Modular Minimization of Deterministic Finite-State Machines

Doron Bustan and Orna Grumberg®
Computer Science Department

Technion, Haifa 32000, Israel

email: {orna,doron2}@cs.technion.ac.il

Abstract

This work presents a modular technique for minimizing a deterministic finite-state ma-
chine (FSM) while preserving its equivalence to the original system. Being modular, the
minimization technique should consume less time and space. Preserving equivalence, the
resulting minimized model can be employed in both temporal logic model checking and
sequential equivalence checking, thus reducing their time and space consumption.

As deterministic FSMs are commonly used for modeling hardware designs, our approach
is suitable for formal verification of such designs.

We develop a new BDD framework for the representation and manipulation of func-
tions and show how our minimization technique can be effectively implemented within this
framework.

1 Introduction

Due to the fast development of the hardware and software industry, there is a growing need for
formal verification tools and techniques. Two widely used formal verification methods are tem-
poral logic model checking and sequential equivalence checking. Temporal logic model checking
is a method for verifying finite-state systems with respect to propositional temporal logic spec-
ifications. In sequential equivalence checking, two sequential hardware designs are compared
for language equivalence, meaning that for every sequence of inputs, the two designs produce
the same sequence of outputs. Both model checking and equivalence checking are fully auto-
matic. However, they both suffer from the state explosion problem, that is to say, their space
requirements are high and limit their applicability to large systems.

Many approaches for overcoming the state explosion problem have been suggested, includ-
ing abstraction, partial order reduction, modular verification methods, and symmetry [5]. All
are aimed at reducing the size of the model to which formal verification methods are applied,
thus extending their applicability to larger systems. When reduction methods are applied, the
verification technique has to be able to deduce properties of the system by verifying the reduced
model. We therefore require the result of the reduction to be equivalent to the original model.

Two of the most commonly used equivalence relations are language equivalence and bisim-
ulation [15]. The former is suitable for equivalence checking as well as model checking for the

*This research has been partially supported by the Fund for the Promotion of Research at the Technion and
by the Galileo Technology grant.

linear-time logic LTL /citePnueli81LTL. The latter is suitable for model checking of the expres-
sive p-calculus [11] logic and its widely used sublogics CTL [3, 7] and LTL.

Minimizing a model with respect to language equivalence is PSPACE-complete [16] while
minimizing a model with respect to bisimulation is polynomial. Thus, bisimulation minimization
appears to be tractable. However, computing bisimulation minimization in a naive way may
still be quite costly in terms of time and space. This motivated the development of more subtle
reduction methods for a variation of equivalence relations. We describe some of these works
below.

The algorithm in [12] minimizes models with respect to bisimulation. In order to gain
efficiency, the algorithm refers only to reachable states and computes equivalence classes for
bisimulation instead of pairs of equivalent states. This appears to consume less memory for BDD-
based [4] implementations. In [8], the algorithm presented in [12] is applied to the intersection
of the model with an automaton representing the the property that should be satisfied by the
model. In [6], a reduction with respect to symmetry equivalence is performed. The symmetry
equivalence is a bisimulation equivalence, but not necessarily the maximal one. [6] reports that
computing this reduction is more efficient in the BDD framework than reduction with respect
to bisimulation.

Other works exploit modularity for reduction. The modular reduction in [1] preserves a given
formula which should be checked for truth in the model. This method can result in a small
model, however, since it preserves a single formula, it cannot be used for equivalence checking.
In [2], the equivalence relation is a combination of language equivalence and fairness constraints.
Since computing this relation is PSPACE-complete, an approximation equivalence relation is
computed and the quotient model is defined with respect to the approximation equivalence
relation. [9] presents an algorithm that constructs an abstract model of a system through a
sequence of approximations, where the final approximation is equivalent to the original system
with respect to the specification language. The approximations are constructed according to
interface specifications which are given by the user.

1.1 Our Approach

Our approach is based on three main ideas: We restrict our attention to deterministic systems;
our minimization algorithm is modular, reducing modules of the system in separation; and we
develop an extension of the BDD framework that efficiently handles functions and operations
on them.

Deterministic systems:

The advantages of dealing with deterministic systems are:

e Bisimulation and language equivalence coincide on deterministic systems. Thus, bisim-
ulation minimization results in a minimal model both for language equivalence and for
bisimulation.

e The algorithm presented in [10] can easily be adapted to compute bisimulation minimiza-
tion.

e The transition relation of a deterministic system is actually a function, thus can be con-
cisely represented in our new BDD framework.

Since most hardware systems are deterministic, it is beneficial to develop an efficient minimiza-
tion technique for such systems. Our technique enlarges the scope of industrial-size hardware
designs that can be formally verified.

Modular minimization:

The modular minimization technique is based on the partition of the system into components.
Our technique minimizes the model in steps. In each step two components are selected, and
their minimized composition is constructed, without ever constructing their full non-minimized
composition. This process is repeated until all components are composed to form the full
minimized system. The advantages of this approach are:

e Time and space requirements of minimization algorithms depend on the size of the model
to which they are applied. By minimizing components instead of the full system, we expect
a better overall complexity. Moreover, we will be able to minimize a system in parts even
when minimizing the full system is intractable due to its size.

e It is sometimes impossible to complete the construction of the minimized system due to
the size of intermediate components. In such cases, it might still be possible to apply some
formal verification procedures to a partially minimized model. The partially minimized
model can then be constructed by composing minimized components with unminimized
ones.

BDD framework for functions:

Let f: D — D’ be a complete function in which D and D’ are encoded by n and n’ boolean
variables, respectively. Our new BDD framework represents such a function by n’ boolean
functions over n variables, each defining one bit in the result. Standard operations on functions
such as image, inverse and composition are defined for this representation.

As mention above, for deterministic models the transition relation is a function. In addition,
we refer to the equivalence relation as a function from states to the equivalence class they belong
to. Consequently, the main steps of the minimization algorithm (presented in Section 3) can be
efficiently implemented with our operations on functions. The advantages of our BDD framework
are:

e The transition relation, that is typically represented by n + n’ boolean variables is now
represented by n variables only. This is significant since BDD size often depends on the
number of its variables.

e In relational representation of the transition relation, the BDD often contains unnecessary
dependencies between variables. These dependencies are eliminated when the relation is

represented as a set of functions. Less dependencies results in a smaller BDD. Thus, the
BDD size is reduced.

The rest of the paper is organized as follows: In Section 2 we define the model, model
composition and bisimulation equivalence. Section 3 describes our algorithm for minimizing a
single model. Section 4 presents the modular minimization algorithm and Section 5 describes
the BDD framework. Finally, in Section 6 we discuss future work.

2 Basic Definitions

We model systems as finite-state machines (FSMs) in the form of Moore machines in which
the states are labeled with outputs and the edges are labeled with inputs. Such machines are
commonly used for modeling hardware designs.

Definition 2.1 [1/] An FSM is a tuple M =< S,S0,1,0, L, R > where
e S is a finite set of states.
e So C S is a set of initial states.
e INO=10.
o [is a finite set of input propositions.
e O is a finite set of output propositions.
o L is a function that maps each state to the set of output propositions true in that state.

e RC Sx21xS isthe transition relation. We assume that for every s € S and i C I there
exists at least one state s’ such that (s,i,s') € R.

An FSM is deterministic iff for every state s and ¢ C [there exists exactly one state s’ such
that (s,i,s') € R.

Two FSMs are composed only if their outputs are disjoint. There is a transition from a pair
of states in the composed FSM if and only if the output of each state match the input on the
transition leaving the other state. This models the input-output connections between the two
machines.

Definition 2.2 Let M; =< St, 501, 11,01, L1, Ry > and My =< Sy, Sg3, 15,09, Lo, Ry > be
two FSMs such that O1 N Oy = (. The composition M = My||My =< S, S0, [,O,L, R > is an
FSM such that:

e 5 =51 x5

® Sop =S50 X Soy.

o I=(I,\03)U(L\Oy).

e O=0,U0;,.

o L((s1,52)) = Ly(s1) U Ly(s3).

o ((s1,82),1,(s],55) € R iff (s1,(iULz(s2))N Iy, 8)) € Ry and (s2, (iULy(s1))N 1z, s5) € Ra.

Lemma 2.3 Let My and Msy be deterministic F'SMs, then the composition M of My and My
is deterministic as well.

We now define the basic notion of equivalence that we use in this work, namely, bisimulation.
Definition 2.4 Let My =< St, 501, 11,01, L1, Ry > and My =< Sy, Sg3, 15,09, Lo, Ry > be
two FSMs such that O1NOy # 0 and Iy = I,. We say that My and My are bisimulation equivalent

with respect to O' C O1NOy iff there exists a relation H C Sy X Sy (called bisimulation relation)
such that:

o lor every state sg; € Soy there exists a state sgy € Soy such that (soq,soz) € H and for
every state sgy € Soq there exists a state soy € Soy such that (soq, so2) € H.

e lor every pair (s1,s2) in H the following three conditions hold:

- Ll(Sl) N O/ = LQ(SQ) N O/.
— For every i C Iy (recall that Iy = 1), and for every state sy such that (sy,1,s)) € Ry
there exists a state sb such that (sq,1,s5) € Ry and (s}, s5) € H.

— For every ¢ C I, and for every state s, such that (sq,1,s,) € Ry there exists a state
s\ such that (s1,1,5]) € Ry and (s, s) € H.

Bisimulation is an equivalence relation over FSMs. [13] shows that for every two FSMs M; and
My, there exists a maximal bisimulation relation, which contains every relation that satisfies the
conditions of Definition 2.4. The maximal bisimulation relation H C S x S over the states of
an FSM M is an equivalence relation over 5. As such, it induces a partition of S to equivalence
classes. These classes can be used to form the quotient FSM of M, which is the minimal FSM
that is bisimulation equivalent to M. Formally,

Definition 2.5 Let M =< 5,50, 1,0,L, R > be an FSM and let H C S x S be the maximal
bisimulation relation with respect to O' C O over M. The quotient FSM

Mg =< 5q, 504, 19,0, Lg, Rg > of M with respect to H is defined as follows:

o So ={ala is an equivalence class in H}.

e So, = {a| there exists sy € Sy such that sy € a}.

o Ip=1.

e Og=0".

o Fora € Sy, Lo(a) = L(s)NO', for some (all) states s € a.

o Rg ={(a,i,a)|there are states s € v, ' € o such that (s,i,5") € R}.

Definition 2.6 An FSM M is minimized iff it is isomorphic to its quotient structure.
Proposition 2.7 FEvery quotient FSM is minimized.

For the rest of this paper, we will use the term “minimized FSM” for quotient FSM.
Proposition 2.8 Let M be an FSM and Mg be the quotient FSM of M with respect to O'.
Then Mg is the smallest (in number of states and transitions) FSM which is bisimulation equiv-
alent to M with respect to O'.

Proposition 2.9 If M is deterministic then its quotient FSM Mg is deterministic as well.

3 Minimizing Deterministic Systems

In this section we present an adaptation of the algorithm given in [10] for constructing the
quotient automaton for a given regular deterministic automaton. The algorithm is adapted for
deterministic FSMs, so that given an FSM, it constructs its quotient FSM.

Let H C S x S be the maximal bisimulation relation over M. Since M is deterministic, the
conditions for two states to be relates by H can be slightly changed. (s1,s3) € H if and only if

1. L(Sl) = L(Sg).
2. For every input ¢ € I, (R(s1,17), R(sg, 1)) € H.

Recall that H is an equivalence relation over S. In order to improve the performance of our
minimization algorithm, we refer to H as a function from the states in .S to their equivalence
classes. The conditions above are now stated as:

1. H(Sl) = H(Sg) — L(Sl) = L(Sg).
2. H(sy) = H(sy) — for every input ¢ € I, H(R(s1,1)) = H(R(s2,1)).

The main difference between the algorithm in [10] and our algorithm is in the initial parti-
tioning. While for automata the initial partition forms two sets (accepting and rejecting), the
states of a deterministic FSM are initially partitioned into 21471 sets, one for each state label-
ing. Our algorithm is presented in Figure 1. Next we give an intuitive explanation of how the
algorithm works. We say that a class o is stable with respect to a class ¢’ and an input 7 if the
i-successors (successors on input ¢) of states in o are either all in ¢’ or all outside ¢’. If o is
unstable with respect to (¢’,7) then (¢’,7) is called a splitter.

Initially the states are partitioned according to their labeling. The function initH() creates
24F classes and initializes H so that each state s is mapped to the class with the same labeling
as s.
Let 3 be the set of classes and I' be the set of potential splitters. The algorithm works in
iterations. At each iteration a potential splitter (o,1) is chosen from I'. For each class o}, if it is
unstable with respect to the splitter then it is split into two. o; remains with the states whose
i-successors are in 0. o is a new class containing the states of o; whose i-successors are outside
o. Next, for each input ¢, either (o;,¢') or (o, ') is inserted to I'.

The algorithm stops when all classes are stable with respect to all inputs and all classes. At
this stage, two states are in the same class if and only if they are bisimulation equivalent.

In the algorithm we use the notation R;'(S’) for {s|R(s,i) € S'}.

Note that, the algorithm is presented in a set-based notation. This is done in order to allow a
straight forward implementation with BDDs. Since both R and H are functions, the algorithm
is suitable for implementation within our new BDD framework, as explained in Section 5.

4 The Modular Minimization Technique

In this section we present our modular minimization algorithm. The algorithm receives a design,
given as a set of n components. It works in steps. In each step two minimized components M
and M’ are selected and a new minimized component is constructed, which is equivalent to
M||M’. The algorithm terminates when a step results in a single component. In this case, the
final component is the smallest in terms of states and transitions which is equivalent to the
composition of the n original components.

In this section we focus on an improvement of a single step. Given two minimized components
M and M’, their composition M||M’ is not necessarily minimized. This is demonstrated in
Figure 2. A naive solution might first compose M and M’ and then minimize them. This,
however, may result in unnecessarily large intermediate components. Thus, this solution will

Reduction(M){
initHQ)
k= 2|AP|
=Y x 2 // set of all pairs of classes and inputs
while (I' £ 0) do
select (o,i) from T

T = H= (o)
let T = {t|(t,7) € R~1(T")}
let © = H(T)

while (O #0) do
select o; from O
let @:@\O'j
let S= H (o)
let S'=5nNT
let 57 =5\9
if 8" £ and S’ # () then
create new class oy
move(S”,0; ,0%) // Moves the states in S” from o; to oy
for each 1€/ do
if ((0;,i) €T and |RZ»_1(S’)| < |RZ._1(S”)| then
add (0j,7) to '
else
add (og,i) to T
endif
endfor
k=k+1
endif
endwhile
endwhile

1

Figure 1: The minimization algorithm

require more space than is actually needed for the result. We, on the other hand, suggest
an algorithm that constructs the result without constructing the composition of the original

components.

Below we present our modular minimization algorithm. The algorithm is given two mini-
mized FSMs M; and M;. We use the notation M = M;|| My, O] = Oy N Iy, and Of = Oy N 1.

The algorithm performs the following steps:
1. Reduce M; with respect to Of. We call the result M7.

2. Reduce M, with respect to Of. We call the result MJ.
Compose My = M;||M].
Compose M§ = M7 ||M;.

A S

Reduce M{ with respect to O;. We call the result M.

6. Reduce M with respect to Oy. We call the result MJ.

7. Compose My = M{||MJ.

The table below presents the inputs and outputs of each FSM.

‘ FSM ‘ Input ‘ Output ‘
My I 01
M, I Oy
M | I, o
M, | I 0,
M (Il\Og)U(IQ\Ol) 01U O,
MY | (W\O3)UU2\O1) =1\ O3)U {12\ O1) | O1U0;
M5 | (L\O2)U (1 \OY) = (11\Ox) U (L \Oy) | O2U 04
M | (I;\ Oz) U (I2\ Oy) Oy
MY | (I;\Oz) U (I2\ Oy) O3
My (Il\Og)U(IQ\Ol) O1UO,

An example for the modular minimization technique is presented in Figure 2.

The intuition behind the modular minimization algorithm is as follows. When two FSMs
are composed, each restricts the behavior of the other by providing a real environment, rather
than an open one. In the restricted environment, states that behave differently in the open
environment are now indistinguishable and can be collapsed into the same equivalence class.

Our goal is to minimize M; and Mj in separation, while taking into account the environment
each runs in. While minimizing M; it is sufficient to consider only the part of M; which
influences My. M7 is exactly that part. Therefore, states in M, that become indistinguishable
in M = M ||M; are also indistinguishable in M§ = M7 ||M;. These states are collapsed, resulting
in M¢. Similarly, in MF states of M that are indistinguishable in M are collapsed (resulting in
M{). When M{ and M{ are finally composed, the resulting FSM contains no further redundancy.
Thus, no further minimization is needed.

The skeleton of the correctness proof for the algorithm is listed in the lemma below.
Lemma 4.1

o M7 and M are bisimulation equivalent with respect to O U O).

o MS and M are bisimulation equivalent with respect to O3 U Of.

o M and M are bisimulation equivalent with respect to Oy.

M

and M are bisimulation equivalent with respect to O,.

My and M are bisimulation equivalent with respect to O1 U Oq

My is minimized with respect to O1 U Os.

{@r)y {(12),(13)}

{21).6E1)}{(22)(23).32).33)}

Figure 2: An example of the modular minimization algorithm: M; has input set Iy = {¢} and output
set Op = {a,b}. M5 has input set I, = {a} and output set Oy = {¢,d}. Note that, even though M; and
M5 are minimized, M is not. My is the quotient model of M. It can also be obtained by composing M{
and M.

4.1 Time and Space Complexity
The algorithm we present includes two basic operations:

1. Composing two FSMs M"” = M||M'. The most costly part in time and space of this
operation is the computation of the transition relation R”. This can be done in time and
space complexity of O(|R"|).

[\

. Minimizing an FSM M into its quotient FSM Mg. Our algorithm has the same complexity
as the one in [10]. Its space complexity is O(|R|) and its time complexity is O (| R|-log(]S])).

Thus, the minimization is the dominate part of the algorithm.

Since |M;| < |Mf| and |Mz| < |MS|, the complexity of our algorithm depends on the sizes
of My and MS. If |[M7]| < |My| and |M}| < |Ms]|, then |Mf| < |M| and |MS| < |M|. In this
case, our algorithm will have a significantly better complexity.

However, in the worst case where |M{| = |My| and |Mj| = | M|, |M{| = |MS| = |M]|.
Thus, in the worst case our algorithm has the same complexity as the naive algorithm that first
composes M; and M, and then minimizes the composed FSM.

5 The BDD Framework

BDDs [4] are widely used in symbolic model checking and equivalence checking. Efficient repre-
sentation of sets and relations by BDDs has been the subject of extensive research. However, no
special consideration has been given to efficient representation of relations which are functions.
In this section we show how to represent functions concisely using BDDs.

Let f be a function f : D — D' where |D| = 2" and |D’| = 2*'. In order to represent
f by a BDD, f is first encoded as a boolean relation over n + n’ boolean variables, where n
variables encode the domain of f, D, and n’ variables encode the range of f, D’. The usual
BDD representation of such a function includes all n 4+ n’ variables. Alternatively, we suggest
to represent f by means of n’ boolean functions over n variables, each defines the value of one
variable in the encoding of D’. Since the BDDs are defined over a smaller number of variables,
they are expected to be smaller in size.

5.1 Preliminaries

We describe BDDs as presented in [4]. We use xy,29,...,2, to denote boolean variables and
g(z1,22,...2,) to denote a boolean function. Let d € {0,1}", we use the functions v;(d) to
denote the value of the i’th bit in d. Sometimes we use z; as the function z; = 1 and T; as
z; = 0. A BDD is always defined with respect to an order over the variables.

Definition 5.1 A BDD is a DAG (Directed Acyclic Graph) with one root and at most two
leaves. The leaves are labeled with 0,1 and the non-leaf nodes are labeled with a variable ;.
Fvery non-leaf node has exactly two successors (low,high). If node nd' is a successor of node nd
then either nd' is a leaf or the variable labeling node nd' is greater by the variable order than the
one labeling node nd.

A BDD B with root nd represents a boolean function g¢,4, defined recursively as follows:
o If nd is a leaf then it represents the label of nd (0 or 1).

o If nd in non-leaf node which is labeled with variable z;, then ¢,q = (2; A gnd.nigh) V (Ti A
gnd.low)-

A BDD B representing a function g can also be viewed as representing a set A C {0,1}"
such that @ € {0,1}" is an element of A if and only if g(a) = 1. We sometimes refer to A by
root, the root node of B.

Definition 5.2 A BDD B is reduced if it satisfies the followings:

1. There are no two different nodes in B which represent the same function.

10

2. Fach non-leaf node nd in B satisfies: nd.high # nd.low.

[4] shows that for every boolean function there exists a reduced BDD that represents it;
for the rest of this paper we refer only to reduced BDDs. [4] also shows that BDDs have the
following property:

Let By and B, be two BDDs representing functions g1, g; respectively, such that By and Bj
have the same variable order. Then ¢ = ¢, iff By = Bs.

In addition, [4] suggests efficient procedures that implement operations over boolean func-
tions represented by BDDs.

In formal verification, BDDs are used to encode sets of states of the verified FSM, its tran-
sition relation and labeling function. To do so, the states of the FSM are encoded by boolean
variables. The set of states is then represented by a boolean function, as described above. The
transition relation, R C S x 2! x S is viewed as a set of triples and is represented in a similar
manner.

5.2 A new BDD representation for functions

Assume that we have two finite domains D and D’ such that [D| = 2" and |D’| = 2" (n,n’ € IN).
Let f: D — D’ be a complete function. We encode the elements of D by x1,xs,...2, and the
elements of D' by z{,2%,...,2/,. Given an element d € D, f(d) is a unique element of D’. Thus
the values of the variables that encode d’ depend only on d. We define n’ sets fi, fa,..., for
of subsets of D such that d € f; & v;(f(d)) = 1. Another way to look at f; is as a function
f; + D — {0,1}, which determine the value of wg Each of these subsets can be represented by
a BDD; thus we represent f as n’ BDDs over z1,3,...,2Z,. Next we show how to implement
typical operations on functions for this form of representation.

First we present an algorithm for computing f~!. The algorithm receives a BDD that
represent a set)’ and construct a BDD that represents @ = f~1(Q’). The algorithm is shown
in Figure 3.

BDD inverse(BDD Q’){
return inverseNode(Q’.root)
}

inverseNode(node nd){
if (nd is a terminal node) then return nd.value
7 = nd.andex
return (f;Ninverse(nd.low))U (fjNinverse(nd.high))

Figure 3: The inverse algorithm
In order to see why this algorithm works correctly, we need the following definitions and
claims. The first proposition is immediate from the definition.

Proposition 5.3 Given an element d € D' . An element d € D satisfies f(d) = d' iff for
everyl <j<n',de f; < v(d)=1

11

Definition 5.4 We define fj_1 as follows:
1 fi b=1

f]‘ (0) = { f_j b=10
The next proposition rephrases Proposition 5.3, using the notation fj_l.
Proposition 5.5 Given an element d', the following holds: f~(d') = ﬂ?lzlf]fl(vj(d’)).
We now extend the previous proposition to a set of states.
Corollary 5.6 Given a subset Q' C D', let f71(Q") = {d|3d'. d' € Q' and f(d) = d'} then
FHQ) = Uwrer (ML £ (vj(d)).

Note that the computation of @ = f~1(Q’) as presented in the previous corollary requires to
handle the elements of)’ one at a time and do not take advantage of the BDD representation
of ()'. The next proposition shows how to compute) based on the BDD representation of Q'

The computation follows the following intuition. Suppose the set Q' C {0, 1}”/ is represented
by a BDD Bé so that z; is the variable in the root of Bé. Elements of (), represented by root.low
are those in which z; = 0, thus, they will be mapped to by elements from f;. Similarly, the
elements of ', represented by root.high are those in which z; = 1, and therefore they will be
mapped to by elements from f;.

Proposition 5.7 Let Q' be a subset of D'. Let By, be the BDD that represents Q'. Let j be
the index of the root of Byy. Then Q = (f; 0 f~ (root.high)) U (f; N f~ (root.low)).

We next describe an algorithm that computes the image of a set (). Figure 4 presents an

algorithm that gets a BDD that represents a set) C D; the algorithm constructs the BDD that
represents Q' = f(Q).

BDD image (BDD Q){
return imageNode(Q,1)
}

BDD imageNode(BDD Q, int j){
if (j > n') then return frue
if (Q =0) return false
return (z;NimageNode(Q N f;,7+ 1)) U(T;NimageNode(Q N f;,j + 1))

Figure 4: The image algorithm

Intuitively, we need to determine which elements of {0,1}" are in Q' = f(Q). This is done
by determining the elements in f(Q N f;) (for which z; = 1) and the elements in f(Q N f;) (for
which z; = 0).

While the number of BDD operations performed by the inverse algorithm is linear in the
size of the BDD representing @', the number of BDD operations in the image algorithm is linear
in the size of @’. Since the BDD representation of a set is often much smaller than the set itself,
inverse will usually be much more efficient than image.

12

Another important operation is the composition of two functions which is defined as follows.
Let D, D', D" be domains and let f: D — D" and ¢g : D' — D" be functions represented by
fiy...for and gq,...g,n respectively. The function h = go f (h : D — D") is represented
by n" BDDs. The j'th BDD represent the set h; = {d|v(f(g(d))) = 1}, and is computed by
hy = [~ (9;)-

Finally we show how to transform our presentation of a function into a relation like presen-
tation, and vice versa.

Let fi,..., f.r be the BDDs which represent f. We would like to construct a BDD that
represents a relation F over D x D' such that (d,d’) € Fiff f(d) = d’. In order to represent F
we use an additional set of variables #,..., 2/, which is used to encode the elements of D’. We
now construct F' as follows F' = ﬂ?lzl(fj o ah).

Let I’ be a relation over D X D’ such that (d,d') € I iff f(d) =d'. Then f; is computed as
follows: f; = 3aq,... 2, (F Aal).

5.3 An Example: Modeling Deterministic FSM by BDDs for Functions

The example in this section demonstrates how the BDD representation for functions can be
used for representing an FSM. In addition, we show how to compute the set of predecessors ()
for a given set of states (). This is a central operation in formal verification algorithms (often
referred to as preimage).

Consider the FSM in Figure 5. Its set of states is S = {00,01,10,11}. Its input set is
I = {a}. The transition function R : .S x [— S is shown in the table below. In the table we
use the variables (zg, 1) to encode S, iy to encode I and z(), 2] to encode the next states in the
transition relation.

a
a
Figure 5: An example FSM
o | @1 | do || @5 | @
0 [0 |O JO |1
0 [0 |1 |1 |1
0 [1 0o |1 |1
0O [1 |10 |1
110 [0 |1 |1
1 {0 (1 1 |0
1 {1 (0 |0 |0
111 j1 1 |1

In order to define R is our BDD framework we partition it to two boolean functions Ry and Ry

13

so that Ro = {001,010,100,101,111} and R; = {000,001,010,011,100,111}. Ro consists of the
set of encodings of (s, ¢) for which z{, = 1. Similarly, R, is the set of encodings for which z} = 1.
Next we show how to use this representation in order to compute R~1(Q’) using the inverse
algorithm. The result of this operation is the set of pairs (s, ¢) such that (s,i) € R71(Q’). Thus,
the set @ of predecessors of Q' is computed by Q = {s|3i € I.(s,i) € R™HQ")}.
Let Q" = {01,10}. The BDD By is shown in Figure 6. The inverse algorithm results in

Lo

7

Ty L1
]

| s

I \

Y L\
0 1

Figure 6: The BDD Bg:. Dashed lines lead to low successors; full lines lead to high successors.

R7HQ) = (Ron (Rin0) U (B N1))) U (RoN (RiN1)U(R1N0))) = (RoN 1)U (RoN)
{000,011,101}. The set of predecessor is now computed by @ = {¢|3i.(¢,i) € R~HQ")
{00, 01,10},

6 Directions for Future Research

We are currently working on an implementation of the modular minimization technique. Our
goal is to incorporate this technique into a framework for model checking and sequential equiv-
alence checking of hardware designs. In order to do so, several additional issues should be
considered. These issues may have a great influence on the effectiveness of our method.

1. Heuristics are needed in order to determine the partition of the system into components.
Both the sizes of the components and the size of their input-output interface will be taken
into account.

2. The order in which the components are composed should be determined. This may strongly
affect the space requirements of intermediate results.

References

[1] A. Aziz, T.R. Shiple, V. Singhal, and A.L. Sangiovanni-Vincetelly. Formula-dependent
equivalence for compositional CTL model checking. In D. Dill, editor, Proceedings of the
Sizth Conference on Computer Aided Verification (CAV’94), volume 818 of LNCS, pages
324-337, 1994.

14

[2] A. Aziz, V. Singhal, G.M. Swamy, and R.K. Brayton. Minimizing interacting finite state
machines: A compositional approach to language containment. In Proceedings of the Inter-
national Conference on Computer Design, pages 255-261, 1994.

[3] M. Ben-Ari, Z. Manna, and A. Pnueli. The temporal logic of branching time. Acta Infor-
matica, 20:207-226, 1983.

[4] Randal E. Bryant. Graph-based algorithms for boolean function manipulation. [FFF
Transactions on Computers, C-35:677-691, August 1986.

[5] E.M. Clarke, O. Grumberg, and D.A. Peled. Model Checking. MIT Press, December 1999.

[6] E.M. Clarke, R.Enders, T. Filkorn, and S. Jha. Exploiting symmetry in temporal logic
model checking. In Formal Methods in System Design, pages 77-104, 1996.

[7] E.A. Emerson and E.M. Clarke. Characterizing correctness properties of parallel program-
susing fixpoints. In LNCS, volume 85, pages 169-181, 1980.

[8] K. Fisler and M. Vardi. Bisimulation minimization in an automata-theoretic verification
framework. In Formal Methods in Computer-Aided Design (FMCAD), pages 115-132, 1998.

[9] Susanne Graf, Bernhard Steffen, and Gerlad Liittgen. Compositional minimisation of finite
state systems using interface specifications. Formal Aspects of Computing, 8(5):607-616,
1996.

[10] J. E. Hopcroft. An n log n algorithm for minimizing states in a finite automaton. In
7. Kohavi and A. Paz, editors, Theory of Machines and Computations. Academic Press,
New York, 1971.

[11] D. Kozen. Results on the propositional u-calculus. T'CS, 27, 1983.

[12] D. Lee and M. Yannakakis. Online minimization of transition systems. In Proceedings of
the 24th ACM Symp. on Theory of Computing, 1992.

[13] R. Milner. Communication and Concurrency. Prentice-Hall, Englewood Cliffs, New Jersey,
1989.

[14] E. F. Moore. Gedanken—experiments on sequential machines. In C. E. Shannon and J. Mc-
Carthy, editors, Annals of Mathematics Studies (34), Automata Studies, pages 129-153.
Princeton University Press, Princeton, NJ, 1956.

[15] D. Park. Concurrency and automata on infinite sequences. In 5th GI-Conference on The-
oretical Computer Science, pages 167-183. Springer-Verlag, 1981. LNCS 104.

[16] A. Sistla, M. Vardi, and P. Wolper. The complementation problem for Buchi automata with
applications to temporal logic. In In Proc. 10th Int. Colloguium on Automata, Languages
and Programming, volume LNCS 194, pages 465-474, 1985.

15

