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Abstract

Due to the fast development of the hardware and software industry,
there is a growing need for formal verification tools and techniques.
Two widely used formal verification methods are temporal logic model
checking and sequential equivalence checking. Temporal logic model
checking is a method for verifying finite-state systems with respect to
propositional temporal logic specifications. In sequential equivalence
checking, two sequential hardware designs are compared for language
equivalence, meaning that for every sequence of inputs, the two de-
signs produce the same sequence of outputs. Both model checking and
equivalence checking are fully automatic. However, they both suffer
from the state explosion problem, that is, their space requirements are
high and limit their applicability to large systems.

Many approaches for overcoming the state explosion problem have
been suggested; most of them use abstraction. An abstract model of
a verified system is a model, which describes a system that is similar
to the verified system but is simpler. An abstraction is conservative
if the results of verifying the abstract model are true for the verified
system. Thus, the abstract model preserves the verified properties of
the verified system. There are two types of preservations: We say
that an abstraction strongly preserves a set of verified properties, if for
every property in the set, the system satisfies the property if and only
if the abstract model satisfies it. Sometimes we relax our requirements
such that for every verified property, if the abstract model satisfies the
property then the system satisfies it as well. In this case the abstraction
weakly preserves the verified properties.

Strong preservation with respect to a set of properties can also be
seen as an equivalence relation: A system is equivalent to an abstract
model if the set of properties that the system satisfies is equal to the
set of properties that the abstract model satisfies. Similarly, weak
preservation with respect to a set of verified properties can be seen as
a preorder: An abstract model is greater than a system if the set of
properties that the system satisfies contains the set of properties that
the abstract model satisfies.

In this work we investigate different equivalence relations and pre-
orders and their usage for abstraction. We present an algorithm that



given a system constructs the smallest abstract model, which is simu-
lation equivalent to the system. Next, we compare different preorders,
which reflect a weak preservation of infinite behaviors. Finally, we
present an algorithm which exploits the modular structure of the sys-
tem to be verified, to improve the construction of an abstract model.
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Chapter 1

Introduction

Following the fast development of the hardware and software industry,
there is a growing need for formal verification tools and techniques.
Typically, a verification technique uses a model to describe the verified
system, and the verification of the system is executed on the model.
The model is represented as a graph, where the vertices of the graph
represent all possible configurations of the system. These vertices are
called states. The edges of the graph represent a possible change from
one configuration to another, and are called transitions. It is common
to associate the observable behavior (outputs) of a system in a specific
configuration with states, and to associate internal events (inputs) with
the transitions which they enable.

Two widely used verification methods are temporal logic model
checking and sequential equivalence checking. Temporal logic model
checking is a method for verifying finite-state systems with respect
to propositional temporal logic specifications. There the problem of
checking whether a system satisfies a temporal formula is reduced into
checking a graph property in the model. The method is fully automatic
and efficient in time. In sequential equivalence checking, two systems
are required to have the same behavior. The systems are equivalent
if for every sequence of input events, every possible behavior in one
system is possible in the other. For equivalence checking, a model
is constructed for each system, and the problem is reduced to trace
matching in the graphs.

Although modeling systems seems to be very useful, this method
has a major disadvantage, which is the size of the model. Since the



model represents each configuration of the system, its size is exponen-
tial in the size of the system. This problem, called the state explosion
problem, is seem to limit the use of such verification methods to small
systems only. Many approaches for overcoming the state explosion
problem have been suggested, including abstraction, partial order re-
duction, modular methods, and symmetry ([CGP99]). All are aimed
at reducing the size of the model to which verification methods are
applied, thus extending their applicability to larger systems. In this
work we investigate some of these methods and improve them.

In basic techniques that reduce the size of the model, the verified
model does not describe the system precisely but a simpler system,
which is “close enough” to the verified system. Since the described
system is simpler, the size of the verified model is smaller. Such a
model is called an abstract model. When using this technique, a naive
approach might give false results. The false results occur because the
abstract model is not close enough to the concrete model and there
exist some properties, which distinguish the concrete model from the
abstract model.

Thus we would like to limit the reduction technique to “correct
reductions”. However the correctness of the reduction depends on the
property that we wish to verify. For example, if the property depends
on the number of different configurations in the system, then every
model which is smaller than the precise model, will give a false result.
However, if the property depends only on one variable x, then all states
that agree on x can be collapsed to a single state, resulting in a smaller
model.

Given a concrete model M and a property @, a model A is a correct
abstraction of M with respect to ¢, if M E ¢ & A E . This
definition can be extended to a specification language £ as follow: A
is a correct abstraction of M with respect to L if for every ¢ € L,
M = ¢ & A |= ¢. This definition can be further extended from
a single pair of models to a reduction technique 7 which receives a
concrete model M and constructs an abstract model T(M). We say
that T strongly preserves the specification language L, if for every
model M, T(M) is a correct abstraction of M with respect to L.

Sometimes we relax our requirements so that for every model M and

property ¢ € L, if T(M) =t then M |= . In this case we say that



T weakly preserves the specification language £. However verifying an
abstract model that weakly preserves the concrete model might give a
false negative result.

Thus the first step in constructing a reduced model is to decide
which properties need to be preserved and what type of preservation
should be used. Then, a smaller abstract model, which preserves the
properties, is constructed, and finally the abstract model is verified.

Our work is concerned with the second step, and includes meth-
ods for constructing abstract models which strongly/weakly preserve a
desired specification language. These methods are evaluated by three
basic criteria:

1. The difference in the sizes of the concrete and abstract models.
2. The specification languages they preserve.

3. The complexity of the method.

1.1 Using equivalence relations and preorders for
reductions

In the previous section, we related the problem of verifying a system,
to a graph problem. We would like to do the same for the construction
of “correct abstract model”. One way to do it is to use equivalence
relations and preorders.

Strong preservation with respect to a specification language £ can
also be seen as an equivalence relation: Two models M and A are
equivalent with respect to £ (M =1, A) if for every ¢ € L, M = ¢ &
A | . Tt is easy to see that =, is an equivalence relation. Similarly,
weak preservation with respect to a specification language £ can be
seen as a preorder: Model A is greater than model M with respect to
L (M <p A)if for every v € L, A |= ¢ implies M = 4. It is easy to
see that <y, is a preorder (transitive and reflexive) over models.

Equivalence relations which are based on the structure of the graphs
(models), can also be evaluated according to the specification languages
that they strongly preserve. Since these relations are based on the
structure of the graph, the problem of finding a smaller (smallest)
equivalent model is reduced to a graph problem. For example, trace



equivalence strongly preserves the linear-time temporal logic LTL. An-
other relation that is widely used is the bisimulation equivalence [Par81].
It is shown in [BBLS91] that bisimulation equivalence strongly pre-
serves the Mu-Calculus logic[Koz83]. It also strongly preserves the
branching-time logics LTL,CTL, and CTL*, [GL94, CE81], as these
logics are expressible within the Mu-Calculus [BCM*192, Dam94]. A
preorder that is widely used in the context of abstractions for model
checking, is the simulation preorder [Mil71]. This preorder is often
used when abstraction is applied in order to construct a reduced model
([BBLS91],[CGLY4], [DGGIT7],[GLI4]). The preorder relates the re-
duced abstract model with the original one. It is shown in [BBLS91]
that the simulation preorder weakly preserves the universal fragment
of Mu-Calculus. It also weakly preserves LTL,ACTL, and ACTL*, the
universal fragments of CTL and CTL* [GL94], as these logics are ex-
pressible in universal Mu-Calculus.

Equivalence relations like bisimulation and trace equivalence, and
preorders like simulation and trace containment are defined with re-
spect to properties of the model as a graph. This enables the devel-
opment of reduction techniques, which are based on the structure of
the original model rather than the properties of the system. Since re-
ducing graphs is an easier task than reducing systems, some reduction
methods have been developed for these relations.

For an automatic algorithm that receives a concrete model and con-
structs a correct abstract model, equivalence relations are preferable to
preorders for several reasons: First, in equivalence-based reductions we
are usually interested in the minimal model which is equivalent to the
concrete model. Since this model is well defined, it can often be con-
structed in a fully automatic manner. For preorder-based reductions on
the other hand, the minimal model with respect to the preorder is usu-
ally trivial and does not contain sufficient information for verification.
Thus we are looking for some model that is greater by the preorder
(and smaller in size) than the concrete model, but is not necessarily
minimal. Since this model is not well defined, human intervention is
required. Second, equivalence-based reductions, unlike preorder-based
reductions, can be used in equivalence checking.

There are known algorithms for constructing the smallest model
which is trace/bisimulation equivalent to a given concrete model. Since



bisimulation implies trace equivalence, a minimization with respect to
bisimulation preserves more properties than minimization with respect
to trace equivalence. However, for the same reason, the result of min-
imization with respect to trace equivalent is smaller in size than the
result of minimizing with respect to bisimulation. The complexity of
these algorithms is different: While the complexity for language equiv-
alence is PSPACE-complete [SVW85], the complexity for computing
bisimulation is a small polynomial [PT87, Fer90, KS90].

1.2 Modular verification

It often happens that the verified system is composed of a few different
parts that are loosely connected to each other, meaning that the inter-
nal mutual influence inside each part is substantially stronger than the
influence of the different parts on each other. This modular structure
of the system can be helpful for verifying the system more efficiently.
When we are only interested in the observable behavior of a single
“component” of the system, we do not need to construct a model for
the whole system. Nevertheless, while verifying a single component of
the system, we would like to preserve properties that are influenced by
the other components of the system. Thus, we cannot verify a model
of the single part by itself.

In order to verify a component C', an abstract environment A of
the rest of the system M is constructed and composed with C'. In this
case there is a new definition for a correct abstraction: A is a correct
abstraction of M with respect to a specification language L if for every
formula ¢ in £, M||C E ¢ < A||C |E .

In [CLMB89] an interface rule for verifying a system component is
defined. The interface rule restricts the abstraction method and the
composition operator || in a way that ensures that for every formula ¢
in the specification language, A||C |= ¢ iff M||C |= ¢. Le., the abstrac-
tion technique strongly preserves the properties of the system. [Jos87]
suggests a method, where the environment is constructed manually
from formulas given by the user.

In the assume-guarantee paradigm [Fra76, Jon83, MC81, Pnu84],
properties of different parts of the systems are verified separately. The
environment of the verified part is represented by a formula, which



describes its properties. The formula either has been verified in the
environment or has been given by the user. The method proves asser-
tions of the form ¢ M ¢, meaning that if an environment satisfies ¢ then
the composition of M with the environment, satisfies ¢. The method
enables the creation of a proof schema, which is based on the structure
of the system.

[GL94] suggests a framework that uses the assume-guarantee paradigm
for semi-automatic verification. It presents a general method that uses
models as assumptions; the models are either generated from a formula
as a tableau, or are abstract models, which are given by the user. The
proof of v M ¢ is done automatically by verifying that the composition
of the tableau for ¢» with M satisfies ¢. The method requires a preorder
<, a composition operator || and a specification language £

1.3 Using simulation equivalence for minimization

In the Chapter 3 we suggest the use of the simulation equivalence re-
lation for minimization. The simulation equivalence relation is based
on the simulation preorder [Mil71]. This equivalence relation preserves
fewer properties than bisimulation but more than language equivalence.
Simulation equivalence strongly preserves ACTL*, and also strongly
preserves LTL and ACTL as sub logics of ACTL*. Both ACTL and
LTL are widely used for model checking in practice. LTL is also the
most suitable logic for sequential equivalence checking. Similarly to
bisimulation, the complexity of computing simulation equivalence is
polynomial. Our work includes a proof that there always exists a small-
est model with respect to simulation equivalence, and presentation of
an efficient algorithm that constructs this smallest model.

As an equivalence relation that is weaker than bisimulation, simula-
tion equivalence can derive smaller minimized structures. Consider for
example, the structure in part 1 of Figure 1.1. The structure in part
2 of Figure 1.1 is minimized with respect to simulation equivalence.
In comparison, the minimized structure with respect to bisimulation is
the structure in part 1 itself and the minimized structure with respect
to language equivalence is the structure in part 3 of the figure. The
results of Chapter 3 are given in [BGO00].
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1.4 Fair simulation

In methods like assume-guarantee, we often want to construct an ab-
stract model which abstracts a property, rather than a specific system.
In other words, we are looking for a model that abstracts exactly the
set of all models that satisfy the property. However, some properties
are not definable by a single model. A textbook example for this prob-
lem is an abstract model of a timer. In a timer an event occurs after a
fixed time interval. An abstract model that abstracts all timers needs
to enable the event after any finite time interval. However, any finite
model that contains such behaviors enables also a behavior in which
the event never occurs. Thus, an unrealistic infinite behavior is added
to the model.

Consequently, we need to strengthen the model, so that it can elim-
inate undesirable infinite behaviors. A common way to avoid such
behaviors is to add to the model fairness constraints, which distinguish
between wanted (fair) and unwanted (unfair) behaviors and to exclude
unfair behaviors from consideration. Indeed, there are a few definitions
of such fairness constraints.

The simulation preorder does not handle fairness constraints. It is
therefore desirable to extend the preorder so that it relates only the
fair behaviors of the models. This extension, however, is not uniquely
defined. Several distinct notions of fair simulation have been suggested

10



in the literature [GL94, Lyn96, HKR97, EWS01a).

Researchers have addressed the question of which notion of fair
simulation is preferable. In [HKR97], some of these notions are com-
pared with respect to the complexity of checking for fair simulation. In
[EWSO01a], a different set of notions is compared with respect to two
criteria: The complexity of constructing the preorder, and the abil-
ity to minimize a fair model by constructing a quotient model that is
language equivalent to the original one.

In Chapter 4 we make a broader comparison of four notions of
fair simulation: direct [DHWT91], delay [EWS01la], game [HKR97],
and exists [GL94]. We refer to several criteria that emphasize the
advantages of each of the notions.

We developed two practical applications that are based on the com-
parison. The first is an efficient approximated minimization algorithm
for the delay, game and exists simulations. For these preorders, a
unique equivalent smallest model does not exist. Therefore, an approx-
imation is appropriate. In addition, we suggest a new implementation
for the assume-guarantee [Fra76, Jon83, MC81, Pnu84] modular frame-
work presented in [GL94]. The new implementation, based on the game
simulation rather than the exists simulation, significantly improves the
complexity of the framework.

The results of Chapter 4 are presented in [BG02].

1.5 Modular minimization

Although reductions with respect to bisimulation or simulation equiv-
alence are polynomial and result in smaller models, computing the
reduction might require a large amount of resources (time and space).
This motivated the development of methods, which implement the re-
ductions more carefully. Some of these methods are listed here.

The algorithm in [LY92] minimizes models with respect to bisimula-
tion. In order to gain efficiency, the algorithm refers only to reachable
states and computes equivalence classes for bisimulation instead of pairs
of equivalent states. This appears to consume less memory for BDD-
based [Bry86] implementations. In [FV98], the algorithm presented in
[LY92] is applied to the intersection of the model with an automaton
representing the property that should be satisfied by the model. In

11



[CRFJ96], a reduction with respect to symmetry equivalence is per-
formed. Symmetry equivalence is a bisimulation equivalence, but not
necessarily the maximal one. [CRFJ96] reports that computing this
reduction is more efficient in the BDD framework than reduction with
respect to bisimulation.

Other works exploit modularity for reduction. The modular reduc-
tion in [ASSSV94] preserves a given formula which should be checked
for truth in the model. This method can result in a small model. How-
ever, since it preserves a single formula, it cannot be used for equiva-
lence checking. In [ASSB94], the equivalence relation is a combination
of language equivalence and fairness constraints. Since computing this
relation is PSPACE-complete, an approximation equivalence relation
is computed and the quotient model is defined with respect to the ap-
proximation equivalence relation. [GSL96] presents an algorithm that
constructs an abstract model of a system through a sequence of approx-
imations, where the final approximation is equivalent to the original
system with respect to the specification language. The approximations
are constructed according to interface specifications which are given by
the user. [Shi96] suggests to decompose the model, reduce each module
separately and compose the result.

In Chapter 5 we present a new modular minimization algorithm
which improves the naive modular algorithm. The naive modular algo-
rithm [Shi96] is based on partitioning of the system into components.
It minimizes the model in iterations. In each iteration two components
are selected, composed together and the result is minimized. This pro-
cess is repeated until all components are composed to form the full
minimized system. The advantages of this approach are:

e Time and space requirements of minimization algorithms depend
on the size of the model to which they are applied. By minimizing
components instead of the full system, we expect a better overall
complexity. Moreover, we will be able to minimize a system in
parts even when minimizing the full system is intractable due to
its size.

e It is sometimes impossible to complete the construction of the
minimized system due to the size of intermediate components.
In such cases, it might still be possible to apply some formal

12



verification procedures to a partially minimized model, composed
of minimized components with unminimized ones.

The improved algorithm we present improves a single iteration in the
naive algorithm. Given two components, the improved algorithm con-
structs the minimized model without ever constructing their full non-
minimized composition. Thus the algorithm avoids the bottleneck of
the naive algorithm. We present two versions of the improved algo-
rithm. The first is for deterministic systems and the second is for non-
deterministic ones. While the version for nondeterministic systems is
more general, it has worse complexity. Since deterministic systems are
widely used in the hardware industry, a special more efficient version
for these systems is worth developing.

Our work includes an implementation of the improved algorithm.
The implementation was done on an Intel verification platform at the
sequential equivalence verification CAD group of Intel design technol-
ogy in Haifa. We tested our algorithm on real designs. The results
imply that this method has a real potential in making bisimulation
minimization practical.

1.6 Using BDDs in formal verification

Symbolic verification is a technique to overcome the state explosion
problem, which is orthogonal to abstraction. Symbolic verification
refers to sets of states rather than each state separately. The advantage
of symbolic representation is that the size of the data-structure does
not depend on the size of set it represents. In practice, it often enables
the representation and manipulation of large sets of states, saving a
considerable amount of space.

BDDs [Bry86] are widely used in symbolic model checking and
equivalence checking. Efficient representation and manipulation of sets
and relations by BDDs has been the subject of extensive research.
Special attention is dedicated to representing and manipulating func-
tions. Functions are important because they represent the transition
relation of most hardware systems. Since in general functions can be
represented more efficiently than relations, it is worth developing spe-
cial algorithms that manipulate them. Indeed, several suggestions for

13



function manipulations have been made for BDDs [BCL91, CM90a,
MKRS00, CHJ*T90, CM90b].

There are two ways to represents functions: monolithic and par-
titioned and three approaches for manipulating them: (1) using the
monolithic representation as a binary relation, (2)using early quantifi-
cation [BCL91, GB94], and (3) using the expound and restrict subrou-
tines as suggested in [CM90a, CM90b].

Although, all three approaches are used in practice for image com-
putation [MIKRS00], when it comes to preimage computation, the ex-
pound subroutine suggested in [CM90a, CM90b| cannot compete with
either the monolithic algorithm or the early quantification algorithm.
The inefficiency of the expound subroutine is due to the information
which is attached to every BDD node. Since the expound subroutine
works from the root of the BDD to its leaves, the information attached
to the BDD nodes does not depend on the set of elements that the
node represents. This disables some important optimizations, which
are implemented for other BDD operations.

In Chapter 6 we improve the algorithm suggested in [CM90a, CM90b]
for the preimage operation. We suggest a new inverse algorithm with
the same complexity as the expound subroutine but with better con-
stants. Furthermore, the information, which is attached to every BDD
node, represents the preimage of the set represented by this node.
Thus, the implementation of the inverse algorithm is much simpler and
more intuitive; moreover, it is suitable for optimizations. Experimental
results show that the inverse algorithm works significantly more effi-
ciently than the expound subroutine, and in some cases even competes
successfully with the monolithic algorithm and the early quantification
algorithm.

Partial results of shapres 5 and 6 are presented in [BGO1].
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Chapter 2

Preliminaries

Let AP be a set of atomic propositions. A Kripke structure M over
AP is a four-tuple M = (5, so, R, L) where:

e S is a finite set of states.
e sy € S is the initial state.

e R C S xS is the transition relation that must be total, i.e., for
every state s € S there is a state s’ € S such that R(s,s’).

o [ : S — 247 ig a function that labels each state with the set of
atomic propositions true in that state.

The size |M] of a Kripke structure M is the pair (|S],|R|). We say
that |M| < |M'| if |S| < |S'] and |R| < |R|.

Let s be a state in a Kripke structure M. A trace in M starting
from s is an infinite sequence of states p = s¢s1s5 ... such that sg = s,
and for every i > 0, (s;,3,41) € R. The i-th state of trace p is denoted
pt.

The logic ACTL* [GL94] is the universal fragment of the powerful
branching-time logic CTL*. ACTL* consists of the temporal operators
X (next-time), U (until) and R (release), as well as the universal path
quantifier A (for all paths). We define ACTL* formulas in negation
normal form, namely, negation is applied only to atomic propositions.
ACTL*contains trace formulas and state formulas and is defined induc-
tively:
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e Let p be an atomic proposition, then p and —p are both a state
formulas and a trace formulas.

o Let ¢ and @ be trace formulas, then

— (¢ V) and (@ A ) are trace formulas.
— X, (¢U) and (pR)) are trace formulas.

— Ay is a state formula.
o Let ¢ and 1 be state formulas, then

— (¢ V) and (@ A1) are state formulas.
— X, (¢U) and (pR)) are trace formulas.

Next we define the semantics of ACTL* with respect to Kripke
structures. A state formula ¢ is satisfied by a structure M at state s,
denoted M, s = ¢, if the following holds (M is omitted if clear from
the context):

e Forpe AP, s =piff p e L(s); s = —-piff p & L(s).
esEoNYifsEdand sEU; sE VY Il s =@ or s E 1.
o s = Ay iff for every trace p from s, p = .

A trace formula ¢ is satisfied by a trace p, denoted p | ¢, if the
following holds

o pEXoiff pl E o
o p = Alp U] iff for some ¢ > 0, p' =1 and for all j <1, p’ |= .

* p = A(p R ) iff for all + > 0, if for every j < 4, p’ ¥ & then
P E Y.

ACTL is a subset of ACTL* where every temporal operator is imme-
diately proceeded by the A quantifier.

Definition 2.0.1 Given two structures M; and My over AP, a re-
lation H C 51 x Sy is a simulation relation [Mil71] over My x M,y iff
the following conditions hold:

1. For every so1 € So there exists so2 € Soa such that (so1, s02) € H.
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2. For all (s1,s9) € H,

(a) Li(s1) = La(s3) and
(b) Vsil(s1,8]) € Ry — 3sh[(s2,85) € Ry A (7, 55) € H]].

We say that M’ simulates M (denoted by M < M') if there exists a
simulation relation H over M x M’. The following lemma and theorem
have been proven in [GL94].

Lemma 2.0.2 < is a preorder on the set of structures.

Theorem 2.0.3 Suppose M < M'. Then for every ACTL* formula f,
M' = [ implies M | f.

Given two Kripke structures M, M’, we say that M is simulation equiv-
alent to M’ iff M < M’ and M’ < M. It is easy to see that this is an
equivalence relation.

A simulation relation H over M x M is maximaliff for all simulation
relations H' over M x M', H' C H.

It follows from [GL94] that if there is a simulation relation over
M x M’ then there is a unique maximal simulation over M x M.

Definition 2.0.4 Given two structures M; and My over AP, a re-
lation H C 57 x Sy is a bisimulation relation [Par81] over My x My iff
the following conditions hold:

1. For every sg1 € So1 there exists so2 € Soy such that (so1, s02) € H
and for every soy € Soy there exists so1 € So1 such that (so1, S02) €

H.
2. For all (s1,s9) € H,
(a) Li(s1) = La(s3) and
(b) Vsi[(s1,81) € By — 3sh[(s2,53) € By A (s, 53) € H]J.
(¢) Vsyl(sa,85) € Ry — Tsi[(s1,51) € By A (s, 53) € H]J.
Definitions 2.0.1 and 2.0.4 imply that every pair of structures M
and M’ that are bisimulation equivalent satisfies, M < M’. Since

bisimulation is a symmetric relation, they also satisfy M’ < M. Thus
bisimulation implies simulation equivalence.
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However, bisimulation and simulation equivalence are not equiv-
alent. As already shown in the introduction, the difference between
bisimulation and simulation equivalence results in different minimal
structures with respect to these relations. Next, we show that the
difference in the sizes of the minimal structures can be non elemen-
tary. We present a sequence of structures My, M,,... such that the
size of the minimal structure which is bisimulation equivalent to M,
is non-elementary in n, and the size of the minimal structure which is
simulation equivalent to M, is n + 2.

All the structures in the sequence are defined over AP = {a} and
have a single initial state. The structure M,, contains n+1 layers. The
higher layer contains the initial state. The lower layer contains two
states, one is labeled with a and the other is not labeled. The number
of states in the j’th layer (counting from bottom up) is non elementary
in j, the states are not labeled. For each state in the j’th layer, the set
of its successors is a different subset of the states of layer j — 1. For
every subset L of the states of the j layer, there exists a state s in layer
7+ 1 such that L is the set of successors of s. The initial state is the
predecessor of all the states in the n’th layer. Figure 2.1 presents the
structures My, M;, and Ms.

It can be proven by induction over the layers that there are no
bisimulation equivalent states in the same layer in M,,, thus the size of
every structure that is bisimulation equivalent to M,, is non-elementary
in n.

However, there exists a structure M/ of size n42 which is simulation
equivalent to M,,. The structure M/ contains n + 1 layers. The higher
layer contains the initial state. The lower layer contains two states,
one is labeled with @ and the other is not labeled. The j’th layer
contains one state which is not labeled and has the state below it as a
successor. The state at layer 2 has both states of layer 1 as successors.
The structures Mj, M), and M/ are shown in Figure 2.1. In order to
prove that M! < M, we select a path form the initial state of M,
to the state in layer 2 which is connected to both states in layer 1.
We define the simulation relation simply by relating each state in M/
to its corresponding state in the selected path. In order to prove that
M, < M/ we define a simulation relation H that for every layer, relates
all the states in the layer to the state in the corresponding layer in M) .

18



M,

‘N
SIONMLEEQIOIOI0NY,

o

Figure 2.1: Structures My, My, and M3 are simulation equivalent to struc-
tures M7, M}, and M respectively.

It is easy to see that H is a simulation relation.

Theorem 2.0.5 Suppose that M, M’ are bisimulation equivalent. Then
for every CTL* formula f, M' |= f if and only if M |= f.
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Chapter 3

Simulation based
minimization

Given a Kripke structure M, we would like to find a structure M’ that
is simulation equivalent to M and is the smallest in size (number of
states and transitions).

For bisimulation this can be done by constructing the quotient struc-
ture in which the states are the equivalence classes with respect to
bisimulation. Bisimulation has the property that if one state in a class
has a successor in another class then all states in the class have a suc-
cessor in the other class. Thus, in the quotient structure there will be
a transition between two classes if every (some) state in one class has
a successor in the other. The resulting structure is the smallest in size
that is bisimulation equivalent to the given structure M.

The quotient structure for simulation equivalence can be constructed
in a similar manner. There are two main difficulties, however. First,
when constructing the quotient structure for simulation equivalence,
not all the states in an equivalence class have successors in the same
class. Thus, there are a few possible ways to define a transition be-
tween classes. We define two optional transition relations, similar to
those used in [DGGYI7]. The first defines a transition between classes
whenever all states of one class have a successor in the other. The re-
sulting structure is called the V—quotient structure. The second defines
a transition between classes whenever there exists a state of one with a
successor in the other. The resulting structure is called the 3—quotient
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structure. In both cases, the structures are simulation equivalent to
M but the V—quotient structure has fewer transitions and therefore is
preferable.

The other difficulty is that the quotient model for simulation equiv-
alence is not the smallest in size. Actually, it is not even clear that
there is a unique smallest structure that is simulation equivalent to M.

In this chapter we prove that in simulation based minimization, be-
side equivalent states, there exists another redundancy. Little brothers
are states that are smaller by the simulation preorder than one of their
brothers. Disconnecting a little brother from the mutual parent elimi-
nates the additional redundancy, and the result of disconnecting little
brothers is simulation equivalent to the original model. The defini-
tion of little brothers is not new. [KM99] shows that eliminating little
brothers results in a simulation equivalent structure. However, the
paper does not consider the minimization problem.

The first result in this chapter is a proof that every structure has a
unique up to isomorphism smallest structure that is simulation equiv-
alent to it. This structure is reduced, meaning that it contains no sim-
ulation equivalent states, no little brothers and no unreachable states.
Our next result is the Minimizing Algorithm that given a structure
M constructs the reduced structure for M. Based on the maximal
simulation relation over M, the algorithm first builds the V—quotient
structure with respect to simulation equivalence. Then it eliminates
transitions to little brothers. Finally, it removes unreachable states.
The time complexity of the algorithm is O(|S|*). Its space complexity
is O(|S]?) which is due to the need to hold the simulation preorder in
memory.

Since our main concern is space requirements, we suggest the Par-
tition Algorithm, which computes the quotient structure without ever
computing the simulation preorder. Similarly to [LY92], the algorithm
starts with a partition g of the state space to classes whose states are
equally labeled. It also initializes a preorder Hgy over the classes in Y.
At iteration 7 4+ 1, ;11 is constructed by splitting classes in ;. The
relation H;y, is updated based on ¥;, ;.4 and H;.

When the algorithm terminates (after k iterations) ¥ is the set
of equivalence classes with respect to simulation equivalence. These
classes form the states of the quotient structure. The final Hy is the
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maximal simulation preorder over the states of the quotient structure.
Thus, the Partition Algorithm replaces the first step of the Minimiz-
ing Algorithm . Since every step in the Minimizing Algorithm fur-
ther reduces the size of the initial structure, the first step handles the
largest structure. Therefore, improving its complexity influences most
the overall complexity of the algorithm.

The space complexity of the Partition Algorithm is O(|Xg|* 4 |S] -
log(|Xk])). We assume that in most cases |X;| << |S], thus this com-
plexity is significantly smaller than that of the Minimizing Algorithm .
Unfortunately, time complexity will probably become worse (depending
on the size of ¥}). It is bounded by O(|S|*- |Xk|* - (|XZk]* + |R])). How-
ever, since our main concern is the reduction in memory requirements,
the Partition Algorithm is valuable.

3.1 The reduced structure

Given a Kripke structure M, we would like to find a reduced structure
that will be simulation equivalent to M and smallest in size. In this
section we prove that a reduced structure always exists. Furthermore,
we show that all reduced structures of M are isomorphic.

Let M be a Kripke structure and H be the maximal simulation
relation over M x M. We need the following two definitions in order
to characterize reduced structures.

Two states sy1,s2 € M are simulation equivalent iff (s1,s2) € H
and (sg2,s1) € H. Note that simulation equivalence is an equivalence
relation: the transitivity and reflexivity of H imply the transitivity and
reflexivity of the relation, and the symmetry of the equivalence relation
comes from its definition.

A state s is a [little brother of a state s, iff there exists a state s; such
that:

o (s3,52) € R and (s3,1) € R.
o (s1,52) € H and (s2,51) € H.

Definition 3.1.1 A Kripke structure M is reduced if:

1. There are no simulation equivalent states in M.
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2. There are no states sy, sy such that sy is a little brother of s,.

3. All states in M are reachable from sq.

Theorem 3.1.2 : Let M, M’ be two reduced Kripke structures. Then
the following two statements are equivalent:

1. M and M’ are simulation equivalent.

2. M and M' are isomorphic.

The proof that 2 implies 1 is straightforward. In the rest of this
section we assume that M and M’ are reduced Kripke structures. We
will show that if M < M’ and M’ < M, then M and M’ are isomorphic.

We use Hyrp to denote the maximal simulation over M x M’, and
Hygipy to denote the maximal simulation over M’ x M. The composed
relation Hpsppar €5 x S is defined by

HMM’M = {(81782)|E|S/ - S/. (8178/) - HMM’ A (8/782) - HM’M}

Lemma 3.1.3 Given two structures M and M', and two simulation
relations Hyrpr € S xS and Hypiyr C 8”7 xS, the composition relation
Hyravrnr of Hyragr and Hypipg is a simulation relation.

Proof :

o (s0,30) € Hyar and (s(, 80) € Hapar implies (8o, 80) € Hynrm-

o (s1,52) € Hyarr implies that there exists a state s’ in M’ such
that (s1,s") € Hyar and (8, 82) € Hyppg. Thus, L(sy) = L'(8') =
L(Sg).

o Let (s1,82) € Hyarar and let ¢4 be a successor of s1. We will show
that there exists a successor ¢y of sy such that (t1,13) € Hynm

— (81,82) € Hyarar implies that there exists s” such that (s, s') €
HMM’ and (8/782) € HM’M-

— (81,8") € Hyae implies that there exists a successor ¢/ € 5
of " such that (t1,¢') € Huyar.

— (8, 82) € Hyrag implies that there exists a successor 5 € S
of sy such that (¢,t3) € Hyar.
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— By the above, (t1,t2) € Hyyn. O

Given two reduced Kripke structures M and M’ that are simulation
equivalent, we will define a matching relation f over S’ x S based on
the two simulation relations between the structures. We show that f
is an isomorphism between M’ and M, i.e., f is a one-to-one and onto
total function that preserves the labeling of states and the transition
relation.

Definition 3.1.4 The matching relation f C S’ x S is defined as
follows: (s',s) € fiff (s',s) € Hym and (s,8") € Hyrarr.

Lemma 3.1.5 Let f C 5" x S be the matching relation. Then f is
a one-to-one, onto, and total function from S’ to S.

Proof : First we prove that f is a function from S’ to 5. Assume
to the contrary that there are two different states, sy,sy, in S and
a state s in S’ such that (s',s1) € f and (¢',s2) € f. Let Hynn
be the composed relation. Since Hpsprar is a simulation relation, it
1s included in the maximal simulation over M x M. We will show
that (s1,82) € Hyarnm and (82,81) € Haar, which contradicts the
assumption that M is reduced.

o (s',s1) € fimplies that (s',s1) € Hyrar and (s1,8") € Haarr
o (s',s2) € f implies that (s',s2) € Hyrar and (s2,8") € Haarr
o (s1,8') € Hynr and (s',82) € Hpypar implies that (sq,s2) €
HMM/M.
o (s2,8') € Hypn and (s',s1) € Hpypyr implies that (sg,s1) €
HMM/M.
The proof that f~! is a function from S to S’ is similar. Thus, we
conclude that f is a one-to-one function.
Next, we prove that f is onto, i.e., for every state s in S there exists

a state ' in S such that (s',s) € f. The proof is by induction on the

distance of s € S from the initial state. (Since all states are reachable,
the distance is bounded by |5].)
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e Base: The case where the distance 1s 0 follows from the fact
that simulation relations relate initial states to each other. Thus,
(86, 50) € Hypar and (s, s) € Hararr.

e Induction step: Assume that the induction hypothesis holds for
every state with distance less than or equal to n. We prove it for
states with distance n 4+ 1. Let #; € S be a state with distance
n+1. Then there is a state s with distance n such that (s,t;) € R.
By the induction hypothesis, there exists a state s’ in 5" such
that(s,s’) € Hyme and (s',s) € Hyry. By the definition of
simulation, for every successor of s, in particular t;, there exists
in S” a successor ] of s, such that (¢1,t}) € Hayae. If, in addition,
(t,t1) € Han, then (8),41) € f and we are done.

Assume to the contrary that (¢{,%1) € Hayram. Then (s',s) €
Hypar implies that there exists ¢, such that (s,t3) € R and
(t,t2) € Hypng. Let Hpyaar be the composed simulation re-
lation. Then, Hysaas is included in the maximal simulation over
M x M. (tl,tll) € Hyp and (tll,tz) € Hpyppyr imply (tl,tz) €
Hyrppnr. However, ¢, ¢, are both successors of s. This implies
that either ¢1,1, are simulation equivalent or ¢; is a little brother
of t5, contradicting the assumption that M is reduced.

A similar proof can be applied to show that f=! is onto, which implies
that f is total. O

Lemma 3.1.6 Lets',t' € S be states. Then (s',t') € R iff (f(s'), f(¥)) €
R.

Proof : We prove that if (s',t]) € R, then (f(s'), f(t})) € R.
The proof of the other direction is similar. Let s',¢] € S’ be two
states such that (s',t]) € R’ and let s,t; € S be states such that
f(¢) = s and f(t]) = t1. Assume to the contrary that (s,?;) ¢ R.
Then (s',s) € Hypar implies that there exists ¢y such that (s,t3) € R
and (t),t2) € Hyrar. Moreover, (s,s") € Hpyar implies that there exists
t, such that (s',t,) € R and (t2,1,) € Haya. We distinguish between
two cases:

L. If t;, =t} then f(#}) = t2, contradicting the assumption that f is
a function.
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2. Otherwise, let Hpyarpe be the composed simulation relation over
M’ x M'. Therefore, it is included in the maximal simulation over
M x M'. (t],t2) € Hypr and (t2,1) € Hane imply (8,15) €
Hppogar. This implies that either ¢, ) are simulation equivalent
or t; is a little brother of t,, contradicting the assumption that

M’ is reduced.

O
Proposition 3.1.7 For all s € 5', L'(s") = L(f(s')).
Proof : Immediate by definition of f.

We showed that if reduced structures M and M’ are simulation
equivalent, then there exists a one-to-one, onto, total function f : 5" —
S such that for every &', L'(s") = L(f(s')) and for every &', ¢/, (s',t') €
R it (f(s'), f(¢')) € R. Thus, we conclude Theorem 3.1.2 .

Theorem 3.1.8 Let M be a non-reduced Kripke structure. Then
there exists a reduced Kripke structure M’ such that M, M' are simu-
lation equivalent and |M'| < |M|.

In order to prove Theorem 3.1.8 | we present in the next sections an
algorithm that receives a Kripke structure M and computes a reduced
Kripke structure M’. This reduced structure is simulation equivalent
to M, such that |M'| < |M]|. Moreover, if M is not reduced, then
|M'| < |M]|.

The following lemma shows that the reduced structures are strictly
smaller than any other structure that is simulation equivalent to them.

Lemma 3.1.9 Let M’ be a reduced Kripke structure. For every M
that is simulation equivalent to M', if M and M' are not isomorphic

then |M'| < |M]|.

Proof : By Theorem 3.1.2 | since M is not isomorphic to M’, M
is not reduced. By Theorem 3.1.8 | there exists a reduced Kripke
structure M” that is simulation equivalent to M, and |M"| < |M]|.
M" and M’ are both simulation equivalent to M and therefore are
simulation equivalent to each other. Since they are reduced, they are

also isomorphic, and therefore |M'| = |M"”|. Thus, |M'| < |M|. O
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3.2 The minimizing algorithm

In this section we present the Minimizing Algorithm. This algorithm
gets a Kripke structure M and computes a reduced Kripke structure
M’, that is simulation equivalent to M and |M’'| < |M|. If M is not
reduced then |M'| < |M].

The algorithm consists of three steps. The first step is to construct a
quotient structure in order to eliminate equivalent states. The resulting
quotient structure is simulation equivalent to M but is not necessarily
reduced. The second step is to disconnect little brothers, and the last
step is to remove all unreachable states.

If the structure obtained at each step differs from the original, then
it is strictly smaller than the original.

3.2.1 The Y—quotient structure

In order to compute a simulation equivalent structure that contains
no equivalent states, we compute the quotient structure with respect
to the simulation equivalence relation. The states of the structure are
the equivalence classes and the labeling function is straightforward (all
states in a given equivalence class have the same labeling, so we use
this label for the class as well). However, the transition relation is not
uniquely defined. We can have a transition between two equivalence
classes if from every state of one there is a transition to some state
of the other (V-transitions). We can also have a transition if there
exists a state in one with a transition to some state of the other (3-
transitions). Both definitions will result in a simulation equivalent
structure. However, the former has a smaller transition relation, and
therefore it is preferable.

In the rest of this section we present the V—quotient structure and
prove that it is simulation equivalent to the original structure. If the
quotient structure is not isomorphic to the original one, then it is
strictly smaller in size.

For the rest of this section we fix M to be the original Kripke
structure and H to be the maximal simulation relation over M x M.
We denote by [s] the equivalence class that includes s.
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Definition 3.2.1 The V—quotient structure M, =< S,, Ry, so,, Ly >
of M is defined as follows:

o 5, is the set of the equivalence classes of the simulation equiva-
lence. (We will use Greek letters to represent equivalence classes.)

o R, ={(a1,02)|Vs1 € g Js2 € az. (s1,82) € R}.
® 50, = [s0].
o Ly([s]) = L(s).

Note that |5,| < |S| and |R,| < |R|. If |S,| = |S], then every equiva-
lence class contains a single state. In this case, R, is identical to R and
M, is isomorphic to M. Thus, when M and M, are not isomorphic,
1541 < |S] and | R, < |R].

Next, we show that M and M, are simulation equivalent.

Definition 3.2.2 Let G C S be a set of states. A state s, € G is
mazimal in G iff there is no state s € G such that (s,,s) € H and

(s,8m) & H.

Definition 3.2.3 Let a be a state of M,, and t, be a successor of
some state in o. The set G(a,ty) is defined as follows:

Gla,ty) = {ty € S|3s2 € a A (s2,82) € RA(t1,t2) € H}.

Intuitively, G/(er, 1) is the set of states that are greater than ¢; and are
successors of states in a. Notice that since all states in « are simulation
equivalent, every state in « has at least one successor in G(a, ;).

Lemma 3.2.4 Let o, ty be as defined in Definition 3.2.3 . Then for
every maximal state t,, in G(a,t1), [tn] is a successor of .

Proof : Let ¢, be a maximal state in G(a, 1), and let s, € o be a
state such that ¢,, is a successor of s,,. We prove that for every state
s € «, there exists a successor t € [t,]. This implies that [t,,] is a
successor of a.

8, 8m € o implies that (s, s) € H. This implies that there exists a
successor ¢ of s such that (¢,,,%) € H. By transitivity of the simulation
relation, (¢1,t) € H. Thust € G(a,t1). Sincet,, is maximal in G(a, t1),
(t,t,) € H. Thus, t and t,, are simulation equivalent and ¢ € [¢,,]. O
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Theorem 3.2.5 The structures M and M, are simulation equivalent.

Proof : First we prove that M, < M. Let H? C S, x S be the
relation H? = {(o,s)|s € a}. We prove that H? is a simulation
relation.

® 50 € S0, implies that (Soq,So) € H?*,
e By the definition of L,, (a,s) € H? implies that L(s) = L,(«).

o Assume (aq,s) € H? and let ay be a successor of ay. Then by the
definition of R, there exists a successor t of s such that { € ay.

Thus, (ag,t) € H?.

Second, we prove that M < M,. Let H*? C Sx .5, be the relation H*! =
{(s1, )| there exists a state sy € a such that (s1,s2) € H}. We prove
that H*? is a simulation relation.

e (s0,50) € H and s € so, imply that (so,s0,) € H*.

e (s1,a) € H*? implies that there exists a state s3 € a such that
(s1,82) € H. Thus, L(s1) = L(s2) = Ly(a).

e Assume (s1,a1) € H*? and let ¢t; be a successor of s;. We prove
that there exists a successor az of ay such that (¢1,a9) € H*.
We distinguish between two cases:

1. s1 € ag. Let t,, be a maximal state in G(ay, ;). Lemma3.2.4
then implies that (o, [ts]) € R,. Since t, is maximal in
Gl(ar,ty), (t1,t,) € H, which implies (¢4, [tn]) € H*.

2. 81 € a1. Let sy € oy be a state such that (s;,s,) € H.
Since (s1,82) € H, there is a successor ty of sy such that
(t1,t2) € H. The first case implies that there exists an equiv-
alence class ay such that (ap,a2) € R, and (t,09) € H®I.
By (t3,0) € H?®?, there exists a state {3 € ay such that
(t2,t3) € H. By transitivity of simulation, (¢1,t3) € H.
Thus, (1, 0p) € H*.
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3.2.2 Disconnecting little brothers

Our next step is to disconnect the little brothers from their parents. By
applying this step to a Kripke structure M with no equivalent states,
we get a Kripke structure M’ satisfying the following:

1. M are M’ are simulation equivalent.

2. There are no equivalent states in M’.

3. There are no little brothers in M.

4. |M'| < |M|, and if M and M’ are not identical, then |M'| < |M]|.

In Figure 3.1 we present an iterative algorithm which disconnects little
brothers and results in M".

change := true
while (change = true) do
Compute the maximal simulation relation H
change := false
If there are 31, 39,53 € S such that s; is a little
brother of sy
and s3 1s the father of both s; and s, then

change := true
=R\ {(s3,51)}
end

end

Figure 3.1: The Disconnecting Algorithm

Since each iteration of the algorithm removes one transition, the
algorithm will terminate after at most |R| iterations. We will show
that the resulting structure is simulation equivalent to the original one.

Lemma 3.2.6 Let M' =< 5", R, s}, L' > be the result of the Discon-
necting Algorithm on M. Then M and M' are simulation equivalent.

Proof : We prove the lemma by induction on the number of itera-
tions.
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e Base: at the beginning, M and M are simulation equivalent.

e Induction step: Let M" =< 5" R" s;, L"” > be the result of the
first ¢ iterations and H” be the maximal simulation over M” x M".
Let M' =< 5", R, s}, L' > be the result of the (i + 1)th iteration
where R = R"\{(p{, py)}. Assume that M and M" are simulation
equivalent. We first prove that M’ < M". We choose H' C S'x 5"
tobe H' = {(s,s))|(s},sy) € H"}. Since M' is obtained from M"

by removing one transition, clearly H' is a simulation relation.

We now show that M” < M’. As in the previous case, we choose
H' C 5" xS tobe H = {(s],,)|(s],s5) € H"}. We will prove
that H' is a simulation relation.

— (sg,s0) € H" implies that (s§,s;) € H'.

— (87, s5) € H implies that L"(s]) = L'(s}).

— Suppose (s7,s5) € H' and t] is a successor of s]. Since
H" is a simulation relation, there exists a successor ¢} of sJ
such that (¢,t5) € H”. This implies that (t{,t}) € H'. If
(sh,t5) € R, then we are done. Otherwise, (s}, t}) is removed
from R” because t} is a little brother of some successor ¢ of
sy, Since (s4,t4) is the only transition removed at the (i41)th
iteration, (s5,%4) € R'. Because t} is a little brother of ¢4,
then (t7,14) € H". By transitivity of the simulation relation,
(t],t4) € H", and thus (t7,t;) € H'.

O

We proved that the structure M’ that is computed by the Discon-
necting Algorithm is simulation equivalent to the original structure M.
Note that M’ has the same set of states as M. We now show that
the maximal simulation relation over M is identical to the maximal
simulation relations for all intermediate structures M” (including M’)
computed by the Disconnecting Algorithm. Therefore this relation can
be computed once, at the beginning of the algorithm. Moreover, since
there are no simulation equivalent states in M, there are no such states

in M’ either.

Lemma 3.2.7 Let H C S x S be the maximal simulation relation
over M x M. Let M' =< S, R, s, L > be the result of the Disconnect-
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ing Algorithm on M and let H C 5" x S’ be the maximal simulation
over M x M'. Then H = H'.

Proof : The Disconnecting Algorithm changes only the transition
relation. Thus, for all intermediate structures M”, 5" = S, sj = so,
and L” = L. We prove the lemma by induction on the number of
iterations.

o Base: at the beginning, H = H.

e Induction step: Let M” =< S, R" s, L > be the result of the
first 7 iterations and let H” be the maximal simulation relation
over M" x M"”. Assume that H” = H. Let M’ be the result of
the (i 4+ 1)th iteration and H’ be the maximal simulation relation
over M' x M'. We prove that H' = H"”. First we prove that H”
is a simulation relation over M’ x M’'. This implies that H" C H’
(H' is maximal over M’ x M").

- (80780) - H”.

— (s1,82) € H" implies that L(s;) = L(s2).

— Let s1, 82,11 be states such that (s1,s2) € H” and (s1,11) €
R'. (s1,82) € H"” implies that there exists a state ¢y such
that (sq,%2) € R” and (t1,12) € H”. We distinguish between
two cases:

1. If (s2,t2) € R, we are done.

2. If (s2,t2) € R, then since (sg,12) is removed from R”,
there must exist a state t5 such that (¢3,t3) € H” and
(s2,t3) € R” (12 is alittle brother of t3 and s, is the parent
of both states). Since only one transition is removed,
(s2,t3) € R'. By transitivity of H”, (¢1,t3) € H"”. Thus,
H" is a simulation relation over M’ x M’.

Next we prove that H' is a simulation relation over M"” x M".
This implies that H" C H” (H" is maximal over M" x M").

— (s0,80) € H'.

— (81,89) € H' implies that L(s1) = L(s2).

— Let sy, 82,11 be states such that (s;,s5) € H and (s1,t1) €
R". We distinguish between two cases:
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L. If (s1,t1) € R', then (s1,s2) € H’' implies that there

a

exists a state ¢y such that (s2,t2) € R and (¢1,t2) € H'.
Thus, (s2,t2) € R".

I (s1,t1) € R, then since (s1,11) is removed from R”,

there exists a state t3 such that (sy,t3) € R” and ({1,13) €
H" (t1 is a little brother of t3 and s; is their parent).
(ti,t3) € H" and H" C H' implies (¢1,t3) € H'. Since
(s1,t1) is the only transition removed from R", (s1,t3) €
R'. This implies that there exists a state ¢, such that
(s2,t2) € R’ and (t3,12) € H'. By transitivity of H’,
(t1,t2) € H'. Thus, (s2,12) € R” and H' is a simulation
relation over M"” x M".

The Disconnecting Algorithm can be greatly simplified as a result
of the last theorem. The maximal simulation relation is computed once
on the original structure M and is used in all iterations. The Simplified
Algorithm is presented in Figure 3.2

Compute the maximal simulation relation H
for every node s; € S do

G=10

for every transition (s;,s;) € R do
for every states s, € (¢ do
if (sy,s;) € H and (s;,s,) € H then

remove the transition (s;,s,) from R

end
if (sy,s;) ¢ H and (s;,s,) € H then

remove the transition (s;,s;) from R

end
end
add s; to (¢
end
end

Figure 3.2: The Simplified Algorithm
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If the algorithm is executed symbolically (with BDDs), then this
operation can be performed efficiently in one step:

R' = R — {(s1,82)|3s3 : (s1,83) € R A (82,83) € H A (s3,89) & H}.

3.2.3 The algorithm

In Figure 3.3 we present our algorithm for constructing the reduced
structure for a given one.

1. Compute the V—quotient structure M, of M and
the maximal simulation relation H over
M, x M,.
2. R =R,—{(s1,82)|3s3: (s1,83) € Ry A (s2,83) € H}.

3. Remove all unreachable states.

Figure 3.3: The Minimizing Algorithm

Note that the check (s3,s5) ¢ H is eliminated in the second step.
This is because M, does not contain simulation equivalent states. Re-
moving unreachable states in the third step does not change the prop-
erties of simulation with respect to the initial states. The size of the
resulting structure is equal to or smaller than the original one. Again,
if the resulting structure is not identical, then it is strictly smaller in
size.

We have proved that the structure M’ that results from applying the
Minimizing Algorithm is simulation equivalent to the original structure
M. Thus we can conclude that Theorem 3.1.8 is correct.

Figure 3.4 presents an example of the three steps of the Minimizing
Algorithm applied to a Kripke structure.

1. Part 1 contains the original structure, where the maximal simu-
lation relation is (not including the trivial pairs):
{(2,3),(3,2),(11,2),(11,3),(4,5),(6,5),(7,8),(8,7),(9,10),(10,9) }.
The equivalence classes are : {{1},{2,3},{11},{4},{5},{6},{7,8},{9,10}}.

2. Part 2 presents the V—structure M,. The maximal simulation
relation H is (not including the trivial pairs):

H = {({11},{2,3}), ({4}, {5}), ({6}, {5})}-
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Figure 3.4: An example of the Minimizing Algorithm
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3. {11} is a little brother of {2,3} and {1} is their parent. Part 3
presents the structure after the removal of the transition ({1}, {11}).

4. Finally, part 4 contains the reduced structure, obtained by re-
moving the unreachable states.

3.2.4 Complexity

The complexity of each step of the algorithm depends on the size of
the Kripke structure obtained from the previous step. In the worst
case, the Kripke structure does not change; then all three steps depend
on the original Kripke structure. Let M be the given structure. We
analyze each step separately:

1. First, the algorithm constructs equivalence classes. It computes
the maximal simulation relation. [BP96, HHK95] showed that
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this can be done in time O(|S|-|R|). Once the algorithm has the
simulation relation, the equivalence classes can be constructed
in time O(|S]?). Next, the algorithm constructs the transition
relation. This can be done in time O(|S| 4+ |R|). Building the

entire quotient structure can be done in time O(|S| - |R|).

2. Next, little brothers are disconnected from their parents. Looking
at the Simplified Algorithm in Figure 3.2, we can see that the
number of iterations of the two external for loops is exactly |R|
and that the number of iterations in the inner loop is bounded
by [S|. This implies that the overall complexity of this step is
O(S1- |R)).

3. Unreachable states can be removed in time O(|R|).

The entire algorithm works in time O(|S]| - |R]).
The space bottleneck of the algorithm is the computation of the
maximal simulation relation, which is bounded by |S*.

3.3 Partition classes

In the previous section, we presented the Minimizing Algorithm. The
algorithm consists of three steps, each of which results in a structure
that is smaller in size. Since the first step handles the largest structure,
improving its complexity will have the greatest influence on the overall
complexity of the algorithm.

In this section we suggest an alternative algorithm for computing
the set of equivalence classes. The algorithm avoids the construction of
the simulation relation over the original structure. As a result, it has
a better space complexity, but its time complexity is worse. Since the
purpose of the Minimizing Algorithm is to reduce space requirements,
reducing its own space requirement takes precedence.

3.3.1 The partition algorithm

Let M =< S, R, s9, L > be a Kripke structure and H be the maximal
simulation over M x M. We would like to build the equivalence classes
of the simulation equivalence relation without first calculating H. Our
algorithm, called the Partitioning Algorithm, starts with a partition 3
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of S to classes. The classes in Y differ from one another only by their
state labeling. In each iteration, the algorithm refines the partition
and forms a new set of classes. We use X; to denote the set of the
classes obtained after 7 iterations. In order to refine the partitions, we
build an ordering relation H; over X; x ;. This relation is updated at
every iteration according to the previous and current partitions (¥;_;
and ¥;) as well as the previous ordering relation (H;_1). Initially, Hy
includes only the identity pairs (of classes).

In the algorithm, we use succ(s) for the set of successors of s. We
use [s]’ to denote the equivalence class of s in ¥;. [s] is used whenever
¥, 1s clear from the context. We also use a function II that associates
with each class o € ¥; the set of classes o € ¥, ; that contain a
successor of some state in «.

I(a) = {[t]7"|3s € a. (s,1) € R}.
We use the following notations:
o Fnglish letters to denote states.
o Capital English letters to denote sets of states.
o Greek letters to denote equivalence classes.
o Capital Greek letters to denote sets of equivalence classes.
The partition algorithm is presented in Figure 3.5.

Definition 3.3.1 The partial order <; on S is defined as follows:
s1 <i sz iff

o L(s1)=L(sz).

o [f1 >0, then for every successor ty of sy there exists a successor

ty of so such that ([t1],[t2]) € Hi-1.
If: = 0, S1 SO S92 it L(Sl) == L(Sg).

Definition 3.3.2 Two states, s1,3,, are i—equivalent iff sy <; s,
and sy <; s1. (Since <; is a partial order, i — equivalence is an equiv-
alence relation.)
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Initialize the algorithm:
change := true
for each label ¢ € 24 construct a, € ¥; such that s € o, <
L(s) =a.
Hy = {(a, o) | € 3}
t=0
while change = true do begin
change .= false
refine X
Yip1 =10
for each a € ¥; do begin
while o £ () do begin
choose s, such that s, €«
GT = {sq4]|sy € a AVt, € suce(sp) Tty € suce(sy). ([tp],[t4]) €

H;}
LT :={si|s; € a AVt € suce(s;) T, € suce(sy). ([ti], [tp]) € Hi}
o =GT'NLT
if a # o' then change :=true
a:=a\a
Add o' as a new class to X;yi.
end
end
update H:
Hiy1=10
for every (aj,as) € H; do begin
for each af,af € ¥;41 such that as D o), a3 D «of do begin
& = {63 € T1(a}) (6,6) € ;)
if ® D II(«}) then
insert (af,ab) to H,;iq
else
change := true
end
end
i=1+1
end

Figure 3.5: The partition algorithm

In the rest of this section we explain how the algorithm works.
There are two invariants (formally proved later) which are preserved
during the execution of the algorithm.
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Invariant 1: For all states 51,8, € 5, 81 and sy are in the same class
a € Y; iff s; and sy are 1—equivalent.

Invariant 2: For all states s1,s2 € 5, 51 <; s2 iff ([s1],[s2]) € H;.

Y; is a set of equivalence classes with respect to the i1—equivalence
relation. In the ¢th iteration we split the equivalence classes of ¥;_; so
that only states that are i-equivalent remain in the same class.

A class o € ¥;_4 is repeatedly split by choosing an arbitrary state
s, € « (called the splitter) and identifying the states in « that are
1—equivalent to s,. These states form an i—equivalence class o’ that is
inserted into X;.

o' is constructed in two steps. First we calculate the set of states
GT C «a that contains all states s, such that s, <; s,. Next we calculate
the set of states LT" C o that contains all states s; such that s; <; s,,.
The states in the intersection of GT" and LT are the states in « that
are 1—equivalent to s,.

H; captures the partial order <;, i.e., sy <; s iff ([s1],[s2]) € H,.
We later prove (Lemma 3.3.6 ) that the sequence <o, <y,... satisfies
<p2<10<yD ... Therefore, if s; <; s, then s; <;_; s3. Hence,
([s1], [s2]) € H; implies ([s1], [s2]) € Hi—1. Thus, when constructing H,,
it is sufficient to check (o}, a%) € H; only when ay 2 o, ay 2O of, and
(01, 0a2) € Hi_y.

For suitable o and o}, we first construct the set ® of classes that
are “smaller” than the classes in II(o4). By checking if @ D II(af), we
determine whether every class in II(¢]) is “smaller” than some class in
I(o4). If so, then (o, of) is inserted into H;.

When the algorithm terminates, <; is the maximal simulation rela-
tion and the 1—equivalence is the simulation equivalence relation over
M x M. Moreover, H; is the maximal simulation relation over the
corresponding quotient structure M,.

The algorithm runs until there is no change in the partition ¥,
and no change in the relation H;. A change in 3; is the result of a
partitioning of some class o € ;. The number of changes in ¥; is
bound by the number of classes in the last iteration k, i.e., |Xg].

We show that a change in H; can happen at most |X;|* times.
Thus, the algorithm terminates after at most |X;|? + |X| iterations. It
is possible that in some iteration ¢, ¥; will not change but H; will, and
in a later iteration 5 > ¢, ¥; will change again.
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Example: In this example we show how the partition algorithm is
applied to the Kripke structure presented in Figure 3.6 .

0

1
/@\ )
(] (+)
3 4 5
X
6 7 8 9
Cé ©) g )
Figure 3.6: An example of a structure to be reduced

o We initialize the algorithm as follows:

Yo = {0407507’70750}7 Hy = {(0407040)7 (50750)7 (’707’70)7 (50750)},
where ag = {07 172}7ﬁ0 = {37475}770 = {67 7}750 = {879}

e The first iteration results in the relations:
Yy = {0417042,51,52,ﬁ3,70,50},
Hy = {(alv al)v (an OQ)? (617 61)7 (627 62)7 (637 63)7 (617 62)7
(35, B2), (70, 70) (0 0o) }
where ay = {0}, a2 = {1,2}, 51 = {3}, B, = {4},
ﬁ?) = {5}770 - {67 7}750 - {879}
e The second iteration results in the relations:
Yy = {041,062,51752753771,72,50},
Hy = {(061, 061), (042, 042)7 (517 51)7 (527 52)7 (537 53),
(617 62)7 (637 62)7 (717 71)7 (727 72)7 (717 72)7 (507 50)}7
where o) = {0},&2 = {172}761 = {3}762 = {4}763 = {5}771
{6}772 = {7}750 = {879}
e The third iteration results in the relations:
Y3 =Yg, Hs = Hy - change = false.
The equivalence classes are:
ap = {0},&2 = {172}761 = {3}762 = {4}763 = {5}771 =
{6}772 = {7}750 = {879}

40



Since the third iteration results in no change to the computed partition
or ordering relations, the algorithm terminates. X, is the final set of
equivalence classes, which constitutes the set 5, of states of M,. H; is
the maximal simulation relation over M, x M,.

3.3.2 The correctness of the partition algorithm

In order to prove the correctness of the Partitioning Algorithm, we
prove three invariants. We have already mentioned the first two. The
third invariant is necessary to prove them.

Invariant 1: For all states 51,8, € 5, 81 and sy are in the same class
a € Y; iff s; and sy are 1—equivalent.

Invariant 2: For all states s1,s2 € 5, 51 <; s2 iff ([s1],[s2]) € H;.
Invariant 3: H; is transitive.

We will prove these invariants by induction on .
Base:

1. 81,82 are in the same class in X¢ iff L(sy) = L(s2) iff 51 < 32 and
89 <g 87 iff 51 1s 0—equivalent to s,.

2. ([s1],[s2]) € Ho iff [s1] = [sq] iff 51,82 are in the same class iff
L(Sl) = L(Sg) iff S1 SO S9.

3. (a1, a2) € Hy iff oy = ag. Thus, for every ay, ay, as, if (a1, a2) €
Hy and (ag,a3) € Hy, then a3 = as = as. This implies that
(Ozl,Oég) € Ho.

In the next three sections we prove the induction step. We assume
that for every j < 17, the invariants hold for j. We prove that the
invariants hold for ¢ + 1.

3.3.3 Proving invariant 1

In this section we fix s, (the splitter) to be the state that was chosen in
the partition of class «, and in the construction of class o/ = GT N LT.

Proposition 3.3.3 For every o' € X;1, there exvists a € ¥; such that
o C a.
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We use o, to denote the class a € ¥; that contains o € ;4.

Proposition 3.3.4 Let ay,az € Y41 Then (o, a2) € Hipy implies
that (a1ppe, 2,e) € H;.

Corollary 3.3.5 [fstates s; and sy are in the same class, then L(sy) =
L(Sg).

Lemma 3.3.6 If sy <11 sg, then sy <; s3.

Proof : First, s; <;41 sy implies L(s1) = L(s2). Next, we distin-
guish between two cases:

1. If © = 0, then L(s1) = L(sz2) implies 51 <g $2.

2. Suppose © > 0. We will show that for every successor ¢; of sy,
there exists a successor ¢; of sy such that ([t;]*1, [t2]*™!) € H,_y.

Let t; be a successor of s;. Then s; <;;; sy implies that there
exists a successor ¢y of sy such that ([t1]%, [t2]*) € H;. Let [t1]'"™! =

([tl]i)pr6 and [ty] 7! = ([tz]i)pm. Then, by Proposition 3.3.4, ([t;]°7, [t2)'™!) €

H;_1, as required.

a

Lemma 3.3.7 Let o be a class in Y41 and s; and sy be states in

o'. Then sy and sy are (1 + 1)—equivalent.

Proof: Let o € ¥;11, 81,32 € &/. We prove that for every successor
t1 of s1 there exists a successor 15 of sy such that ([¢4], [t2]) € H;. This
implies that s; <;11 s9.

s1 € o« implies s; € LT. By the definition of LT, there exists a
successor t, of s, such that ([t1],[t,]) € Hi. s2 € o implies s; € GT.
Then by the definition of G'T', there exists a successor ¢y of sy such
that ([t,],[t2]) € H;. By Invariant 3, H; is transitive, and therefore
([ta). [t2]) € Hi. O

The proof that sy <;41 s; issimilar. Thus sy, s5 are (i+1)—equivalent.

Lemma 3.3.8 Let sy and sy be (1 + 1)—equivalent states. Then sy
and sy are in the same class in Y;4q.
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Proof : We will prove that sy € [s1]. Let s, be the splitter, used
to construct [sq].

a

By Lemma 3.3.6, s; and sy are (i + 1)equivalent, and this implies
that s; and sy are 1—equivalent. By the induction hypothesis,
s1 and sy are in the same equivalence class in H; and thus are
candidates for being in the same equivalence class in H; ;.

Since s1, 3 are (1 + 1)—equivalent, then for every successor t5 of
9, there exists a successor t; of s such that ([t2], [t1]) € H,.

Since $1 € [s1], then s; € LT. By the definition of LT, there
exists a successor ¢, of s, such that ([t1],[t,]) € H..

By Invariant 3, H; is transitive. Therefore ([t2],[t,]) € H;. We
proved that for every successor 15 of s, there exists a successor ¢,

of s, such that [ts], [t,] € H;. Thus, by definition of LT, s € LT.
Since s1 € [s1], then sy € GT. Then by the definition of GT', for

every successor t, of s, there exists a successor {3 of sq, such that

([t,], [ts]) € Hi

Since s1, 89 are (i + 1)—equivalent, there exists a successor t4 of

s such that ([ts], [t4]) € H,.

H; is transitive, and therefore ([t,],[t4]) € H;. We proved that for
every successor t, of s, there exists a successor t4 of sy such that

([tp), [t4]) € H;. Thus, by the definition of GT', s3 € G'T.

s € GT', and sy € LT implies that sy € [s1].

By Lemma 3.3.8 and Lemma 3.3.7 we can conclude the proof of
Invariant 1.

3.3.4 Proving invariant 2

In this section we prove for H;y; the property defined by Invariant 2.
Since the construction of H;yq is based on both ¥; and ¥,,;, we need
to distinguish between classes in these sets. We use [s]' and [s]'*! to
denote equivalence classes in ¥; and ;1 respectively.
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Lemma 3.3.9 Let ([s1]", [so]*") € Hipr. Then for every successor
t1 of s1, there exists a successor ty of sy such that ([t1]*,[t2]') € H;.

Proof : Let ([s1]""!,[so]*!) € Hiyy, and let ¢; be a successor of
si. Then [t;]° € TI([s1]'*!). Since II([s1]'*') C @, then [t;]' € ®. By
definition of @, there is a state #3 such that [¢3]° is in II([sq]' ') and
([t:1)7, [ta]') € Hy. [ts]' € T1([s2)"+!) implies that ¢5 is a successor of some
state sz in [sy]'*1

Since sy, s3 are in the same class in Y;1;, by Lemma 3.3.7, they
are (i + 1)—equivalent. Thus, there exists a successor ¢y of sy such
that ([ta]’, [t2]') € H;. By Invariant 3, I; is transitive and therefore
([t [22]") € Hi. O

Corollary 3.3.10 If ([s1]"*!, [so]' ™) € Hyyy, then sy <iy1 s2.
Lemma 3.3.11 ]f S1 Si-l—l S2, then ([Sl]i—l—l, [Sg]i—l—l) - Hi—l—l-

Proof : Assume s; <;1; ss.
e By Lemma 3.3.6, s; <; so.

e By the induction hypothesis, Invariant 2 holds for . Thus, ([s1]’, [s2]*) €
H;.

e Clearly, [s;]"F! C [s,] and [so]*! C [so]'. Since ([s1]", [s2]') € H;,
the pair ([s1]"*1, [s9]"T!) is considered for inclusion in H,,; in the
(¢ + 1)th update step of the algorithm.

e In order to prove that ([s;]"*!,[so]'*') € H;yy, we show that
I([s1]"F!) C @, i.e., every class a in II([s]"T!) is also in .

e Let a € X; be a class in II([s;]**!). Then there exists a state
s3 € [51]""! and a successor t3 of s3 such that ¢3 € a.

e By Lemma 3.3.7 | sy, s3 being in the same class of ¥;1; implies
that there exists a successor ¢; of s; such that (a, [t1]') € H,.

e Since s; <;11 S, then there exists a successor t5 of sy such that

([ta]', [ta]") € H:.

e Since H; is transitive, (a, [to]') € H;.
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e The definition of TI([s9]"T!) implies that [t]' € TI([so]'*!). Hence,
(a, [ta]') € H; implies that a € ®.

O
Corollary 3.3.10 and Lemma 3.3.11 prove Invariant 2.

3.3.5 Proving invariant 3

Lemma 3.3.12 Let [s1], [s2], [s3] be classes in X1 such that ([s1], [s2]) €
Hii1 and ([sz2],[s3]) € Hiy1. Then L(s1) = L(ss3).

Proof : By Corollary 3.3.10, s; <;y1 s and sy <;;; s3. By Defini-
tion 3.3.1, L(s1) = L(s2) = L(s3). O

Lemma 3.3.13 H,y, s transitive.

Proof : Let ay,az,a3 be classes in ¥4y such that (o, a2) € Hipg
and (g, a3) € Hipr. We prove that (ay,a3) € Hiy1. To do so, we
show that for all states sy, s3 in oy, ag respectively, the following holds:
For every successor t; of sy, there exists a successor t3 of s3 such that
([t:1)', [ts]') € H;. By Lemma 3.3.11 and Lemma 3.3.12, this implies
that (Ozl,Oég) € Hi-l—l-

Let s1,82,83 be states in aq, ag, as respectively, and let t; be a
successor of s;. By Lemma 3.3.9 | (a1, a2) € H;41 implies that there
exists a successor ty of sy such that ([t1]%, [t2]*) € H;. By Lemma 3.3.9
, (a9, a3) € Hiyq implies that there exists a successor t5 of s3 such that
([t2)%, [ts]*) € H;. By the induction hypothesis, ([t;]*, [ts]') € H;. Thus,
we conclude that (g, a3) € Hiyq. O

The above lemma proves Invariant 3. This completes the proof of
the three invariants.

3.3.6 Equivalence classes

In this section we will show that when the algorithm terminates after k
iterations, <j is the maximal simulation relation over M x M and X
is the set of equivalence classes with respect to simulation equivalence
over M x M. Moreover, Hj is the maximal simulation relation over
the corresponding quotient structure M,.

Lemma 3.3.14 For every ¢ > 0 and every state s, s <; s.
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Proof : We will prove it by induction on :
e Base: For i =0, L(s) = L(s) implies s <g s.

e Induction step: Assume that the lemma holds for 7. Let ¢ be
a successor of s. The induction hypothesis implies that ¢ <; t.
Based on Invariant 2, ([t],[t]) € H;. Thus, for every successor ¢
of s, we choose t as the successor of s such that ([t],[t]) € H;. By
the definition of <;;1, this implies s <;4; s.

O
Proposition 3.3.15 When the algorithm terminates, <p=<j_1.
Lemma 3.3.16 <; is a simulation over M x M.

Proof :
e By Lemma 3.3.14 , so <p $o.
o (s1,3) €< implies that L(sy) = L(s2).

o (s1,3) €<; implies that for every successor #; of s; there exists a
successor 1y of s9 such that ([¢1], [t2]) € Hr—1. By Corollary 3.3.10,
ty <g-1 to. Thus, since <p=<p_y, t; <y to.

O
Lemma 3.3.17 <; is the mazimal simulation over M x M.

Proof : Let H' be the maximal simulation over M x M. We prove
that H' C<j;. By Invariant 2, it is sufficient to prove that (sq,s2) € H'
implies ([s1], [s2]) € H.

We prove by induction on ¢ that (s, s2) € H' implies that ([sy], [s2]) €
H;.

e Base: (s1,s2) € H' implies that L(s;) = L(sy). Therefore, [s,]° =
[s2]% and ([s1]% [52]°) € Ho.

e Induction step: Assume that the lemma holds for ¢+ — 1. Let
(s1,82) be in H'. Then for every successor t; of s; there exists
a successor 1y of sy such that (¢;,t2) € H'. By the induction
hypothesis, ([t1],[t2]) € H;—1 which, by Lemma 3.3.11, implies
that ([s1],[s2]) € H,.
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Theorem 3.3.18 When the algorithm terminates, Yy s the set of
equivalence classes of the simulation equivalence relation.

Proof : States s1, sy are simulation equivalent iff (s1,s2) €<j, and
(82,81) €<y iff 51,89 are k — equivalent iff (by Invariant 1) sy, sy are
in the same class in >;. O

We proved that X is the set of equivalence classes which are used
as the set of states S, in the quotient structure M,. Next, we show
that Hj is the maximal simulation relation over M, x M,.

Lemma 3.3.19 Hj is a simulation over M, x M,.

Proof :
e By Invariant 2, (sg,s0) €<) implies that ([so], [s0]) € H.

e Assume that ([s1],[s2]) € Hg. By Invariant 2, (s, s5) €<;. Thus
L(s1) = L(sz2), which implies that L,([s1]) = L4([s2]).

o Let ([s1],[s2]) be a pair in Hy and « a successor of [s1]. By the
definition of R,, there exists a successor ¢; of s in . Since <
is a simulation relation, there is a successor ¢, of sy such that
(t1,t2) €<i. Let t,, be a maximal state in G([s3],t2) (Defini-
tion 3.2.2 ). By Lemma 3.2.4, [t,,] is a successor of [sy]. ., is
maximal in G([sz],t2). Hence (tg,1,,) €<jp. Since <j is transi-
tive, (t1,t,) €<. Thus, by Invariant 2, (o, [t;]) € Hg.

a

Theorem 3.3.20 Hj is the mazimal simulation relation over M, x
M,.

Proof : Let H' be the maximal simulation relation over M, x M,.
We prove that the relation defined by H = {(s1,52)|([s1],[s2]) € H'}
is the maximal simulation relation over M x M. Thus, H =<;. By
Invariant 2, <p= {(s1, s2)|([s1], [s2]) € Hi}; hence, Hy, = H'.

e By H; C H' we have <, C H. Since H includes the maximal sim-
ulation relation <y, it is sufficient to show that H is a simulation
relation.
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By transitivity of H', H is transitive.

e Since ([so],[s0]) € H', (s0,50) € H.

Assume that (sy,s5) € H. Then L(sy) = Ly([s1]) = Ly([s2]) =
L(sz).

Suppose that (s1,s2) € H and #; is a successor of s1. Let ¢, be a
maximal state in G/([s1],1) (Definition 3.2.2 ). By Lemma 3.2.4,
[tm] is a successor of [s1]. 1, is maximal in G([s1],¢1). Hence
(t1,tm) €<i. Because <, C H, (t1,t,) € H. Since H' is a simula-
tion relation, there is a successor « of [s2] such that ([¢,,], o) € H'.
By the definition of R,, there exists a successor 13 of s3 in a. It
follows from ([t,], ) € H' that (,,,t2) € H and by transitivity
of H, (tl,tz) € H.

a

3.3.7 Space complexity

The space complexity of the partition algorithm depends on the size of
Y;. We assume that the algorithm is applied to Kripke structures with
some redundancy. Thus |¥;| << [S].

We measure the space complexity with respect to the size of the
following three relations:

1. The relation R.

2. The relations H; whose size depends on ¥;. We can bound the
size of H; by |X;]?.

3. A relation that relates each state to its equivalence class. Since
every state belongs to a single class, the size of this relation is

O([5] - log([%i]))-

In the th iteration we do not need to keep all Hg, Hy,... and
Yo, 21, ..., since we only refer to H;, H;yq and ;,%;14. This fact,
along with the three relations cited above, leads us to conclude that
the total space complexity is O(|R| 4+ |Zg|* + |S] - log(|Zk]))-

In practice, we often do not hold the transition relation R in the
memory. Rather, we use it to provide, whenever needed, the set of
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successors of a given state. Thus, the space complexity is O(|Xg|* +
|S]-log(|Xk])). Recall that the space complexity of the naive algorithm
for computing the equivalence classes of the simulation equivalence
relation is bounded by |S|?, which is the size of the simulation relation
over M x M. When [¥;| << |S], the partition algorithmachieves a
much better space complexity.

3.3.8 Time complexity

First, we would like to bound the number of main iterations in the algo-
rithm. The algorithm continues as long as the splitting of equivalence
classes continues in the refine step, meaning ¥; # ¥4, or changes
occur in the update step. The equivalence classes split at most |X|
times during the algorithm. We claim that there is a change in the
update step at most |X;|* times. Next we prove this claim. We use
Proposition 3.3.3 to deduce Corollary 3.3.21.

Corollary 3.3.21 For every 0 <1 < k and every class o in Xy there
exists a class o' in X;, such that o C o.

Next we define a relation H;, C Y x Y, which relates pairs of
classes over Y to H;. Corollary 3.3.21 implies that H; is well defined.

Definition 3.3.22 Let 0 <1< k. Then H;, =
{(a1,az)|let o, oy € 3; be such that oy C of, ay C o then (o], ab) €

Y.

Proposition 3.3.4 implies that for every 0 <@ < k, Hiyiyp © Hi.
Furthermore, if there is a change in the update step, then H ), C
H;,.. Thus we can bound the number of iterations in which there is a
change in the update step by |Hox \ Hix| < [Xi]?.

We showed that the algorithm runs O(]|¥.|?) iterations. In every
iteration it performs one refine step and one update step. First we
analyze the time complexity of the refine step: Figure 3.7 shows how
the set GT' is computed.

The set LT is computed in a similar manner and the computation
o = LT N GT is simple; thus it is sufficient to analyze the total time
it takes to compute GT.
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GT =0
Iy = {[]l(sp, ') € R}
for every s € a do
Ly = {[s(s, ) € R)
Feo={¥Fyels (v.v) € Hi}
if I'y CI'c; then inserts s to GT
end

Figure 3.7: The construction of GT

The sets I', and I'y are computed in time O(|S]). The set I'c; is
computed in time O(|¥x|?). Thus the total time complexity of the
refine step is the number of times a state is tested for being in GT
times O(|S] + |Xx|?). We distinguish between two cases:

1. « is split in the internal loop. The number of such sub-iterations
is bounded by ;. For each iteration in which « is split, the
number of times every state in « is tested for being in GT is at
most equal to the number of partitions. The number of partition
is bounded by Y. Since |a] < |S], the number of times a state
is tested for being in GT is O(]S| - |Xk]). Thus the total time
complexity of these iterations is O(|Xx| - [S] - (|S] + |Xk]?))-

2. «a is not split in the internal loop. In each iteration where « is not
split, every state in « is tested for being in GT' exactly once. Since
Ywes, | = |S], the time complexity of one iteration is O(]S] -
(IS] + |Xk]?)). Since the number of such iterations is bounded
by |Xk|?, the time complexity of these iterations is O(|Xx|? - | S] -
(151 [5407)).

Thus the total time complexity of the refine step is O(|X¢|*-|S]-(|.S|+
|5k ]%)-

Next we analyze the complexity of the update step. The construc-
tion of II(«) can be done in time O(|R]). Given II(¢4), the construction
of ® can be done in time O(|X|*). The time required to check whether
¢ DO TI(e}) is O(|Xk]). Thus the time complexity of internal loop in
the update step is O(|R| + | Xk |?).

Since the number of sub-iterations in each update step is bounded
by O(|Zk]*), the total time complexity of an update step is O(|Xx|* -
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(IR| + |Xk|*)). Since the number of main iterations in the algorithm is
bounded by |¥x|?, the total complexity of all update steps is O(|x|* -
(1R + [X]*)).

Thus the total time complexity of the algorithm is O(|Xx|* - (| R| +
[ 1%) 4 (Sl [T (15T [Z])-
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Chapter 4

Applicability of fair
simulation

In this chapter we make a broader comparison of four notions of fair
simulation: direct [DHWT91], delay [EWS01a], game [HKR97], and ex-
ists [GL94]. We refer to several criteria that emphasize the advantages
of each of the notions. The results of the comparison are summarized
in Table 4.1.

We developed two practical applications that are based on the com-
parison. The first is an efficient approximated minimization algorithm
for the delay, game and exists simulations. For these preorders, a
unique equivalent smallest model does not exist. Therefore, an approx-
imation is appropriate. In addition, we suggest a new implementation
for the assume-guarantee [Fra76, Jon83, MC81, Pnu84] modular frame-
work presented in [GL94]. The new implementation, based on the game
simulation rather than the exists simulation, significantly improves the
complexity of the framework.

Our comparison refers to three main aspects of fair simulation. The
first is the time complexity of constructing the preorder. There, we
mainly summarize results of other works (see Figure 4.1). We see that
constructing the direct, delay, and game simulations is polynomial in
the number of states n and the number of transitions m [EWS01a]. In
contrast, constructing the exists simulation is PSPACE-complete [KV96]
, which is a great disadvantage.

The second aspect that we consider is the ability to use the preorder
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for minimization. We say that two models are equivalent with respect
to a preorder if each is smaller by the preorder than the other. The goal
of minimization is to find the smallest in size model that is equivalent
with respect to the preorder to the original one!.

In [BGOO] it has been shown that for every model with no fairness
constraints there exists a unique smallest in size model which is sim-
ulation equivalent to it. The minimization algorithm that constructs
this smallest in size model [BGOO0] identifies and eliminates two types
of redundancies in the given model. One is the existence of equiva-
lent states. This redundancy is eliminated by constructing a quotient
model. The other is the existence of a successor of a state whose behav-
ior is contained in the behavior of another successor of the same state.
Such a state is called a little brother. This redundancy is eliminated by
disconnecting little brothers.

We thus examine, for each of the fair simulation preorders, the
following three questions. Given a model M:

e 1. Is there a unique smallest in size model that is simulation equiv-
alent to M7

o 2. Is the quotient model of M simulation equivalent to M7

o 3. Is the result of disconnecting little brothers in M simulation
equivalent to M7

Our examination (see Figure 4.1) leads to a new minimization algo-
rithm that uses the direct and delay simulations as approximations for
the game and exists simulations. The new algorithm obtains a better
reduction than the algorithm suggested in [EWS01a).

The third aspect that we investigate is the relationship between
the simulation preorders and universal branching-time logics. A ba-
sic requirement of using a preorder in verification is that it preserves
the specification logic, i.e., if My < M; then, for every formula ¢ in
the logic, My = ¢ implies M; = ¢. Indeed, all four notions of fair
simulation satisfy this requirement. A stronger requirement is that
the preorder have a logical characterization by some logic. This means

'Note that this is a stronger criterion than the one used in [EWS01la], where only
language equivalence is required.
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that M; < M, if and only if for every formula ¢ in the logic, M, = &
implies M; |= ¢.

Logical characterization is useful in determining if model M, can be
used as an abstraction for model M;, when the logic £ should be pre-
served. If the preorder < is logically characterized by £ then checking
M; < M, is a necessary and sufficient condition and will never give a
false negative result.

Another important relationship between a logic and a preorder is
the existence of a mazimal model T, for a formula ¢ with respect to
the preorder. The maximal model 7 for a formula ¢ is such that for
every model M’, M’ < T, if and only if M’ = ¢. Maximal models are
used as tableaux in the framework described in [GL94] for the assume-
guarantee paradigm. The assume-guarantee is an inductive modular
verification paradigm in which the environment of the verified part can
be represented by a formula. The result method is a proof schema
which is based on the modular structure of the system.

In [GL94], a semi-automatic framework for the assume-guarantee
paradigm is presented. The framework uses the exists preorder and is
defined with respect to the logic ACTL. It uses a tableau to represent
an ACTL formula. This tableau is the maximal model for the formula
with respect to the exists preorder.

In this work we show that there is also a maximal model for ACTL
formulas with respect to the game simulation. In addition, we show
that other conditions required for a sound implementation of the assume-
guarantee paradigm hold for the game simulation. Once the game
simulation replaces the exists simulation, the complexity of the imple-
mentation is dramatically reduced.

The results of our comparison are presented in Table 4.1. The proofs
of the claims for which no citation is given appear in the next sections.

The rest of the chapter is organized as follows: In Section 4.1 we
define the Bichi fairness constraints and the different notions of fair
simulation. Section 4.2 investigates simulation minimization. For each
of the fair simulations we check whether there exists a unique minimal
structure, and whether constructing a quotient structure or disconnect-
ing little brothers results in an equivalent structure. We then present a

#Tn [EWS01a] it is shown that the quotient model is language equivalent to the original

model. Here, we show that they are delay equivalent.
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minimization relation to logic

time complexity | unique quotient little has max

notion || of constructing smallest | model brothers | logical model
the preorder model characterization

Direct || O(m - n) true true true false false
[EWSO01a]

Delay || O(m - n?) false true 3 false false false
[EWSO01a]

Game || O(m - n?) false false false YAFMC true
[EWSO01a] [EWSO01a] [HKRI7]

Exists || PSPACE false false false ACTL* true
complete [KV96] [GL94]

Table 4.1: The properties of the different notions of fair simulation

new minimization algorithm for the game and exists simulations. Sec-
tion 4.3 investigates the relationships between fair simulation and logic.
Each notion is checked for logical characterization and for the existence
of a maximal structure. In Section 4.4 we prove that the game simu-
lation can replace the exists simulation in the implementation of the
assume-guarantee paradigm.

4.1 Fairness constraints and fair simulation

In this work we refer to Bichi fairness constraints. Given a Kripke
structure M =< S, L, S, R >, we add a Biichi fairness constraints
which distinguish between fair traces and unfair traces in M. A Buchi
fairness constraints is a set F' C S. In order to capture the infinite
behavior of p, we define

inf(p) = {s | s = p' for infinitely many i }.

We say that a trace p is fair according to the fair set F iff inf(p)NF £ ().

Next, we define the different notions of fair simulation. The first
notion is the direct simulation, which is the most straightforward ex-
tension of the ordinary simulation.

Definition 4.1.1 H C 5;x.S; is a direct simulation relation [DHWT91]

(<ai) over My x My iff it satisfies the conditions of Definition 2.0.1,
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except that here 2a is replaced by:
2(a’") L1(s1) = La(s2) and sy € Fy implies sy € F;.

We now define the exists simulation:

Definition 4.1.2 [GLY94] H C S x Sy is an exists simulation (<3)
over My x My iff it satisfies the conditions of Definition 2.0.1, except
that here 20 is replaced by:

2(6') for every fair trace py from si in My there exists a fair trace p;
from sy in My such that for all 1 € IN, (p}, ps) € H.*

The next definitions are based on games over Kripke structures. We
start with a game that characterizes the simulation over structures
with trivial fairness constraints. Given two Kripke structures My, Mo,
we define a game of two players over My, M,. The players are called
the adversary and the protagonist, where the adversary plays on M;
and the protagonist plays on M;.

Definition 4.1.3 Given two Kripke structures, My and My, a sim-
ulation game consists of a finite or infinite number of rounds. At
the beginning, the adversary selects an initial state sop in My, and the
protagonist responds by selecting an initial state sgy in My such that
L1(so1) = La(s02). In each round, assume that the adversary is at s,
and the protagonist is at s;. The adversary then moves to a successor
sy of sy on My, after which the protagonist moves to a successor sby of

s9 on My such that L(s)) = La(s)).

If the protagonist does not have a matching state, the game terminates
and the protagonist fails. Otherwise, if the protagonist always has a
matching successor to move to, the game proceeds ad infinitum for w

rounds and the protagonist wins. The adversary wins iff the protagonist
fails.

Definition 4.1.4 Given two Kripke structures My and My, a strat-
egy m of the protagonist is a partial function 7 : (S; x Sy — S3) U
(So1 X {L} — So2). The function m should satisfy the following: If

sh =m(s],s2) then (s2,8,) € Rs.

*In such a case we use the notation (p1,p2) € H.
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The protagonist plays according to a strategy m if when the adversary
initially selects so, € Sp,, the protagonist selects so, = m(so,, L) and,
for every round ¢, when the adversary moves to s} and the protagonist
is in s, the protagonist moves to s, = m(s], s2). 7 is a winning strategy
for the protagonist if the protagonist wins whenever it plays according
to .

We can now present an alternative definition to the simulation pre-
order. This definition is equivalent to Definition 2.0.1 [HKR97].

Definition 4.1.5 Given two Kripke structures, My and My, My sim-
ulates My (My < My) iff the protagonist has a winning strategy in a
simulation game over My, M.

In order to extend the simulation game to fair simulation, we add a
winning condition which refers to the infinite properties of the game.
We then give two additional definitions of fair simulation, the delay
(<4e) and the game (<,) simulations.

Definition 4.1.6 [EWS01a] The protagonist delay wins a game over
two fair Kripke structures My and My iff the game is played for in-
finitely many rounds. Moreover, whenever the adversary reaches a fair
state then the protagonist reaches a fair state within a finite number of
rounds.

Definition 4.1.7 [HKR97] The protagonist game wins a game over
two fair Kripke structures My and My iff the game is played for in-
finitely many rounds. Moreover, if the adversary moves along a fair
trace, then the protagonist moves along a fair trace as well.

We say that 7 is a delay/game winning strategy for the protagonist if
the protagonist delay/game wins whenever it plays according to .

Definition 4.1.8 [HKR97, EWS01a] Given two fair Kripke struc-
tures, My and My, My delay/game simulates My iff the protagonist
has a delay/game winning strategy over My, M,.

Definitions 4.1.1,4.1.2 and 4.1.8 are extensions of Definition 2.0.1 and
its equivalent Definition 4.1.5. Consequently, on structures with triv-
ial fairness constraints (£ = ), all four definitions are equivalent.
On structures with non-trivial fairness constraints (F # 5), the di-
rect, delay and game simulations imply ordinary simulation, the exists

57



simulation, however, does not imply ordinary simulation. In [HKR97,
EWSO01a] the following relationships over the fair simulation preorders
are shown:

M, <4 My = M, <4o0 My = M, <, My = M, <3 M,.

Note that the definitions of game/exists simulation are not limited to
specific types of fairness constraints. They hold even if M; and M,
have different types of fairness constraints. Finally, we extend the
delay/game simulations for states.

Definition 4.1.9 For all states sy and sy in a structure M, s; <g./,
Sq if the protagonist has a winning delay/game strategy in a game over
M x M where the adversary starts at s; and the protagonist starts at
S9.

4.2 Minimization with respect to fair simulation

For structures with trivial fairness constraints (F' = 5), two forms
of redundancy are considered [BG00]. These redundancies are han-
dled in [BGOO], by first constructing a quotient structure that results
in a structure without equivalent states and then disconnecting little
brothers to eliminate the other redundancy. For structures with trivial
fairness constraints, eliminating these redundancies results in a unique,
smallest in size structure that is simulation equivalent to the original
structure [BGOO].

The following lemma is a direct consequence of the result in [BGOO]
if we refer to states in F' as having additional labeling.

Lemma 4.2.1 For every structure, there exists a unique, smallest in
size structure that is direct simulation equivalent to it.

The proof of Lemma 4.2.1 and the construction of the smallest struc-
ture can be obtained as in Chapter 3. Unfortunately, performing the
same operations for the other notions of fair simulations might result in
an inequivalent structure. In this section we investigate minimization
with respect to each notion of fair simulation. We start by checking
whether the quotient structure is equivalent to the original one. Next
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we check whether it is safe to disconnect little brothers. We then deter-
mine whether there exists a unique smallest in size equivalent structure.
Finally, we use the results of this section to suggest a new and better
minimizing algorithm.

In this section we use language equivalence and language contain-
ment.The definitions are given below.

Definition 4.2.2

o The language of sy is contained in the language of so (s1 C s2)
if for every fair trace py from sy there is a fair trace py from s,

such that ¥i >0, L(p%) = L(pb).

o My C M,y if for every fair trace starting at an initial state so; €
So1 there is a fair trace starting at an initial state so3 € Soz such

that ¥i >0, Li(p)) = La(ph).
o My is language equivalent to My if My C My and My C M.

Clearly, all notions of fair simulation imply language containment.

4.2.1 Quotient structure

The quotient structure is the result of unifying all equivalent states
into equivalence classes. Recall that states s; and sy are equivalent
if 851 < s and sy < s1. The equivalence classes are the states of the
quotient structure. There is a transition from one equivalence class
to another iff there exists a transition from a state in the former to a
state in the latter. An equivalence class is initial if it contains an initial
state and is fair if it contains a fair state. For the delay simulation, we
present the following lemma.

Lemma 4.2.3 Let M© be the quotient structure of a structure M.
Then M =4, M©.

The proof of Lemma 4.2.3 appears in Section 4.5.1 and is similar to
the proof in [EWSO01b].

In [EWSO01a] it is shown that the quotient structure with respect to
game simulation is not equivalent to the original one. We show that
for every preorder <g that lies between game simulation and language
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containment, the quotient structure with respect to this preorder might
not be equivalent to the original structure.

Lemma 4.2.4 Let <g be any preorder such that for every My, M,,
M, <, My = M, <g My = M, C M,.

Then there exists a structure M whose quotient structure with respect
to <g s not equivalent to M with respect to <g,.

Proof Consider the structure M; in Figure 4.1. States sg and sy are
equivalent with respect to game simulation. This can be seen by con-
sidering a strategy that instructs the protagonist to move to the same
state the adversary moves to. This strategy proves both directions of
the game equivalence. Since My <, My = M; <4 M;, sq and sy are
also equivalent with respect to <g.

However, the quotient structure that is the result of unifying states
so and s, is not equivalent to M; with respect to <g. Since M; <g
My = My C My, it is sufficient to prove that the quotient structure is
not language equivalent to M;: the language of M; contains all words
in which both @ and b occur infinitely often, but the language of the
quotient structure contains the word a“.

Furthermore, there is no other definition of a quotient structure
of M, that is language equivalent to M;. Such a quotient structure
contains two states, one in which « is true and another in which b is
true and at least one of the states is fair. Assume that the state where
a is true is fair. We distinguish between two cases: If there exists a
transition from this state to itself, then the language of the quotient
structure includes a word where b occurs only finitely many times, a
contradiction. Otherwise, the word (aab)® is not in the language of the
quotient structure, a contradiction. Assuming that the state where b
is true is fair, will lead to a contradiction in a similar way. O

Corollary 4.2.5 For exists/game simulation, the quotient structure
is not necessarily equivalent to the original structure.

4.2.2 Disconnecting little brothers

A state sy 1s a [ittle brother of another state s5 if both states are suc-
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0 1

Figure 4.1: The structures My and M, are equivalent to M with respect to
game/exists simulation, and they are both minimal. Note that states 0 and
2 (0" and 2') are equivalent but cannot be unified. (Double circles denote
fair states.)

cessors of the same state s1, sy < s3, and s3 £ s9. Little brothers s, is
disconnected by removing the transition (sy, s3) from R.

Lemma 4.2.6 Let <4 be a preorder such that
My <ge My = My <q My = M; C M,.

Assume that structure M' is the resull of disconnecting little brothers
in structure M with respect to <a. M’ might not be equivalent to M
with respect to <4 .

Proof Consider the structure M; in Figure 4.2. State s, is a little
brother of state s; with respect to <;.. This can be seen by considering
the strategy that instructs the protagonist to move from state s; to
state sg in the first round and to move to the same state the adversary
moves to in the other rounds. This strategy shows that sy <y sq,
because

My <4e My = M; <q My, 35 <4 s1. Next, note that s; € s9, since
s1 has a successor labeled ¢ and sy does not. Thus s; L4 s2, and sy is
a little brother of s; with respect to <.

Next we show that the result of disconnecting s, from sg is not
equivalent to M; with respect to <4. Since My <o My = M; C M>,
it is sufficient to show that the result of disconnecting sy from sq is
not language equivalent to M;. But this is true since disconnecting s
results in a structure with no fair traces from s;. O

Corollary 4.2.7 The structure that results when little brothers are
disconnected with respect to delay/game/exists simulation might not be
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equivalent to the original structure with respect to delay/game/exists
stmulation.

M

Figure 4.2: The structures My and M; are equivalent with respect to de-
lay /game/exists simulation to M, and they are both minimal. Note that
state 2 (4') is a little brother of 1 (0’) but cannot be disconnected.

4.2.3 Unique smallest in size structure

Lemma 4.2.8 Let <4 be a preorder such that
My <ge My = My <q My = M; C M,.

Then there exists a structure M that has no unique smallest in size
structure with respect to <.

Proof Consider the structures in Figure 4.2. Structures M; and M, are
delay equivalent but are not isomorphic. In order to see that My <y
My, consider the strategy in which in every round the protagonist moves
to the same state as the adversary, except for the transition from 1’
to 4’, when the protagonist moves to state 0. Similarly, we can show
that My <je M,. Since My <4 My = M; <4 My, My and M, are
equivalent with respect to <.

Next, we show that there is no smaller structure that is equivalent
to My and M, with respect to <4. Since My <4 My = M; C M,, it
is sufficient to show that there is no smaller structure that is language
equivalent to M; and M;. Note that every equivalent structure must
contain a strongly connected component with three states labeled {a},
{b} and {c}. However, these states cannot be fair because there are
no fair traces in M; and M, which have infinitely many states labeled

62



{¢}. Thus, there should be two other states labeled {a} and {b} on a
fair, strongly connected component. Consequently, there have to be at
least five states in any structure that is language equivalent to M; and

M,. O

Corollary 4.2.9 There is no unique smallest in size structure with
respect to delay/game/exists simulation.

An interesting observation is that the minimization operations are not
independent® [KP92]. For example, in structure M in Figure 4.1, states
sp and s; are game/exists equivalent to states sy and s3 respectively.
Unifying states so and sy results in structure M,. Unifying states s;
and s3 results in structure M;. Both structures are equivalent to M
and neither can be further minimized. A similar phenomenon occurs in
structure M of Figure 4.2: for delay/exists/game simulation, states s4
and s, are little brothers of states sg and s; respectively. Disconnecting
state s4 from state s; results in My, and disconnecting state s, from
state sg results in My. Again, both structures are equivalent to M, and
neither structure can be further minimized.

4.2.4 An approximated minimization algorithm for
delay /game/exists simulation

In Chapter 3, two efficient procedures for minimizing with respect to
ordinary simulation are presented. In the previous sections we have
shown that these procedures cannot be used for delay /game/exists sim-
ulation. Furthermore, we have shown that there is no equivalent unique
smallest in size structure with respect to these simulations. As a result,
we suggest an algorithm that performs some minimization but does
not necessarily construct a minimal structure. Our algorithm uses the
direct/delay simulations as an approximation of the game/exists simu-
lation. The algorithm is presented in Figure 4.3. The first step results
in M’ =4. M. The second step results in M" =4 M’. Since direct sim-
ulation implies delay simulation, M" =, M. M" is also equivalent to
M with respect to game/exists simulation. Thus, the algorithm com-
bines the advantages of the direct and the delay simulations in order

®Operations are not independent if one operation disables another.
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Given a structure M,

1. Construct a quotient structure M’ with respect to delay simula-
tion.

2. Construct M” by disconnecting little brothers in M’ with respect
to direct simulation.

Figure 4.3: Minimization algorithm for the delay/game/exists simulations.

to produce a reduced structure that is equivalent with respect to de-
lay /game/exists simulations to the original one. The complexity of the

first step is O(m-n?) [EWS01a], and of the second step O(m-n) [BG0O].
Thus the total complexity of the algorithm is O(m - n?).

4.3 Relating the simulation notions to logics

In this section we investigate the relationship between the different
notions of fair simulation and the logics ACTL and ACTL*. First we
check for each notion whether it has a logical characterization. Next we
check whether there exists a maximal structure for ACTL with respect
to each notion.

4.3.1 Logical characterization

Definition 4.3.1 Logic L characterizes a preorder < if for all struc-
tures My and My, My < My if and only if for every formula ¢ in L,
M, = ¢ implies My = ¢.

In [GLY94], it is shown that if M; <3 M,, then the following property
holds: V¢ € ACTL*, M, = ¢ implies M; |E ¢. Since all other simula-
tion notions imply the exists simulation, this property holds for all of
these notions.

We now investigate which of the fair simulations satisfy the other
direction of logical characterization. We show that ACTL* character-
izes the exists simulation but not the game/delay/direct simulation.
On the other hand, ACTL does not characterize any of these notions.
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First we prove that the exists simulation is characterized by the
ACTL* logic. We prove that if M €3 M’, then there exists an ECTL*
formula ¢ and an initial state sg of M such that M, s | ¢. Further-
more, for all initial states s of M', M’ sj = ¢. This implies that
there exists an ACTL* formula ¢ which is equivalent to —¢ such that
M' = but M 1.

Our proof is similar to the proof in [ASS*94] for fair bisimulation.
It is based on a different definition of fair simulation. This definition
called rational simulation, is presented below.

Definition 4.3.2 Let p be a trace through a Kripke structure M. p is
a rational trace if AN, K such that Vi(i > N — p' = p((i_N)mOd K)+NYy

Thus, a rational trace is a trace with a prefix of length N followed by
a cycle of length K.

Definition 4.3.3 A state s is smaller by rational simulation than a
state t (s <,q: 1) if they lie in the coarsest preorder H thatl satisfies

o L(s) = L(t).

o for every fair rational trace ps starting at s there exvists a fair
rational trace p; starting at t such that (ps,p:) € H.

M <,ot M if for every so € So there exists s{, € S} such that sg <,qr S-

Lemma 4.3.4 Let s and t be states in structure M. If there exists a
fair trace ps from s such that for all fair traces py fromt, (ps,p:) &€ H,
then there exvists a fair rational trace ps. from s such that for all fair

traces p; from t, (psr pe) € H.

The proof of Lemma 4.3.4 appears in Section 4.5.2. Corollary 4.3.5 is
straightforward from Lemma 4.3.4.

Corollary 4.3.5 If M L3 M’ then M L. M'.

In the proof we refer to one structure instead of two. This can be done
when we refer to M” which is the union of M and M’ where, S = SUS’,
(assume SN S =0), R" = RU R, and F" = F'U F'. having deduced

Corollary 4.3.5, it is now sufficient to prove the following:
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Lemma 4.3.6 For cvery structure M and states s and t, If for all
ECTL* formulas ¢, M, s = ¢ implies M,t = ¢, then s <., t.

Proof We prove that s &£,,; ¢ implies that there exists an ECTL*
formula ¢ such that M, s = ¢ but M.t |~ ¢.

We first inductively define a sequence of preorders over S x S.
Definition 4.3.7
o (s,t)€ Hy iff L(s) = L(t).

o (s,t) € Hipy iff for every fair rational trace p, starting at s there
exists a fair rational trace p; starting at t such that (ps, p:) € H;.

Note that for every ¢« > 0, H;yy C H;. Thus, after at most |S|* pre-
orders, we reach a fixpoint. We use H., to denote the preorder at the
fixpoint. It is easy to see that H,, is exactly the fair rational simulation.

For every state s, we define the following ECTL* formulas. For
every t such that (s,t) ¢ H;, we define D;(s,t) such that for every
(s,v) € Hi, v |= Di(s,t) and t £ D;(s,t). We also define formulas
C;(s) such that for all states v € S, v |= C;(s) iff (s,v) € H,.

We define D;(s,t) and C;(s) inductively.

e Let P be the set of atomic propositions true in s. Then for all t €
S, such that (s,1) & Hy Do(s,t) = Co(s) = Apepr) P Apear\p) 7P-

e Let s and ¢ be states such that (s,¢) & H;y1. Then there exists a
fair rational path p from s for which there is no H;-corresponding
trace from t.

Assume that p = s1,89,..., SN, (SN41,. .. Sn4+K)¥. We first define

for 1 <7 < K aformula that describes the cycle from place j+ N,

namely the trace

SN+5y SN+j4+15 - - SN+Ky SN+1y -« -5 SN4j—1-

cyelei1(s,t) = Cil SN y14((i-1)mod 1)) A X(Ci(S(N414( mod 1)) A
X(Cis(N414((+1) mod KA -+ X(Ci S(N414(j+ K —-2) mod K))) - - -)-

Let cycleipq1(s,t) = \/filcyclef_l_l(s,t).

Let tracei41(s,t) = Ci(s1)AX(Ci(s2) .. AX(Ci(snir )AX G(eycleir1(s,1)) .. .).
Let Dip1(s,t) = Etrace;11(s,1).

Let Cip1(s) = Ny Dip1(s, 1).
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Note that pV*1 |= cycle;yi(s, t). Furthermore,
p E Ci(s1) N X(Ci(s2), ..., AX(Ci(sn))...), thus s | Digi(s,1).

Given a state v, if v |E D;41(s,1), then there is a fair trace p’ starting
at v such that p’ |= trace;41(s,t). We prove that (p,p’) € H;. First,
for each 1 < j < N+ K, p” | Ci(s;). Further, it is true that for
7> N+1, p = eycleiyi(s,t). Using these facts, one can show by
induction that for 7 > 1, p™*/ |= cycleggfl)m()d B)H(S,t). This implies
that for each 7 > 1, pN*/ |= Ci(SN14(j=1)mod K)-

Once we know that for every state v such that (s,v) € Hipq, v |E
Dit1(s,t), it is easy to see that for every state v, v | Cipi(s) iff
(s,v) € Hiy.

Let Cuo(s) be the formula such that for all v € S, v = C(s) &
(s,v) € Hy. Then for all t € S, t £ Co(s) & (s,t) € He. Since
s | Cx(s), for all t € S such that (s,t) € H there exists v eECTL*
that differentiates between s and ¢.0

Assume that M £,.,; M’. Then there exists an initial state sq € Sy
such that for all initial states s, € S(, so Lrar So. Thus, M,sy |=
Cw(80), and for all s; € S, M, s = Co(so). Let v €ACTL* be the
formula equivalent to =C,. Then, since M, sq £ ¥, M [~ 1 and since
for all s, € S§, M’ s, E ¢, M' = .

From Corollary 4.3.5 and Lemma 4.3.6 we deduce Corollary 4.3.8.

Corollary 4.3.8 If for all ACTL* formulas ¥, M' | ¢ implies M =
Vv, then M <3 M'.

Unlike ACTL*, ACTL does not characterize the exists simulation.
In [ASST94] two structures, M; and My, are given. It is shown in [ASST94]
that for every ¢ in ACTL, M, | ¢ implies M; |E ¢. However, there
exists an ACTL* formula ¢ such that My = ¢ but M; = . Since
ACTL* characterizes the exists simulation, M; €3 M.

Unfortunately, the game, direct, and delay simulations cannot be
characterized by either ACTL* or ACTL. In [HKR97] two structures,
M, and M;, are given such that M; <3 M; but M; £, M,. Since
ACTL" characterizes the exists simulation, for every ¢ in ACTL* (and
therefore ACTL), My |= ¢ implies M; | ¢. Therefore, ACTL* (ACTL)
does not characterizes the game simulation. Since the direct/delay sim-
ulation implies the game simulation, ACTL* (ACTL) does not charac-
terize them either.
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We have shown that ACTL* characterizes the exists simulation but
not the game/delay/direct simulation. Furthermore, ACTL does not
characterize any of these notions. The question arises whether the di-
rect /delay /game simulation can be characterized by any other logic.
[HKR97] shows that the game simulation can be characterized by the
Universal Alternating Free p-Calculus (VAFMC) logic when inter-
preted over fair structures.

We show that no reasonable logic that describes the fair branching
behavior of a structure can characterize the direct/delay simulation.
Consider structures M; and M, in Figure 4.4. M; and M, cannot be
distinguished by a temporal logic formula. This is because they have
computation trees, with exactly the same fair traces. However, M; £,
My and therefore, My L4 My. To see that My £,. My note that if the
adversary chooses the path 123 the protagonist must choose the path
172'3'>. However 2 is a fair state while 2" and 3" are not. Thus neither

simulation can be characterized by any such logic.

3/

1/ 2 / M2 4/

Figure 4.4: The direct/delay simulations cannot be characterized by tem-

poral logics.

4.3.2 Maximal structure

Next we check for the existence of a maximal structure for a formula
with respect to a preorder.

Definition 4.3.9 A structure My is maximal for formula ¢ with re-
spect to preorder < if for every structure M, M = ¢ & M < M.

In [GL94] a construction of a maximal structure for ACTL formulas
with respect to the exists simulation is presented. The maximal struc-
ture is used as a tableau for the formula. In this section we check
whether the direct/delay/game simulations have a maximal structure.
We prove that the maximal structure constructed in [GL94] is maximal
with respect to the game simulation as well. On the other hand, we
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show that the formula Afa U b] has no maximal structure with respect
to the direct and delay simulations. This formula is contained in both

ACTL and ACTL”.

4.3.3 A maximal structure for ACTL with respect to game
simulation

We prove that for every ACTL formula, the tableau of the formula as
defined in [GL94] is the maximal structure for the formula with re-
spect to the game simulation. First, we describe the construction of
the tableau as shown in [GL94]. In [GL94], a different type of fair-
ness constraint, the generalized Biichi acceptance condition, is used. A
generalized Bichi acceptance condition is a set F' = {f1, fa,... fu} of
subsets of S. A trace p is fair according to F' iff for every 1 <1 < n,
inf(p) N f; # (0. Since the game simulation is not limited to a certain
type of fairness constraint, we do not have to change anything in its
definition.

For the remainder of this section, fix an ACTL formula ¢». Let AP,
be the set of atomic propositions in ¢». The tableau associated with ¢ is
a structure Ty = (S, Rr, Sor, L1, Fr). The set of elementary formulas
of 1, el(1)), is defined as follows:

l(p) = el(=p) ={p} if p € AP,.

[{d1V §2) = el(dp1 N da) = el(d1) Uel(¢z).
3. cl(AX §) = {AX 6} U el().
4. el(Aldy U d]) = {AX False, AX(Alé U b))} U el() U el(bs).
5. cl(Aldy R 62]) = {AX False, AX(A[o1 R b))} U el(1) U el(ha).

The set of tableau states is St = P(el(1))®. The labeling function
is Lr(st) = s: N APy. In order to specify the set Sor of initial states
and the transition relation Rr, we need an additional function sat that
associates with each sub-formula ¢ of ¢ a set of states in Sp. Intuitively,
sat(¢) will be the set of states that satisfy ¢.

L. sat(¢) = {s| ¢ € s} where ¢ € el(¢).

%Some of the states are deleted in order to keep Rr total.

1. ¢
e

2.

o
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2. sat(—¢) = {s | ¢ &€ s} where ¢ is an atomic proposition. Recall
that only atomic propositions can be negated in ACTL.

3. sat(¢V ) = sat(¢p) U sat(p).
4. sat(op N @) = sat(d) N sat(p).

(
5. sat(Alp U ¢]) = (sal(p) U (sat(d) N sal(AX(A[o U ¢])))) U
sat(AX False)

(A

6. sat(Al6 R g]) = (saf() N (sat(6) U sat(AX(A[ R #])))) U
sat(AX False).

The set of initial states of the tableau is Sor = sat(¢). The transition
relation is defined so that if AX ¢ is included in some state then all its
successors should satisfy ¢.

Rr(s1,82) = N\ (AX ) € s1 = 53 € sat(d).
AX peel(t))

The fairness constraint guarantees that eventuality properties are ful-
filled. This is done by requiring that for every fair trace p, for every
elementary formula AX Ao U ¢] of v, and for every state s on p, if
s € sat(AX Alo U ¢]), then there is a later state ¢ on p such that
t € sat(p). Thus, we obtain the following fairness constraints:

Fr = {((Sr — sat(AX A[6 U o)) U sat(¢)) | AX A[6 U ] € el(¥)) .

4.3.4 The tableau is the maximal structure for game simu-
lation

In this section we prove that for every Kripke structure M, M |« iff
M <, Ty. Most lemmas were proved in [GL94] for the exists simulation.
We give proofs only for the lemmas that are different due to the change
of the simulation preorder.

Lemma 4.3.10 [GL94] For all subformulas ¢ of ¢, if t € sat(¢),
then t E ¢

The main result of Lemma 4.3.10 is that the tableau for ¢ satisfies .
This is because any initial state of Ty is in sat(¢), and therefore every
initial state of Ty satisfies 1. Consequently, since ACTL is preserved
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by the <, preorder, for every Kripke structure M, if M <, Ty, then
M E .

Our next step is to prove that M |= ¢ implies M <, T,. We show
that if M = ¢ then the protagonist has a winning strategy function
in a game over M x T;. We define the strategy function 7 as follows:
w50, 1) = 16| 6 € el(), 50 | 6} and 7(s',1) = 16 | & € el(), &
¢ }. Thus, whenever the adversary moves to a state s', the protagonist
moves to t' = m(s', 1), such that both s, satisfy exactly the same set
of elementary formulas of ¥. The following lemma extends this result
for all subformulas of ).

Lemma 4.3.11 [GLI4] Ift' = w(s',1), then for every subformula or
elementary formula ¢ of b, s’ = ¢ implies V' € sat(o).

Lemma 4.3.12 7 is a winning strategy.

Proof

1. Any given state s’ satisfies a unique subset of el(¢). Thus, for
every s', t' is unique and 7 is a function.

2. For every so € Sy, by Lemma 4.3.11 M, sy | ¢ implies {5 =
(80, L) € sat(). By the definition of Sor, this implies tg € Sor.

3. Assume that ¢’ = 7(s',t). Then for every p € AP, p € L(s') &
sEpepeLr(t).

4. Assume that ¢ = m(s',1). Let (s,t) be the position of the game in
the previous round. Let AX ¢y, AX ¢,..., AX ¢, be all the for-
mulas of the form AX ¢ in el(¢)) which s satisfies. Then we have
sEé, 8 E ¢y ..y 8 |E ¢n. By Lemma 4.3.11, ¢/ € sat(¢),
t' € sat(¢pa), ...,t" € sat(¢p,). Now by the definition of 7, the
formulas of the form AX ¢ in ¢t must be exactly AX ¢y, AX ¢,
..., AX ¢,,. Then by the definition of Ry, we see that (¢,t") € Ry.

5. We prove that if p is a fair run, then w(p) is also a fair run.
Assume that 7(p) is not fair. By the definition of Fr, there must
be some elementary subformula AX Ao, U ¢;] such that

in f(m(p)) 1 (St — sat(AX A6, U ¢5])) U sat(6,)) = 0.
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This means that there is an ¢ > 0 such that for all ;7 > 1,
m(sj,tj-1) € sat(AX Afo, U ¢p]) but m(s;,t;-1) & sat(oy).
Consider the state t; = 7(s;,ti—1). t; € sat(AX Alp, U ¢]) iff
AX Ao, U ¢,] € ;. The definition of 7 then implies that s;
AX A, U ¢]. In addition, Lemma 4.3.11 implies that if ¢; ¢
sat(dy), then s; & ¢p. Since m(s;,ti—1) € sat(AX Alo, U ¢y]) and
for all j >4, m(s;,t;—1) & sat(¢s), then s;,8,41,... is a fair trace
in M starting at s;, and every state on this trace satisfies —¢y.
But s; E AX Af¢, U @], a contradiction. Hence 7(p) is in fact a
fair trace in 7y. O

Corollary 4.3.13 For any structure M, M = ¢ iff M <, Ty. Thus,
Ty is the mazimal structure for +p with respect to game simulation.

4.3.5 A maximal structure for direct/delay simulation

We now show that it is impossible to construct a maximal structure for
the formula ¢ = Afa U b] with respect to the direct/delay simulations.
Thus, any logic that contains this formula or an equivalent formula, in
particular ACTL and ACTL*, does not have a maximal structure with
respect to these simulations. More specifically, we show that there
is no finite structure 7, such that 73 | ¢ and 7, is greater by the
direct/delay simulation than any structure that satisfies ¢. Since the
direct simulation implies the delay simulation, it is sufficient to prove
this result for the delay simulation. In Figure 4.5 we present a sequence
of structures My, My, ... such that for every n in IN, M, = A(aUDb).
We prove that for every n and every structure M’, if M, <, M’ and
M’ = Ala U b] then |M'| > n. Thus, any structure that satisfies
Ala Ub] and is greater by the delay simulation than all the structures
in the sequence has to be infinite.

Lemma 4.3.14 For every n > 0 and every structure M', if M, <g.
M and M' = A[a U b], then |M'| > n.

Proof Let n € IN be a natural number and M’ be a structure such
that M’ = A[a U b] and M, <;o M'. In a game over M, x M’ the
protagonist has a winning strategy and thus it wins in every game no
matter how the adversary plays. Consider the following strategy of the
adversary. It starts from the initial state. As long as the protagonist
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Figure 4.5: There is no finite structure M’ such that for every n in IN, M’
is greater by direct/delay simulation than M,,, and M’ = A[a U b].

moves to a fair state the adversary moves to the next fair state (until
it reaches the last one). If the protagonist moves to a state that is not
fair, then the adversary moves to the successor which is not fair in M,
and stays there until the protagonist moves to a fair state in M’. We
distinguish between two cases:

1. The suffix of the game is an infinite sequence of unfair states in
both structures. In this case the adversary is the last player who
was in a fair state. Thus it wins the game. This means that M’
is not greater than M,, by the delay simulation, a contradiction.

2. Otherwise, the adversary moves through n fair states in M,, that
are labeled a to the state labeled b. Since the adversary moves
to a fair state only when the protagonist is in a fair state, the
protagonist has been in n fair states that are labeled a. Since
M' = Ala U b], these states must be different (otherwise there
would be an infinite fair trace which is labeled a). Thus the size
of M’ is at least n. O

We proved that there is no maximal structure for A[a Ub] with respect
to the direct/delay simulations.
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4.4 A new implementation for the assume-guarantee
framework

This section shows that the game simulation can replace the exists sim-
ulation in the implementation of the assume-guarantee paradigm [Fra76,
Jon83, MC81, Pnu84], as suggested in [GL94].

In the assume-guarantee paradigm, properties of different parts of
the systems are verified separately. The environment of the verified
part is represented by a formula that describes its properties. The
formula either has been verified or is given by the user. The method
proves assertions of the form ¥ M ¢, meaning that if the environment
satisfies ¢ then the composition of M with the environment satisfies
¢. The method enables the creation of a proof schema which is based
on the structure of the system. [GL94] suggests a framework that
uses the assume-guarantee paradigm for semi-automatic verification.
It presents a general method that uses models as assumptions; the
models are either generated from a formula as a tableau or are abstract
models given by the user. The proof of ©» M ¢ is done automatically by
verifying that the composition of the tableau for ¢» with M satisfies ¢.
The method requires a preorder <, a composition operator ||, and a
specification language £ which satisfy the following properties:

1. For every two structures My, M,, if M; < M,, then for every
formula ¥ in £, M, |= v implies M; [ .

2. For every two structures My, My, My||My < M.

3. For every three structures My, My, Ms, My < My implies M || M5 <
My || Ms.

4. Let ¢ be a formula in £ and 7Ty be a tableau for v. Then 7y is

the maximal structure with respect to the preorder <.
5. For every structure M, M < M|/ M.

An implementation for this framework was presented in [GL94]. The
implementation uses the ACT'L logic as the specification language, the
exists simulation preorder, and a composition operator which satisfy
the properties above. In this section we suggest a new implementation
which is similar to that of [GL94], except that the game simulation is
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used as the preorder. We show that the game simulation can replace
the exists simulation. As we have stated, the game simulation preserves
the ACTL logic, and thus property one is satisfied. In Section 4.3 we
proved that the game simulation satisfies property four. Thus, it is
left to show that the game simulation preorder and the composition
operator as defined in [GL94] satisfy properties two, three and five.
Again we use generalized Biichi constraints. In order to prove these
properties we need to define the composition operator ||.

Definition 4.4.1 Let M,, M, be Kripke structures. The parallel
composition of My and My, denoted My||My, is the structure M de-
fined as follows.

o AP =AP UAP,.

S ={(s1,82)|L1(s1) N APy = Ly(s2) N AP}
R=A{((s1,52), (tr,t2))|(s1,11) € Bi A (s2,12) € R}
So = (So, X So,) N 5.

L((s1,82)) = L1(s1) U La(s2).

« F={(f x SNS|fi € BYU{(S x )0 S|f: € By,

Remark: In all notions of simulation, there is a requirement that if
s1 < 8g, then Li(sy) = La(s2). When M; and M, are defined over
different AP we replace this requirement with Ly(s1) N AP, = La(s2)N
AP,

Lemma 4.4.2 ( property 2.) For every pair of Kripke structures
My, My,
My||My <, M.

Proof We define a strategy 7 as follows: 7((so1,S02), L) = so1 and
m((s],85),81) = s, 1 .e., the protagonist moves on the projection of
the adversary’s trace on M;. It is easy to see that 7 is a function.
Let ((s1,32), 1) be the previous position in the game and assume that
the adversary moves to (s},s5). Then s = 7w((s],55),51). Clearly,

Liz(s], s5)NAP, = Lq(s]). The definition of composition implies that if

"Some of the states might have to be deleted in order to keep R total.
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((s1,52), (87, 5)) is a transition in M;|| M, then (sq, s]) is a transition in
M. Furthermore, if the adversary’s trace is fair then the protagonist’s
trace 1s fair as well. O

Lemma 4.4.3 (property 3.) Let My, My, M5 be Kripke structures.
Then M1 Sg M2 Zmphes MlHMg Sg M2HM3

Proof Let 7 be a strategy in a game over My x M;. We define a strategy
7' as follow: 7'((s01, S03), L) = (7m(s01, L), s03) and 7'((s], s5), (s2,83)) =
(m(sh, s2),5%), i.e., whenever the adversary moves to s} in M; and sj in
M3, the protagonist moves to the same state in M5 and to s}, = 7(s], s2)
n MQ.

It is easy to see that 7’ is a function. Let ((s1,$3),(s2,33)) be the
previous position in the game and assume that the adversary moves to
(s],55). Then
m'((s], 85), (82,83)) = (m(s], s2),8%). Let s) = m(s],s2). Since 7 is a
winning strategy, Li(s]) = La(s)) and (sg,s)) is a transition in Ms.
Thus, L13(s],s5) = Las(sh, s5). Furthermore, the definition of compo-
sition implies that if ((s1,s3),(s],s%)) is a transition in M;||Ms then
((s2,83), (85, s5)) is a transition in My|| Ms.

Whenever the adversary moves on a fair trace in M || Ms, the traces
projected on M; and Mj are both fair. The protagonist moves on the
same trace on Ms. Thus this trace is fair. Let p; be the trace on M;
along which the adversary moves. Since p; is fair and 7 is a strategy,
the trace m(p1) along which the protagonist moves on M, is fair as well.
The definition of || implies that the protagonist moves on a fair trace
n M2||M3 O
Lemma 4.4.4 property 5. For every structure M, M <, M||M.
Proof Consider the strategy m(sg, L) = (s0,80) and 7(s',(s,8)) =
(s',s"). Clearly 7 is a winning strategy. O

We proved that the game simulation preorder and the composition
operator satisfy the properties required in [GL94]. Therefore, game

simulation can replace the exists simulation in the assume-guarantee
framework presented in [GL94].

4.4.1 Complexity

Verifying a formula of the form ) My is PSPACE-complete in the size
of ©» [KV98]. However, the real bottleneck of this framework is check-

76



ing for fair simulation between models, which for the exists simulation
is PSPACE complete in the size of the models. (Typically, models
are much larger than formulas). Thus, replacing the exists simulation
with the game simulation reduces this complexity to polynomial and
eliminates the bottleneck of the framework. However, the algorithm for
game simulation presented in [EWS01a] refers to Kripke structures with
regular Biichi constraints, and the implementation presented in [G1.94]
refers to Kripke structures with generalized Biichi constraints. In or-
der to apply the algorithm suggested in [EWS01a] within the assume-
guarantee framework, we need a translation between these types of
fairness constraints.

[CVWYO1] defines a transformation of a Biichi automaton with
generalized fairness constraints into a Bichi automaton with regular
fairness constraints. Here we show that applying this transformation
to a Kripke structure with generalized Biichi constraints results in a
Kripke structure with regular Biichi constraints that is game simulation
equivalent to the original one. The translation affects the size of the
structure and thus the complexity of the construction of the preorder.
The sizes of S and R are multiplied by |F|, where |F| is the number
of sets in F'. Thus the complexity of constructing the preorder is |F] -
|R|-(|S]-|F])? = |R|-|S]? | F|". Note that in the tableau for a formula,
|F'| is bounded by the size of the formula and the size of the tableau
is exponential in the size of the formula; thus, the transformation of
the tableau to regular fairness constraints result in a strucuture that is
logarithmic bigger than the original one.

Definition 4.4.5 [CVWY91]Let M =< S, R, So, L, {f1, fo, ... fu} >
be a Kripke structure with generalized Bichi constraints. We define the
Kripke structure M, =< AP, S,, R,, L., F. > with a regular Buchi con-
straint, as follows:

e 5, =5x{1,2,...n}.

o R = UL {((s1,0),(52,1))|(51,52) € RAs1 & fitU
UM ((s1,1), (52,7 4+ 1))|(s1,82) € RA 51 € fi}U
{((Slvn)v (527 1))|(51752) € RA s1 € fn}

e 5., =S5y x{l}.
o [,.(s,1)=L(s).
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o F.=A{(s,n)|s € fu}.

In the proof below M denotes a Kripke structure with generalized
Biichi constraints. M, denotes the transformation of M to a Kripke
structure with regular Buchi constraints. We show that M, <, M and
M <, M,.

Lemma 4.4.6 M <, M,.

Proof : First we define a strategy 7 for the protagonist: m(sg, L) =
(s0,1) and

(Slvi) ngz
(s (s,0)) =14 (s'yi+1) i<nAs€ef
(s',1) i=nAsE f,.

Next, we prove that 7 is a winning strategy. It is easy to see that
7 is a function. The definition of the transformation implies that if
(s,7) = m(s,(t,7)) then L.((s,i)) = L(s) and that ((¢,7),(s,7)) is a
transition in M,.

It is left to prove that if the adversary moves on a fair trace p in M
then the protagonist moves on 7(p), which is a fair trace in M,.

First, we prove that for every 1 €1,2,...n

(*) there are infinitely many states of the form (s,4) in m(p).

Assume to the contrary that there is an index ¢ € {1,2,...n} which
does not satisfy (*). Let j be the minimal index which does not satisfy
(*) and let k be the index before j (k = ((j — 2)mod n) + 1). Then
there exists a suffix of m(p) in which all the states are of the form (s, k).
This implies that there exists a suffix of p without states in fr. Thus,
p is not fair, a contradiction.

Next we prove that 7(p) is fair. Since 7(p) contains infinitely many
states of the form (s,n) and infinitely many states of the form (s, 1),
then there exist infinitely many states in F,.. O

Lemma 4.4.7 M, <, M.

Proof We define the strategy = for the protagonist: 7((so,1), L) = s¢
and m((sg,1),81) = s9. It is easy to see that 7 is a function and that

sq = m((82,7), 1) implies that L.((s2,7)) = L(s2). ((s1,7),(s2,7)) € R,
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also implies (s1,s2) € R. It is left to prove that if the adversary moves
on a fair trace in M, then the protagonist moves on a fair trace in M.
Let p = (s0,%0), (S1,%1), (82,%2), ... be a fair trace in M,. We prove that

m(p) = so0,m((81,11), 80), T((S2,72), 81), T((83,13), S2), ... = So, S1, 2, . - -

is a fair run in M. Assume to the contrary that 7(p) is not fair. Then
there exists an index ¢ € {1...n} such that 7(p) contains only finitely
many states in f;. Thus, there is a suffix of 7(p) without any state in
fi. This implies that

(**) there exists a suffix of p, without any states of the form (s,1),
where s is an element in f;.

Let 7 be the minimal index that satisfies (**). Then there exists a
suffix of p in which all the states are of the form (s,7). This implies
that this suffix does not contain any states in {(s,n)|s € f,}. Thus p
is not fair, a contradiction. O

4.5 Complementary proofs

In this section we complete the proofs of Lemma 4.2.3 and Lemma 4.3.4.

4.5.1 A quotient structure for the delay simulation

In this section we prove Lemma 4.2.3. For every structure M, let M%
be its quotient structure with respect to the delay simulation. Then
M and M® are equivalent with respect to the delay simulation.

The proof that M <, M@ is straightforward. Consider the strategy
(80, L) = [so0] and (s, [s]) = [¢/]. It easy to see that 7 is a winning
strategy.

Before we prove the other direction, we need some new definitions.
First, we extend the definition of delay simulation to a relation over
the states of a structure.

In [EWSO01a] it is shown that there exists a strategy 7 such that
7 is a winning strategy for every simulation game over M x M, where
the adversary and the protagonist start at states s; and sy such that
s1 <ge S2. Another property of 7* is presented in Proposition 4.5.1.
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Proposition 4.5.1 [EWS01a] Let s1 and sy be states in M such that
s1 <ge S2. Let s) be a successor of sy and sy, = w*(s],s2). Then
s1 <de 8.

Since the delay simulation is transitive, the following proposition is
straightforward.

Proposition 4.5.2 Let M be a structure and let M@ be ils quotient
structure. Let s1 and sy be states in M such that s; <y s3. Then every
state s3 that is in the same equivalence class as sy satisfies s3 <g. Ss.

We denote by [s] the equivalence class of s. Lemma4.5.3 and Lemma 4.5.4
imply that M@ <, M.

Lemma 4.5.3 Let s; and sy be states in M such that 51 <go 3.
Then the protagonist has a strategy in a game over M@ x M in which
the adversary starts at [s1] and the protagonist starts at sy. In each
round assume that the adversary is at [s3] and the protagonist is at s4.
Then s3 <4 s4.

Proof Let 7" be the winning strategy over M x M. We define the
strategy 7’ as follows: At the beginning, 7'([s1], L) = s2. Assume that
the previous position of the game was ([s3], s4) such that s;5 <4 s4 and
that the adversary moves to [s5]. The definition of M? implies that
there exists a transition (Zs,t;) in M such that s; and t3 are in the
same class, as are s and t;. Proposition 4.5.2 implies that ¢35 <z s4.
We define 7'([ss]’, s4) = 7*(t5, s4). By the definition of 7*, 7’ is well-
defined. Moreover, since s and t; are in the same equivalence class,
sh <g4e 15. Furthermore, by Proposition 4.5.1, since s}, = 7*(1}, s4),
th <ge s, and therefore s§ <;. s,.0

Note that this strategy ensures that in every round L%([s3]) =
L(s4). However, it does not ensure that whenever the adversary moves
to a fair state, the protagonist moves to a fair state after finitely many
rounds.

Lemma 4.5.4 Let M be a structure and let M@ be its quotient struc-
ture. Then M® <, M.

Proof We describe a strategy 7" which uses memory. In [EJ91, EWS01a)]
it is shown that if there exists a strategy with memory then there exists
a memoryless strategy. The strategy 7”7 “remembers” two arguments:
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the first argument is called the status, which can be either fulfilled or
unfulfilled. The status is unfulfilled if the protagonist has not visited a
fair trace since the last time the adversary did. Otherwise, the status is
fulfilled. The second argument called the middle, and it “remembers”
a state in M.

Let 7* be a winning strategy over M x M and 7’ a strategy over
M@ x M as defined in Lemma 4.5.3. We define 7 as follows: 7([so], L
) = so, If the status is fulfilled, then #"([s%],s4) = 7'([s4], s4). Thus
the middle argument is ignored. In a round where the status becomes
unfulfilled, meaning that [s3] is fair and s, is not, we assign middle to
be a fair state in the class of s3 (there is at least one).

If the status is not fulfilled, assume that the adversary moves to
[s5].  Then we assign middle’ = 7'([s5],middle) and 7"([s5],s4) =
m*(middle’, sq).

In order to see that 7”7 is a winning strategy, first consider the round
where the status becomes unfulfilled. In this round, s3 and middle are
in the same class. Thus, if the position is ([ss], s4), then s3 <4 middle.
Furthermore, as long as the status does not become fulfilled, maddle
moves along a trace in M such that whenever the adversary moves to
[s3], 83 <ge muddle. Since middle starts at a fair state and moves on
a trace in M, by the definition of 7*, after a finite number of rounds,
the protagonist moves to a fair state as well. O

4.5.2 Proving Lemma 4.3.4

Lemma 4.3.4 cliams the following:

Let s and ¢ be states in structure M. If there exists a fair trace p; from
s such that for all fair traces p; from ¢, ps £, pt, then there exists
a fair rational trace pg. from s such that for all fair traces p; from ¢,
Psr grat Pt-

We define an equivalence relation with respect to <,.;, such that
states s and t are equivalent with respect to <,,; if s <,,¢ t and t <, s.
We denote by [s] the equivalence class of s. We say that [s1] <,. sq iff
S1 Srat 52.

Definition 4.5.5 Let M be a structure. We define the preorder
structure M* as follows:
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o AP = {C1,Cy,...C} where {Cy,Cy,...C,} are the equivalence
classes with respect to <,4.

o ST = {(5,C))|s € S and there exists s' € C; such that (s',s) €

i ((S,Ci), (t,C]‘)) € R’ < (Svt) € R.

[ J S(])D = {(80702'”80 - So}

o LP((s,Ch)) = C;.

o (5,0;)eFP & seF.

Given a state s in MT, we denote by head(s”") the first element of s”
and by tail(s”) the second element of s”.

Lemma 4.5.6 Given a fair trace ps from a state s and a state t in
a structure M, the following conditions are equivalent:

1. There exists a fair trace p; from t such that ps <,.: p:.

2. There exists a fair trace py, from (t,[s]) such that for all i > 0,
LY (pi,) = [pi]-

Proof For the first direction, assume that there exists a fair trace p;
from ¢ such that Ps Srat Pt. C'onsider'the trace py, such that for all
1 >0, head(p,) = pi and tail(p;,) = [pi]. By the definition of M, p,
is a trace in M”. Since p; is fair, py, is fair as well.

For the second direction, assume that there exists a fair trace py,
from (t,[s]) such that for all i > 0, L (pi ) = [pi]. Consider the trace
p: that satisfies p; = head(p;,). By the definition of M”, pi is a trace

in M. Furthermore, p, <.o1 pi. Since py, is a fair trace, p; is fair as
well., O

Lemma 4.5.7 Let ps, be a fair trace from (s, [sq]) in MY such that
LT (p,,) is an w-regular word. Then there exists a rational trace pg,
from sy such that for all @ > 0, tail(p,) <,at py, -

Proof Since L¥(p,,) is an w-regular word, we can write it as wyws.
Let N = |w;| and K = |w;|. Consider the trace p;, that satisfies, p} =
head(p’,). Then, for all i > 0, tail(p.)) <,ar pi, . Let [sy] = tail(p])).
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Then for all 7 > 0, [s3] <, in1+K~z" Since M 1is a finite structure there
exists a state s4 such that for infinitely many numbers 7, p¥ +i+

= Sa-
o 51
Since pg, is fair, there are ¢ < j such that AR

5 = ,ojsvl"'K'] = s4 and
an index N+ K -1 <k <N + K -j such that ,0’5“1 is a fair state.

Let py be the following trace: For all 0 <[ < N + K -4, pl, = ,f)l51
and for all [ > N+ K -4, pl, = p{li=N=K-Omod ((=)-KNFN+K-L Tt i5 easy
to see that py is a fair rational trace. Furthermore, the construction of
ps implies that for all [ > 0, tail(,olsp) Zpar p. O

Finally we prove Lemma 4.3.4: Assume that there exists a fair
trace from s such that for every fair trace p; from ¢, p; £, p:. By
Lemma 4.5.6, there is no fair trace py, such that for all i > 0, L”(p}) =
[pi]. We refer to (s, [s]) and (¢, [t]) as two copies M and M] of MT
where the former has (s, [s]) as a single initial state and the latter has
(t,[t]) as a single initial state. Then the language of M \ M[ is not
empty. This implies that the language of M \ M contains an w-
regular word. Thus, there exists an w-regular word w; in the language
of (s,[s]) that is not in the language of (¢,[¢]). This implies that their
exists a fair trace p’p that starts at (s,[s]) and w, = L (p’p).

By Lemma 4.5.7 there exists a rational fair trace p, that starts
at s, such that for all 1 > 0, tail(p’p) <,at p'. Assume to the con-
trary that there exists a fair trace p; from ¢ such that p, <,.: p:.
Consider the trace pip such that for all ¢ > 0, head(p'p) = p¢ and
tail(p'p) = tail(p’p). Clearly, p;p is a fair trace from (¢, [s]). Further-
more, LY (p'p) = L¥(ps,), thus LT (pip) = w,. This implies that w, is
in the language of MP, a contradiction. O

4.6 Conclusion

The comparison shows that there is no notion of fair simulation, which
has all desired advantages. However, it is clear that their relationship
with temporal logics gives the exists and game simulations several ad-
vantages over the delay and direct simulations. On the other hand, the
delay and direct simulations are better for minimization. Since this re-
search is motivated by usefulness to model checking, relationships with
logic are important. Thus, it is advantageous to refer to the delay and
direct simulations as approximations of the game/exists simulations.
These approximations enable some minimization with respect to the
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exists and game simulations. Out of the four notions, we consider the
game simulation to be the best. This is due to its complexity and its
applicability in modular verification.
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Chapter 5

Modular reduction

In this chapter we develop a novel technique for modular reduction
called the improved algorithm. The innovation of this algorithm is that
it avoids constructing intermediate models, which consume unnecessary
space. Given two reduced models M; and Ms, our technique directly
constructs their reduced composition. The algorithm creates a copy of
M, (Ms), and use it as an abstract environment of My (My). First, it
reduces M, with respect to the outputs of M; that are also inputs of M,
(O1N1y). We call the result M. Similarly it reduces My to MJ. Next,
M, and M7 are composed. The result is called M5. MS represents
My as if it is composed to M;. Similarly, the improved algorithm
constructs M7 = M;||MJ. In the next step M is reduced with respect
to the outputs of My (O;). The result is called M¢. Similarly MY
is constructed. Finally, the algorithm composes M? and M¢, using
a restricted composition. The resulting structure My = MI||MZ is
smallest with respect to states and transitions, which is equivalent to
M;||M,. In this chapter we use the bisimulation equivalence relation,
we prefer bisimulation over simulation equivalence because its definition
is simpler.

The rest of the chapter is organized as follows: In Section 5.1 we
define an FSM, FSMs composition and bisimulation equivalence. Sec-
tion 5.2 presents some properties of bisimulation and modularity. Sec-
tion 5.3 presents the modular minimization algorithm for deterministic
and nondeterministic FSMs. Section 5.4 describes the implementation
and the experimental results.
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5.1 Basic definitions

We model systems as finite-state machines (FSMs) in the form of Moore
machines in which the states are labeled with outputs and the edges are
labeled with inputs. Such machines are commonly used for modeling
hardware designs.

Definition 5.1.1 [Moo56] An FSM is a tuple M =< 5,50, 1,0, L, R >

where
e S is a finite set of states.
o 5o C S is a set of initial states.
o [ is a finite set of input propositions.
o O is a finite set of output propositions.
e INO=1.

o [ is a labeling function that maps each state to the set of output
propositions true in that state.

o R C S x2' xS is the transition relation. We assume that for
every s € S and 1 C [ there exists at least one state s’ such that

(s,i,¢') € R.

An FSM is deterministic iff for every state s and ¢ C [ there exists
exactly one state s such that (s,7,s") € R, and |Sp| = 1.

Two FSMs are composed only if their outputs are disjoint. There
is a transition from a pair of states in the composed FSM if and only
if the output of each state match the input on the transition leaving
the other state. This models the input-output connections between the
two machines.

Definition 5.1.2 Let M, =< 517501,[1701,[/1,31 > and

M2 =< SQ,SOQ,[Q,OQ,LQ,RQ > be two FSMS such that Ol N 02 == @
The composition M = My||My =< S, 5,1,0,L, R > is an FSM such
that:

05251><52.
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So = So1 X Soz-
I'=(L\Ox)U(l:\ Oy).

e O=0,U0;.

o L((s1,52)) = L1(s1)U La(s2).

(51520, (51,5)) € R AfT (s, U La(s2)) N 11, 0) € Ry and
(82, (Z U Ll(Sl)) N [2, 8/2) - RQ.

Lemma 5.1.3 Let My and My be deterministic FSMs, then the com-
position M of My and M, is deterministic as well.

Proof : Obviously, |So| = 1. Let (s1,s2) be a state in S and ¢ C [
be an input. Let i1 = (¢ U La(s2)) N [y and iz = (1 U Ly(s1)) N L.
Since M is deterministic, there exists exactly one state s{ such that
(s1,11,8)) € Ry. Similarly, there exists exactly one state s, such that
(82,12,85) € Ry. By the definition of composition, (s}, s}) is the only
state such that ((s1,s2),7,(s],85)) € R. O

We now define the basic notion of equivalence that we use in this
work, namely, bisimulation.

Definition 5.1.4 Letl M, =< Sl, 5017 [1, 01, Ll, Ry > and

M2 =< SQ,SOQ,IQ,OQ,LQ,RQ > be two FSMS such that Ol N 02 7£ @
and Iy = 1. We say that My and My are bisimulation equivalent with
respect to O C O1 N Oq iff there exists a relation H C Sy x Sy (called
bisimulation relation) such that:

o For every state sg; € So; there exists a state soy € Soy such that
(S01,509) € H and for every state soy € So, there exists a state
S01 € Soq such that (soq,0,) € H.

o For every pair (s1,s2) in H the following three conditions hold:

- Ll(Sl) N O/ == LQ(SQ) N O/.

— For every i C Iy (recall that Iy = I3), and for every state
sy such that (s1,1,8]) € Ry there exists a state s}y such that
(s2,1,85) € Ry and (s,s}) € H.
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— For every i C Iy, and for every state s}, such that (sq,1, ) €
Ry there exists a state s such that (s1,1,5)) € Ry and (s}, s5)

H.

S

Proposition 5.1.5 For every FSM M, let s be a state in M that is
not reachable from any initial state. The result of removing s from M
is bisimulation equivalent to M.

As a consequence of Proposition 5.1.5, we refer only to FSMs where all
the states are reachable from the initial states.

Bisimulation is an equivalence relation over FSMs. [Mil89] shows
that for every two FSMs M; and M, there exists a maximal bisimula-
tion relation, which contains every relation that satisfies the conditions
of Definition 5.1.4. The maximal bisimulation relation H C S x .S over
the states of an FSM M is an equivalence relation over S. As such, it
induces a partition of S to equivalence classes. These classes can be
used to form the quotient F'SM of M, which is the minimal FSM that
is bisimulation equivalent to M.

We will denote by [s] the equivalence class of a state s.

Definition 5.1.6 Let M =< 5,50, 1,0, L, R > be an FSM and let
H C 5 xS be the maximal bisimulation relation with respect to O' C O
over M. The quotient FSM Mg =< Sg, So,, lg,0q, Lg, Rg > of M
with respect to H is defined as follows:

o So = {ala is an equivalence class in HY.
o So, = {[s0]|50 € So}.

o Ip=1.

¢ 0p=0".

o Fora € Sy, Lo(a) = L(s)N O, for some (all) states s € a.

o Ry ={(a,i,a')|there are states s € a,s' € o such that (s,1,s") €
R}.

Definition 5.1.7 An FSM M is minimized iff it is isomorphic to its
quotient FSM.
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5.2 Properties of modularity and reduction

The improved algorithm uses both modularity and bisimulation-based
reduction. In the following we present some properties of the bisimu-
lation relation, bisimulation reduction, and the relationships between
bisimulation and modularity. The proofs for these claims are given in
Section 5.5.

Lemma 5.2.1 Let M be an FSM, and let Mg be the quotient F'SM
of M. Let (a,i,0') be an element in Rg. Then for every state s in «
there exists a state s' in o such that (s,i,5") € R.

Proposition 5.2.2 If M is deterministic then Mg is deterministic.

Lemma 5.2.3 M is minimized iff the maximal bisimulation relation
over M x M contains exactly the identity pairs.

Lemma 5.2.4 Let M be an FSM and Mg be the quotient FSM of
M with respect to O, then M and Mg are bisimulation equivalent with
respect to O'.

Lemma 5.2.5 Let M be an FSM and Mg be the quotient F'SM of M
with respect to O'. Then Mg is the smallest (in number of states and
transitions) FSM which is bisimulation equivalent to M with respect to

o'

Proposition 5.2.6 Let M, and My be FSMs and let H C Sy x Sy be
bisimulation relation over My and My with respect to O C O; N Os.
Then H is a bisimulation relation with respect to every O" C O.

Lemma 5.2.7 Let M, and My be minimized FSMs. If O, N1, = ()
and Oy N I} =0, then M = M;||M; is minimized.

5.3 The improved algorithm

In this section we present the improved algorithm. Like the naive al-
gorithm, the improved algorithm receives a design, given as a set of n
components. The improved algorithm works in iterations. In each it-
eration two minimized components M; and M, are selected and a new
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minimized component, which is equivalent to M || M, is constructed.
The algorithm terminates when an iteration results in a single com-
ponent. In this case, the final component is the smallest in terms of
states and transitions which is equivalent to the composition of the n
original components.

In this section we focus on a single iteration of the improved algo-
rithm. Unlike the naive algorithm, where the two components are first
composed and then the result is minimized, the improved algorithm
constructs a minimized FSM which is equivalent to M;||M; without
constructing the composition. Thus, the improved algorithm requires
less time and space.

By Lemma 5.2.7, if M is the result of a composition of two different
FSMs, which do not interact with each other, then, M can be mini-
mized by minimizing M; and M, separately. This however, does not
hold in the general case, namely, given two minimized components M;
and M,, their composition M;||M; is not necessarily minimized. This
is demonstrated in Figure 5.1.

Figure 5.1 shows two FSMs M; and M, for which O; N I, # 0.
My and M, are minimized but their composition M is not. Figure 5.1
also contains Mg which is the result of minimizing M. The FSMs in
Figure 5.1 are Moore machines and we use the following convention in
their description. The labels in the states represent the outputs of the
Moore machines. The inputs are represented by a boolean formula on
the edges. For states s,s' € S and ¢ C [, (s,4,5') is an element in R iff
1 satisfies the formula on the edge from s to &'

The observation demonstrated in Figure 5.1 implies that a more
sophisticated algorithm is needed for components that interact between
themselves. We will present two versions of the improved algorithm,
one for deterministic FSMs and another for nondeterministic FSMs.
While the former is less general, it has a better complexity. Since
often hardware designs are modeled by a deterministic FSM, it worth
developing a special algorithm for deterministic designs.

5.3.1 Deterministic FSMs

We now describe a single iteration of the improved algorithm. The
version for deterministic FSMs and the version for nondeterministic
FSMs are differ only in the last stage of single the iterations. We
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Figure 5.1: The composition of two minimized FSMs is not always mini-
mized.

first present the version for deterministic systems, which is simpler,
and then we present the change in the last stage for nondeterministic
FSMs. In each iteration, the algorithm is given two minimized FSMs
M, and M, such that Oy N Oy = (). We use the notation M = M;|| My,
07 = Oy N Iy, and O) = O3 N [. The algorithm performs the following
stages:

1. Reduce M; with respect to Of, resulting in M.
2. Reduce M, with respect to Oy, resulting in MJ.
Compose M{ = M, || M.
Compose M5 = M7 || M.
Reduce Mf with respect to Oy, resulting in M{.

Reduce Mg with respect to O,. resulting in M.

Ne g W

Compose My = M{||MJ.
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M, I O,
M2 [2 02
My I 0}
M; 15 O,
M ([1\02)U([2\01) 01U02
MP | (L \NO) U \O1) =1\ Ox)U(\O1) | O1 U0
Mg | (L\NO)U (L \0) =(11\Ox) U3\ O1) | O U0,
M [ (I\02) U (L \ Oy) O,
My [ (L\O2)U(L:\Oy) 0,
Md ([1\02)U([2\01) 01 U02
Table 5.1: The inputs and outputs of the intermediate FSMs in the improved

algorithm.

Table 5.1 presents the inputs and outputs of the FSMs constructed by
the improved algorithm.

An example for the improved algorithm is presented in Figure 5.2.
The intuition behind the improved algorithm is as follows. When two
FSMs are composed, each restricts the behavior of the other by pro-
viding a real environment, rather than an open one. In the restricted
environment, states that behave differently in the open environment are
now indistinguishable and can be collapsed into the same equivalence
class.

Our goal is to minimize M; and M, separately, while taking into
account the environment each runs in. While minimizing M, it is suf-
ficient to consider only the part of M; which influences M;. M7 is
exactly that part. Therefore, states in My that become indistinguish-
able in M = M;||M; are also indistinguishable in M$ = M7 ||M;. These
states are collapsed, resulting in Mg. Similarly, in M{ states of M that
are indistinguishable in M are collapsed (resulting in M{). When M{
and M¢ are finally composed, My is the result of a composition of two
minimized FSMs which do not interact with each other and therefore
My is minimized.

The skeleton of the correctness proof for the algorithm is given in
the lemma below. In the rest of the section we prove each of the claims,
thus prove the correctness of our algorithm.
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Figure 5.2: An example of the deterministic version of the improved algorithm:
M has input set I; = {c} and output set Oy = {a,b}. Mz has input set I, = {a}
and output set Oy = {e,d}. Note that, even though M; and M, are minimized,
M is not. My is the quotient model of M. It can also be obtained by composing
M@ and MZ. The states of M, MZ and M, are given as the sets of states in the
equivalence classes the states represent

Lemma 5.3.1
o M and M are bisimulation equivalent with respect to Oy U O%,.

o Ms and M are bisimulation equivalent with respect to Oz U Of.
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o MI and M are bisimulation equivalent with respect to O;.

o M and M are bisimulation equivalent with respect to Oy.

o My and M are bisimulation equivalent with respect to O1 U Oy
o My is minimized with respect to O; U O,.

Lemma 5.3.2 My and M are bisimulation equivalent with respect to

0, U0,

Proof: Let Hy C SxSybe Hf = {((s1,52), (s1,55))|s is the equivalence class of s }.
We prove that H; is a bisimulation relation.

e For every (sig,820) € So, we have ((s10,520), (810, [$20])) € Hj.
Similarly, For every (s10,0) € ST, let s be the initial state in
a, then ((s10, $20), (510, [520])) € Hf.

Let ((51752)7 (51755)) S Hle:

e Since the labeling of an equivalence class is equal to the labeling of
the states it contains, La(s2)NO% = Li(sy). The definition of com-
position therefore implies, L((s1,52)) N (01 U O%) = L{((s1, s4)).

o Let ((s1,82),17,(s],55)) be an element in R. This implies that
for 17 = (1 U La(s2)) N [1, (81,01,8)) € Ry and for ix = (1 U
Li(s1)) N Iy, (82,02,85) € Ry. Let s5”" be the equivalence class
of s, then (s},19,82") € Ry. Since La(sy) N [1 = La(s2) N
O) = Li(sh), i1 = (1 U L5(s5)) N I;. The definition of compo-
sition implies ((s1,55),1, (81, 82")) € R{. By the definition of Hy,
((5/175/2)7 (51/752/r)) S ]_]16

o Let ((s1,85),7,(s1,82")) be an element in R{. This implies that
for iy = (U LL(s5))N 11, (81,41,87) € Ry and for is = (1UL1(s1))N
Iy, (s5,19,82") € Ry. By Lemma 5.2.1, there exists a state s such
that (sg,12,85) € Ry and sy” is the equivalence class of s}. Since
LQ(SQ) N [1 == LQ(SQ) N 0/2 == LS(SS), il == (Z U LQ(SQ)) N [1. By
the definition of composition, ((s1,$2),1,(s],55)) € R and by the
definition of HY, ((s,s5), (51", 2")) € Hy. O

Lemma 5.3.3 M5 and M are bisimulation equivalent with respect to

0L U O,
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The proof is similar to the proof of Lemma 5.3.2.

Lemma 5.3.4 M? and M are bisimulation equivalent with respect

to Ol.

Proof : Proposition 5.2.6 together with Lemma 5.3.2 implies that
M7 and M are bisimulation equivalent with respect to Oy. Lemma 5.2.4
implies that M{ and M{ are bisimulation equivalent with respect to
O;. Since bisimulation equivalence is transitive, then M and M{ are
bisimulation equivalent with respect to O,. O

Lemma 5.3.5 M{ and M are bisimulation equivalent with respect

to 02.

The proof is similar to the proof of Lemma 5.3.4.

Lemma 5.3.6 If My and M, are deterministic, then My and M are
bisimulation equivalent with respect to Oy U Os.

Note that both M and MY have the same input (I), and that
INO=1N0,=0.

Proof : Let H! C S x S{ and H? C S x S¢ be bisimulation
relations over M x M@ and M x MJ{ respectively. Let Hy; C S x
S4, be the following relation: Hy; = {((s1,52), (%, sI))|((s1,52),5¢) €
H} and ((sy,89),5%) € H3}. We prove that H is a bisimulation rela-
tion.

o ((s501,502),50%) € H} and ((so1, S02),S0%) € H2 implies that
(5015 502), (Soilasoz)) € Hy.
Let ((s1,82),(s9,52)) be a pair in H,.

o ((s1,52),5%) € H} implies L((Sl,SQ))ﬁOl = L4(sh). ((s1,52),59) €
HZ implies L((Sl,SQ))OOQ = L4(s3). Thus, L((s1,2)) = La((s%,59)).

o Let ((s1,82),1,(s],85)) be an element in R. Since ((s1,52),5%) €
H}, there exists a state s;’¢ such that (s¢,i,s,"Y) € R? and
((s),55),s1'%) € H}. Since ((s1,57),5%) € Hj, there exists a state

sy such that (s%,7,5,Y) € R and ((s} ) ') € HZ. The
definition of composition 1mphes that ((sf,s9),1, (51", s9’ )) € Ry
and by the definition of Hy, ((s],s5), (s ’d,52 ) € Hy.
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o Let ((s%,59),1, (51", 52Y)) be an element in Ry. Then (s,1,s,'%) €
Re and( 2,@,52’d) € Ri. Since ((51,32) 4) € M} then there exists
astate( 1, sh) such that ((s1,82),1,(s],85)) € Rand ((s},55),51™) €
H}. Since ((s1,s2),54) € H3 then there exists a state (sf,s)
such that ((s1,s2),1,(s/,s4)) € R and ((s},s4),s2"") € H?. Since
M is deterministic, (s ’1,3’2) = (sY,s5). By the definition of Hy,
((5/1752) (Sl/dv /d)) € Hy.

M{ and M{ are minimized with respect to O and Oy respectively.
Furthermore,/ N O; = I N Oy = (), thus Lemma 5.2.7 induces the
following corollary.

Corollary 5.3.7 My is minimized with respect to O U O,.

5.3.2 Time and space complexity

In this section we compare between the complexity of the naive algo-
rithm and the complexity of the improved algorithm.
The algorithms include two basic operations:

1. Composing two FSMs M” = M||M’. The most costly part in time
and space of this operation is the computation of the transition
relation R”. This can be done in time and space complexity of

O(|R"]).

2. Minimizing an FSM M into its quotient FSM Mg. The algorithms
have the same complexity as the one in [Hop71, PT87]. Their
space complexity is O(|R|) and the time complexity is O(|R] -
log(|5])).

Thus, the minimization is the dominant part of the algorithm. In
the naive algorithm there is only one minimization of M = M || Ms.
In the improved algorithm however, there are 4 minimizations: The
minimization of M; that results in M7, the minimization of M, that
results in M}, the minimization of M¢ that results in M{ and the
minimization M¢ that results in M.

Since the complexity of a minimization depends on the size of the
minimized FSM, we need to compare the sizes of My, My, My, MS,
versus the size of M. We assume that the size of M; is equal to the
size of Ms.
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The differences between the sizes of M; and M, and the size of
M depend on the interactions between M; and M;. The interaction
between M; and M, is measured by the number of inputs of one that
are outputs of the other. The size of the state spaces of My and My, is
square root of the size of the state space of M. However, the size of the
transition relation depends on the interactions. When the interaction
between M; and M; is high, many inputs of M; and M, are connected
to outputs of My and M respectively. These inputs are not part of the
inputs of M*. In this case, every component in M, is an input of M; and
vice versa thus, | Sy [20] & |Sq|-[22] & |S|-[21]. Since |R;| = |Sy]-]2"]
and |Ry| ~ |Sy] - 22|, |Ri| = |Rs| =~ |R|, and | M| = |M,| ~ |M]|.

Next we compare the sizes of M7 and M; with the size of M. Note
that M = M;||Ms, M; = M;||M} and M5 = M;||M,. This implies
that the difference between the sizes of M and M; depends on the
difference between My and MJ. Similarly, the difference between the
sizes of M and MS depends on the difference between M; and M.
When there is no redundancy, |M;| = |M7| and |Mz| = |MJ]|. In this
case, |M;| = | M| = | M].

The worst-case scenario is when the interaction between M; and
M, is high and there is no redundancy in M; and M,, |M;| = |M7]
and |My| = |Mj|. In this case the improved algorithm performs four
minimizations, each requires the same time as the single minimization
of the naive algorithm. Since, we need to keep at most three differ-
ent models at the same time, the space requirement of the improved
algorithm is three time larger than that of the naive algorithm.

In the best scenario however, |M;| = |My| = |M;| = |MS| = +/|M].
In this scenario, instead of time complexity of |R| - log(|S]) in the

naive algorithm, the improved algorithm has time complexity, 4-/| R|-

log(4/]S]), which is significantly better.

5.3.3 Nondeterministic FSMs

In this section we extend the modular method to nondeterministic
FSMs. When we consider nondeterministic FSMs, Lemma 5.3.6 does
not hold. The result My of composing M{ and M¢{ might be inequiva-

1Recall that ] = ([1 \02) W] ([2 \ 01)

97



lent to M due to “illegal states” in M, which are not equivalent to any
state in M.

In order to understand this inequality, we inspect the role of the
states of My in M (the role of the states of My is similar). When we
look at M as a composition of M; and M,, every state s; has two
functionalities, the first is to determine the outputs and next state of
M and the second to determine the inputs of Ms.

In M, these two functionalities are fulfilled by two states of 57j.
Let ([(s1,[s2])], [([t1],t2)]) be a state in My. Then s; fulfills the first
functionality of determining the outputs and the next states of M,
and t; fulfills the second functionality of determining the inputs of M.
A state ([(s1, [s2])], [([t1], t2)]) of My might be illegal when s; ¢ [t1]. In
this case, the combination of next state in M; and input of M, does
not occur in any state of 5.

The problem of illegal states is demonstrated in Figure 5.3. In
this figure, all the states of M; and M, are initial states, which makes
M, and M; nondeterministic. M| and MJ cannot be further reduced,
the same holds for M7 and Ms. Since the result M; of composing
M{ and M{ is minimized and contains 16 initial states, it cannot be
bisimulation equivalent to M = M;[| M. The error in the algorithm is
due to illegal states like ((0,2),(1,2)) in My which is related to both
sg and sy in M7 and is not equivalent to any state in M.

We now present the version for nondeterministic systems of the im-
prove algorithm. This algorithm, restricts the states of M, to legal
states only. As before, the minimized FSM is constructed without con-
structing the composition My || My itself. First we define two functions.

Definition 5.3.8 The function f, : Sy x Sy — S¢ is defined as fol-
lows: fi(s1,s2) = [(s1, [s2])]-

Definition 5.3.9 The function f, : S x Sy — S% is defined as fol-
lows: fy(s1,52) = [([s1], 52)].

Next, we define a new FSM M/, which is similar to M, except that the
set of states is restricted.

Sh={(s%,59)|3s1, 52, 5§ = fi(s1,82) Asd = fo(s1,82)}. The definitions
for the other components of M/ are straightforward. S = Sy¢ N S,
the inputs, outputs, and labeling function remain the same, and R/, =
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Figure 5.3: An example of inequivalent result of the version for deterministic
systems of the improved algorithm, where M; and M; are not deterministic

Ry N (S5 x S5). We now prove that M} is bisimulation equivalent to
M.

Lemma 5.3.10 M) and M are bisimulation equivalent with respect

to
O U O;.
Proof: Let H C Sx S’ be defined as follows: H = {((s1,52),(s%,53))| s¢ =

fi(s1,52) A s = fa(s1,89)}. Weprove that I is a bisimulation relation.

e The definition of 57, implies that for every state (s10,20) € So
there exists a state (s%y,5%) = ([(s10,[520])], [([s10], $20)]) € S
such that ((s0,520), (5%,5%)) € H. For the other direction, as-

sume that (s 10,320) = ([(310, [s20])], [([$10], $20)]) is a state in S7,
Then, the state (s10,590) is in Sp and ((s10, S20), (5%, %)) € H

o Let ((s1,52),(s%,59)) be an element in H. Since L¢([(s1, [s2])]) =

Li(s1,[52]) N Oy = Lu(s1) and Ly([([s1], 52)]) = L5([s1], 52) N Oy
Ly(sa), L((s1,52)) = La(([(s1, [s2])], [([s1], 52)]))-
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o Let ((s1,52), (5%, 59)) be in H and let i be an element in I. Let
il == (ZULQ(SQ)) [1 == (ZULS([SQ]))Q[l and

- iz = (ZUL (51))ﬂ[2 = (ZUL?([Sl]))QIQ Then, ((81782),i, (8/178/2)) -
R iff

— (81,11,8)) € Ry and (82,12, 5)) € Ry iff (Definition 5.1.6 and
Lemma 5.2.1)

- ([51]7i17[5/1]) € Rg and ([52]7i27[5/2]) € Rg (Slvilvsll) € Rl
and ([s2], i, [s5]) € Ry iff ((s1,[s2]), 2, (51, [s5])) € Ry

— Similarly, ([s1], 1, [s]]) € R} and (s2,19, s5) € Ry iff
(([51]752)7i7 ([5/1]75/2)) € R;

~ Therefore, ((s1, [s2]), 1, (5 [51)) € B and ((fsa) 52),1, ([, ) €

Ry iff
= (stiyst) = ([(s1, [2D)) 0, [(51, [55])]) s in B} and
(s5,0.55) = ([([s1)s s2)). 7, [([s1], s5)]) 1s in Ry iff
= ((s1.59) 0. (s, 83)) € Ra.

O
Next, we prove that M} is minimized. First, we show that the maximal
bisimulation over M includes a bisimulation over M.

Lemma 5.3.11 Let H) be the maximal bisimulation relation over

M. We define a relation H{ over S§x ST as follows: ([(s1,[s2))], [(t1, [t2])]) €
H iff (([(s1, [s2D)) (1], 52)]), ([, [E=D] (1], 22)))) € Hy. Then HY s

a bisimulation relation.
Proof :

e Since H contains all identity pairs, H? contains all identity pairs
as well. This implies that for every initial state, the pair of the
initial state with itself is an element in H{.

)]) be an element in H{:

(
;7 ([s1 ,32)])1 = La(([(t1, [t2])], [([ta], £5)])) implies

o Lag(([(s1, [s2]
Ly([(s1, [s2])]) = La([(ts, [L2])])-

o Let ([(s1,[s2])],7,[(s},[s5])]) be an element in RY. Let i, = (¢ U
LQ(SQ)) Nl = @ULYs]) NI and iz = (11U Li(s1)) N [ =
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1. By Lemma 5.2.1, ((s1,[s2]), 4, (s],[s5])) € RS.

2. Thus, (s1,11,57) € Ry and ([s2], 12, [85]) € R5.

3. By Definition 5.1.6 and Lemma 5.2.1 ([s1], 41, [s]]) € R}) and
(82,12,85) € Ry.

4. This implies that, ([([s1], s2)], 7, [([s}], s4)]) € Ra.

5. Thus, (([(s1, [s2])], [([sa], s2)]), 2, ([(s3, [s5])], [([s4], 52)])

;s
6. Since H) is a bisimulation, there exists a state ([(¢], [t5]
sueh that (([(1r. [12])] [([1],72)]). ., ([(25. [13])] (). £2)])) € By
and (([(s1. 1551 1[4 <)) (1. (DL L8] 5)) € Ay
7. This implies that ([(¢1, [t2])], 7, [(#1, [t5])]) € RS and
([(s5, [s5D)] [(#1. [5)]) € A

e Similarly, we can prove that for every state [(¢], [t5])] such that
([(t1, [t2))]s 2, [(#5, [t5])]) € RY there exists a state [(s], [s ])] such
)

%y ([(sv, sa) )i (5, [)]) € Y and ([(sh, [, [, (D) €

€ Rl

)
)] [([#): )]

a

Lemma 5.3.12 Let H) be the mazximal bisimulation relation over

M. We define a relation HE over S§xS¢ as follows: ([([s1],s2)], [([t1], £2)]) €
Hy iff ([(s1: [s2D)]s [([s1], s2)])s ([t ()], [([12],22)])) € Hy. Then Hf s

a bisimulation relation.
The proof of Lemma 5.3.12 is similar to the proof of Lemma 5.3.11.
Lemma 5.3.13 M) is minimized.

Proof Let H; be the maximal bisimulation over M) x M. Assume
to the contrary that the lemma does not hold. Then by Lemma 5.2.3,
there are two different states (s¢, s%), (4, td) such that (( ), (t4,19)) €
Hy. Since (s,s%) # (tf,td), elther st # 4 or s 7E td. Assume
w.l.o.g. that s¢ # ¢4. Let H{ be the relation deﬁned in Lemma 5.3.11.
By Lemma 5.3.11 H{ is a bisimulation. By the definition of H{,
(sd,t4) € He. By Lemma 5.2.3, M is not minimized, a contradic-
tion. O
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5.3.4 Additional complexity

The additional complexity is due to the computation of S’ which forces
us to refer to the whole state space of M. Nevertheless, since we only
compute the state space and do not use it in the reduction method,
the version for nondeterministic systems of the improved algorithm is
still better than the naive algorithm. Computing f; and f5, can be
done during the construction of M and M] and the construction of
M{ and Mg without any additional time complexity. However, since
the function operates on the states of M;||M,, the space complexity
is |[S| = |S1| - [92]. In a worst-case scenario, the complexity of the
nondeterministic improved algorithm is identical to the complexity of
the of the deterministic improved algorithm. However, when M| < M,
and MJ < My, this complexity is worse than the complexity for the
deterministic version.

5.4 An implementation of the improved algorithm

In this section we describe an implementation of the improved algo-
rithm. Our goal is to compare between the improved algorithm, the
naive algorithm and the ordinary algorithm. The ordinary algorithm
minimizes a given FSM directly and does not use modularity. The
implementation has been developed within the sequential equivalence
verification CAD group of Intel design technologies in Haifa. The de-
signs, which are tested in the equivalence department, have the follow-
ing properties:

1. So = 5, 1.e., every state in the model is an initial state.

2. The transition relation is a function, meaning that for every state
s and input ¢ there exists exactly one state ¢, such that (s,4,1) is
a transition in K.

Note that the first property makes these designs nondeterministic.
These properties guide us to use the version for nondeterministic sys-
tems of the improved algorithm. However, we represent the transition
relation as a function, which can be represented more concisely than
regular relation.
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typedef struct fsm {
VarList inputs;
BddFunction outputs;
BddFunction latches;
BDD domain;
BddFunction equivFunc;
YFSM;

Figure 5.4: The data structure that models FSMs

A general description of the implementation is given in Section 5.4.1.
The improved algorithm uses the ordinary algorithm as a subroutine.
The same ordinary algorithm is used for comparison with the improved
algorithm. Since we deal with FSMs that have a transition relation
that is a function, we use an algorithm that is similar to the algo-
rithm presented in [Hop71]. The experimental results are presented in
Section 5.4.2.

5.4.1 The implementation framework

The minimization algorithms (either the improved algorithm, the naive
algorithm or the ordinary algorithm) receive an FSM from an Intel
program, which compiles the RTL description of the design into an
FSM. The given FSM contains three lists: A list of inputs, a list of
latches, and a list of outputs. The list of inputs contains BDD variables
only. The list of latches which encodes the state space, is made of pairs,
where, every pair contains a BDD variable and a BDD which represents
the next state function. The list of outputs, which encodes the labeling
function is made of pairs where every pair contains a BDD variable and
a BDD, which represents the output function.

We modeled an FSM by the F'SM data structure shown in Fig-
ure 5.4. In addition to the inputs, latches and outputs fields, the FSM
data structure has two more fields: The first is the domain field, which
is a BDD over the latches which represents the set of states. The
second, is the equivFunc field. When a minimization of an FSM is per-
formed, a set of equivalence classes is constructed. These classes are
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the states of the resulting FSM. The field equivFunc of the resulting
FSM contains a function that relates the states of the original FSM to
their equivalence classes.

The information about the modular structure of the tested designs
was lost during the development stage. Thus, instead of a set of compo-
nents, the improved algorithm receives one FSM. In order to perform
the minimization, it first partitions the FSM and then performs the
improved algorithm. A basic description of the implementation of the
improved algorithm is presented in Figure 5.5.

The algorithm receives an FSM om and partitions it into two FSMs
m1 and m2. Then it uses the improved algorithm to construct a mini-
mized model md which is equivalent to om. The algorithm partitions
the model by partitioning the set of latches and the set of outputs, (it
is possible for m1 and m2 to share inputs). The goal of the partition
is that the interaction between the models will be minimal. Since find-
ing such a partition is hard, the algorithm uses a heuristic to find a
partition with low interaction.

The improved algorithm uses the subroutine reduction, which per-
forms the ordinary algorithm. The algorithm is an adaptation of the
algorithm given in [Hop71] for constructing the quotient automaton for
a given regular deterministic automaton. The algorithm is adapted for
FSMs for which the transition relation is a function. Given an FSM,
it constructs its quotient FSM. The main difference between the algo-
rithm in [Hop71] and the ordinary algorithm is in the initial partition-
ing. While for automata the initial partition forms two sets (accepting
and rejecting), the states of the FSM are initially partitioned into 217!
sets, one for each state labeling.

Both minimization algorithms (improve algorithm and ordinary al-
gorithm) minimize the FSM with respect to its outputs. Thus before
they minimize M; into M| (M3 into M}), they need to remove the
outputs in Oy \ Iz (O2\ I1). In order to remove these external outputs
the algorithms use the rmFExternalOutputs subroutine.

In order to construct the set rd of “legal states” of the form
([(s1, [s2])]; [([s1], 82)]), the algorithm constructs two functions fld :
S — St and f2d : S — S¢ In order to construct fld, the algorithm
composes the functions M1d.equivFunc: Sf — S¢ and the function
m2r.equivFunc: Sy — S5. Since ST = 51 x 5%, the resulting function
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relates the states of 57 x 53 to the states of S{l. The function f2d
is constructed in a similar way. Then the algorithm calculates rd =

fd(om.domain), where fd : S — Sy is defined as follows: fd(s) =
(FLd(s), F2d(s)).

The sets, functions and relations are represented by BDDs. We use
Intels BDD package for the implementation.

5.4.2 Experimental results

We compared between the ordinary algorithm, the naive algorithm,
and the improved algorithm. While we tested the improved algorithm,
we found out that the minimization of M] and M] does not improve
the performance of the algorithm. Thus we tested the algorithm also
without these minimizations. In this case M{ (M) are simply M with
only part of the outputs. We tested the improved algorithm without
the construction of M| and M} when the design is partitioned only
once (appears in the tables as improved2), and when the design is
recursively partitioned until it has one output only (appears in the
tables as improved3).

The results are presented in the following tables. In Table 5.2 we
present general properties of the tested designs. Table 5.3 compares the
minimization times of the minimization algorithms. Table 5.4 compares
the space requirements of the minimization algorithms. The algorithms
were tested on a machine with two CPUs 550 MHZ each and 2GB
memory.

The experimental results imply that in most designs, all versions
of the improved algorithm have better performances than the ordinary
and naive algorithms both in time and space. The improved algo-
rithm which does not reduce M;| and M] and partitions the outputs
recursively, has the best time performance and the improved algorithm
which does not reduce M] and MJ and partitions the outputs only
once, has the best space performance.

The differences between the two versions of the improved algorithm
that do not reduce M{ and M}, demonstrate the tradeoff between the
efficiency of the improved algorithm and its overhead. On the one
hand, the efficiency of improved the algorithm results in a better run-
ning time, and on the other hand the overhead results in larger space
requirements. This tradeoff is taken into account in the subroutine
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FSM improvedAlgorithm(FSM om){

FSM ml, m2, mlr, m2r, mle, m2e, mid, m2d, md;
BddFunction fd, fid, f2d;
BDD re, rd;

/* the recursion tail condition — based on the size of the model */
if (!shouldSplit(om))
return reduction(om);

/* partition om to ml and m2 */
partlodel(om, ml, m2);

mir = rmExternalOutputs(ml);
mir = improvedAlgorithm(mir);
m2e = modelComposition(mir, m2);

m2r = rmExternalOutputs(m2);
m2r = improvedAlgorithm(m2r);
mle = modelComposition(ml, m2r);

mld = reduction(mle);
m2d = reduction(m2e);

fid = composeFunc(mid.equivFunc, m2r.equivFunc);
£2d = composeFunc(m2d.equivFunc, mir.equivFunc);

fd = joinBddFunc(fid,f2d);
rd = bdd_image(om.domain, £d);
md = disjointComposition(mid, m2d, rd);

return md;

Figure 5.5: The improved algorithm
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Name | No. of | No. of No of

inputs | latches | outputs
5298 5 14 7
5298d2 5 11 3
5298d3 5 13 5
s400d1 5 17 2
s400d2 5 17 2
s400d3 5 19 4
5400 5 21 6
5349 11 15 11
s444.2 5 20 5
s444 5 21 6

Table 5.2: General properties of the tested designs

shouldSplit that decides whether to reduce the sub-model by further
partitioning it with the improved algorithm or should it use the ordi-
nary reduction algorithm. In general, if the sub-model is too small,
then the overhead the improved algorithm become too large.

Note that, while in some cases the improved algorithm is up to 12
times faster than the ordinary minimization algorithm, in cases where
the ordinary minimization algorithm has better performance, the dif-
ferences between the algorithms are small.

5.5 Properties of bisimulation

In this section, we prove the claims presented in Section 5.2. Note
that whenever two FSMs M; and M, are composed, they must satisfy
01 N @2 = @

Lemma 5.2.1 Let M be an FSM, and let Mg be the quotient F'SM
of M. Let (a,i,0') be an element in Rg. Then for every state s in «
there exists a state s' in o such that (s,i,5") € R.

Proof :Assume that (o, 7,0') € Rg. Let H C S xS be the maximal
bisimulation relation over M x M. The definition of quotient FSM
implies that there are states ¢,¢' in S such that ¢ € o, t/ € o and
(t,i,t') € R. Let s be a state in a. Since s and t are in the same
equivalence class, (¢t,s) € H. Thus, there exists a state s’ such that
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Name | ordinary naive improved | improved2 | improved3
algorithm algorithm algorithm | algorithm | algorithm
5298 46 72 34 27 27
$298d2 21 26 22 22 23
$298d3 32 41 29 26 26
s400d1 190 469 385 206 206
s400d2 173 575 500 239 239
s400d3 1,336 2,048 1,209 590 601
s400 12,396 space overflow 2,302 1,129 999
$349 2,640 4,496 1,759 1,474 255
s444.2 3,512 3,379 1,380 828 799
s444 9,362 space overflow 2,891 1,055 1,038
Table 5.3: The time in seconds for minimization of the different minimization
algorithms.
Name ordinary naive improved | improved?2 | improved3
algorithm algorithm algorithm | algorithm | algorithm
$298 1,482,712 1,919,032 451,793 326,359 467,705
$298d2 151,885 209,452 85,108 125,577 144,624
$298d3 759,032 716,557 278,283 337,834 362,691
s400d1 | 8,691,398 12,521,457 10,105,732 | 5,118,214 | 5,118,214
s400d2 | 9,368,512 12,775,984 7,009,955 | 4,820,907 | 4,820,907
s400d3 | 28,436,930 41,089,896 12,540,649 | 10,714,419 | 25,165,669
s400 105,175,584 | space overflow | 32,491,632 | 17,740,753 | 44,641,501
s349 27,567,754 36,747,754 12,442,018 | 2,552,658 | 3,876,761
s444.2 | 49,964,703 66,788,414 19,376,000 | 17,451,240 | 33,190,412
s444 97,687,526 | space overflow | 21,972,212 | 17,168,679 | 43,223,054

Table 5.4: The maximal number of BDD

minimization algorithms.
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s,1,8') € R and (t',s") € H. Since (t',s") € H, t' and s’ are in the
27 b b b
same equivalence class, thus s’ € o/. O

Proposition 5.5.1 If M is deterministic then Mg is deterministic.

Lemma 5.2.3 M is minimized iff the mazimal bistmulation relation
over M x M contains exactly the identity pairs.

Proof : For the first direction, assume that H is the maximal
bisimulation over M x M and that H contains exactly the identity
pairs. Then every equivalence class contains exactly one state. Let
Mg be the quotient FSM of M. We define a function f : S — Sg as
follows: f(s) = «aiff s is in . Obviously f is a total and onto function.
Since every equivalence class contains exactly one state, f is also one to
one. Furthermore, by Lemma 5.2.1 and the definition of quotient FSM,
(s,i,8") € Riff (f(s),1,f(s')) € Rg. Thus, M and Mg are isomorphic
and M is minimized.

For the second direction, assume that there is a pair (s1,s5) € H
such that s; # s3. Then sy, s9 are in the same equivalence class. Since
the equivalence classes partition the states set and at least one class
contains more than one state, |So| < |S]. Thus M and My are not
isomorphic. O

Lemma 5.5.2 Let M be an FSM. The identity relation Hip = {(s, s)|s €
St is a bisimulation relation over M x M.

Proof :

e For every sg € Sy, (s0,50) € Hip.

Let (s,s) be a pair in Hyp:
o L(s)=L(s).

o Let (s,7,5") be an element in R. Then (s,1,s') is an element in
R, and (¢',¢') € Hip. O

Lemma 5.5.3 Let Mg be the quotient FSM of M, and let Hgg be
the mazimal bisimulation relation over Mg x Mg. Lel

H, = {(s1,89)|([s1],[s2]) € Hgq}, then H, is a bisimulation relation
over M x M.
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Proof :

e By the definition of the quotient FSM, for every sq € So, [s0] €
Sog- Since ([so], [s0]) € Hgg, (s0,50) € H,.

Let (s1,82) be a pair in H,.

o ([s1],[s2]) € Hgq implies that Lg([s1]) = Lg([s2]) which implies
that L(sy1) = L(s3).

o Let (s1,i,5]) be an element in R. Then ([s1],1,[s]]) € Rg. Since
([s1], [s2]) € Hgg there exists a class o} such that ([ss], 7, 0%) € R
and ([s]], %) € Hgg. ([s2],1, o) € Rg together with Lemma 5.2.1,
implies that there exists a state s}, such that (sq,7,s,) € R. The
definition of H, implies (s}, s}) € H,.

e Similarly, we can prove that for every successor s}, of sy there
exists a successor s| of s; such that (s},s,) € H,. O

Lemma 5.5.4 Let Mg be the quotient FSM of M, and let Hgg be
the mazimal bistmulation relation over Mg x Mqg. Then Hgg is the
identity relation.

Proof : Lemma 5.5.2 implies that the identity relation is bisimu-
lation relation over Mgy x Mg, thus it is contained in Hgg. Assume to
the contrary that Hgg contains a pair (g, ag) such that a; # asy. Let
s1 and s; be states in o and oy respectively and let H, be the relation
that defined in Lemma 5.5.3. By the definition of H,, (s1,s2) € H,.
By Lemma 5.5.3, H, is a bisimulation over M x M, thus (s1,s2) is an
element in the maximal bisimulation over M x M. This implies that
s1 and sy are in the same equivalence class, a contradiction. O

Corollary 5.5.5 FEvery quotient FSM is minimized.

For the rest of this paper, we will use the term “minimized FSM” for
quotient FSM.

Lemma 5.2.4 Let M be an FSM and Mg be the quotient FSM of
M with respect to O, then M and Mg are bisimulation equivalent with
respect to O'.

Proof : Let Hyg C S x Sg be the following relation: Hgy =
{(s,a)|s is in a}. We prove that Hy is a bisimulation relation.
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e By the definition of the quotient FSM, for every sq € Sy, sp is in
ag € Sog. Similarly for every ag € Soq there exists so € Sy such
that s¢ € ag.

Let (s, ) be a pair in Hg:
e By the definition of the quotient FSM, L(s) N 0" = Lg(«).

o Let (s,1,8") be an element in R. Let o’ be the equivalence class
of ', then by the definition of the quotient FSM, («,1,a’) € Rg
and by the definition of Hg, (s',¢') € Hg.

o Let (a,i,0a’) be an element in Rg. By Lemma 5.2.1, there exists a
state s’ such that (s,i,s') € R and &' is in o'. Thus (s',a') € Hg.
O

Lemma 5.5.6 Let M; and M, be two FSMs that are bistmulation
equivalent. Let H C S7 x Sy be a bisimulation relation over My x M,.
Then, the relation H' = {(s1,s])|there exists sy € Sy such that (s, s2) €
H and (s, s2) € H} is a bisimulation relation over My with respect to

O N Os.

Proof : We prove that H' is a bisimulation relation.

e Since H is a bisimulation relation, for every initial state so; € So1
there exists an initial state sp2 € Spz such that (se1,s02) € H.
Thus, for every initial state so1 € Sot, (So1,501) € H'.

For every pair (s, s]) € H' the following holds:

e Since (s1,s]) € H', there exists a state s3 € Sy such that (s, s2) €
H and (s},s3) € H. This implies that Li(s;) N (01 N Oz) =
LQ(SQ) N (01 N 02) = Ll(Sll) N (01 N 02)

o Let (s1,2,t1) be a transition in Ry. Since (s1,s)) € H', there
exists a state sy € Sy such that (s1,s5) € H and (s],s2) € H.
Since H is a bisimulation, there exists a state t; € S5 such that
(s2,1,t2) € Ry and (t1,t3) € H. This implies that there exists
a state ] € Sy such that (s},7,¢]) € Ry and (#},t2) € H. Thus
(t1,t)) € H'.

111



e Similarly, for every transition (s},7,#] 1 there exists a tran-

) €
sition (sy1,7,t1) € Ry such that (¢1,t]) € H'.

O

Lemma5.2.5 Let M be an FSM and Mg be the quotient FSM of M
with respect to O'. Then Mg is the smallest (in number of states and
transitions) FSM which is bisimulation equivalent to M with respect to
o'

Proof : First, we prove that My is smallest with respect to the
number of states. Assume to the contrary that there exists an FSM
M’ that is bisimulation equivalent to M and smaller than Mg. Since
bisimulation is transitive, My and M’ are bisimulation equivalent.
Let H be a bisimulation relation over Mg x M’. Then, there exists
two different states s, and ¢, in Sy that are equivalent to the same
state in M'. Let H, be the relation H, = {(s,,1,)|there exists s’ €
S" such that (s,,s') € H and (t,,s') € H}. By Lemma 5.5.6, H, is
a bisimulation relation. Thus s, and ¢, are bisimulation equivalent,
contradicting Lemma 5.5.4.

Next, we prove that My is smallest with respect to number of tran-
sitions. Assume to the contrary that there exists an FSM M’ that is
bisimulation equivalent to M and smaller than M. Since bisimulation
is transitive, Mg and M’ are bisimulation equivalent. Let H be a bisim-
ulation relation over Mg x M’. Since the number of states in Mg is not
larger than the number of states in M’, there exists a pair (s,,s’) € H
such that the number of transitions from s, is greater than the number
of transitions from s’. Since for every transition (s',i,t') € R’ there ex-
ists a matching transition from s,, there exists a transition (s',4,¢') € R’
which has two transitions (s, 4, t,1) and (s,,1,%,2) in R, which match it.
This implies that (¢,1,t") € H and (¢,2,t') € H. Let H, be the relation
H, = {(sq,1,)|there exists s’ € 5" such that (s,,s') € H and (1,,s') €
H}. By Lemma 5.5.6, H, is a bisimulation relation. Thus ¢,; and t,,
are bisimulation equivalent, contradicting Lemma 5.5.4. O

5.5.1 Composition and bisimulation

Next, we present some properties of composition and bisimulation.

Lemma 5.5.7 Let M = M;||My and let Hy and Hy be the maximal
bisimulation relations over My x My and My x My with respect to Oy and
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Oy respectively. Let H be the relation H = {((s1,52), (t1,12))|(s1,t1) €
Hy, (s2,t2) € Ha} then H is a bisimulation over M x M.

Proof :

Let (810, $20) € So, since (s10, $10) € Hy and (g0, $20) € Hz,
((510,520), (510, 520)) € H.

Let ((s1,82),(t1,t2)) be a pair in H.

By the definition of H, (s1,t1) € Hy and (sg,12) € Ha, thus
Ll(Sl) = Ll(tl) and LQ(SQ) == Lg(tz) Since 01 N 02 == @,
L((s1,32)) = L((t1, 12)).

Let ((s1,$2),17,(s],55)) be an element in R. By the definition of
composition, (s1, (¢ U La(s2)) N I1,8]) € Ry and (s2, (1 U L1(s1)) N
I3, 84) € Ry. Since (s1,11) € Hy and La(s2) = La(ts), there exists
a state ?] such that (t1, (i U La(t2)) N [1,t]) € Ry and (s),1]) €
Hy. Similarly, there exists a state ¢, such that (t5, (¢ U Li(¢1)) N
I, ty) € Ry and (s),t,) € Hy. The definition of composition
implies that ((f1,2),7,(#],t5)) € R and by the definition of H,

((sh,s0), (1", ) € H.

In a similar way we can show that for every successor (t{,t})
of (11,t2) there exists a successor (s),s}) of (s1,s2) such that
((s1,53), (1, 13)) € H. O

Lemma 5.5.8 I[f M = M;||M; is minimized then My and M, are

also minimized.

Proof : Assume to the contrary that the lemma does not hold.
W.l.o.g. assume that M; is not minimized. By Lemma 5.2.3 there are
two different states sq,¢; such that (s1,t1) € Hy. Since every bisimu-
lation relation contains the identity pairs, there exists a state sy such
that (s2,89) € Hy. Let H be the relation defined in Lemma 5.5.7, then
((s1,52), (t1,82)) € H. By Lemma 5.5.7 H is a bisimulation relation,
thus it is contained in the maximal bisimulation relation over M x M.
This implies that ((s1,52), (1, $2)) is an element in the maximal bisim-
ulation relation. By Lemma 5.2.3, M is not minimized, a contradiction.

a
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Lemma 5.5.9 Let M = M;||M; and H be a bisimulation over M X
M. If Oy NI, = ( then the relation
H1 = {(81,t1)|81,t1 € Sl and 3 Sg,tg ((81782), (tl,tz)) € H} s a bisim-

ulation relation over M, x M.

Proof :

o Let 519 € Sig and sy9 € Sz. Since ((S10,$20), (S10,920)) € H,
(S10,510) € Hy.

Let (s1,%1) be a pair of states such that (s1,%1) € Hy and let sq,15
be states such that ((s1,s2),(t1,12)) € H.

o ((s1,82),(t1,12)) € H implies ((51,32)3

= L((t1,t2)). Since O1 N
Oz = 0, we conclude that Li(s1) = Li(t1).

o Let (s1,71,s]) be an element in Ry. Since O NI = 0, I; C
I. Let i C I be such that ¢; = i N [;. Since O, NI = 0,
(1U La(s2)) N1y =N 1y = 11. Let s} be a state such that (sq, (¢ U
L1(s1))N 13, s4) € Ry. Such s} exists by the receptiveness of Moore
machines. Then ((sy,s2),7,(s],s5)) € R. Since ((s1,82), (11,t2)) €
H, there exists a state (¢}, ;) such that ((¢1,¢2),¢, (¢],t})) € Rand
((s],s5), (., t,)) € H. This implies that (t1,21,¢]) € Ry. By the
definition of Hy, (s},t]) € H;.

e In a similar way we can show that for every successor ¢ of ¢; there
exists a successor s) of s; such that (s},t}) € H;. O

Lemma 5.2.7 Let M; and My be minimized FSMs. If Oy NI, = ()
and Oy N I} =0, then M = M;||M; is minimized.

Proof Let H be the maximal bisimulation over M x M. Assume
to the contrary that the lemma does not hold. Then by Lemma 5.2.3,
there are two different states (s, s3), (t1,%2) such that ((s1, s2), (¢1,%2)) €
H. Since (s1,82) # (t1,t2), either sy # t; or sy # 1. We assume
w.l.o.g. that s; # t;. Let H; be the relation defined in Lemma 5.5.9.
By Lemma 5.5.9 H; is a bisimulation. By the definition of Hy, (s1,t1) €
H,. By Lemma 5.2.3, My is not minimized, a contradiction. O
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Chapter 6

Using BDDs for preimage
calculations

In this chapter we improve the algorithm suggested in [CM90a, CM90b]
for the preimage operation. We suggest a new inverse algorithm with
the same complexity as the expound subroutine but with better con-
stants. Furthermore, the information which is attached to every BDD
node, represents the preimage of the set it represents. Thus, the imple-
mentation of the inverse algorithm is much simpler and more intuitive;
moreover, it is suitable for optimizations. Experimental results show
that the inverse algorithm works much more efficiently than the ex-
pound subroutine, and in some cases even competes successfully with
the monolithic algorithm and the early quantification algorithm.

6.1 Preliminaries

We describe BDDs as presented in [Bry86]. We use ay,23,...,2, to
denote boolean variables and g(x1, x9, ... 2, ) to denote a boolean func-
tion. Let v € {0,1}", we use the functions v;(y) to denote the value
of the i’th bit in +. Sometimes we use x; as the boolean function
9(7) = vi(y) and Ti as g(7) = —vi(y).

A BDD is always defined with respect to an order over the variables.
Given an order m over the BDD variables, a BDD is defined as follows:

Definition 6.1.1 A BDD is a DAG (Directed Acyclic Graph) with

one root and at most two leaves. The leaves are labeled with 0,1 and
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every non-leaf node nd is labeled by a variable xv; = L(nd). Fuvery
non-leaf node nd has exactly two successors nd.low and nd.high. If a
non-leaf node nd' is a successor of another node nd then w(L(nd")) >

m(L(nd)).

Every BDD node nd represents a boolean function ¢,y. The BDD
represents the boolean function of its root. The boolean function ¢,q4
is defined inductively on the structure of the BDD:

o If nd is a leaf then it represents the label of nd (0 or 1).

o If nd in non-leaf node which is labeled with variable z;, then
Gnd = (Ti N Gudhign) V (TP A Gnd.iow)-

Every boolean function ¢ : {0,1}"* — {0,1} characterizes a set
A C {0,1}", such that v € {0,1}" is an element of A if and only if
g(v) = 1. In the rest of this work we will not differ between a BDD
I', the boolean function ¢ that I' represents, and the set A that ¢
characterizes.

Next, we define a reduced BDD:
Definition 6.1.2 A BDD I is reduced if it satisfies the followings:

1. There are no two different nodes in I' which represent the same
function.

2. FEach non-leaf node nd in I satisfies: nd.high # nd.low.

[Bry86] shows that given an order over the BDD variables, for every
boolean function there exists a unique reduced BDD which represents
it; for the rest of this paper we refer only to reduced BDDs. In addi-
tion, [Bry86] suggests efficient procedures that implement operations
over boolean functions represented by BDDs. Table 6.1 shows the op-
erations and their time complexity. We use I'y, 'y as BDDs with the
same variable order.

In model checking and equivalence checking of deterministic models,
BDDs are used to characterize sets of states of the verified FSM, its
transition relation and its labeling function. The set of states and set of
initial states are represented by their characterizing boolean functions.
The transition relation is represented as a function, R : § x 2! — §.
The labeling function is represented as a function L : S — 247,
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Operation time complexity
[y AT, O] - 1))
IFRAP Oy~ |Ts])
_‘Fl O(l)

G1lzi=b O(|F1|1Og|rl|)

Table 6.1: The complexity of BDDs operations

6.1.1 Using BDDs for function manipulations

Given a function f: {0,1}* — {0,1}™ and a subset I' C {0, 1}", we de-
fine f(I') called the image of I', to be f(I') = {#'|3v € I such that f(v) =
v'}. Similarly, given a set [ C {0, 1}™ the operation f~(I") called the
preimage of ", is defined as f~'(I") = {v|39’ € I” such that f(y) =
7'}

Let f:40,1}" — {0,1}"™ be a total function. There are two ways
to represent f: The partitioned [BCL91] representation and the mono-
lithic representation.

We first describe the partitioned representation of f. Let the ele-
ments of {0,1}" be encoded by xy, x4, ..., and the elements of {0, 1}™
by @, 2%, ..., 2! . Given an element v € {0,1}", 4/ = f(v) is a unique

element of {0,1}”. Thus the values of the variables that encode 5/
depend only on v. A function f can therefore be defined by m boolean

functions fi, fa,..., fm , where f; determines the value of 2 in the
result of f. Every boolean formula is represented by a BDD; thus we
represent f as m BDDs over x1,x,,...,z,.

The monolithic representation of functions refers to f as a relation
where the pair (v,4') is an element in f iff f(y) =+'. Such a relation
is constructed as follows f = A2, 2} <> fi.

There are three different approaches for manipulating functions
which are represented by BDDs: The monolithic algorithm, the early
quantification algorithm [BCL91], and the expound subroutine.

When a function f is represented by the monolithic representation,
the operation f~(I") is calculated by the monolithic algorithm as fol-
lows: f~YT") = i, ah,... 2L (f AT). The major drawback in this
method is the size of the monolithic relation, which often becomes too
large to handle.
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The other two algorithms for manipulating functions operate on the
partitioned representation of functions. First, we describe the early
quantification algorithm for the f~! operation. This algorithm is an
improvement of the monolithic algorithm. In the early quantification
algorithm the f~! operation is performed as f~(I") = Jz/((f.
e INTal _(((foor < 2l ) A AT ((f1 & 2 ATY) L), In this way
the intermediate BDDs remain small and the whole operation requires
less space.

Next, we describe the expound subroutine which calculates f~(T")
in the following way: The operation is calculated inductively on the
graph of the BDD 1", in a top down direction. For each node nd
in I a function nd,,. is calculated. When the algorithm terminates,
the resulting set is characterized by the function of the 1 leaf of I".
At the beginning of the algorithm, the function of the root of I is
1. For each node nd' in I the function nd,, . is calculated as follows:
Let ndy,nds,...nd, be the predecessors of nd’. Since the algorithm
is inductive, the functions ndi,rc, ndapre, - . . ndypee have already been
calculated. Let L(ndy), L(ndz),...L(nd,,), be the variables that la-
bel ndy,ndy,...nd,, respectively. The function nd _ is calculated as
V7 (ndipre N ¢;) where

- f; nd; is connected to nd’ by the low edge and 2. = L(nd;)

{ fi  nd; is connected to nd’ by its high edge and
C; =
J
The advantages of the expound subroutine are:
o [t does not use next state variables.

o It uses only “cheap” BDD operations.

e The number of BDD operations is linear in the number of BDD
nodes in I".

However, the top down direction of the subroutine creates some prac-
tical problems.

1. In most BDD packages, in each BDD node there are pointers only
to its successors and there are no pointers to predecessors. For
every BDD node nd’, the value of the function nd_, depends on
the predecessors of nd’. Since nd’ does not contain pointers to
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his predecessors, the information for calculating nd; _ should be
pushed from the predecessors when the algorithm reaches them.
Thus, before the algorithm reaches nd’, it should reach all of its
predecessors. However, because nd’ does not have pointers to its
predecessors, its does not “know” which BDD nodes are they.
Thus, the algorithm have to reach all the BDD nodes above nd’
before it reaches it. This implies, that the algorithm needs an
additional data structure which enables access to the nodes of 1"

according to their level.

2. In the implementation of expound subroutine, the algorithm at-
taches an extra function pre to every BDD node. In most BDD
packages, the BDD nodes contain only two pointers, and there is
no space for the extra pointer nd,... For other BDD operations
that need to attach extra information to the BDD nods, using
cache solves this problem. A cache is a data structure in which
for every node the extra information is stored. In order to make
the cache effective, the cache enables collisions, where different
nodes are mapped to the same cell in the cache. In case of colli-
sion, some of the information is lost and have to be recalculated
again. This is not efficient for the expound subroutine, because it
will require to access all the nodes above the node for which the
function should be recalculated.

3. Most BDD packages use complementary edges. A complementary
edge, which points at a BDD node nd, represents the complement
set of the set that nd represents. The use of complementary edges
forces the expound subroutine to store two functions nd,..; and
nd,.2 in each BDD node, increasing the space requirements of
the algorithm.

6.2 The inverse algorithm

In this section we present our inverse algorithm as an alternative way
to compute the f~! operation. Similarly to the expound subroutine,
the inverse algorithm stores data in the BDD nodes. However, the
computation is bottom up. For every node nd, the algorithm calculates
the preimage of the set that nd represents, this makes the algorithm
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more intuitive and easier to implement. The algorithm is presented in

Figure 6.1.

BDD inverse(BDD ["){
return inverseNode (IV.root)
}

inverseNode(node nd){
if ((res = getCache(nd)) # NULL) then return res
if (nd is a terminal node ) then return nd.value
7 = nd.andex
res = (= f;ANinverseNode(nd.low))V (f; AinverseNode(nd.high))
insertCache(nd,res);
return(res)

Figure 6.1: The inverse algorithm

Our algorithm have all the advantages of the expound subroutine.
Furthermore, it is easy to implement. Since the function, which is at-
tached to the BDD nodes, depends on the sets they represent, the al-
gorithm is suitable for using cache. Finally, since f~'(=A) = —=f~1(A),
using complementary edges in the BDD does not increase the amount
of space it requires.

Next, we prove the correctness of the algorithm. The first propo-
sition is immediate from the definition of the operation f~! and from
the definition of the partitioned representation of f.

Proposition 6.2.1 Given an element v € {0,1}" . An element v €
(0.1} satisfies f(7) =2/ iff for cvery L < j <m, 1 € f; € vi(7') = L.

Definition 6.2.2 We define fj as follows:
A i b=1

by = i
rm={2 024

The next proposition rephrases Proposition 6.2.1, using the notation
fi- Let b),b5,...0, be the boolean representation of ', then every
v € f71(7') should satisfy that for every 1 < j < m, f;(v) = 0.
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Proposition 6.2.3 Given an element ', the following holds: f~'(+') =
N (05(7).

We now extend the previous proposition to a set of elements in {0,1}".
Corollary 6.2.4 Given a subset Q" C {0,1}™, let FHQ) ={y|Fy. v €
Q" and f(y) =7} then [7H(Q') = Vyeq (AT fi(vi(y))-

Definition 6.2.5 Let Q' be a subset of {0,1}". Let j € {1,...,m}.
Then, Q5 = Q" AN {y'|v;(7') = 1} and Q = Q" A {y'|v;(7') = 0}.

We now calculate the operation f~!(Q’) in two separate stages, based

on the fact that f=1(Q") = f~1(Q%) v f~1(Q%). This enables to pull f;

out as shown in Lemma 6.2.6.
Lemma 6.2.6 LetQ) = f1(Q'), then Q = (fj/\\/w'e@;(/\k;«éjfk(vk(’Y/))))V
(=fi A VW/GQ_Q(/\kijfk(Uk(vl))))'
Proof :
o Q= Vyeq (N Je(on(¥))).
o Since Q' = Q1 V @}, @ = V.ggrgn(Marfi(0x(v))): thus Q =
Vw'eQ;(/\?zlfk(Uk(’Y'))) Vv VW/EQ—;(/\?Zlfk(Uk(’Y’)))-
o For every 7' € Q' v;(y') = 1; thus for every v/ € Q). f(v;(v)) =
i
o This implies that V.yeq: (Afzy 5 (v(7))) = Voreqr (Args filvr(y))A
Fi) = F; ANVoyeqr (Mg Fr(vr()).
o Similarly, VW/GQ_z(/\ZL:Ifk(Uk(’Y/))) =-fiA vwleQ_;(/\kijfk(Uk(’yl)))'

o Thus @ = (fj/\\/wfe@;(/\k;éjfk(vk(’y’))))V(ﬁfy‘/\\/w/e@(/\k#ﬁ(?}k(v’))))-
O

Lemma 6.2.7 Let Q' be a subset of {0,1}™ and let Q = f~4Q).
Let T be the BDD that represents Q'. Let x; be the variable labeling

the root of . Then Q = (fi A Vel nign Mets fr(v(3))) V (=f5 A
\/'Vlerroot.low /\Z;f] fk(vk(ﬁyl)))
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Proof : The definition of BDD implies that root.low = Ql,,«0
which is exactly Q_; Similarly, root.high = Ql,,1 = Q%. O
Corollary 6.2.8 can be concluded by Corollary 6.2.4 and Lemma 6.2.7.

Corollary 6.2.8 Let Q' be a subset of {0,1}™. Let I'y be the BDD
that represents Q)'. Let j be the index of the root of I'y. Then QQ =

(fi N [~ (root.high)) V (= f; A f~ (root.low)).

The computation follows the following intuition. Suppose the set )’ C
{0,1}™ is represented by a BDD I'g: so that z’ is the variable in the
root of I'g:. Elements of ()’, represented by root.low are those in which
2. = 0, thus, their preimage is contained in = f;. Similarly, the elements
of )', represented by root.high are those in which = = 1, and therefore
their preimage is contained in f;.

This form of calculation can be implemented by recursion over the
graph of the BDD which represents (). Next, we prove the correctness
of our algorithm.

Lemma 6.2.9 Let nd be a node in the BDD I'yy and let Q" C {0,1}™
be the set represented by nd. Then inverseNode(nd) returns f~1(Q").

Proof : We prove the lemma by induction on the levels of I'y; from
bottom up.

o Base: Let nd be a terminal node, we distinguish between two
cases:

— nd.value = 1, then nd represents {0,1}™; in this case the
function returns 1, which represents f~'({0,1}™) = {0, 1}".

— nd.value = 0, then nd represents ); in this case the function
returns 0, which represents f~(0) = .

e Induction step: Assume that the lemma holds for all the lev-
els below nd; we prove that it holds for nd. Both nd.low and
nd.high belong to levels which are lower, in the induction order
than the level of nd. Thus the induction hypothesis implies that
inverseNode(nd.low) = f~!(nd.low) and inverseNode(nd.high) =
f~Ynd.high). By Corollary 6.2.8, inverseNode(nd) = f~'(nd).
O

122



Corollary 6.2.10 The algorithm returns a BDD that represents f~1(Q").

Complexity: As the expound subroutine, our inverse algorithm
performs for each node in I'g: two conjunction operations and one dis-
junction. Thus, the number of BDD operation is O(|I'g/|) and it uses
only “cheap” operations (A, V, ).

Unlike the expound algorithm, the inverse algorithm, is easy to im-
plement, does not require any additional data structure, and is suitable
for using cache and complement edges. This explains the much better
performance shown in Section 6.2.6.

6.2.1 An Example: Modeling a deterministic FSM by BDDs
for functions

The example in this section demonstrates how the BDD representation
for functions can be used for representing an FSM. In addition, we
show how to compute the set of predecessors () for a given set of states
Q'
Consider the FSM in Figure 6.2. Its set of states is S = {00,01, 10, 11}.

Its input set is [ = {a}. The transition function R : S x [ — S is shown
in Table 6.2. In this table we use the variables (o, 1) to encode S5,
ip to encode [ and x(,z}] to encode the next states in the transition
relation.

Figure 6.2: An example FSM

In order to define R in our BDD framework we partition it into two
boolean functions Ry and Ry, where, Ry consists of the set of elements
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xo | x| 1o || 2y | T
0 |0 |00 |1
0 (0 1 (1 1
0 1 0|1 1
0 1 110 1
1 0 (0 |1 1
1 0 11 0
1 |1 00 |0
1 1 1 (1 1

Table 6.2: The transition relation of the FSM

of the form (s,¢) for which z, = 1. Similarly, Ry is the set of elements
for which i = 1. The sets are: Ry = {001,010,100,101,111} and
Ry ={000,001,010,011,100,111}.

Next we show how to use this representation in order to compute
R™(Q') using the inverse algorithm. The result of this operation is
the set of pairs (s,i) such that (s,7) € R7*(Q’). Thus, the set @ of
predecessors of @' is computed by Q = {s|3i € I.(s,i) € R71Q")}.

Let @' ={01,10}. The BDD I'gs is shown in Figure 6.3. The inverse

- - —
La-

Figure 6.3: The BDD T'g:. Dashed lines lead to low successors; full lines lead to
high successors.

algorithm results in R™1(Q) = (mRo A ((mR1 A0) V (Ry A1)V (Ro A
set of predecessor is now computed by @ = {q|Fi.(¢,7) € R~ (Q")} =
{00,01,10}.
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6.3 Experimental results

We ran experiments to compare the four algorithms that calculate the
preimage operation. We implemented these algorithm on the platform
used in the Equivalence Department of the Israel Design Center at Intel
Haifa.

Each algorithm was inserted as a subroutine into a tool which uses
the preimage subroutine to calculate the transitive preimage of a given
set )'. That is, the tool calculates a set ) of all states from which there
exists a trace to states in )'. The calculation is done by repeating the
preimage operation until a fix-point is reached.

We made the comparison over test cases of the equivalence depart-
ment. The results are presented in Table 6.3, Table 6.4 and Table 6.5.
Table 6.3 shows the properties of the tested designs. Table 6.4 presents
the computation times in seconds of the different methods over the test
cases, and Table 6.5 presents the the space requirements in BDD nods
of the different methods over the test cases. The algorithms were tested
on a machine with two CPUs of 550 MHZ each and 2GB memory.

The experimental results show that the inverse algorithm is strictly
better than the expound algorithm both in time and space. It also
shows that although the monolithic algorithm has the best average
performances, for some designs it explodes, thus it needs a backup
algorithm. A comparison between the inverse algorithm and the early
quantification algorithm shows that the early quantification algorithms
have an advantage although it is not a strict one.
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Design | inputs | latches | outputs

number | number | number
s1488 10 6 19
s1196 16 18 14
s713 36 19 23
s400 4 21 6
s444 4 21 6
s386 8 6 7
s349 5 15 11
s1238 15 18 14
s832 19 5 19
s820 19 5 19
X7 36 172 33

Table 6.3: The properties of the designs

Design our monolithic early expound

algorithm quantification subroutine
$1488 47 30 37 78
s1196 22 34 22 23
s713 10,306 1,240 4,952 15,606
s400 11,597 1,569 6,581 55,936
s444 9,373 803 7,611 58,375
s386 21 21 21 22
s349 5,173 1,342 12,193 | space overflow
s1238 22 37 22 23
s832 46 46 43 104
s820 49 41 44 100
X7 241 | space overflow 286 194

Table 6.4: Time of calculations in seconds
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Design our monolithic early expound

algorithm quantification subroutine
$1488 3,523,525 472,289 1,880,253 5,020,289
s1196 127,317 1,898,538 123,801 171,971
s713 13,394,762 5,710,104 8,883,805 17,254,376
s400 6,695,438 2,487,305 11,224,721 10,459,001
s444 6,462,535 5,034,860 5,574,310 11,016,241
s386 35,256 16,349 41,636 54,249
s349 18,535,262 5,741,429 19,329,050 | space overflow
s1238 130,900 1,984,082 121,053 168,110
s832 3,544,107 511,101 2,917,210 5,057,697
s820 3,544,061 511,058 2,917,169 5,057,648
x7 6,111,667 | space overflow 2,325,368 5,580,730

Table 6.5: Space required in the calculations in BDD nodes
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Chapter 7

Conclusion and Future
Research

In this work we concentrated on methods for overcoming the state
explosion problem. Chapters 3, 4, and 5 refer to the use of equivalence
relations and preorders for abstraction. In Chapter 6 we improve an
existing symbolic algorithm for the preimage operation.

In Chapter 3 we discussed minimization with respect to the simu-
lation preorder. We proved that for every Kripke structure M there
exists a unique smallest in size structure A such that M and A are sim-
ulation equivalent. We proved that given a structure M the minimal
abstract structure A can be obtained by eliminating two redundancies:
Equivalent states and little brothers. We presented two algorithms that
construct the minimal equivalent structures: The minimizing algorithm
and the partition algorithm. The former algorithm has a better time
complexity and the latter has a better space complexity.

The results in Chapter 3 can be extended in several directions. In
Chapter 3 we showed that minimization with respect to simulation
equivalence, can result in smaller models than bisimulation minimiza-
tion. We also showed that minimization with respect to language equiv-
alence can result in an even smaller model, however the complexity of
such minimization is exponential. An interesting research direction is
to find a sequence of equivalence relations Fy, Ey,..., E, where Ej is
the simulation equivalence relation, and FE,, is the language equivalence
relation. For each i < n the following should holds: (1) F; C Fiq,
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thus F;y1 is less restrictive than F;. (2) The result of the reduction
with respect to FE;y; is smaller than the result of reduction with re-
spect to E;. (3) The complexity of reducing with respect to E;i; is
greater than or equal to the complexity of reducing with respect to
E;. Having such a sequence, a parameterized reduction algorithm can
be developed. The algorithm will receive an equivalence relation as a
parameter and reduce with respect to this relation.

In Chapter 4 we made a broad comparison between four notions
of fair simulation: direct [DHWT91], delay [EWS01a], game [HKR97],
and exists [GL94]. The comparison shows that there is no notion of
fair simulation which has all desired advantages. However, it is clear
that their relationship with temporal logics gives the exists and game
simulations several advantages over the delay and direct simulations.
On the other hand, the delay and direct simulations are better for
minimization. Since this research is motivated by usefulness to model
checking, relationships with logic are important. Thus, it is advanta-
geous to refer to the delay and direct simulations as approximations of
the game/exists simulations. These approximations enable some min-
imization with respect to the exists and game simulations. Out of the
four notions, we consider the game simulation to be the best. This is
due to its complexity and its applicability in modular verification.

Modularity is extensively used in the development of systems. As a
result, most systems have a modular structure. In Chapter 5 we showed
how this structure can be used for a more efficient minimization algo-
rithm. Given an FSM M the algorithm constructs two disjoint FSMs
M7 and M such that M is equivalent to the restricted composition of
M7 and M;. Once the algorithm constructs these FSMs, the problem
of minimizing M is reduced to minimizing M; and MJ separately and
composing the result. Since the complexity of minimizing M might
be quadratically greater than minimizing M} and M; separately, the
potential of the algorithm is huge. The experimental results showed
that the improved algorithm outperformed both the naive algorithm
and the ordinary algorithm.

In Chapter 6 we improved the algorithm suggested in [CM90a,
CM90b] for preimage calculation. We suggested a new inverse algo-
rithm with the same complexity as the expound subroutine but with
better constants.
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The experimental results show that the inverse algorithm is strictly
better than the expound algorithm both in time and space. It also
shows that although the monolithic algorithm has the best average
performance, for some designs it explodes, thus it needs a backup al-
gorithm. A comparison between the inverse algorithm and the early
quantification algorithm shows that the early quantification algorithm
have an advantage although it is not a significant one. Given a func-
tion f and a set of elements @)’ there is a high probability that the
inverse algorithm will perform the operation f~(Q’) faster than the
other algorithms. Thus, it is worth while to have it as an alternative
to the other algorithms.

It would be interesting to find criteria for functions to determine
which algorithm is preferable. Based on that a procedure should be
implemented which selects an algorithm according to the computed
function. A similar work has been done in [MKRS00] with respect to
the image operation.
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