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Abstract

This work presents a modular technique for minimizing a deterministic �nite�state ma�
chine �FSM� while preserving its equivalence to the original system� Being modular� the
minimization technique should consume less time and space� Preserving equivalence� the
resulting minimized model can be employed in both temporal logic model checking and
sequential equivalence checking� thus reducing their time and space consumption�

As deterministic FSMs are commonly used for modeling hardware designs� our approach
is suitable for formal veri�cation of such designs�

We develop a new BDD framework for the representation and manipulation of func�
tions and show how our minimization technique can be e�ectively implemented within this
framework�

� Introduction

Due to the fast development of the hardware and software industry� there is a growing need for
formal veri�cation tools and techniques� Two widely used formal veri�cation methods are tem�
poral logic model checking and sequential equivalence checking� Temporal logic model checking
is a method for verifying �nite�state systems with respect to propositional temporal logic spec�
i�cations� In sequential equivalence checking� two sequential hardware designs are compared
for language equivalence� meaning that for every sequence of inputs� the two designs produce
the same sequence of outputs� Both model checking and equivalence checking are fully auto�
matic� However� they both su�er from the state explosion problem� that is to say� their space
requirements are high and limit their applicability to large systems�

Many approaches for overcoming the state explosion problem have been suggested� includ�
ing abstraction� partial order reduction� modular veri�cation methods� and symmetry ��	� All
are aimed at reducing the size of the model to which formal veri�cation methods are applied�
thus extending their applicability to larger systems� When reduction methods are applied� the
veri�cation technique has to be able to deduce properties of the system by verifying the reduced
model� We therefore require the result of the reduction to be equivalent to the original model�

Two of the most commonly used equivalence relations are language equivalence and bisim�
ulation �
�	� The former is suitable for equivalence checking as well as model checking for the
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linear�time logic LTL �citePnueli�
LTL� The latter is suitable for model checking of the expres�
sive ��calculus �

	 logic and its widely used sublogics CTL �
� �	 and LTL�

Minimizing a model with respect to language equivalence is PSPACE�complete �
�	 while
minimizing a model with respect to bisimulation is polynomial� Thus� bisimulation minimization
appears to be tractable� However� computing bisimulation minimization in a naive way may
still be quite costly in terms of time and space� This motivated the development of more subtle
reduction methods for a variation of equivalence relations� We describe some of these works
below�

The algorithm in �
�	 minimizes models with respect to bisimulation� In order to gain
e�ciency� the algorithm refers only to reachable states and computes equivalence classes for
bisimulation instead of pairs of equivalent states� This appears to consume less memory for BDD�
based ��	 implementations� In ��	� the algorithm presented in �
�	 is applied to the intersection
of the model with an automaton representing the the property that should be satis�ed by the
model� In ��	� a reduction with respect to symmetry equivalence is performed� The symmetry
equivalence is a bisimulation equivalence� but not necessarily the maximal one� ��	 reports that
computing this reduction is more e�cient in the BDD framework than reduction with respect
to bisimulation�

Other works exploit modularity for reduction� The modular reduction in �
	 preserves a given
formula which should be checked for truth in the model� This method can result in a small
model� however� since it preserves a single formula� it cannot be used for equivalence checking�
In ��	� the equivalence relation is a combination of language equivalence and fairness constraints�
Since computing this relation is PSPACE�complete� an approximation equivalence relation is
computed and the quotient model is de�ned with respect to the approximation equivalence
relation� ��	 presents an algorithm that constructs an abstract model of a system through a
sequence of approximations� where the �nal approximation is equivalent to the original system
with respect to the speci�cation language� The approximations are constructed according to
interface speci�cations which are given by the user�

��� Our Approach

Our approach is based on three main ideas� We restrict our attention to deterministic systems�
our minimization algorithm is modular� reducing modules of the system in separation� and we
develop an extension of the BDD framework that e�ciently handles functions and operations
on them�
Deterministic systems�
The advantages of dealing with deterministic systems are�

� Bisimulation and language equivalence coincide on deterministic systems� Thus� bisim�
ulation minimization results in a minimal model both for language equivalence and for
bisimulation�

� The algorithm presented in �
�	 can easily be adapted to compute bisimulation minimiza�
tion�

� The transition relation of a deterministic system is actually a function� thus can be con�
cisely represented in our new BDD framework�

�



Since most hardware systems are deterministic� it is bene�cial to develop an e�cient minimiza�
tion technique for such systems� Our technique enlarges the scope of industrial�size hardware
designs that can be formally veri�ed�
Modular minimization�
The modular minimization technique is based on the partition of the system into components�
Our technique minimizes the model in steps� In each step two components are selected� and
their minimized composition is constructed� without ever constructing their full non�minimized
composition� This process is repeated until all components are composed to form the full
minimized system� The advantages of this approach are�

� Time and space requirements of minimization algorithms depend on the size of the model
to which they are applied� By minimizing components instead of the full system� we expect
a better overall complexity� Moreover� we will be able to minimize a system in parts even
when minimizing the full system is intractable due to its size�

� It is sometimes impossible to complete the construction of the minimized system due to
the size of intermediate components� In such cases� it might still be possible to apply some
formal veri�cation procedures to a partially minimized model� The partially minimized
model can then be constructed by composing minimized components with unminimized
ones�

BDD framework for functions�
Let f � D � D� be a complete function in which D and D� are encoded by n and n� boolean
variables� respectively� Our new BDD framework represents such a function by n� boolean
functions over n variables� each de�ning one bit in the result� Standard operations on functions
such as image� inverse and composition are de�ned for this representation�

As mention above� for deterministic models the transition relation is a function� In addition�
we refer to the equivalence relation as a function from states to the equivalence class they belong
to� Consequently� the main steps of the minimization algorithm �presented in Section 
� can be
e�ciently implemented with our operations on functions� The advantages of our BDD framework
are�

� The transition relation� that is typically represented by n � n� boolean variables is now
represented by n variables only� This is signi�cant since BDD size often depends on the
number of its variables�

� In relational representation of the transition relation� the BDD often contains unnecessary
dependencies between variables� These dependencies are eliminated when the relation is
represented as a set of functions� Less dependencies results in a smaller BDD� Thus� the
BDD size is reduced�

The rest of the paper is organized as follows� In Section � we de�ne the model� model
composition and bisimulation equivalence� Section 
 describes our algorithm for minimizing a
single model� Section � presents the modular minimization algorithm and Section � describes
the BDD framework� Finally� in Section � we discuss future work�






� Basic De�nitions

We model systems as �nite�state machines �FSMs� in the form of Moore machines in which
the states are labeled with outputs and the edges are labeled with inputs� Such machines are
commonly used for modeling hardware designs�

De�nition ��� ���� An FSM is a tuple M �� S� S�� I� O� L�R � where

� S is a �nite set of states�

� S� � S is a set of initial states�

� I � O � ��

� I is a �nite set of input propositions�

� O is a �nite set of output propositions�

� L is a function that maps each state to the set of output propositions true in that state�

� R � S � �I �S is the transition relation� We assume that for every s � S and i � I there
exists at least one state s� such that �s� i� s�� � R�

An FSM is deterministic i� for every state s and i � I there exists exactly one state s� such
that �s� i� s�� � R�

Two FSMs are composed only if their outputs are disjoint� There is a transition from a pair
of states in the composed FSM if and only if the output of each state match the input on the
transition leaving the other state� This models the input�output connections between the two
machines�
De�nition ��� Let M� �� S�� S��� I�� O�� L�� R� � and M� �� S�� S��� I�� O�� L�� R� � be
two FSMs such that O� � O� � �� The composition M � M�jjM� �� S� S�� I� O� L�R � is an
FSM such that	

� S � S� � S��

� S� � S�� � S���

� I � �I� nO�� � �I� nO���

� O � O� �O��

� L��s�� s��� � L��s�� � L��s���

� ��s�� s��� i� �s
�
�
� s�

�
�� � R i
 �s�� �i�L��s����I�� s

�
�
� � R� and �s�� �i�L��s����I�� s

�
�
� � R��

Lemma ��� Let M� and M� be deterministic FSMs� then the composition M of M� and M�

is deterministic as well�

We now de�ne the basic notion of equivalence that we use in this work� namely� bisimulation�

De�nition ��� Let M� �� S�� S��� I�� O�� L�� R� � and M� �� S�� S��� I�� O�� L�� R� � be
two FSMs such that O��O� 	� � and I� � I�� We say thatM� andM� are bisimulation equivalent
with respect to O� 
 O��O� i
 there exists a relation H � S��S� �called bisimulation relation

such that	
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� For every state s�� � S�� there exists a state s�� � S�� such that �s��� s��� � H and for
every state s�� � S�� there exists a state s�� � S�� such that �s��� s��� � H�

� For every pair �s�� s�� in H the following three conditions hold	

� L��s�� �O
� � L��s��� O��

� For every i � I� �recall that I� � I�
� and for every state s�
�
such that �s�� i� s

�
�
� � R�

there exists a state s�
�
such that �s�� i� s

�
�
� � R� and �s�

�
� s�

�
� � H�

� For every i � I�� and for every state s�
�
such that �s�� i� s

�
�
� � R� there exists a state

s�
�
such that �s�� i� s

�
�
� � R� and �s�

�
� s�

�
� � H�

Bisimulation is an equivalence relation over FSMs� �

	 shows that for every two FSMs M� and
M�� there exists a maximal bisimulation relation� which contains every relation that satis�es the
conditions of De�nition ���� The maximal bisimulation relation H � S � S over the states of
an FSM M is an equivalence relation over S� As such� it induces a partition of S to equivalence
classes� These classes can be used to form the quotient FSM of M � which is the minimal FSM
that is bisimulation equivalent to M � Formally�
De�nition ��� Let M �� S� S�� I� O� L�R � be an FSM and let H � S � S be the maximal
bisimulation relation with respect to O� � O over M � The quotient FSM
MQ �� SQ� S�Q� IQ� OQ� LQ� RQ � of M with respect to H is de�ned as follows	

� SQ � f�j� is an equivalence class in Hg�

� S�Q � f�j there exists s� � S� such that s� � �g�

� IQ � I�

� OQ � O��

� For � � SQ� LQ��� � L�s� �O�� for some �all
 states s � ��

� RQ � f��� i� ���jthere are states s � �� s� � �� such that �s� i� s�� � Rg�

De�nition ��� An FSM M is minimized i
 it is isomorphic to its quotient structure�

Proposition ��� Every quotient FSM is minimized�

For the rest of this paper� we will use the term �minimized FSM� for quotient FSM�
Proposition ��� Let M be an FSM and MQ be the quotient FSM of M with respect to O��
Then MQ is the smallest �in number of states and transitions
 FSM which is bisimulation equiv�
alent to M with respect to O��

Proposition ��	 If M is deterministic then its quotient FSM MQ is deterministic as well�

� Minimizing Deterministic Systems

In this section we present an adaptation of the algorithm given in �
�	 for constructing the
quotient automaton for a given regular deterministic automaton� The algorithm is adapted for
deterministic FSMs� so that given an FSM� it constructs its quotient FSM�

Let H � S � S be the maximal bisimulation relation over M � Since M is deterministic� the
conditions for two states to be relates by H can be slightly changed� �s�� s�� � H if and only if
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� L�s�� � L�s���

�� For every input i � I � �R�s�� i�� R�s�� i�� � H �

Recall that H is an equivalence relation over S� In order to improve the performance of our
minimization algorithm� we refer to H as a function from the states in S to their equivalence
classes� The conditions above are now stated as�


� H�s�� � H�s�� � L�s�� � L�s���

�� H�s�� � H�s�� � for every input i � I � H�R�s�� i�� � H�R�s�� i���

The main di�erence between the algorithm in �
�	 and our algorithm is in the initial parti�
tioning� While for automata the initial partition forms two sets �accepting and rejecting�� the
states of a deterministic FSM are initially partitioned into �jAP j sets� one for each state label�
ing� Our algorithm is presented in Figure 
� Next we give an intuitive explanation of how the
algorithm works� We say that a class � is stable with respect to a class �� and an input i if the
i�successors �successors on input i� of states in � are either all in �� or all outside ��� If � is
unstable with respect to ���� i� then ���� i� is called a splitter�

Initially the states are partitioned according to their labeling� The function initH�	 creates
�AP classes and initializes H so that each state s is mapped to the class with the same labeling
as s�

Let � be the set of classes and � be the set of potential splitters� The algorithm works in
iterations� At each iteration a potential splitter ��� i� is chosen from �� For each class �j � if it is
unstable with respect to the splitter then it is split into two� �j remains with the states whose
i�successors are in �� �k is a new class containing the states of �j whose i�successors are outside
�� Next� for each input i�� either ��j � i�� or ��k� i�� is inserted to ��

The algorithm stops when all classes are stable with respect to all inputs and all classes� At
this stage� two states are in the same class if and only if they are bisimulation equivalent�
In the algorithm we use the notation R��

i �S�� for fsjR�s� i� � S�g�
Note that� the algorithm is presented in a set�based notation� This is done in order to allow a
straight forward implementation with BDDs� Since both R and H are functions� the algorithm
is suitable for implementation within our new BDD framework� as explained in Section ��

� The Modular Minimization Technique

In this section we present our modular minimization algorithm� The algorithm receives a design�
given as a set of n components� It works in steps� In each step two minimized components M
and M � are selected and a new minimized component is constructed� which is equivalent to
MkM �� The algorithm terminates when a step results in a single component� In this case� the
�nal component is the smallest in terms of states and transitions which is equivalent to the
composition of the n original components�

In this section we focus on an improvement of a single step� Given two minimized components
M and M �� their composition MkM � is not necessarily minimized� This is demonstrated in
Figure �� A naive solution might �rst compose M and M � and then minimize them� This�
however� may result in unnecessarily large intermediate components� Thus� this solution will
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Reduction�M�f

initH��

k 	 
jAP j

� 	 �� 
I �� set of all pairs of classes and inputs

while �� �	 �� do

select ��� i� from �

T � 	 H�����

let T 	 ftj�t� i� � R���T ��g

let 
 	 H�T �

while �
 �	 �� do

select �j from 


let 
 	 
 n �j
let S 	 H����j�

let S� 	 S � T

let S�� 	 S n S�

if S�� �	 � and S� �	 � then

create new class �k

move�S����j ��k� �� Moves the states in S�� from �j to �k

for each i � I do

if ���j� i� �� � and jR��

i �S��j � jR��

i �S���j then

add ��j � i� to �

else

add ��k� i� to �

endif

endfor

k 	 k � �

endif

endwhile

endwhile

g
Figure 
� The minimization algorithm

require more space than is actually needed for the result� We� on the other hand� suggest
an algorithm that constructs the result without constructing the composition of the original
components�

Below we present our modular minimization algorithm� The algorithm is given two mini�
mized FSMs M� and M�� We use the notation M � M�jjM�� O

�
�

� O� � I�� and O�
�

� O� � I��
The algorithm performs the following steps�


� Reduce M� with respect to O�
�
� We call the result M r

�
�

�� Reduce M� with respect to O�
�
� We call the result M r

�
�


� Compose M e
�

� M�jjM r
�
�

�� Compose M e
�

� M r
�
jjM��

�� Reduce M e
�

with respect to O�� We call the result Md
�
�

�



�� Reduce M e
�

with respect to O�� We call the result Md
�
�

�� Compose Md � Md
�
jjMd

�
�

The table below presents the inputs and outputs of each FSM�

FSM Input Output

M� I� O�

M� I� O�

M r
�

I� O�
�

M r
�

I� O�
�

M �I� nO��� �I� nO�� O� � O�

M e
�

�I� nO�
�
�� �I� nO�� � �I� nO�� � �I� nO�� O� � O�

�

M e
�

�I� nO��� �I� nO
�
�
� � �I� nO�� � �I� nO�� O� � O�

�

Md
�

�I� nO��� �I� nO�� O�

Md
�

�I� nO��� �I� nO�� O�

Md �I� nO��� �I� nO�� O� � O�

An example for the modular minimization technique is presented in Figure ��
The intuition behind the modular minimization algorithm is as follows� When two FSMs

are composed� each restricts the behavior of the other by providing a real environment� rather
than an open one� In the restricted environment� states that behave di�erently in the open
environment are now indistinguishable and can be collapsed into the same equivalence class�

Our goal is to minimize M� and M� in separation� while taking into account the environment
each runs in� While minimizing M� it is su�cient to consider only the part of M� which
in�uences M�� M

r
�

is exactly that part� Therefore� states in M� that become indistinguishable
in M � M�kM� are also indistinguishable in M e

�
� M r

�
kM�� These states are collapsed� resulting

in Md
�
� Similarly� in M e

�
states of M� that are indistinguishable in M are collapsed �resulting in

Md
�
�� When Md

�
and Md

�
are �nally composed� the resulting FSM contains no further redundancy�

Thus� no further minimization is needed�
The skeleton of the correctness proof for the algorithm is listed in the lemma below�

Lemma 
��

� M e
�
and M are bisimulation equivalent with respect to O� � O�

�
�

� M e
�
and M are bisimulation equivalent with respect to O� � O�

�
�

� Md
�
and M are bisimulation equivalent with respect to O��

� Md
�
and M are bisimulation equivalent with respect to O��

� Md and M are bisimulation equivalent with respect to O� � O�

� Md is minimized with respect to O� � O��
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Figure �� An example of the modular minimization algorithm� M� has input set I� 	 fcg and output
set O� 	 fa� bg� M� has input set I� 	 fag and output set O� 	 fc� dg� Note that� even though M� and
M� are minimized�M is not� Md is the quotient model of M � It can also be obtained by composing Md

�

and Md
�
�

��� Time and Space Complexity

The algorithm we present includes two basic operations�


� Composing two FSMs M �� � MkM �� The most costly part in time and space of this
operation is the computation of the transition relation R��� This can be done in time and
space complexity of O�jR��j��

�� Minimizing an FSM M into its quotient FSM MQ� Our algorithm has the same complexity
as the one in �
�	� Its space complexity is O�jRj� and its time complexity is O�jRj�log�jSj���
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Thus� the minimization is the dominate part of the algorithm�
Since jM�j � jM e

�
j and jM�j � jM e

�
j� the complexity of our algorithm depends on the sizes

of M e
�

and M e
�
� If jM r

�
j 
 jM�j and jM r

�
j 
 jM�j� then jM e

�
j 
 jM j and jM e

�
j 
 jM j� In this

case� our algorithm will have a signi�cantly better complexity�
However� in the worst case where jM r

�
j � jM�j and jM r

�
j � jM�j� jM

e
�
j � jM e

�
j � jM j�

Thus� in the worst case our algorithm has the same complexity as the naive algorithm that �rst
composes M� and M� and then minimizes the composed FSM�

� The BDD Framework

BDDs ��	 are widely used in symbolic model checking and equivalence checking� E�cient repre�
sentation of sets and relations by BDDs has been the subject of extensive research� However� no
special consideration has been given to e�cient representation of relations which are functions�
In this section we show how to represent functions concisely using BDDs�

Let f be a function f � D � D� where jDj � �n and jD�j � �n
�

� In order to represent
f by a BDD� f is �rst encoded as a boolean relation over n � n� boolean variables� where n

variables encode the domain of f � D� and n� variables encode the range of f � D�� The usual
BDD representation of such a function includes all n � n� variables� Alternatively� we suggest
to represent f by means of n� boolean functions over n variables� each de�nes the value of one
variable in the encoding of D�� Since the BDDs are de�ned over a smaller number of variables�
they are expected to be smaller in size�

��� Preliminaries

We describe BDDs as presented in ��	� We use x�� x�� � � � � xn to denote boolean variables and
g�x�� x�� � � �xn� to denote a boolean function� Let d � f�� 
gn� we use the functions vi�d� to
denote the value of the i th bit in d� Sometimes we use xi as the function xi � 
 and xi as
xi � �� A BDD is always de�ned with respect to an order over the variables�

De�nition ��� A BDD is a DAG �Directed Acyclic Graph
 with one root and at most two
leaves� The leaves are labeled with �� 
 and the non�leaf nodes are labeled with a variable xi�
Every non�leaf node has exactly two successors �low�high
� If node nd� is a successor of node nd
then either nd� is a leaf or the variable labeling node nd� is greater by the variable order than the
one labeling node nd�

A BDD B with root nd represents a boolean function gnd� de�ned recursively as follows�

� If nd is a leaf then it represents the label of nd �� or 
��

� If nd in non�leaf node which is labeled with variable xi� then gnd � �xi � gnd�high� � �xi �
gnd�low��

A BDD B representing a function g can also be viewed as representing a set A � f�� 
gn

such that a � f�� 
gn is an element of A if and only if g�a� � 
� We sometimes refer to A by
root� the root node of B�

De�nition ��� A BDD B is reduced if it satis�es the followings	

�� There are no two di
erent nodes in B which represent the same function�


�



�� Each non�leaf node nd in B satis�es	 nd�high 	� nd�low�

��	 shows that for every boolean function there exists a reduced BDD that represents it�
for the rest of this paper we refer only to reduced BDDs� ��	 also shows that BDDs have the
following property�
Let B� and B� be two BDDs representing functions g�� g� respectively� such that B� and B�

have the same variable order� Then g� � g� i� B� � B��
In addition� ��	 suggests e�cient procedures that implement operations over boolean func�

tions represented by BDDs�
In formal veri�cation� BDDs are used to encode sets of states of the veri�ed FSM� its tran�

sition relation and labeling function� To do so� the states of the FSM are encoded by boolean
variables� The set of states is then represented by a boolean function� as described above� The
transition relation� R � S � �I � S is viewed as a set of triples and is represented in a similar
manner�

��� A new BDD representation for functions

Assume that we have two �nite domains D and D� such that jDj � �n and jD�j � �n
�

�n� n� � IN��
Let f � D � D� be a complete function� We encode the elements of D by x�� x�� � � �xn and the
elements of D� by x�

�
� x�

�
� � � � � x�n� � Given an element d � D� f�d� is a unique element of D�� Thus

the values of the variables that encode d� depend only on d� We de�ne n� sets f�� f�� � � � � fn�

of subsets of D such that d � fj � vj�f�d�� � 
� Another way to look at fj is as a function
fj � D � f�� 
g� which determine the value of x�j � Each of these subsets can be represented by
a BDD� thus we represent f as n� BDDs over x�� x�� � � � � xn� Next we show how to implement
typical operations on functions for this form of representation�

First we present an algorithm for computing f��� The algorithm receives a BDD that
represent a set Q� and construct a BDD that represents Q � f���Q��� The algorithm is shown
in Figure 
�

BDD inverse�BDD Q
	f
return inverseNode�Q
�root	

g

inverseNode�node nd	f
if �nd is a terminal node 	 then return nd�value

j � nd�index

return �fj�inverse�nd�low��� �fj�inverse�nd�high��
g

Figure 
� The inverse algorithm

In order to see why this algorithm works correctly� we need the following de�nitions and
claims� The �rst proposition is immediate from the de�nition�
Proposition ��� Given an element d� � D� � An element d � D satis�es f�d� � d� i
 for
every 
 � j � n�� d � fj � vj�d

�� � 
�







De�nition ��� We de�ne f��j as follows	

f��j �b� �

�
fj b � 

fj b � �

�

The next proposition rephrases Proposition ��
� using the notation f��j �

Proposition ��� Given an element d�� the following holds	 f���d�� � �n�

j��f
��
j �vj�d����

We now extend the previous proposition to a set of states�

Corollary ��
 Given a subset Q� � D�� let f���Q�� � fdj�d�� d� � Q� and f�d� � d�g then
f���Q�� � �d��Q���n�

j��f
��
j �vj�d�����

Note that the computation of Q � f���Q�� as presented in the previous corollary requires to
handle the elements of Q� one at a time and do not take advantage of the BDD representation
of Q�� The next proposition shows how to compute Q based on the BDD representation of Q��

The computation follows the following intuition� Suppose the set Q� � f�� 
gn
�

is represented
by a BDD B�

Q so that xj is the variable in the root of B�
Q� Elements of Q�� represented by root�low

are those in which xj � �� thus� they will be mapped to by elements from fj � Similarly� the
elements of Q�� represented by root�high are those in which xj � 
� and therefore they will be
mapped to by elements from fj �

Proposition ��� Let Q� be a subset of D�� Let B�
Q be the BDD that represents Q�� Let j be

the index of the root of B�
Q� Then Q � �fj � f

���root�high��� �fj � f���root�low���

We next describe an algorithm that computes the image of a set Q� Figure � presents an
algorithm that gets a BDD that represents a set Q � D� the algorithm constructs the BDD that
represents Q� � f�Q��

BDD image�BDD Q	f
return imageNode�Q��	

g

BDD imageNode�BDD Q� int j	f
if �j � n� 	 then return true

if �Q � �	 return false

return �xj�imageNode�Q� fj � j � 
		 ��xj�imageNode�Q� fj � j � 
		
g

Figure �� The image algorithm

Intuitively� we need to determine which elements of f�� 
gn
�

are in Q� � f�Q�� This is done
by determining the elements in f�Q� fj� �for which xj � 
� and the elements in f�Q� fj� �for
which xj � ���

While the number of BDD operations performed by the inverse algorithm is linear in the
size of the BDD representing Q�� the number of BDD operations in the image algorithm is linear
in the size of Q�� Since the BDD representation of a set is often much smaller than the set itself�
inverse will usually be much more e�cient than image�


�



Another important operation is the composition of two functions which is de�ned as follows�
Let D�D�� D�� be domains and let f � D � D� and g � D� � D�� be functions represented by
f�� � � �fn� and g�� � � �gn�� respectively� The function h � g � f �h � D � D��� is represented
by n�� BDDs� The j th BDD represent the set hj � fdjv��j �f�g�d��� � 
g� and is computed by
hj � f���gj��

Finally we show how to transform our presentation of a function into a relation like presen�
tation� and vice versa�

Let f�� � � � � fn� be the BDDs which represent f � We would like to construct a BDD that
represents a relation F over D�D�� such that �d� d�� � F i� f�d� � d�� In order to represent F
we use an additional set of variables x�

�
� � � � � x�n� which is used to encode the elements of D�� We

now construct F as follows F � �n�

j���fj � x�j��
Let F be a relation over D �D� such that �d� d�� � F i� f�d� � d�� Then fj is computed as

follows� fj � �x�
�
� � � � � x�n��F � x�j��

��� An Example� Modeling Deterministic FSM by BDDs for Functions

The example in this section demonstrates how the BDD representation for functions can be
used for representing an FSM� In addition� we show how to compute the set of predecessors Q
for a given set of states Q�� This is a central operation in formal veri�cation algorithms �often
referred to as preimage��

Consider the FSM in Figure �� Its set of states is S � f��� �
� 
�� 

g� Its input set is
I � fag� The transition function R � S � I � S is shown in the table below� In the table we
use the variables �x�� x�� to encode S� i� to encode I and x�

�
� x�

�
to encode the next states in the

transition relation�

1110

0100

a

a
a

a

Figure �� An example FSM
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In order to de�ne R is our BDD framework we partition it to two boolean functions R� and R�







so that R� � f��
� �
�� 
��� 
�
� 


g and R� � f���� ��
� �
�� �

� 
��� 


g� R� consists of the
set of encodings of �s� i� for which x�

�
� 
� Similarly� R� is the set of encodings for which x�

�
� 
�

Next we show how to use this representation in order to compute R���Q�� using the inverse
algorithm� The result of this operation is the set of pairs �s� i� such that �s� i� � R���Q��� Thus�
the set Q of predecessors of Q� is computed by Q � fsj�i � I��s� i� � R���Q��g�

Let Q� � f�
� 
�g� The BDD BQ� is shown in Figure �� The inverse algorithm results in

0 1

x
�
�

x
�
�

x
�
�

Figure �� The BDD BQ� � Dashed lines lead to low successors� full lines lead to high successors�

R���Q� � �R� � ��R� � ��� �R� � 
���� �R� � ��R�� 
�� �R�� ���� � �R� �R��� �R� �R�� �
f���� �

� 
�
g� The set of predecessor is now computed by Q � fqj�i��q� i� � R���Q��g �
f��� �
� 
�g�

� Directions for Future Research

We are currently working on an implementation of the modular minimization technique� Our
goal is to incorporate this technique into a framework for model checking and sequential equiv�
alence checking of hardware designs� In order to do so� several additional issues should be
considered� These issues may have a great in�uence on the e�ectiveness of our method�


� Heuristics are needed in order to determine the partition of the system into components�
Both the sizes of the components and the size of their input�output interface will be taken
into account�

�� The order in which the components are composed should be determined� This may strongly
a�ect the space requirements of intermediate results�
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