References

[ASSB94]

A. Aziz, V. Singhal, G.M. Swamy, and R.K. Brayton. Minimizing interacting
finite state machines: A compositional approach to language containment. In In
Proc. of Intl. Conf. on Computer Design, 1994.

[ASSSV94] A. Aziz, V. Singhal, T.R. Shiple, and A.L. Sangiovanni-Vincentelli. Formula-

[BdS92]

[BFHO0]

[CES1]

[CGP99]
[FVog]
[GL94]

[HHK95]

[LY92]

[Mil71]

[Par81]

[PB96]

dependent equivalence for compositional ctl model checking. In In Proc. of Con-
ference on Computer-Aided Verification, 1994.

Amar Bouali and Robert de Simone. Symbolic bisimulation minimisation. In
G. V. Bochmann and D. K. Probst, editors, Proceedings of the 4th Conference
on Computer-Aided Verification, volume 663 of LNCS, pages 96-108. Springer
Verlag, July 1992.

A. Bouajjani, J.-C. Fernandez, and N. Halbwachs. Minimal model generation.
In E.M Clarke and R.P. Kurshan, editors, Computer-Aided Verification, pages
197-203, New York, June 1990. Springer-Verlag.

E. M. Clarke and E. A. Emerson. Synthesis of synchronization skeletons for
branching time temporal logic. In Logic of Programs: Workshop, Yorktown
Hewghts, NY, May 1981, volume 131 of Incs. sv, 1981.

E.M. Clarke, O. Grumberg, and D.A. Peled. Model Checking. MIT press, De-
cember 1999.

K. Fisler and M. Vardi. Bisimulation minimization in an automata-theoretic
verification framework. In CAV 98 papers, 1998.

O. Grumberg and D.E. Long. Model checking and modular verification. ACM
Trans. on Programming Languages and Systems, 16(3):843-871, 1994.

M.R. Henzinger, T.A. Henzinger, and P.W. Kopke. Computing simulation on
finite and infinite grafs. In Proc. Symp. Foundations of Computer Science, pages
453-462, 1995.

D. Lee and M. Yannakakis. Online minimization of transition systems. In STOC
92 papers, 1992.

R. Milner. An algebraic definition of simulation between programs. In In proceed-
ings of the 2nd International Joint Conference on Artificial Intelligence, pages
481-489, September 1971.

D. Park. Concurrency and automata on infinite sequences. In 5th GI-Conference
on Theoretical Computer Science, 1981.

R. Paige and B. Bloom. Transformational design and implementation of new
efficient solution to the ready simulation problem. In Science of Computer Pro-
gramming, volume 24, pages 189-220, 1996.

15

Proof Sketch of Invariant 3: We show that if ([s1], [s2]) € H;41 and ([s2], [s3]) €
H; 41 then for every successor #1 of s; there is a successor t3 of s3 such that ([t1], [t3]) €
H;. Thus, by Invariant 2 ([s1], [s3]) € H;41.

5.3 Equivalence Classes

In this section we show that when the algorithm terminates after & iterations, <j is
the maximal simulation relation over M x M and X is the set of equivalence classes
with respect to simulation equivalence over M x M. Moreover, Hj 1s the maximal
simulation relation over the corresponding quotient structure M,.

Theorem 20. When the algorithm terminates, <y s the mazrimal simulation over
M x M and X}, 1s the set of equivalence classes of the simulation equivalence relation.

Invariant 2 and <p=<j, imply that <; is a simulation relation. For maximality of
<y we prove by induction on ¢ that if ([s1],[s2]) € H; then (s1,s2) is in the maximal
simulation over M x M.

Theorem 21. Hy s the marimal simulation relation over My x M.

5.4 Space Complexity

The space complexity of the Partitioning Algorithm depends on the size of ;. We
assume that the algorithm applied to Kripke structures with some redundancy, thus
|Zi] << |S].

We measure the space complexity with respect to the size of the three following
relations:

1. The relation R.

2. The relations H; whose size depends on X;. We can bound the size of H; by |ZZ'|2.

3. A relation that relates each state to its equivalence class. Since every state belongs
to a single class, the size of this relation is O(]S| - log(| X5).

In the ith iteration we do not need to keep all Hy, Hy,...and Xy, 2, ..., since we
only refer to H;, H;y1 and X;, X 1. By the above we conclude that the total space
complexity is O(|R| + |Xk|? + |S] - log(|Xk]))

In practice, we often do not hold the transition relation R in the memory. Rather
we use 1t to provide, whenever needed, the set of successors of a given state. Thus, the
space complexity is O(| 2k |* 4+ |S| - log(] Xk |)). Recall that the space complexity of the
naive algorithm for computing the equivalence classes of the simulation equivalence
relation is bounded by |S]?, which is the size of the simulation relation over M x M. In
case | X | << |S|, the Partitioning Algorithm achieve a much better space complexity.

5.5 Time Complexity

As we already mentioned, the algorithm runs at most |S|? iterations. In every iteration
it performs one refine and one update. refine can be done in O(|X|> + | Zx| - |R|)
and update can be done in O(|Xx|? - (|X%|? + |R|)). Thus the total time complexity
is O(ISI? - |Zk]? - (|12 7 + [RI)).-

14

where o] = {0},0[2 = {I’Q}aﬁl = {3}a62 = {4}a63 = {5}a71 = {6}"72 =
{7},d0 = {8,9}.

— The third iteration results in the relations:
Ys =29, Hs = Hy - change = false.
The equivalence classes are:
ar = {0}, az = {1,2}, 80 = {3}, 82 = {4}, 83 = {5}, 71 = {6},72 = {7}, 00 =
{8,9}

Since the third iteration results in no change to the computed partition or ordering
relation, the algorithm terminates. X5 is the final set of equivalence classes which
constitutes the set S; of states of M,. Hs is the maximal simulation relation over
My x M,.

5.2 The Correctness of the Partitioning Algorithm

In order to prove the correctness of the Partitioning Algorithm | we prove first the
three invariants mentioned before. We will prove these invariants by induction on i.
The base case (i = 0) for all three invariants follows from the definitions of the initial
relations Xy and Hy. We assume that for every j < 7, the invariants hold for j. We
prove that the invariants hold for ¢ + 1.

Theorem 18. 1. For all states s1,s2 € S, s1 and sy are in the same class in X1
iff s1 and so are i + 1—equivalent.

2. ([s1)', [so]') € Higr tff s1 <ig1 50

3. H;yq s transitive.

Proof Sketch of Invariant 1: We sketch here only the proof for the second direc-
tion. We prove that ss € [s1]. Since s1 € [s1], s1 € GT and s; € LT. Based on that
and on the transitivity of H; (by induction hypothesis for Invariant 3), we show that
s2 € GT'N LT and therefore ss € [s1].

Proof Sketch of Invariant 2: We next sketch the proof of Invariant 2 for H;41.
Since the construction of H;41 is based on both X; and X411, we need to distinguish
between classes in these sets. We use [s]* and [s]'*! to denote equivalence classes in
Y and X1 respectively.

The following lemma implies the first direction of the invariant. The proof of the
second direction uses similar arguments.

Lemma 19. Let ([s1]'t!,[s2]'T!) € H;y1. Then for every successor t; of sy, there
exists a successor ta of sy such that ([t1]', [t2]) € H;.

Proof : Let ([s1]'t!, [s9]'t!) € Hiyy, and let ¢; be a successor of s;. Then [t;]' €
I ([s1]**1). Since H([s1]*T!) C @ then [t;]° € @. By definition of @, there is a state 3
such that [t3]? is in [T ([so]**!) and ([t1], [ts]’) € H;. [ts]’ € I ([s2]'T!) implies that ¢3
is a successor of some state s3 in [so] !

Since ss,s3 are in the same class in 2y, by invariant 1 s; and s3 are (¢ +
1)—equivalent. Thus, there exists a successor t5 of s3 such that ([ts]’, [t2]°) € H;. By
Invariant 3, H; is transitive and therefore ([t;]?, [t2]°) € H;. O

13

H; it is sufficient to check (o, o) € H; only in case as D oy, g D o, and (o, av2) €
H; 1.

For suitable o and of, we first construct the set ¢ of classes that are “smaller”
than the classes in IT(a}). By checking if & D II(«f) we determine whether every
class in IT(of) is “smaller” than some class in IT (%), in which case (o, o) is inserted
to Hi~

When the algorithm terminates, <; is the maximal simulation relation and the
t—equivalence is the simulation equivalence relation over M x M. Moreover, H; is the
maximal simulation relation over the corresponding quotient structure M,.

The algorithm runs until there is no change both in the partition X; and in the
relation H;. A change in X is the result of a partitioning of some class a € X;. The
number of changes in X; is bounded by the number of possible partitions, which is
bounded by |S|.

A change in H; results in the relation <;;; which is contained in <; and smaller
in size, i.e.; | <; | > | <;31 |- The number of changes in H; is therefore bounded
by | <o |, which is bounded by |S|?. Thus, the algorithm terminates after at most
|S)? 4 | S| iterations. Note that, it is possible that in some iteration i, X; will not
change but H; will, and in a later iteration j > ¢, X; will change again.

Example: In this example we show how the Partitioning Algorithm is applied to the
Kripke structure presented in Figure 5 .

O
/

T
S
o,
—

Fig.5. An example structure

— We initialize the algorithm as follows:
Yo = {0, B0,70,00}, Ho = {(0, @), (Bo, B0), (¥0,70), (do,d0) },
where g = {0,1,2}, 80 = {3,4,5}, v ={6,7},00 = {8,9}.
— The first iteration results in the relations:
X1 =Aay, az, 41, 2, 03,70, 00},
Hy = {(a1,a1), (a2, az), (81, 51), (B2, B2), (B3, B3), (B1, B2), (B3, B2), (v0,70), (d0, do) }
zvher}ie ap = {0}, a0 = {1,2}, 51 = {3},82 = {4},05 = {6}, = {6,7},00 =
8,9}
— The second iteration results in the relations:
Yy ={a1, a9, 51, B2, B3,71,72, 00},
Hy = {(a1, a1), (az, @), (81, 51), (B2, B2), (85, B3),
(61’62)’ (63’ 62)a (71a71)’ (72a 72)’ (71a72)a (60, 60)}’

12

Initialize the algorithm:
change := {rue
for each label ap &€ 24F construct Qgp € Yo such that s & Hap & L(s) =ap.
Ho = {(a,)l € T}
while change = true do begin
change := false
refine X:
E,‘+1 = @
for each a € X; do begin
while o # 0 do begin
choose s, such that s, € o
GT :={s4|sy € a AV, € succ(sp) Aty € succ(sy). ([tp],[ty]) € Hi}
LT :={si]|s1 € a AVt € succ(s;) Tty € suce(sp). ([t], [tp]) € Hi}

o =GTNLT
if o # o' then change := true
a:=al\ad
Add o' as a new class to g1
end
end
update H:
Hiz1=0

for every (ai,az) € H; do begin
for each ab,a) € Y41 such that az D ab, a1 Daf do begin
& = {6]3¢ € IT(a}) (6,6) € 11}
if ¢ D II(a}) then
insert (ai,ab) to Hiy
else
change := true
end
end
end

Fig. 4. The Partitioning Algorithm

Invariant 2: For all states s1,s0 € S, 51 <; s iff ([s1],[s2]) € H;.
Invariant 3: H; is transitive.

Y; 18 a set of equivalence classes with respect to the i—equivalence relation. In the
tth iteration we split the equivalence classes of X;_; so that only states that are
t-equivalent remain in the same class.

A class o € X;_1 is repeatedly split by choosing an arbitrary state s, € o (called
the splitter) and identifying the states in « that are i—equivalent to s,. These states
form an i—equivalence class o’ that is inserted to X;.

o' is constructed in two steps. First we calculate the set of states GT' C « that
contains all states s, such that s, <; s,. Next we calculate the set of states LT C o
that contains all states s; such that s; <; s,. The states in the intersection of GT" and
LT are the states in o that are i—equivalent to s,.

H; captures the partial order <;, i.e., s1 <; s2 iff ([s1], [s2]) € H;. Note that the
sequence <g, <q,...satisfles <oD<3D<3D Therefore, if 51 <; 52 then 51 <;_1 s3.

Thus, ([s1],[s2]) € H; implies ([s1], [s2]) € H;—1. Based on that, when constructing

11

3. Removing unreachable states can be done in O(|R|).

As a whole the algorithm works in time O(]S]?)
The space bottle neck of the algorithm is the computation of the maximal simu-
lation relation which is bounded by |S]?.

5 Partition Classes

In the previous section, we presented the Minimizing Algorithm . The algorithm
consists of three steps, each of which results in a structure that is smaller in size. Since
the first step handles the largest structure, improving its complexity will influence
most the overall complexity of the algorithm.

In this section we suggest an alternative algorithm for computing the set of equiv-
alence class. The algorithm avoids the construction of the simulation relation over
the original structure. As a result, it has a better space complexity, but its time com-
plexity is worse. Since the purpose of the Minimizing Algorithm is to reduce space
requirements, it is more important to reduce its own space requirement.

5.1 The Partitioning Algorithm

Given a structure M, we would like to build the equivalence classes of the simulation
equivalence relation, without first calculating Hpas. Our algorithm, called the Parti-
tioning Algorithm | starts with a partition Xy of S to classes. The classes in Xy differ
from one another only by their state labeling. In each iteration, the algorithm refines
the partition and forms a new set of classes. We use X; to denote the set of the classes
obtained after 7 iterations. In order to refine the partitions we build an ordering rela-
tion H; over X; x X; which is updated in every iteration according to the previous and
current partitions (X;_; and X;) and the previous ordering relation (H;_1). Initially,
Hy includes only the identity pairs (of classes).

In the algorithm, we use succ(s) for the set of successors of s. Whenever X is
clear from the context, [s] is used for the equivalence class of s. We also use a function
IT that associates with each class oo € X the set of classes o/ € X;_; that contain a
successor of some state in «.

I(a)={{ff~'3s € a. (5,1) € R}

We use English letters to denote states, capital English letters to denote sets of states,
Greek letters to denote equivalence classes, and capital Greek letters to denote sets
of equivalence classes. The Partitioning Algorithm is presented in Figure 4 .

Definition 17. The partial order <; on S is defined by: s1 <; sa implies, L(s1) =
L(s2) and if i > 0, Vt1[(s1,t1) € R — Fta[(s2,%2) € RA ([t1],[t2]) € Hs-1]]. In case
1= 0, 51 So 59 Zﬁ L(Sl) = L(Sz).

Two stales s1,s2 are i—equivalent ¢ff s1 <; s2 and s2 <; s1.

In the rest of this section we explain how the algorithm works. There are three
invariants which are preserved during the execution of the algorithm.

Invariant 1: For all states s1,s5 € S, 51 and s5 are in the same class o € X; iff 59
and sg are i—equivalent.

10

1 1 e 2 { 1}
\ {11} (23}

w

{11}

{1
I{
(2 @)
5

IR VN) . \ (010

@ ©

Fig. 3. An example of the Minimizing Algorithm

2. Part 2 presents the V—structure M,. The maximal simulation relation Hys is (not
including the trivial pairs):
= ({11}, {2,3)), ({4, {5}), ({6}, {5})}.
3. {11} is alittle brother of {2,3} and {1} is their father. Part 3 presents the structure
after the removal of the edge ({1}, {11}).
4. Finally, part 4 contains the reduced structure, obtained by removing the unreach-
able states.

4.4 Complexity

The complexity of each step of the algorithm depends on the size of the Kripke
structure resulting from the previous step. In the worst case the Kripke structure
does not change, thus all three steps depend on the original Kripke structure. Let M
be the given structure. We analyze each step separately (a naive analysis):

1. First, the algorithm constructs equivalence classes. To do that it needs to compute
the maximal simulation relation. [PB96, HHK95] showed that this can be done in
time O(]S] - |R]). Once the algorithm has the simulation relation, the equivalence
classes can be constructed in time O(]S|?). Next, the algorithm constructs the
transition relation. This can be done in time O(]S| 4+ |R|). As a whole, building
the quotient structure can be done in time O(|S] - |R|).

2. Disconnecting little brothers can be done in O(|S|?).

We proved that the result M’ of the Disconnecting Algorithm is simulation equiv-
alent to the original structure M. Note that M’ has the same set of states as M. We
now show that the maximal simulation relation over M is identical to the maximal
simulation relations for all intermediate structures M* (including M'), computed by
the Disconnecting Algorithm. Since there are no simulation equivalent states in M,
there are no such states in M’ as well.

Lemma 16. Let M’ =< S, R/, sq, L. > be the result of the Disconnecting Algorithm
on M and let H' C 5" x S' be the mazimal simulation over M' x M'. Then, Hyy = H'.

The lemma is proved by induction on the number of iterations.

As a result of the last lemma, the Disconnecting Algorithm can be simplified sig-
nificantly. The maximal simulation relation is computed once on the original structure
M and is used in all iterations. If the algorithm is executed symbolically (with BDDs)
then this operation can be performed efficiently in one step:

R'= R—{(s1,52)|3s3 : (51,83) € RA(s2,83) € Har A (83,52) € Har}.

4.3 The Algorithm

We now present our algorithm for constructing the reduced structure for a given one.

1. Compute the V—quotient structure M, of M and
the maximal simulation relation Hps over My x M,.
2. R'= Ry —{(s1,52)|3s2 : (51,83) € Rqg A(52,83) € Hu}

3. Remove all unreachable states.

Fig.2. The Minimizing Algorithm

Note that, in the second step we eliminate the check (s3, s2) € Hps. This is based
on the fact that M, does not contain simulation equivalent states. Removing unreach-
able states does not change the properties of simulation with respect to the initial
states. The size of the resulting structure is equal to or smaller than the original
one. Similarly to the first two steps of the algorithm, if the resulting structure is not
identical then it is strictly smaller in size.

We have proved that the result of the Minimizing Algorithm M’ is simulation
equivalent to the original structure M. Thus we can conclude that Theorem 8 is
correct.

Figure 3 presents an example of the three steps of the Minimizing Algorithm
applied to a Kripke structure.

1. Part 1 contains the original structure, where the maximal simulation relation is
(not including the trivial pairs):
{(2,3),(3,2),(11,2),(11,3),(4,5),(6,5),(7,8),(8,7),(9,10), (10,9) }.

The equivalence classes are : {{1},{2,3},{11},{4}, {5}, {6},{7,8},{9,10}}.

4.2 Disconnecting Little Brothers

Our next step is to disconnect the little brothers from their fathers. As a result of
applying this step to a Kripke structure M with no equivalent states, we get a Kripke
structure M’ satisfying:

1. M are M’ are simulation equivalent.

2. There are no equivalent states in M’.

3. There are no little brothers in M’.

4. |[M'| < |M|, and if M and M’ are not identical, then |M'| < |M].

In Figure 1 we present an iterative algorithm which disconnects little brothers and
results in M.

change := true
while (change = true) do
Compute the maximal simulation relation Has
change := false
If there are $1,82,83 € S such that s; is a little brother of s»
and ss is the father of both s; and s, then
change := true

R=R\{(sa,s1)}
end
end

Fig. 1. The Disconnecting Algorithm.

Since in each iteration of the algorithm one edge is removed, the algorithm will
terminate after at most |R| iterations. We will show that the resulting structure is
simulation equivalent to the original one.

Lemma 15. Let M' =< S, R, sj, L' > be the result of the Disconnecting Algorithm
on M. Then M and M' are simulation equivalent.

Proof Sketch : We prove the lemma by induction on the number of iterations.
Base: at the beginning M and M are simulation equivalent.

Induction step: Let M" be the result of the first 7 iterations and H” be the maximal
simulation over M" x M". Let M’ be the result of the (i + 1)th iteration where
R = R\ {(s{,s4)}. Assume that M and M" are simulation equivalent. It is straight
forward to see that H' = {(s],s5)|(s{,sy) € H} is a simulation relation over M’ x
M”. Thus, M’ < M".

To show that M" < M’ we prove that H' = {(s7, s5)|(s{,s4) € H"} is a simulation
relation. Clearly, (sy,sp) € H and L"(sY) = L'(s}).

Suppose (s, s5) € H' and t{ is a successor of s{. Since H" is a simulation relation,
there exists a successor t of s such that (¢t/,¢4) € H". Thisimplies that (t{,t}) € H'.
If (s5,t5) € R’ then we are done. Otherwise, (s4,4) is removed from R” because t4 is
a little brother of some successor 4 of 54. Since (54, ¢4) is the only edge removed at the
(i+ 1)th iteration, (s}, t5) € R'. Because t is a little brother of ¢§ then (¢4,t5) € H".
By transitivity of the simulation relation, (t{,t4) € H", thus (t{,t) € H'. O

The transitions in M, are V-transitions, in which there is a transition between two
equivalence classes iff every state of the one has a successor in the other. We could
also define 3-transitions, in which there 1s a transition between classes if there exists
a state in one with a successor in the other. Both definitions result in a simulation
equivalent structure. However, the former has smaller transition relation and therefore
it 1s preferable.

Note that, |S;] < |S] and |Rq| < |R|. If || = |S], then every equivalence class
contains a single state. In this case, R, is identical to /£ and M, is isomorphic to M.
Thus, when M and M, are not isomorphic, |S,| < |S].

Next, we show that M and M, are simulation equivalent.

Definition 11. Let G C S be a set of states. A state s, € G is mazimal in G iff
there is no state s € G such that (sy,s) € Hy and (s,sm) & Har.

Definition 12. Let o be a state of M,, s1 a state in « and t1 a successor of s1. The

set G(a,t1) is defined as follow:
G(a,t1) = {t2 € S|Tsa € a A (s2,t2) € RA(I1,t2) € Hpr}.

Intuitively, G(a, 1) is the set of states that are greater than #; and are successors of
states in «. Notice that since all state in a are simulation equivalent, every state in
« has at least one successor in G(a, 7).

Lemma 13. Let o, 1 be as defined in Definition 12 . Then for every mazrimal states
tm in Gla,ty), [tm] is a successor of «.

Proof : Let t,, be a maximal state in G(a, 1), and let s, € a be a state such that
ty, 1s a successor of s,,. We prove that for every state s € «, there exists a successor
t € [tym], which implies that [¢,,] is a successor of a.

S, 8m € o implies (sm,s) € Hpr. This implies that there exists a successor ¢ of
s such that (¢,,,t) € Hpr. By transitivity of the simulation relation, (t1,%) € Hyy.
Thus t € G(a,t1). Since t,, is maximal in G(«a, 1), (¢,tm) € Hyr. Thus, t and ¢, are
simulation equivalent and ¢ € [t,,]. O

Theorem 14. The structures M and M, are simulation equivalent.

Proof Sketch : 1t is straight forward to show that H' = {(«a, s)|s € a} is a simulation
relation over My x M. Thus, M, < M.

In order to prove that M < M, we choose H' = {(s1, «)| there exists a state s, €
a such that (s1,s2) € Har}. Clearly, (so,s0,) € H" and L(s1) = Lq(a).

Assume (s1, 1) € H' and let ¢ be a successor of 1. We prove that there exists a
successor «y of ay such that (1, a2) € H'. We distinguish between two cases:

1. s1 € ay. Let t,, be a maximal state in G(«q,?1), then Lemma 13 implies that
(a1, [tm]) € Rq. Since tp, is maximal in G(a1,t1), (t1,tm) € Har which implies
(t1,tn]) € "

2. 51 &€ ay. Let s3 € oy be a state such that (s1,s2) € Hpr. Since (s1,s2) € Hy
there is a successor ty of ss such that (¢1,t2) € Hpr. The first case implies that
there exists an equivalence class o such that (a1, as) € Ry and (f5, a0) € H'. By
(t2,3) € H' we have that there exists a state t3 € as such that (t2,t3) € Hy.
By transitivity of simulation (¢1,¢3) € Hpr. Thus, (t1,a2) € H'. O

initial state. (since all states are reachable, the distance is bounded by |S|). Again
we use the composed relation Hpasps s to show that if f is not onto then M’ is not
reduced.

Similarly, we can show that f~! is onto and therefore f is total. a

Lemma 7. For all s € S', L'(s") = L(f(s')). FPurthermore, for all s},s4 € 5,
(s1,55) € RO aff (F(s1), f(s3)) € R.

Thus, we conclude Theorem 4 .

Theorem 8. Let M be a non-reduced Kripke structure, then there exists a reduced
Kripke structure M' such that M, M’ are simulation equivalent and |M’| < |M]|.

In order to prove Theorem 8 | we present in the next sections an algorithm that
receives a Kripke structure M and computes a reduce Kripke structure M’, which is
simulation equivalent to |M|, such that |M'| < |M|. Moreover, if M is not reduced
then |M'| < |M]|.

Lemma 9. Let M’ be a reduced Kripke structure. For every M that is simulation
equivalent to |M’|, if M and M’ are not isomorphic then |M’| < |M]|.

4 The Minimizing Algorithm

In this section we present the Minimizing Algorithm that gets a Kripke structure M
and computes a reduced Kripke structure M’ which is simulation equivalent to M
and |[M'| < |M|. If M is not reduced then |M’| < |M]|.

The algorithm consists of three steps. First, a quotient structure is constructed
in order to eliminate equivalent states. The resulting quotient model is simulation
equivalent to M but may not be reduced. The next step disconnects little brothers
and the last one removes all unreachable states.

In each step of the algorithm, if the resulting structure differs from the original
one then the resulting one 1is strictly smaller than the original structure.

4.1 The Y—quotient Structure

In order to compute a simulation equivalent structure that contains no equivalent
states, we compute the Y—quotient structure with respect to the simulation equiva-
lence relation. We fix M to be the original Kripke structure. We denote by [s] the
equivalence class which includes s.

Definition 10. The Y—quotient structure My, =< Sy, Ry, so,, Lq > of M 1is defined
as follow:

— Sy is the set of the equivalence classes of the simulation equivalence. (We will use
Greek letters to represent equivalence classes).

- Rq = {(al,a2)|Vsl € «q dsy € as. (81,82) S R}

- Soq = [Soq].

~ Ly([s)) = L(s).

structure always exists. Furthermore, we show that all reduced structures of M are
1somorphic to each other.

Let M be a Kripke structure. The mazimal simulation relation over M x M al-
ways exists and is denoted by Hps. We need the following two definitions in order to
characterize reduced structures.

Two states s1,s2 € M are simulation equivalent iff (s1,s2) € Har and (s2,81) €
Hyy.

A state s 1s a little brother of a state ss iff there exists a state s3 such that:

— (s3,82) € Rand (s3,51) € R.
— (81,82) € Hpyr and (s2,81) & Hyy.

Definition 3. A Kripke structure M is reduced if:

1. There are no simulation equivalent states in M.
2. There are no states sy, so such that sy is a little brother of so.
3. All states in M are reachable from sq.

Theorem 4. : Let M M' be two reduced Kripke structures. Then the following two
statements are equivalent:

1. M and M’ are simulation equivalent.
2. M and M’ are isomorphic.

The proof that 2 implies 1 is straight forward. In the rest of this section we assume
that M and M’ are reduced Kripke structures. We will show that if M < M’ and
M’ < M then M and M’ are isomorphic.

We use Hprar and Hapoar to denote the maximal simulation relations over M x M’
and M’ x M respectively. The composed relation Hprpripr C S x S is defined by
Hyrarnmr = {(81, 82)|E|8/ cs. (81, 8/) € Hyrarr A (8/, 82) S HM/M}.

Lemma 5. The composed relation Harpriar is a simulation relation.

For the reduced Kripke structures M and M’ we define the matching relation f C
S’ x S as follows:

(s',s) € fiff (s',s) € Hyprar and (s,8') € Hprprr.

We show that f is an isomorphism between M’ and M, i.e., f is an one to one and
onto total function that preserves the state labeling and the transition relation.

Lemma 6. Let f C S’ x S be the maiching relation. Then f is an one lo one, onto,
and total function from S’ to S.

Proof Sketch : First we need to prove that f is a function from S’ to .S. We assume
to the contrary that there are different states s1,s5 € S and s/ € S5’ such that
(s',s1) € f and (s, s2) € f. We show that (s1,s2) € Hyrarar and (s2,81) € Hyupom
Since Hasar ar 1s included in Hpy, this contradicts the assumption that M is reduced.
The proof that f~! is a function from S to S’ is similar. Thus, we conclude that f is
one to one.

Next, we prove that f is onto, i.e. for every state s in S there exists a state s’ in
S’ such that (s',s) € f. The proof is by induction on the distance of s € S from the

to a given formula may result in a more power reduction, however it requires to
determine the checked formula in advance.

The rest of the paper is organized as follows. Section 2 gives our basic definitions.
Section 3 defines reduced structures and shows that every structure has a unique
simulation equivalent reduced structure. Section 4 presents the Minimizing Algorithm
. Finally, Section b describes the Partitioning Algorithm and discusses its space and
time complexity.

2 Preliminaries

Let AP be a set of atomic propositions. A Kripke structure M over AP 1s a four tuple
M = (S, sg, R, L) where S is a finite set of states; sy € S is the initial state; R C Sx S
is the transition relation that must be total, i.e., for every state s € S there is a state
s’ € S such that R(s,s'); and L : S — 24F is a function that labels each state with
the set of atomic propositions true in that state.

The size | M| of a Kripke structure M is the pair (|S], |R]). We say that |M| < |M’|
if1S] <] or || = |5'] and |R| < .

Given two structures M and M’ over AP, a relation H C S x S’ is a simulation
relation [Mil71] over M x M iff the following conditions hold:

1. (s0,s,) € H.
2. For all (s,s") € H, L(s) = L'(s') and

Vt[(s,t) € R — F'[(s',t') € R A (¢,1') € H]J.

We say that M’ simulates M (denoted by M < M') if there exists a simulation
relation H over M x M’.

The logic ACTL* [GL94] is the universal fragment of the powerful branching-time
logic CTL*. ACTL" consists of the temporal operators X (next-time), U (until) and
R (release) and the universal path quantifier A (for all paths). For lack of space the
formal definition is omitted. It can be found in [CGP99].

The following lemma and theorem have been proven in [GL94].

Lemma 1. < is a preorder on the set of structures.

Theorem 2. Suppose M < M'. Then for every ACTL* formula f, M’ = f implies

Given two Kripke structures M, M’ we say that M is simulation equivalent to M’ iff
M < M’ and M’ < M. Tt is easy to see that this is an equivalence relation.

A simulation relation H over M x M’ is maximal iff for all simulation relations
H' over M x M', H' C H.

In [GL94] it has been shown that if there is a simulation relation over M x M’
then there is a unique maximal simulation over M x M’.

3 The Reduced Structure

Given a Kripke structure M, we would like to find a reduced structure that will be
simulation equivalent to M and smallest in size. In this section we show that a reduced

between classes if there exists a state of one with a successor in the other, then we
get the d—quotient structure. Both structures are simulation equivalent to M, but
the Y—quotient structure has fewer transitions and therefore is preferable.

The other difficulty is that the quotient model for simulation equivalence is not the
smallest in size. Actually, it 1s not even clear that there is a unique smallest structure
that is simulation equivalent to M.

The first result in this paper i1s showing that every structure has a wunique up to
1somorphism smallest structure that is simulation equivalent to it. This structure is
reduced, meaning that it contains no simulation equivalent states, no little brothers
(states that are smaller by the simulation preorder than one of their brothers), and
no unreachable states.

Our next result is presenting the Minimizing Algorithm that given a structure M
constructs the reduced structure for M. Based on the maximal simulation relation
over M, the algorithm first builds the Y—quotient structure with respect to simulation
equivalence. Then it eliminates transitions to little brothers. Finally, it removes un-
reachable states. The time complexity of the algorithm is O(|S|?). Its space complexity
is O(]S|?) which is due to the need to hold the simulation preorder in memory.

Since our main concern is space requirements, we suggest the Partitioning Algo-
rithm which computes the quotient structure without ever computing the simulation
preorder. Similarly to [LY92], the algorithm starts with a partition Xy of the state
space to classes whose states are equally labeled. It also initializes a preorder Hy over
the classes in Xy. At iteration ¢ + 1, X1 1s constructed by splitting classes in Y.
The relation H;y1 is updated based on X;, 241 and H;.

When the algorithm terminates (after k iterations) Xy is the set of equivalence
classes with respect to simulation equivalence. These classes form the states of the
quotient structure. The final Hy is the maximal simulation preorder over the states of
the quotient structure. Thus, the Partitioning Algorithm replaces the first step of the
Minimizing Algorithm . Since every step in the Minimizing Algorithm further reduces
the size of the initial structure, the first step handles the largest structure. Therefore,
improving its complexity influences most the overall complexity of the algorithm.

The space complexity of the Partitioning Algorithm is O(| X |4 |S|-log(| Xk])). We
assume that in most cases |Xy| << |S], thus this complexity is significantly smaller
than that of the Minimizing Algorithm . Unfortunately, time complexity will probably
become worse (depending on the size of X). It is bounded by O(]S|? | Zk|? - (| Xk]* +
|R|)). However, since our main concern is the reduction in memory requirements, the
Partitioning Algorithm is valuable.

Other works also suggest minimization algorithms. In [LY92], the quotient struc-
ture with respect to bisimulation is constructed without first building the bisimulation
relation. We follow a similar approach. However, in our case states may remain in the
same class even when they do not have successors in the same classes. Thus, our
analysis is more complicated and requires both X; and H;. Symbolic bisimulation
minimization is suggested in [BdS92]. In [BFH90] a minimized structure with respect
to bisimulation is generated directly out of the text. In [FV98] a bisimulation mini-
mization is applied to the intersection of the system automaton and the specification
automaton. The algorithm from [LY92] is used.

Several works minimize a structure in a compositional way, preserving language
containment [ASSB94] or a given CTL formula [ASSSV94]. Minimizing with respect

1 Introduction

Temporal logic model checking is a method for verifying finite-state systems with re-
spect to propositional temporal logic specifications. The method is fully automatic and
quite efficient in time, but is limited by its high space requirements. Many approaches
to beat the state explosion problem of model checking have been suggested, including
abstraction, partial order reduction, modular methods, and symmetry ([CGP99]). All
are aimed at reducing the size of the model (or Kripke structure) to which model
checking is applied, thus, extending its applicability to larger systems.

Abstraction methods, for instance, hide some of the irrelevant details of a system
and then construct a reduced structure. The abstraction is required to be weakly
preserving, meaning that if a property is true for the abstract structure then it is
also true for the original one. Sometimes we require the abstraction to be strongly
preserving so that, in addition, a property that is false for the abstract structure, is
also false for the original one.

In a similar manner, for modular model checking we construct a reduced abstract
environment for a part of the system that we wish to verify. In this case as well,
properties that are true (false) of the abstract environment should be true (false) of
the real environment.

It 18 common to define equivalence relations or preorders on structures in or-
der to reflect strong or weak preservation of various logics. Relations of this type
that are widely used are the bisimulation equivalence [Par81] and the simulation pre-
order [Mil71]. The former guarantees strong preservation of branching-time temporal
logics such as CTL and CTL* [CE81]. The latter guarantees weak preservation of the
universal fragment of these logics (ACTL and ACTL* [GL94]).

Bisimulation has the advantage of preserving more expressive logics. However, this
is also a disadvantage since it requires the abstract structure to be too similar to the
original one, thus allowing less powerful reductions. The simulation preorder, on the
other hand, allows more powerful reductions, but it provides only weak preservation.

In this paper we investigate the simulation equivalence relation that is weaker
than bisimulation but stronger than the simulation preorder. This relation strongly
preserves ACTL. It also strongly preserves ACTL*, which contains the linear-time
temporal logic LTL. Both ACTL and LTL are widely used for model checking in
practice.

Given a Kripke structure M, we would like to find a structure M’ that is simulation
equivalent to M and is the smallest in size (number of states and transitions).

For bisimulation this can be done by constructing the quotient structure in which
the states are the equivalence classes with respect to bisimulation. Bisimulation has
the property that if one state in a class has a successor in another class then all states in
the class have a successor in the other class. Thus, in the quotient structure there will
be a transition between two classes if every (some) state in one class has a successor in
the other. The resulting structure is the smallest in size that is bisimulation equivalent
to the given structure M.

The quotient structure for simulation equivalence can be constructed in a similar
manner. There are two main difficulties, however. First, it is not true that all states
in an equivalence class have successors in the same classes. As a result, if we define
a transition between classes whenever all states of one have a successor in the other,
then we get the Y—quotient structure. If, on the other hand, we have a transition

Simulation Based Minimization

Doron Bustan and Orna Grumberg

Computer Science Dept.
Technion, Haifa 32000, Israel
orna@cs.technion.ac.il

Abstract. ! This work presents a minimization algorithm. The algorithm
receives a Kripke structure M and returns the smallest structure that is sim-
ulation equivalent to M. The simulation equivalence relation is weaker than
bisimulation but stronger than the simulation preorder. It strongly preserves
ACTL and LTL (as sub-logics of ACTL").

We show that every structure M has a unique up to isomorphism reduced
structure that is simulation equivalent to M and smallest in size.

We give a Minimizing Algorithm that constructs the reduced structure. It first
constructs the quotient structure for M, then eliminates transitions to little
brothers and finally deletes unreachable states.

The first step has maximal space requirements since it is based on the simula-
tion preorder over M. To reduce these requirements we suggest the Partitioning
Algorithm which constructs the quotient structure for M without ever build-
ing the simulation preorder. The Partitioning Algorithm has a better space
complexity but might have worse time complexity.

! The full version of this paper including proofs of correctness can be found in
http://www.cs.technion.ac.il/users/orna/publications.html

