
References

�ASSB��� A� Aziz� V� Singhal� G�M� Swamy� and R�K� Brayton� Minimizing interacting
�nite state machines� A compositional approach to language containment� In In

Proc� of Intl� Conf� on Computer Design� 	����
�ASSSV��� A� Aziz� V� Singhal� T�R� Shiple� and A�L� Sangiovanni
Vincentelli� Formula


dependent equivalence for compositional ctl model checking� In In Proc� of Con�

ference on Computer�Aided Veri�cation� 	����
�BdS��� Amar Bouali and Robert de Simone� Symbolic bisimulation minimisation� In

G� V� Bochmann and D� K� Probst� editors� Proceedings of the �th Conference

on Computer�Aided Veri�cation� volume ��
 of LNCS� pages ���	��� Springer
Verlag� July 	����

�BFH��� A� Bouajjani� J�
C� Fernandez� and N� Halbwachs� Minimal model generation�
In E�M Clarke and R�P� Kurshan� editors� Computer�Aided Veri�cation� pages
	�����
� New York� June 	���� Springer
Verlag�

�CE�	� E� M� Clarke and E� A� Emerson� Synthesis of synchronization skeletons for
branching time temporal logic� In Logic of Programs� Workshop� Yorktown

Heights� NY� May �	
�� volume 	
	 of lncs� sv� 	��	�
�CGP��� E�M� Clarke� O� Grumberg� and D�A� Peled� Model Checking� MIT press� De


cember 	����
�FV��� K� Fisler and M� Vardi� Bisimulation minimization in an automata
theoretic

veri�cation framework� In CAV 	
 papers� 	����
�GL��� O� Grumberg and D�E� Long� Model checking and modular veri�cation� ACM

Trans� on Programming Languages and Systems� 	��
����
���	� 	����
�HHK��� M�R� Henzinger� T�A� Henzinger� and P�W� Kopke� Computing simulation on

�nite and in�nite grafs� In Proc� Symp� Foundations of Computer Science� pages
��
����� 	����

�LY��� D� Lee and M� Yannakakis� Online minimization of transition systems� In STOC

	� papers� 	����
�Mil�	� R� Milner� An algebraic de�nition of simulation between programs� In In proceed�

ings of the �nd International Joint Conference on Arti�cial Intelligence� pages
��	����� September 	��	�

�Par�	� D� Park� Concurrency and automata on in�nite sequences� In �th GI�Conference

on Theoretical Computer Science� 	��	�
�PB��� R� Paige and B� Bloom� Transformational design and implementation of new

e�cient solution to the ready simulation problem� In Science of Computer Pro�

gramming� volume ��� pages 	������� 	����

��



Proof Sketch of Invariant �� We show that if ��s��� �s��� � Hi�� and ��s��� �s��� �
Hi�� then for every successor t� of s� there is a successor t� of s� such that ��t��� �t��� �
Hi� Thus	 by Invariant 
 ��s��� �s��� � Hi���

��� Equivalence Classes

In this section we show that when the algorithm terminates after k iterations	 �k is
the maximal simulation relation over M �M and �k is the set of equivalence classes
with respect to simulation equivalence over M �M � Moreover	 Hk is the maximal
simulation relation over the corresponding quotient structure Mq�

Theorem ��� When the algorithm terminates� �k is the maximal simulation over
M�M and �k is the set of equivalence classes of the simulation equivalence relation�

Invariant 
 and �k��k� imply that �k is a simulation relation� For maximality of
�k we prove by induction on i that if ��s��� �s��� � Hi then �s�� s�� is in the maximal
simulation over M �M �

Theorem ��� Hk is the maximal simulation relation over Mq �Mq �

��	 Space Complexity

The space complexity of the Partitioning Algorithm depends on the size of �i� We
assume that the algorithm applied to Kripke structures with some redundancy	 thus
j�ij �� jSj�

We measure the space complexity with respect to the size of the three following
relations�

�� The relation R�

� The relations Hi whose size depends on �i� We can bound the size of Hi by j�ij

��
�� A relation that relates each state to its equivalence class� Since every state belongs

to a single class	 the size of this relation is O�jSj � log�j�ij���

In the ith iteration we do not need to keep all H��H�� � � � and ��� ��� � � �	 since we
only refer to Hi�Hi�� and �i� �i��� By the above we conclude that the total space
complexity is O�jRj
 j�kj

� 
 jSj � log�j�kj��
In practice	 we often do not hold the transition relation R in the memory� Rather

we use it to provide	 whenever needed	 the set of successors of a given state� Thus	 the
space complexity is O�j�kj

�
 jSj � log�j�kj��� Recall that the space complexity of the
naive algorithm for computing the equivalence classes of the simulation equivalence
relation is bounded by jSj�	 which is the size of the simulation relation overM�M � In
case j�kj �� jSj	 the Partitioning Algorithm achieve a much better space complexity�

��� Time Complexity

As we already mentioned	 the algorithm runs at most jSj� iterations� In every iteration
it performs one re
ne and one update� re
ne can be done in O�j�kj

� 
 j�kj � jRj�
and update can be done in O�j�kj

� � �j�kj
� 
 jRj��� Thus the total time complexity

is O�jSj� � j�kj
� � �j�kj

� 
 jRj���

��



where �� � f�g� �� � f�� 
g� �� � f�g� �� � f�g� �� � f�g� �� � f�g� �� �
f�g� 	� � f�� �g�

� The third iteration results in the relations�
�� � ���H� � H� � change � false�
The equivalence classes are�
�� � f�g� �� � f�� 
g� �� � f�g� �� � f�g� �� � f�g� �� � f�g� �� � f�g� 	� �
f�� �g

Since the third iteration results in no change to the computed partition or ordering
relation	 the algorithm terminates� �� is the �nal set of equivalence classes which
constitutes the set Sq of states of Mq � H� is the maximal simulation relation over
Mq �Mq�

��� The Correctness of the Partitioning Algorithm

In order to prove the correctness of the Partitioning Algorithm 	 we prove �rst the
three invariants mentioned before� We will prove these invariants by induction on i�
The base case �i � �� for all three invariants follows from the de�nitions of the initial
relations �� and H�� We assume that for every j � i	 the invariants hold for j� We
prove that the invariants hold for i 
 ��

Theorem ��� �� For all states s�� s� � S� s� and s� are in the same class in �i��

i� s� and s� are i 
 ��equivalent�
�� ��s��

i��� �s��
i��� � Hi�� i� s� �i�� s��

�� Hi�� is transitive�

Proof Sketch of Invariant �� We sketch here only the proof for the second direc�
tion� We prove that s� � �s��� Since s� � �s��	 s� � GT and s� � LT � Based on that
and on the transitivity of Hi �by induction hypothesis for Invariant ��	 we show that
s� � GT � LT and therefore s� � �s���

Proof Sketch of Invariant 
� We next sketch the proof of Invariant 
 for Hi���
Since the construction of Hi�� is based on both �i and �i��	 we need to distinguish
between classes in these sets� We use �s�i and �s�i�� to denote equivalence classes in
�i and �i�� respectively�

The following lemma implies the �rst direction of the invariant� The proof of the
second direction uses similar arguments�

Lemma �
� Let ��s��i��� �s��i��� � Hi��� Then for every successor t� of s�� there
exists a successor t� of s� such that ��t��

i� �t��
i� � Hi�

Proof � Let ��s��i��� �s��i��� � Hi��	 and let t� be a successor of s�� Then �t��i �

��s��

i���� Since 
��s��i��� � � then �t��i � �� By de�nition of �	 there is a state t�
such that �t��i is in 
��s��i��� and ��t��i� �t��i� � Hi� �t��i � 
��s��i��� implies that t�
is a successor of some state s� in �s��i���

Since s�� s� are in the same class in �i��	 by invariant � s� and s� are �i 

���equivalent� Thus	 there exists a successor t� of s� such that ��t��i� �t��i� � Hi� By
Invariant �	 Hi is transitive and therefore ��t��i� �t��i� � Hi� ut

��



Hi it is su�cient to check ����� �
�

�� � Hi only in case �� � ���	 �� � ���	 and ���� ��� �
Hi���

For suitable ��� and ���	 we �rst construct the set � of classes that are �smaller�
than the classes in 
������ By checking if � � 
����� we determine whether every
class in
����� is �smaller� than some class in 
�����	 in which case ��

�

�� �
�

�� is inserted
to Hi�

When the algorithm terminates	 �i is the maximal simulation relation and the
i�equivalence is the simulation equivalence relation over M �M � Moreover	 Hi is the
maximal simulation relation over the corresponding quotient structure Mq �

The algorithm runs until there is no change both in the partition �i and in the
relation Hi� A change in �i is the result of a partitioning of some class � � �i� The
number of changes in �i is bounded by the number of possible partitions	 which is
bounded by jSj�

A change in Hi results in the relation �i�� which is contained in �i and smaller
in size	 i�e�	 j �i j � j �i�� j� The number of changes in Hi is therefore bounded
by j �� j	 which is bounded by jSj�� Thus	 the algorithm terminates after at most
jSj� 
 jSj iterations� Note that	 it is possible that in some iteration i	 �i will not
change but Hi will	 and in a later iteration j � i	 �j will change again�
Example� In this example we show how the Partitioning Algorithm is applied to the
Kripke structure presented in Figure � �

a

a a

b b b

c c d d

0

1 2

3 4 5

6 7 8 9

Fig� �� An example structure

� We initialize the algorithm as follows�
�� � f��� ��� ��� 	�g	 H� � f���� ���� ���� ���� ���� ���� �	�� 	��g	
where �� � f�� �� 
g� �� � f�� �� �g� �� � f�� �g� 	� � f�� �g�

� The �rst iteration results in the relations�
�� � f��� ��� ��� ��� ��� ��� 	�g	
H� � f���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� �	�� 	��g
where �� � f�g� �� � f�� 
g� �� � f�g� �� � f�g� �� � f�g� �� � f�� �g� 	� �
f�� �g�

� The second iteration results in the relations�
�� � f��� ��� ��� ��� ��� ��� ��� 	�g	
H� � f���� ���� ���� ���� ���� ���� ���� ���� ���� ����

���� ���� ���� ���� ���� ���� ���� ���� ���� ���� �	�� 	��g	

�




Initialize the algorithm�

change �� true

for each label ap � �AP construct �ap � �� such that s � �ap � L�s� � ap�

H� � f�����j� � ��g
while change � true do begin

change �� false

re�ne ��

�i�� �� �
for each � � �i do begin

while � �� � do begin

choose sp such that sp � �

GT �� fsgjsg � � � �tp � succ�sp� �tg � succ�sg�� ��tp�� �tg�� � Hig
LT �� fsljsl � � � �tl � succ�sl� �tp � succ�sp�� ��tl�� �tp�� � Hig
�� �� GT � LT

if � �� �� then change �� true

� �� � n ��

Add �� as a new class to �i���

end

end

update H�

Hi�� � �
for every ���� ��� � Hi do begin

for each ��

�� �
�

� � �i�� such that �� 	 ��

�� �� 	 ��

� do begin

� � f�j�� � 	���

�� ��� �� � Hig
if � 	 	���

�� then

insert ���

�� �
�

�� to Hi��

else

change �� true

end

end

end

Fig� �� The Partitioning Algorithm

Invariant �� For all states s�� s� � S	 s� �i s� i� ��s��� �s��� � Hi�
Invariant �� Hi is transitive�

�i is a set of equivalence classes with respect to the i�equivalence relation� In the
ith iteration we split the equivalence classes of �i�� so that only states that are
i�equivalent remain in the same class�

A class � � �i�� is repeatedly split by choosing an arbitrary state sp � � �called
the splitter� and identifying the states in � that are i�equivalent to sp� These states
form an i�equivalence class �� that is inserted to �i�

�� is constructed in two steps� First we calculate the set of states GT � � that
contains all states sg such that sp �i sg � Next we calculate the set of states LT � �

that contains all states sl such that sl �i sp� The states in the intersection of GT and
LT are the states in � that are i�equivalent to sp�

Hi captures the partial order �i	 i�e�	 s� �i s� i� ��s��� �s��� � Hi� Note that the
sequence ������ � � � satis�es ��������� � � �� Therefore	 if s� �i s� then s� �i�� s��
Thus	 ��s��� �s��� � Hi implies ��s��� �s��� � Hi��� Based on that	 when constructing

��



�� Removing unreachable states can be done in O�jRj��

As a whole the algorithm works in time O�jSj��
The space bottle neck of the algorithm is the computation of the maximal simu�

lation relation which is bounded by jSj��

� Partition Classes

In the previous section	 we presented the Minimizing Algorithm � The algorithm
consists of three steps	 each of which results in a structure that is smaller in size� Since
the �rst step handles the largest structure	 improving its complexity will in�uence
most the overall complexity of the algorithm�

In this section we suggest an alternative algorithm for computing the set of equiv�
alence class� The algorithm avoids the construction of the simulation relation over
the original structure� As a result	 it has a better space complexity	 but its time com�
plexity is worse� Since the purpose of the Minimizing Algorithm is to reduce space
requirements	 it is more important to reduce its own space requirement�

��� The Partitioning Algorithm

Given a structure M 	 we would like to build the equivalence classes of the simulation
equivalence relation	 without �rst calculating HM � Our algorithm	 called the Parti�
tioning Algorithm 	 starts with a partition �� of S to classes� The classes in �� di�er
from one another only by their state labeling� In each iteration	 the algorithm re�nes
the partition and forms a new set of classes� We use �i to denote the set of the classes
obtained after i iterations� In order to re�ne the partitions we build an ordering rela�
tionHi over �i��i which is updated in every iteration according to the previous and
current partitions ��i�� and �i� and the previous ordering relation �Hi���� Initially	
H� includes only the identity pairs �of classes��

In the algorithm	 we use succ	s
 for the set of successors of s� Whenever �i is
clear from the context	 �s� is used for the equivalence class of s� We also use a function

 that associates with each class � � �i the set of classes �

� � �i�� that contain a
successor of some state in ��


��� � f�t�i��j	s � �� �s� t� � Rg

We use English letters to denote states	 capital English letters to denote sets of states	
Greek letters to denote equivalence classes	 and capital Greek letters to denote sets
of equivalence classes� The Partitioning Algorithm is presented in Figure � �

De
nition ��� The partial order �i on S is de�ned by� s� �i s� implies� L�s�� �
L�s�� and if i � �� 
t���s�� t�� � R � 	t���s�� t�� � R � ��t��� �t��� � Hi����� In case
i � �� s� �� s� i� L�s�� � L�s���
Two states s�� s� are i�equivalent i� s� �i s� and s� �i s��

In the rest of this section we explain how the algorithm works� There are three
invariants which are preserved during the execution of the algorithm�

Invariant �� For all states s�� s� � S	 s� and s� are in the same class � � �i i� s�
and s� are i�equivalent�

��



c

d e

a

b

{1}

{2,3}

{5}

{7,8} {9,10}

1 2

4

a

b b

c c c

d d e e

1

2 3

4 5 6

7 8 9 10

b

11

c

d e

b

{2,3}

{5}

{7,8} {9,10}

a

c

{4}
{6}

c

b

{11}

{1}

3

c

d e

c c

a

b

{1}

{2,3}

{4}
{5} {6}

{7,8} {9,10}

b

{11}

Fig� �� An example of the Minimizing Algorithm


� Part 
 presents the 
�structure Mq� The maximal simulation relation HM is �not
including the trivial pairs��
HM � f�f��g� f
� �g�� �f�g�f�g�� �f�g� f�g�g�

�� f��g is a little brother of f
� �g and f�g is their father� Part � presents the structure
after the removal of the edge �f�g� f��g��

�� Finally	 part � contains the reduced structure	 obtained by removing the unreach�
able states�

	�	 Complexity

The complexity of each step of the algorithm depends on the size of the Kripke
structure resulting from the previous step� In the worst case the Kripke structure
does not change	 thus all three steps depend on the original Kripke structure� Let M
be the given structure� We analyze each step separately �a naive analysis��

�� First	 the algorithm constructs equivalence classes� To do that it needs to compute
the maximal simulation relation� �PB��	HHK��� showed that this can be done in
time O�jSj � jRj�� Once the algorithm has the simulation relation	 the equivalence
classes can be constructed in time O�jSj��� Next	 the algorithm constructs the
transition relation� This can be done in time O�jSj 
 jRj�� As a whole	 building
the quotient structure can be done in time O�jSj � jRj��


� Disconnecting little brothers can be done in O�jSj���

�



We proved that the result M � of the Disconnecting Algorithm is simulation equiv�
alent to the original structure M � Note that M � has the same set of states as M � We
now show that the maximal simulation relation over M is identical to the maximal
simulation relations for all intermediate structures M �� �including M ��	 computed by
the Disconnecting Algorithm� Since there are no simulation equivalent states in M 	
there are no such states in M � as well�

Lemma ��� Let M � �� S�R�� s�� L � be the result of the Disconnecting Algorithm
on M and let H� � S��S� be the maximal simulation over M ��M �� Then� HM � H��

The lemma is proved by induction on the number of iterations�
As a result of the last lemma	 the Disconnecting Algorithm can be simpli�ed sig�

ni�cantly� The maximal simulation relation is computed once on the original structure
M and is used in all iterations� If the algorithm is executed symbolically �with BDDs�
then this operation can be performed e�ciently in one step�

R� � R� f�s�� s��j	s� � �s�� s�� � R � �s�� s�� � HM � �s�� s�� 
� HMg�

	�� The Algorithm

We now present our algorithm for constructing the reduced structure for a given one�

�� Compute the �
quotient structure Mq of M and

the maximal simulation relation HM over Mq �Mq�

�� R� � Rq 
 f�s�� s��j�s� � �s�� s�� � Rq � �s�� s�� � HMg
�� Remove all unreachable states�

Fig��� The Minimizing Algorithm

Note that	 in the second step we eliminate the check �s�� s�� 
� HM � This is based
on the fact thatMq does not contain simulation equivalent states� Removing unreach�
able states does not change the properties of simulation with respect to the initial
states� The size of the resulting structure is equal to or smaller than the original
one� Similarly to the �rst two steps of the algorithm	 if the resulting structure is not
identical then it is strictly smaller in size�

We have proved that the result of the Minimizing Algorithm M � is simulation
equivalent to the original structure M � Thus we can conclude that Theorem � is
correct�

Figure � presents an example of the three steps of the Minimizing Algorithm
applied to a Kripke structure�

�� Part � contains the original structure	 where the maximal simulation relation is
�not including the trivial pairs��
f�
� ��� ��� 
�� ����
�� ���� ��� ������ ������ ��� ��� ��� ��� ������� ������g�
The equivalence classes are � ff�g� f
� �g� f��g�f�g� f�g� f�g�f���g�f����gg�

�



	�� Disconnecting Little Brothers

Our next step is to disconnect the little brothers from their fathers� As a result of
applying this step to a Kripke structure M with no equivalent states	 we get a Kripke
structure M � satisfying�

�� M are M � are simulation equivalent�

� There are no equivalent states in M ��
�� There are no little brothers in M ��
�� jM �j � jM j	 and if M and M � are not identical	 then jM �j � jM j�

In Figure � we present an iterative algorithm which disconnects little brothers and
results in M ��

change �� true

while �change � true	 do

Compute the maximal simulation relation HM

change �� false

If there are s�� s�� s� � S such that s� is a little brother of s�

and s� is the father of both s� and s� then

change �� true

R � R n f�s�� s��g
end

end

Fig� �� The Disconnecting Algorithm�

Since in each iteration of the algorithm one edge is removed	 the algorithm will
terminate after at most jRj iterations� We will show that the resulting structure is
simulation equivalent to the original one�

Lemma ��� Let M � �� S�� R�� s��� L
� � be the result of the Disconnecting Algorithm

on M � Then M and M � are simulation equivalent�

Proof Sketch � We prove the lemma by induction on the number of iterations�
Base� at the beginning M and M are simulation equivalent�
Induction step� LetM �� be the result of the �rst i iterations and H�� be the maximal
simulation over M �� � M ��� Let M � be the result of the �i 
 ��th iteration where
R� � R�� nf�s��� � s

��

��g� Assume that M and M �� are simulation equivalent� It is straight
forward to see that H� � f�s��� s

��

��j�s
��

� � s
��

�� � H��g is a simulation relation over M � �
M ��� Thus	 M � �M ���

To show thatM �� � M � we prove thatH� � f�s��� � s
�

��j�s
��

� � s
��

�� � H��g is a simulation
relation� Clearly	 �s��� � s

�

�� � H� and L���s��� � � L��s����
Suppose �s��� � s

�

�� � H� and t��� is a successor of s
��

� � Since H
�� is a simulation relation	

there exists a successor t��� of s
��

� such that �t
��

� � t
��

�� � H ��� This implies that �t��� � t
�

�� � H��
If �s��� t

�

�� � R� then we are done� Otherwise	 �s��� � t
��

�� is removed from R�� because t��� is
a little brother of some successor t��� of s

��

� � Since �s
��

� � t
��

�� is the only edge removed at the
�i
��th iteration	 �s��� t

�

�� � R�� Because t��� is a little brother of t��� then �t��� � t
��

�� � H���
By transitivity of the simulation relation	 �t��� � t

��

�� � H��	 thus �t��� � t
�

�� � H�� ut

�



The transitions in Mq are 
�transitions	 in which there is a transition between two
equivalence classes i� every state of the one has a successor in the other� We could
also de�ne 	�transitions	 in which there is a transition between classes if there exists
a state in one with a successor in the other� Both de�nitions result in a simulation
equivalent structure� However	 the former has smaller transition relation and therefore
it is preferable�

Note that	 jSq j � jSj and jRqj � jRj� If jSqj � jSj	 then every equivalence class
contains a single state� In this case	 Rq is identical to R and Mq is isomorphic to M �
Thus	 when M and Mq are not isomorphic	 jSq j � jSj�
Next	 we show that M and Mq are simulation equivalent�

De
nition ��� Let G � S be a set of states� A state sm � G is maximal in G i�
there is no state s � G such that �sm� s� � HM and �s� sm� 
� HM �

De
nition ��� Let � be a state of Mq � s� a state in � and t� a successor of s�� The
set G��� t�� is de�ned as follow�

G��� t�� � ft� � Sj	s� � � � �s�� t�� � R � �t�� t�� � HMg�

Intuitively	 G��� t�� is the set of states that are greater than t� and are successors of
states in �� Notice that since all state in � are simulation equivalent	 every state in
� has at least one successor in G��� t���

Lemma ��� Let �� t� be as de�ned in De�nition �� � Then for every maximal states
tm in G��� t��� �tm� is a successor of ��

Proof � Let tm be a maximal state in G��� t��	 and let sm � � be a state such that
tm is a successor of sm� We prove that for every state s � �	 there exists a successor
t � �tm�	 which implies that �tm� is a successor of ��

s� sm � � implies �sm� s� � HM � This implies that there exists a successor t of
s such that �tm� t� � HM � By transitivity of the simulation relation	 �t�� t� � HM �
Thus t � G��� t��� Since tm is maximal in G��� t��	 �t� tm� � HM � Thus	 t and tm are
simulation equivalent and t � �tm�� ut

Theorem �	� The structures M and Mq are simulation equivalent�

Proof Sketch � It is straight forward to show that H� � f��� s�js � �g is a simulation
relation over Mq �M � Thus	 Mq �M �

In order to prove that M �Mq we choose H� � f�s�� ��j there exists a state s� �
� such that �s�� s�� � HMg� Clearly	 �s�� s�q� � H� and L�s�� � Lq����

Assume �s�� ��� � H� and let t� be a successor of s�� We prove that there exists a
successor �� of �� such that �t�� ��� � H�� We distinguish between two cases�

�� s� � ��� Let tm be a maximal state in G���� t��	 then Lemma �� implies that
���� �tm�� � Rq� Since tm is maximal in G���� t��	 �t�� tm� � HM which implies
�t�� �tm�� � H��


� s� 
� ��� Let s� � �� be a state such that �s�� s�� � HM � Since �s�� s�� � HM

there is a successor t� of s� such that �t�� t�� � HM � The �rst case implies that
there exists an equivalence class �� such that ���� ��� � Rq and �t�� ��� � H�� By
�t�� ��� � H� we have that there exists a state t� � �� such that �t�� t�� � HM �
By transitivity of simulation �t�� t�� � HM � Thus	 �t�� ��� � H �� ut

�



initial state� �since all states are reachable	 the distance is bounded by jSj�� Again
we use the composed relation HMM �M to show that if f is not onto then M � is not
reduced�

Similarly	 we can show that f�� is onto and therefore f is total� ut

Lemma �� For all s� � S�� L��s�� � L�f�s���� Furthermore� for all s��� s
�

� � S��
�s��� s

�

�� � R� i� �f�s���� f�s
�

��� � R�

Thus	 we conclude Theorem � �

Theorem �� Let M be a non�reduced Kripke structure� then there exists a reduced
Kripke structure M � such that M�M � are simulation equivalent and jM �j � jM j�

In order to prove Theorem � 	 we present in the next sections an algorithm that
receives a Kripke structure M and computes a reduce Kripke structure M �	 which is
simulation equivalent to jM j	 such that jM �j � jM j� Moreover	 if M is not reduced
then jM �j � jM j�

Lemma 
� Let M � be a reduced Kripke structure� For every M that is simulation
equivalent to jM �j� if M and M � are not isomorphic then jM �j � jM j�

� The Minimizing Algorithm

In this section we present the Minimizing Algorithm that gets a Kripke structure M
and computes a reduced Kripke structure M � which is simulation equivalent to M

and jM �j � jM j� If M is not reduced then jM �j � jM j�
The algorithm consists of three steps� First	 a quotient structure is constructed

in order to eliminate equivalent states� The resulting quotient model is simulation
equivalent to M but may not be reduced� The next step disconnects little brothers
and the last one removes all unreachable states�

In each step of the algorithm	 if the resulting structure di�ers from the original
one then the resulting one is strictly smaller than the original structure�

	�� The ��quotient Structure

In order to compute a simulation equivalent structure that contains no equivalent
states	 we compute the 
�quotient structure with respect to the simulation equiva�
lence relation� We �x M to be the original Kripke structure� We denote by �s� the
equivalence class which includes s�

De
nition ��� The 
�quotient structure Mq �� Sq� Rq� s�q � Lq � of M is de�ned
as follow�

� Sq is the set of the equivalence classes of the simulation equivalence� 	We will use
Greek letters to represent equivalence classes
�

� Rq � f���� ���j
s� � �� 	s� � ��� �s�� s�� � Rg
� s�q � �s�q ��
� Lq��s�� � L�s��

�



structure always exists� Furthermore	 we show that all reduced structures of M are
isomorphic to each other�

Let M be a Kripke structure� The maximal simulation relation over M �M al�
ways exists and is denoted by HM � We need the following two de�nitions in order to
characterize reduced structures�

Two states s�� s� � M are simulation equivalent i� �s�� s�� � HM and �s�� s�� �
HM �
A state s� is a little brother of a state s� i� there exists a state s� such that�

� �s�� s�� � R and �s�� s�� � R�
� �s�� s�� � HM and �s�� s�� 
� HM �

De
nition �� A Kripke structure M is reduced if�

�� There are no simulation equivalent states in M �
�� There are no states s�� s� such that s� is a little brother of s��
�� All states in M are reachable from s��

Theorem 	� � Let M M � be two reduced Kripke structures� Then the following two
statements are equivalent�

�� M and M � are simulation equivalent�
�� M and M � are isomorphic�

The proof that 
 implies � is straight forward� In the rest of this section we assume
that M and M � are reduced Kripke structures� We will show that if M � M � and
M � �M then M and M � are isomorphic�

We use HMM � andHM �M to denote the maximal simulation relations overM�M �

and M � � M respectively� The composed relation HMM �M � S � S is de�ned by
HMM �M � f�s�� s��j	s� � S�� �s�� s�� � HMM � � �s�� s�� � HM �Mg�

Lemma �� The composed relation HMM �M is a simulation relation�

For the reduced Kripke structures M and M �	 we de�ne the matching relation f �
S� � S as follows�

�s�� s� � f i� �s�� s� � HM �M and �s� s�� � HMM ��

We show that f is an isomorphism between M � and M 	 i�e�	 f is an one to one and
onto total function that preserves the state labeling and the transition relation�

Lemma �� Let f � S� � S be the matching relation� Then f is an one to one� onto�
and total function from S� to S�

Proof Sketch � First we need to prove that f is a function from S� to S� We assume
to the contrary that there are di�erent states s�� s� � S and s� � S� such that
�s�� s�� � f and �s�� s�� � f � We show that �s�� s�� � HMM �M and �s�� s�� � HMM �M �
Since HMM �M is included in HM 	 this contradicts the assumption that M is reduced�
The proof that f�� is a function from S to S� is similar� Thus	 we conclude that f is
one to one�

Next	 we prove that f is onto	 i�e� for every state s in S there exists a state s� in
S� such that �s�� s� � f � The proof is by induction on the distance of s � S from the

�



to a given formula may result in a more power reduction	 however it requires to
determine the checked formula in advance�

The rest of the paper is organized as follows� Section 
 gives our basic de�nitions�
Section � de�nes reduced structures and shows that every structure has a unique
simulation equivalent reduced structure� Section � presents the Minimizing Algorithm
� Finally	 Section � describes the Partitioning Algorithm and discusses its space and
time complexity�

� Preliminaries

Let AP be a set of atomic propositions� A Kripke structureM over AP is a four tuple
M � �S� s�� R� L� where S is a �nite set of states� s� � S is the initial state� R � S�S
is the transition relation that must be total	 i�e�	 for every state s � S there is a state
s� � S such that R�s� s��� and L � S � 
AP is a function that labels each state with
the set of atomic propositions true in that state�

The size jM j of a Kripke structure M is the pair �jSj� jRj�� We say that jM j � jM �j
if jSj � jS�j or jSj � jS�j and jRj � jR�j�

Given two structures M and M � over AP 	 a relation H � S � S� is a simulation
relation �Mil��� over M �M � i� the following conditions hold�

�� �s�� s
�

�� � H�

� For all �s� s�� � H	 L�s� � L��s�� and


t��s� t� � R� 	t���s�� t�� � R� � �t� t�� � H���

We say that M � simulates M �denoted by M � M �� if there exists a simulation
relation H over M �M ��

The logic ACTL� �GL��� is the universal fragment of the powerful branching�time
logic CTL�� ACTL� consists of the temporal operators X �next�time�	 U �until� and
R �release� and the universal path quanti�er A �for all paths�� For lack of space the
formal de�nition is omitted� It can be found in �CGP����
The following lemma and theorem have been proven in �GL����

Lemma �� � is a preorder on the set of structures�

Theorem �� Suppose M � M �� Then for every ACTL� formula f � M � j� f implies
M j� f �

Given two Kripke structures M�M �	 we say that M is simulation equivalent to M � i�
M �M � and M � �M � It is easy to see that this is an equivalence relation�

A simulation relation H over M �M � is maximal i� for all simulation relations
H � over M �M �	 H� � H�

In �GL��� it has been shown that if there is a simulation relation over M �M �

then there is a unique maximal simulation over M �M ��

� The Reduced Structure

Given a Kripke structure M 	 we would like to �nd a reduced structure that will be
simulation equivalent toM and smallest in size� In this section we show that a reduced

�



between classes if there exists a state of one with a successor in the other	 then we
get the 	�quotient structure� Both structures are simulation equivalent to M 	 but
the 
�quotient structure has fewer transitions and therefore is preferable�

The other di�culty is that the quotient model for simulation equivalence is not the
smallest in size� Actually	 it is not even clear that there is a unique smallest structure
that is simulation equivalent to M �

The �rst result in this paper is showing that every structure has a unique up to
isomorphism smallest structure that is simulation equivalent to it� This structure is
reduced	 meaning that it contains no simulation equivalent states	 no little brothers
�states that are smaller by the simulation preorder than one of their brothers�	 and
no unreachable states�

Our next result is presenting the Minimizing Algorithm that given a structure M
constructs the reduced structure for M � Based on the maximal simulation relation
overM 	 the algorithm �rst builds the 
�quotient structure with respect to simulation
equivalence� Then it eliminates transitions to little brothers� Finally	 it removes un�
reachable states� The time complexity of the algorithm isO�jSj��� Its space complexity
is O�jSj�� which is due to the need to hold the simulation preorder in memory�

Since our main concern is space requirements	 we suggest the Partitioning Algo�
rithm which computes the quotient structure without ever computing the simulation
preorder� Similarly to �LY�
�	 the algorithm starts with a partition �� of the state
space to classes whose states are equally labeled� It also initializes a preorder H� over
the classes in ��� At iteration i 
 �	 �i�� is constructed by splitting classes in �i�
The relation Hi�� is updated based on �i	 �i�� and Hi�

When the algorithm terminates �after k iterations� �k is the set of equivalence
classes with respect to simulation equivalence� These classes form the states of the
quotient structure� The �nal Hk is the maximal simulation preorder over the states of
the quotient structure� Thus	 the Partitioning Algorithm replaces the �rst step of the
Minimizing Algorithm � Since every step in the Minimizing Algorithm further reduces
the size of the initial structure	 the �rst step handles the largest structure� Therefore	
improving its complexity in�uences most the overall complexity of the algorithm�

The space complexity of the Partitioning Algorithm is O�j�kj
�
jSj�log�j�kj��� We

assume that in most cases j�kj �� jSj	 thus this complexity is signi�cantly smaller
than that of the MinimizingAlgorithm � Unfortunately	 time complexity will probably
become worse �depending on the size of �k�� It is bounded by O�jSj� � j�kj

� � �j�kj
�


jRj��� However	 since our main concern is the reduction in memory requirements	 the
Partitioning Algorithm is valuable�

Other works also suggest minimization algorithms� In �LY�
�	 the quotient struc�
ture with respect to bisimulation is constructed without �rst building the bisimulation
relation� We follow a similar approach� However	 in our case states may remain in the
same class even when they do not have successors in the same classes� Thus	 our
analysis is more complicated and requires both �i and Hi� Symbolic bisimulation
minimization is suggested in �BdS�
�� In �BFH��� a minimized structure with respect
to bisimulation is generated directly out of the text� In �FV��� a bisimulation mini�
mization is applied to the intersection of the system automaton and the speci�cation
automaton� The algorithm from �LY�
� is used�

Several works minimize a structure in a compositional way	 preserving language
containment �ASSB��� or a given CTL formula �ASSSV���� Minimizing with respect






� Introduction

Temporal logic model checking is a method for verifying �nite�state systems with re�
spect to propositional temporal logic speci�cations� The method is fully automatic and
quite e�cient in time	 but is limited by its high space requirements� Many approaches
to beat the state explosion problem of model checking have been suggested	 including
abstraction	 partial order reduction	 modular methods	 and symmetry ��CGP����� All
are aimed at reducing the size of the model �or Kripke structure� to which model
checking is applied	 thus	 extending its applicability to larger systems�

Abstraction methods	 for instance	 hide some of the irrelevant details of a system
and then construct a reduced structure� The abstraction is required to be weakly
preserving	 meaning that if a property is true for the abstract structure then it is
also true for the original one� Sometimes we require the abstraction to be strongly
preserving so that	 in addition	 a property that is false for the abstract structure	 is
also false for the original one�

In a similar manner	 for modular model checking we construct a reduced abstract
environment for a part of the system that we wish to verify� In this case as well	
properties that are true �false� of the abstract environment should be true �false� of
the real environment�

It is common to de�ne equivalence relations or preorders on structures in or�
der to re�ect strong or weak preservation of various logics� Relations of this type
that are widely used are the bisimulation equivalence �Par��� and the simulation pre�
order �Mil���� The former guarantees strong preservation of branching�time temporal
logics such as CTL and CTL� �CE���� The latter guarantees weak preservation of the
universal fragment of these logics �ACTL and ACTL� �GL�����

Bisimulation has the advantage of preserving more expressive logics� However	 this
is also a disadvantage since it requires the abstract structure to be too similar to the
original one	 thus allowing less powerful reductions� The simulation preorder	 on the
other hand	 allows more powerful reductions	 but it provides only weak preservation�

In this paper we investigate the simulation equivalence relation that is weaker
than bisimulation but stronger than the simulation preorder� This relation strongly
preserves ACTL� It also strongly preserves ACTL�	 which contains the linear�time
temporal logic LTL� Both ACTL and LTL are widely used for model checking in
practice�

Given a Kripke structure M 	 we would like to �nd a structure M � that is simulation
equivalent to M and is the smallest in size �number of states and transitions��

For bisimulation this can be done by constructing the quotient structure in which
the states are the equivalence classes with respect to bisimulation� Bisimulation has
the property that if one state in a class has a successor in another class then all states in
the class have a successor in the other class� Thus	 in the quotient structure there will
be a transition between two classes if every �some� state in one class has a successor in
the other� The resulting structure is the smallest in size that is bisimulation equivalent
to the given structure M �

The quotient structure for simulation equivalence can be constructed in a similar
manner� There are two main di�culties	 however� First	 it is not true that all states
in an equivalence class have successors in the same classes� As a result	 if we de�ne
a transition between classes whenever all states of one have a successor in the other	
then we get the 
�quotient structure� If	 on the other hand	 we have a transition

�



Simulation Based Minimization

Doron Bustan and Orna Grumberg

Computer Science Dept�
Technion� Haifa 
����� Israel
orna
cs�technion�ac�il

Abstract� � This work presents a minimization algorithm� The algorithm
receives a Kripke structure M and returns the smallest structure that is sim

ulation equivalent to M � The simulation equivalence relation is weaker than
bisimulation but stronger than the simulation preorder� It strongly preserves
ACTL and LTL �as sub
logics of ACTL���
We show that every structure M has a unique up to isomorphism reduced

structure that is simulation equivalent to M and smallest in size�
We give a Minimizing Algorithm that constructs the reduced structure� It �rst
constructs the quotient structure for M � then eliminates transitions to little
brothers and �nally deletes unreachable states�
The �rst step has maximal space requirements since it is based on the simula

tion preorder overM � To reduce these requirements we suggest the Partitioning
Algorithm which constructs the quotient structure for M without ever build

ing the simulation preorder� The Partitioning Algorithm has a better space
complexity but might have worse time complexity�

� The full version of this paper including proofs of correctness can be found in
http���www�cs�technion�ac�il�users�orna�publications�html


