on Design, automation and test in Europe, page 10272, Washington, DC, USA,
2004. IEEE Computer Society.

[50] Bing Li and Fabio Somenzi. Efficient abstraction refinement in interpolation-
based unbounded model checking. In TACAS, pages 227–241, 2006.

[51] Bing Li, Chao Wang, and Fabio Somenzi. Abstraction refinement in symbolic
model checking using satisfiability as the only decision procedure. STTT,
7(2):143–155, 2005.

[52] Chu Min Li and Anbulagan. Heuristics based on unit propagation for satisfi-
ability problems. In IJCAI (1), pages 366–371, 1997.

[53] Feng Lu, Madhu K. Iyer, Ganapathy Parthasarathy, Li-C. Wang, Kwang-Ting
Cheng, and Kuang-Chien Chen. An efficient sequential sat solver with im-
proved search strategies. In DATE, pages 1102–1107. IEEE Computer Society,
2005.

[54] Feng Lu, Li-C. Wang, Kwang-Ting Cheng, and Ric C-Y Huang. A Circuit
SAT solver with signal correlation guided learning. In DATE ’03: Proceedings
of the conference on Design, Automation and Test in Europe, page 10892,
Washington, DC, USA, 2003. IEEE Computer Society.

109

[55] Zohar Manna and Amir Pnueli. Temporal Verification of Reactive Systems:
Safety. Springer, New York, 1995.

[56] Joao P. Marques-Silva and Kerem A. Sakallah. Conflict analysis in search
algorithms for propositional satisfiability. In IEEE International Conference
on Tools with Artificial Intelligence, 1996.

[57] Kenneth L. McMillan. Applying sat methods in unbounded symbolic model
checking. In Computer Aided Verification, 14th International Conference, CAV
2002, Proceedings, pages 250–264, 2002.

[58] Kenneth L. McMillan. Interpolation and sat-based model checking. In Com-
puter Aided Verification, 15th International Conference, CAV 2003, Proceed-
ings, pages 1–13, 2003.

[59] Matthew W. Moskewicz, Conor F. Madigan, Ying Zhao, Lintao Zhang, and
Sharad Malik. Chaff: engineering an efficient sat solver. In DAC ’01: Proceed-
ings of the 38th annual Design Automation Conference, pages 530–535, New
York, NY, USA, 2001. ACM.

[60] Alexander Nadel, Moran Gordon, Amit Palti, and Ziyad Hanna. Eureka-2006
sat solver. in SAT-Race 2006, Seattle, WA, USA, affiliated with SAT’06.

[61] Manish Pandey, Richard Raimi, Randal E. Bryant, and Magdy S. Abadir.
Formal verification of content addressable memories using symbolic trajectory
evaluation. In DAC ’97: Proceedings of the 34th annual Design Automation
Conference, pages 167–172, New York, NY, USA, 1997. ACM.

[62] Ganapathy Parthasarathy, Madhu K. Iyer, Kwang-Ting (Tim) Cheng, and Li-
C. Wang. Safety Property Verification Using Sequential SAT and Bounded
Model Checking. IEEE Des. Test, 21(2):132–143, 2004.

[63] David A. Plaisted. Method for design verification of hardware and non-
hardware systems. United States Patents, 6,131, 078, October 2000.

[64] Stephen M. Plaza, Kai-hui Chang, Igor L. Markov, and Valeria Bertacco. Node
mergers in the presence of don’t cares. In ASP-DAC ’07: Proceedings of the
2007 Asia and South Pacific Design Automation Conference, pages 414–419,
Washington, DC, USA, 2007. IEEE Computer Society.

[65] Amir Pnueli. The temporal logic of programs. In 18th Annual Symposium on
Foundations of Computer Science, FOCS, pages 46–57, 1977.

[66] Jan-Willem Roorda. Symbolic trajectory evaluation using a satisfiability
solver. Licentiate Thesis, 2005.

[67] Jan-Willem Roorda and Koen Claessen. A new sat-based algorithm for sym-
bolic trajectory evaluation. In Correct Hardware Design and Verification Meth-
ods, 13th IFIP WG 10.5 Advanced Research Working Conference, CHARME
2005, Proceedings, pages 238–253, 2005.

[68] Jan-Willem Roorda and Koen Claessen. SAT-based assistance in abstrac-
tion refinement for Symbolic Trajectory Evaluation. In Proc. of Conference
on Computer-Aided Verification (CAV), Lecture Notes in Computer Science.
Springer Verlag, August 2006.

110

[69] Mooly Sagiv, Thomas Reps, and Reinhard Wilhelm. Parametric shape analysis
via 3-valued logic. ACM Trans. Program. Lang. Syst., 24(3):217–298, 2002.

[70] Tom Schubert. High level formal verification of next-generation microproces-
sors. In DAC ’03: Proceedings of the 40th annual Design Automation Confer-
ence, pages 1–6, New York, NY, USA, 2003. ACM.

[71] Tobias Schuele and Klaus Schneider. Three-valued logic in bounded model
checking. In MEMOCODE ’05: Proceedings of the 2nd ACM/IEEE Interna-
tional Conference on Formal Methods and Models for Co-Design, pages 177–
186, Washington, DC, USA, 2005. IEEE Computer Society.

[72] Carl-Johan H. Seger and Randal E. Bryant. Formal verification by sym-
bolic evaluation of partially-ordered trajectories. Form. Methods Syst. Des.,
6(2):147–189, 1995.

[73] Carl-Johan H. Seger, Robert B. Jones, John W. O’Leary, Thomas F. Melham,
Mark Aagaard, Clark W. Barrett, and Don Syme. An industrially effective
environment for formal hardware verification. IEEE Trans. on Computer-
Aided Design of Integrated Circuits and Systems, 24(9), 2005.

[74] Mary Sheeran, Satnam Singh, and Gunnar St̊almarck. Checking safety prop-
erties using induction and a sat-solver. In FMCAD ’00: Proceedings of the
Third International Conference on Formal Methods in Computer-Aided De-
sign, pages 108–125, London, UK, 2000. Springer-Verlag.

[75] Sharon Shoham and Orna Grumberg. A game-based framework for CTL coun-
terexamples and 3-valued abstraction-refinemnet. In Proceedings of the 15th
International Conference on Computer Aided Verification (CAV’03), volume
2725 of LNCS, pages 275–287, Boulder, CO, USA, July 2003. Springer.

[76] Ofer Shtrichman. Tuning SAT checkers for bounded model checking. In Com-
puter Aided Verification, pages 480–494, 2000.

[77] Fabio. Somenzi. CUDD: CU decision diagram package release 2.3.0, 1998.

[78] Christian Thiffault, Fahiem Bacchus, and Toby Walsh. Solving non-clausal
formulas with dpll search. In Principles and Practice of Constraint Program-
ming , 10th International Conference, CP 2004, Proceedings, pages 663–678,
2004.

[79] Rachel Tzoref and Orna Grumberg. Automatic refinement and vacuity detec-
tion for symbolic trajectory evaluation. In Computer Aided Verification, 18th
International Conference, CAV 06, Proceedings, pages 190–204, 2006.

[80] Moshe Vardi and Pierre Wolper. An automata-theoretic approach to automatic
program verification. In Proceedings of the First Annual Symposium on Logic
in Computer Science, pages 322–331, Cambridge, 1986.

[81] Bruce Wile, Wolfgang Roesner, and John Goss. Comprehensive Functional
Verification: The Complete Industry Cycle. Morgan-Kaufmann, 2005.

[82] James Christofer Wilson. Symbolic Simulation Using Automatic Abstraction
of Internal Node Values. PhD thesis, Stanford University, Dept. of Electrical
Engineering, 2001.

111

[83] Avi Yadgar, Orna Grumberg, and Assaf Schuster. Hybrid bdd and all-sat
method for model checking. In Languages: From Formal to Natural, pages
228–244, 2009.

[84] Eran Yahav, Thomas Reps, and Mooly Sagiv. LTL model checking for systems
with unbounded number of dynamically created threads and objects. Technical
report, TR-1424, Computer Sciences Department, University of Wisconsin,
Madison, WI, March 2001.

[85] Jin Yang, Rami Gil, and Eli Singerman. satGSTE: Combining the abstraction
of GSTE with the capacity of a SAT solver. In DCC, 2004.

[86] Jin Yang and Amit Goel. Gste through a case study. In ICCAD ’02: Pro-
ceedings of the 2002 IEEE/ACM international conference on Computer-aided
design, pages 534–541, New York, NY, USA, 2002. ACM.

[87] Hantao Zhang. SATO: An efficient propositional prover. In Proc. of the 14th
International Conference on Automated Deduction (CADE’97), 1997.

[88] Qi Zhu, Nathan Kitchen, Andreas Kuehlmann, and Alberto L. Sangiovanni-
Vincentelli. Sat sweeping with local observability don’t-cares. In Proceedings
of the 43rd Design Automation Conference, DAC 2006,, pages 229–234, 2006.

112

