
Equivalence�Based Reductions and checking for

preorders

Research Thesis

Submitted in Partial Ful�llment of the
Requirements for the

Degree of Doctor of Philosophy

Doron Bustan

Submitted to the Senate of
the Technion � Israel Institute of Technology

Av� ���� HAIFA June �		�

The Research Thesis Was Done Under
The Supervision of Orna Grumberg in the Faculty of Computer Science

THE GENEROUS FINANCIAL HELP OF INTEL ISRAEL AND GALILEO
TECHNOLOGIES� IS GRATEFULLY ACKNOWLEDGED

Acknowledgments

Looking at this Ph
D
 thesis� one would think that it required a lot
of research work
 For me the real work was learning what a research
is� and how to perform it
 I cannot imagine myself doing it without
the guidance of Orna Grumberg
 I want to thank her for opening this
world for me

I also want to thank the sequential equivalence veri�cation CAD
group of Intel design technologies in Haifa and in particular Ziyad
Hanna� Nir Naor� Alex Levin� Shlomit Ozer� Guy Wolfovitz and Ranan
Fraer for giving me all the help I needed at Intel �and I needed a lot�

Contents

Abstract �

Notation and Abbreviations �

� Introduction �

 Using equivalence relations and preorders for reductions �

� Modular veri�cation

 �

� Using simulation equivalence for minimization

 �

� Fair simulation

 	

� Modular minimization

� Using BDDs in formal veri�cation

 �

� Preliminaries ��

� Simulation based minimization ��
�
 The reduced structure

 ��
�
� The minimizing algorithm

 ��

�
�
 The ��quotient structure

 ��
�
�
� Disconnecting little brothers

 �	
�
�
� The algorithm

 ��
�
�
� Complexity

 ��

�
� Partition classes

 ��
�
�
 The partition algorithm

 ��
�
�
� The correctness of the partition algorithm

 �
�
�
� Proving invariant

 �
�
�
� Proving invariant �

 ��
�
�
� Proving invariant �

 ��
�
�
� Equivalence classes

 ��

Table of contents �continue�

�
�
� Space complexity

 ��
�
�
� Time complexity

 ��

� Applicability of fair simulation ��
�
 Fairness constraints and fair simulation

 ��
�
� Minimization with respect to fair simulation

 ��

�
�
 Quotient structure

 ��
�
�
� Disconnecting little brothers

 �	
�
�
� Unique smallest in size structure

 ��
�
�
� An approximated minimization algorithm for

delay�game�exists simulation

 ��
�
� Relating the simulation notions to logics

 ��

�
�
 Logical characterization

 ��
�
�
� Maximal structure

 ��
�
�
� A maximal structure for ACTL with respect to

game simulation

 ��
�
�
� The tableau is the maximal structure for game

simulation

 �	
�
�
� A maximal structure for direct�delay simulation ��

�
� A new implementation for the assume�guarantee frame�
work

 ��
�
�
 Complexity

 ��

�
� Complementary proofs

 ��
�
�
 A quotient structure for the delay simulation

 ��
�
�
� Proving Lemma �
�
�

 �

�
� Conclusion

 ��

� Modular reduction ��
�
 Basic de�nitions

 ��
�
� Properties of modularity and reduction

 ��
�
� The improved algorithm

 ��

�
�
 Deterministic FSMs

 �	
�
�
� Time and space complexity

 ��
�
�
� Nondeterministic FSMs

 ��
�
�
� Additional complexity

 	�

�
� An implementation of the improved algorithm

 	�
�
�
 The implementation framework

 	�
�
�
� Experimental results

 	�

Table of contents �continue�

�
� Properties of bisimulation

 	�
�
�
 Composition and bisimulation

 �

	 Using BDDs for preimage calculations ���
�
 Preliminaries

 �

�

 Using BDDs for function manipulations

 �
�
� The inverse algorithm

 �

�
�
 An Example� Modeling a deterministic FSM by
BDDs for functions

 ��

�
� Experimental results

 ��

 Conclusion and Future Research ���

List of Figures

 Di�erent minimized structures with respect to di�erent
equivalence relations

 	

�
 Non�elementary di�erences between minimal structures
with respect to bisimulation and simulation equivalence �

�
 The Disconnecting Algorithm

 �	
�
� The Simpli�ed Algorithm

 ��
�
� The Minimizing Algorithm

 ��
�
� An example of the Minimizing Algorithm

 ��
�
� The partition algorithm

 ��
�
� An example of a structure to be reduced

 �	
�
� The construction of GT

 �	

�
 There is no unique minimal equivalent structure

 �
�
� The result of disconnecting little brothers is not equivalent ��
�
� Minimization algorithm for the delay�game�exists sim�

ulations

 ��
�
� The direct�delay simulations cannot be characterized by

temporal logics

 ��
�
� There is no maximal structure for A�aU b�

 ��

�
 The composition of two minimized FSMs is not always
minimized

 �

�
� The deterministic version of the improved algorithm

 ��
�
� Inequivalent result where M� and M� are not deterministic
 ��
�
� The data structure that models FSMs

 	�
�
� The improved algorithm

 	�

List of Figures �continue�

�
 The inverse algorithm

 �	
�
� An example FSM

 ��
�
� The BDD �Q�

 ��

List of Tables

�
 The properties of the di�erent notions of fair simulation ��

�
 The inputs and outputs of the intermediate FSMs in the
improved algorithm

 ��

�
� General properties of the tested designs

 	�
�
� The time in seconds for minimization of the di�erent

minimization algorithms

 	�
�
� The maximal number of BDD nodes required by the

di�erent minimization algorithms

 	�

�
 The complexity of BDDs operations

 �
�
� The transition relation of the FSM

 ��
�
� The properties of the designs

 ��
�
� Time of calculations in seconds

 ��
�
� Space required in the calculations in BDD nodes

 ��

Abstract

Due to the fast development of the hardware and software industry�
there is a growing need for formal veri�cation tools and techniques

Two widely used formal veri�cation methods are temporal logic model
checking and sequential equivalence checking
 Temporal logic model
checking is a method for verifying �nite�state systems with respect to
propositional temporal logic speci�cations
 In sequential equivalence
checking� two sequential hardware designs are compared for language
equivalence� meaning that for every sequence of inputs� the two de�
signs produce the same sequence of outputs
 Both model checking and
equivalence checking are fully automatic
 However� they both su�er
from the state explosion problem� that is� their space requirements are
high and limit their applicability to large systems

Many approaches for overcoming the state explosion problem have
been suggested� most of them use abstraction
 An abstract model of
a veri�ed system is a model� which describes a system that is similar
to the veri�ed system but is simpler
 An abstraction is conservative
if the results of verifying the abstract model are true for the veri�ed
system
 Thus� the abstract model preserves the veri�ed properties of
the veri�ed system
 There are two types of preservations� We say
that an abstraction strongly preserves a set of veri�ed properties� if for
every property in the set� the system satis�es the property if and only
if the abstract model satis�es it
 Sometimes we relax our requirements
such that for every veri�ed property� if the abstract model satis�es the
property then the system satis�es it as well
 In this case the abstraction
weakly preserves the veri�ed properties

Strong preservation with respect to a set of properties can also be
seen as an equivalence relation� A system is equivalent to an abstract
model if the set of properties that the system satis�es is equal to the
set of properties that the abstract model satis�es
 Similarly� weak
preservation with respect to a set of veri�ed properties can be seen as
a preorder� An abstract model is greater than a system if the set of
properties that the system satis�es contains the set of properties that
the abstract model satis�es

In this work we investigate di�erent equivalence relations and pre�
orders and their usage for abstraction
 We present an algorithm that

�

given a system constructs the smallest abstract model� which is simu�
lation equivalent to the system
 Next� we compare di�erent preorders�
which re�ect a weak preservation of in�nite behaviors
 Finally� we
present an algorithm which exploits the modular structure of the sys�
tem to be veri�ed� to improve the construction of an abstract model

�

Notation and Abbreviations

� � A trace in a model
�i � The i�th state of trace �
�s� � The equivalence class of the state s
jj � The composition operator
� � Approximately equal
� � Signi�cantly smaller

�

Chapter �

Introduction

Following the fast development of the hardware and software industry�
there is a growing need for formal veri�cation tools and techniques

Typically� a veri�cation technique uses a model to describe the veri�ed
system� and the veri�cation of the system is executed on the model

The model is represented as a graph� where the vertices of the graph
represent all possible con�gurations of the system
 These vertices are
called states
 The edges of the graph represent a possible change from
one con�guration to another� and are called transitions
 It is common
to associate the observable behavior �outputs� of a system in a speci�c
con�guration with states� and to associate internal events �inputs� with
the transitions which they enable

Two widely used veri�cation methods are temporal logic model
checking and sequential equivalence checking
 Temporal logic model
checking is a method for verifying �nite�state systems with respect
to propositional temporal logic speci�cations
 There the problem of
checking whether a system satis�es a temporal formula is reduced into
checking a graph property in the model
 The method is fully automatic
and e�cient in time
 In sequential equivalence checking� two systems
are required to have the same behavior
 The systems are equivalent
if for every sequence of input events� every possible behavior in one
system is possible in the other
 For equivalence checking� a model
is constructed for each system� and the problem is reduced to trace
matching in the graphs

Although modeling systems seems to be very useful� this method
has a major disadvantage� which is the size of the model
 Since the

�

model represents each con�guration of the system� its size is exponen�
tial in the size of the system
 This problem� called the state explosion
problem� is seem to limit the use of such veri�cation methods to small
systems only
 Many approaches for overcoming the state explosion
problem have been suggested� including abstraction� partial order re�
duction� modular methods� and symmetry ��CGP����
 All are aimed
at reducing the size of the model to which veri�cation methods are
applied� thus extending their applicability to larger systems
 In this
work we investigate some of these methods and improve them

In basic techniques that reduce the size of the model� the veri�ed
model does not describe the system precisely but a simpler system�
which is �close enough� to the veri�ed system
 Since the described
system is simpler� the size of the veri�ed model is smaller
 Such a
model is called an abstract model
 When using this technique� a naive
approach might give false results
 The false results occur because the
abstract model is not close enough to the concrete model and there
exist some properties� which distinguish the concrete model from the
abstract model

Thus we would like to limit the reduction technique to �correct
reductions�
 However the correctness of the reduction depends on the
property that we wish to verify
 For example� if the property depends
on the number of di�erent con�gurations in the system� then every
model which is smaller than the precise model� will give a false result

However� if the property depends only on one variable x� then all states
that agree on x can be collapsed to a single state� resulting in a smaller
model

Given a concrete model M and a property �� a model A is a correct
abstraction of M with respect to �� if M j� � � A j� �
 This
de�nition can be extended to a speci�cation language L as follow� A
is a correct abstraction of M with respect to L if for every � � L�
M j� � � A j� �
 This de�nition can be further extended from
a single pair of models to a reduction technique T which receives a
concrete model M and constructs an abstract model T �M�
 We say
that T strongly preserves the speci�cation language L� if for every
model M � T �M� is a correct abstraction of M with respect to L

Sometimes we relax our requirements so that for every modelM and
property � � L� if T �M� j� � then M j� �
 In this case we say that

�

T weakly preserves the speci�cation language L
 However verifying an
abstract model that weakly preserves the concrete model might give a
false negative result

Thus the �rst step in constructing a reduced model is to decide
which properties need to be preserved and what type of preservation
should be used
 Then� a smaller abstract model� which preserves the
properties� is constructed� and �nally the abstract model is veri�ed

Our work is concerned with the second step� and includes meth�
ods for constructing abstract models which strongly�weakly preserve a
desired speci�cation language
 These methods are evaluated by three
basic criteria�

 The di�erence in the sizes of the concrete and abstract models

�
 The speci�cation languages they preserve

�
 The complexity of the method

��� Using equivalence relations and preorders for

reductions

In the previous section� we related the problem of verifying a system�
to a graph problem
 We would like to do the same for the construction
of �correct abstract model�
 One way to do it is to use equivalence
relations and preorders

Strong preservation with respect to a speci�cation language L can
also be seen as an equivalence relation� Two models M and A are
equivalent with respect to L �M �L A� if for every � � L� M j� � �
A j� �
 It is easy to see that �L is an equivalence relation
 Similarly�
weak preservation with respect to a speci�cation language L can be
seen as a preorder� Model A is greater than model M with respect to
L �M �L A� if for every � � L� A j� � implies M j� �
 It is easy to
see that �L is a preorder �transitive and re�exive� over models

Equivalence relations which are based on the structure of the graphs
�models�� can also be evaluated according to the speci�cation languages
that they strongly preserve
 Since these relations are based on the
structure of the graph� the problem of �nding a smaller �smallest�
equivalent model is reduced to a graph problem
 For example� trace

�

equivalence strongly preserves the linear�time temporal logic LTL
 An�
other relation that is widely used is the bisimulation equivalence �Par��

It is shown in �BBLS�� that bisimulation equivalence strongly pre�
serves the Mu�Calculus logic�Koz���
 It also strongly preserves the
branching�time logics LTL�CTL� and CTL�� �GL��� CE��� as these
logics are expressible within the Mu�Calculus �BCM���� Dam���
 A
preorder that is widely used in the context of abstractions for model
checking� is the simulation preorder �Mil��
 This preorder is often
used when abstraction is applied in order to construct a reduced model
��BBLS����CGL���� �DGG�����GL����
 The preorder relates the re�
duced abstract model with the original one
 It is shown in �BBLS��
that the simulation preorder weakly preserves the universal fragment
of Mu�Calculus
 It also weakly preserves LTL�ACTL� and ACTL�� the
universal fragments of CTL and CTL� �GL���� as these logics are ex�
pressible in universal Mu�Calculus

Equivalence relations like bisimulation and trace equivalence� and
preorders like simulation and trace containment are de�ned with re�
spect to properties of the model as a graph
 This enables the devel�
opment of reduction techniques� which are based on the structure of
the original model rather than the properties of the system
 Since re�
ducing graphs is an easier task than reducing systems� some reduction
methods have been developed for these relations

For an automatic algorithm that receives a concrete model and con�
structs a correct abstract model� equivalence relations are preferable to
preorders for several reasons� First� in equivalence�based reductions we
are usually interested in the minimal model which is equivalent to the
concrete model
 Since this model is well de�ned� it can often be con�
structed in a fully automatic manner
 For preorder�based reductions on
the other hand� the minimal model with respect to the preorder is usu�
ally trivial and does not contain su�cient information for veri�cation

Thus we are looking for some model that is greater by the preorder
�and smaller in size� than the concrete model� but is not necessarily
minimal
 Since this model is not well de�ned� human intervention is
required
 Second� equivalence�based reductions� unlike preorder�based
reductions� can be used in equivalence checking

There are known algorithms for constructing the smallest model
which is trace�bisimulation equivalent to a given concrete model
 Since

�

bisimulation implies trace equivalence� a minimization with respect to
bisimulation preserves more properties than minimization with respect
to trace equivalence
 However� for the same reason� the result of min�
imization with respect to trace equivalent is smaller in size than the
result of minimizing with respect to bisimulation
 The complexity of
these algorithms is di�erent� While the complexity for language equiv�
alence is PSPACE�complete �SVW���� the complexity for computing
bisimulation is a small polynomial �PT��� Fer�	� KS�	�

��� Modular veri�cation

It often happens that the veri�ed system is composed of a few di�erent
parts that are loosely connected to each other� meaning that the inter�
nal mutual in�uence inside each part is substantially stronger than the
in�uence of the di�erent parts on each other
 This modular structure
of the system can be helpful for verifying the system more e�ciently

When we are only interested in the observable behavior of a single
�component� of the system� we do not need to construct a model for
the whole system
 Nevertheless� while verifying a single component of
the system� we would like to preserve properties that are in�uenced by
the other components of the system
 Thus� we cannot verify a model
of the single part by itself

In order to verify a component C� an abstract environment A of
the rest of the system M is constructed and composed with C
 In this
case there is a new de�nition for a correct abstraction� A is a correct
abstraction of M with respect to a speci�cation language L if for every
formula � in L� M jjC j� �� AjjC j� �

In �CLM��� an interface rule for verifying a system component is
de�ned
 The interface rule restricts the abstraction method and the
composition operator jj in a way that ensures that for every formula �
in the speci�cation language� AjjC j� � i� M jjC j� �
 I
e
� the abstrac�
tion technique strongly preserves the properties of the system
 �Jos���
suggests a method� where the environment is constructed manually
from formulas given by the user

In the assume�guarantee paradigm �Fra��� Jon��� MC�� Pnu����
properties of di�erent parts of the systems are veri�ed separately
 The
environment of the veri�ed part is represented by a formula� which

�

describes its properties
 The formula either has been veri�ed in the
environment or has been given by the user
 The method proves asser�
tions of the form �M�� meaning that if an environment satis�es � then
the composition of M with the environment� satis�es �
 The method
enables the creation of a proof schema� which is based on the structure
of the system

�GL��� suggests a framework that uses the assume�guarantee paradigm
for semi�automatic veri�cation
 It presents a general method that uses
models as assumptions� the models are either generated from a formula
as a tableau� or are abstract models� which are given by the user
 The
proof of �M� is done automatically by verifying that the composition
of the tableau for � with M satis�es �
 The method requires a preorder
�� a composition operator jj and a speci�cation language L

��� Using simulation equivalence for minimization

In the Chapter � we suggest the use of the simulation equivalence re�
lation for minimization
 The simulation equivalence relation is based
on the simulation preorder �Mil��
 This equivalence relation preserves
fewer properties than bisimulation but more than language equivalence

Simulation equivalence strongly preserves ACTL�� and also strongly
preserves LTL and ACTL as sub logics of ACTL�
 Both ACTL and
LTL are widely used for model checking in practice
 LTL is also the
most suitable logic for sequential equivalence checking
 Similarly to
bisimulation� the complexity of computing simulation equivalence is
polynomial
 Our work includes a proof that there always exists a small�
est model with respect to simulation equivalence� and presentation of
an e�cient algorithm that constructs this smallest model

As an equivalence relation that is weaker than bisimulation� simula�
tion equivalence can derive smaller minimized structures
 Consider for
example� the structure in part of Figure

 The structure in part
� of Figure
 is minimized with respect to simulation equivalence

In comparison� the minimized structure with respect to bisimulation is
the structure in part itself and the minimized structure with respect
to language equivalence is the structure in part � of the �gure
 The
results of Chapter � are given in �BG		�

	

bb

c d

a

b

a

e

dc

b

a

e1 2

a

b

c d

e 3

Figure �
�� Di�erent minimized structures with respect to di�erent equiva
lence relations

��� Fair simulation

In methods like assume�guarantee� we often want to construct an ab�
stract model which abstracts a property� rather than a speci�c system

In other words� we are looking for a model that abstracts exactly the
set of all models that satisfy the property
 However� some properties
are not de�nable by a single model
 A textbook example for this prob�
lem is an abstract model of a timer
 In a timer an event occurs after a
�xed time interval
 An abstract model that abstracts all timers needs
to enable the event after any �nite time interval
 However� any �nite
model that contains such behaviors enables also a behavior in which
the event never occurs
 Thus� an unrealistic in�nite behavior is added
to the model

Consequently� we need to strengthen the model� so that it can elim�
inate undesirable in�nite behaviors
 A common way to avoid such
behaviors is to add to the model fairness constraints� which distinguish
between wanted �fair� and unwanted �unfair� behaviors and to exclude
unfair behaviors from consideration
 Indeed� there are a few de�nitions
of such fairness constraints

The simulation preorder does not handle fairness constraints
 It is
therefore desirable to extend the preorder so that it relates only the
fair behaviors of the models
 This extension� however� is not uniquely
de�ned
 Several distinct notions of fair simulation have been suggested

��

in the literature �GL��� Lyn��� HKR��� EWS	a�

Researchers have addressed the question of which notion of fair

simulation is preferable
 In �HKR���� some of these notions are com�
pared with respect to the complexity of checking for fair simulation
 In
�EWS	a�� a di�erent set of notions is compared with respect to two
criteria� The complexity of constructing the preorder� and the abil�
ity to minimize a fair model by constructing a quotient model that is
language equivalent to the original one

In Chapter � we make a broader comparison of four notions of
fair simulation� direct �DHWT��� delay �EWS	a�� game �HKR����
and exists �GL���
 We refer to several criteria that emphasize the
advantages of each of the notions

We developed two practical applications that are based on the com�
parison
 The �rst is an e�cient approximated minimization algorithm
for the delay� game and exists simulations
 For these preorders� a
unique equivalent smallest model does not exist
 Therefore� an approx�
imation is appropriate
 In addition� we suggest a new implementation
for the assume�guarantee �Fra��� Jon��� MC�� Pnu��� modular frame�
work presented in �GL���
 The new implementation� based on the game
simulation rather than the exists simulation� signi�cantly improves the
complexity of the framework

The results of Chapter � are presented in �BG	��

��� Modular minimization

Although reductions with respect to bisimulation or simulation equiv�
alence are polynomial and result in smaller models� computing the
reduction might require a large amount of resources �time and space�

This motivated the development of methods� which implement the re�
ductions more carefully
 Some of these methods are listed here

The algorithm in �LY��� minimizes models with respect to bisimula�
tion
 In order to gain e�ciency� the algorithm refers only to reachable
states and computes equivalence classes for bisimulation instead of pairs
of equivalent states
 This appears to consume less memory for BDD�
based �Bry��� implementations
 In �FV���� the algorithm presented in
�LY��� is applied to the intersection of the model with an automaton
representing the property that should be satis�ed by the model
 In

��

�CRFJ���� a reduction with respect to symmetry equivalence is per�
formed
 Symmetry equivalence is a bisimulation equivalence� but not
necessarily the maximal one
 �CRFJ��� reports that computing this
reduction is more e�cient in the BDD framework than reduction with
respect to bisimulation

Other works exploit modularity for reduction
 The modular reduc�
tion in �ASSSV��� preserves a given formula which should be checked
for truth in the model
 This method can result in a small model
 How�
ever� since it preserves a single formula� it cannot be used for equiva�
lence checking
 In �ASSB���� the equivalence relation is a combination
of language equivalence and fairness constraints
 Since computing this
relation is PSPACE�complete� an approximation equivalence relation
is computed and the quotient model is de�ned with respect to the ap�
proximation equivalence relation
 �GSL��� presents an algorithm that
constructs an abstract model of a system through a sequence of approx�
imations� where the �nal approximation is equivalent to the original
system with respect to the speci�cation language
 The approximations
are constructed according to interface speci�cations which are given by
the user
 �Shi��� suggests to decompose the model� reduce each module
separately and compose the result

In Chapter � we present a new modular minimization algorithm
which improves the naive modular algorithm
 The naive modular algo�
rithm �Shi��� is based on partitioning of the system into components

It minimizes the model in iterations
 In each iteration two components
are selected� composed together and the result is minimized
 This pro�
cess is repeated until all components are composed to form the full
minimized system
 The advantages of this approach are�

	 Time and space requirements of minimization algorithms depend
on the size of the model to which they are applied
 By minimizing
components instead of the full system� we expect a better overall
complexity
 Moreover� we will be able to minimize a system in
parts even when minimizing the full system is intractable due to
its size

	 It is sometimes impossible to complete the construction of the
minimized system due to the size of intermediate components

In such cases� it might still be possible to apply some formal

��

veri�cation procedures to a partially minimized model� composed
of minimized components with unminimized ones

The improved algorithm we present improves a single iteration in the
naive algorithm
 Given two components� the improved algorithm con�
structs the minimized model without ever constructing their full non�
minimized composition
 Thus the algorithm avoids the bottleneck of
the naive algorithm
 We present two versions of the improved algo�
rithm
 The �rst is for deterministic systems and the second is for non�
deterministic ones
 While the version for nondeterministic systems is
more general� it has worse complexity
 Since deterministic systems are
widely used in the hardware industry� a special more e�cient version
for these systems is worth developing

Our work includes an implementation of the improved algorithm

The implementation was done on an Intel veri�cation platform at the
sequential equivalence veri�cation CAD group of Intel design technol�
ogy in Haifa
 We tested our algorithm on real designs
 The results
imply that this method has a real potential in making bisimulation
minimization practical

��	 Using BDDs in formal veri�cation

Symbolic veri�cation is a technique to overcome the state explosion
problem� which is orthogonal to abstraction
 Symbolic veri�cation
refers to sets of states rather than each state separately
 The advantage
of symbolic representation is that the size of the data�structure does
not depend on the size of set it represents
 In practice� it often enables
the representation and manipulation of large sets of states� saving a
considerable amount of space

BDDs �Bry��� are widely used in symbolic model checking and
equivalence checking
 E�cient representation and manipulation of sets
and relations by BDDs has been the subject of extensive research

Special attention is dedicated to representing and manipulating func�
tions
 Functions are important because they represent the transition
relation of most hardware systems
 Since in general functions can be
represented more e�ciently than relations� it is worth developing spe�
cial algorithms that manipulate them
 Indeed� several suggestions for

��

function manipulations have been made for BDDs �BCL�� CM�	a�
MKRS		� CHJ��	� CM�	b�

There are two ways to represents functions� monolithic and par�
titioned and three approaches for manipulating them� �� using the
monolithic representation as a binary relation� ���using early quanti��
cation �BCL�� GB���� and ��� using the expound and restrict subrou�
tines as suggested in �CM�	a� CM�	b�

Although� all three approaches are used in practice for image com�
putation �MKRS		�� when it comes to preimage computation� the ex�
pound subroutine suggested in �CM�	a� CM�	b� cannot compete with
either the monolithic algorithm or the early quanti�cation algorithm

The ine�ciency of the expound subroutine is due to the information
which is attached to every BDD node
 Since the expound subroutine
works from the root of the BDD to its leaves� the information attached
to the BDD nodes does not depend on the set of elements that the
node represents
 This disables some important optimizations� which
are implemented for other BDD operations

In Chapter � we improve the algorithm suggested in �CM�	a� CM�	b�
for the preimage operation
 We suggest a new inverse algorithm with
the same complexity as the expound subroutine but with better con�
stants
 Furthermore� the information� which is attached to every BDD
node� represents the preimage of the set represented by this node

Thus� the implementation of the inverse algorithm is much simpler and
more intuitive� moreover� it is suitable for optimizations
 Experimental
results show that the inverse algorithm works signi�cantly more e��
ciently than the expound subroutine� and in some cases even competes
successfully with the monolithic algorithm and the early quanti�cation
algorithm

Partial results of shapres � and � are presented in �BG	�

��

Chapter �

Preliminaries

Let AP be a set of atomic propositions
 A Kripke structure M over
AP is a four�tuple M � �S� s�� R� L� where�

	 S is a �nite set of states

	 s� � S is the initial state

	 R
 S � S is the transition relation that must be total� i
e
� for
every state s � S there is a state s� � S such that R�s� s��

	 L � S � �AP is a function that labels each state with the set of
atomic propositions true in that state

The size jM j of a Kripke structure M is the pair �jSj� jRj�
 We say
that jM j � jM �j if jSj � jS�j and jRj � jR�j

Let s be a state in a Kripke structure M
 A trace in M starting
from s is an in�nite sequence of states � � s�s�s� � � � such that s� � s�
and for every i 	� �si� si��� � R
 The i�th state of trace � is denoted
�i

The logic ACTL� �GL��� is the universal fragment of the powerful
branching�time logic CTL�
 ACTL� consists of the temporal operators
X �next�time�� U �until� and R �release�� as well as the universal path
quanti�er A �for all paths�
 We de�ne ACTL� formulas in negation
normal form� namely� negation is applied only to atomic propositions

ACTL�contains trace formulas and state formulas and is de�ned induc�
tively�

��

	 Let p be an atomic proposition� then p and �p are both a state
formulas and a trace formulas

	 Let � and � be trace formulas� then

� �� � �� and �� � �� are trace formulas

� X�� ��U�� and ��R�� are trace formulas

� A� is a state formula

	 Let � and � be state formulas� then

� �� � �� and �� � �� are state formulas

� X�� ��U�� and ��R�� are trace formulas

Next we de�ne the semantics of ACTL� with respect to Kripke
structures
 A state formula � is satis�ed by a structure M at state s�
denoted M�s j� �� if the following holds �M is omitted if clear from
the context��

	 For p � AP � s j� p i� p � L�s�� s j� �p i� p �� L�s�

	 s j� � � � i� s j� � and s j� �� s j� � � � i� s j� � or s j� �

	 s j� A� i� for every trace � from s� � j� �

A trace formula � is satis�ed by a trace �� denoted � j� �� if the
following holds

	 � j� X � i� �� j� �

	 � j� A��U�� i� for some i 	� �i j� � and for all j � i� �j j� �

	 � j� A�� R �� i� for all i 	� if for every j � i� �j �j� � then
�i j� �

ACTL is a subset of ACTL� where every temporal operator is imme�
diately proceeded by the A quanti�er

De�nition ����� Given two structures M� and M� over AP � a re�
lation H
 S� � S� is a simulation relation �Mil��� over M� �M� i	
the following conditions hold

�� For every s�� � S�� there exists s�� � S�� such that �s��� s��� � H�

��

�� For all �s�� s�� � H�

a� L��s�� � L��s�� and

b� �s����s�� s
�
�� � R� � �s����s�� s

�
�� � R� � �s��� s

�
�� � H���

We say that M � simulates M �denoted by M �M �� if there exists a
simulation relation H over M �M �
 The following lemma and theorem
have been proven in �GL���

Lemma ��� � is a preorder on the set of structures�

Theorem ��� SupposeM �M �� Then for every ACTL� formula f �
M � j� f implies M j� f �

Given two Kripke structures M�M �� we say that M is simulation equiv�
alent to M � i� M � M � and M � � M
 It is easy to see that this is an
equivalence relation

A simulation relation H overM�M � is maximal i� for all simulation
relations H � over M �M �� H �
 H

It follows from �GL��� that if there is a simulation relation over
M �M �� then there is a unique maximal simulation over M �M �

De�nition ����� Given two structures M� and M� over AP � a re�
lation H
 S��S� is a bisimulation relation �Par��� over M��M� i	
the following conditions hold

�� For every s�� � S�� there exists s�� � S�� such that �s��� s��� � H
and for every s�� � S�� there exists s�� � S�� such that �s��� s��� �
H�

�� For all �s�� s�� � H�

a� L��s�� � L��s�� and

b� �s����s�� s
�
�� � R� � �s����s�� s

�
�� � R� � �s��� s

�
�� � H���

c� �s����s�� s
�
�� � R� � �s����s�� s

�
�� � R� � �s��� s

�
�� � H���

De�nitions �
	
 and �
	
� imply that every pair of structures M
and M � that are bisimulation equivalent satis�es� M � M �
 Since
bisimulation is a symmetric relation� they also satisfy M � � M
 Thus
bisimulation implies simulation equivalence

��

However� bisimulation and simulation equivalence are not equiv�
alent
 As already shown in the introduction� the di�erence between
bisimulation and simulation equivalence results in di�erent minimal
structures with respect to these relations
 Next� we show that the
di�erence in the sizes of the minimal structures can be non elemen�
tary
 We present a sequence of structures M��M�� � � � such that the
size of the minimal structure which is bisimulation equivalent to Mn

is non�elementary in n� and the size of the minimal structure which is
simulation equivalent to Mn is n � �

All the structures in the sequence are de�ned over AP � fag and
have a single initial state
 The structure Mn contains n� layers
 The
higher layer contains the initial state
 The lower layer contains two
states� one is labeled with a and the other is not labeled
 The number
of states in the j th layer �counting from bottom up� is non elementary
in j� the states are not labeled
 For each state in the j th layer� the set
of its successors is a di�erent subset of the states of layer j �
 For
every subset L of the states of the j layer� there exists a state s in layer
j � such that L is the set of successors of s
 The initial state is the
predecessor of all the states in the n th layer
 Figure �
 presents the
structures M�� M�� and M�

It can be proven by induction over the layers that there are no
bisimulation equivalent states in the same layer in Mn� thus the size of
every structure that is bisimulation equivalent to Mn is non�elementary
in n

However� there exists a structure M �
n of size n�� which is simulation

equivalent to Mn
 The structure M �
n contains n� layers
 The higher

layer contains the initial state
 The lower layer contains two states�
one is labeled with a and the other is not labeled
 The j th layer
contains one state which is not labeled and has the state below it as a
successor
 The state at layer � has both states of layer as successors

The structures M �

�� M
�
�� and M �

� are shown in Figure �

 In order to
prove that M �

n � Mn� we select a path form the initial state of Mn

to the state in layer � which is connected to both states in layer

We de�ne the simulation relation simply by relating each state in M �

n

to its corresponding state in the selected path
 In order to prove that
Mn �M �

n we de�ne a simulation relation H that for every layer� relates
all the states in the layer to the state in the corresponding layer in M �

n

��

a

a

a

a

a

a

M�

M�

M �
�

M �
�

M �
�

M�

Figure �
�� Structures M�� M�� and M� are simulation equivalent to struc
tures M �

�� M
�
�� and M

�
� respectively

It is easy to see that H is a simulation relation

Theorem ��� Suppose thatM�M � are bisimulation equivalent� Then
for every CTL� formula f � M � j� f if and only if M j� f �

�	

Chapter �

Simulation based

minimization

Given a Kripke structure M � we would like to �nd a structure M � that
is simulation equivalent to M and is the smallest in size �number of
states and transitions�

For bisimulation this can be done by constructing the quotient struc�
ture in which the states are the equivalence classes with respect to
bisimulation
 Bisimulation has the property that if one state in a class
has a successor in another class then all states in the class have a suc�
cessor in the other class
 Thus� in the quotient structure there will be
a transition between two classes if every �some� state in one class has
a successor in the other
 The resulting structure is the smallest in size
that is bisimulation equivalent to the given structure M

The quotient structure for simulation equivalence can be constructed
in a similar manner
 There are two main di�culties� however
 First�
when constructing the quotient structure for simulation equivalence�
not all the states in an equivalence class have successors in the same
class
 Thus� there are a few possible ways to de�ne a transition be�
tween classes
 We de�ne two optional transition relations� similar to
those used in �DGG���
 The �rst de�nes a transition between classes
whenever all states of one class have a successor in the other
 The re�
sulting structure is called the ��quotient structure
 The second de�nes
a transition between classes whenever there exists a state of one with a
successor in the other
 The resulting structure is called the ��quotient

��

structure
 In both cases� the structures are simulation equivalent to
M � but the ��quotient structure has fewer transitions and therefore is
preferable

The other di�culty is that the quotient model for simulation equiv�
alence is not the smallest in size
 Actually� it is not even clear that
there is a unique smallest structure that is simulation equivalent to M

In this chapter we prove that in simulation based minimization� be�
side equivalent states� there exists another redundancy
 Little brothers
are states that are smaller by the simulation preorder than one of their
brothers
 Disconnecting a little brother from the mutual parent elimi�
nates the additional redundancy� and the result of disconnecting little
brothers is simulation equivalent to the original model
 The de�ni�
tion of little brothers is not new
 �KM��� shows that eliminating little
brothers results in a simulation equivalent structure
 However� the
paper does not consider the minimization problem

The �rst result in this chapter is a proof that every structure has a
unique up to isomorphism smallest structure that is simulation equiv�
alent to it
 This structure is reduced� meaning that it contains no sim�
ulation equivalent states� no little brothers and no unreachable states

Our next result is the Minimizing Algorithm that given a structure
M constructs the reduced structure for M
 Based on the maximal
simulation relation over M � the algorithm �rst builds the ��quotient
structure with respect to simulation equivalence
 Then it eliminates
transitions to little brothers
 Finally� it removes unreachable states

The time complexity of the algorithm is O�jSj��
 Its space complexity
is O�jSj�� which is due to the need to hold the simulation preorder in
memory

Since our main concern is space requirements� we suggest the Par�
tition Algorithm� which computes the quotient structure without ever
computing the simulation preorder
 Similarly to �LY���� the algorithm
starts with a partition !� of the state space to classes whose states are
equally labeled
 It also initializes a preorder H� over the classes in !�

At iteration i � � !i�� is constructed by splitting classes in !i
 The
relation Hi�� is updated based on !i� !i�� and Hi

When the algorithm terminates �after k iterations� !k is the set
of equivalence classes with respect to simulation equivalence
 These
classes form the states of the quotient structure
 The �nal Hk is the

��

maximal simulation preorder over the states of the quotient structure

Thus� the Partition Algorithm replaces the �rst step of the Minimiz�
ing Algorithm
 Since every step in the Minimizing Algorithm fur�
ther reduces the size of the initial structure� the �rst step handles the
largest structure
 Therefore� improving its complexity in�uences most
the overall complexity of the algorithm

The space complexity of the Partition Algorithm is O�j!kj� � jSj �
log�j!kj��
 We assume that in most cases j!kj �� jSj� thus this com�
plexity is signi�cantly smaller than that of the Minimizing Algorithm

Unfortunately� time complexity will probably become worse �depending
on the size of !k�
 It is bounded by O�jSj� � j!kj� � �j!kj� � jRj��
 How�
ever� since our main concern is the reduction in memory requirements�
the Partition Algorithm is valuable

��� The reduced structure

Given a Kripke structure M � we would like to �nd a reduced structure
that will be simulation equivalent to M and smallest in size
 In this
section we prove that a reduced structure always exists
 Furthermore�
we show that all reduced structures of M are isomorphic

Let M be a Kripke structure and H be the maximal simulation
relation over M �M
 We need the following two de�nitions in order
to characterize reduced structures

Two states s�� s� � M are simulation equivalent i� �s�� s�� � H
and �s�� s�� � H
 Note that simulation equivalence is an equivalence
relation� the transitivity and re�exivity of H imply the transitivity and
re�exivity of the relation� and the symmetry of the equivalence relation
comes from its de�nition

A state s� is a little brother of a state s� i� there exists a state s� such
that�

	 �s�� s�� � R and �s�� s�� � R

	 �s�� s�� � H and �s�� s�� �� H

De�nition ����� A Kripke structure M is reduced if

�� There are no simulation equivalent states in M �

��

�� There are no states s�� s� such that s� is a little brother of s��

�� All states in M are reachable from s��

Theorem ���
 Let M � M � be two reduced Kripke structures� Then
the following two statements are equivalent

�� M and M � are simulation equivalent�

�� M and M � are isomorphic�

The proof that � implies is straightforward
 In the rest of this
section we assume that M and M � are reduced Kripke structures
 We
will show that if M �M � and M � �M � then M and M � are isomorphic

We use HMM � to denote the maximal simulation over M �M �� and
HM �M to denote the maximal simulation over M � �M
 The composed
relation HMM �M
 S � S is de�ned by

HMM �M � f�s�� s��j�s
� � S�� �s�� s

�� � HMM � � �s�� s�� � HM �Mg�

Lemma ��� Given two structures M and M �� and two simulation
relations HMM �
 S�S� and HM �M
 S��S� the composition relation
HMM �M of HMM � and HM �M is a simulation relation�

Proof �

	 �s�� s��� � HMM � and �s��� s�� � HM �M implies �s�� s�� � HMM �M

	 �s�� s�� � HMM �M implies that there exists a state s� in M � such
that �s�� s�� � HMM � and �s�� s�� � HM �M
 Thus� L�s�� � L��s�� �
L�s��

	 Let �s�� s�� � HMM �M and let t� be a successor of s�
 We will show
that there exists a successor t� of s� such that �t�� t�� � HMM �M

� �s�� s�� � HMM �M implies that there exists s� such that �s�� s�� �
HMM � and �s�� s�� � HM �M

� �s�� s�� � HMM � implies that there exists a successor t� � S�

of s� such that �t�� t�� � HMM �

� �s�� s�� � HM �M implies that there exists a successor t� � S
of s� such that �t�� t�� � HM �M

��

� By the above� �t�� t�� � HMM �M
 �

Given two reduced Kripke structures M and M � that are simulation
equivalent� we will de�ne a matching relation f over S� � S based on
the two simulation relations between the structures
 We show that f
is an isomorphism between M � and M � i
e
� f is a one�to�one and onto
total function that preserves the labeling of states and the transition
relation

De�nition ����� The matching relation f
 S� � S is de�ned as
follows
 �s�� s� � f i	 �s�� s� � HM �M and �s� s�� � HMM ��

Lemma ��� Let f
 S� � S be the matching relation� Then f is
a one�to�one� onto� and total function from S� to S�

Proof � First we prove that f is a function from S� to S
 Assume
to the contrary that there are two di�erent states� s�� s�� in S and
a state s� in S� such that �s�� s�� � f and �s�� s�� � f
 Let HMM �M

be the composed relation
 Since HMM �M is a simulation relation� it
is included in the maximal simulation over M � M
 We will show
that �s�� s�� � HMM �M and �s�� s�� � HMM �M � which contradicts the
assumption that M is reduced

	 �s�� s�� � f implies that �s�� s�� � HM �M and �s�� s
�� � HMM �

	 �s�� s�� � f implies that �s�� s�� � HM �M and �s�� s�� � HMM �

	 �s�� s
�� � HMM � and �s�� s�� � HM �M implies that �s�� s�� �

HMM �M

	 �s�� s�� � HMM � and �s�� s�� � HM �M implies that �s�� s�� �
HMM �M

The proof that f�� is a function from S to S� is similar
 Thus� we
conclude that f is a one�to�one function

Next� we prove that f is onto� i
e
� for every state s in S there exists
a state s� in S� such that �s�� s� � f
 The proof is by induction on the
distance of s � S from the initial state
 �Since all states are reachable�
the distance is bounded by jSj
�

��

	 Base� The case where the distance is 	 follows from the fact
that simulation relations relate initial states to each other
 Thus�
�s��� s�� � HM �M and �s�� s

�
�� � HMM �

	 Induction step� Assume that the induction hypothesis holds for
every state with distance less than or equal to n
 We prove it for
states with distance n �
 Let t� � S be a state with distance
n�
 Then there is a state s with distance n such that �s� t�� � R

By the induction hypothesis� there exists a state s� in S� such
that�s� s�� � HMM � and �s�� s� � HM �M
 By the de�nition of
simulation� for every successor of s� in particular t�� there exists
in S� a successor t�� of s�� such that �t�� t��� � HMM �
 If� in addition�
�t��� t�� � HM �M � then �t��� t�� � f and we are done

Assume to the contrary that �t��� t�� �� HM �M
 Then �s�� s� �
HM �M implies that there exists t�� such that �s� t�� � R and
�t��� t�� � HM �M
 Let HMM �M be the composed simulation re�
lation
 Then� HMM �M is included in the maximal simulation over
M �M
 �t�� t��� � HMM � and �t��� t�� � HM �M imply �t�� t�� �
HMM �M
 However� t�� t� are both successors of s
 This implies
that either t�� t� are simulation equivalent or t� is a little brother
of t�� contradicting the assumption that M is reduced

A similar proof can be applied to show that f�� is onto� which implies
that f is total
 �

Lemma ��	 Let s�� t� � S� be states� Then �s�� t�� � R� i	 �f�s��� f�t��� �
R�

Proof � We prove that if �s�� t��� � R�� then �f�s��� f�t���� � R

The proof of the other direction is similar
 Let s�� t�� � S� be two
states such that �s�� t��� � R� and let s� t� � S be states such that
f�s�� � s and f�t��� � t�
 Assume to the contrary that �s� t�� �� R

Then �s�� s� � HM �M implies that there exists t� such that �s� t�� � R
and �t��� t�� � HM �M
 Moreover� �s� s�� � HMM � implies that there exists
t�� such that �s�� t��� � R� and �t�� t��� � HMM �
 We distinguish between
two cases�

 If t�� � t�� then f�t��� � t�� contradicting the assumption that f is
a function

��

�
 Otherwise� let HM �MM � be the composed simulation relation over
M ��M �
 Therefore� it is included in the maximal simulation over
M � �M �
 �t��� t�� � HM �M and �t�� t

�
�� � HMM � imply �t��� t

�
�� �

HM �MM �
 This implies that either t��� t
�
� are simulation equivalent

or t�� is a little brother of t��� contradicting the assumption that
M � is reduced

�

Proposition ��
 For all s� � S�� L��s�� � L�f�s����

Proof � Immediate by de�nition of f

We showed that if reduced structures M and M � are simulation
equivalent� then there exists a one�to�one� onto� total function f � S� �
S such that for every s�� L��s�� � L�f�s��� and for every s�� t�� �s�� t�� �
R� i� �f�s��� f�t��� � R
 Thus� we conclude Theorem �

�

Theorem ��� Let M be a non�reduced Kripke structure� Then
there exists a reduced Kripke structure M � such that M�M � are simu�
lation equivalent and jM �j � jM j�

In order to prove Theorem �

� � we present in the next sections an
algorithm that receives a Kripke structure M and computes a reduced
Kripke structure M �
 This reduced structure is simulation equivalent
to M � such that jM �j � jM j
 Moreover� if M is not reduced� then
jM �j � jM j

The following lemma shows that the reduced structures are strictly
smaller than any other structure that is simulation equivalent to them

Lemma ��� Let M � be a reduced Kripke structure� For every M
that is simulation equivalent to M �� if M and M � are not isomorphic
then jM �j � jM j�

Proof � By Theorem �

� � since M is not isomorphic to M �� M
is not reduced
 By Theorem �

� � there exists a reduced Kripke
structure M �� that is simulation equivalent to M � and jM ��j � jM j

M �� and M � are both simulation equivalent to M and therefore are
simulation equivalent to each other
 Since they are reduced� they are
also isomorphic� and therefore jM �j � jM ��j
 Thus� jM �j � jM j
 �

��

��� The minimizing algorithm

In this section we present the Minimizing Algorithm
 This algorithm
gets a Kripke structure M and computes a reduced Kripke structure
M �� that is simulation equivalent to M and jM �j � jM j
 If M is not
reduced then jM �j � jM j

The algorithm consists of three steps
 The �rst step is to construct a
quotient structure in order to eliminate equivalent states
 The resulting
quotient structure is simulation equivalent to M but is not necessarily
reduced
 The second step is to disconnect little brothers� and the last
step is to remove all unreachable states

If the structure obtained at each step di�ers from the original� then
it is strictly smaller than the original

��� The ��quotient structure

In order to compute a simulation equivalent structure that contains
no equivalent states� we compute the quotient structure with respect
to the simulation equivalence relation
 The states of the structure are
the equivalence classes and the labeling function is straightforward �all
states in a given equivalence class have the same labeling� so we use
this label for the class as well�
 However� the transition relation is not
uniquely de�ned
 We can have a transition between two equivalence
classes if from every state of one there is a transition to some state
of the other ���transitions�
 We can also have a transition if there
exists a state in one with a transition to some state of the other ���
transitions�
 Both de�nitions will result in a simulation equivalent
structure
 However� the former has a smaller transition relation� and
therefore it is preferable

In the rest of this section we present the ��quotient structure and
prove that it is simulation equivalent to the original structure
 If the
quotient structure is not isomorphic to the original one� then it is
strictly smaller in size

For the rest of this section we �x M to be the original Kripke
structure and H to be the maximal simulation relation over M �M

We denote by �s� the equivalence class that includes s

��

De�nition ����� The ��quotient structure Mq �� Sq� Rq� s�q � Lq 	
of M is de�ned as follows

	 Sq is the set of the equivalence classes of the simulation equiva�
lence� We will use Greek letters to represent equivalence classes��

	 Rq � f�
��
��j�s� �
� �s� �
�� �s�� s�� � Rg�

	 s�q � �s���

	 Lq��s�� � L�s��

Note that jSqj � jSj and jRqj � jRj
 If jSqj � jSj� then every equiva�
lence class contains a single state
 In this case� Rq is identical to R and
Mq is isomorphic to M
 Thus� when M and Mq are not isomorphic�
jSqj � jSj and jRqj � jRj

Next� we show that M and Mq are simulation equivalent

De�nition ����� Let G
 S be a set of states� A state sm � G is
maximal in G i	 there is no state s � G such that �sm� s� � H and
�s� sm� �� H�

De�nition ����� Let
 be a state of Mq� and t� be a successor of
some state in
� The set G�
� t�� is de�ned as follows

G�
� t�� � ft� � Sj�s� �
 � �s�� t�� � R � �t�� t�� � Hg�

Intuitively� G�
� t�� is the set of states that are greater than t� and are
successors of states in

 Notice that since all states in
 are simulation
equivalent� every state in
 has at least one successor in G�
� t��

Lemma ��� Let
� t� be as de�ned in De�nition ����� � Then for
every maximal state tm in G�
� t��� �tm� is a successor of
�

Proof � Let tm be a maximal state in G�
� t��� and let sm �
 be a
state such that tm is a successor of sm
 We prove that for every state
s �
� there exists a successor t � �tm�
 This implies that �tm� is a
successor of

s� sm �
 implies that �sm� s� � H
 This implies that there exists a
successor t of s such that �tm� t� � H
 By transitivity of the simulation
relation� �t�� t� � H
 Thus t � G�
� t��
 Since tm is maximal in G�
� t���
�t� tm� � H
 Thus� t and tm are simulation equivalent and t � �tm�
 �

��

Theorem ��� The structures M and Mq are simulation equivalent�

Proof � First we prove that Mq � M
 Let Hqs
 Sq � S be the
relation Hqs � f�
� s�js �
g
 We prove that Hqs is a simulation
relation

	 s� � s�q implies that �s�q � s�� � Hqs

	 By the de�nition of Lq� �
� s� � Hqs implies that L�s� � Lq�
�

	 Assume �
�� s� � Hqs and let
� be a successor of
�
 Then by the
de�nition of Rq� there exists a successor t of s such that t �
�

Thus� �
�� t� � Hqs

Second� we prove that M �Mq
 Let Hsq
 S�Sq be the relation Hsq �
f�s��
�j there exists a state s� �
 such that �s�� s�� � Hg
 We prove
that Hsq is a simulation relation

	 �s�� s�� � H and s� � s�q imply that �s�� s�q� � Hsq

	 �s��
� � Hsq implies that there exists a state s� �
 such that
�s�� s�� � H
 Thus� L�s�� � L�s�� � Lq�
�

	 Assume �s��
�� � Hsq and let t� be a successor of s�
 We prove
that there exists a successor
� of
� such that �t��
�� � Hsq

We distinguish between two cases�

 s� �
�
 Let tm be a maximal state in G�
�� t��
 Lemma �
�
�
then implies that �
�� �tm�� � Rq
 Since tm is maximal in
G�
�� t��� �t�� tm� � H� which implies �t�� �tm�� � Hsq

�
 s� ��
�
 Let s� �
� be a state such that �s�� s�� � H

Since �s�� s�� � H� there is a successor t� of s� such that
�t�� t�� � H
 The �rst case implies that there exists an equiv�
alence class
� such that �
��
�� � Rq and �t��
�� � Hsq

By �t��
�� � Hsq� there exists a state t� �
� such that
�t�� t�� � H
 By transitivity of simulation� �t�� t�� � H

Thus� �t��
�� � Hsq

�

�	

��� Disconnecting little brothers

Our next step is to disconnect the little brothers from their parents
 By
applying this step to a Kripke structure M with no equivalent states�
we get a Kripke structure M � satisfying the following�

 M are M � are simulation equivalent

�
 There are no equivalent states in M �

�
 There are no little brothers in M �

�
 jM �j � jM j� and if M and M � are not identical� then jM �j � jM j

In Figure �
 we present an iterative algorithm which disconnects little
brothers and results in M �

change �� true
while 	change � true
 do

Compute the maximal simulation relation H
change �� false
If there are s�� s�� s� � S such that s� is a little

brother of s�
and s� is the father of both s� and s� then

change �� true

R � R n f�s�� s��g
end

end

Figure �
�� The Disconnecting Algorithm

Since each iteration of the algorithm removes one transition� the
algorithm will terminate after at most jRj iterations
 We will show
that the resulting structure is simulation equivalent to the original one

Lemma ��	 Let M � �� S�� R�� s��� L
� 	 be the result of the Discon�

necting Algorithm on M � Then M and M � are simulation equivalent�

Proof � We prove the lemma by induction on the number of itera�
tions

��

	 Base� at the beginning� M and M are simulation equivalent

	 Induction step� Let M �� �� S��� R��� s���� L
�� 	 be the result of the

�rst i iterations and H �� be the maximal simulation over M ���M ��

Let M � �� S�� R�� s��� L

� 	 be the result of the �i � �th iteration
where R� � R��nf�p���� p

��
��g
 Assume that M and M �� are simulation

equivalent
 We �rst prove that M � �M ��
 We choose H �
 S��S��

to be H � � f�s��� s
��
��j�s

��
�� s

��
�� � H ��g
 Since M � is obtained from M ��

by removing one transition� clearly H � is a simulation relation

We now show that M �� �M �
 As in the previous case� we choose
H �
 S�� � S� to be H � � f�s���� s

�
��j�s

��
�� s

��
�� � H ��g
 We will prove

that H � is a simulation relation

� �s���� s
��
�� � H �� implies that �s���� s

�
�� � H �

� �s���� s
�
�� � H � implies that L���s���� � L��s���

� Suppose �s���� s
�
�� � H � and t��� is a successor of s���
 Since

H �� is a simulation relation� there exists a successor t��� of s���
such that �t���� t

��
�� � H ��
 This implies that �t���� t

�
�� � H �
 If

�s��� t
�
�� � R�� then we are done
 Otherwise� �s���� t

��
�� is removed

from R�� because t��� is a little brother of some successor t��� of
s���
 Since �s���� t

��
�� is the only transition removed at the �i��th

iteration� �s��� t
�
�� � R�
 Because t��� is a little brother of t����

then �t���� t
��
�� � H ��
 By transitivity of the simulation relation�

�t���� t
��
�� � H ��� and thus �t���� t

�
�� � H �

�

We proved that the structure M � that is computed by the Discon�
necting Algorithm is simulation equivalent to the original structure M

Note that M � has the same set of states as M
 We now show that
the maximal simulation relation over M is identical to the maximal
simulation relations for all intermediate structures M �� �including M ��
computed by the Disconnecting Algorithm
 Therefore this relation can
be computed once� at the beginning of the algorithm
 Moreover� since
there are no simulation equivalent states in M � there are no such states
in M � either

Lemma ��
 Let H
 S � S be the maximal simulation relation
over M �M � Let M � �� S�R�� s�� L 	 be the result of the Disconnect�

��

ing Algorithm on M and let H �
 S� � S� be the maximal simulation
over M � �M �� Then H � H ��

Proof � The Disconnecting Algorithm changes only the transition
relation
 Thus� for all intermediate structures M ��� S�� � S� s��� � s��
and L�� � L
 We prove the lemma by induction on the number of
iterations

	 Base� at the beginning� H � H

	 Induction step� Let M �� �� S�R��� s�� L 	 be the result of the
�rst i iterations and let H �� be the maximal simulation relation
over M �� �M ��
 Assume that H �� � H
 Let M � be the result of
the �i� �th iteration and H � be the maximal simulation relation
over M � �M �
 We prove that H � � H ��
 First we prove that H ��

is a simulation relation over M ��M �
 This implies that H ��
 H �

�H � is maximal over M � �M ��

� �s�� s�� � H ��

� �s�� s�� � H �� implies that L�s�� � L�s��

� Let s�� s�� t� be states such that �s�� s�� � H �� and �s�� t�� �
R�
 �s�� s�� � H �� implies that there exists a state t� such
that �s�� t�� � R�� and �t�� t�� � H ��
 We distinguish between
two cases�

 If �s�� t�� � R�� we are done

�
 If �s�� t�� �� R�� then since �s�� t�� is removed from R���
there must exist a state t� such that �t�� t�� � H �� and
�s�� t�� � R�� �t� is a little brother of t� and s� is the parent
of both states�
 Since only one transition is removed�
�s�� t�� � R�
 By transitivity of H ��� �t�� t�� � H ��
 Thus�
H �� is a simulation relation over M � �M �

Next we prove that H � is a simulation relation over M �� �M ��

This implies that H �
 H �� �H �� is maximal over M �� �M ���

� �s�� s�� � H �

� �s�� s�� � H � implies that L�s�� � L�s��

� Let s�� s�� t� be states such that �s�� s�� � H � and �s�� t�� �
R��
 We distinguish between two cases�

��

 If �s�� t�� � R�� then �s�� s�� � H � implies that there
exists a state t� such that �s�� t�� � R� and �t�� t�� � H �

Thus� �s�� t�� � R��

�
 If �s�� t�� �� R�� then since �s�� t�� is removed from R���
there exists a state t� such that �s�� t�� � R�� and �t�� t�� �
H �� �t� is a little brother of t� and s� is their parent�

�t�� t�� � H �� and H ��
 H � implies �t�� t�� � H �
 Since
�s�� t�� is the only transition removed from R��� �s�� t�� �
R�
 This implies that there exists a state t� such that
�s�� t�� � R� and �t�� t�� � H �
 By transitivity of H ��
�t�� t�� � H �
 Thus� �s�� t�� � R�� and H � is a simulation
relation over M �� �M ��

�

The Disconnecting Algorithm can be greatly simpli�ed as a result
of the last theorem
 The maximal simulation relation is computed once
on the original structure M and is used in all iterations
 The Simpli�ed
Algorithm is presented in Figure �
�

Compute the maximal simulation relation H
for every node si � S do

G � �
for every transition �si� sj� � R do

for every states sg � G do
if �sg� sj� � H and �sj� sg� �� H then

remove the transition �si� sg� from R
end
if �sg� sj� �� H and �sj� sg� � H then

remove the transition �si� sj� from R
end

end
add sj to G

end
end

Figure �
�� The Simpli�ed Algorithm

��

If the algorithm is executed symbolically �with BDDs�� then this
operation can be performed e�ciently in one step�

R� � R � f�s�� s��j�s� � �s�� s�� � R � �s�� s�� � H � �s�� s�� �� Hg�

��� The algorithm

In Figure �
� we present our algorithm for constructing the reduced
structure for a given one

�� Compute the ��quotient structure Mq of M and
the maximal simulation relation H over

Mq �Mq�
�� R� � Rq � f�s�� s��j�s� � �s�� s�� � Rq � �s�� s�� � Hg�
�� Remove all unreachable states�

Figure �
�� The Minimizing Algorithm

Note that the check �s�� s�� �� H is eliminated in the second step

This is because Mq does not contain simulation equivalent states
 Re�
moving unreachable states in the third step does not change the prop�
erties of simulation with respect to the initial states
 The size of the
resulting structure is equal to or smaller than the original one
 Again�
if the resulting structure is not identical� then it is strictly smaller in
size

We have proved that the structure M � that results from applying the
Minimizing Algorithm is simulation equivalent to the original structure
M
 Thus we can conclude that Theorem �

� is correct

Figure �
� presents an example of the three steps of the Minimizing
Algorithm applied to a Kripke structure

 Part contains the original structure� where the maximal simu�
lation relation is �not including the trivial pairs��
f��� ��� ��� ��� �� ��� �� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� 	�� �	� ��g

The equivalence classes are � ffg� f�� �g� fg� f�g� f�g� f�g� f�� �g� f�� 	gg

�
 Part � presents the ��structure Mq
 The maximal simulation
relation H is �not including the trivial pairs��
H � f�fg� f�� �g�� �f�g� f�g�� �f�g� f�g�g

��

d e

a

b

{1}

{2,3}

c

{7,8} {9,10}

{5}

1 2

4

a

b b

c c c

d d e e

1

2 3

4 5 6

7 8 9 10

b

11

c

d e

b

{2,3}

{5}

{7,8} {9,10}

a

c

{4}
{6}

c

b

{11}

{1}

3

c

d e

c c

a

b

{1}

{2,3}

{4}
{5} {6}

{7,8} {9,10}

b

{11}

Figure �
�� An example of the Minimizing Algorithm

�
 fg is a little brother of f�� �g and fg is their parent
 Part �
presents the structure after the removal of the transition �fg� fg�

�
 Finally� part � contains the reduced structure� obtained by re�
moving the unreachable states

��� Complexity

The complexity of each step of the algorithm depends on the size of
the Kripke structure obtained from the previous step
 In the worst
case� the Kripke structure does not change� then all three steps depend
on the original Kripke structure
 Let M be the given structure
 We
analyze each step separately�

 First� the algorithm constructs equivalence classes
 It computes
the maximal simulation relation
 �BP��� HHK��� showed that

��

this can be done in time O�jSj � jRj�
 Once the algorithm has the
simulation relation� the equivalence classes can be constructed
in time O�jSj��
 Next� the algorithm constructs the transition
relation
 This can be done in time O�jSj � jRj�
 Building the
entire quotient structure can be done in time O�jSj � jRj�

�
 Next� little brothers are disconnected from their parents
 Looking
at the Simpli�ed Algorithm in Figure �
�� we can see that the
number of iterations of the two external for loops is exactly jRj
and that the number of iterations in the inner loop is bounded
by jSj
 This implies that the overall complexity of this step is
O�jSj � jRj�

�
 Unreachable states can be removed in time O�jRj�

The entire algorithm works in time O�jSj � jRj�

The space bottleneck of the algorithm is the computation of the

maximal simulation relation� which is bounded by jSj�

��� Partition classes

In the previous section� we presented the Minimizing Algorithm
 The
algorithm consists of three steps� each of which results in a structure
that is smaller in size
 Since the �rst step handles the largest structure�
improving its complexity will have the greatest in�uence on the overall
complexity of the algorithm

In this section we suggest an alternative algorithm for computing
the set of equivalence classes
 The algorithm avoids the construction of
the simulation relation over the original structure
 As a result� it has
a better space complexity� but its time complexity is worse
 Since the
purpose of the Minimizing Algorithm is to reduce space requirements�
reducing its own space requirement takes precedence

��� The partition algorithm

Let M �� S�R� s�� L 	 be a Kripke structure and H be the maximal
simulation over M �M
 We would like to build the equivalence classes
of the simulation equivalence relation without �rst calculating H
 Our
algorithm� called the Partitioning Algorithm� starts with a partition !�

��

of S to classes
 The classes in !� di�er from one another only by their
state labeling
 In each iteration� the algorithm re�nes the partition
and forms a new set of classes
 We use !i to denote the set of the
classes obtained after i iterations
 In order to re�ne the partitions� we
build an ordering relation Hi over !i �!i
 This relation is updated at
every iteration according to the previous and current partitions �!i��

and !i� as well as the previous ordering relation �Hi���
 Initially� H�

includes only the identity pairs �of classes�

In the algorithm� we use succs� for the set of successors of s
 We

use �s�i to denote the equivalence class of s in !i
 �s� is used whenever
!i is clear from the context
 We also use a function " that associates
with each class
 � !i the set of classes
� � !i�� that contain a
successor of some state in

"�
� � f�t�i��j�s �
� �s� t� � Rg�

We use the following notations�

	 English letters to denote states

	 Capital English letters to denote sets of states

	 Greek letters to denote equivalence classes

	 Capital Greek letters to denote sets of equivalence classes

The partition algorithm is presented in Figure �
�

De�nition ����� The partial order �i on S is de�ned as follows

s� �i s� i	

	 L�s�� � L�s���

	 If i 	 	� then for every successor t� of s� there exists a successor
t� of s� such that ��t��� �t��� � Hi���

If i � 	� s� �� s� i� L�s�� � L�s��

De�nition ����� Two states� s�� s�� are i�equivalent i	 s� �i s�
and s� �i s�� Since �i is a partial order� i� equivalence is an equiv�
alence relation��

��

Initialize the algorithm�

change �� true

for each label a � �AP construct �a � �� such that s � �a �
L�s� � a�

H� � f��� ��j� � ��g
i � �
while change � true do begin

change �� false

re�ne ��
�i�� �� �
for each � � �i do begin

while � �� � do begin

choose sp such that sp � �

GT �� fsg jsg � � � �tp � succ�sp� �tg � succ�sg�� ��tp	� �tg	� �
Hig

LT �� fsljsl � � � �tl � succ�sl� �tp � succ�sp�� ��tl	� �tp	� � Hig
�� �� GT �LT

if � �� �� then change �� true

� �� � n ��

Add �� as a new class to �i���

end

end

update H�

Hi�� � �
for every ���� ��� � Hi do begin

for each ��

�� �
�

� � �i�� such that �� 	 ��

�� �� 	 ��

� do begin

 � f�j�� � ����

�� ��� �� � Hig
if
 	 ����

�� then

insert ���

�� �
�

�� to Hi��

else

change �� true

end

end

i � i � �

end

Figure �
�� The partition algorithm

In the rest of this section we explain how the algorithm works

There are two invariants �formally proved later� which are preserved
during the execution of the algorithm

��

Invariant �� For all states s�� s� � S� s� and s� are in the same class

 � !i i� s� and s� are i�equivalent

Invariant �� For all states s�� s� � S� s� �i s� i� ��s��� �s��� � Hi

!i is a set of equivalence classes with respect to the i�equivalence
relation
 In the ith iteration we split the equivalence classes of !i�� so
that only states that are i�equivalent remain in the same class

A class
 � !i�� is repeatedly split by choosing an arbitrary state
sp �
 �called the splitter� and identifying the states in
 that are
i�equivalent to sp
 These states form an i�equivalence class
� that is
inserted into !i

� is constructed in two steps
 First we calculate the set of states
GT

 that contains all states sg such that sp �i sg
 Next we calculate
the set of states LT

 that contains all states sl such that sl �i sp

The states in the intersection of GT and LT are the states in
 that
are i�equivalent to sp

Hi captures the partial order �i� i
e
� s� �i s� i� ��s��� �s��� � Hi

We later prove �Lemma �
�
� � that the sequence ������ � � � satis�es
��������� � � �
 Therefore� if s� �i s�� then s� �i�� s�
 Hence�
��s��� �s��� � Hi implies ��s��� �s��� � Hi��
 Thus� when constructing Hi�
it is su�cient to check �
���

�
�� � Hi only when
� �
���
� �
��� and

�
��
�� � Hi��

For suitable
�� and
��� we �rst construct the set # of classes that

are �smaller� than the classes in "�
���
 By checking if # � "�
���� we
determine whether every class in "�
��� is �smaller� than some class in
"�
���
 If so� then �
���

�
�� is inserted into Hi

When the algorithm terminates� �i is the maximal simulation rela�
tion and the i�equivalence is the simulation equivalence relation over
M �M
 Moreover� Hi is the maximal simulation relation over the
corresponding quotient structure Mq

The algorithm runs until there is no change in the partition !i

and no change in the relation Hi
 A change in !i is the result of a
partitioning of some class
 � !i
 The number of changes in !i is
bound by the number of classes in the last iteration k� i
e
� j!kj

We show that a change in Hi can happen at most j!kj� times

Thus� the algorithm terminates after at most j!kj� � j!kj iterations
 It
is possible that in some iteration i� !i will not change but Hi will� and
in a later iteration j 	 i� !j will change again

�	

Example� In this example we show how the partition algorithm is
applied to the Kripke structure presented in Figure �
�

a

a a

b b b

c c d d

0

1 2

3 4 5

6 7 8 9

Figure �
�� An example of a structure to be reduced

	 We initialize the algorithm as follows�
!� � f
�� ��� ��� �g� H� � f�
��
��� ���� ���� ���� ���� ��� ��g�
where
� � f	� � �g� �� � f�� �� �g� �� � f�� �g� � � f�� �g

	 The �rst iteration results in the relations�
!� � f
��
�� ��� ��� ��� ��� �g�
H� � f�
��
��� �
��
��� ���� ���� ���� ���� ���� ���� ���� ����
���� ���� ���� ���� ��� ��g�
where
� � f	g�
� � f� �g� �� � f�g� �� � f�g�
�� � f�g� �� � f�� �g� � � f�� �g

	 The second iteration results in the relations�
!� � f
��
�� ��� ��� ��� ��� ��� �g�
H� � f�
��
��� �
��
��� ���� ���� ���� ���� ���� ����

���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ��� ��g�
where
� � f	g�
� � f� �g� �� � f�g� �� � f�g� �� � f�g� �� �
f�g� �� � f�g� � � f�� �g

	 The third iteration results in the relations�
!� � !��H� � H� � change � false

The equivalence classes are�

� � f	g�
� � f� �g� �� � f�g� �� � f�g� �� � f�g� �� �
f�g� �� � f�g� � � f�� �g

��

Since the third iteration results in no change to the computed partition
or ordering relations� the algorithm terminates
 !� is the �nal set of
equivalence classes� which constitutes the set Sq of states of Mq
 H� is
the maximal simulation relation over Mq �Mq

��� The correctness of the partition algorithm

In order to prove the correctness of the Partitioning Algorithm� we
prove three invariants
 We have already mentioned the �rst two
 The
third invariant is necessary to prove them

Invariant �� For all states s�� s� � S� s� and s� are in the same class

 � !i i� s� and s� are i�equivalent

Invariant �� For all states s�� s� � S� s� �i s� i� ��s��� �s��� � Hi

Invariant �� Hi is transitive

We will prove these invariants by induction on i

Base�

 s�� s� are in the same class in !� i� L�s�� � L�s�� i� s� �� s� and
s� �� s� i� s� is 	�equivalent to s�

�
 ��s��� �s��� � H� i� �s�� � �s�� i� s�� s� are in the same class i�
L�s�� � L�s�� i� s� �� s�

�
 �
��
�� � H� i�
� �
�
 Thus� for every
��
��
�� if �
��
�� �
H� and �
��
�� � H�� then
� �
� �
�
 This implies that
�
��
�� � H�

In the next three sections we prove the induction step
 We assume
that for every j � i� the invariants hold for j
 We prove that the
invariants hold for i �

��� Proving invariant

In this section we �x sp �the splitter� to be the state that was chosen in
the partition of class
� and in the construction of class
� � GT �LT

Proposition ��� For every
� � !i�� there exists
 � !i such that

�

�

��

We use
�pre to denote the class
 � !i that contains
� � !i��

Proposition ��� Let
��
� � !i��� Then �
��
�� � Hi�� implies
that �
�pre�
�pre� � Hi�

Corollary ��� If states s� and s� are in the same class� then L�s�� �
L�s���

Lemma ��	 If s� �i�� s�� then s� �i s��

Proof � First� s� �i�� s� implies L�s�� � L�s��
 Next� we distin�
guish between two cases�

 If i � 	� then L�s�� � L�s�� implies s� �� s�

�
 Suppose i 	 	
 We will show that for every successor t� of s��
there exists a successor t� of s� such that ��t��i��� �t��i��� � Hi��

Let t� be a successor of s�
 Then s� �i�� s� implies that there
exists a successor t� of s� such that ��t��i� �t��i� � Hi
 Let �t��i�� �
��t��i�pre and �t��i�� � ��t��i�pre
 Then� by Proposition �
�
�� ��t��i��� �t��i��� �
Hi��� as required

�

Lemma ��
 Let
� be a class in !i�� and s� and s� be states in

�� Then s� and s� are �i � ��equivalent�

Proof � Let
� � !i��� s�� s� �
�
 We prove that for every successor
t� of s� there exists a successor t� of s� such that ��t��� �t��� � Hi
 This
implies that s� �i�� s�

s� �
� implies s� � LT
 By the de�nition of LT � there exists a
successor tp of sp such that ��t��� �tp�� � Hi
 s� �
� implies s� � GT

Then by the de�nition of GT � there exists a successor t� of s� such
that ��tp�� �t��� � Hi
 By Invariant �� Hi is transitive� and therefore
��t��� �t��� � Hi
 �

The proof that s� �i�� s� is similar
 Thus s�� s� are �i���equivalent

Lemma ��� Let s� and s� be �i � ��equivalent states� Then s�
and s� are in the same class in !i���

��

Proof � We will prove that s� � �s��
 Let sp be the splitter� used
to construct �s��

	 By Lemma �
�
�� s� and s� are �i� �equivalent� and this implies
that s� and s� are i�equivalent
 By the induction hypothesis�
s� and s� are in the same equivalence class in Hi and thus are
candidates for being in the same equivalence class in Hi��

	 Since s�� s� are �i � ��equivalent� then for every successor t� of
s�� there exists a successor t� of s� such that ��t��� �t��� � Hi

	 Since s� � �s��� then s� � LT
 By the de�nition of LT � there
exists a successor tp of sp such that ��t��� �tp�� � Hi

	 By Invariant �� Hi is transitive
 Therefore ��t��� �tp�� � Hi
 We
proved that for every successor t� of s� there exists a successor tp
of sp such that �t��� �tp� � Hi
 Thus� by de�nition of LT � s� � LT

	 Since s� � �s��� then s� � GT
 Then by the de�nition of GT � for
every successor tp of sp� there exists a successor t� of s�� such that
��tp�� �t��� � Hi

	 Since s�� s� are �i � ��equivalent� there exists a successor t� of
s� such that ��t��� �t��� � Hi

	 Hi is transitive� and therefore ��tp�� �t��� � Hi
 We proved that for
every successor tp of sp there exists a successor t� of s� such that
��tp�� �t��� � Hi
 Thus� by the de�nition of GT � s� � GT

	 s� � GT � and s� � LT implies that s� � �s��

�

By Lemma �
�
� and Lemma �
�
� we can conclude the proof of
Invariant

��� Proving invariant �

In this section we prove for Hi�� the property de�ned by Invariant �

Since the construction of Hi�� is based on both !i and !i��� we need
to distinguish between classes in these sets
 We use �s�i and �s�i�� to
denote equivalence classes in !i and !i�� respectively

��

Lemma ��� Let ��s��i��� �s��i��� � Hi��� Then for every successor
t� of s�� there exists a successor t� of s� such that ��t��i� �t��i� � Hi�

Proof � Let ��s��i��� �s��i��� � Hi��� and let t� be a successor of
s�
 Then �t��i � "��s��i���
 Since "��s��i���
 #� then �t��i � #
 By
de�nition of #� there is a state t� such that �t��i is in "��s��i��� and
��t��i� �t��i� � Hi
 �t��i � "��s��i��� implies that t� is a successor of some
state s� in �s��i��

Since s�� s� are in the same class in !i��� by Lemma �
�
�� they
are �i � ��equivalent
 Thus� there exists a successor t� of s� such
that ��t��i� �t��i� � Hi
 By Invariant �� Hi is transitive and therefore
��t��i� �t��i� � Hi
 �

Corollary ���� If ��s��i��� �s��i��� � Hi��� then s� �i�� s��

Lemma ���� If s� �i�� s�� then ��s��i��� �s��i��� � Hi���

Proof � Assume s� �i�� s�

	 By Lemma �
�
�� s� �i s�

	 By the induction hypothesis� Invariant � holds for i
 Thus� ��s��i� �s��i� �
Hi

	 Clearly� �s��i��
 �s��i and �s��i��
 �s��i
 Since ��s��i� �s��i� � Hi�
the pair ��s��i��� �s��i��� is considered for inclusion in Hi�� in the
�i� �th update step of the algorithm

	 In order to prove that ��s��i��� �s��i��� � Hi��� we show that
"��s��i���
 #� i
e
� every class
 in "��s��i��� is also in #

	 Let
 � !i be a class in "��s��i���
 Then there exists a state
s� � �s��i�� and a successor t� of s� such that t� �

	 By Lemma �
�
� � s�� s� being in the same class of !i�� implies
that there exists a successor t� of s� such that �
� �t��i� � Hi

	 Since s� �i�� s�� then there exists a successor t� of s� such that
��t��i� �t��i� � Hi

	 Since Hi is transitive� �
� �t��i� � Hi

��

	 The de�nition of "��s��i��� implies that �t��i � "��s��i���
 Hence�
�
� �t��i� � Hi implies that
 � #

�

Corollary �
�
	 and Lemma �
�
 prove Invariant �

��� Proving invariant �

Lemma ���� Let �s��� �s��� �s�� be classes in !i�� such that ��s��� �s��� �
Hi�� and ��s��� �s��� � Hi��� Then L�s�� � L�s���

Proof � By Corollary �
�
	� s� �i�� s� and s� �i�� s�
 By De�ni�
tion �
�
� L�s�� � L�s�� � L�s��
 �

Lemma ���� Hi�� is transitive�

Proof � Let
��
��
� be classes in !i�� such that �
��
�� � Hi��

and �
��
�� � Hi��
 We prove that �
��
�� � Hi��
 To do so� we
show that for all states s�� s� in
��
� respectively� the following holds�
For every successor t� of s�� there exists a successor t� of s� such that
��t��i� �t��i� � Hi
 By Lemma �
�
 and Lemma �
�
�� this implies
that �
��
�� � Hi��

Let s�� s�� s� be states in
��
��
� respectively� and let t� be a
successor of s�
 By Lemma �
�
� � �
��
�� � Hi�� implies that there
exists a successor t� of s� such that ��t��i� �t��i� � Hi
 By Lemma �
�
�
� �
��
�� � Hi�� implies that there exists a successor t� of s� such that
��t��

i� �t��
i� � Hi
 By the induction hypothesis� ��t��

i� �t��
i� � Hi
 Thus�

we conclude that �
��
�� � Hi��
 �
The above lemma proves Invariant �
 This completes the proof of

the three invariants

��	 Equivalence classes

In this section we will show that when the algorithm terminates after k
iterations� �k is the maximal simulation relation over M �M and !k

is the set of equivalence classes with respect to simulation equivalence
over M �M
 Moreover� Hk is the maximal simulation relation over
the corresponding quotient structure Mq

Lemma ���� For every i 	 and every state s� s �i s�

��

Proof � We will prove it by induction on i�

	 Base� For i � 	� L�s� � L�s� implies s �� s

	 Induction step� Assume that the lemma holds for i
 Let t be
a successor of s
 The induction hypothesis implies that t �i t

Based on Invariant �� ��t�� �t�� � Hi
 Thus� for every successor t
of s� we choose t as the successor of s such that ��t�� �t�� � Hi
 By
the de�nition of �i��� this implies s �i�� s

�

Proposition ���� When the algorithm terminates� �k��k���

Lemma ���	 �k is a simulation over M �M �

Proof �

	 By Lemma �
�
� � s� �k s�

	 �s�� s�� ��k implies that L�s�� � L�s��

	 �s�� s�� ��k implies that for every successor t� of s� there exists a
successor t� of s� such that ��t��� �t��� � Hk��
 By Corollary �
�
	�
t� �k�� t�
 Thus� since �k��k��� t� �k t�

�

Lemma ���
 �k is the maximal simulation over M �M �

Proof � Let H � be the maximal simulation over M �M
 We prove
that H �
�k
 By Invariant �� it is su�cient to prove that �s�� s�� � H �

implies ��s��� �s��� � Hk

We prove by induction on i that �s�� s�� � H � implies that ��s��� �s��� �

Hi

	 Base� �s�� s�� � H � implies that L�s�� � L�s��
 Therefore� �s��
� �

�s��� and ��s���� �s���� � H�

	 Induction step� Assume that the lemma holds for i �
 Let
�s�� s�� be in H �
 Then for every successor t� of s� there exists
a successor t� of s� such that �t�� t�� � H �
 By the induction
hypothesis� ��t��� �t��� � Hi�� which� by Lemma �
�
� implies
that ��s��� �s��� � Hi

��

�

Theorem ���� When the algorithm terminates� !k is the set of
equivalence classes of the simulation equivalence relation�

Proof � States s�� s� are simulation equivalent i� �s�� s�� ��k� and
�s�� s�� ��k i� s�� s� are k � equivalent i� �by Invariant � s�� s� are
in the same class in !k
 �

We proved that !k is the set of equivalence classes which are used
as the set of states Sq in the quotient structure Mq
 Next� we show
that Hk is the maximal simulation relation over Mq �Mq

Lemma ���� Hk is a simulation over Mq �Mq�

Proof �

	 By Invariant �� �s�� s�� ��k implies that ��s��� �s��� � Hk

	 Assume that ��s��� �s��� � Hk
 By Invariant �� �s�� s�� ��k
 Thus
L�s�� � L�s��� which implies that Lq��s��� � Lq��s���

	 Let ��s��� �s��� be a pair in Hk and
 a successor of �s��
 By the
de�nition of Rq� there exists a successor t� of s� in

 Since �k

is a simulation relation� there is a successor t� of s� such that
�t�� t�� ��k
 Let tm be a maximal state in G��s��� t�� �De�ni�
tion �
�
� �
 By Lemma �
�
�� �tm� is a successor of �s��
 tm is
maximal in G��s��� t��
 Hence �t�� tm� ��k
 Since �k is transi�
tive� �t�� tm� ��k
 Thus� by Invariant �� �
� �tm�� � Hk

�

Theorem ���� Hk is the maximal simulation relation over Mq �
Mq�

Proof � Let H � be the maximal simulation relation over Mq �Mq

We prove that the relation de�ned by H � f�s�� s��j��s��� �s��� � H �g
is the maximal simulation relation over M �M
 Thus� H ��k
 By
Invariant �� �k� f�s�� s��j��s��� �s��� � Hkg� hence� Hk � H �

	 By Hk
 H � we have �k
 H
 Since H includes the maximal sim�
ulation relation �k� it is su�cient to show that H is a simulation
relation

��

	 By transitivity of H �� H is transitive

	 Since ��s��� �s��� � H �� �s�� s�� � H

	 Assume that �s�� s�� � H
 Then L�s�� � Lq��s��� � Lq��s��� �
L�s��

	 Suppose that �s�� s�� � H and t� is a successor of s�
 Let tm be a
maximal state in G��s��� t�� �De�nition �
�
� �
 By Lemma �
�
��
�tm� is a successor of �s��
 tm is maximal in G��s��� t��
 Hence
�t�� tm� ��k
 Because �k
 H� �t�� tm� � H
 Since H � is a simula�
tion relation� there is a successor
 of �s�� such that ��tm��
� � H �

By the de�nition of Rq� there exists a successor t� of s� in

 It
follows from ��tm��
� � H � that �tm� t�� � H and by transitivity
of H� �t�� t�� � H

�

��
 Space complexity

The space complexity of the partition algorithm depends on the size of
!i
 We assume that the algorithm is applied to Kripke structures with
some redundancy
 Thus j!ij �� jSj

We measure the space complexity with respect to the size of the
following three relations�

 The relation R

�
 The relations Hi whose size depends on !i
 We can bound the
size of Hi by j!ij�

�
 A relation that relates each state to its equivalence class
 Since
every state belongs to a single class� the size of this relation is
O�jSj � log�j!ij��

In the ith iteration we do not need to keep all H��H�� � � � and
!��!�� � � �� since we only refer to Hi�Hi�� and !i�!i��
 This fact�
along with the three relations cited above� leads us to conclude that
the total space complexity is O�jRj � j!kj� � jSj � log�j!kj��

In practice� we often do not hold the transition relation R in the
memory
 Rather� we use it to provide� whenever needed� the set of

��

successors of a given state
 Thus� the space complexity is O�j!kj� �
jSj � log�j!kj��
 Recall that the space complexity of the naive algorithm
for computing the equivalence classes of the simulation equivalence
relation is bounded by jSj�� which is the size of the simulation relation
over M �M
 When j!kj �� jSj� the partition algorithmachieves a
much better space complexity

��� Time complexity

First� we would like to bound the number of main iterations in the algo�
rithm
 The algorithm continues as long as the splitting of equivalence
classes continues in the re�ne step� meaning !i �� !i��� or changes
occur in the update step
 The equivalence classes split at most j!kj
times during the algorithm
 We claim that there is a change in the
update step at most j!kj� times
 Next we prove this claim
 We use
Proposition �
�
� to deduce Corollary �
�
�

Corollary ���� For every 	 � i � k and every class
 in !k there
exists a class
� in !i� such that

��

Next we de�ne a relation Hik
 !k � !k� which relates pairs of
classes over !k to Hi
 Corollary �
�
� implies that Hik is well de�ned

De�nition ������ Let 	 � i � k� Then Hik �
f�
��
��jlet
���

�
� � !i be such that
�

���
�

�� then �
���

�
�� �

Hig�

Proposition �
�
� implies that for every 	 � i � k� H�i���k
 Hik

Furthermore� if there is a change in the update step� then H�i���k �
Hik
 Thus we can bound the number of iterations in which there is a
change in the update step by jH�k nHkkj � j!kj�

We showed that the algorithm runs O�j!kj�� iterations
 In every
iteration it performs one re�ne step and one update step
 First we
analyze the time complexity of the re�ne step� Figure �
� shows how
the set GT is computed

The set LT is computed in a similar manner and the computation

� � LT � GT is simple� thus it is su�cient to analyze the total time
it takes to compute GT

�	

GT � �
�p � f�s�	j�sp� s

�� � Rg
for every s � � do

�s � f�s�	j�s� s�� � Rg
��s � f��j�� � �s ���� �� � Hig
if �p
 ��s then inserts s to GT

end

Figure �
�� The construction of GT

The sets �p and �s are computed in time O�jSj�
 The set ��s is
computed in time O�j!kj��
 Thus the total time complexity of the
re�ne step is the number of times a state is tested for being in GT
times O�jSj � j!kj��
 We distinguish between two cases�

 is split in the internal loop
 The number of such sub�iterations
is bounded by !k
 For each iteration in which
 is split� the
number of times every state in
 is tested for being in GT is at
most equal to the number of partitions
 The number of partition
is bounded by !k
 Since j
j � jSj� the number of times a state
is tested for being in GT is O�jSj � j!kj�
 Thus the total time
complexity of these iterations is O�j!kj � jSj � �jSj� j!kj���

�

 is not split in the internal loop
 In each iteration where
 is not
split� every state in
 is tested for being in GT exactly once
 SinceP

��	k
j
j � jSj� the time complexity of one iteration is O�jSj �

�jSj � j!kj���
 Since the number of such iterations is bounded
by j!kj�� the time complexity of these iterations is O�j!kj� � jSj �
�jSj� j!kj

���

Thus the total time complexity of the re�ne step is O�j!kj� � jSj ��jSj�
j!kj���

Next we analyze the complexity of the update step
 The construc�
tion of "�
� can be done in time O�jRj�
 Given "�
���� the construction
of # can be done in time O�j!kj��
 The time required to check whether
� "�
��� is O�j!kj�
 Thus the time complexity of internal loop in
the update step is O�jRj � j!kj��

Since the number of sub�iterations in each update step is bounded
by O�j!kj��� the total time complexity of an update step is O�j!kj� �

��

�jRj� j!kj���
 Since the number of main iterations in the algorithm is
bounded by j!kj�� the total complexity of all update steps is O�j!kj� �
�jRj� j!kj

���

Thus the total time complexity of the algorithm is O�j!kj� � �jRj �

j!kj�� � j!kj� � jSj � �jSj� j!kj���

��

Chapter �

Applicability of fair

simulation

In this chapter we make a broader comparison of four notions of fair
simulation� direct �DHWT��� delay �EWS	a�� game �HKR���� and ex�
ists �GL���
 We refer to several criteria that emphasize the advantages
of each of the notions
 The results of the comparison are summarized
in Table �

We developed two practical applications that are based on the com�
parison
 The �rst is an e�cient approximated minimization algorithm
for the delay� game and exists simulations
 For these preorders� a
unique equivalent smallest model does not exist
 Therefore� an approx�
imation is appropriate
 In addition� we suggest a new implementation
for the assume�guarantee �Fra��� Jon��� MC�� Pnu��� modular frame�
work presented in �GL���
 The new implementation� based on the game
simulation rather than the exists simulation� signi�cantly improves the
complexity of the framework

Our comparison refers to three main aspects of fair simulation
 The
�rst is the time complexity of constructing the preorder
 There� we
mainly summarize results of other works �see Figure �
�
 We see that
constructing the direct� delay� and game simulations is polynomial in
the number of states n and the number of transitions m �EWS	a�
 In
contrast� constructing the exists simulation is PSPACE�complete �KV���
� which is a great disadvantage

The second aspect that we consider is the ability to use the preorder

��

for minimization
 We say that two models are equivalent with respect
to a preorder if each is smaller by the preorder than the other
 The goal
of minimization is to �nd the smallest in size model that is equivalent
with respect to the preorder to the original one�

In �BG		� it has been shown that for every model with no fairness
constraints there exists a unique smallest in size model which is sim�
ulation equivalent to it
 The minimization algorithm that constructs
this smallest in size model �BG		� identi�es and eliminates two types
of redundancies in the given model
 One is the existence of equiva�
lent states
 This redundancy is eliminated by constructing a quotient
model
 The other is the existence of a successor of a state whose behav�
ior is contained in the behavior of another successor of the same state

Such a state is called a little brother
 This redundancy is eliminated by
disconnecting little brothers

We thus examine� for each of the fair simulation preorders� the
following three questions
 Given a model M �

	 � Is there a unique smallest in size model that is simulation equiv�
alent to M$

	 �� Is the quotient model of M simulation equivalent to M$

	 �� Is the result of disconnecting little brothers in M simulation
equivalent to M$

Our examination �see Figure �
� leads to a new minimization algo�
rithm that uses the direct and delay simulations as approximations for
the game and exists simulations
 The new algorithm obtains a better
reduction than the algorithm suggested in �EWS	a�

The third aspect that we investigate is the relationship between
the simulation preorders and universal branching�time logics
 A ba�
sic requirement of using a preorder in veri�cation is that it preserves
the speci�cation logic� i
e
� if M� � M� then� for every formula � in
the logic� M� j� � implies M� j� �
 Indeed� all four notions of fair
simulation satisfy this requirement
 A stronger requirement is that
the preorder have a logical characterization by some logic
 This means

�Note that this is a stronger criterion than the one used in �EWS��a�� where only
language equivalence is required�

��

that M� �M� if and only if for every formula � in the logic� M� j� �
implies M� j� �

Logical characterization is useful in determining if model M� can be
used as an abstraction for model M�� when the logic L should be pre�
served
 If the preorder � is logically characterized by L then checking
M� � M� is a necessary and su�cient condition and will never give a
false negative result

Another important relationship between a logic and a preorder is
the existence of a maximal model T� for a formula � with respect to
the preorder
 The maximal model T� for a formula � is such that for
every model M �� M � � T� if and only if M � j� �
 Maximal models are
used as tableaux in the framework described in �GL��� for the assume�
guarantee paradigm
 The assume�guarantee is an inductive modular
veri�cation paradigm in which the environment of the veri�ed part can
be represented by a formula
 The result method is a proof schema
which is based on the modular structure of the system

In �GL���� a semi�automatic framework for the assume�guarantee
paradigm is presented
 The framework uses the exists preorder and is
de�ned with respect to the logic ACTL
 It uses a tableau to represent
an ACTL formula
 This tableau is the maximal model for the formula
with respect to the exists preorder

In this work we show that there is also a maximal model for ACTL
formulas with respect to the game simulation
 In addition� we show
that other conditions required for a sound implementation of the assume�
guarantee paradigm hold for the game simulation
 Once the game
simulation replaces the exists simulation� the complexity of the imple�
mentation is dramatically reduced

The results of our comparison are presented in Table �

 The proofs
of the claims for which no citation is given appear in the next sections

The rest of the chapter is organized as follows� In Section �
 we
de�ne the B%uchi fairness constraints and the di�erent notions of fair
simulation
 Section �
� investigates simulation minimization
 For each
of the fair simulations we check whether there exists a unique minimal
structure� and whether constructing a quotient structure or disconnect�
ing little brothers results in an equivalent structure
 We then present a

�In �EWS��a� it is shown that the quotient model is language equivalent to the original

model� Here� we show that they are delay equivalent�

��

minimization relation to logic
time complexity unique quotient little has max

notion of constructing smallest model brothers logical model
the preorder model characterization

Direct O�m � n� true true true false false

�EWS�a	
Delay O�m � n�� false true � false false false

�EWS�a	
Game O�m � n�� false false false �AFMC true

�EWS�a	 �EWS�a	 �HKR��	
Exists PSPACE false false false ACTL� true

complete �KV��	 �GL��	

Table �
�� The properties of the di�erent notions of fair simulation

new minimization algorithm for the game and exists simulations
 Sec�
tion �
� investigates the relationships between fair simulation and logic

Each notion is checked for logical characterization and for the existence
of a maximal structure
 In Section �
� we prove that the game simu�
lation can replace the exists simulation in the implementation of the
assume�guarantee paradigm

��� Fairness constraints and fair simulation

In this work we refer to B%uchi fairness constraints
 Given a Kripke
structure M �� S�L� S�� R 	� we add a B%uchi fairness constraints
which distinguish between fair traces and unfair traces in M
 A B%uchi
fairness constraints is a set F
 S
 In order to capture the in�nite
behavior of �� we de�ne

inf��� � f s j s � �i for in�nitely many i g�

We say that a trace � is fair according to the fair set F i� inf����F �� �

Next� we de�ne the di�erent notions of fair simulation
 The �rst

notion is the direct simulation� which is the most straightforward ex�
tension of the ordinary simulation

De�nition ����� H
 S��S� is a direct simulation relation �DHWT���
�di� over M� �M� i	 it satis�es the conditions of De�nition ������

��

except that here �a is replaced by

��a�� L��s�� � L��s�� and s� � F� implies s� � F��

We now de�ne the exists simulation�

De�nition ����� �GL��� H
 S� � S� is an exists simulation ���
over M� �M� i	 it satis�es the conditions of De�nition ������ except
that here �b is replaced by

��b�� for every fair trace �� from s� in M� there exists a fair trace ��
from s� in M� such that for all i � IN � ��i�� �

i
�� � H��

The next de�nitions are based on games over Kripke structures
 We
start with a game that characterizes the simulation over structures
with trivial fairness constraints
 Given two Kripke structures M��M��
we de�ne a game of two players over M��M�
 The players are called
the adversary and the protagonist� where the adversary plays on M�

and the protagonist plays on M�

De�nition ����� Given two Kripke structures� M� and M�� a sim�
ulation game consists of a �nite or in�nite number of rounds� At
the beginning� the adversary selects an initial state s�� in M�� and the
protagonist responds by selecting an initial state s�� in M� such that
L��s��� � L��s���� In each round� assume that the adversary is at s�
and the protagonist is at s�� The adversary then moves to a successor
s�� of s� on M�� after which the protagonist moves to a successor s�� of
s� on M� such that L��s��� � L��s����

If the protagonist does not have a matching state� the game terminates
and the protagonist fails
 Otherwise� if the protagonist always has a
matching successor to move to� the game proceeds ad in�nitum for �
rounds and the protagonist wins
 The adversary wins i� the protagonist
fails

De�nition ����� Given two Kripke structures M� and M�� a strat�
egy � of the protagonist is a partial function � � �S� � S� � S�� �
�S�� � f�g � S���� The function � should satisfy the following
 If
s�� � ��s��� s�� then �s�� s��� � R��

�In such a case we use the notation ���� ��	 � H�

��

The protagonist plays according to a strategy � if when the adversary
initially selects s�� � S��� the protagonist selects s�� � ��s����� and�
for every round i� when the adversary moves to s�� and the protagonist
is in s�� the protagonist moves to s�� � ��s��� s��
 � is a winning strategy
for the protagonist if the protagonist wins whenever it plays according
to �

We can now present an alternative de�nition to the simulation pre�
order
 This de�nition is equivalent to De�nition �
	
 �HKR���

De�nition ����� Given two Kripke structures� M� andM�� M� sim�
ulates M� M� � M�� i	 the protagonist has a winning strategy in a
simulation game over M��M��

In order to extend the simulation game to fair simulation� we add a
winning condition which refers to the in�nite properties of the game

We then give two additional de�nitions of fair simulation� the delay
��de� and the game ��g� simulations

De�nition ����� �EWS��a� The protagonist delay wins a game over
two fair Kripke structures M� and M� i	 the game is played for in�
�nitely many rounds� Moreover� whenever the adversary reaches a fair
state then the protagonist reaches a fair state within a �nite number of
rounds�

De�nition ���� �HKR��� The protagonist game wins a game over
two fair Kripke structures M� and M� i	 the game is played for in�
�nitely many rounds� Moreover� if the adversary moves along a fair
trace� then the protagonist moves along a fair trace as well�

We say that � is a delay�game winning strategy for the protagonist if
the protagonist delay�game wins whenever it plays according to �

De�nition ����� �HKR��� EWS��a� Given two fair Kripke struc�
tures� M� and M�� M� delay�game simulates M� i	 the protagonist
has a delay�game winning strategy over M��M��

De�nitions �

��

� and �

� are extensions of De�nition �
	
 and
its equivalent De�nition �

�
 Consequently� on structures with triv�
ial fairness constraints �F � S�� all four de�nitions are equivalent

On structures with non�trivial fairness constraints �F �� S�� the di�
rect� delay and game simulations imply ordinary simulation� the exists

��

simulation� however� does not imply ordinary simulation
 In �HKR���
EWS	a� the following relationships over the fair simulation preorders
are shown�

M� �di M� � M� �de M� � M� �g M� � M� �� M��

Note that the de�nitions of game�exists simulation are not limited to
speci�c types of fairness constraints
 They hold even if M� and M�

have di�erent types of fairness constraints
 Finally� we extend the
delay�game simulations for states

De�nition ����� For all states s� and s� in a structure M � s� �de�g

s� if the protagonist has a winning delay�game strategy in a game over
M �M where the adversary starts at s� and the protagonist starts at
s��

��� Minimization with respect to fair simulation

For structures with trivial fairness constraints �F � S�� two forms
of redundancy are considered �BG		�
 These redundancies are han�
dled in �BG		�� by �rst constructing a quotient structure that results
in a structure without equivalent states and then disconnecting little
brothers to eliminate the other redundancy
 For structures with trivial
fairness constraints� eliminating these redundancies results in a unique�
smallest in size structure that is simulation equivalent to the original
structure �BG		�

The following lemma is a direct consequence of the result in �BG		�
if we refer to states in F as having additional labeling

Lemma ��� For every structure� there exists a unique� smallest in
size structure that is direct simulation equivalent to it�

The proof of Lemma �
�
 and the construction of the smallest struc�
ture can be obtained as in Chapter �
 Unfortunately� performing the
same operations for the other notions of fair simulations might result in
an inequivalent structure
 In this section we investigate minimization
with respect to each notion of fair simulation
 We start by checking
whether the quotient structure is equivalent to the original one
 Next

��

we check whether it is safe to disconnect little brothers
 We then deter�
mine whether there exists a unique smallest in size equivalent structure

Finally� we use the results of this section to suggest a new and better
minimizing algorithm

In this section we use language equivalence and language contain�
ment
The de�nitions are given below

De�nition �����

	 The language of s� is contained in the language of s� s�
 s��
if for every fair trace �� from s� there is a fair trace �� from s�
such that �i 	� L��i�� � L��i���

	 M�
 M� if for every fair trace starting at an initial state s�� �
S�� there is a fair trace starting at an initial state s�� � S�� such
that �i 	� L���i�� � L���i���

	 M� is language equivalent to M� if M�
M� and M�
M��

Clearly� all notions of fair simulation imply language containment

��� Quotient structure

The quotient structure is the result of unifying all equivalent states
into equivalence classes
 Recall that states s� and s� are equivalent
if s� � s� and s� � s�
 The equivalence classes are the states of the
quotient structure
 There is a transition from one equivalence class
to another i� there exists a transition from a state in the former to a
state in the latter
 An equivalence class is initial if it contains an initial
state and is fair if it contains a fair state
 For the delay simulation� we
present the following lemma

Lemma ��� Let MQ be the quotient structure of a structure M �
Then M �de M

Q�

The proof of Lemma �
�
� appears in Section �
�
 and is similar to
the proof in �EWS	b�

In �EWS	a� it is shown that the quotient structure with respect to
game simulation is not equivalent to the original one
 We show that
for every preorder �� that lies between game simulation and language

�	

containment� the quotient structure with respect to this preorder might
not be equivalent to the original structure

Lemma ��� Let �� be any preorder such that for every M�� M��

M� �g M� �M� �� M� �M�
M��

Then there exists a structure M whose quotient structure with respect
to �� is not equivalent to M with respect to ���

Proof Consider the structure M� in Figure �

 States s� and s� are
equivalent with respect to game simulation
 This can be seen by con�
sidering a strategy that instructs the protagonist to move to the same
state the adversary moves to
 This strategy proves both directions of
the game equivalence
 Since M� �g M� � M� �� M�� s� and s� are
also equivalent with respect to ��

However� the quotient structure that is the result of unifying states
s� and s� is not equivalent to M� with respect to ��
 Since M� ��

M� �M�
M�� it is su�cient to prove that the quotient structure is
not language equivalent to M�� the language of M� contains all words
in which both a and b occur in�nitely often� but the language of the
quotient structure contains the word a�

Furthermore� there is no other de�nition of a quotient structure
of M� that is language equivalent to M�
 Such a quotient structure
contains two states� one in which a is true and another in which b is
true and at least one of the states is fair
 Assume that the state where
a is true is fair
 We distinguish between two cases� If there exists a
transition from this state to itself� then the language of the quotient
structure includes a word where b occurs only �nitely many times� a
contradiction
 Otherwise� the word �aab�� is not in the language of the
quotient structure� a contradiction
 Assuming that the state where b
is true is fair� will lead to a contradiction in a similar way
 �

Corollary ��� For exists�game simulation� the quotient structure
is not necessarily equivalent to the original structure�

��� Disconnecting little brothers

A state s� is a little brother of another state s� if both states are suc�

��

b

1

a b

a

0

2 3

a b

a

0 1

2

b

b

a

0’ 1’

2’

M
M� M�

Figure �
�� The structures M� and M� are equivalent to M with respect to
game�exists simulation� and they are both minimal
 Note that states � and
� ��� and ��� are equivalent but cannot be uni�ed
 �Double circles denote
fair states
�

cessors of the same state s�� s� � s�� and s� �� s�
 Little brothers s� is
disconnected by removing the transition �s�� s�� from R

Lemma ��	 Let �� be a preorder such that

M� �de M� �M� �� M� �M�
M��

Assume that structure M � is the result of disconnecting little brothers
in structure M with respect to ��� M � might not be equivalent to M
with respect to ���

Proof Consider the structure M� in Figure �
�
 State s� is a little
brother of state s� with respect to �de
 This can be seen by considering
the strategy that instructs the protagonist to move from state s� to
state s� in the �rst round and to move to the same state the adversary
moves to in the other rounds
 This strategy shows that s� �de s��
because
M� �de M� � M� �� M�� s� �� s�
 Next� note that s� �
 s�� since
s� has a successor labeled c and s� does not
 Thus s� ��� s�� and s� is
a little brother of s� with respect to ��

Next we show that the result of disconnecting s� from s� is not
equivalent to M� with respect to ��
 Since M� �� M� � M�
 M��
it is su�cient to show that the result of disconnecting s� from s� is
not language equivalent to M�
 But this is true since disconnecting s�
results in a structure with no fair traces from s�
 �

Corollary ��
 The structure that results when little brothers are
disconnected with respect to delay�game�exists simulation might not be

��

equivalent to the original structure with respect to delay�game�exists
simulation�

a

b

a

b

c

0’

1’ 2’

3’ 4’

a

b

a

b

c

0

1 2

3 4

a

b

a

b

c

0

1 2

3 4

M�M M�

Figure �
�� The structures M� and M� are equivalent with respect to de
lay�game�exists simulation to M � and they are both minimal
 Note that
state � ���� is a little brother of � ���� but cannot be disconnected

��� Unique smallest in size structure

Lemma ��� Let �� be a preorder such that

M� �de M� �M� �� M� �M�
M��

Then there exists a structure M that has no unique smallest in size
structure with respect to ���

Proof Consider the structures in Figure �
�
 Structures M� and M� are
delay equivalent but are not isomorphic
 In order to see that M� �de

M�� consider the strategy in which in every round the protagonist moves
to the same state as the adversary� except for the transition from �

to ��� when the protagonist moves to state 	
 Similarly� we can show
that M� �de M�
 Since M� �de M� � M� �� M�� M� and M� are
equivalent with respect to ��

Next� we show that there is no smaller structure that is equivalent
to M� and M� with respect to ��
 Since M� �� M� � M�
 M�� it
is su�cient to show that there is no smaller structure that is language
equivalent to M� and M�
 Note that every equivalent structure must
contain a strongly connected component with three states labeled fag�
fbg and fcg
 However� these states cannot be fair because there are
no fair traces in M� and M� which have in�nitely many states labeled

��

fcg
 Thus� there should be two other states labeled fag and fbg on a
fair� strongly connected component
 Consequently� there have to be at
least �ve states in any structure that is language equivalent to M� and
M�
 �

Corollary ��� There is no unique smallest in size structure with
respect to delay�game�exists simulation�

An interesting observation is that the minimization operations are not
independent
 �KP���
 For example� in structure M in Figure �
� states
s� and s� are game�exists equivalent to states s� and s� respectively

Unifying states s� and s� results in structure M�
 Unifying states s�
and s� results in structure M�
 Both structures are equivalent to M
and neither can be further minimized
 A similar phenomenon occurs in
structure M of Figure �
�� for delay�exists�game simulation� states s�
and s� are little brothers of states s� and s� respectively
 Disconnecting
state s� from state s� results in M�� and disconnecting state s� from
state s� results in M�
 Again� both structures are equivalent to M � and
neither structure can be further minimized

��� An approximated minimization algorithm for
delay�game�exists simulation

In Chapter �� two e�cient procedures for minimizing with respect to
ordinary simulation are presented
 In the previous sections we have
shown that these procedures cannot be used for delay�game�exists sim�
ulation
 Furthermore� we have shown that there is no equivalent unique
smallest in size structure with respect to these simulations
 As a result�
we suggest an algorithm that performs some minimization but does
not necessarily construct a minimal structure
 Our algorithm uses the
direct�delay simulations as an approximation of the game�exists simu�
lation
 The algorithm is presented in Figure �
�
 The �rst step results
in M � �de M
 The second step results in M �� �di M

�
 Since direct sim�
ulation implies delay simulation� M �� �de M
 M �� is also equivalent to
M with respect to game�exists simulation
 Thus� the algorithm com�
bines the advantages of the direct and the delay simulations in order

�Operations are not independent if one operation disables another�

��

Given a structure M �

 Construct a quotient structure M � with respect to delay simula�
tion

�
 Construct M �� by disconnecting little brothers in M � with respect
to direct simulation

Figure �
�� Minimization algorithm for the delay�game�exists simulations

to produce a reduced structure that is equivalent with respect to de�
lay�game�exists simulations to the original one
 The complexity of the
�rst step is O�m�n�� �EWS	a�� and of the second step O�m�n� �BG		�

Thus the total complexity of the algorithm is O�m � n��

��� Relating the simulation notions to logics

In this section we investigate the relationship between the di�erent
notions of fair simulation and the logics ACTL and ACTL�
 First we
check for each notion whether it has a logical characterization
 Next we
check whether there exists a maximal structure for ACTL with respect
to each notion

��� Logical characterization

De�nition ����� Logic L characterizes a preorder � if for all struc�
tures M� and M�� M� � M� if and only if for every formula � in L�
M� j� � implies M� j� ��

In �GL���� it is shown that if M� �� M�� then the following property
holds� �� � ACTL�� M� j� � implies M� j� �
 Since all other simula�
tion notions imply the exists simulation� this property holds for all of
these notions

We now investigate which of the fair simulations satisfy the other
direction of logical characterization
 We show that ACTL� character�
izes the exists simulation but not the game�delay�direct simulation

On the other hand� ACTL does not characterize any of these notions

��

First we prove that the exists simulation is characterized by the
ACTL� logic
 We prove that if M ��� M

�� then there exists an ECTL�

formula � and an initial state s� of M such that M�s� j� �
 Further�
more� for all initial states s�� of M �� M �� s�� �j� �
 This implies that
there exists an ACTL� formula � which is equivalent to �� such that
M � j� � but M �j� �

Our proof is similar to the proof in �ASS���� for fair bisimulation

It is based on a di�erent de�nition of fair simulation
 This de�nition
called rational simulation� is presented below

De�nition ����� Let � be a trace through a Kripke structure M � � is

a rational trace if �N�K such that �i�i 	 N � �i � ���i�N�mod K��N ��

Thus� a rational trace is a trace with a pre�x of length N followed by
a cycle of length K

De�nition ����� A state s is smaller by rational simulation than a
state t s �rat t� if they lie in the coarsest preorder H that satis�es

	 L�s� � L�t��

	 for every fair rational trace �s starting at s there exists a fair
rational trace �t starting at t such that ��s� �t� � H�

M �rat M
� if for every s� � S� there exists s�� � S�� such that s� �rat s

�
��

Lemma ��� Let s and t be states in structure M � If there exists a
fair trace �s from s such that for all fair traces �t from t� ��s� �t� �� H�
then there exists a fair rational trace �sr from s such that for all fair
traces �t from t� ��sr� �t� �� H�

The proof of Lemma �
�
� appears in Section �
�
�
 Corollary �
�
� is
straightforward from Lemma �
�
�

Corollary ��� If M ��� M
� then M ��rat M

��

In the proof we refer to one structure instead of two
 This can be done
when we refer to M �� which is the union of M and M � where� S�� � S�S��
�assume S � S � � ��� R�� � R � R�� and F �� � F � F �
 having deduced
Corollary �
�
�� it is now su�cient to prove the following�

��

Lemma ��	 For every structure M and states s and t� If for all
ECTL� formulas �� M�s j� � implies M� t j� �� then s �rat t�

Proof We prove that s ��rat t implies that there exists an ECTL�

formula � such that M�s j� � but M� t �j� �

We �rst inductively de�ne a sequence of preorders over S � S

De�nition ����

	 �s� t� � H� i	 L�s� � L�t��

	 �s� t� � Hi�� i	 for every fair rational trace �s starting at s there
exists a fair rational trace �t starting at t such that ��s� �t� � Hi�

Note that for every i 	� Hi��
 Hi
 Thus� after at most jSj� pre�
orders� we reach a �xpoint
 We use H� to denote the preorder at the
�xpoint
 It is easy to see that H� is exactly the fair rational simulation

For every state s� we de�ne the following ECTL� formulas
 For
every t such that �s� t� �� Hi� we de�ne Di�s� t� such that for every
�s� v� � Hi� v j� Di�s� t� and t �j� Di�s� t�
 We also de�ne formulas
Ci�s� such that for all states v � S� v j� Ci�s� i� �s� v� � Hi

We de�ne Di�s� t� and Ci�s� inductively

	 Let P be the set of atomic propositions true in s
 Then for all t �
S� such that �s� t� �� H� D��s� t� � C��s� � ��p�P � p��p�APnP � �p

	 Let s and t be states such that �s� t� �� Hi��
 Then there exists a
fair rational path � from s for which there is no Hi�corresponding
trace from t

Assume that � � s�� s�� � � � � sN � �sN��� � � � sN�K��
 We �rst de�ne
for � j � K a formula that describes the cycle from place j�N �
namely the trace
sN�j� sN�j��� � � � sN�K� sN��� � � � � sN�j��

cycleji���s� t� � Ci�s�N�����j���mod K��� �X�Ci�s�N����j mod K����
X�Ci�s�N�����j��� mod K��� � � � �X�Ci�s�N����j�K��� mod K��� � � ��

Let cyclei���s� t� � �Kj��cycle
j
i���s� t�

Let tracei���s� t� � Ci�s���X�Ci�s�� � � ��X�Ci�sN�K��XG�cyclei���s� t�� � � ��

Let Di���s� t� � E tracei���s� t�

Let Ci���s� � ��s�t�	�Hi
Di���s� t�

��

Note that �N�� j� cyclei���s� t�
 Furthermore�
� j� Ci�s�� �X�Ci�s��� � � � ��X�Ci�sN �� � � ��� thus s j� Di���s� t�

Given a state v� if v j� Di���s� t�� then there is a fair trace �� starting
at v such that �� j� tracei���s� t�
 We prove that ��� ��� � Hi
 First�
for each � j � N � K� ��j j� Ci�sj�
 Further� it is true that for
j N � � ��j j� cyclei���s� t�
 Using these facts� one can show by

induction that for j � ��N�j j� cycle
��j���mod K���
i�� �s� t�
 This implies

that for each j � �N�j j� Ci�sN����j���mod K�

Once we know that for every state v such that �s� v� � Hi��� v j�

Di���s� t�� it is easy to see that for every state v� v j� Ci���s� i�
�s� v� � Hi��

Let C��s� be the formula such that for all v � S� v j� C��s� �
�s� v� � H�
 Then for all t � S� t �j� C��s� � �s� t� �� H�
 Since
s j� C��s�� for all t � S such that �s� t� �� H there exists � �ECTL�

that di�erentiates between s and t
�
Assume that M ��rat M

�
 Then there exists an initial state s� � S�
such that for all initial states s�� � S��� s� ��rat s

�
�
 Thus� M�s� j�

C��s��� and for all s�� � S��� M
�� s�� �j� C��s��
 Let � �ACTL� be the

formula equivalent to �C�
 Then� since M�s� �j� �� M �j� � and since
for all s�� � S ��� M

�� s�� j� �� M � j� �

From Corollary �
�
� and Lemma �
�
� we deduce Corollary �
�
�

Corollary ��� If for all ACTL� formulas �� M � j� � implies M j�
�� then M �� M

��

Unlike ACTL�� ACTL does not characterize the exists simulation

In �ASS���� two structures� M� and M�� are given
 It is shown in �ASS����
that for every � in ACTL� M� j� � implies M� j� �
 However� there
exists an ACTL� formula � such that M� j� � but M� �j� �
 Since
ACTL� characterizes the exists simulation� M� ��� M�

Unfortunately� the game� direct� and delay simulations cannot be
characterized by either ACTL� or ACTL
 In �HKR��� two structures�
M� and M�� are given such that M� �� M� but M� ��g M�
 Since
ACTL� characterizes the exists simulation� for every � in ACTL� �and
therefore ACTL�� M� j� � impliesM� j� �
 Therefore� ACTL� �ACTL�
does not characterizes the game simulation
 Since the direct�delay sim�
ulation implies the game simulation� ACTL� �ACTL� does not charac�
terize them either

��

We have shown that ACTL� characterizes the exists simulation but
not the game�delay�direct simulation
 Furthermore� ACTL does not
characterize any of these notions
 The question arises whether the di�
rect�delay�game simulation can be characterized by any other logic

�HKR��� shows that the game simulation can be characterized by the
Universal Alternating Free ��Calculus ��AFMC� logic when inter�
preted over fair structures

We show that no reasonable logic that describes the fair branching
behavior of a structure can characterize the direct�delay simulation

Consider structures M� and M� in Figure �
�
 M� and M� cannot be
distinguished by a temporal logic formula
 This is because they have
computation trees� with exactly the same fair traces
 However� M� ��de

M� and therefore� M� ��di M�
 To see that M� ��de M� note that if the
adversary chooses the path ��� the protagonist must choose the path
������
 However � is a fair state while �� and �� are not
 Thus neither
simulation can be characterized by any such logic

ba aba bb a

M�M�
� � � � �� �� �� ��

Figure �
�� The direct�delay simulations cannot be characterized by tem
poral logics

��� Maximal structure

Next we check for the existence of a maximal structure for a formula
with respect to a preorder

De�nition ����� A structure M� is maximal for formula � with re�
spect to preorder � if for every structure M � M j� ��M �M��

In �GL��� a construction of a maximal structure for ACTL formulas
with respect to the exists simulation is presented
 The maximal struc�
ture is used as a tableau for the formula
 In this section we check
whether the direct�delay�game simulations have a maximal structure

We prove that the maximal structure constructed in �GL��� is maximal
with respect to the game simulation as well
 On the other hand� we

��

show that the formula A�aU b� has no maximal structure with respect
to the direct and delay simulations
 This formula is contained in both
ACTL and ACTL�

��� A maximal structure for ACTL with respect to game
simulation

We prove that for every ACTL formula� the tableau of the formula as
de�ned in �GL��� is the maximal structure for the formula with re�
spect to the game simulation
 First� we describe the construction of
the tableau as shown in �GL���
 In �GL���� a di�erent type of fair�
ness constraint� the generalized B%uchi acceptance condition� is used
 A
generalized B�uchi acceptance condition is a set F � ff�� f�� � � � fng of
subsets of S
 A trace � is fair according to F i� for every � i � n�
inf��� � fi �� �
 Since the game simulation is not limited to a certain
type of fairness constraint� we do not have to change anything in its
de�nition

For the remainder of this section� �x an ACTL formula �
 Let AP�
be the set of atomic propositions in �
 The tableau associated with � is
a structure T� � �ST � RT � S�T � LT � FT �
 The set of elementary formulas
of �� el���� is de�ned as follows�

 el�p� � el��p� � fpg if p � AP�

�
 el��� � ��� � el��� � ��� � el���� � el����

�
 el�AX�� � fAX �g � el���

�
 el�A���U ���� � fAXFalse�AX�A���U ����g � el����� el����

�
 el�A���R ���� � fAXFalse�AX�A���R ����g � el���� � el����

The set of tableau states is ST � P�el�����
 The labeling function
is LT �st� � st � AP�
 In order to specify the set S�T of initial states
and the transition relation RT � we need an additional function sat that
associates with each sub�formula � of � a set of states in ST
 Intuitively�
sat��� will be the set of states that satisfy �

 sat��� � fs j � � sg where � � el���

�Some of the states are deleted in order to keep RT total�

�	

�
 sat���� � fs j � �� sg where � is an atomic proposition
 Recall
that only atomic propositions can be negated in ACTL

�
 sat�� � �� � sat��� � sat���

�
 sat�� � �� � sat��� � sat���

�
 sat�A�� U ��� � �sat��� � �sat��� � sat�AX�A�� U ������ �
sat�AXFalse�

�
 sat�A�� R ��� � �sat��� � �sat��� � sat�AX�A�� R ������ �
sat�AXFalse�

The set of initial states of the tableau is S�T � sat���
 The transition
relation is de�ned so that if AX � is included in some state then all its
successors should satisfy �

RT �s�� s�� �
�

AX��el���

�AX�� � s� � s� � sat����

The fairness constraint guarantees that eventuality properties are ful�
�lled
 This is done by requiring that for every fair trace �� for every
elementary formula AXA��U �� of �� and for every state s on �� if
s � sat�AXA�� U ���� then there is a later state t on � such that
t � sat���
 Thus� we obtain the following fairness constraints�

FT � f ��ST � sat�AXA��U ���� � sat���� j AXA��U �� � el��� g�

��� The tableau is the maximal structure for game simu�
lation

In this section we prove that for every Kripke structure M � M j� � i�
M �g T�
 Most lemmas were proved in �GL��� for the exists simulation

We give proofs only for the lemmas that are di�erent due to the change
of the simulation preorder

Lemma ���� �GL��� For all subformulas � of �� if t � sat����
then t j� ��

The main result of Lemma �
�
	 is that the tableau for � satis�es �

This is because any initial state of T� is in sat���� and therefore every
initial state of T� satis�es �
 Consequently� since ACTL is preserved

��

by the �g preorder� for every Kripke structure M � if M �g T�� then
M j� �

Our next step is to prove that M j� � implies M �g T�
 We show
that if M j� � then the protagonist has a winning strategy function
in a game over M � T�
 We de�ne the strategy function � as follows�
��s���� � f� j � � el���� s� j� � g and ��s�� t� � f� j � � el���� s� j�
� g
 Thus� whenever the adversary moves to a state s�� the protagonist
moves to t� � ��s�� t�� such that both s�� t� satisfy exactly the same set
of elementary formulas of �
 The following lemma extends this result
for all subformulas of �

Lemma ���� �GL��� If t� � ��s�� t�� then for every subformula or
elementary formula � of �� s� j� � implies t� � sat����

Lemma ���� � is a winning strategy�

Proof

 Any given state s� satis�es a unique subset of el���
 Thus� for
every s�� t� is unique and � is a function

�
 For every s� � S�� by Lemma �
�
 M�s� j� � implies t� �
��s���� � sat���
 By the de�nition of S�T � this implies t� � S�T

�
 Assume that t� � ��s�� t�
 Then for every p � AP�� p � L�s�� �
s� j� p� p � LT �t��

�
 Assume that t� � ��s�� t�
 Let �s� t� be the position of the game in
the previous round
 Let AX��� AX ��� � � � �AX �n be all the for�
mulas of the form AX � in el��� which s satis�es
 Then we have
s� j� ��� s� j� ��� � � � � s

� j� �n
 By Lemma �
�
� t� � sat�����
t� � sat����� � � � � t

� � sat��n�
 Now by the de�nition of �� the
formulas of the form AX � in t must be exactly AX ��� AX ���

 �AX �n
 Then by the de�nition of RT � we see that �t� t�� � RT

�
 We prove that if � is a fair run� then ���� is also a fair run

Assume that ���� is not fair
 By the de�nition of FT � there must
be some elementary subformula AXA��a U �b� such that

inf������ � ��ST � sat�AXA��aU �b��� � sat��b�� � ��

��

This means that there is an i 	 such that for all j i�
��sj� tj��� � sat�AXA��aU �b�� but ��sj� tj��� �� sat��b�

Consider the state ti � ��si� ti���
 ti � sat�AXA��a U �b�� i�
AXA��a U �b� � ti
 The de�nition of � then implies that si j�
AXA��a U �b�
 In addition� Lemma �
�
 implies that if ti ��
sat��b�� then si �j� �b
 Since ��si� ti��� � sat�AXA��aU�b�� and
for all j i� ��sj� tj��� �� sat��b�� then si� si��� � � � is a fair trace
in M starting at si� and every state on this trace satis�es ��b

But si j� AXA��aU �b�� a contradiction
 Hence ���� is in fact a
fair trace in T�
 �

Corollary ���� For any structure M � M j� � i	 M �g T�� Thus�
T� is the maximal structure for � with respect to game simulation�

��� A maximal structure for direct�delay simulation

We now show that it is impossible to construct a maximal structure for
the formula � � A�aU b� with respect to the direct�delay simulations

Thus� any logic that contains this formula or an equivalent formula� in
particular ACTL and ACTL�� does not have a maximal structure with
respect to these simulations
 More speci�cally� we show that there
is no �nite structure T� such that T� j� � and T� is greater by the
direct�delay simulation than any structure that satis�es �
 Since the
direct simulation implies the delay simulation� it is su�cient to prove
this result for the delay simulation
 In Figure �
� we present a sequence
of structures M��M�� � � � such that for every n in IN � Mn j� A�aUb�

We prove that for every n and every structure M �� if Mn �de M

� and
M � j� A�a U b� then jM �j n
 Thus� any structure that satis�es
A�aU b� and is greater by the delay simulation than all the structures
in the sequence has to be in�nite

Lemma ���� For every n 	 	 and every structure M �� if Mn �de

M � and M � j� A�aU b�� then jM �j n�

Proof Let n � IN be a natural number and M � be a structure such
that M � j� A�aU b� and Mn �de M

�
 In a game over Mn �M � the
protagonist has a winning strategy and thus it wins in every game no
matter how the adversary plays
 Consider the following strategy of the
adversary
 It starts from the initial state
 As long as the protagonist

��

a a bb

a a a ba

a a a a a ba

a a aa aa b

M�
M�

M� M�

Mn

Figure �
�� There is no �nite structure M � such that for every n in IN � M �

is greater by direct�delay simulation than Mn� and M
� j� A�aU b�

moves to a fair state the adversary moves to the next fair state �until
it reaches the last one�
 If the protagonist moves to a state that is not
fair� then the adversary moves to the successor which is not fair in Mn

and stays there until the protagonist moves to a fair state in M �
 We
distinguish between two cases�

 The su�x of the game is an in�nite sequence of unfair states in
both structures
 In this case the adversary is the last player who
was in a fair state
 Thus it wins the game
 This means that M �

is not greater than Mn by the delay simulation� a contradiction

�
 Otherwise� the adversary moves through n fair states in Mn that
are labeled a to the state labeled b
 Since the adversary moves
to a fair state only when the protagonist is in a fair state� the
protagonist has been in n fair states that are labeled a
 Since
M � j� A�a U b�� these states must be di�erent �otherwise there
would be an in�nite fair trace which is labeled a�
 Thus the size
of M � is at least n
 �

We proved that there is no maximal structure for A�aUb� with respect
to the direct�delay simulations

��

��� A new implementation for the assume
guarantee

framework

This section shows that the game simulation can replace the exists sim�
ulation in the implementation of the assume�guarantee paradigm �Fra���
Jon��� MC�� Pnu���� as suggested in �GL���

In the assume�guarantee paradigm� properties of di�erent parts of
the systems are veri�ed separately
 The environment of the veri�ed
part is represented by a formula that describes its properties
 The
formula either has been veri�ed or is given by the user
 The method
proves assertions of the form �M�� meaning that if the environment
satis�es � then the composition of M with the environment satis�es
�
 The method enables the creation of a proof schema which is based
on the structure of the system
 �GL��� suggests a framework that
uses the assume�guarantee paradigm for semi�automatic veri�cation

It presents a general method that uses models as assumptions� the
models are either generated from a formula as a tableau or are abstract
models given by the user
 The proof of �M� is done automatically by
verifying that the composition of the tableau for � with M satis�es �

The method requires a preorder �� a composition operator jj� and a
speci�cation language L which satisfy the following properties�

 For every two structures M��M�� if M� � M�� then for every
formula � in L� M� j� � implies M� j� �

�
 For every two structures M��M�� M�kM� �M�

�
 For every three structures M��M��M�� M� �M� impliesM�kM� �
M�kM�

�
 Let � be a formula in L and T� be a tableau for �
 Then T� is
the maximal structure with respect to the preorder �

�
 For every structure M � M �MkM

An implementation for this framework was presented in �GL���
 The
implementation uses the ACTL logic as the speci�cation language� the
exists simulation preorder� and a composition operator which satisfy
the properties above
 In this section we suggest a new implementation
which is similar to that of �GL���� except that the game simulation is

��

used as the preorder
 We show that the game simulation can replace
the exists simulation
 As we have stated� the game simulation preserves
the ACTL logic� and thus property one is satis�ed
 In Section �
� we
proved that the game simulation satis�es property four
 Thus� it is
left to show that the game simulation preorder and the composition
operator as de�ned in �GL��� satisfy properties two� three and �ve

Again we use generalized B%uchi constraints
 In order to prove these
properties we need to de�ne the composition operator k

De�nition ����� Let M�� M� be Kripke structures� The parallel
composition of M� and M�� denoted M�kM�� is the structure M de�
�ned as follows�

	 AP � AP� �AP��

	 S � f�s�� s��jL��s�� �AP� � L��s�� �AP�g�

	 R � f��s�� s��� �t�� t���j�s�� t�� � R� � �s�� t�� � R�g�

	 S� � �S�� � S��� � S�

	 L��s�� s��� � L��s�� � L��s���

	 F � f�fi � S�� � Sjfi � F�g � f�S� � fi� � Sjfi � F�g�

Remark� In all notions of simulation� there is a requirement that if
s� � s�� then L��s�� � L��s��
 When M� and M� are de�ned over
di�erent AP we replace this requirement with L��s���AP� � L��s���
AP�

Lemma ��� property �� For every pair of Kripke structures
M��M��
M�kM� �g M��

Proof We de�ne a strategy � as follows� ���s��� s������ � s�� and
���s��� s

�
��� s�� � s��� i
e
� the protagonist moves on the projection of

the adversary s trace on M�
 It is easy to see that � is a function

Let ��s�� s��� s�� be the previous position in the game and assume that
the adversary moves to �s��� s

�
��
 Then s�� � ���s��� s

�
��� s��
 Clearly�

L���s��� s
�
���AP� � L��s���
 The de�nition of composition implies that if

�Some of the states might have to be deleted in order to keep R total�

��

��s�� s��� �s��� s
�
��� is a transition in M�kM� then �s�� s��� is a transition in

M�
 Furthermore� if the adversary s trace is fair then the protagonist s
trace is fair as well
 �

Lemma ��� property �� LetM��M��M� be Kripke structures�
Then M� �g M� implies M�kM� �g M�kM��

Proof Let � be a strategy in a game overM��M�
 We de�ne a strategy
�� as follow� ����s��� s������ � ���s������ s��� and ����s��� s

�
��� �s�� s��� �

���s��� s��� s
�
��� i
e
� whenever the adversary moves to s�� in M� and s�� in

M�� the protagonist moves to the same state in M� and to s�� � ��s��� s��
in M�

It is easy to see that �� is a function
 Let ��s�� s��� �s�� s��� be the
previous position in the game and assume that the adversary moves to
�s��� s

�
��
 Then

����s��� s
�
��� �s�� s��� � ���s��� s��� s

�
��
 Let s�� � ��s��� s��
 Since � is a

winning strategy� L��s��� � L��s��� and �s�� s��� is a transition in M�

Thus� L���s��� s

�
�� � L���s��� s

�
��
 Furthermore� the de�nition of compo�

sition implies that if ��s�� s��� �s��� s
�
��� is a transition in M�kM� then

��s�� s��� �s��� s
�
��� is a transition in M�kM�

Whenever the adversary moves on a fair trace in M�kM�� the traces
projected on M� and M� are both fair
 The protagonist moves on the
same trace on M�
 Thus this trace is fair
 Let �� be the trace on M�

along which the adversary moves
 Since �� is fair and � is a strategy�
the trace ����� along which the protagonist moves on M� is fair as well

The de�nition of k implies that the protagonist moves on a fair trace
in M�jjM�
 �

Lemma ��� property � For every structure M � M �g MkM �

Proof Consider the strategy ��s���� � �s�� s�� and ��s�� �s� s�� �
�s�� s��
 Clearly � is a winning strategy
 �

We proved that the game simulation preorder and the composition
operator satisfy the properties required in �GL���
 Therefore� game
simulation can replace the exists simulation in the assume�guarantee
framework presented in �GL���

��� Complexity

Verifying a formula of the form �M� is PSPACE�complete in the size
of � �KV���
 However� the real bottleneck of this framework is check�

��

ing for fair simulation between models� which for the exists simulation
is PSPACE complete in the size of the models
 �Typically� models
are much larger than formulas�
 Thus� replacing the exists simulation
with the game simulation reduces this complexity to polynomial and
eliminates the bottleneck of the framework
 However� the algorithm for
game simulation presented in �EWS	a� refers to Kripke structures with
regular B%uchi constraints� and the implementation presented in �GL���
refers to Kripke structures with generalized B%uchi constraints
 In or�
der to apply the algorithm suggested in �EWS	a� within the assume�
guarantee framework� we need a translation between these types of
fairness constraints

�CVWY�� de�nes a transformation of a B%uchi automaton with
generalized fairness constraints into a B%uchi automaton with regular
fairness constraints
 Here we show that applying this transformation
to a Kripke structure with generalized B%uchi constraints results in a
Kripke structure with regular B%uchi constraints that is game simulation
equivalent to the original one
 The translation a�ects the size of the
structure and thus the complexity of the construction of the preorder

The sizes of S and R are multiplied by jF j� where jF j is the number
of sets in F
 Thus the complexity of constructing the preorder is jF j �
jRj � �jSj � jF j�� � jRj � jSj� � jF j�
 Note that in the tableau for a formula�
jF j is bounded by the size of the formula and the size of the tableau
is exponential in the size of the formula� thus� the transformation of
the tableau to regular fairness constraints result in a strucuture that is
logarithmic bigger than the original one

De�nition ����� �CVWY��� LetM �� S�R� S�� L� ff�� f�� � � � fng 	
be a Kripke structure with generalized B�uchi constraints� We de�ne the
Kripke structure Mr �� AP�Sr� Rr� Lr� Fr 	 with a regular B�uchi con�
straint� as follows

	 Sr � S � f� �� � � � ng�

	 Rr � �ni��f��s�� i�� �s�� i��j�s�� s�� � R � s� �� fig�
�n��i�� f��s�� i�� �s�� i � ��j�s�� s�� � R � s� � fig�
f��s�� n�� �s�� ��j�s�� s�� � R � s� � fng�

	 Sr� � S� � fg�

	 Lr�s� i� � L�s��

��

	 Fr � f�s� n�js � fng�

In the proof below M denotes a Kripke structure with generalized
B%uchi constraints
 Mr denotes the transformation of M to a Kripke
structure with regular B%uchi constraints
 We show that Mr �g M and
M �g Mr

Lemma ��	 M �g Mr�

Proof � First we de�ne a strategy � for the protagonist� ��s���� �
�s�� � and

��s�� �s� i�� �

���
��

�s�� i� s �� fi
�s�� i � � i � n � s � fi
�s�� � i � n � s � fn�

Next� we prove that � is a winning strategy
 It is easy to see that
� is a function
 The de�nition of the transformation implies that if
�s� i� � ��s� �t� j�� then Lr��s� i�� � L�s� and that ��t� j�� �s� i�� is a
transition in Mr

It is left to prove that if the adversary moves on a fair trace � in M
then the protagonist moves on ����� which is a fair trace in Mr

First� we prove that for every i � � �� � � � n

��� there are in�nitely many states of the form �s� i� in �����

Assume to the contrary that there is an index i � f� �� � � � ng which
does not satisfy �&�
 Let j be the minimal index which does not satisfy
�&� and let k be the index before j �k � ��j � ��mod n� � �
 Then
there exists a su�x of ���� in which all the states are of the form �s� k�

This implies that there exists a su�x of � without states in fk
 Thus�
� is not fair� a contradiction

Next we prove that ���� is fair
 Since ���� contains in�nitely many
states of the form �s� n� and in�nitely many states of the form �s� ��
then there exist in�nitely many states in Fr
 �

Lemma ��
 Mr �g M �

Proof We de�ne the strategy � for the protagonist� ���s�� ���� � s�
and ���s�� i�� s�� � s�
 It is easy to see that � is a function and that
s� � ���s�� j�� s�� implies that Lr��s�� j�� � L�s��
 ��s�� i�� �s�� j�� � Rr

��

also implies �s�� s�� � R
 It is left to prove that if the adversary moves
on a fair trace in Mr then the protagonist moves on a fair trace in M

Let � � �s�� i��� �s�� i��� �s�� i��� � � � be a fair trace in Mr
 We prove that

���� � s�� ���s�� i��� s��� ���s�� i��� s��� ���s�� i��� s��� � � � � s�� s�� s�� � � �

is a fair run in M
 Assume to the contrary that ���� is not fair
 Then
there exists an index i � f � � � ng such that ���� contains only �nitely
many states in fi
 Thus� there is a su�x of ���� without any state in
fi
 This implies that

�&&� there exists a su�x of �� without any states of the form �s� i��
where s is an element in fi

Let j be the minimal index that satis�es �&&�
 Then there exists a
su�x of � in which all the states are of the form �s� j�
 This implies
that this su�x does not contain any states in f�s� n�js � fng
 Thus �
is not fair� a contradiction
 �

��� Complementary proofs

In this section we complete the proofs of Lemma �
�
� and Lemma �
�
�

��� A quotient structure for the delay simulation

In this section we prove Lemma �
�
�
 For every structure M � let MQ

be its quotient structure with respect to the delay simulation
 Then
M and MQ are equivalent with respect to the delay simulation

The proof that M �de M
Q is straightforward
 Consider the strategy

��s���� � �s�� and ��s�� �s�� � �s��
 It easy to see that � is a winning
strategy

Before we prove the other direction� we need some new de�nitions

First� we extend the de�nition of delay simulation to a relation over
the states of a structure

In �EWS	a� it is shown that there exists a strategy �� such that
�� is a winning strategy for every simulation game over M �M � where
the adversary and the protagonist start at states s� and s� such that
s� �de s�
 Another property of �� is presented in Proposition �
�

�	

Proposition ��� �EWS��a� Let s� and s� be states in M such that
s� �de s�� Let s�� be a successor of s� and s�� � ���s��� s��� Then
s�� �de s

�
��

Since the delay simulation is transitive� the following proposition is
straightforward

Proposition ��� Let M be a structure and let MQ be its quotient
structure� Let s� and s� be states in M such that s� �de s�� Then every
state s� that is in the same equivalence class as s� satis�es s� �de s��

We denote by �s� the equivalence class of s
 Lemma �
�
� and Lemma �
�
�
imply that MQ �de M

Lemma ��� Let s� and s� be states in M such that s� �de s��
Then the protagonist has a strategy in a game over MQ �M in which
the adversary starts at �s�� and the protagonist starts at s�� In each
round assume that the adversary is at �s�� and the protagonist is at s��
Then s� �de s��

Proof Let �� be the winning strategy over M �M
 We de�ne the
strategy �� as follows� At the beginning� ����s����� � s�
 Assume that
the previous position of the game was ��s��� s�� such that s� �de s� and
that the adversary moves to �s���
 The de�nition of MQ implies that
there exists a transition �t�� t��� in M such that s� and t� are in the
same class� as are s�� and t��
 Proposition �
�
� implies that t� �de s�

We de�ne ����s���� s�� � ���t��� s��
 By the de�nition of ��� �� is well�
de�ned
 Moreover� since s�� and t�� are in the same equivalence class�
s�� �de t��
 Furthermore� by Proposition �
�
� since s�� � ���t��� s���
t�� �de s

�
�� and therefore s�� �de s

�
�
�

Note that this strategy ensures that in every round LQ��s��� �
L�s��
 However� it does not ensure that whenever the adversary moves
to a fair state� the protagonist moves to a fair state after �nitely many
rounds

Lemma ��� LetM be a structure and let MQ be its quotient struc�
ture� Then MQ �de M �

Proof We describe a strategy ��� which uses memory
 In �EJ�� EWS	a�
it is shown that if there exists a strategy with memory then there exists
a memoryless strategy
 The strategy ��� �remembers� two arguments�

��

the �rst argument is called the status� which can be either ful�lled or
unful�lled
 The status is unful�lled if the protagonist has not visited a
fair trace since the last time the adversary did
 Otherwise� the status is
ful�lled
 The second argument called the middle� and it �remembers�
a state in M

Let �� be a winning strategy over M �M and �� a strategy over
MQ�M as de�ned in Lemma �
�
�
 We de�ne ��� as follows� �����s����
� � s�� If the status is ful�lled� then �����s���� s�� � ����s���� s��
 Thus
the middle argument is ignored
 In a round where the status becomes
unful�lled� meaning that �s�� is fair and s� is not� we assign middle to
be a fair state in the class of s� �there is at least one�

If the status is not ful�lled� assume that the adversary moves to
�s���
 Then we assign middle� � ����s����middle� and �����s���� s�� �
���middle�� s��

In order to see that ��� is a winning strategy� �rst consider the round
where the status becomes unful�lled
 In this round� s� and middle are
in the same class
 Thus� if the position is ��s��� s��� then s� �de middle

Furthermore� as long as the status does not become ful�lled� middle
moves along a trace in M such that whenever the adversary moves to
�s��� s� �de middle
 Since middle starts at a fair state and moves on
a trace in M � by the de�nition of ��� after a �nite number of rounds�
the protagonist moves to a fair state as well
 �

��� Proving Lemma ���

Lemma �
�
� cliams the following�
Let s and t be states in structure M
 If there exists a fair trace �s from
s such that for all fair traces �t from t� �s ��rat �t� then there exists
a fair rational trace �sr from s such that for all fair traces �t from t�
�sr ��rat �t

We de�ne an equivalence relation with respect to �rat� such that
states s and t are equivalent with respect to �rat if s �rat t and t �rat s

We denote by �s� the equivalence class of s
 We say that �s�� �rat s� i�
s� �rat s�

De�nition ����� Let M be a structure� We de�ne the preorder
structure MP as follows

��

	 AP � fC�� C�� � � �Cng where fC�� C�� � � �Cng are the equivalence
classes with respect to �rat�

	 SP � f�s�Ci�js � S and there exists s� � Ci such that �s�� s� �
Hg�

	 ��s�Ci�� �t� Cj�� � RP � �s� t� � R�

	 SP
� � f�s�� Ci�js� � S�g�

	 LP ��s�Ci�� � Ci�

	 �s�Ci� � F P � s � F �

Given a state sP in MP � we denote by head�sP � the �rst element of sP

and by tail�sP � the second element of sP

Lemma ��	 Given a fair trace �s from a state s and a state t in
a structure M � the following conditions are equivalent

�� There exists a fair trace �t from t such that �s �rat �t�

�� There exists a fair trace �tp from �t� �s�� such that for all i 	�
LP ��itp� � ��is��

Proof For the �rst direction� assume that there exists a fair trace �t
from t such that �s �rat �t
 Consider the trace �tp such that for all
i 	� head��itp� � �it and tail��itp� � ��is�
 By the de�nition of MP � �tp
is a trace in MP
 Since �t is fair� �tp is fair as well

For the second direction� assume that there exists a fair trace �tp
from �t� �s�� such that for all i 	� LP ��itp� � ��is�
 Consider the trace

�t that satis�es �it � head��itp�
 By the de�nition of MP � �it is a trace
in M
 Furthermore� �s �rat �t
 Since �tp is a fair trace� �t is fair as
well
 �

Lemma ��
 Let �sp be a fair trace from �s�� �s��� in MP such that
LP ��sp� is an ��regular word� Then there exists a rational trace �s�
from s� such that for all i 	� tail��isp� �rat �

i
s�
�

Proof Since LP ��sp� is an ��regular word� we can write it as w�w
�
�

Let N � jw�j and K � jw�j
 Consider the trace �s� that satis�es� �is �
head��isp�
 Then� for all i 	� tail��isp� �rat �

i
s�

 Let �s�� � tail��Nsp�

��

Then for all i 	� �s�� �rat �
N�K
i
s�

 Since M is a �nite structure there
exists a state s� such that for in�nitely many numbers i� �N�K
i

s�
� s�

Since �s� is fair� there are i � j such that �N�K
i
s�

� �N�K
j
s�

� s� and
an index N � K � i � k � N � K � j such that �ks� is a fair state

Let �s� be the following trace� For all 	 � l � N � K � i� �ls� � �ls�
and for all l 	 N �K � i� �ls� � ���l�N�K
i�mod ��j�i�
K���N�K
i

s�

 It is easy

to see that �s� is a fair rational trace
 Furthermore� the construction of
�s� implies that for all l 	� tail��lsp� �rat �

l
s�
 �

Finally we prove Lemma �
�
�� Assume that there exists a fair
trace from s such that for every fair trace �t from t� �s ��rat �t
 By
Lemma �
�
�� there is no fair trace �tp such that for all i 	� LP ��itp� �

��is�
 We refer to �s� �s�� and �t� �t�� as two copies MP
s and MP

t of MP

where the former has �s� �s�� as a single initial state and the latter has
�t� �t�� as a single initial state
 Then the language of MP

s nM
P
t is not

empty
 This implies that the language of MP
s nMP

t contains an ��
regular word
 Thus� there exists an ��regular word ws in the language
of �s� �s�� that is not in the language of �t� �t��
 This implies that their
exists a fair trace ��sP that starts at �s� �s�� and ws � LP ���sP �

By Lemma �
�
� there exists a rational fair trace �s that starts
at s� such that for all i 	� tail���isP � �rat �

i
s
 Assume to the con�

trary that there exists a fair trace �t from t such that �s �rat �t

Consider the trace �tP such that for all i 	� head��itP � � �it and
tail��itP � � tail���isP �
 Clearly� �tP is a fair trace from �t� �s��
 Further�
more� LP ���sP � � LP ��tp�� thus LP ��tP � � ws
 This implies that ws is
in the language of MP

t � a contradiction
 �

��	 Conclusion

The comparison shows that there is no notion of fair simulation� which
has all desired advantages
 However� it is clear that their relationship
with temporal logics gives the exists and game simulations several ad�
vantages over the delay and direct simulations
 On the other hand� the
delay and direct simulations are better for minimization
 Since this re�
search is motivated by usefulness to model checking� relationships with
logic are important
 Thus� it is advantageous to refer to the delay and
direct simulations as approximations of the game�exists simulations

These approximations enable some minimization with respect to the

��

exists and game simulations
 Out of the four notions� we consider the
game simulation to be the best
 This is due to its complexity and its
applicability in modular veri�cation

��

Chapter �

Modular reduction

In this chapter we develop a novel technique for modular reduction
called the improved algorithm
 The innovation of this algorithm is that
it avoids constructing intermediate models� which consume unnecessary
space
 Given two reduced models M� and M�� our technique directly
constructs their reduced composition
 The algorithm creates a copy of
M� �M��� and use it as an abstract environment of M� �M��
 First� it
reduces M� with respect to the outputs of M� that are also inputs of M�

�O�� I��
 We call the result M r
�
 Similarly it reduces M� to M r

�
 Next�
M� and M r

� are composed
 The result is called M e
�
 M e

� represents
M� as if it is composed to M�
 Similarly� the improved algorithm
constructs M e

� � M�jjM
r
�
 In the next step M e

� is reduced with respect
to the outputs of M� �O��
 The result is called Md

�
 Similarly Md
�

is constructed
 Finally� the algorithm composes Md
� and Md

� � using
a restricted composition
 The resulting structure Md � Md

� jjM
d
� is

smallest with respect to states and transitions� which is equivalent to
M�jjM�
 In this chapter we use the bisimulation equivalence relation�
we prefer bisimulation over simulation equivalence because its de�nition
is simpler

The rest of the chapter is organized as follows� In Section �
 we
de�ne an FSM� FSMs composition and bisimulation equivalence
 Sec�
tion �
� presents some properties of bisimulation and modularity
 Sec�
tion �
� presents the modular minimization algorithm for deterministic
and nondeterministic FSMs
 Section �
� describes the implementation
and the experimental results

��

��� Basic de�nitions

We model systems as �nite�state machines �FSMs� in the form of Moore
machines in which the states are labeled with outputs and the edges are
labeled with inputs
 Such machines are commonly used for modeling
hardware designs

De�nition ����� �Moo��� An FSM is a tuple M �� S�S�� I� O� L�R 	
where

	 S is a �nite set of states�

	 S�
 S is a set of initial states�

	 I is a �nite set of input propositions�

	 O is a �nite set of output propositions�

	 I � O � ��

	 L is a labeling function that maps each state to the set of output
propositions true in that state�

	 R
 S � �I � S is the transition relation� We assume that for
every s � S and i
 I there exists at least one state s� such that
�s� i� s�� � R�

An FSM is deterministic i� for every state s and i
 I there exists
exactly one state s� such that �s� i� s�� � R� and jS�j �

Two FSMs are composed only if their outputs are disjoint
 There
is a transition from a pair of states in the composed FSM if and only
if the output of each state match the input on the transition leaving
the other state
 This models the input�output connections between the
two machines

De�nition ����� Let M� �� S�� S��� I�� O�� L�� R� 	 and
M� �� S�� S��� I�� O�� L�� R� 	 be two FSMs such that O� � O� � ��
The composition M � M�jjM� �� S�S�� I� O� L�R 	 is an FSM such
that

	 S � S� � S��

��

	 S� � S�� � S���

	 I � �I� nO�� � �I� nO���

	 O � O� �O��

	 L��s�� s��� � L��s�� � L��s���

	 ��s�� s��� i� �s��� s
�
��� � R i	 �s�� �i � L��s��� � I�� s

�
�� � R� and

�s�� �i � L��s��� � I�� s��� � R��

Lemma ��� Let M� and M� be deterministic FSMs� then the com�
position M of M� and M� is deterministic as well�

Proof � Obviously� jS�j �
 Let �s�� s�� be a state in S and i
 I
be an input
 Let i� � �i � L��s��� � I� and i� � �i � L��s��� � I�

Since M� is deterministic� there exists exactly one state s�� such that
�s�� i�� s��� � R�
 Similarly� there exists exactly one state s�� such that
�s�� i�� s��� � R�
 By the de�nition of composition� �s��� s

�
�� is the only

state such that ��s�� s��� i� �s��� s
�
��� � R
 �

We now de�ne the basic notion of equivalence that we use in this
work� namely� bisimulation

De�nition ����� Let M� �� S�� S��� I�� O�� L�� R� 	 and
M� �� S�� S��� I�� O�� L�� R� 	 be two FSMs such that O� � O� �� �
and I� � I�� We say that M� and M� are bisimulation equivalent with
respect to O� � O� �O� i	 there exists a relation H
 S� � S� called
bisimulation relation� such that

	 For every state s�� � S�� there exists a state s�� � S�� such that
�s��� s��� � H and for every state s�� � S�� there exists a state
s�� � S�� such that �s��� s��� � H�

	 For every pair �s�� s�� in H the following three conditions hold

� L��s�� � O� � L��s�� �O��

� For every i
 I� recall that I� � I��� and for every state
s�� such that �s�� i� s��� � R� there exists a state s�� such that
�s�� i� s��� � R� and �s��� s

�
�� � H�

��

� For every i
 I�� and for every state s�� such that �s�� i� s��� �
R� there exists a state s�� such that �s�� i� s��� � R� and �s��� s

�
�� �

H�

Proposition ��� For every FSM M � let s be a state in M that is
not reachable from any initial state� The result of removing s from M
is bisimulation equivalent to M �

As a consequence of Proposition �

�� we refer only to FSMs where all
the states are reachable from the initial states

Bisimulation is an equivalence relation over FSMs
 �Mil��� shows
that for every two FSMs M� and M�� there exists a maximal bisimula�
tion relation� which contains every relation that satis�es the conditions
of De�nition �

�
 The maximal bisimulation relation H
 S�S over
the states of an FSM M is an equivalence relation over S
 As such� it
induces a partition of S to equivalence classes
 These classes can be
used to form the quotient FSM of M � which is the minimal FSM that
is bisimulation equivalent to M

We will denote by �s� the equivalence class of a state s

De�nition ����� Let M �� S�S�� I� O� L�R 	 be an FSM and let
H
 S�S be the maximal bisimulation relation with respect to O�
 O
over M � The quotient FSM MQ �� SQ� S�Q� IQ� OQ� LQ� RQ 	 of M
with respect to H is de�ned as follows

	 SQ � f
j
 is an equivalence class in Hg�

	 S�Q � f�s��js� � S�g�

	 IQ � I�

	 OQ � O��

	 For
 � SQ� LQ�
� � L�s� � O�� for some all� states s �
�

	 RQ � f�
� i�
��jthere are states s �
� s� �
� such that �s� i� s�� �
Rg�

De�nition ���� An FSM M is minimized i	 it is isomorphic to its
quotient FSM�

��

��� Properties of modularity and reduction

The improved algorithm uses both modularity and bisimulation�based
reduction
 In the following we present some properties of the bisimu�
lation relation� bisimulation reduction� and the relationships between
bisimulation and modularity
 The proofs for these claims are given in
Section �
�

Lemma ��� Let M be an FSM� and let MQ be the quotient FSM
of M � Let �
� i�
�� be an element in RQ� Then for every state s in

there exists a state s� in
� such that �s� i� s�� � R�

Proposition ��� If M is deterministic then MQ is deterministic�

Lemma ��� M is minimized i	 the maximal bisimulation relation
over M �M contains exactly the identity pairs�

Lemma ��� Let M be an FSM and MQ be the quotient FSM of
M with respect to O�� then M and MQ are bisimulation equivalent with
respect to O��

Lemma ��� Let M be an FSM and MQ be the quotient FSM of M
with respect to O�� Then MQ is the smallest in number of states and
transitions� FSM which is bisimulation equivalent to M with respect to
O��

Proposition ��	 Let M� and M� be FSMs and let H
 S� � S� be
bisimulation relation over M� and M� with respect to O
 O� � O��
Then H is a bisimulation relation with respect to every O�
 O�

Lemma ��
 Let M� and M� be minimized FSMs� If O� � I� � �
and O� � I� � �� then M � M�jjM� is minimized�

��� The improved algorithm

In this section we present the improved algorithm
 Like the naive al�
gorithm� the improved algorithm receives a design� given as a set of n
components
 The improved algorithm works in iterations
 In each it�
eration two minimized components M� and M� are selected and a new

�	

minimized component� which is equivalent to M�kM�� is constructed

The algorithm terminates when an iteration results in a single com�
ponent
 In this case� the �nal component is the smallest in terms of
states and transitions which is equivalent to the composition of the n
original components

In this section we focus on a single iteration of the improved algo�
rithm
 Unlike the naive algorithm� where the two components are �rst
composed and then the result is minimized� the improved algorithm
constructs a minimized FSM which is equivalent to M�kM� without
constructing the composition
 Thus� the improved algorithm requires
less time and space

By Lemma �
�
�� if M is the result of a composition of two di�erent
FSMs� which do not interact with each other� then� M can be mini�
mized by minimizing M� and M� separately
 This however� does not
hold in the general case� namely� given two minimized components M�

and M�� their composition M�kM� is not necessarily minimized
 This
is demonstrated in Figure �

Figure �
 shows two FSMs M� and M� for which O� � I� �� �

M� and M� are minimized but their composition M is not
 Figure �

also contains MQ which is the result of minimizing M
 The FSMs in
Figure �
 are Moore machines and we use the following convention in
their description
 The labels in the states represent the outputs of the
Moore machines
 The inputs are represented by a boolean formula on
the edges
 For states s� s� � S and i
 I� �s� i� s�� is an element in R i�
i satis�es the formula on the edge from s to s�

The observation demonstrated in Figure �
 implies that a more
sophisticated algorithm is needed for components that interact between
themselves
 We will present two versions of the improved algorithm�
one for deterministic FSMs and another for nondeterministic FSMs

While the former is less general� it has a better complexity
 Since
often hardware designs are modeled by a deterministic FSM� it worth
developing a special algorithm for deterministic designs

��� Deterministic FSMs

We now describe a single iteration of the improved algorithm
 The
version for deterministic FSMs and the version for nondeterministic
FSMs are di�er only in the last stage of single the iterations
 We

	�

a

true

c d

d

true

true
true

d

a a

a

a

c

true

d
true true

da a a

c d
aa

d

true

d
M�

M � M�jjM�

b

�b

MQ

M�

�a � b

�a � �b �a

b

�b

Figure �
�� The composition of two minimized FSMs is not always mini
mized

�rst present the version for deterministic systems� which is simpler�
and then we present the change in the last stage for nondeterministic
FSMs
 In each iteration� the algorithm is given two minimized FSMs
M� and M� such that O� �O� � �
 We use the notation M � M�jjM��
O�
� � O� � I�� and O�

� � O� � I�
 The algorithm performs the following
stages�

 Reduce M� with respect to O�
�� resulting in M r

�

�
 Reduce M� with respect to O�
�� resulting in M r

�

�
 Compose M e
� � M�jjM r

�

�
 Compose M e
� � M r

� jjM�

�
 Reduce M e
� with respect to O�� resulting in Md

�

�
 Reduce M e
� with respect to O�
 resulting in Md

�

�
 Compose Md � Md
� jjM

d
�

	�

FSM Input Output

M� I� O�

M� I� O�

M r
� I� O�

�

M r
� I� O�

�

M �I� nO�� � �I� nO�� O� �O�

M e
� �I� nO�

�� � �I� nO�� � �I� nO�� � �I� nO�� O� �O�
�

M e
� �I� nO�� � �I� nO�

�� � �I� nO�� � �I� nO�� O� �O�
�

Md
� �I� nO�� � �I� nO�� O�

Md
� �I� nO�� � �I� nO�� O�

Md �I� nO�� � �I� nO�� O� �O�

Table �
�� The inputs and outputs of the intermediate FSMs in the improved
algorithm

Table �
 presents the inputs and outputs of the FSMs constructed by
the improved algorithm

An example for the improved algorithm is presented in Figure �
�

The intuition behind the improved algorithm is as follows
 When two
FSMs are composed� each restricts the behavior of the other by pro�
viding a real environment� rather than an open one
 In the restricted
environment� states that behave di�erently in the open environment are
now indistinguishable and can be collapsed into the same equivalence
class

Our goal is to minimize M� and M� separately� while taking into
account the environment each runs in
 While minimizing M� it is suf�
�cient to consider only the part of M� which in�uences M�
 M r

� is
exactly that part
 Therefore� states in M� that become indistinguish�
able in M � M�kM� are also indistinguishable in M e

� � M r
�kM�
 These

states are collapsed� resulting in Md
�
 Similarly� in M e

� states of M� that
are indistinguishable in M are collapsed �resulting in Md

� �
 When Md
�

and Md
� are �nally composed� Md is the result of a composition of two

minimized FSMs which do not interact with each other and therefore
Md is minimized

The skeleton of the correctness proof for the algorithm is given in
the lemma below
 In the rest of the section we prove each of the claims�
thus prove the correctness of our algorithm

	�

a
1’

2’

3’

a

cd

c

c

a

abcd abc

acd ac

{(1,1’)} {(1,2’),(1,3’)}

1,1’ 1,2’ 1,3’

2,1’ 2,2’

3,1’ 3,2’ 3,3’

2,3’

abcd abc abc

acd

acd

ac

ac

ac

ac

{(2,1’),(3,1’)}

c a

true true

c
1

3

2

c

ab

a

a

c

1

3

2
abc

ac

ac

1’

2’

3’

acd

ac

ac

abc ac acd ac

{1}

{2,3}

{1’}

{2’,3’}

{(2,2’),(2,3’),(3,2’),(3,3’)}

M r
�

Md

M

M r
�

Md
�Md

�

M e
� M e

�

M� M�

Figure �
�� An example of the deterministic version of the improved algorithm�
M� has input set I� � fcg and output set O� � fa� bg� M� has input set I� � fag
and output set O� � fc� dg� Note that� even though M� and M� are minimized�
M is not� Md is the quotient model of M � It can also be obtained by composing
Md

� and Md
� � The states of M

d
� � M

d
� and Md are given as the sets of states in the

equivalence classes the states represent

Lemma ���

	 M e
� and M are bisimulation equivalent with respect to O� �O

�
��

	 M e
� and M are bisimulation equivalent with respect to O� �O�

��

	�

	 Md
� and M are bisimulation equivalent with respect to O��

	 Md
� and M are bisimulation equivalent with respect to O��

	 Md and M are bisimulation equivalent with respect to O� � O�

	 Md is minimized with respect to O� � O��

Lemma ��� M e
� and M are bisimulation equivalent with respect to

O� � O�
��

Proof � Let He
�
 S�Se

� be He
� � f��s�� s��� �s�� sr���js

r
� is the equivalence class of s�g

We prove that He
� is a bisimulation relation

	 For every �s��� s��� � S�� we have ��s��� s���� �s��� �s����� � He
�

Similarly� For every �s���
�� � Sr
��� let s�� be the initial state in

� then ��s��� s���� �s��� �s����� � He
�

Let ��s�� s��� �s�� sr��� � He
� �

	 Since the labeling of an equivalence class is equal to the labeling of
the states it contains� L��s���O�

� � Lr
��s

r
��
 The de�nition of com�

position therefore implies� L��s�� s��� � �O� �O�
�� � Le

���s�� s
r
���

	 Let ��s�� s��� i� �s��� s
�
��� be an element in R
 This implies that

for i� � �i � L��s��� � I�� �s�� i�� s��� � R� and for i� � �i �
L��s��� � I�� �s�� i�� s��� � R�
 Let s�

�r be the equivalence class
of s��� then �sr�� i�� s�

�r� � Rr
�
 Since L��s�� � I� � L��s�� �

O�
� � Lr

��s
r
��� i� � �i � Lr

��s
r
��� � I�
 The de�nition of compo�

sition implies ��s�� sr��� i� �s�
�� s�

�r�� � Re
�
 By the de�nition of He

� �
��s��� s

�
��� �s�

�� s�
�r�� � He

�

	 Let ��s�� sr��� i� �s�
�� s�

�r�� be an element in Re
�
 This implies that

for i� � �i�Lr
��s

r
����I�� �s�� i�� s

�
�� � R� and for i� � �i�L��s����

I�� �sr�� i�� s�
�r� � Rr

�
 By Lemma �
�
� there exists a state s�� such
that �s�� i�� s��� � R� and s�

�r is the equivalence class of s��
 Since
L��s�� � I� � L��s�� � O�

� � Lr
��s

r
��� i� � �i � L��s��� � I�
 By

the de�nition of composition� ��s�� s��� i� �s��� s
�
��� � R and by the

de�nition of He
� � ��s��� s

�
��� �s�

�r� s�
�r�� � He

�
 �

Lemma ��� M e
� and M are bisimulation equivalent with respect to

O�
� � O��

	�

The proof is similar to the proof of Lemma �
�
�

Lemma ��� Md
� and M are bisimulation equivalent with respect

to O��

Proof � Proposition �
�
� together with Lemma �
�
� implies that
M e

� and M are bisimulation equivalent with respect to O�
 Lemma �
�
�
implies that M e

� and Md
� are bisimulation equivalent with respect to

O�
 Since bisimulation equivalence is transitive� then M and Md
� are

bisimulation equivalent with respect to O�
 �

Lemma ��� Md
� and M are bisimulation equivalent with respect

to O��

The proof is similar to the proof of Lemma �
�
�

Lemma ��	 If M� and M� are deterministic� then Md and M are
bisimulation equivalent with respect to O� �O��

Note that both Md
� and Md

� have the same input �I�� and that
I �O� � I �O� � �

Proof � Let Hd
�
 S � Sd

� and H�
d
 S � Sd

� be bisimulation
relations over M � Md

� and M � Md
� respectively
 Let Hd
 S �

Sd� be the following relation� Hd � f��s�� s��� �sd�� s
d
���j��s�� s��� s

d
�� �

H�
d and ��s�� s��� sd�� � H�

dg
 We prove that Hd is a bisimulation rela�
tion

	 ��s��� s���� s�
d
�� � H�

d and ��s��� s���� s�
d
�� � H�

d implies that
��s��� s���� �s�

d
�� s�

d
��� � Hd

Let ��s�� s��� �sd�� s
d
��� be a pair in Hd

	 ��s�� s��� sd�� � H�
d impliesL��s�� s����O� � Ld

��s
d
��
 ��s�� s��� sd�� �

H�
d impliesL��s�� s����O� � Ld

��s
d
��
 Thus� L��s�� s��� � Ld��s

d
�� s

d
���

	 Let ��s�� s��� i� �s��� s
�
��� be an element in R
 Since ��s�� s��� sd�� �

H�
d � there exists a state s��d such that �sd�� i� s�

�d� � Rd
� and

��s��� s
�
��� s�

�d� � H�
d
 Since ��s�� s��� sd�� � H�

d � there exists a state
s�
�d such that �sd�� i� s�

�d� � Rd
� and ��s��� s

�
��� s�

�d� � H�
d
 The

de�nition of composition implies that ��sd�� s
d
��� i� �s�

�d� s�
�d�� � Rd

and by the de�nition of Hd� ��s��� s
�
��� �s�

�d� s�
�d�� � Hd

	�

	 Let ��sd�� s
d
��� i� �s�

�d� s�
�d�� be an element in Rd
 Then �sd�� i� s�

�d� �
Rd
� and �sd�� i� s�

�d� � Rd
�
 Since ��s�� s��� sd�� � H�

d then there exists
a state �s��� s

�
�� such that ��s�� s��� i� �s

�
�� s

�
��� � R and ��s��� s

�
��� s�

�d� �
H�
d
 Since ��s�� s��� sd�� � H�

d then there exists a state �s���� s
��
��

such that ��s�� s��� i� �s���� s
��
��� � R and ��s���� s

��
��� s�

�d� � H�
d
 Since

M is deterministic� �s��� s
�
�� � �s���� s

��
��
 By the de�nition of Hd�

��s��� s
�
��� �s�

�d� s�
�d�� � Hd
 �

Md
� and Md

� are minimized with respect to O� and O� respectively

Furthermore�I � O� � I � O� � �� thus Lemma �
�
� induces the
following corollary

Corollary ��
 Md is minimized with respect to O� �O��

��� Time and space complexity

In this section we compare between the complexity of the naive algo�
rithm and the complexity of the improved algorithm

The algorithms include two basic operations�

 Composing two FSMs M �� � MkM �
 The most costly part in time
and space of this operation is the computation of the transition
relation R��
 This can be done in time and space complexity of
O�jR��j�

�
 Minimizing an FSM M into its quotient FSM MQ
 The algorithms
have the same complexity as the one in �Hop�� PT���
 Their
space complexity is O�jRj� and the time complexity is O�jRj �
log�jSj��

Thus� the minimization is the dominant part of the algorithm
 In
the naive algorithm there is only one minimization of M � M�kM�

In the improved algorithm however� there are � minimizations� The
minimization of M� that results in M r

� � the minimization of M� that
results in M r

� � the minimization of M e
� that results in Md

� and the
minimization M e

� that results in Md
�

Since the complexity of a minimization depends on the size of the
minimized FSM� we need to compare the sizes of M�� M�� M e

� � M e
� �

versus the size of M
 We assume that the size of M� is equal to the
size of M�

	�

The di�erences between the sizes of M� and M� and the size of
M depend on the interactions between M� and M�
 The interaction
between M� and M� is measured by the number of inputs of one that
are outputs of the other
 The size of the state spaces of M� and M�� is
square root of the size of the state space of M
 However� the size of the
transition relation depends on the interactions
 When the interaction
between M� and M� is high� many inputs of M� and M� are connected
to outputs of M� and M� respectively
 These inputs are not part of the
inputs of M�
 In this case� every component in M� is an input of M� and
vice versa thus� jS�j � j�I�j � jS�j � j�I�j � jSj � j�Ij
 Since jR�j � jS�j � j�I�j
and jR�j � jS�j � j�I� j� jR�j � jR�j � jRj� and jM�j � jM�j � jM j

Next we compare the sizes of M e
� and M e

� with the size of M
 Note
that M � M�kM�� M e

� � M�kM r
� and M e

� � M r
�kM�
 This implies

that the di�erence between the sizes of M and M e
� depends on the

di�erence between M� and M r
�
 Similarly� the di�erence between the

sizes of M and M e
� depends on the di�erence between M� and M r

�

When there is no redundancy� jM�j � jM r

� j and jM�j � jM r
� j
 In this

case� jM e
� j � jM e

� j � jM j

The worst�case scenario is when the interaction between M� and

M� is high and there is no redundancy in M� and M�� jM�j � jM r
� j

and jM�j � jM r
� j
 In this case the improved algorithm performs four

minimizations� each requires the same time as the single minimization
of the naive algorithm
 Since� we need to keep at most three di�er�
ent models at the same time� the space requirement of the improved
algorithm is three time larger than that of the naive algorithm

In the best scenario however� jM�j � jM�j � jM e
� j � jM e

� j �
q
jM j

In this scenario� instead of time complexity of jRj � log�jSj� in the

naive algorithm� the improved algorithm has time complexity� � �
q
jRj �

log�
q
jSj�� which is signi�cantly better

��� Nondeterministic FSMs

In this section we extend the modular method to nondeterministic
FSMs
 When we consider nondeterministic FSMs� Lemma �
�
� does
not hold
 The result Md of composing Md

� and Md
� might be inequiva�

�Recall that I
 �I� nO�	 � �I� n O�	

	�

lent to M due to �illegal states� in Md which are not equivalent to any
state in M

In order to understand this inequality� we inspect the role of the
states of M� in M �the role of the states of M� is similar�
 When we
look at M as a composition of M� and M�� every state s� has two
functionalities� the �rst is to determine the outputs and next state of
M� and the second to determine the inputs of M�

In Md these two functionalities are ful�lled by two states of S�

Let ���s�� �s����� ���t��� t���� be a state in Md
 Then s� ful�lls the �rst
functionality of determining the outputs and the next states of M��
and t� ful�lls the second functionality of determining the inputs of M�

A state ���s�� �s����� ���t��� t���� of Md might be illegal when s� �� �t��
 In
this case� the combination of next state in M� and input of M� does
not occur in any state of S�

The problem of illegal states is demonstrated in Figure �
�
 In
this �gure� all the states of M� and M� are initial states� which makes
M� and M� nondeterministic
 M r

� and M r
� cannot be further reduced�

the same holds for M e
� and M e

�
 Since the result Md of composing
Md

� and Md
� is minimized and contains � initial states� it cannot be

bisimulation equivalent to M � M�jjM�
 The error in the algorithm is
due to illegal states like ��	� ��� �� ��� in Md which is related to both
s� and s� in M� and is not equivalent to any state in M

We now present the version for nondeterministic systems of the im�
prove algorithm
 This algorithm� restricts the states of Md to legal
states only
 As before� the minimized FSM is constructed without con�
structing the composition M�kM� itself
 First we de�ne two functions

De�nition ����� The function f� � S� � S� � Sd
� is de�ned as fol�

lows
 f��s�� s�� � ��s�� �s�����

De�nition ����� The function f� � S� � S� � Sd
� is de�ned as fol�

lows
 f��s�� s�� � ���s��� s����

Next� we de�ne a new FSM M �
d which is similar to Md except that the

set of states is restricted

S�d � f�sd�� s

d
��j�s�� s�� s

d
� � f��s�� s��� sd� � f��s�� s��g
 The de�nitions

for the other components of M �
d are straightforward
 Sd

�
�

� S�
d � S�d�

the inputs� outputs� and labeling function remain the same� and R�
d �

	�

T
i

�i

b

b
i

�i

i
�b

�b

�i

i

�i

�i

T

i

�i

a a
i

�a �a

i � a

�i � �b i � b

a i � b

�a � b

i �i

T

a � b
i

�i

i

�a

�a � �b

a � �b

�i

�i ��a

�b i � a

�i � �a

b

M� � M r
�

M� � M r
�

�

�

�

��� �� �� ��

��� ��
��� ��

�� ��
�� ��

�� ��
�� �� ��� ����� ��

M � M�jjM�

��� ��
M e

� � Md
� �� ��

M e
� � Md

�

�i � �b

Figure �
�� An example of inequivalent result of the version for deterministic
systems of the improved algorithm� where M� and M� are not deterministic

Rd � �S�d � S�d�
 We now prove that M �
d is bisimulation equivalent to

M

Lemma ���� M �
d and M are bisimulation equivalent with respect

to
O� � O��

Proof � Let H
 S�S�d be de�ned as follows� H � f��s�� s��� �sd�� s
d
���j s

d
� �

f��s�� s�� � sd� � f��s�� s��g
 We prove that H is a bisimulation relation

	 The de�nition of S�d� implies that for every state �s��� s��� � S�
there exists a state �sd��� s

d
��� � ���s��� �s������ ���s���� s����� � S�d�

such that ��s��� s���� �sd��� s
d
���� � H
 For the other direction� as�

sume that �sd��� s
d
��� � ���s��� �s������ ���s���� s����� is a state in S�d�

Then� the state �s��� s��� is in S� and ��s��� s���� �sd��� s
d
���� � H

	 Let ��s�� s��� �sd�� s
d
��� be an element in H
 Since Ld

����s�� �s����� �
Le
��s�� �s����O� � L��s�� and Ld

�����s��� s���� � Le
���s��� s���O� �

L��s��� L��s�� s��� � Ld����s�� �s����� ���s��� s�����

		

	 Let ��s�� s��� �sd�� s
d
��� be in H and let i be an element in I
 Let

i� � �i � L��s��� � I� � �i � Lr
���s���� � I� and

� i� � �i�L��s����I� � �i�Lr
���s�����I�
 Then� ��s�� s��� i� �s��� s

�
��� �

R i�

� �s�� i�� s��� � R� and �s�� i�� s��� � R� i� �De�nition �

� and
Lemma �
�
�

� ��s��� i�� �s���� � Rr
� and ��s��� i�� �s���� � Rr

�
 �s�� i�� s��� � R�

and ��s��� i�� �s���� � Rr
� i� ��s�� �s���� i� �s��� �s

�
���� � Re

�

� Similarly� ��s��� i�� �s���� � Rr
� and �s�� i�� s��� � R� i�

���s��� s��� i� ��s���� s
�
��� � Re

�

� Therefore� ��s�� �s���� i� �s��� �s
�
���� � Re

� and ���s��� s��� i� ��s���� s
�
��� �

Re
� i�

� �sd�� i� s
d
�
�
� � ���s�� �s����� i� ��s��� �s

�
����� is in Rd

� and

�sd�� i� s
d
�
�
� � ����s��� s���� i� ���s���� s

�
���� is in Rd

� i�

� ��sd�� s
d
��� i� �s

d
�
�
� sd�

�
�� � Rd

�

Next� we prove that M �
d is minimized
 First� we show that the maximal

bisimulation over M �
d includes a bisimulation over Md

�

Lemma ���� Let H �
d be the maximal bisimulation relation over

M �
d� We de�ne a relation Hd

� over S
d
��S

d
� as follows
 ���s�� �s����� ��t�� �t����� �

Hd
� i	 ����s�� �s����� ���s��� s����� ���t�� �t����� ���t��� t����� � H �

d� Then Hd
� is

a bisimulation relation�

Proof �

	 Since H �
d contains all identity pairs� Hd

� contains all identity pairs
as well
 This implies that for every initial state� the pair of the
initial state with itself is an element in Hd

�

Let ���s�� �s����� ��t�� �t����� be an element in Hd
� �

	 Ld����s�� �s����� ���s��� s����� � Ld����t�� �t����� ���t��� t����� implies
L�
d���s�� �s����� � L�

d���t�� �t�����

	 Let ���s�� �s����� i� ��s��� �s
�
����� be an element in Rd

�
 Let i� � �i �
L��s��� � I� � �i � Lr

���s���� � I� and i� � �i � L��s��� � I� �
�i � Lr

���s���� � I�

���

 By Lemma �
�
� ��s�� �s���� i� �s��� �s
�
���� � Re

�

�
 Thus� �s�� i�� s��� � R� and ��s��� i�� �s���� � Rr
�

�
 By De�nition �

� and Lemma �
�
 ��s��� i�� �s���� � Rr
�� and

�s�� i�� s��� � R�

�
 This implies that� ����s��� s���� i� ���s���� s
�
���� � Rd

�

�
 Thus� ����s�� �s����� ���s��� s����� i� ���s��� �s
�
����� ���s

�
��� s

�
����� � R�

d

�
 SinceH �
d is a bisimulation� there exists a state ���t��� �t

�
����� ���t

�
��� t

�
����

such that ����t�� �t����� ���t��� t����� i� ���t��� �t
�
����� ���t

�
��� t

�
����� � R�

d

and ����s��� �s
�
����� ���s

�
��� s

�
����� ���t

�
�� �t

�
����� ���t

�
��� t

�
����� � H �

d

�
 This implies that ���t�� �t����� i� ��t��� �t
�
����� � Rd

� and
���s��� �s

�
����� ��t

�
�� �t

�
����� � Hd

�

	 Similarly� we can prove that for every state ��t��� �t
�
���� such that

���t�� �t����� i� ��t��� �t
�
����� � Rd

� there exists a state ��s��� �s
�
���� such

that ���s�� �s����� i� ��s��� �s
�
����� � Rd

� and ���s��� �s
�
����� ��t

�
�� �t

�
����� �

Hd
�

�

Lemma ���� Let H �
d be the maximal bisimulation relation over

M �
d� We de�ne a relation Hd

� over S
d
��S

d
� as follows
 ����s��� s���� ���t��� t���� �

Hd
� i	 ����s�� �s����� ���s��� s����� ���t�� �t����� ���t��� t����� � H �

d� Then Hd
� is

a bisimulation relation�

The proof of Lemma �
�
� is similar to the proof of Lemma �
�

Lemma ���� M �
d is minimized�

Proof Let Hd be the maximal bisimulation over M �
d �M �

d
 Assume
to the contrary that the lemma does not hold
 Then by Lemma �
�
��
there are two di�erent states �sd�� s

d
��� �t

d
�� t

d
�� such that ��sd�� s

d
��� �t

d
�� t

d
��� �

Hd
 Since �sd�� s
d
�� �� �td�� t

d
��� either sd� �� td� or sd� �� td�
 Assume

w
l
o
g
 that sd� �� td�
 Let Hd
� be the relation de�ned in Lemma �
�

By Lemma �
�
 Hd
� is a bisimulation
 By the de�nition of Hd

� �
�sd�� t

d
�� � Hd

�
 By Lemma �
�
�� Md
� is not minimized� a contradic�

tion
 �

���

��� Additional complexity

The additional complexity is due to the computation of S�d which forces
us to refer to the whole state space of M
 Nevertheless� since we only
compute the state space and do not use it in the reduction method�
the version for nondeterministic systems of the improved algorithm is
still better than the naive algorithm
 Computing f� and f�� can be
done during the construction of M r

� and M r
� and the construction of

Md
� and Md

� without any additional time complexity
 However� since
the function operates on the states of M�jjM�� the space complexity
is jSj � jS�j � jS�j
 In a worst�case scenario� the complexity of the
nondeterministic improved algorithm is identical to the complexity of
the of the deterministic improved algorithm
 However� when M r

� �M�

and M r
� � M�� this complexity is worse than the complexity for the

deterministic version

��� An implementation of the improved algorithm

In this section we describe an implementation of the improved algo�
rithm
 Our goal is to compare between the improved algorithm� the
naive algorithm and the ordinary algorithm
 The ordinary algorithm
minimizes a given FSM directly and does not use modularity
 The
implementation has been developed within the sequential equivalence
veri�cation CAD group of Intel design technologies in Haifa
 The de�
signs� which are tested in the equivalence department� have the follow�
ing properties�

 S� � S� i
e
� every state in the model is an initial state

�
 The transition relation is a function� meaning that for every state
s and input i there exists exactly one state t� such that �s� i� t� is
a transition in R

Note that the �rst property makes these designs nondeterministic

These properties guide us to use the version for nondeterministic sys�
tems of the improved algorithm
 However� we represent the transition
relation as a function� which can be represented more concisely than
regular relation

���

typedef struct fsm �
VarList inputs�
BddFunction outputs�
BddFunction latches�

BDD domain�
BddFunction equivFunc�

�FSM�

Figure �
�� The data structure that models FSMs

A general description of the implementation is given in Section �
�

The improved algorithm uses the ordinary algorithm as a subroutine

The same ordinary algorithm is used for comparison with the improved
algorithm
 Since we deal with FSMs that have a transition relation
that is a function� we use an algorithm that is similar to the algo�
rithm presented in �Hop��
 The experimental results are presented in
Section �
�
�

��� The implementation framework

The minimization algorithms �either the improved algorithm� the naive
algorithm or the ordinary algorithm� receive an FSM from an Intel
program� which compiles the RTL description of the design into an
FSM
 The given FSM contains three lists� A list of inputs� a list of
latches� and a list of outputs
 The list of inputs contains BDD variables
only
 The list of latches which encodes the state space� is made of pairs�
where� every pair contains a BDD variable and a BDD which represents
the next state function
 The list of outputs� which encodes the labeling
function is made of pairs where every pair contains a BDD variable and
a BDD� which represents the output function

We modeled an FSM by the FSM data structure shown in Fig�
ure �
�
 In addition to the inputs� latches and outputs �elds� the FSM
data structure has two more �elds� The �rst is the domain �eld� which
is a BDD over the latches which represents the set of states
 The
second� is the equivFunc �eld
 When a minimization of an FSM is per�
formed� a set of equivalence classes is constructed
 These classes are

���

the states of the resulting FSM
 The �eld equivFunc of the resulting
FSM contains a function that relates the states of the original FSM to
their equivalence classes

The information about the modular structure of the tested designs
was lost during the development stage
 Thus� instead of a set of compo�
nents� the improved algorithm receives one FSM
 In order to perform
the minimization� it �rst partitions the FSM and then performs the
improved algorithm
 A basic description of the implementation of the
improved algorithm is presented in Figure �
�

The algorithm receives an FSM om and partitions it into two FSMs
m and m�
 Then it uses the improved algorithm to construct a mini�
mized model md which is equivalent to om
 The algorithm partitions
the model by partitioning the set of latches and the set of outputs� �it
is possible for m and m� to share inputs�
 The goal of the partition
is that the interaction between the models will be minimal
 Since �nd�
ing such a partition is hard� the algorithm uses a heuristic to �nd a
partition with low interaction

The improved algorithm uses the subroutine reduction� which per�
forms the ordinary algorithm
 The algorithm is an adaptation of the
algorithm given in �Hop�� for constructing the quotient automaton for
a given regular deterministic automaton
 The algorithm is adapted for
FSMs for which the transition relation is a function
 Given an FSM�
it constructs its quotient FSM
 The main di�erence between the algo�
rithm in �Hop�� and the ordinary algorithm is in the initial partition�
ing
 While for automata the initial partition forms two sets �accepting
and rejecting�� the states of the FSM are initially partitioned into �jAP j

sets� one for each state labeling

Both minimization algorithms �improve algorithm and ordinary al�

gorithm� minimize the FSM with respect to its outputs
 Thus before
they minimize M� into M r

� �M� into M r
� �� they need to remove the

outputs in O� n I� �O� n I��
 In order to remove these external outputs
the algorithms use the rmExternalOutputs subroutine

In order to construct the set rd of �legal states� of the form
���s�� �s����� ���s��� s����� the algorithm constructs two functions fd �
S � Sd

� and f�d � S � Sd
�
 In order to construct fd� the algorithm

composes the functions Md�equivFunc � Se
� � Sd

� and the function
m�r�equivFunc � S� � Sr

�
 Since Se
� � S� � Sr

�� the resulting function

���

relates the states of S� � S� to the states of Sd
�
 The function f�d

is constructed in a similar way
 Then the algorithm calculates rd �
fd�om�domain�� where fd � S � Sd is de�ned as follows� fd�s� �
�fd�s�� f�d�s��

The sets� functions and relations are represented by BDDs
 We use
Intels BDD package for the implementation

��� Experimental results

We compared between the ordinary algorithm� the naive algorithm�
and the improved algorithm
 While we tested the improved algorithm�
we found out that the minimization of M r

� and M r
� does not improve

the performance of the algorithm
 Thus we tested the algorithm also
without these minimizations
 In this case M e

� �M e
�� are simply M with

only part of the outputs
 We tested the improved algorithm without
the construction of M r

� and M r
� when the design is partitioned only

once �appears in the tables as improved��� and when the design is
recursively partitioned until it has one output only �appears in the
tables as improved��

The results are presented in the following tables
 In Table �
� we
present general properties of the tested designs
 Table �
� compares the
minimization times of the minimization algorithms
 Table �
� compares
the space requirements of the minimization algorithms
 The algorithms
were tested on a machine with two CPUs ��	 MHZ each and �GB
memory

The experimental results imply that in most designs� all versions
of the improved algorithm have better performances than the ordinary
and naive algorithms both in time and space
 The improved algo�
rithm which does not reduce M r

� and M r
� and partitions the outputs

recursively� has the best time performance and the improved algorithm
which does not reduce M r

� and M r
� and partitions the outputs only

once� has the best space performance

The di�erences between the two versions of the improved algorithm

that do not reduce M r
� and M r

� � demonstrate the tradeo� between the
e�ciency of the improved algorithm and its overhead
 On the one
hand� the e�ciency of improved the algorithm results in a better run�
ning time� and on the other hand the overhead results in larger space
requirements
 This tradeo� is taken into account in the subroutine

���

FSM improvedAlgorithm�FSM om�	

FSM m�
 m�
 m�r
 m�r
 m�e
 m�e
 m�d
 m�d
 md�

BddFunction fd
 f�d
 f�d�

BDD re
 rd�

� the recursion tail condition � based on the size of the model �

if ��shouldSplit�om��

return reduction�om��

� partition om to m� and m� �

partModel�om
 m�
 m���

m�r � rmExternalOutputs�m���

m�r � improvedAlgorithm�m�r��

m�e � modelComposition�m�r
 m���

m�r � rmExternalOutputs�m���

m�r � improvedAlgorithm�m�r��

m�e � modelComposition�m�
 m�r��

m�d � reduction�m�e��

m�d � reduction�m�e��

f�d � composeFunc�m�d�equivFunc
 m�r�equivFunc��

f�d � composeFunc�m�d�equivFunc
 m�r�equivFunc��

fd � joinBddFunc�f�d
f�d��

rd � bdd�image�om�domain
 fd��

md � disjointComposition�m�d
 m�d
 rd��

return md�

�

Figure �
�� The improved algorithm

���

Name No
 of No
 of No of
inputs latches outputs

s��� � � �
s���d� � �
s���d� � � �
s�		d � � �
s�		d� � � �
s�		d� � � �
s�		 � � �
s��� �
s����� � �	 �
s��� � � �

Table �
�� General properties of the tested designs

shouldSplit that decides whether to reduce the sub�model by further
partitioning it with the improved algorithm or should it use the ordi�
nary reduction algorithm
 In general� if the sub�model is too small�
then the overhead the improved algorithm become too large

Note that� while in some cases the improved algorithm is up to �
times faster than the ordinary minimization algorithm� in cases where
the ordinary minimization algorithm has better performance� the dif�
ferences between the algorithms are small

��� Properties of bisimulation

In this section� we prove the claims presented in Section �
�
 Note
that whenever two FSMs M� and M� are composed� they must satisfy
O� � '� � �

Lemma �
�
 Let M be an FSM� and let MQ be the quotient FSM
of M � Let �
� i�
�� be an element in RQ� Then for every state s in

there exists a state s� in
� such that �s� i� s�� � R�

Proof �Assume that �
� i�
�� � RQ
 Let H
 S�S be the maximal
bisimulation relation over M � M
 The de�nition of quotient FSM
implies that there are states t� t� in S such that t �
� t� �
� and
�t� i� t�� � R
 Let s be a state in

 Since s and t are in the same
equivalence class� �t� s� � H
 Thus� there exists a state s� such that

���

Name ordinary naive improved improved� improved�
algorithm algorithm algorithm algorithm algorithm

s��� �� �� �� �� ��
s���d� � �� �� �� ��
s���d� �� � �� �� ��
s�		d �	 ��� ��� �	� �	�
s�		d� �� ��� �		 ��� ���
s�		d� ���� ��	�� ��	� ��	 �	
s�		 ����� space over�ow ���	� ��� ���
s��� ����	 ����� ���� ���� ���
s���
� ���� ����� ���	 ��� ���
s��� ����� space over�ow ���� �	�� �	��

Table �
�� The time in seconds for minimization of the di�erent minimization
algorithms

Name ordinary naive improved improved� improved�
algorithm algorithm algorithm algorithm algorithm

s��� ������� ����	�� ������ ������� �����	�
s���d� ����� �	����� ���	� ������ ������
s���d� ����	�� ������ ������� ������� ������
s�		d �������� �������� 	�	����� ������ ������
s�		d� �������� ��������� ��		����� ����	��	� ����	��	�
s�		d� ���������	 ��	������ ����	���� 	������ ���������
s�		 	�������� space over�ow ��������� ����	���� �������	
s��� ���������� ���������� ������	� ��������� ��������
s���
� ��������	� ��������� ������			 �������	 ����	���
s��� ���������� space over�ow �������� �������� �������	��

Table �
�� The maximal number of BDD nodes required by the di�erent
minimization algorithms

���

�s� i� s�� � R and �t�� s�� � H
 Since �t�� s�� � H� t� and s� are in the
same equivalence class� thus s� �
�
 �

Proposition ��� If M is deterministic then MQ is deterministic�

Lemma �
�
� M is minimized i	 the maximal bisimulation relation
over M �M contains exactly the identity pairs�

Proof � For the �rst direction� assume that H is the maximal
bisimulation over M � M and that H contains exactly the identity
pairs
 Then every equivalence class contains exactly one state
 Let
MQ be the quotient FSM of M
 We de�ne a function f � S � SQ as
follows� f�s� �
 i� s is in

 Obviously f is a total and onto function

Since every equivalence class contains exactly one state� f is also one to
one
 Furthermore� by Lemma �
�
 and the de�nition of quotient FSM�
�s� i� s�� � R i� �f�s�� i� f�s��� � RQ
 Thus� M and MQ are isomorphic
and M is minimized

For the second direction� assume that there is a pair �s�� s�� � H
such that s� �� s�
 Then s�� s� are in the same equivalence class
 Since
the equivalence classes partition the states set and at least one class
contains more than one state� jSQj � jSj
 Thus M and MQ are not
isomorphic
 �

Lemma ��� LetM be an FSM� The identity relationHID � f�s� s�js �
Sg is a bisimulation relation over M �M �

Proof �

	 For every s� � S�� �s�� s�� � HID

Let �s� s� be a pair in HID�

	 L�s� � L�s�

	 Let �s� i� s�� be an element in R
 Then �s� i� s�� is an element in
R� and �s�� s�� � HID
 �

Lemma ��� Let MQ be the quotient FSM of M � and let HQQ be
the maximal bisimulation relation over MQ �MQ� Let
Hq � f�s�� s��j��s��� �s��� � HQQg� then Hq is a bisimulation relation
over M �M �

��	

Proof �

	 By the de�nition of the quotient FSM� for every s� � S�� �s�� �
S�Q
 Since ��s��� �s��� � HQQ� �s�� s�� � Hq

Let �s�� s�� be a pair in Hq

	 ��s��� �s��� � HQQ implies that LQ��s��� � LQ��s��� which implies
that L�s�� � L�s��

	 Let �s�� i� s��� be an element in R
 Then ��s��� i� �s
�
��� � RQ
 Since

��s��� �s��� � HQQ there exists a class
�� such that ��s��� i�
��� � RQ

and ��s����

�
�� � HQQ
 ��s��� i�
��� � RQ together with Lemma �
�
�

implies that there exists a state s�� such that �s�� i� s��� � R
 The
de�nition of Hq implies �s��� s

�
�� � Hq

	 Similarly� we can prove that for every successor s�� of s� there
exists a successor s�� of s� such that �s��� s

�
�� � Hq
 �

Lemma ��� Let MQ be the quotient FSM of M � and let HQQ be
the maximal bisimulation relation over MQ �MQ� Then HQQ is the
identity relation�

Proof � Lemma �
�
� implies that the identity relation is bisimu�
lation relation over MQ�MQ� thus it is contained in HQQ
 Assume to
the contrary that HQQ contains a pair �
��
�� such that
� ��
�
 Let
s� and s� be states in
� and
� respectively and let Hq be the relation
that de�ned in Lemma �
�
�
 By the de�nition of Hq� �s�� s�� � Hq

By Lemma �
�
�� Hq is a bisimulation over M �M � thus �s�� s�� is an
element in the maximal bisimulation over M �M
 This implies that
s� and s� are in the same equivalence class� a contradiction
 �

Corollary ��� Every quotient FSM is minimized�

For the rest of this paper� we will use the term �minimized FSM� for
quotient FSM

Lemma �
�
� Let M be an FSM and MQ be the quotient FSM of
M with respect to O�� then M and MQ are bisimulation equivalent with
respect to O��

Proof � Let HQ
 S � SQ be the following relation� HQ �
f�s�
�js is in
g
 We prove that HQ is a bisimulation relation

���

	 By the de�nition of the quotient FSM� for every s� � S�� s� is in

� � S�Q
 Similarly for every
� � S�Q there exists s� � S� such
that s� �
�

Let �s�
� be a pair in HQ�

	 By the de�nition of the quotient FSM� L�s� �O� � LQ�
�

	 Let �s� i� s�� be an element in R
 Let
� be the equivalence class
of s�� then by the de�nition of the quotient FSM� �
� i�
�� � RQ

and by the de�nition of HQ� �s��
�� � HQ

	 Let �
� i�
�� be an element in RQ
 By Lemma �
�
� there exists a
state s� such that �s� i� s�� � R and s� is in
�
 Thus �s��
�� � HQ

�

Lemma ��	 Let M� and M� be two FSMs that are bisimulation
equivalent� Let H
 S� � S� be a bisimulation relation over M� �M��
Then� the relation H � � f�s�� s���jthere exists s� � S� such that �s�� s�� �
H and �s��� s�� � Hg is a bisimulation relation over M� with respect to
O� � O��

Proof � We prove that H � is a bisimulation relation

	 Since H is a bisimulation relation� for every initial state s�� � S��
there exists an initial state s�� � S�� such that �s��� s��� � H

Thus� for every initial state s�� � S��� �s��� s��� � H �

For every pair �s�� s
�
�� � H � the following holds�

	 Since �s�� s��� � H �� there exists a state s� � S� such that �s�� s�� �
H and �s��� s�� � H
 This implies that L��s�� � �O� � O�� �
L��s�� � �O� �O�� � L��s��� � �O� � O��

	 Let �s�� i� t�� be a transition in R�
 Since �s�� s��� � H �� there
exists a state s� � S� such that �s�� s�� � H and �s��� s�� � H

Since H is a bisimulation� there exists a state t� � S� such that
�s�� i� t�� � R� and �t�� t�� � H
 This implies that there exists
a state t�� � S� such that �s��� i� t

�
�� � R� and �t��� t�� � H
 Thus

�t�� t��� � H �

���

	 Similarly� for every transition �s��� i� t
�
�� � R� there exists a tran�

sition �s�� i� t�� � R� such that �t�� t��� � H �

�

Lemma �
�
� LetM be an FSM and MQ be the quotient FSM ofM
with respect to O�� Then MQ is the smallest in number of states and
transitions� FSM which is bisimulation equivalent to M with respect to
O��

Proof � First� we prove that MQ is smallest with respect to the
number of states
 Assume to the contrary that there exists an FSM
M � that is bisimulation equivalent to M and smaller than MQ
 Since
bisimulation is transitive� MQ and M � are bisimulation equivalent

Let H be a bisimulation relation over MQ �M �
 Then� there exists
two di�erent states sq and tq in SQ that are equivalent to the same
state in M �
 Let Hq be the relation Hq � f�sq� tq�jthere exists s� �
S� such that �sq� s�� � H and �tq� s�� � Hg
 By Lemma �
�
�� Hq is
a bisimulation relation
 Thus sq and tq are bisimulation equivalent�
contradicting Lemma �
�
�

Next� we prove that MQ is smallest with respect to number of tran�
sitions
 Assume to the contrary that there exists an FSM M � that is
bisimulation equivalent to M and smaller than MQ
 Since bisimulation
is transitive� MQ and M � are bisimulation equivalent
 Let H be a bisim�
ulation relation over MQ�M �
 Since the number of states in MQ is not
larger than the number of states in M �� there exists a pair �sq� s�� � H
such that the number of transitions from sq is greater than the number
of transitions from s�
 Since for every transition �s�� i� t�� � R� there ex�
ists a matching transition from sq� there exists a transition �s�� i� t�� � R�

which has two transitions �sq� i� tq�� and �sq� i� tq�� in Rq which match it

This implies that �tq�� t�� � H and �tq�� t�� � H
 Let Hq be the relation
Hq � f�sq� tq�jthere exists s� � S� such that �sq� s�� � H and �tq� s�� �
Hg
 By Lemma �
�
�� Hq is a bisimulation relation
 Thus tq� and tq�
are bisimulation equivalent� contradicting Lemma �
�
�
 �

��� Composition and bisimulation

Next� we present some properties of composition and bisimulation

Lemma ��
 Let M � M�jjM� and let H� and H� be the maximal
bisimulation relations overM��M� and M��M� with respect to O� and

���

O� respectively� Let H be the relation H � f��s�� s��� �t�� t���j�s�� t�� �
H�� �s�� t�� � H�g then H is a bisimulation over M �M �

Proof �

	 Let �s��� s��� � S�� since �s��� s��� � H� and �s��� s��� � H��
��s��� s���� �s��� s���� � H

Let ��s�� s��� �t�� t��� be a pair in H

	 By the de�nition of H� �s�� t�� � H� and �s�� t�� � H�� thus
L��s�� � L��t�� and L��s�� � L��t��
 Since O� � O� � ��
L��s�� s��� � L��t�� t���

	 Let ��s�� s��� i� �s
�
�� s

�
��� be an element in R
 By the de�nition of

composition� �s�� �i� L��s��� � I�� s��� � R� and �s�� �i� L��s����
I�� s

�
�� � R�
 Since �s�� t�� � H� and L��s�� � L��t��� there exists

a state t�� such that �t�� �i � L��t��� � I�� t
�
�� � R� and �s��� t

�
�� �

H�
 Similarly� there exists a state t�� such that �t�� �i � L��t��� �
I�� t

�
�� � R� and �s��� t

�
�� � H�
 The de�nition of composition

implies that ��t�� t��� i� �t��� t
�
��� � R and by the de�nition of H�

��s��� s
�
��� �t

�
�� t

�
��� � H

	 In a similar way we can show that for every successor �t��� t
�
��

of �t�� t�� there exists a successor �s��� s
�
�� of �s�� s�� such that

��s��� s
�
��� �t

�
�� t

�
��� � H
 �

Lemma ��� If M � M�jjM� is minimized then M� and M� are
also minimized�

Proof � Assume to the contrary that the lemma does not hold

W
l
o
g
 assume that M� is not minimized
 By Lemma �
�
� there are
two di�erent states s�� t� such that �s�� t�� � H�
 Since every bisimu�
lation relation contains the identity pairs� there exists a state s� such
that �s�� s�� � H�
 Let H be the relation de�ned in Lemma �
�
�� then
��s�� s��� �t�� s��� � H
 By Lemma �
�
� H is a bisimulation relation�
thus it is contained in the maximal bisimulation relation over M �M

This implies that ��s�� s��� �t�� s��� is an element in the maximal bisim�
ulation relation
 By Lemma �
�
�� M is not minimized� a contradiction

�

���

Lemma ��� Let M � M�jjM� and H be a bisimulation over M �
M � If O� � I� � � then the relation
H� � f�s�� t��js�� t� � S� and � s�� t� ��s�� s��� �t�� t��� � Hg is a bisim�
ulation relation over M� �M��

Proof �

	 Let s�� � S�� and s�� � S��
 Since ��s��� s���� �s��� s���� � H�
�s��� s��� � H�

Let �s�� t�� be a pair of states such that �s�� t�� � H� and let s�� t�
be states such that ��s�� s��� �t�� t��� � H

	 ��s�� s��� �t�� t��� � H implies L��s�� s��� � L��t�� t���
 Since O� �
O� � �� we conclude that L��s�� � L��t��

	 Let �s�� i�� s��� be an element in R�
 Since O� � I� � �� I�

I
 Let i
 I be such that i� � i � I�
 Since O� � I� � ��
�i�L��s���� I� � i� I� � i�
 Let s�� be a state such that �s�� �i�
L��s����I�� s��� � R�
 Such s�� exists by the receptiveness of Moore
machines
 Then ��s�� s��� i� �s��� s

�
��� � R
 Since ��s�� s��� �t�� t��� �

H� there exists a state �t��� t
�
�� such that ��t�� t��� i� �t��� t

�
��� � R and

��s��� s
�
��� �t

�
�� t

�
��� � H
 This implies that �t�� i�� t��� � R�
 By the

de�nition of H�� �s��� t
�
�� � H�

	 In a similar way we can show that for every successor t�� of t� there
exists a successor s�� of s� such that �s��� t

�
�� � H�
 �

Lemma �
�
� Let M� and M� be minimized FSMs� If O� � I� � �
and O� � I� � �� then M � M�jjM� is minimized�

Proof Let H be the maximal bisimulation over M �M
 Assume
to the contrary that the lemma does not hold
 Then by Lemma �
�
��
there are two di�erent states �s�� s��� �t�� t�� such that ��s�� s��� �t�� t��� �
H
 Since �s�� s�� �� �t�� t��� either s� �� t� or s� �� t�
 We assume
w
l
o
g
 that s� �� t�
 Let H� be the relation de�ned in Lemma �
�
�

By Lemma �
�
� H� is a bisimulation
 By the de�nition of H�� �s�� t�� �
H�
 By Lemma �
�
�� M� is not minimized� a contradiction
 �

���

Chapter �

Using BDDs for preimage

calculations

In this chapter we improve the algorithm suggested in �CM�	a� CM�	b�
for the preimage operation
 We suggest a new inverse algorithm with
the same complexity as the expound subroutine but with better con�
stants
 Furthermore� the information which is attached to every BDD
node� represents the preimage of the set it represents
 Thus� the imple�
mentation of the inverse algorithm is much simpler and more intuitive�
moreover� it is suitable for optimizations
 Experimental results show
that the inverse algorithm works much more e�ciently than the ex�
pound subroutine� and in some cases even competes successfully with
the monolithic algorithm and the early quanti�cation algorithm

	�� Preliminaries

We describe BDDs as presented in �Bry���
 We use x�� x�� � � � � xn to
denote boolean variables and g�x�� x�� � � � xn� to denote a boolean func�
tion
 Let � � f	� gn� we use the functions vi��� to denote the value
of the i th bit in �
 Sometimes we use xi as the boolean function
g��� � vi��� and xi as g��� � �vi���

A BDD is always de�ned with respect to an order over the variables

Given an order � over the BDD variables� a BDD is de�ned as follows�

De�nition ����� A BDD is a DAG Directed Acyclic Graph� with
one root and at most two leaves� The leaves are labeled with 	� and

���

every non�leaf node nd is labeled by a variable xi � L�nd�� Every
non�leaf node nd has exactly two successors nd�low and nd�high� If a
non�leaf node nd� is a successor of another node nd then ��L�nd��� 	
��L�nd���

Every BDD node nd represents a boolean function gnd
 The BDD
represents the boolean function of its root
 The boolean function gnd
is de�ned inductively on the structure of the BDD�

	 If nd is a leaf then it represents the label of nd �	 or �

	 If nd in non�leaf node which is labeled with variable xi� then
gnd � �xi � gnd	high� � �xi � gnd	low�

Every boolean function g � f	� gn � f	� g characterizes a set
A
 f	� gn� such that � � f	� gn is an element of A if and only if
g��� �
 In the rest of this work we will not di�er between a BDD
�� the boolean function g that � represents� and the set A that g
characterizes

Next� we de�ne a reduced BDD�

De�nition ����� A BDD � is reduced if it satis�es the followings

�� There are no two di	erent nodes in � which represent the same
function�

�� Each non�leaf node nd in � satis�es
 nd�high �� nd�low�

�Bry��� shows that given an order over the BDD variables� for every
boolean function there exists a unique reduced BDD which represents
it� for the rest of this paper we refer only to reduced BDDs
 In addi�
tion� �Bry��� suggests e�cient procedures that implement operations
over boolean functions represented by BDDs
 Table �
 shows the op�
erations and their time complexity
 We use ����� as BDDs with the
same variable order

In model checking and equivalence checking of deterministic models�
BDDs are used to characterize sets of states of the veri�ed FSM� its
transition relation and its labeling function
 The set of states and set of
initial states are represented by their characterizing boolean functions

The transition relation is represented as a function� R � S � �I � S

The labeling function is represented as a function L � S � �AP

���

Operation time complexity
�� � �� O�j��j � j��j�
�� � �� O�j��j � j��j�
��� O��
g�jxi�b O�j��j log j��j�
�x� � � ��xn�� O�j��jn�

Table �
�� The complexity of BDDs operations

	�� Using BDDs for function manipulations

Given a function f � f	� gn � f	� gm and a subset �
 f	� gn� we de�
�ne f��� called the image of �� to be f��� � f��j�� � � such that f��� �
��g
 Similarly� given a set ��
 f	� gm the operation f������ called the
preimage of ��� is de�ned as f������ � f�j��� � �� such that f��� �
��g

Let f � f	� gn � f	� gm be a total function
 There are two ways
to represent f � The partitioned �BCL�� representation and the mono�
lithic representation

We �rst describe the partitioned representation of f
 Let the ele�
ments of f	� gn be encoded by x�� x�� � � � xn and the elements of f	� gm

by x��� x
�
�� � � � � x

�
m
 Given an element � � f	� gn� �� � f��� is a unique

element of f	� gm
 Thus the values of the variables that encode ��

depend only on �
 A function f can therefore be de�ned by m boolean
functions f�� f�� � � � � fm � where fj determines the value of x�j in the
result of f
 Every boolean formula is represented by a BDD� thus we
represent f as m BDDs over x�� x�� � � � � xn

The monolithic representation of functions refers to f as a relation
where the pair ��� ��� is an element in f i� f��� � � �
 Such a relation
is constructed as follows f � �mi��x

�
i � fi

There are three di�erent approaches for manipulating functions
which are represented by BDDs� The monolithic algorithm� the early
quanti�cation algorithm �BCL��� and the expound subroutine

When a function f is represented by the monolithic representation�
the operation f������ is calculated by the monolithic algorithm as fol�
lows� f������ � �x��� x

�
�� � � � x

�
n�f � ���
 The major drawback in this

method is the size of the monolithic relation� which often becomes too
large to handle

���

The other two algorithms for manipulating functions operate on the
partitioned representation of functions
 First� we describe the early
quanti�cation algorithm for the f�� operation
 This algorithm is an
improvement of the monolithic algorithm
 In the early quanti�cation
algorithm the f�� operation is performed as f������ � �x�n��fn �
x�n���x�n����fn�� � x�n���� � � ���x

�
���f� � x������� � � ���
 In this way

the intermediate BDDs remain small and the whole operation requires
less space

Next� we describe the expound subroutine which calculates f������
in the following way� The operation is calculated inductively on the
graph of the BDD ��� in a top down direction
 For each node nd
in �� a function ndpre is calculated
 When the algorithm terminates�
the resulting set is characterized by the function of the leaf of ��

At the beginning of the algorithm� the function of the root of �� is

 For each node nd� in �� the function nd�pre is calculated as follows�
Let nd�� nd�� � � � ndm be the predecessors of nd�
 Since the algorithm
is inductive� the functions nd�pre� nd�pre� � � � ndmpre have already been
calculated
 Let L�nd��� L�nd��� � � �L�ndm�� be the variables that la�
bel nd�� nd�� � � � ndm� respectively
 The function nd�pre is calculated as
�mi���ndipre � ci� where

ci �

�
fj ndi is connected to nd� by its high edge and x�j � L�ndi�
�fj ndi is connected to nd� by the low edge and x�j � L�ndi�

The advantages of the expound subroutine are�

	 It does not use next state variables

	 It uses only �cheap� BDD operations

	 The number of BDD operations is linear in the number of BDD
nodes in ��

However� the top down direction of the subroutine creates some prac�
tical problems

 In most BDD packages� in each BDD node there are pointers only
to its successors and there are no pointers to predecessors
 For
every BDD node nd�� the value of the function nd�pre� depends on
the predecessors of nd�
 Since nd� does not contain pointers to

���

his predecessors� the information for calculating nd�pre should be
pushed from the predecessors when the algorithm reaches them

Thus� before the algorithm reaches nd�� it should reach all of its
predecessors
 However� because nd� does not have pointers to its
predecessors� its does not �know� which BDD nodes are they

Thus� the algorithm have to reach all the BDD nodes above nd�

before it reaches it
 This implies� that the algorithm needs an
additional data structure which enables access to the nodes of ��

according to their level

�
 In the implementation of expound subroutine� the algorithm at�
taches an extra function pre to every BDD node
 In most BDD
packages� the BDD nodes contain only two pointers� and there is
no space for the extra pointer ndpre
 For other BDD operations
that need to attach extra information to the BDD nods� using
cache solves this problem
 A cache is a data structure in which
for every node the extra information is stored
 In order to make
the cache e�ective� the cache enables collisions� where di�erent
nodes are mapped to the same cell in the cache
 In case of colli�
sion� some of the information is lost and have to be recalculated
again
 This is not e�cient for the expound subroutine� because it
will require to access all the nodes above the node for which the
function should be recalculated

�
 Most BDD packages use complementary edges
 A complementary
edge� which points at a BDD node nd� represents the complement
set of the set that nd represents
 The use of complementary edges
forces the expound subroutine to store two functions ndpre� and
ndpre� in each BDD node� increasing the space requirements of
the algorithm

	�� The inverse algorithm

In this section we present our inverse algorithm as an alternative way
to compute the f�� operation
 Similarly to the expound subroutine�
the inverse algorithm stores data in the BDD nodes
 However� the
computation is bottom up
 For every node nd� the algorithm calculates
the preimage of the set that nd represents� this makes the algorithm

��	

more intuitive and easier to implement
 The algorithm is presented in
Figure �

BDD inverse	BDD ��
f
return inverseNode	���root

g

inverseNode	node nd
f
if 		res � getCache	nd

 �� NULL
 then return res
if 	nd is a terminal node
 then return nd�value
j � nd�index
res � ��fj�inverseNode�nd�low����fj�inverseNode�nd�high��
insertCache	nd�res
�
return	res

g

Figure �
�� The inverse algorithm

Our algorithm have all the advantages of the expound subroutine

Furthermore� it is easy to implement
 Since the function� which is at�
tached to the BDD nodes� depends on the sets they represent� the al�
gorithm is suitable for using cache
 Finally� since f����A� � �f���A��
using complementary edges in the BDD does not increase the amount
of space it requires

Next� we prove the correctness of the algorithm
 The �rst propo�
sition is immediate from the de�nition of the operation f�� and from
the de�nition of the partitioned representation of f

Proposition 	�� Given an element �� � f	� gm � An element � �
f	� gn satis�es f��� � � � i	 for every � j � m� � � fj � vj���� � �

De�nition ����� We de�ne (fj as follows

(fj�b� �

�
fj b �
�fj b � 	

�

The next proposition rephrases Proposition �
�
� using the notation
(fj
 Let b��� b

�
�� � � � b

�
m be the boolean representation of ��� then every

� � f������ should satisfy that for every � j � m� fj��� � b�j

���

Proposition 	�� Given an element ��� the following holds
 f���� �� �

�mj�� (fj�vj������

We now extend the previous proposition to a set of elements in f	� gm

Corollary 	�� Given a subset Q�
 f	� gm� let f���Q�� � f�j�� �� �� �

Q� and f��� � ��g then f���Q�� � �
��Q���mj�� (fj�vj�������

De�nition ����� Let Q� be a subset of f	� gm� Let j � f� � � � �mg�
Then� Q�

j � Q� � f��jvj���� � g and Q�
j � Q� � f� �jvj���� � 	g�

We now calculate the operation f���Q�� in two separate stages� based
on the fact that f���Q�� � f���Q�

j� � f
���Q�

j�
 This enables to pull fj
out as shown in Lemma �
�
�

Lemma 	�	 Let Q � f���Q��� then Q � �fj��
��Q�

j
��k 	�j (fk�vk�� ������

��fj � �
��Q�

j
��k 	�j (fk�vk��������

Proof �

	 Q � �
��Q���mk�� (fk�vk������

	 Since Q� � Q�
j � Q�

j� Q � �

���Q�

j
�Q�

j
�
��mk��

(fk�vk������� thus Q �

�
��Q�

j
��mk��

(fk�vk�� ���� � �
��Q�

j
��mk��

(fk�vk������

	 For every �� � Q�
j� vj��

�� � � thus for every �� � Q�
j�

(fj�vj�� ��� �
fj

	 This implies that �
��Q�

j
��mk�� (fk�vk������ � �
��Q�

j
��k 	�j (fk�vk������

fj� � fj � �
��Q�

j
��k 	�j (fk�vk������

	 Similarly� �
��Q�

j
��mk�� (fk�vk������ � �fj � �
��Q�

j
��k 	�j (fk�vk������

	 Thus Q � �fj��
��Q�

j
��k 	�j (fk�vk����������fj��
��Q�

j
��k 	�j (fk�vk�������

�

Lemma 	�
 Let Q� be a subset of f	� gm and let Q � f���Q���
Let � be the BDD that represents Q�� Let xj be the variable labeling

the root of �� Then Q � �fj � �
���root�high �k 	�j
(fk�vk�� ���� � ��fj �

�
���root�low �
m
k 	�j

(fk�vk�� �����

���

Proof � The de�nition of BDD implies that root�low � Qjvj��

which is exactly Q�
j
 Similarly� root�high � Qjvj�� � Q�

j
 �
Corollary �
�
� can be concluded by Corollary �
�
� and Lemma �
�
�

Corollary 	�� Let Q� be a subset of f	� gm� Let ��Q be the BDD
that represents Q�� Let j be the index of the root of ��Q� Then Q �
�fj � f���root�high�� � ��fj � f���root�low���

The computation follows the following intuition
 Suppose the set Q�

f	� gm is represented by a BDD �Q� so that x�j is the variable in the
root of �Q�
 Elements of Q�� represented by root�low are those in which
x�j � 	� thus� their preimage is contained in �fj
 Similarly� the elements
of Q�� represented by root�high are those in which x�j � � and therefore
their preimage is contained in fj

This form of calculation can be implemented by recursion over the
graph of the BDD which represents Q�
 Next� we prove the correctness
of our algorithm

Lemma 	�� Let nd be a node in the BDD ��Q and let Q��
 f	� gm

be the set represented by nd� Then inverseNode	nd
 returns f���Q����

Proof � We prove the lemma by induction on the levels of ��Q from
bottom up

	 Base� Let nd be a terminal node� we distinguish between two
cases�

� nd�value � � then nd represents f	� gm� in this case the
function returns � which represents f���f	� gm� � f	� gn

� nd�value � 	� then nd represents �� in this case the function
returns 	� which represents f����� � �

	 Induction step� Assume that the lemma holds for all the lev�
els below nd� we prove that it holds for nd
 Both nd�low and
nd�high belong to levels which are lower� in the induction order
than the level of nd
 Thus the induction hypothesis implies that
inverseNode�nd�low� � f���nd�low� and inverseNode�nd�high� �
f���nd�high�
 By Corollary �
�
�� inverseNode�nd� � f���nd�

�

���

Corollary 	��� The algorithm returns a BDD that represents f���Q���

Complexity� As the expound subroutine� our inverse algorithm
performs for each node in �Q� two conjunction operations and one dis�
junction
 Thus� the number of BDD operation is O�j�Q� j� and it uses
only �cheap� operations �������

Unlike the expound algorithm� the inverse algorithm� is easy to im�
plement� does not require any additional data structure� and is suitable
for using cache and complement edges
 This explains the much better
performance shown in Section �
�
�

	�� An Example� Modeling a deterministic FSM by BDDs
for functions

The example in this section demonstrates how the BDD representation
for functions can be used for representing an FSM
 In addition� we
show how to compute the set of predecessors Q for a given set of states
Q�

Consider the FSM in Figure �
�
 Its set of states is S � f		� 	� 	� g

Its input set is I � fag
 The transition function R � S�I � S is shown
in Table �
�
 In this table we use the variables �x�� x�� to encode S�
i� to encode I and x��� x

�
� to encode the next states in the transition

relation

32

10

a

a
a

a

Figure �
�� An example FSM

In order to de�ne R in our BDD framework we partition it into two
boolean functions R� and R�� where� R� consists of the set of elements

���

x� x� i� x�� x��
	 	 	 	
	 	
	 	
	 	
 	 	
 	 	
 	 	 	

Table �
�� The transition relation of the FSM

of the form �s� i� for which x�� �
 Similarly� R� is the set of elements
for which x�� �
 The sets are� R� � f		� 		� 		� 	� g and
R� � f			� 		� 		� 	� 		� g

Next we show how to use this representation in order to compute
R���Q�� using the inverse algorithm
 The result of this operation is
the set of pairs �s� i� such that �s� i� � R���Q��
 Thus� the set Q of
predecessors of Q� is computed by Q � fsj�i � I��s� i� � R���Q��g

Let Q� � f	� 	g
 The BDD �Q� is shown in Figure �
�
 The inverse

0 1

x��

x��

x��

Figure �
�� The BDD �Q� � Dashed lines lead to low successors� full lines lead to
high successors�

algorithm results in R���Q� � ��R� � ���R� � 	� � �R� � ��� � �R� �
���R�����R��	��� � ��R��R����R���R�� � f			� 	� 	g
 The
set of predecessor is now computed by Q � fqj�i��q� i� � R���Q��g �
f		� 	� 	g

���

	�� Experimental results

We ran experiments to compare the four algorithms that calculate the
preimage operation
 We implemented these algorithm on the platform
used in the Equivalence Department of the Israel Design Center at Intel
Haifa

Each algorithm was inserted as a subroutine into a tool which uses
the preimage subroutine to calculate the transitive preimage of a given
set Q�
 That is� the tool calculates a set Q of all states from which there
exists a trace to states in Q�
 The calculation is done by repeating the
preimage operation until a �x�point is reached

We made the comparison over test cases of the equivalence depart�
ment
 The results are presented in Table �
�� Table �
� and Table �
�

Table �
� shows the properties of the tested designs
 Table �
� presents
the computation times in seconds of the di�erent methods over the test
cases� and Table �
� presents the the space requirements in BDD nods
of the di�erent methods over the test cases
 The algorithms were tested
on a machine with two CPUs of ��	 MHZ each and �GB memory

The experimental results show that the inverse algorithm is strictly
better than the expound algorithm both in time and space
 It also
shows that although the monolithic algorithm has the best average
performances� for some designs it explodes� thus it needs a backup
algorithm
 A comparison between the inverse algorithm and the early
quanti�cation algorithm shows that the early quanti�cation algorithms
have an advantage although it is not a strict one

���

Design inputs latches outputs
number number number

s��� 	 � �
s�� � � �
s�� �� � ��
s�		 � � �
s��� � � �
s��� � � �
s��� � �
s��� � � �
s��� � � �
s��	 � � �
x� �� �� ��

Table �
�� The properties of the designs

Design our monolithic early expound
algorithm quanti�cation subroutine

s��� �� �	 �� ��
s�� �� �� �� ��
s�� 	��	� ���	 ����� ���	�
s�		 ���� ���� ���� ������
s��� ����� �	� ��� ������
s��� � � � ��
s��� ���� ���� ���� space over�ow
s��� �� �� �� ��
s��� �� �� �� 	�
s��	 �� � �� 		
x� �� space over�ow ��� ��

Table �
�� Time of calculations in seconds

���

Design our monolithic early expound
algorithm quanti�cation subroutine

s��� ��������� ������� ���	���� ��	�	����
s�� ����� �������� ����	 ����
s�� ��������� ���	�	� �������	� ���������
s�		 ��������� �������	� ������� 	�����		
s��� ��������� ��	�����	 �������	 �	����
s��� ������ ����� ����� ������
s��� ��������� �������� ������	�	 space over�ow
s��� �	��		 �����	�� ��	�� ���	
s��� ������	� ��	 ������	 ��	������
s��	 ������	� ��	�� ������� ��	������
x� ������ space over�ow ��������� ����	���	

Table �
�� Space required in the calculations in BDD nodes

���

Chapter �

Conclusion and Future

Research

In this work we concentrated on methods for overcoming the state
explosion problem
 Chapters �� �� and � refer to the use of equivalence
relations and preorders for abstraction
 In Chapter � we improve an
existing symbolic algorithm for the preimage operation

In Chapter � we discussed minimization with respect to the simu�
lation preorder
 We proved that for every Kripke structure M there
exists a unique smallest in size structure A such that M and A are sim�
ulation equivalent
 We proved that given a structure M the minimal
abstract structure A can be obtained by eliminating two redundancies�
Equivalent states and little brothers
 We presented two algorithms that
construct the minimal equivalent structures� The minimizing algorithm
and the partition algorithm
 The former algorithm has a better time
complexity and the latter has a better space complexity

The results in Chapter � can be extended in several directions
 In
Chapter � we showed that minimization with respect to simulation
equivalence� can result in smaller models than bisimulation minimiza�
tion
 We also showed that minimization with respect to language equiv�
alence can result in an even smaller model� however the complexity of
such minimization is exponential
 An interesting research direction is
to �nd a sequence of equivalence relations E�� E�� � � � � En where E� is
the simulation equivalence relation� and En is the language equivalence
relation
 For each i � n the following should holds� �� Ei
 Ei���

���

thus Ei�� is less restrictive than Ei
 ��� The result of the reduction
with respect to Ei�� is smaller than the result of reduction with re�
spect to Ei
 ��� The complexity of reducing with respect to Ei�� is
greater than or equal to the complexity of reducing with respect to
Ei
 Having such a sequence� a parameterized reduction algorithm can
be developed
 The algorithm will receive an equivalence relation as a
parameter and reduce with respect to this relation

In Chapter � we made a broad comparison between four notions
of fair simulation� direct �DHWT��� delay �EWS	a�� game �HKR����
and exists �GL���
 The comparison shows that there is no notion of
fair simulation which has all desired advantages
 However� it is clear
that their relationship with temporal logics gives the exists and game
simulations several advantages over the delay and direct simulations

On the other hand� the delay and direct simulations are better for
minimization
 Since this research is motivated by usefulness to model
checking� relationships with logic are important
 Thus� it is advanta�
geous to refer to the delay and direct simulations as approximations of
the game�exists simulations
 These approximations enable some min�
imization with respect to the exists and game simulations
 Out of the
four notions� we consider the game simulation to be the best
 This is
due to its complexity and its applicability in modular veri�cation

Modularity is extensively used in the development of systems
 As a
result� most systems have a modular structure
 In Chapter � we showed
how this structure can be used for a more e�cient minimization algo�
rithm
 Given an FSM M the algorithm constructs two disjoint FSMs
M e

� and M e
� such that M is equivalent to the restricted composition of

M e
� and M e

�
 Once the algorithm constructs these FSMs� the problem
of minimizing M is reduced to minimizing M e

� and M e
� separately and

composing the result
 Since the complexity of minimizing M might
be quadratically greater than minimizing M e

� and M e
� separately� the

potential of the algorithm is huge
 The experimental results showed
that the improved algorithm outperformed both the naive algorithm
and the ordinary algorithm

In Chapter � we improved the algorithm suggested in �CM�	a�
CM�	b� for preimage calculation
 We suggested a new inverse algo�
rithm with the same complexity as the expound subroutine but with
better constants

��	

The experimental results show that the inverse algorithm is strictly
better than the expound algorithm both in time and space
 It also
shows that although the monolithic algorithm has the best average
performance� for some designs it explodes� thus it needs a backup al�
gorithm
 A comparison between the inverse algorithm and the early
quanti�cation algorithm shows that the early quanti�cation algorithm
have an advantage although it is not a signi�cant one
 Given a func�
tion f and a set of elements Q� there is a high probability that the
inverse algorithm will perform the operation f���Q�� faster than the
other algorithms
 Thus� it is worth while to have it as an alternative
to the other algorithms

It would be interesting to �nd criteria for functions to determine
which algorithm is preferable
 Based on that a procedure should be
implemented which selects an algorithm according to the computed
function
 A similar work has been done in �MKRS		� with respect to
the image operation

���

Bibliography

�ASS���� A
 Aziz� V
 Singhal� T
R
 Shiple� A
L
 Sangiovanni�
Vincentelli� F
 balarin� and R
K
 Brayton
 Equivalences
for fair kripke structures
 In ICALP� LNCS ��	� pages
���)���� ���

�ASSB��� A
 Aziz� V
 Singhal� G
M
 Swamy� and R
K
 Brayton
 Min�
imizing interacting �nite state machines� A compositional
approach to language containment
 In Proceedings of the
International Conference on Computer Design� pages ���)
��� ���

�ASSSV��� A
 Aziz� T
R
 Shiple� V
 Singhal� and A
L
 Sangiovanni�
Vincetelly
 Formula�dependent equivalence for composi�
tional CTL model checking
 In D
 Dill� editor� Proceedings
of the Sixth Conference on Computer Aided Veri�cation
CAV����� volume �� of LNCS� pages ���)���� ���

�BBLS�� S
 Bensalem� A
 Bouajjani� C
 Loiseaux� and J
 Sifakis

Property preserving simulation
 In Computer�aided Veri�
�cation� volume ��� LNCS� pages ��)���� ��

�BCL�� J
 R
 Burch� E
 M
 Clarke� and D
 E
 Long
 Symbolic
model checking with partitioned transition relations
 In
Int� Conference on Very Large Scale Integration� ��

�BCM���� J
 R
 Burch� E
 M
 Clarke� K
 L
 McMillan� D
 L
 Dill�
and L
 J
 Hwang
 Symbolic model checking� 	�� states
and beyond
 Information and Computation� ��������)�	�
June ���

���

�BG		� D
 Bustan and O
 Grumberg
 Simulation based minimiza�
tion
 In Conference on Automated Deduction� volume ��
pages ���)��	� �			

�BG	� D
 Bustan and O
 Grumberg
 Modular minimization of
deterministic �nite�state machines
 In �th International
Workshop on Formal Methods for Industrial Critical Sys�
tems� pages ��)��� �		

�BG	�� D
 Bustan and O
 Grumberg
 Applicability of fair simu�
lation
 In TACAS� LNCS ���	� pages �)��
 Springer�
�		�

�BP��� B
 Bloom and R
 Paige
 Transformational design and im�
plementation of new e�cient solution to the ready sim�
ulation problem
 In Science of Computer Programming�
volume ��� pages ��)��	� ���

�Bry��� Randal E
 Bryant
 Graph�based algorithms for boolean
function manipulation
 IEEE Transactions on Computers�
C�������)��� August ���

�CE�� E
 M
 Clarke and E
 A
 Emerson
 Synthesis of synchroniza�
tion skeletons for branching time temporal logic
 In Logic
of Programs
 Workshop� Yorktown Heights� NY� volume
� of LNCS
 Springer Verlag� ��

�CGL��� E
 M
 Clarke� O
 Grumberg� and D
 E
 Long
 Model
checking and abstraction
 ACM Transactions on Program�
ming Languages and Systems TOPLAS�� �� ����)����
September ���

�CGP��� E
M
 Clarke� O
 Grumberg� and D
A
 Peled
 Model Check�
ing
 MIT Press� ���

�CHJ��	� H
 Cho� G
 Hachtel� S
 Jeong� B
 Plessier� E
 Shwarz� and
F
 Somenzi
 ATPG aspects of FSM veri�cation
 In ICCAD�
pages ��)��� ��	

�CLM��� E
 M
 Clarke� D
 E
 Long� and K
 L
 McMillan
 Com�
positional model checking
 In Proceedings� Fourth Annual

���

Symposium on Logic in Computer Science� pages ���)����
Asilomar Conference Center� Paci�c Grove� California� �)�
June ���
 IEEE Computer Society Press

�CM�	a� O
 Coudert and J
C
 Madre
 A uni�ed framework for
the formal veri�cation of sequential circuits
 In Computer
Aided Design� pages ��)��� ��	

�CM�	b� O
 Coudert and J
C
 Madre
 Verifying temporal properties
of sequential machines without building their state dia�
grams
 In Computer Aided Veri�cation� LNCS ��� pages
��)��� ��	

�CRFJ��� E
M
 Clarke� R
Enders� T
 Filkorn� and S
 Jha
 Exploiting
symmetry in temporal logic model checking
 In Formal
Methods in System Design� pages ��)	�� ���

�CVWY�� C
 Courcoubetis� M
 Vardi� P
 Wolper� and M
 Yannakakis

Memory e�cient algorithms for the veri�cation of temporal
properties
 In Proceedings of Computer�Aided Veri�cation�
volume �� of LNCS� pages ���) ���� ��

�Dam��� Mads Dam
 CTL& and ECTL& as fragments of the modal
��calculus
 Theoretical Computer Science� �������)���
 April ���

�DGG��� Dennis Dams� Rob Gerth� and Orna Grumberg
 Abstract
interpretation of reactive systems
 ACM Transactions on
Programming Languages and Systems TOPLAS�� �����
March ���

�DHWT�� D
L
 Dill� A
J
 Hu� and H
 Wong�Toi
 Checking for lan�
guage inclusion using simulation relation
 In Computer�
Aided Veri�cation� LNCS ���� pages ���)���� ��

�EJ�� E
 A
 Emerson and C
 S
 Jutla
 Tree automata� mu�calculus
and determinacy
 In ��nd Annual Symposium on Foun�
dations of Computer Science� pages ���)���� San Juan�
Puerto Rico�)� October ��
 IEEE

���

�EWS	a� K
 Etessami� Th
 Wilke� and R
 Schuller
 Fair simulation
relations� parity games� and state space reduction for Bchi
automata
 In Automata� Languages and Programming�
��th international collquium� LNCS �	��� pages ���)�	��
�		

�EWS	b� K
 Etessami� Th
 Wilke� and R
 Schuller
 Faster algorithms
for computing fair simulation relation� and how to use them
for state space reduction
 Technical Report ITD�	��	����
Bell�Labs� �		

�Fer�	� J
C
 Fernandez
 An implementation of an e�cient algo�
rithm for bisimulation equivalence
 In Science of Computer
Programing� volume �� ��	

�Fra��� N
 Francez
 The Analysis of Cyclic Programs� PhD thesis�
Weizmann Institute of Science� ���

�FV��� K
 Fisler and M
 Vardi
 Bisimulation minimization in
an automata�theoretic veri�cation framework
 In Formal
Methods in Computer�Aided Design FMCAD�� pages �)
��� ���

�GB��� D
 Geist and I
 Beer
 E�cient model checking by auto�
mated ordering of transition relation partitions
 In Com�
puter Aided Veri�cation� LNCS ��� pages ���)�	� ���

�GL��� O
 Grumberg and D
E
 Long
 Model checking and modular
veri�cation
 ACM Trans� on Programming Languages and
Systems TOPLAS�� ��������)��� ���

�GSL��� Susanne Graf� Bernhard Ste�en� and Gerlad L%uttgen

Compositional minimisation of �nite state systems using
interface speci�cations
 Formal Aspects of Computing�
������	�)��� ���

�HHK��� M
R
 Henzinger� T
A
 Henzinger� and P
W
 Kopke
 Com�
puting simulation on �nite and in�nite graphs
 In Proc�
Symp� Foundations of Computer Science� pages ���)����
���

���

�HKR��� T
A
 Henzinger� O
 Kupferman� and S
 Rajamani
 Fair
simulation
 In Proc� �th Conference on Concurrency The�
ory� LNCS ���� ���

�Hop�� J
 E
 Hopcroft
 An n log n algorithm for minimizing states
in a �nite automaton
 In Z
 Kohavi and A
 Paz� editors�
Theory of Machines and Computations
 Academic Press�
New York� ��

�Jon��� C
 B
 Jones
 Speci�cation and design of �parallel� pro�
grams
 In In International Federation for Information Pro�
cessing IFIP�� pages ��)���� ���

�Jos��� B
 Josko
 MCTL � an extension of CTL for modular veri�
�cation of concurrent systems
 In In Workshop on Tempo�
ral Logic in Speci�cation� Manchester� volume LNCS ����
Springer Verlag� ���

�KM��� A
 Kucera and R
 Mayr
 Simulation preorder on sim�
ple process algebras
 In International Colloquium on Au�
tomata� Languages and Programing� volume ��� LNCS�
���

�Koz��� D
 Kozen
 Results on the propositional ��calculus
 TCS�
��� ���

�KP��� Shmuel Katz and Doron Peled
 De�ning conditional inde�
pendence using collapses
 Theoretical Computer Science�
	�������)���� ���

�KS�	� P
C
 Kanellakis and S
A
 Smolka
 Ccs expressions� �nite
state processes� and three problems of equivalence
 In In�
formation and computation� volume � pages ��)��� ��	

�KV��� O
 Kupferman and M
Y
 Vardi
 Veri�cation of fair tran�
sition systems
 In Computer Aided Veri�cation CAV�����
LNCS 	�� pages ���)���� ���

�KV��� O
 Kupferman and M
Y
 Vardi
 Modular model check�
ing
 In Proc� Compositionality Workshop� LNCS ���

Springer�Verlag� ���

���

�LY��� D
 Lee and M
 Yannakakis
 Online minimization of tran�
sition systems
 In Proceedings of the ��th ACM Symp� on
Theory of Computing� ���

�Lyn��� N
A
 Lynch
 Distributed Algorithm
 Morgan Kaufmann
Publishers� ���

�MC�� J
 Misra and K
M
 Chandy
 Proofs of networks of processes

IEEE Transactions on Software Engineering� �������)����
��

�Mil�� R
 Milner
 An algebraic de�nition of simulation between
programs
 In Proc� of the �nd International Joint Con�
ferences on Arti�cial Intelligence IJCAI�� pages ��)����
London� UK� ��

�Mil��� R
 Milner
 Communication and Concurrency
 Prentice�
Hall� Englewood Cli�s� New Jersey� ���

�MKRS		� I
 Moon� J
 Kukula� K
 Ravi� and F
 Somenzi
 To split or
to conjoin� The question in image computation
 In Design
Automation Conf� pages ��)��� �			

�Moo��� E
 F
 Moore
 Gedanken)experiments on sequential ma�
chines
 In C
 E
 Shannon and J
 McCarthy� editors� An�
nals of Mathematics Studies ���� Automata Studies� pages
��)��
 Princeton University Press� Princeton� NJ� ���

�Par�� D
 Park
 Concurrency and automata on in�nite sequences

In �th GI�Conference on Theoretical Computer Science�
pages ��)��
 Springer�Verlag� ��
 LNCS 	�

�Pnu��� A
 Pnueli
 In transition from global to modular temporal
reasoning about programs
 In K
 R
 Apt� editor� Logics
and Models of Concurrent Systems� volume � of NATO
ASI series F
 sv� ���

�PT��� R
 Paige and R
E
 Tarjan
 Three partition re�nement al�
gorithms
 In SIAM Journal on COMPUTING� volume ��
���

���

�Shi��� T
R
 Shiple
 Formal Analysis of synchronous circuits� PhD
thesis� University of California at Berkeley� ���

�SVW��� A
 Sistla� M
 Vardi� and P
 Wolper
 The complementation
problem for Buchi automata with applications to temporal
logic
 In In Proc� ��th Int� Colloquium on Automata� Lan�
guages and Programming� volume LNCS ��� pages ���)
���� ���

���

