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1 Introduction

In this paper we survey abstraction and refinement in model checking. We re-
strict the discussion to existential abstraction which over-approximates the be-
haviors of the concrete model. The logics preserved under this abstraction are
the universal fragments of branching-time temporal logics as well as linear-time
temporal logics. For simplicity of presentation, we also restrict the discussion
to abstraction functions, rather then abstraction relations. Thus, every concrete
state is represented by exactly one abstract state. An abstract state then rep-
resents a set of concrete states, which is disjoint from the sets represented by
other abstract states. R

Abstraction is identified by a set of abstract states S, an abstraction mapping
h, that associates with each concrete state the abstract state which represents it,
and a set of atomic propositions AP which label the concrete and abstract states.
We present three types of abstractions which differ in the choice of S, h, and AP:
predicate abstraction, visible-variable abstraction, and data abstraction. We also
suggest how an abstraction can be extracted from a high-level description of a
program.

We describe the CounterExample-Guided Abstraction-Refinement (CEGAR)
methodology which suggests an iterative, automated approach to verification
with abstraction. We comment on different possible implementations for con-
structing the abstract model and its refinements.

2 Preliminaries

2.1 Temporal logics

Model checking algorithms typically use finite state transition systems to model
the verified systems and propositional temporal logics to specify the desired
properties. In this section we present the syntax and semantics of several subsets
of the temporal logic CTL* [25].

Let AP be a set of atomic propositions. We define CTL* in positive nor-
mal form, in which negations are applied only to atomic propositions. This will
facilitate the definition of universal and existential subsets of CTL* [29]. Since
negations are not allowed, both conjunction and disjunction are required. Nega-
tions applied to the next-time operator X can be “pushed inwards” using the



logical equivalence =(X f) = X —f. The unless operator V (sometimes called
the release operator), which is the dual of the until operator U, is also added.
Thus, =(f U g) = ~f V —g.

Definition 1 (CTL*). For a given set of atomic propositions AP, the logic
CTL* is the set of state formulas, defined recursively by means of state formulas
and path formulas as follows. State formulas are of the form:

— Ifp € AP, then p and —p are state formulas.
— If f and g are state formulas, then so are f Ag and fV g.
— If f is a path formula, then A f and E f are state formulas.

Path formulas are of the form:

— If f is a state formula, then f is a path formula.
— If f and g are path formulas, then so are f A g, and fV g.
— If f and g are path formulas, then so are X f, f U g, and f V g.

The abbreviations true, false and implication — are defined as usual. For path
formula f, the following abbreviations are widely used. F f = trueU f express
the properties that sometimes in the future f holds. G f = false V f express
the properties that f holds globally.

CTL [14] is a branching-time subset of CTL* in which every temporal op-
erator is immediately preceded by a path quantifier. Thus, nesting of temporal
operators with no path quantifier in between is not allowed. Formally, CTL (in
positive normal form) is the set of state formulas defined by:

— If p € AP, then p and —p are CTL formulas.

— If f and g are CTL formulas, then so are f A g and fV g.

— If f and g are CTL formulas, then so are AX f, A(f U g), A(fV g) and
EXf,E(fUyg), E(fVg).

ACTL* is the wuniversal subset of CTL* in which only A path quantifiers
are allowed. Similarly, ECTL* is the existential subset of CTL*in which only E
path quantifiers are allowed. ACTL and ECTL are the restriction of ACTL* and
ECTL* to CTL.

LTL [49] can be defined as the subset of ACTL* consisting of formulas of
the form A f, where f is a path formula in which the only state subformulas
permitted are Boolean combinations of atomic propositions. More precisely, f is
defined (in positive normal form) by

1. If p € AP then p and —p are path formulas.
2. If fi and f5 are path formulas, then fi A fa, f1V fo, X f1, iU fo,and f1V fo
are path formulas.

We will refer to such f as an LTL path formula.
The semantics of CTL* is defined with respect to a finite state transition
system called Kripke structure.



Definition 2 (Kripke structure). Let AP be a set of atomic propositions. A
Kripke structure M over AP is a four-tuple M = (S, So, R, L), where

— S is a (finite) set of states;

— So C S is the set of initial states;

— R C Sx S is the transition relation, which must be total, i.e., for every state
s € S there is a state s' € S such that R(s,s');

— L:S — P(AP) is a function that labels each state with the set of atomic
propositions true in that state.

A pathin M starting from a state s is an infinite sequence of states m = s¢s13 . ..
such that sg = s, and for every i > 0, R(s;, 8;+1)- The suffix of 7 from state s;
is denoted 7. The requirement that R is total simplifies the semantics of tem-
poral logics over a Kripke structure since all paths are infinite. Several different
semantics over finite paths can be found in [24].

We now consider the semantics of the logic CTL* with respect to a Kripke
structure.

Definition 3 (Satisfaction of a formula). Given a Kripke structure M, sat-
isfaction of a state formula f by a model M at a state s, denoted M,s |= f, and
of a path formula g by a path 7, denoted M, |= g, is defined as follows (where
M is omitted when clear from the context).

1. s=pif and only if p € L(s); s |= —p if and only if p & L(s).
2.sE=fAgifandonlyifs= f and s = g.
sEfVgifandonlyifsi=f orskg.
3. s = A f if and only if for every path 7 from s, 7 |= f.
s = E f if and only if there exists a path w from s such that 7 = f.
4. @[ f, where f is a state formula, if and only if the first state of ™ satisfies
I
S mEfAgifandonlyifnl=f and 7w = g.
mlEfVgifand only iftl=f orwEg.
6. (a) m =X f if and only if ™ = f.
(b) m = f U g if and only if for some n > 0, 7™ = g and for all i < n,
7t f.
(c) m = fV g if and only if for all n > 0, if (for all i < n, ©* [~ f) then
™ Eg.

M = f if and only if for every s € Sy, M,s = f.

In [25] it has been shown that CTL and LTL are incomparable in their
expressive power, and that CTL* is more expressive than either of them.
2.2 Model Checking

Given a Kripke structure M = (S, R, So, L) and a specification ¢ in a temporal
logic such as CTL, the model checking problem is the problem of finding all



states s such that M, s |= ¢ and checking whether the initial states are included
in those states.

When M does not satisfy ¢, model checking can provide a counterezample
which demonstrates why the specification does not hold in the model. Coun-
terexamples are very helpful for debugging. However, most model checking tools
provide them only in limited cases. Common counterexamples have the form
of either a finite path or a “lasso”, which is a finite path followed by a simple
cycle. The former is suitable for demonstrating why a specification of the form
AG p fails to hold. It provides a finite path to a state satisfying —p. The latter
is suitable to demonstrate why AF p fails. It shows an infinite path in a “lasso”
shape along which all states satisfy —p. For general specifications, a tree or even a
general graph is needed. Counterexamples for ACTL formulas are defined in [19]
and for full CTL in [53].

Model checking has been successfully applied in hardware verification, and is
emerging as an industrial standard tool for hardware design . A partial list
of tools for hardware verification includes SMV [41] and NuSMV [12], For-
malCheck [31], RuleBase [2], and Forecast [26]. Recently, several tools for model
checking of software have been developed as well and applied to non-trivial ex-
amples. A partial list consists of SPIN [34], Bandera [21], Java PathFinder [32],
SLAM, Bebop, and Zing [1], Blast [3], Magic [9], and CBMC [16]. An extensive
overview of model checking algorithms can be found in [13].

The main technical challenge in model checking is the state explosion problem
which occurs if the system is a composition of several components or if the system
variables range over large domains.

An explicit state model checker is a program which performs model checking
directly on a Kripke structure. SPIN [33] is an example of a successful tool of that
kind. Large models are often handled implicitly. Two widely used approaches are
the BDD-based [8,42] and the SAT-based [4] model checking.

BDD-based model checking: Ordered Binary Decision Diagrams (BDDs) [7]
are canonical representations of Boolean functions. They are often concise in
their memory requirements. Furthermore, most operations needed for model
checking can be defined in terms of Boolean functions and can be implemented
efficiently with BDDs.

In BDD-based (also called symbolic) model checking, the transition relation
of the Kripke structure is represented by a Boolean function, which in turn is
represented by a BDD. Sets of states are also represented by Boolean functions.
Fixpoint characterizations of temporal operators are applied to the Boolean func-
tions representing the Kripke structure. BDDs are sometimes, but not always,
exponentially smaller than explicit representation of the corresponding Boolean
functions. In such cases, symbolic verification is successful.

Two operations are central to model checking. Given a set of states @), Image
computation computes the set of successors of states in @:

Image(Q) = {t | Is[R(s,t) A Q(s)]}.



Preimage computation computes the set of predecessors of states in @):

Preimage(Q) := {s | It[R(s,t) N Q(t)]}

Unfortunately, in contrast to pure Boolean operations, these operations are not
efficiently computable [42], and their computation is a major bottleneck in sym-
bolic model checking.

SAT-based model checking: Many problems, including some versions of
model checking, can very naturally be translated into the satisfiability problem
of propositional calculus. The satisfiability problem is known to be NP-complete.
Nevertheless, modern SAT-solvers, developed in recent years, can handle formu-
las with several thousands of variables within a few seconds. SAT-solvers such
as Grasp [39], Prover [52], Chaff [47], and Berkmin [27], and many others, are
based on sophisticated learning techniques and data structures that accelerate
the search for a satisfying assignment, if exists.

Below we describe a simple way to exploit satisfiability for bounded model
checking of properties of the form AG p, where p is a Boolean formula. Bounded
Model Checking [5,4] accepts a model M, a natural number (a bound) k&, and a
formula AG p as above. It constructs a propositional formula fy,x, describing all
computations of M of length k. It also constructs a propositional formula f, ,
describing all paths of length k satisfying the property ¢ = “AGp = EF —p.
Next, it sends far A fo,x to a SAT-solver to check for satisfiability. If the formula
is satisfiable then M = AGp and the satisfying assignment corresponds to a
computation of M, leading to a state satisfying —p. This path is a counterezample
for the checked formula. If fas i A fo,r is unsatisfiable then no counterexample of
length k exists in M. The bound k is then increased and the check is repeated.

The method described above is mainly suitable for refutation. Verification is
obtained only if k exceeds the length of the longest path among all shortest paths
from an initial state to some state in M. In practice, it is hard to compute this
bound and even when known, it is often too large to handle. Full verification with
SAT is possible using other methods, such as interpolation [43, 40], induction [51],
and ALL-SAT [11,44,30]. However, these methods are more limited in their
applicability to large systems. Bounded model checking can easily be extended
for checking LTL formulas, interpreted over finite paths [5].

Many of the modern hardware verification tools such as NuSMV [12], Rule-
Base [2], Forecast & Thunder [26,20], and FormalCheck [31] include both SAT
and BDD methods and apply the one that is most successful in each case.

2.3 Equivalences and preorders

In this section we define relations on Kripke structures that guarantee logic
preservation. The relations are structural. That is, they are defined by means of
states and transitions of the Kripke structures. The structural relations corre-
spond to logical relations that guarantee preservation of truth of formulas be-
tween related structures. These relations are exploited in many of the approaches



to avoiding the state explosion problem in model checking, such as, abstraction,
modular model checking, symmetry, and partial-order reductions [13]. Instead
of checking the full model of the system, a smaller model with guaranteed logic
preservation is checked.

We define two structural relations: The bisimulation relation [48] and the
simulation preorder [45]. Intuitively, two states are bisimilar if they are identically
labeled and for every successor of one there is a bisimilar successor of the other.
Similarly, one state is smaller than another by the simulation preorder if they
are identically labeled and for every successor of the smaller state there is a
corresponding successor of the greater one. The simulation preorder differs from
bisimulation in that the greater state may have successors with no corresponding
successors in the smaller state.

Let AP be a set of atomic propositions and let My = (S1,So,, R1,L1) and
My = (Sa, So,, R2, L2) be two structures over AP.

Definition 4. A relation B C S; x Sz is a bisimulation relation [48] over M;
and My if the following conditions hold:

1. For every s1 € Sy, there is s2 € Sy, such that B(s1,s2). Moreover, for every
so € Sy, there is s; € So, such that B(s1, ).
2. For every (s1,82) € B,
— Ly(s1) = La(s2) and
— th[ R1(81,t1) — E'tz[ R2(82,t2) A B(tl,tz) ]]
— Vtz[ R2(32,t2) — Htl[ Rl(sl,tl) A B(tl,tz) ]]

We write s1=2sy for B(s1,s2). We say that My and My are bisimilar (denoted
M= My) if there exists a bisimulation relation B over My and M,.

Definition 5. A relation H C Sy x Ss is a simulation relation [{6] over M,
and My if the following conditions hold:

1. For every sy € So, there is so € S, such that H(sy,sz).
2. For every (s1,s2) € H,

— Lyi(s1) = La(s2) and

— th[ Rl(sl,tl) — th[ RQ(SQ,tQ) A H(tl,tg) ]]

We write 81 < s for H(s1,82). M2 simulates My (denoted M; < My) if there
exists a simulation relation H over M; and M.

The following theorem relates bisimulation and simulation to the logics they
preserve’.

Theorem 1.

— [6] Let M1=Ms>. Then for every CTL* formula f (with atomic propositions
in AP), My = f if and only if Ms = f.

— [29] Let My < M. For every ACTL* formula f with atomic propositions
in AP, My = f implies My = f.

! Bisimulation and simulation also preserve the p-calculus logic [35] and its univer-
sal [37] subset, respectively. The discussion of p-calculus is beyond the scope of this
paper.



2.4 Programs and their models

We describe a simple syntactic framework to formalize programs. A program
P has a finite set of variables V = {vy,---,v,} (sometimes also denoted as a
tuple T = (vy,...,v,)), where each variable v; has an associated domain D,,.
The set of all possible states for program P is D,, x --- D, which we denote
by D. The value of a variable v in state s is denoted by s(v). Expressions are
built from variables in V, constants in D,,, and function symbols in the usual
way, e.g. v; + 3. Atomic formulas are constructed from expressions and relation
symbols, e.g. v; + 3 < 5. Similarly, predicates are composed of atomic formulas
using negation (—), conjunction (A), and disjunction (V). Thus, predicates are
in fact quantifier-free first order formulas. Given a predicate p, Atoms(p) is the
set of atomic formulas occurring in it. Let p be a predicate containing variables
from V, and d = (di,...,d,) be an element from D. Then we write d = p when
the predicate obtained by replacing each occurrence of the variable v; in p by
the constant d; evaluates to true.

Predicates are used to identify initial states of the program as well as condi-
tions in program statements such as if and while.

A specification for a program P is an ACTL* formula ¢ whose atomic formu-
las are predicates over the program variable. Let Atoms(y) be the set of atomic
formulas appearing in the specification ¢. Atoms(P) is the set of atomic formulas
that appear in the definition of initial states or in the conditions in the program.

Each program P naturally corresponds to a Kripke structure M = (S, So, R, L),
where S = D is the set of states, Sy C S is a set of initial states, RC S x Sis a
transition relation, and L is a labeling function given by L(d) = {f € Atoms(P) |
d = f}. Translating a program into a Kripke structure is straightforward and
will not be described here.

3 Abstract models

In this section we define an abstract model (Kripke structure) based on a given
concrete one. The abstract model is guaranteed by construction to be greater
than the concrete model by the simulation relation, thus preservation of universal
logics is obtained. In practice, however, the concrete model is too large to fit
into memory and therefore is never produced. The abstract models are in fact
constructed directly from some high-level description of the system.

For simplicity we consider abstractions obtained by collapsing disjoint sets
of concrete states (in S) into single abstract states (in S). We will not consider
here non-disjoint sets, as is done for instance in Abstract Interpretation [37,22].

We use a function h: S — S , called the abstraction mapping, to map each
concrete state to the abstract state that represents it. The abstraction mapping
h induces an equivalence relation =p, on the domain S in the following manner:
Let s,t be states in S, then

s =p t iff h(s) = h(t).



Since an abstraction can be represented either by an abstraction mapping h or by
an equivalence relation =p, we sometimes switch between these representations.
When the context is clear, we often write = instead of =,.

3.1 Existential Abstraction

We define abstract Kripke structures by means of existential abstraction [15].
Existential abstraction defines an abstract state to be an initial state if it rep-
resents an initial concrete state. Similarly, there is a transition from abstract
states s to abstract state s if there is a transition from a state represented by s
to a state represented by s’ (see Figure 1). Formally,

&
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Fig. 1. Existential Abstraction. M is the original Kripke structure, and M the ab-
stracted one. The dotted lines in M indicate how the states of M are clustered into
abstract states.

Definition 6. Let M = (S, Sy, R, L) be a (concrete) Kripke structure, let S be
a set of abstract states and h: S — S be an abstraction mapping. The abstract
Kripke structure M= (S SO,R L) generated by h for M is defined as follows:

1. §0(§) iff 3s(h(s) =8 A So(s)).
2. Ij(/\l,s) iff Js13sa(h(s1) =381 A h(s2) =53 A R(s1,s2))-
3. L

Having ‘iff” in items 1 and 2 of the definition above results in the ezact
abstract model of M, with respect to h. Replacing ‘iff’ by ‘if’ results in a model
with more initial states and more transitions, which still over-approximates the
structure M. Such a model is sometimes easier to construct. The results below
hold for any abstract Kripke structure constructed by existential abstraction,
not only for the exact one.



Note that, 5 is labeled by an atomic proposition if and only if all the states
it represents are labeled by that proposition. We would like the abstract model
to satisfy as many atomic propositions as possible. In order to achieve this, we
introduce a condition on the abstraction mapping, guaranteeing that all concrete
states in an equivalence class of =} share the same labels.

An abstraction mapping h is appropriate for a specification ¢ if for all atomic
formulas f € Atoms(yp), and for all states s and ¢ in S such that s =4 ¢ it holds
that sE f et f.

Let M and ¢ be defined over AP and let h be appropriate for ¢, then s =5 ¢
implies L(s) = L(t). Moreover, h(s) = § implies L(5) = L(s).

The following theorem shows that for ACTL*, specifications which are correct
for M are correct for M as well.

Theorem 2. Let M be a Kripke structure and ¢ be an ACTL* formula, both de-
fined over AP. Further, let h be appropriate for ¢. Then M < M. Consequently,

M = ¢ implies M |= .

Note that once S h, and AP are given, SO, R and L are uniquely determined.
Thus, S h, and AP uniquely determine M. Since h implicitly includes the
information about S and AP, we sometimes refer to h for identifying M. In
the next subsections we will define different types of abstraction by means of
their abstract states and abstraction mapping. Other abstraction types are also
possible.

3.2 Abstraction Types

Let P be a program and let ¢ be an ACTL* formula. We describe several ways
to define abstractions that are appropriate for checking ¢ on P. They are all
based on the existential abstraction. They differ from each other in their choice
of abstract states, in the set of atomic propositions that label both concrete and
abstract states and in the definition of the abstraction function h.

Predicate Abstraction: Predicate abstraction [28,50] is based on a set of
predicates {Pi, ..., P}, defined over the program variables. Recall that predi-
cates are quantifier-free first order formulas. Since our goal is to check a property
@ on a program P, Atoms(yp), the set of predicates appearing in ¢, must be in-
cluded in the set of predicates. In addition, this set will contain some of the
conditions in control statements in P, and possibly other predicates.

In order to define the abstract state space, each predicate P; is associ-
ated with a Boolean variable B;. The set of abstract states are valuations of
{By,...,By}. Thus, § = {0,1}*.

The predicates are also used to define the abstraction mapping h between
the concrete and abstract state spaces. A concrete state s will be mapped to an
abstract state s through h if and only if the truth value of each predicate on s



equals the value of the corresponding Boolean variable in the abstract state s.
Formally,

h(s)=% & J\ (Pi(s) & B;(3). (1)

1<j<k

The predicates also serve as the atomic propositions that label the states
in the concrete and abstract models. That is, the set of atomic propositions is
AP ={P,P,, .., P;}. A state in the concrete system will be labeled with all the
predicates it satisfies. Note that, all concrete states mapped to the same abstract
state 5 agree on the values of all predicates P; and also agree with s on the value
of the corresponding Bj. Thus, an abstract state will be labeled with predicate
P; if and only if the corresponding bit B; is 1 in that state.

Note also that h is a function because each P; can have one and only one
value on a given concrete state and so the abstract state corresponding to the
concrete state is unique. h is also appropriate for any ACTL* formula over AP,
and in particular ¢.

Once §, h, and AP have been determined, the rest of the abstract model is
defined as explained before, by means of existential abstraction.

Example 1. We will exemplify some of the notions defined above on a simple
example. Consider a program P with variables x,y over the natural numbers
and a single transition z := x + 1. Let AP = {Py, P>, P3} where P, = (x < 1),
P =(z>y),and P; = (y =2).

Let s and t be two concrete states such that s(z) = s(y) = 0, ¢(x) = 1 and
t(y) = 2. Then, L(s) = {P1} and L(t) = {P1, Ps}.

The abstract states are defined over valuations of the Boolean variable By, B2, Bs.
Thus, S C {0,1}%. The abstraction mapping h is: h(s) = (1,0,0) and h(t) =
(1,0,1). Note that L((1,0,0)) = L(s) = {P.}, where L((1,0,1)) = L(t) =
{P1, P;}. The abstract transition relation can be represented by the following
formula:

~

R(B].JBZJB37B17B57B:I‘;) —

Hxayaxlayl[ Pl(may) <:>B1 AP?(:U):U) <:>BQ A P3($7y) <:>B3 A
r=z+1 ANy =yA

P (z',y") & B} AN Py(2',y") o By AN Ps(2',y') < B} .

If the program P is over a finite, relatively small state space, then BDDs
can be used to compute R. For that, we will need a BDD representation of the
concrete transition relation R (possibly in the form of a partitioned transition
relation [13]). Further, we will need a BDD representation for h.

If the program is over a finite but large state space then SAT solvers will
be more appropriate, while if its state space is infinite then theorem prover will
have to be used [50].

The two other types of abstractions described next can both be defined by
means of predicate abstraction. However, they are interesting special cases.



Abstraction based on visible and invisible variables: The visible-variables
abstraction, also known as localization reduction [36], is based on a partition of
the program variables into visible and invisible variables. It is a simpler special
case of predicate abstraction and is widely used in model checking of hardware.
The visible variables, denoted V, are considered to be important for the checked
property ¢ and hence are retained in the abstract model. This set includes,
in particular, all variables that appear in ¢. The rest of the variables, called
invisible, are considered irrelevant for checking ¢. Ideally, only a small subset of
the variables will be considered visible.

Formally, given a set of variables U = {uy,...,up}, U C V, let sV denotes
the portion of s that corresponds to variables in U, i.e., s = (s(u1),. .., s(up))

Let V = {u1,...,uq} C V be the set of visible variables. Then, the set of
abstract states is S = Dy, x ... x D,,. The abstraction function h : S — S is
defined as h(s) = s¥. AP includes all atomic propositions in (. Since all variables
that appear in ¢ are visible, h is appropriate for ¢.

A conservative choice of the set of visible variables is described below. As-
sume that each variable v € V is associated with a next-state function f, (V).
Typically, f, depends only on a subset of V. The Cone Of Influence (COI) [13]
of a formula ¢ is defined inductively as follows. It includes all the variables in
. In Addition, if v is in COI, then all variables on which f, depends are also in
COL.

Taking the COI of ¢ to be the set of visible variable, results in an abstract
model which is equivalent to the concrete model with respect to ¢. That is, the
abstract model satisfies ¢ if and only if the concrete model satisfies it. As a
result, refutation of ¢ on the abstract model implies refutation on the concrete
model. This choice, however, is often not practical, since COI is typically too
large.

Note that, in contrast to predicate abstraction, the visible-variables abstrac-
tion cannot retain any information on variables over infinite domain. Such vari-
ables must be considered invisible. This is because the domain of a visible vari-
able is taken as is and no abstraction is applied to it. In the next section we
present an abstraction that can abstract domains of individual variables.

Data abstraction: Another useful abstraction can be obtained by abstracting
away some of the data information. Data abstraction [15,38] is done by choosing,
for every variable in the system, an abstract domain that is typically significantly
smaller than the original domain. The abstraction function maps concrete data
domains to abstract data domains and induces an abstraction function from
concrete states to abstract states.

Clearly, a property verified for the abstract model can only refer to the ab-
stract values of the program variables. In order for such a property to be mean-
ingful in the concrete model we label the concrete states by atomic formulas
of the form ¥; = a, where a is an element of the abstract domain of v;. These
atomic formulas indicate that the variable v; has some value d that has been
abstracted to a.



Let P be a program with variables vy, ..., v,. For simplicity we assume that
all variables are over the same domain D. Thus, the concrete model of the system
is defined over states s of the form s = (dy,...,d,) in D x ... x D, where d; is
the value of v; in this state.

In order to build an abstract model for P we need to choose an abstract
domain A and an variable-abstraction mapping h : D — A. The abstract state
space is then defined by R

S=Ax...x A

The abstraction mapping is an extension of the variable-abstraction mapping h
to n-tuples in D x...x D. By abuse of notion we denote the abstraction mapping
by h as well.

As before, an abstract state (ai,...,a,) of S represents the set of all states
(di,...,dy) such that h((d1,...,dn)) = (a1,...,as).

The next step is to restrict the concrete model of P so that it reflects only
the abstract values of its variables. This is done by defining the set of atomic
propositions as follows:

AP={0;=al|i=1,...,n and a€ A }.

The notation 7; is used to emphasize that we refer to the abstract value of the
variable v;. The labeling of a state s = (d1,...,d,) in the concrete model will
be defined by

L(s)={vi=a; | h(d)=aqa;, i=1,...,n }.

By restricting the state labeling we lose the ability to refer to the actual values
of the program variables. However, many of the states are now indistinguishable
and can be collapsed into a single abstract state.

Here again all states mapped to an abstract state agree on all atomic proposi-
tions. Thus, the abstraction mapping h is appropriate for every ACTL* formula
defined over AP. The abstract labeling, defined according to the existential ab-
straction, can also be described as follows. Let 5 = (ay, ..., ay,). Then,

LB ={ti=a|i=1,....n}.

Ezample 2. Let P be a program with a variable z over the integers. Let s, s'
be two program states such that s(z) = 2 and s'(x) = —7. Following are two
possible abstractions.

Abstraction 1:

A1 ={a_,a9,a+} and
a4 lfd>0
hi(d) =< ao ifd=0
a_ifd<0



Thus, h(s) = (a4) and h(s') = (a—). The set of atomic propositions is
AP ={Z=a_, T=ag, T=ay }.
The labeling of states in the concrete and abstract models induced by A;
and h; is: R
Li(s)=Lay)={T=as}and Li(s') = L(a_) ={Z =a_}.

Abstraction 2:

AZ = {aeven; aodd} and

| aeyen if even(|d|)
ha(d) = {aodd if odd(|d])

Here h(s) = (Geven) and h(s') = (acqq)- The set of atomic propositions is
AP, = { T = Qevens T = Goqq }

The labeljng induced by A, and hs is: R

Ly(s) = L(aeven) = {Z = aepen} and Ly(s") = L(aoqq) = {Z = aoqaq}-

4 Deriving models from the program text

In the next section we explain how the exact and approximated abstract model
for the system can be derived directly from a high-level description of a program.
In order to avoid having to choose a specific programming language, we argue
that the program can be described by means of first-order formulas. In this
section we demonstrate how this can be done.

Let P be a program, and let 7 = (v1,...,v,) and ¥ = (vy,...,v}) be two
copies of the program variables, representing the current and next state, respec-
tively. The program will be given by two first-order formulas, Sy(v) and R(v,v'),
describing the set of initial states and the set of transitions, respectively. Let
d = (di,...,d,) be a vector of values. The notation Sy[v ¢ d] indicates that for
every i = 1,...,n, the value d; is substituted for the variable v; in the formula
So. A similar notation is used for substitution in the formula R.

Definition 7. Let S = D x ... X D be the set of states in a model M. The
formulas So(v) and R(v,v') define the set of initial states Sy and the set of
transitions R in M as follows. Let s = (dy,...,d,) and s' = (d,...,d.,) be two
states in S.

— So(s) & So(0)[U < d] is true.
— R(s,s") & R(@V)[U+ d,v' + d] is true.

The following example demonstrates how a program can be described by
means of first-order formulas. A more elaborate explanation can be found in [13].
We assume that each statement in the program starts and ends with labels
that uniquely define the corresponding locations in the program. The program
locations will be represented in the formula by the variable pc (the program
counter), which ranges over the set of program labels.



Ezxample 3. Given a program with one variable x that starts at label [y, in any
state in which z is even, the set of its initial states is described by the formula:

So(pc,x) = pec=ly N even(z).

Let I: xz:=e I' be a program statement. the transition relation associated
with this statement is described by the formula:

R(pc7m7pclaml) = pC=l A .'L'Ize A pCI:lI_

Given the statement [ : if t =0thenl;: z:=1elsely: z:=2+ 11, the
transition relation associated with it is described by the formula:

R(pc,z,pc’,x') = ((pc=1 A z=0 Az ' =xApc =1;)V
(pc=1l ANx#£0 Az’ =xApd =1)V
(pe=liAg' =1Apd =1")Vv
(pc=lAz' =x+1Apd =1)).

Note that checking the condition of the i f statement takes one transition, along
which the value of the program variable is checked but not changed. If the
program contains an additional variable y, then 3y’ = y will be added to the
description of each of the transitions above. This captures the fact that variables
that are not assigned a new value keep their previous value.

4.1 Deriving abstract models

Let Sp and R be the formulas describing a concrete model M. Let S and h be the
set of abstract states and the abstraction mapping, defining an abstract model
M. We would like to define formulas Sg and R that describe the model M. We
first define formulas that describe the ezact abstract model. To emphasize that
it is the exact model we will denote it by M,. We then show how to construct
formulas describing an approximated abstract model with possibly more initial
states and more transitions. The latter formulas represent an abstract model
which is less precise than the exact one, but is easier to compute.

Let S be defined over the variables (01, ...,0), that is S is the set of val-
uations of those variables. Further, let h((v1,...,v,))) = (01,...,0;). Thus, h
maps valuations over the concrete domain to valuat1ons over the abstract do—
main. The new formulas that we construct for M will be defined over the vari-
ables (01, ...,0x). The formulas will determine for abstract states whether they
are initial and whether there is a transition connecting them. For this purpose,
we first define a derivation of a formula over variables 71, ..., 7 from a formula
OVer V1, ..., Upn.

Definition 8. Let ¢ be a first-order formula over variables v1,...,v,. The for-
mula [p] over 01, ...,0; is defined as follows:

[Pl (@1, -, 0k) = v - on (A((V1, - - 0n))) = (01, -, Ok) A @(v1; - -, 0n)) -



Lemma 1. Let So and R be the formulas describing a_model M. Then the
formulas Sy = [So] and R = [R] describe the exact model M,.

The lemma holds since M\ is defined by existential abstraction (see Definition 6).
This is d1rect1y reflected in [So] and [R].

Using So and R allows us to build the exact model M without first building
the concrete model M. However, the formulas S and R might be quite large.
Thus, applying existential quantification to them might be computationally ex-
pensive. We therefore define a transformation 7 on first-order formulas. The
idea of T is to push the existential quantification inwards, so that it is applied
to simpler formulas.

Definition 9. Let ¢ be a first-order formula in positive normal form. Then
T () is defined as follows:

1. Ifpis a predicate, then T (p(v1,...,vs)) = [p](01,...,0k) and T (=p(v1,...,v,)) =
[_' ](1}17 . vk)

T(p1 A 802) =T (p1) AT (p2).

T(p1Vp2) =T(p1) VT (p2).

T (Yvp) = VoT ().

T (Bvy) = F0T (p).

G o o

We can now define an approzimated abstract model M. 1t is defined over the same
set of states as the exact model, but its set of initial states and set of transitions
are defined using the formulas 7(Sp) and 7(R). The following lemma ensures
that every initial state of J/\/.I'\6 is also an initial state of M. Moreover, every
transition of M, is also a transition of M.

Lemma 2. For every first-order formula ¢ in positive normal form, [¢] implies
T(p). In particular, [So] implies T(So) and [R] implies T(R).

Note that the other direction does not hold. Cases 2 and 4 of Definition 9 result
in nonequivalent formulas.

Corollary 1. M < ]/\/[\e < M.

By allowing M to have more behaviors than J\//.Te, we increase the likelihood that
it will falsify ACTL* formulas that are actually true in the concrete model and
possibly true in M This reflects the tradeoff between the precision of the model
and the ease of its computation.

In practice, there is no need to construct formulas in order to build the
approximated model. Let p be a predicate associated with a basic action a in
the program (e.g. conditions, assignments of mathematical expressions). The user
should provide abstract predicates [p] and [—p] for every such action a. Based on
these, the approximated model can be constructed automatically.

In [15,38], the construction of abstract models presented here has been de-
veloped and applied in the context of data abstraction.



5 Counterexample-guided Abstraction Refinement

It is easy to see that, regardless of the type of abstraction we use, the abstract
model M contains less information than the concrete model M 2. Thus, model
checking the structure M potentially produces incorrect results. Theorem 2 guar-
antees that if an ACTL* specification is true in M then it is also true in M. On
the other hand, the following example shows that if the abstract model invali-
dates an ACTL* specification, the actual model may still satisfy the specification.

Example 4. The US traffic light controller presented in Figure 2, is defined over
atomic propositions AP = {state = red}. We would like to prove for it the

formula ¢ = AG AF(state = red) using the abstraction mapping h(red) = red
and h(green) = h(yellow) = go. It is easy to see that M |= ¢ while M [~

1. There exists an infinite abstract trace (red, go, go,...) that invalidates the
specification. However no corresponding concrete trace exists.

red Lt g/z D

Fig. 2. Abstraction of a US traffic light.

When an abstract counterexample does not correspond to some concrete
counterexample, we call it spurious. For example, (@, go, go, ... ) in the above
example is a spurious counterexample.

Let us consider the situation outlined in Figure 3. We see that the abstract
path does not have a corresponding concrete path. Whichever concrete path we
go, we will end up in state D, from which we cannot go further. Therefore, D
is called a deadend state. On the other hand, the bad state is state B, because
it made us believe that there is an outgoing transition. Finally, state I is an
irrelevant state since it is neither deadend nor bad. To eliminate the spurious
path, the abstraction can be refined, for instance, as indicated by the thick line,
separating deadend states from bad states.

5.1 The Abstraction-Refinement Framework for ACTL*

In this section we present the framework of CounterExample- Guided Abstraction-
Refinement (CEGAR), for the logic ACTL* and existential abstraction. The
main steps of the CEGAR framework are presented below:

> From now on we will assume that M is defined according to an abstraction mapping
h which is appropriate for the checked property.
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Fig. 3. The abstract path in M (indicated by the thick arrows) is spurious. To eliminate
the spurious path, the abstraction has to be refined as indicated by the thick line in
M.

1. Given a model M and an ACTL* formula ¢, generate an initial abstract
model M.

2. Model check M with respect to ¢ 2. If ¢ is true, then conclude that the
concrete model satisfies the formula and stop. If a counterexample T is found,
check whether it is also a counterexample in the concrete model. If it is,
conclude that the concrete model does not satisfy the formula and stop.
Otherwise, the counterexample is spurious. Proceed to step 3.

3. Refine the abstract model, so that 7" will not be included in the new, refined
abstract model. Go back to step 2.

Suggesting an initial abstraction and refinements manually requires great
ingenuity and close acquaintance with the verified system. Here we present a
framework, developed in [17], in which both steps are done automatically. The
initial abstraction is constructed based on the program text, and refinements are
determined by spurious counterexamples.

5.2 Detailed Overview of CEGAR

We now describe in more detail the CEGAR framework for ACTL*. For a pro-
gram P and an ACTL* formula ¢, our goal is to check whether the Kripke
structure M corresponding to P satisfies . The CEGAR methodology consists
of the following steps.

1. Generate the initial abstraction: We generate an initial abstraction mapping
h by examining the program text. We consider the conditions used in control
statements such as if, while, and case, and also the atomic formulas in ¢.

3 Most existing model checking tools handle CTL or LTL which are subsets of ACTL*.



The initial abstraction is an existential abstraction, constructed according
to one of the abstractions described in Section 3.2.

2. Model-check the abstract structure: Let M be the abstract Kripke structure
corresponding to the abstraction mapping h. We check whether M E o
If the check is affirmative, then we can conclude that M |= ¢ (see Theo-
rem 2). Suppose the check reveals that there is a counterexample T. We
ascertain whether 7' is an actual counterexample, i.e., it corresponds to a
counterexample in the unabstracted structure M. If T' turns out to be an
actual counterexample, we report it to the user, otherwise T is a spurious
counterexample, and we proceed to step 3.

3. Refine the abstraction: We refine the abstraction mapping h by partitioning a
single equivalence class of = so that after the refinement, the refined abstract
structure M does not admit the spurious counterexample T. We will not
discuss here partitioning algorithms. After refining the abstraction mapping,
we return to step 2.

The refinement can be accelerated in the cost of faster increase of the abstract
model if the criterion obtained for partitioning one equivalence class (e.g. a
new predicate) is used to partition all classes.

Depending on the type of h and the size of M, the initial abstract model
(i-e., abstract initial states and abstract transitions) can be built using BDDs,
SAT solvers or theorem provers. Similarly, the partitioning of abstract states,
performed in the refinement, can be done using BDDs (e.g. as in [17]), SAT
solvers (e.g. as in [10]), or linear programming and machine learning (e.g. as
in [18]).

5.3 BDD-based CEGAR

In this section we describe a BDD-based implementation of the CEGAR frame-
work, in which the initial abstraction and the refinements are computed and
represented symbolically, using BDDs.

Model Checking the Abstract Model We use standard symbolic model
checking procedures to determine whether M satisfies the specification . If it
does, then by Theorem 2 we can conclude that the original Kripke structure also
satisfies . Otherwise, assume that the model checker produces a counterexam-
ple T corresponding to the abstract model M. In the rest of this section, we
will focus on counterexamples which are finite paths. In [17], counterexamples
consisting of a finite path followed by a loop are also considered. In [19], tree-like
counterexamples for all of ACTL are considered.

5.4 Identification of Spurious Path Counterexamples

Assume the counterexample 7 is a path (81, --,5n). Given an abstract state
3, the set of concrete states s such that h(s) = 5 is denoted by h~1(3), i.e.,



Fig. 4. An abstract counterexample

h=1(3) = {s|h(s) = §}. We extend h~! to sequences in the following way: h=(T)
is the set of concrete paths defined as follows:

h N (T) = {(s1,--, 5n)] /\ h(si) =i A So(s1) A A R(si, sit1)}-

Next, we give a symbolic algorithm to compute A=1(T). Let S; = h='(51) N So.
For 1 < i < n, we define S; in the following manner: S; := Image(S;_1) N
h~1(5;). Recall that, Image(S;_1) is the set of successors of states in S;_;. The
sequence of sets S; is computed symbolically using BDDs and the standard image
computation algorithm. The following lemma establishes the correctness of this
procedure.

Lemma 3. The following are equivalent:

(i) The path T corresponds to a concrete counterexample.
(ii) The set of concrete paths h='(T) is non-empty.
(1) For all1 <i<mn, S; #0.

Suppose that condition (iii) of Lemma 3 is violated, and let 7 be the largest
index such that S; # (). Then 35; is called the failure state of the spurious coun-

terexample T'. It follows from Lemma 3 that if h~1(T) is empty (i.e., if the

counterexample T is spurious), then there exists a minimal ¢ (2 < ¢ < n) such
that S; = 0.

Example 5. In this example we apply data abstraction. Consider a program with
only one variable with domain D = {1,---,12}. Assume that the abstraction
mapping h maps d € D to |(d—1)/3| + 1. There are four abstract states corre-
sponding to the equivalence classes {1,2,3}, {4,5,6}, {7,8,9}, and {10,11,12}.
We call these abstract states T, 5, E’;, and 4. The transitions between states
in the concrete model are indicated by the arrows in Figure 4; small dots de-
note non-reachable states. Suppose that we obtain an abstract counterexample



T = (T, 5, 3, Z) It is easy to see that T is spurious. Using the terminology of
Lemma 3, we have S; = {1,2,3}, S2 = {4,5,6}, S5 = {9}, and Sy = 0. Notice
that Sy is empty. Thus, §3 is the failure state.

Algorithm SplitPATH(T)

S:=h"1(51) N So

ji=1

while (S # 0 and j <n) {
Ji=3+1
Sprev 1= S

S := I'mage(S)NA™'(5;) }
if S # 0 then output ”counterexample exists
else output j-1, Sprev

9

Fig. 5. SplitPATH checks if an abstract path is spurious.

The symbolic Algorithm SplitPATH in Figure 5 computes the index of the
failure state and the set of states S;_;; the states in S;_; are called dead-end
states. After the detection of the dead-end states, we proceed to the refinement
step. On the other hand, if the conditions stated in Lemma 3 are true, then
SplitPATH will report a “real” counterexample and we can stop.

5.5 Refining the Abstraction

In this section we explain how to refine an abstraction to eliminate the spurious
counterexample. In order to simplify the discussion we assume that the abstract
model is exact (see the discussion following Definition 6). Less precise abstract
models can also be handled. Recall the discussion concerning Figure 3 in Sec-
tion 5.1 where we identified deadend states, bad states, and irrelevant states.
The refinement should suggest a partitioning of equivalence classes, that will
separate the deadend states Sp from the bad states Sp.

We already have the deadend states. Sp is exactly the set Spyey, returned by
the algorithm SplitPATH(T ) The algorithm also returns j — 1, the index in
the counterexample where the failure state has been encountered. We can now
compute the bad states symbolically as follows:

Sg = PreImage(h™"(s;51)) N h™"(5;).

h~1(5;) should now be partitioned to separate these two sets of states. This can
be done in different ways. For example if we work directly with BDDs, then we
can add a new abstract state s to S and update the BDD for h so that states



in Sp are now mapped to the new state sA; Of course, now ]/%, :S’B and L should
be updated.

Our refinement procedure continues to refine the abstraction mapping by
partitioning equivalence classes until a real counterexample is found, or the prop-
erty is verified. If the concrete model is finite, then the partitioning procedure
is guaranteed to terminate.

6 Conclusion

We surveyed abstractions based on over-approximation and preserving truth
results of universal branching-time logics from the abstract model to the concrete
model.

We did not cover many other approaches to abstraction. Those are usually
based on more elaborated models. Such models allow, for instance, for abstract
states to represent non-disjoint sets of concrete states. Others allow two types of
transitions that over- or under-approximate the concrete transition relation and
thus preserve the truth of full branching-time logics. Others allow to interpret
formulas over 3-valued semantics, and can preserve both truth and falsity of full
branching-time logics.

A relevant question for the abstraction-refinement framework is whether ev-
ery infinite-state model has a finite-state abstraction (sometimes referred to as
completeness). This question has been discussed for branching-time logics in,
e.g., [23]. It turns out that some notion of fairness is needed in order to guaran-
tee completeness. It should be noted that for a finite model this question does
not arise since it can always serve as its own abstraction. It should also be noted
that even for complete abstraction the iterative process of abstraction-refinement
is not guaranteed to terminate since there is no constructive way to construct
the abstraction.
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