
Protocol Inference from program
executable using symbolic

execution and automata learning

Ron Marcovich

Protocol Inference from program
executable using symbolic

execution and automata learning

Research Thesis

Submitted in partial fulfillment of the requirements
for the degree of Master of Science in Computer Science

Ron Marcovich

Submitted to the Senate
of the Technion — Israel Institute of Technology

Tamuz 5782 Haifa July 2022

This research was carried out under the supervision of Prof. Orna Grumberg and Dr.
Gabi Nakibly, in the Faculty of Computer Science.

Some results in this thesis have been published as articles by the author and research
collaborators in conferences and journals during the course of the author’s Master’s
research period, the most up-to-date versions of which being:

Ron Marcovich and Gabi Nakibly. Automatic protocol reverse engineering. In Black Hat
USA, 2022.

Acknowledgements

I would like to thank my advisors, Orna and Gabi, for their time, support and their
very professional and helpful advises.

I would also like to thank my dear family for having my back during my whole
studies at the Technion, and particularly during my master degree.

Moreover, I wish to thank my dear friends, who are always by my side to support,
consult and guide.

I wish to send my love and appreciation to my love, Liron.

The generous financial help of the Technion is gratefully acknowledged.

Contents

List of Figures

Abstract 1

1 Introduction 3
1.1 Problem Setting . 3
1.2 Motivation . 4
1.3 Previous Works . 6

2 Preliminaries 9
2.1 Deterministic Finite Automaton (DFA) 9
2.2 Automata Learning . 10

2.2.1 Growing Alphabet . 10
2.2.2 Equivalence query approximations 10

2.3 Model Checking . 11
2.4 Symbolic Execution . 11

2.4.1 Example . 12

3 Problem Definition 15
3.1 Definitions and Notations . 15
3.2 Assumptions . 16

4 Learning a DFA of a Protocol (Exact Version) 19
4.1 Modified Membership Queries . 19
4.2 Modified Equivalence Queries . 19
4.3 Handling a growing alphabet . 20
4.4 Initialization and Output . 20
4.5 Correctness . 20

5 Learning a DFA of a Protocol (Approximation) 21
5.1 Characterizing Message Types . 21

5.1.1 Extracting predicate to represent a set of messages 22
5.1.2 Example . 23

5.2 Handling Alphabet Changes . 23
5.2.1 Insertion of message type candidate 23
5.2.2 Insertion of multiple message type candidates 24
5.2.3 Example of alphabet changes . 25

5.3 Equivalence Oracle . 25
5.4 Modified Symbolic Execution . 26

5.4.1 Implementing assumptions and assertions in symbolic execution . 27
5.4.2 Hooking calls to send and receive procedures 27
5.4.3 Extending symbolic states to track query state 28

5.5 Membership Oracle . 29
5.5.1 Monitoring phase . 30
5.5.2 Probing phase . 32

6 Optimizations 37
6.1 Prefix Closed Property . 37
6.2 Fast Equivalence Queries . 37
6.3 Execution Cache . 38

6.3.1 Example . 38

7 Implementation and Results 41
7.1 Implementation . 41

7.1.1 LearnLib . 41
7.1.2 angr . 42
7.1.3 Learning Client (Learner) . 42
7.1.4 Symbolic Execution Server (Teacher) 43

7.2 SMTP Client Experiment . 43
7.3 Gh0st RAT Experiment . 44

8 Conclusions 49
8.1 Method Validation . 49
8.2 Future Works . 50

Hebrew Abstract i

List of Figures

1.1 An example of a C&C session between a malware and a server. The
attacker sends through the server commands that the malware follows. . 5

1.2 Demonstration of vulnerable behaviours of a protocol. Such behaviours
can be exploited by attackers to remote code execution (RCE). 6

2.1 A DFA is often shown as a diagram, describing its states (nodes), initial
state, transitions (edges) and accepting states (double circled nodes). . . 9

5.1 Illustration of our algorithm . 21
5.2 Colliding predicates . 25
5.3 Illustration of symbolic execution during membership query 29

7.1 Illustration of our implementation and the interactions between its com-
ponents . 42

7.2 Illustration of synchronous vs. asynchronous communication 45
7.3 The branch in Gh0st RAT C&C protocol that handles webcam stream-

ing. The letter in the square brackets indicates whether the message is
sent or received. 46

7.4 Gh0st RAT full state machine learnt by our method 48

Abstract

Many computer programs these days make use of the internet network in order to
send data between machines around the world. Such programs make use of network
protocols: a set of rules defining how a communicating peer should or could respond
while communicating with other machines. In the common case, a protocol is being
transformed into a programming language, and later to a binary code, by a programmer.
Not all protocols are publicly documented for commercial or security reasons.

Protocol Inference is the process of gaining information about a protocol from a
binary code that implements it. This process is useful in cases such as extraction of the
command and control (C&C) protocol of a malware, uncovering security vulnerabili-
ties in a network protocol implementation or verifying conformance to the protocol’s
standard. Protocol inference usually involves time-consuming work to manually reverse
engineer the binary code.

This work introduces a novel method to automatically infer state machine (i.e, a
diagram) of a network protocol and its message types directly from a binary code that
implements it. To the best of our knowledge, this is the first method to achieve this
solely based on a binary code of a single side of the protocol. We assume that: the
binary code that implements the protocol is available, the protocol being learned can
be described as a DFA and that the length of a message is limited. In contrast, we
do not assume any of the following: access to another side of the protocol, access to
captures of the protocol’s traffic, and prior knowledge of message formats.

We present a modified automata learning algorithm that is suitable for learning a
DFA of a protocol. In particular, this algorithm handles the fact that the alphabet (i.e,
the message types of the protocol) is not known in advance and is uncovered during the
learning. The modified algorithm assumes an oracle that is capable of answering queries
about the protocol to be learned. Because it is infeasible to develop such oracle in our
setting, we propose an approximation for our modified version. The approximation
leverages symbolic execution to uncover the message types of the protocol and to test
if a sequence of messages is valid according to the protocol.

We validate the proposed method by inferring real-world protocols including the
C&C protocol of Gh0st RAT, a well-known malware. Our experiments show that the
method correctly infers the state machine of the protocol, as long as the symbolic
execution engine it relies on is able to execute the given binary.

1

2

Chapter 1

Introduction

1.1 Problem Setting

Many computer programs these days make use of the internet network in order to send
data between machines around the world. The basic unit of information exchanged
between programs is called a Message. Messages are exchanged between parties in
a predefined and application-specific manner called Protocol: a set of rules defining
how a communicating peer should or could respond upon receiving a message and how
messages are formatted. When two parties choose to communicate, they form a Session
and agree on the protocol they will follow.

Not all protocols are publicly documented for security and/or commercial reasons.
Software developers may choose not to share a specification of a protocol in order to
protect their intellectual property and prevent others from developing competing soft-
ware. They may also choose to hide the specification to prevent malicious activities.
With access to a specification of a protocol, it is easier to exploit and abuse a soft-
ware that uses it. A protocol is usually defined in a formal document that acts as an
”agreement” between all the programs that use the protocol. This document describes
the messages a peer should accept, as well as the expected behaviours and responses
that programs running the protocol should follow in order to ensure correct commu-
nication with other machines running the same protocol. In the absence of publicly
available such document, the protocol is either documented and kept confidential, or
not documented at all - in case it is used by a single developer.

A computer program, in particular a computer program that communicates over
the network, is a sequence of machine instructions that the computer may execute upon
demand. These instructions implement the logic of the program, and their execution
fulfills the purpose of the program. Each instruction is encoded in binary form, and
therefore the set of machine instructions is often called binary code. It is considered
difficult for humans to read and understand binary code.

A developer of a computer program that communicates with the network should
implement the protocol, i.e make the logic of the program follow the protocol. The

3

programmer develops the program using a human-readable programming language, that
is later translated to a binary code. Once the program is published, its binary code is
distributed to the users, causing their computers to run the logic of the protocol. It is
possible and somewhat common that multiple implementations of a protocol exist and
are developed by different developers. In such case, the protocol ensures that computers
running different implementations can communicate with each other correctly.

A common communication pattern that network protocols use is the client-server
model. In this model, multiple computers called clients, communicate with a single
computer called server. During a session, the server provides services or content to
a client. A forgone conclusion is that the server runs a different program than the
clients, even though they all communicate using the same protocol. According to this
definition, it is possible for a client A to send (by mistake) a message to another client
B, but their session will fail because client A will not receive from client B the messages
that it expects according to the protocol. In reality, the implementation of the network
makes it impossible to form a session between two clients.

As comes up from this setting, the common case is that a protocol is being trans-
formed into a programming language, and later to a machine code, by the programmer.
The opposite process, of gaining information about the protocol from the machine code
that implements it, is called Protocol Inference. Our goal in this work is to infer a state
machine of a network protocol (i.e, a diagram that describes it) given a binary code
that implements the protocol. Our method is fully automatic except one requirement:
we require the user of our method to provide addresses of methods that send or receive
data from the network. We later discuss this requirement and explain why it is fair.
We introduce a novel method to classify protocol messages into types by inferring pred-
icates of message groups. We also developed a technique to infer formats of incoming
messages while we do not assume to have the binary code of other implementations,
like a server, or access to network traffic recordings. We infer the protocol just as it
is reflected in the given binary. In the case of a client-server protocol, the protocol is
mostly entirely reflected in the binary code of the client and we are going to exhaust
that in our work.

1.2 Motivation

Protocol inference is mostly relevant in the field of cyber-security. Researchers that
focus on defensive cyber activities, often discover malicious programs they want to
investigate during their work. A Malware is an example for a malicious computer
program created to harm the computer that it runs on, as well as to spy on the user of
the computer. That is the reason malwares run secretly and without the consent of the
user. Advanced malwares implement a command and control (C&C) protocol and form
a session with the attacker’s server. During that session, they receive commands from
the server. An example for a C&C session between a server and a malware is shown in

4

Malware Attacker’s server
Connect

Ok

GetFile

FileContent

CaptureScreen

ScreenContent

Figure 1.1: An example of a C&C session between a malware and a server. The attacker
sends through the server commands that the malware follows.

Figure 1.1.
Some commands instruct the malware to collect personal information and send it

back to the server, some may write a file to the disk of the victim and others may
change the configuration of his machine. It is also common for a malware to accept a
suicide command, to which it responds by terminating itself and removing its traces.

Classical methods to infer a C&C protocol of a malware involves reverse engineering
of its binary code. This task, however, is quite hard: reverse engineering using static
methods is difficult and time consuming. This is, in part, because the malware code
contains (possibly a lot of) logic that is not related to their C&C protocol and might
interfere with the protocol inference task. An automated protocol inference method
can ease the difficulty of this process by obviating the need to dive into the binary code
of the malware.

Besides investigating malwares, the field of cyber security mainly revolves around
security vulnerabilities. Those are bugs, mistakes in programs, that may allow a skilled
attacker to alter the behaviour of the program. Security vulnerabilities, when they
exist in programs distributed to users, expose computers to cyber attacks and make
it possible for attackers to take control over a computer. Security vulnerabilities may
appear in an implementation of a network protocol. In such a case, they may allow
attackers to remotely abuse the protocol and trigger unexpected behaviour in the target
machine. For example, a vulnerability in an implementation of a protocol in a server
program may allow unauthorized user to access confidential data of other clients served
by the same server. Therefore, it is important to detect and fix these vulnerabilities.
An example for a vulnerable behaviour of a protocol is shown in Figure 1.2a.

By inferring the protocol of a program, a researcher may compare the implemen-
tation of the protocol to other implementations and find anomalies in the investigated

5

Client Server
Connect

Ok

Data

Finish

Data

(a) An example for a vulnerable behaviour
in a protocol; The server accepts messages
after the session terminates.

Client Server
Login

Deny

Login

Deny

Login

Success

(b) An example for a backdoor in a proto-
col. This backdoor bypasses the authenti-
cation after three continuous attempts.

Figure 1.2: Demonstration of vulnerable behaviours of a protocol. Such behaviours can
be exploited by attackers to remote code execution (RCE).

program’s protocol that can lead to security issues. A researcher would like to do that
even if he only has access to the binary of the program, in order to rule out the possibil-
ity that the program was tampered on purpose during its development or distribution.
By tampering the program’s protocol prior to its distribution, an attacker can inject
a ”backdoor” - a security vulnerability created by the attacker that he will use later
for his malicious activities. That is why it can be useful for security experts to verify
the behaviour of network programs before they are incorporated in servers and critical
systems. An example for a vulnerable behaviour inserted by an attacker is shown in
Figure 1.2b.

Deploying automated protocol inference methods can assist security researches by
automating a very technical and difficult process and help them in their work to reveal
malicious activities and understand illegal activities.

1.3 Previous Works

There are several published works that deal with the problem of learning information
about a network protocol. The approach presented in [CKW07] uses recorded network
traffic as input (and therefore assuming the user is able to record real sessions of the
protocol). This method analyzes the given traffic and uses heuristics to extract different
protocol fields.

The approach of [CKW07], however, is not always able to extract all the required
information about the protocol using the recorded traffic only. Therefore, a number
of methods [CYLS07] [CS13] [WCKK08] [CPC+08] were introduced that combine the

6

recorded traffic with execution traces of the server. This allows them to learn more
details about the structure of messages, and even gain some insights about the semantics
of messages and message fields.

All of these works do not deal with the problem of learning the protocol state ma-
chine. This was the motivation for the work of Comparetti et al. which introduced
Prospex [CWKK09]. Their work integrates methods from previous works to gain in-
formation about the messages in the protocol but extended them in two directions:
First, they developed a mechanism to identify messages of the same type. They use
this information to partition messages with similar role in the protocol into clusters.
The second extension is a method to infer the state machine of the protocol.

Prospex method, like all the mentioned methods, requires captures of traffic sessions
between a client and a server. Moreover, the result of these methods depends on the
amount and the variety of the recorded sessions. In some cases it is not possible to
record real sessions, and even when it is, we are not guaranteed that the capturing
exposes the protocol’s full state machine. This can occur with malwares, for example,
where the malware is controlled by a C&C server and we are not able to manually
control its interaction, and therefore unable to record a variety of sessions. Also, we
have no information about the C&C server or the abilty to track its execution, making
the task of inferring the C&C protocol more difficult. Retrieving execution traces of
the client can also be difficult due to anti debugging techniques that might prevent
controlled execution.

The work by Lim et al. [LRL06] suggests a method to extract output formats of
executable, including output network formats. They construct a Hierarchical Finite
State Machine (HFSM) that over-approximates the output data format. They use
Value-Set Analysis (VSA) and Aggregate Structure Identification (ASI) to annotate
HFSMs with information that partially characterizes some of the output data values.

Another important contribution is the work of Cho et al. [CBSS10] that introduced
a method for on-line inference of botnet C&C protocol, using active instances of it.
They chose to represent a protocol as a Mealy machine and used L* extension by Shah-
baz et al. [SG09] for learning Mealy Machines. They actively query the control server
(which they call master) responses for a sequences of messages. They also introduce
caching and prediction optimizations to L* [Ang87] in order to reduce the amount of
membership queries sent to the server. Their work, as an on-line method, assumes
the server is available and answers appropriately. They also assume known message
formats by using previous work [CYLS07].

The work of Peled et al. [PVY02] describes several methods to check specification
on a black box machine with unknown internal structure. One of their methods uses
learning with L* [Ang87] to learn the internal implementation of the black box.

In our case, we cannot establish a connection with the server since it is either offline
by the time of the analysis or we simply do not want to reveal the investigation activity.
Therefore, there is a need for a method to infer the protocol of an executable without

7

having to record real sessions and without any information about the server. Such a
method has to leverage all the information available in the executable itself (the binary
code) in order to infer the protocol state machine.

Another related work is the work of Alur et al. [ACMN05] introducing a method
to infer a Java class specification (order of method calls) using model checking and L*,
which is similar to what we apply in our work. In their case, however, the alphabet
(the set of methods) is known in advance.

A series of previous works [EGP08] [PGB+08] [CGP03] utilize L* for the purpose
of model checking and suggest learning-based algorithms to automate assumption gen-
eration in assume-guarantee verification. Gheorghiu et al. [GGP07] and Chaki et al.
[CS07] are the first works to introduce alphabet refinement to this process.

Recent work by Jeppu et al. [JMK22] presents a new approach to generate ab-
stractions of systems from execution traces. They use model checking to verify their
abstraction. In case of mismatch, the abstraction is refined according to traces found
by model checking of the target system and that contradict the current abstraction.

Another work by Cho et al. called MACE [CBP+11] presents a method to learn a
state machine of a server using L* and symbolic execution. They also use L* extension
for inferring Mealy state machines [SG09]. They use symbolic execution to uncover
messages that the client may send, and then send them to the server in order to learn
its response to different message sequences. This work is similar to ours: we also use L*
and symbolic execution. There are, however, two main differences: First, they assume
a known abstraction function is available that can extract the message type out of the
server’s response. Second, they assume a running server is available, that can answer
the client’s requests. We do not have these assumptions.

8

Chapter 2

Preliminaries

2.1 Deterministic Finite Automaton (DFA)

A deterministic finite automaton (DFA) M is a five-tuple, (Q, Σ, δ, q0, F), all of them
nonempty, whereas: Q is a finite set of states, Σ is a finite set of input symbols (alpha-
bet), δ : Q× Σ→ Q is a transition function, q0 ∈ Q is an initial state and F ⊆ Q is a
set of accepting states.

Let Σ∗ = {σ1...σn | σi ∈ Σ, n ≥ 0} the set of all finite strings over the alphabet Σ.
Given w ∈ Σ∗, we say that M accepts w if and only if there exist r0, ..., rn such that:

1. ∀0 ≤ i ≤ n, ri ∈ Q

2. r0 = q0

3. ∀0 ≤ i ≤ n− 1, ri+1 = δ(ri, σi+1)

4. rn ∈ F

We define L(M) = {w ∈ Σ∗ | M accepts w} as the language of M . A set of words
L ⊆ Σ∗ is a regular language iff there exists a DFA M such that L = L(M).

q0start q1

q2q3

a

b

a

ba, b

ab

Figure 2.1: A DFA is often shown as a diagram, describing its states (nodes), initial
state, transitions (edges) and accepting states (double circled nodes).

9

2.2 Automata Learning

Automata learning relates to the general problem of identifying an unknown regular
language L by learning its DFA. In 1987 Angluin introduced the L* algorithm [Ang87].
The algorithm assumes a minimally adequate Teacher, which is an oracle that can
answer two types of queries about the regular language L: Membership query and
Equivalence query. In a Membership query, the Teacher should indicate whether a
given word w is in L or not. In an Equivalence query, the Teacher should indicate, given
a conjectured DFA M ′, whether L(M ′) = L, and provide a counterexample otherwise
(a word in the symmetric difference of L and L(M ′)).

In its internal data, the L* algorithm saves a description of the currently learned
DFA in a structure called observation table. The observation table is updated during
the learning process according to the answers of the Teacher.

2.2.1 Growing Alphabet

Some use cases of L* require the capability of adding new alphabet symbols during the
algorithm. Previous works [GGP07] [CS07] have already introduced the need to modify
the alphabet of an L* instance. When a counterexample is returned by the teacher
and reveal new alphabet symbols, they refine the alphabet and then L* is restarted
from the beginning with the refined alphabet. However, it is not always required to
restart L* and its internal implementation may support growing alphabets already.
In the implementation of L* that we use [IHS15] the need to restart L* is obviated
by updating the necessary parts of the observation table on the fly whenever a new
alphabet symbol is discovered. Then, a set of membership queries is sent in order to
learn the behaviour that the new alphabet symbol introduces and the currently learned
DFA is updated accordingly.

2.2.2 Equivalence query approximations

Equivalence queries are difficult to answer in real world black-box scenarios where the
DFA for L does not exist at all. Therefore, Angluin proposed a method to test equiva-
lence queries using random sampling oracle, assuring probabilistic approximation of the
real DFA. The sampling oracle tries to generate words w in the symmetric difference of
L and L(M ′) and sends them as membership queries. In case of disagreement between
the membership answer for w and whether w ∈ L(M ′), w is considered as a coun-
terexample of the approximated equivalence query. This method is probabilistic and
highly depends on the algorithm of the sampling oracle. Various test suites generation
methods like W-Method [Cho78] and Wp-Method [FvBK+91] have been suggested, and
may also be used to approximate equivalence queries by running test suites against the
suggested DFA.

10

2.3 Model Checking

One of the most common methods for formal verification is model checking [CGK+18].
Model checking is a procedure that given a program P and a specification φ checks
whether P satisfies φ. If the answer is negative, then the model checking provides a
counterexample for a program run that does not satisfy the specification.

Bounded Model Checking (BMC) [BCCZ99] is a model checking technique based
on SAT solvers. The basic idea of BMC is to consider counterexamples of a particular
length k and generate a propositional formula that is satisfiable iff such a counterex-
ample exists. In particular, it means that counterexamples longer than k will not be
discovered.

CBMC [CKL04] is a tool for the formal verification of ANSI-C programs using
Bounded Model Checking (BMC). The tool supports almost all ANSI-C language fea-
tures. CBMC translates C programs to a set of constraints in the form of Single Static
Assignment (SSA). CBMC uses assertions in the code as a mean of specification and
allows to insert assumptions in order to allow ignoring some irrelevant execution paths.

Due to lack of tools to apply model checking on binary code, we chose to simulate
methods of model checking with symbolic execution. Therefore we do not use model
checking in our work but apply concepts of model checking in our algorithm. In case
that a model checking tool for binary code is presented by a future work, it can be
easily integrated in our algorithm.

2.4 Symbolic Execution

Symbolic execution is a static method of analyzing a program. During the analysis
it determines what constraints the program’s input must satisfy in order to execute
each execution path in the program. This is done by following the program’s code
assuming symbolic values for inputs rather than getting concrete values for the inputs
from the user (or the network, in our case). The symbolic execution engine develops
expressions in terms of symbolic variables for values that occur in the program, as well
as constraints in terms of those symbolic variables for each possible outcome of each
conditional branch. To perform symbolic execution over a set of symbolic variables V ,
a symbolic state is defined to contain the current symbolic values for each variable in
the program, as well as constraints C in terms of V that should hold in order to reach
that state in a concrete execution. A symbolic state contains a list of its predecessors as
well, so it is not possible for a symbolic state to represent two different execution paths.
Moreover, a symbolic state can represent an execution during which the program failed
and terminated. We call such a symbolic state an abort state.

Symbolic execution begins with a single initial state located at the entry point of
the program, with initial symbolic or concrete values for the variables. The execution
happens by stepping the set of states and generating new descendant states. Stepping a

11

single state may result with multiple new descendant states, if, for example, the parent
state corresponds to a conditional branch cond. In such a case, two descendant states
must be created to represent cond evaluation to either true or false. This is necessary
because cond determines the next instruction that executes after the branch. The
successor along the true branch will include a new constraint, obtained by replacing
the variables of cond with symbolic expressions representing the current values of these
variables. Similarly, the successor along the false branch will include a new constraint
obtained by replacing the variables of ¬cond. Before stepping a state, the symbolic
execution may verify that the current constraints of the state are satisfiable, meaning
that for at least one input value, the state is reachable. This verification is done in order
to discard states that represent infeasible paths, representing impossible executions. An
abort state will also be discarded and will not be further stepped.

As mentioned in Section 2.3, we use symbolic execution to simulate assumptions
and assertions of model checking, due to the lack of tools to apply model checking
on binary code. We further explain how we implement assumptions and assertions in
Section 5.4.

2.4.1 Example

Consider the pseudo-code in Listing 2.1, and let V = {X, Y } be the set of symbolic
variables. Let the initial values for the variables be x = X, y = Y .

Listing 2.1: Example of symbolic execution

1 : x = y
2 : y = y + 1
3 : i f (x > y) {
4 : . . .
5 : } else {
6 : . . .
7 : }

Symbolic execution of this code snippet begins with entry state s1 at line 1, with
variable values {x = X, y = Y } and C1 = ∅. Stepping s1 results with a new state s2

at line 2, with {x = Y, y = Y } and C2 = ∅. Stepping s2 results with s3 at line 3 with
{x = Y, y = Y + 1} and C2 = ∅. Stepping s3 results with two descendant states s4

and s5 with {x = Y, y = Y + 1} for both of them. Since s3 is a conditional branch, s4

represents the true branch, at line 4, and has C4 = {Y > Y + 1}, while s5 represents
the false branch, at line 6, and has C5 = {Y ≤ Y + 1}. At this stage, the set of
states contains s4 and s5. When symbolic execution tries to step s4, it finds that C4 is
unsatisfiable, since there is no Y such that Y > Y + 1. Therefore, s4 is discarded and
will not be further stepped since it represents an execution path that is not possible
with concrete values. On the other hand, the symbolic execution finds that C5 for s5

12

is satisfiable (for example, with the assignment Y = 1, X = 1) and therefore steps s5

to the next instruction.

13

14

Chapter 3

Problem Definition

3.1 Definitions and Notations

Our goal, given a binary code of a program, is finding a DFA that accepts a language
L, where each word in L matches a sequence of message types received and sent by the
program. We say that this DFA is the state machine of the protocol implemented by
the program.

We refer to the binary code of the program as ”the program”. That is, every time
we use the term ”program” we refer to the binary code supplied as input to our method.
We say that a concrete run of the program is valid if and only if the program does not
terminate due to an error during the run.

We denote by S and R the finite set of messages that may be sent and received by
the program, respectively. S and R are disjoint. S and R are finite because messages
are limited in length (See Assumption 1 below).

A session is a sequence of messages m1 . . . mk such that ∀1 ≤ i ≤ k, mi ∈ S∪R. We
say that a session m1 . . . mk is valid for the program if and only if there exists a valid
run of the program along which the same sequence of messages are sent or received in
exactly the same order as in m1 . . . mk. Formally, a session m1 . . . mk is valid for the
program if and only if:

• For k = 0, an empty session is always valid.

• For k = 1:

– If m1 ∈ S, there exists a valid run in which m1 is sent by the program and
no message is sent or received prior to m1.

– If m1 ∈ R, there exists a valid run in which m1 is received by the program
and no message is sent or received prior to m1.

• For k > 1:

– m1 . . . mk−1 is a valid session

15

– If mk ∈ S, there exists a valid run of the session m1 . . . mk−1 in which the
program sends mk after sending or receiving mk−1 and no message is sent
or received between mk−1 and mk.

– If mk ∈ R, there exists a valid run of the session m1 . . . mk−1 in which the
program receives mk after sending or receiving mk−1 and no message is sent
or received between mk−1 and mk.

Valid sessions are prefix-closed, meaning that if m1 . . . mk is a valid session then ∀1 ≤
l ≤ k − 1, m1 . . . ml is also a valid session.

Messages are partitioned into subsets of message types according to their semantics
in the protocol and their effect on the protocol state machine. Let TD be a partition of
messages of D where D ∈ {R, S}. Given a message m ∈ D, we denote by type(m) the
pair ⟨D, t⟩ such that t ∈ TD and m ∈ t. We call such a pair ⟨D, t⟩ a Message Type.
t is finite because both S and R are finite.

The concept of message types derives from real-world protocols, where messages
are divided to types. Every message type in the protocol has different semantics. For
example, different message types have different effect on the state of the protocol and
trigger a different response by the other side of the communication. Messages in real-
world protocols usually begin with a header - a fixed length sequence of bytes specifying
meta-data about the message, including its type, timestamps, message length and more.
The receiving side parses the header in early stages of the processing and executes the
appropriate procedure to handle the specific type of message.

We define the alphabet of the protocol as a finite set of pairs:

ΣL = {⟨D, t⟩ | t ∈ TD, D ∈ {R, S}}

Given a session m1 . . . mk such that ∀1 ≤ i ≤ k, mi ∈ S∪R, we define Θ: (S∪R)∗ → Σ∗
L:

Θ(m1 . . . mk) = type(m1) . . . type(mk)

We abstract all valid sessions to a regular language L over the alphabet ΣL:

L = {Θ(m1 . . . mk) | m1 . . . mk is a valid session}

Note that L is prefix closed because valid sessions are prefix closed. Note that R and
S, as well as their partitions TS and TR, are unknown in advance, hence the alphabet
Σ of the DFA in unknown in advance. It is the task of our method to uncover ΣL as it
determines the DFA.

3.2 Assumptions

We assume the following about the input to our method:

16

1. Binary code of the program is available: a binary code that implements the
protocol to be inferred is available.

2. Message Length is limited: there exists N such that no message in the protocol
to be inferred is longer than N bytes. This is a reasonable assumption since
concrete messages must be finite. In practice, our method allow a message to be
longer than N bytes, as long as the first N bytes may allow to infer its message
type. This assumption is required since symbolic lengths are computationally
difficult to infer.

3. Protocol Regularity: the protocol can be modeled as a DFA (See Section 2.1)
over ΣL in terms of message types allowed from each state. Formally, L is regular
language. If L is not regular, our algorithm will fail or will never complete the
inference.

In contrast, we do not assume:

1. Access to the binary code of the program that implements the other side of the
protocol. (For example, a server)

2. Access to network traffic recordings that contain valid sessions.

3. Access to an online instance of the server, and we assume it is impossible to run
the binary code and form a real session. Our method entirely relies on static
analysis of the binary code.

4. Prior knowledge about sent or received messages’ formats and the partition to
message types. For example, most protocols include a header in messages, with
information regarding the type of the message or its length. This information
must be located at a fixed offsets in the message because every implementation
of the protocol must be able to extract this information from a message at a very
early stage of the processing. We do not assume to know these offsets and our
method intends to detect them automatically.

17

18

Chapter 4

Learning a DFA of a Protocol
(Exact Version)

In this chapter we propose a suitable method for learning a DFA of a protocol. The
learning of the protocol’s DFA is based on a modified version of the L* algorithm [Ang87].
We modify the algorithm’s queries in order to uncover the alphabet Σ, that is, the mes-
sage types of the protocol. Initially, Σ is ∅.

For ease of exposition, in this chapter we assume a Teacher that is capable of
answering the queries we present. However, this assumption is unrealistic when both
the state machine and the alphabet ΣL are unknown. In Chapter 5 we propose suitable
approximations for the Learner and the Teacher.

4.1 Modified Membership Queries

The classical membership query returns True or False, indicating if a given w is in
L or not. We modify it as follows: If w ∈ L, True is returned together with a set
Cont(w) of message types ⟨D, t⟩ such that w · ⟨D, t⟩ ∈ L. If w /∈ L, False is returned.
The set Cont(w) may reveal new alphabet symbols.

4.2 Modified Equivalence Queries

In a classical equivalence query the Learner provides a conjectured DFA M over al-
phabet ΣM = Σ. True is returned if L = L(M). Otherwise, False is returned and
a counterexample w in the symmetric difference of L and L(M) is returned as well.
We modify it as follows: False is returned if there exist w ∈ Σ∗

M for which one of
the following hold: (1) w is in the symmetric difference of L and L(M); (2) A set
Miss(M) ̸= ∅ exists such that for all σ ∈ Miss(M), σ /∈ ΣM but w · σ ∈ L. In
the former case, w is returned as a counterexample. In the latter case, every w · σ is
considered a counterexample. True is returned if for all w ∈ Σ∗

M , neither (1) nor (2)
hold.

19

4.3 Handling a growing alphabet

Given a set of message types C = Cont(w) or C = Miss(M) output by a query, Σ is
set to Σ∪C. If Σ changes during this assignment, then we say that the alphabet grows.
To handle a growing alphabet we use a modified L* algorithm presented in [IHS15].
In a nutshell, the modified algorithm updates the observation table to handle the new
alphabet symbols while the general learning cycle is kept similar to the classical L*
algorithm.

4.4 Initialization and Output

The Learner starts with Σ = ∅. The first query of the Learner is w = ε. Note that the
answer to this query is True since an empty session is valid. Cont(ε) is then added to
Σ. The Learner continues to utilize queries according to the L* algorithm and extends
Σ and the learnt DFA according to the queries’ answers. The algorithm terminates
when an equivalence query returns True. The algorithm outputs the learnt DFA that
represents the protocol’s state machine and Σ that represents the protocol’s message
types.

4.5 Correctness

The correctness of the algorithm is based on the modified definition of equivalence
queries and correctness of the classical L* algorithm.

Theorem 4.1. The modified Learner terminates with L(M) = L and ΣM = ΣL.

Proof. The Learner terminates when it gets True as an answer from the Teacher on
an equivalence query. In this case, there is no w ∈ Σ∗

M , which is in the symmetric
difference of L and L(M). Thus, L = L(M). Also, there is no w ∈ Σ∗

M , such that
σ ̸∈ ΣM but w · σ ∈ L. This means that there is no (reachable) message type σ ∈ ΣL

that has not been revealed already by our modified Learner. Consequently, Σ = ΣL,
as required.

20

Chapter 5

Learning a DFA of a Protocol
(Approximation)

The learning algorithm presented in Chapter 4 assumes a Teacher capable of answering
the queries as we described. This assumption, however, is not feasible in real world
analysis, where both the language of the protocol and its message types are unknown.
Therefore, we opt to propose an approximated Teacher. The Teacher approximates the
queries described in Chapter 4. As a result, some modifications are required in the
Learner, in order to cope with the fact that the Teacher is approximated.

This chapter details how the answers to the queries of the modified L* algorithm
presented in Chapter 4 are approximated. The components of the method and their
interactions are presented in Figure 5.1.

A
pp

ro
xi
m
at
ed

Le
ar
ne

r Membership
Oracle

Equivalence
Oracle

Bi
na

ry
C
od

e

Modified Symbolic Execution

Query w

DFA M

True/False
ContA(w)

True/False
w, MissA(M)

w
True/False
ContA(w)

Figure 5.1: Illustration of our algorithm

5.1 Characterizing Message Types

Recall that a message type is a pair ⟨D, t⟩ where t is a set of finitely many messages.
Our algorithm requires a method to identify message types without having to store
the entire set t. In most real-world protocols, message types are distinguishable by

21

one or more fields in the message (a sequence of bytes) that identify the type of the
message. We do not assume to know in advance how to identify the type of a message
and therefore we present a method to describe a set of messages based on their common
format. We represent a set t using a predicate P describing the format of that message
type. This predicate represents all messages of the same type. Hence, we represent
a message type by a pair ⟨D,P⟩. We emphasize that the sets R and S are unknown
and are never identified by our algorithm. Instead, our algorithm infers predicates that
describe the format of message types.

Given a set x ⊆ D where D = R or D = S, we associate x with a predicate Px. Px

is a predicate over variables {B0, . . . , BN−1}, where Bi represents the ith byte of the
message for 0 ≤ i ≤ N − 1. Recall that N is the maximal length of a message (See
Section 3.2). m[i] denotes the value of the i-th byte of m, such that 0 ≤ m[i] < 256.
We denote by Px(m) the assignment of m[i] for Bi in Px. When Px(m) = True we
say that Px matches m. We defineM(D,Px) to be the set of messages from D that is
matched by the predicate Px:

M(D,Px) = {m ∈ D | Px(m) = True}

According to our representation, type(m) is redefined such that type(m) denotes the
tuple ⟨D,P⟩ such that m ∈ M(D,P). The approximation we present in the following
sections ensures that for D = R and D = S, the setsM(D,P) for any ⟨D,P⟩ ∈ Σ are
disjoint.

5.1.1 Extracting predicate to represent a set of messages

Given a set of messages x ⊆ D, Px is extracted using the following simple definition:
we hold constraints on message bytes that have the same value for all the messages in
x. Formally, let m ∈ x, we define for all 0 ≤ i ≤ N − 1:

φi =
{

Bi = m[i], if ∀m′ ∈ x, m′[i] = m[i]
True, Otherwise

}

Px =
N−1∧
i=0

φi

We emphasize that the above definition may be replaced with a more elaborate one,
if needed. We choose this definition because it is simple and is sufficiently useful for
many real world protocols.

Note that x ⊆ M(D,Px). That is, Px can match messages from D, which are not
necessarily in x, but have the same format as the messages of x. This characteristic
allows our algorithm to find a predicate for large sets t using a smaller example set x ⊂ t.
This is possible only when x is diverse enough and contains a variety of messages from
t. Otherwise, the predicate will be over-fitted to match x. In Section 5.5.2 we explain

22

how to generate predicates that are sufficiently general to describe message types even
though we are given only a small subset of examples for that message type.

5.1.2 Example

As an example, consider the set:

t = {b0b1b2b3 | b0 = C0, b1 = C1}

of message type ⟨D, t⟩, where C0 and C1 are constants. That is, t is the set of all
messages in which the first and second bytes are C0 and C1, respectively, and the third
and forth bytes can have any value. Let:

x = {C0C1b2b3 | 56 ≤ b2 ≤ 67, 123 ≤ b3 ≤ 127}

The predicate for x according to the definition above is Px = (B0 = C1 ∧ B1 = C2).
The predicate for t is also Pt = (B0 = C1 ∧ B1 = C2) although x ⊊ t. This example
demonstrates that a set x may be sufficient for inferring the predicate for t.

5.2 Handling Alphabet Changes

Recall that the exact version of our method is infeasible in our setting. To remedy this,
we replace the sets of message types, Cont(w) and Miss(M), with their approxima-
tions, denoted ContA(w) and MissA(M), of message type candidates.

As we use an approximation to generate the new message type candidates, they
may intersect with previously found message types currently in Σ. This breaks the
assumption that sets of message types are pairwise disjoint. Therefore, we present here
an algorithm that, given C = ContA(w) or C = MissA(M), incorporates C into Σ
while making sure the elements of Σ remain pairwise disjoint.

5.2.1 Insertion of message type candidate

Let c = ⟨D,P⟩ ∈ C be a message type candidate. We say that ⟨D,P⟩ collides with
σ = ⟨Dσ,Pσ⟩ ∈ Σ if Dσ = D and M(D,P) ∩M(D,Pσ) ̸= ∅. In order to detect if
c collides with σ, we check the satisfiability of P ∧ Pσ. We denote by Σ the current
alphabet and by Σ′ the updated alphabet after the changes. The algorithm initializes
Σ′ = Σ.

The procedure to handle collisions of a message type candidate c is presented in
Algorithm 5.1. We initialize P ′ with P and Σ′ with Σ (line 2). In order to maintain Σ′

as a partition of D, every message type ⟨Dσ,Pσ⟩ ∈ Σ′ that collides with ⟨D,P ′⟩ is re-
moved (line 5). A new message type to match the non-intersecting parts ofM(Dσ,Pσ)
is inserted to Σ′ (line 7) and a separate new message type is inserted to match the
intersecting parts (line 9). P ′ is updated to contain only the non-intersecting parts

23

Algorithm 5.1 The procedure to handle message type candidate
1: function handle_candidate(⟨D,P⟩ ∈ C, Σ)
2: P ′ ← P, Σ′ ← Σ
3: for all ⟨Dσ,Pσ⟩ ∈ Σ such that D = Dσ do
4: if Pσ ∧ P ′ is satisfiable then
5: Σ′ ← Σ′ \ {⟨D,Pσ⟩}
6: if Pσ ∧ ¬P ′ is satisfiable then
7: Σ′ ← Σ′ ∪ {⟨D,Pσ ∧ ¬P ′⟩}
8: end if
9: Σ′ ← Σ′ ∪ {⟨D,Pσ ∧ P ′⟩}

10: P ′ ← P ′ ∧ ¬Pσ

11: end if
12: end for
13: if P ′ is satisfiable then
14: Σ′ ← Σ′ ∪ {⟨D,P ′⟩}
15: end if
16: Σ← Σ′

17: end function

fromM(D,P ′) (line 10). After checking for collisions against all message types of Σ′,
P ′ contains the non-intersecting parts of P. The resulting ⟨D,P ′⟩ does not collide with
symbols in Σ′ and can be inserted to Σ′ (line 14) while Σ′ remains a partition of R and
S. Finally, Σ is assigned with the resulting Σ′.

We note that Σ′ remains a partition during the algorithm. Σ′ is initially a parti-
tion because Σ is a partition. Consider Figure 5.2. When a collision is found, only
⟨D,P ′ ∧ ¬Pσ⟩ can collide with another ⟨Dσi ,Pσi⟩ ∈ Σ. This is because if Pσi ∧Pσ ∧P ′

or Pσi ∧Pσ ∧¬P ′ are satisfiable by m′ ∈ D, then Pσi ∧Pσ is also satisfiable by m′ and
therefore Σ did not form a partition even before handling c. Therefore it is only re-
quired to check for collisions of other alphabet symbols with the non-intersecting parts
of P ′ (the updated P ′ from line 10).

During the procedure we must discard unsatisfiable predicates. A predicate may
become unsatisfiable in two special cases of collision: If M(D,Pσ) ⊂ M(D,P ′) then
Pσ ∧ ¬P ′ is not satisfiable and should be discarded (line 6). IfM(D,Pσ) ⊃M(D,P ′)
then P ′ ∧ ¬Pσ is not satisfiable and should not be inserted to Σ (line 13).

5.2.2 Insertion of multiple message type candidates

The algorithm to handle the entire set C of message type candidates is presented in
Algorithm 5.2. We run Algorithm 5.1 for every c ∈ C (line 4). After running this
procedure for all message type candidates, the elements of the resulting Σ are pairwise
disjoint and are set as the new alphabet. If, during the above procedure, message types
are removed from Σ then the L* algorithm must be restarted with the updated Σ since
the learning was done with inaccurate alphabet (line 9). If message types are only
added to Σ (and not removed) then we say that Σ grows. In the latter case the method

24

M(D,Pσ)

M(D,P)

M(D,Pσ ∧ ¬P)

M(D,P ∧ ¬Pσ)

M(D,Pσ ∧ P)

Figure 5.2: Colliding predicates

from the exact algorithm (Section 4.3) is used without having to restart L* (line 7).

Algorithm 5.2 The procedure to handle a set of message type candidates C

1: function handle_candidates(C)
2: Σold ← Σ
3: for all c ∈ C do
4: handle_candidate(c, Σ)
5: end for
6: if Σold ⊆ Σ then
7: set_alphabet(Σ)
8: else
9: restart_L*_with_alphabet(Σ)

10: end if
11: end function

5.2.3 Example of alphabet changes

Consider an alphabet candidate c = ⟨D,P⟩ that collides with ⟨Dσ ,Pσ⟩ where D =
Dσ. The modification process of the involved predicates is illustrated using the sets
represented by P and Pσ in Figure 5.2. When we find that c collides with ⟨Dσ ,Pσ⟩:
⟨Dσ ,Pσ⟩ is removed from Σ′; ⟨D,Pσ ∧ ¬P⟩ to match the non-intersecting parts of
⟨Dσ ,Pσ⟩ (green) is added to Σ′; ⟨D,Pσ ∧ P⟩ to match the intersecting parts (red) is
added to Σ′; and P ′ is set to P ∧¬Pσ (cyan) to contain the non-intersecting parts of c.

Finally, ⟨D,P ′⟩ where P ′ = P ∧ ¬Pσ will be added to Σ′. One alphabet symbol
is removed and three alphabet symbols are created during the addition of c, including
the c.

5.3 Equivalence Oracle

Answering equivalence queries in real world for black box systems is generally infeasi-
ble [Ang87]. Therefore, we define here an oracle to approximate equivalence queries.
We take advantage of a commonly used approach in which an equivalence query is
approximated using a sampling oracle, as we explained in Section 2.2.2. We use the
Wp-Method [FvBK+91] to generate a test suite T ⊂ Σ∗

M of queries w. In this method,
T is generated using M and the alphabet ΣM . Every w ∈ T is sent as a membership

25

query. We use ContA(w) when w ∈ L to find MissA(M), containing message type
candidates.

The procedure to run a test suite T against a conjectured DFA M is shown in
Algorithm 5.3. Each w ∈ T is tested using a membership query. If ContA(w) con-
tains symbols that are not in ΣM , then False is returned with w and MissA(M) =
ContA(w) \ ΣM . If w is in the symmetric difference of L and L(M), then False is
returned with w as a counterexample. If missing message types are not found and a
counterexample w is not found in the entire test suite T , True is returned and the
learning terminates. Recall that, if MissA(M) is returned, then every w · σ, such that
σ ∈MissA(M), is handled as a counterexample.

Algorithm 5.3 The procedure to approximate equivalence queries
1: function run_test_suite(M , T ⊂ Σ∗

M)
2: for all w ∈ T do
3: ⟨w ∈ L, ContA(w)⟩ ← membership(w)
4: if w ∈ L then
5: if ContA(w) \ ΣM ̸= ∅ then
6: return ⟨False, w, ContA(w) \ ΣM ⟩
7: end if
8: if w /∈ L(M) then
9: return ⟨False, w⟩

10: end if
11: else if w ∈ L(M) then ▷ It holds that w /∈ L
12: return ⟨False, w⟩
13: end if
14: end for
15: return True
16: end function

5.4 Modified Symbolic Execution

Our algorithm answers membership queries by symbolic execution of the binary code.
During the symbolic execution we need to find feasible executions in which the binary
code follows a given sequence of alphabet symbols. We call this process monitoring
the sequence. To monitor a sequence, we introduce assertions and assumptions into
symbolic execution. In order to link between a sequence of alphabet symbols and
the binary code, we propose the modifications we apply on top of classic symbolic
execution. Some other modifications are required in order to implement the extension
of membership queries to probe message type candidates as we defined in Section 5.5.2.

We emphasize that, except intercepting the networking activity of the binary, we
leave the rest of symbolic execution as it is, without modifications. This is mandatory
to correctly simulate the actions that the binary code performs in order to compose or
parse messages.

26

Next we describe the parts we modify in detail.

5.4.1 Implementing assumptions and assertions in symbolic execution

Our algorithm uses symbolic execution of the binary code to answer queries sent by
the learner. We do not use model checking in our work due to the lack of tools and
methods to apply model checking on binaries. Our method, however, uses concepts
similar to those involved in model checking and applies them on symbolic execution
of the binary code. We simulate assumptions and assertions using symbolic execution
constraints and using the fact that symbolic execution checks the satisfiability of states
during the execution and discards unsatisfiable executions. We insert assumptions to
the constraints of a symbolic state when we want to limit the considered executions
to executions that satisfy the assumptions. Conflicting constraints or concrete values
will cause the execution to become unsatisfiable and discarded. Similarly, we insert
assertions to the constraints of a symbolic state when we want to limit the consid-
ered executions to executions where both the constraints developed by the symbolic
execution and all of the assertions are satisfiable.

5.4.2 Hooking calls to send and receive procedures

Hooking calls in symbolic execution allows to replace the behaviour of a binary code in
certain functions with customized procedures. When hooks are applied and a state s

calls a hooked function, a customized procedure is executed on s instead of the original
function. The customized procedure should return a state that represents the program
after the call to the function. When a function is not hooked, it is executed according
to the symbolic execution engine.

When we apply symbolic execution on the binary code, we hook functions the user
provides in order to monitor a sequence and to discover message type candidates. We
ask the user of our method to manually identify functions that send or receive data
from the network. The user should provide the addresses of the relevant functions and
should provide a code snippet that extracts the message buffer and message length
from a given symbolic state. The user should also specify for each function whether it
is a send function or a receive function. For simplicity of exposition, we assume there
is a single send function and a single receive function. However, the presented method
can be equally implemented in case there are several such functions.

Identifying the necessary hooks and specifying the required code snippet are most
of the times simple and require a small manual effort by the user of our method. Send
and receive functions of the binary code share a common property that they call the
send or receive functions of the operating system. Therefore, these functions are easy
to find with classical reverse engineering and disassemble tools. In case the user cannot
find these functions, he can choose to provide the send and receive functions of the
operating system. In any case, it is not in the scope of this work to identify send and

27

receive functions.
In addition to identifying the functions, the user should provide a code snippet that

extracts the message length and buffer from a symbolic state s. When such state s

calls a hooked function and our customized procedure is executed, it is necessary to get
the message length and buffer from the variables of the state. The code snippet that
the user provides will most likely get these items from the arguments of the call. Note
that inferring this code snippet manually is considered trivial.

5.4.3 Extending symbolic states to track query state

Let w = σ1 . . . σn be a sequence of alphabet symbols queried in a membership query.
Let s be a symbolic state. Recall the definition of symbolic state from Section 2.4. We
extend the definition of s to contain additional fields. These fields are used to track
which alphabet symbols from the sequence have been sent or received in the execution
that s represents, from the initial state and up to s. In addition, we add to s fields that
will be used during the probing phase of the query. During symbolic execution, these
fields are propagated from parent state to all its descendant states.

Extensions for monitoring

We extend s to store in addition to the original fields:

• A sequence ws = σ1 . . . σn. The sequence, and especially its predicates, are used
to insert assumptions and assertions during the symbolic execution, to limit the
considered executions to executions that match the query.

• An index is such that 0 ≤ is ≤ n. This index marks the index of the last symbol
monitored in the execution when reaching s. That is, the sequence σ1 . . . σis was
sent or received in the execution up to s. is is incremented by one every time
a send or receive that match σis occurs in the execution. If is = n, the entire
sequence ws was monitored in the execution represented by s.

When the symbolic execution is initialized to answer a membership query w, the
initial state s is defined with ws = w and is = 0.

Extensions for probing

When a state s is executed during the probing phase, we use two additional fields that
we add to s:

• A symbolic value msgs. msgs is initialized during the first send or receive call
that occurs in the probing phase. It is initialized with the symbolic value sent
or received. msgs will be used to generate a message type candidate for s as we
explain in Section 5.5.2.

28

se

Send ⟨D,P⟩ ∈ Cont(w)

Recv

Send ⟨D,P⟩ ∈ Cont(w)

Send ⟨D,P⟩ ∈ Cont(w)

Monitoring Phase Probing Phase

i = 1 2 . . . n− 1 i = n

Figure 5.3: Illustration of symbolic execution during membership query

• A flag Ds ∈ {R, S, ∅}, which specifies whether the first communication in the
probing phase was a send or a receive. It is initialized with Ds = ∅ and set only
during the first send or receive in the probing phase.

5.5 Membership Oracle

Let w ∈ Σ∗ be a sequence of message types sent as a membership query. The algorithm
should answer whether w ∈ L and if w ∈ L it should also provide ContA(w) – a
set of message type candidates that may follow w. By definition, w is a sequence of
message types. Recall that such a sequence corresponds to sessions of the protocol.
We answer membership queries using symbolic execution of the binary code. With
symbolic execution we are able to answer whether w ∈ L or not. However, we return a
set ContA(w) that approximates Cont(w).

A symbolic execution begins with a single active initial state, located at the entry
point of the binary code. By stepping forward from active states iteratively, a set of new
active states is generated, representing multiple different execution paths of the binary
code. The properties defined in Section 5.4 are propagated to generated descendant
states. We divide the symbolic execution into two phases: monitoring phase, which
answers whether w is a valid session of the protocol, and the probing phase, which
results in possible continuations of w. The latter phase is executed only if w is a valid
session. During the monitoring phase we guide the symbolic execution to consider only
execution paths that follow the given sequence w. During the probing phase, however,
we take into account all feasible executions that are developed as continuations to the
executions that we found during the monitoring phase.

An illustration of both the monitoring and the probing phase is shown in Figure 5.3.
We will further explain this figure in the upcoming subsections.

29

5.5.1 Monitoring phase

Let w = ⟨Dσ1 ,Pσ1⟩ . . . ⟨Dσn ,Pσn⟩ be the queried sequence. We hook the functions in
the binary code that send and receive messages. The procedures inserted in the hooks
are presented in the following subsections. We perform the monitoring phase in n

stages: We start with a single initial state se located at the binary code’s entry point
with ise = 0 and wse = w. For each stage 1 ≤ i ≤ n we add constraints of the predicate
of the message type ⟨Dσi ,Pσi⟩. These constraints restrict the symbolic execution to
execution paths that send or receive a message of type ⟨Dσi ,Pσi⟩ at the current stage.
We then resume the symbolic execution of all active states, until all active states are
restricted to the i-th message type. In other words, we begin a stage i with states that
have is = i− 1 and finish it with a set of new states with is = i. Since we monitor the
network activity, we discard executions that send or receive messages that do not match
the queried sequence. In the next subsections we explain in detail how we eliminate
execution paths that do not match w. Recall that states with unsatisfiable constraints
as well as abort states, are discarded automatically.

If we successfully finish the execution of the last stage (for i = n) with at least one
active state, then there is at least one valid session of the binary code that matches
the sequence of message types of w. In such a case the answer to the query is True.
If, however, during one of the stages there are no active states left, then w represents
invalid session for the binary code, and therefore the oracle returns False as the query’s
result.

In Figure 5.3, the monitoring phase is illustrated in the left part of the figure. States
that represent infeasible executions (infeasible constraints) are discarded (gray). States
that represent feasible executions that do not match the query w are discarded as well
(red). The stages of the monitoring are illustrated as well. The figure represents a
membership query that is answered with True, as a single active state (magenta) is
found at the end of the monitoring phase.

Monitoring incoming messages

The receive function is hooked during the monitoring phase with the following pro-
cedure. The purpose of this procedure is to advance the monitoring of the queried
sequence when the binary code receives a message. Let s be a symbolic state during
the i-th stage in which the binary code calls the receive function, and let σi = ⟨Dσi ,Pσi⟩
where i = is + 1 be the next expected alphabet symbol in the query.

If σi represents outgoing messages (i.e Dσi = S), then s is not an execution path
that can match the queried sequence w: the execution path represented by s receives a
message in the i-th stage whereas the query w represents sessions that send a message
fromM(S,Pσi) in the i-th stage. Therefore we discard s.

On the other hand, if σi represents incoming message type (i.e Dσi = R), we move
s to the i + 1-th stage with s′ as its successor and set is′ = i = is + 1. We attach

30

to s′ an assumption that a message from M(R,Pσi) is read from the network. We
implement this assumption by inserting the predicate Pσi(msg) to the constraints of
s′, where msg is the received message buffer. We acquire msg using the code snippet
that the user provides in order to extract it from s. s represents the program state
upon calling receive and msg must be part of this state (See Section 5.4.2).

Once s′ resumes execution, it will continue as if the received message satisfies Pσi

and thus ”forcing” descendant states to follow only execution paths that represent the
reception of messages fromM(R,Pσi) during the i-th stage.

Algorithm 5.4 The monitor procedure
1: function monitor(s, D ∈ {R, S})
2: ⟨Dσi ,Pσi⟩ = ws[is + 1]
3: msg ← user_code_snippet(s)
4: if Dσi = D then
5: s′ ← s.copy()
6: if D = R then
7: s′.add_assumption(Pσi(msg))
8: else if D = S then
9: s′.add_assertion(Pσi(msg))

10: end if
11: is′ ← is + 1
12: return s′

13: else
14: return null
15: end if
16: end function

The pseudo-code in Algorithm 5.4 for D = R describes the monitoring process that
occurs when the receive function is called from a state s in order to receive a message
msg. We check the properties we added to assist the monitoring phase and get the
next expected alphabet symbol by the query (line 2). That is, the is + 1 symbol in ws.
Recall that wse was initialized with the queried sequence w, so this is the is + 1 symbol
of w. In case Dσi = D = R, we duplicate s (line 5) and attach the constraint Pσi(msg)
to the new copy (line 7), resulting in s′. We also set is′ to is + 1 (line 11) to indicate
that the is + 1-th symbol of ws = ws′ was monitored. If Dσi = S, we terminate the
execution path of s. In the first case, the procedure returns the state s′ to continue
the execution path of s during the i + 1-th stage (line 12). In the second case, the
procedure returns null to discontinue the execution path of s (line 14).

Monitoring outgoing messages

The procedure to hook a send function is similar to the one used above for incoming
messages. The purpose of the procedure is to perform the monitoring of the queried
sequence when the binary code sends a message. Let s be a symbolic state in which
the binary code calls the send function, and let σi = ⟨Dσi ,Pσi⟩ where i = is + 1 be the

31

next expected alphabet in the query.
In case σi represents incoming messages (i.e Dσi = R), it means that the execution

path of s does not match the sequence query w and we discard s. On the other hand,
if σi represents an outgoing message type (i.e Dσi = S), we move s to the i + 1-th
stage with s′ as its successor and set is′ = i = is + 1. We attach to s′ an assertion
that a message fromM(S,Pσi) is sent to the network. We implement this assertion by
inserting the predicate Pσi(msg) to the constraints of s′, where msg is the sent message
buffer. We acquire a reference to msg using the code snippet the user provides (See
Section 5.4.2).

If s represents an execution path that does not send a message from M(S,Pσi)
in the i-th stage, s′ will be found unsatisfiable. Otherwise, if s′ is found satisfiable,
it means that the binary code sends a message fromM(S,Pσi) in the execution path
that s represents, and s′ resumes this path in the i + 1-th stage.

The procedure is presented in Algorithm 5.4 for D = S.

5.5.2 Probing phase

The purpose of the probing phase is to generate ContA(w) for w for which the mon-
itoring phase returned True. As above, we hook the send and receive functions of
the binary code but insert different procedures. We describe them in the upcoming
subsections. The aim of the probing procedure is to uncover all symbolic states that
represent execution paths in which a message is sent or received following w. For each
such state s the constraints on the message buffer received or sent, denoted as msgs,
are collected.

Recall the definition of msgs and Ds from Section 5.4.3. Given a state s in the
probing phase, the purpose of these hooks is to store msgs and Ds and trigger the
generation of message type candidates. We assume that all concrete values for msgs

in the context of state s belong to the same message type and we generate a message
type candidate to represent it.

In Figure 5.3, the probing phase is shown in the right part of the figure. Since the
purpose of the probing phase is to discover all message type candidates that can follow
the sequence w, we continue the execution from active states matching the query w

at the end of the monitoring phase (magenta). That is, states with is = n. Infeasible
executions are discarded (gray). A message type candidate c is generated from every
state s (green), and added to ContA(w). After a message type candidate is generated
from s, s is removed from the set of active states. The probing phase is executed until
there are no active states left. In the following subsections we explain how and when
a message type candidate c is generated during the probing phase. We present a novel
approach to generate a message type candidate for executions that receive a message
(cyan) in the probing phase. This is necessary because incoming messages are inputs
and are not created by the binary code.

32

Probing outgoing messages

The hooking procedure used in the send function is straightforward. Here msgs is
the sent message’s symbolic buffer. We assume that the symbolic buffer has enough
constraints under the current state s that sufficiently represent the sent message type.
Therefore, no further symbolic execution is needed for s in the probing phase and the
symbolic state s is passed to the procedure to generate a message type candidate. This
procedure is described in an upcoming subsection.

Let s be a state in which the binary code calls a send function during the probing
phase. In this case, we simply clone s to new state s′ with Ds′ = S and msgs′ = m,
where m is a reference to the sent message. Then we pass s′ to the procedure to generate
a message type candidate. When a message type candidate is successfully generated
from s′, s′ is removed from the set of active states to discontinue the execution path of
s. This execution path has already produced a message type that follows the queried
sequence and there is no need to resume its execution.

Probing incoming messages

Let s be a state in which the binary code calls a receive function during the probing
phase. Let msg be the symbolic received message. Upon calling receive, the content
of msg is an unconstrained symbolic value as it is received as an input by the binary
code. Hence, one cannot extract information on the format of the message type that
is expected to be received in state s. To solve this, we present the following novel
approach to uncover information regarding the expected received message type: we
clone s to s′ in order to add the fields msgs′ = msg and Ds′ = R. Then we resume
symbolic execution of s′. During the execution of s′ we assume that the binary code
will parse the received message, hence constraints will be developed on msgs′ that will
reveal the format expected by the binary code. We choose to resume the execution until
the binary code sends or receives another message, or until the code terminates. We
assume that until that point the code completes parsing the received message and acts
upon its content, hence sufficient constraints are accumulated on the message buffer
to identify the expected message type to be received. During these instructions s′ is
developed into possibly multiple descendant states. These states are then passed to the
procedure to generate a message type candidate. This procedure is described in the
upcoming subsection.

Let s̃ be a descendant state of s′ in which either send or receive function are called
for the first time after s′. Alternatively, s̃ is a descendant state of s′ in which the
binary code terminates. s̃ represents a point of the binary code in which the incoming
message is already analyzed and its type is determined. Therefore it has passed through
conditional branches that append constraints on msgs′ . These constraints will give us
information on the structure of the message. s̃ is then passed to the procedure to
generate message type candidate. When s̃ has successfully generated a message type

33

candidate, it is removed from the set of active states to discontinue the execution path
represented by s̃. This execution path has already produced a message type that follows
the queried sequence and there is no need to resume its execution.

The procedure to generate message type candidates

Let s be a state that successfully probed either sent or received message – msgs. The
purpose of the procedure described here is to generate a message type candidate from
s. Note that concrete values satisfying the constraints of s on msgs represent valid
messages in the protocol. We assume that these concrete messages form a message
type t. We ask the symbolic execution engine to solve msgs and generate NUM_SOL1

possible concrete values for msgs.
Let x be the set of generated concrete messages. We extract Px as described in

Section 5.1. Then, we iteratively refine Px by trying to find concrete values m′ of
msgs, that contradict Px in a sense that ¬Px(m′) is True. Such m′ are concrete values
that can appear in msgs in a real execution (since they were solution to the msgs).
Nevertheless, they are not represented by Px. In case we find such m′, we add them to
x and regenerate Px. We repeat this process until the solver is unable to find additional
m′ that contradict Px. This procedure allows us to find a set x ⊂ t that represents the
variety of t.

Recall our statement from Section 5.1 regarding the diversity of the set x when
generating Px. The procedure described here uses a smaller, diverse enough set x to
describe a larger setM(Ds,Px). M(Ds,Px) approximates the set of all concrete values
of msgs.

Let concretize(s, buffer, n, C) be a function of the symbolic execution engine that
returns up to n concrete values for buffer that corresponds to the constraints of s

and to additional constraints C. In case there are no possible values that follow the
constraints, the function returns ∅. The pseudo-code of the message generation process
is shown in Algorithm 5.5.

Algorithm 5.5 The procedure to generate message type candidate
1: function generate_alphabet_candidate(s)
2: x← ∅
3: contradictions← ∅
4: do
5: Px ← extract_predicate(x)
6: contradictions← concretize(s, msgs, NUM_SOL,¬Px)
7: x← x ∪ contradictions
8: while contradictions ̸= ∅
9: ContA(w)← ContA(w) ∪ {⟨Ds,Px⟩}

10: end function

1In our implementation NUM_SOL = 10

34

Example of probing message type candidates

To illustrate how a conditional branch reveals information on a symbolic value, consider
the pseudo-code in Listing 5.1 of a binary code:

Listing 5.1: Pseudo-code to demonstrate the probing phase

1 : Send (Connect) ;
2 : msg = Receive () ;
3 : i f (msg == ”HelloV1”) {
4 : Send (” InitV1 ”) ;
5 : . . .
6 : } else i f (msg == ”HelloV2”) {
7 : Send (” InitV2 ”) ;
8 : . . .
9 : } else {
10 : abort () ;
11 : }

Assume a query w = ⟨S,P⟩ where P = (B0B1B2B3B4B5B6 = ”Connect”). The
monitoring phase for this query and this binary code is done with a single satisfiable
state in line 2. The probing phase resumes symbolic execution from this state. In
line 2 the binary code receives msg in a state s. msg refers to a symbolic value with
no constraints, as it is an input from the network. A state s′ = s is resumed with
msgs′ = msg. The execution splits according to the conditional branches: a state
s̃1 represents execution at line 4 with a constraint that msg = ”HelloV1”, a state s̃2

represents execution at line 7 with a constraint that msg = ”HelloV2” and a state
s3 represents execution at line 10 which aborts and is discarded. Both s̃1 and s̃2

represent a call to send, which triggers the generation of message type candidate from
msgs̃1

= msgs̃2
= msg. In the context of s̃1, the analysis is tied to the constraint

msg = ”HelloV1” and generates a message type candidate ⟨R,P1⟩ where:

P1 = (B0B1B2B3B4B5B6 = ”HelloV1”)

In the context of s̃2 the analysis is tied to the constraint msg = ”HelloV2” and generates
an alphabet symbol ⟨R,P2⟩ where:

P2 = (B0B1B2B3B4B5B6 = ”HelloV2”)

The set ContA(w) = {⟨R,P1⟩, ⟨R,P2⟩} is returned with the answer that w ∈ L.

35

36

Chapter 6

Optimizations

We develop several optimizations to reduce the running time of the method and allow
it to scale to real-world protocol implementations. These optimizations take advantage
of the characteristics of network protocols and the algorithm itself. Since symbolic ex-
ecution is the most time consuming part of the algorithm, the developed optimizations
focus on reducing the number of needed symbolic executions, as well as reducing the
running time of symbolic executions.

6.1 Prefix Closed Property

This optimization leverages the fact that the protocol’s regular language L is a prefix-
closed set (See Section 3.1). It is based on a similar technique, employed in [IHS15]. The
optimization allows to answer some membership queries immediately by the Learner
without having to resort to symbolic execution. Every membership query w that was
answered with False is stored by the membership oracle in a cache. For every mem-
bership query w sent to the oracle, it is first checked whether there exists x, y ∈ Σ∗

such that xy = w and x is in the cache. In such a case, the query immediately returns
False. In other words, if a prefix of w is not in L, then by definition of prefix-closed
set it must hold that w /∈ L. Thus, we avoid unnecessary applications of symbolic
execution.

When, during the discovery of new message types, an alphabet symbol is removed
and L* is restarted, all queries w in the cache that contain a removed symbol are
removed from the cache. These queries are invalid with the new alphabet and cannot
be a prefix of a query over the new alphabet.

6.2 Fast Equivalence Queries

Let w ∈ Σ∗ be a query for which the membership oracle answered True, and let
ContA(w) be the returned set of alphabet candidates. We store w and its associated
ContA(w) in a cache called continuations cache. The equivalence oracle answers an

37

equivalence query for DFA M by utilizing this cache. The oracle checks consistency of
M with the continuations cache: for every w in the cache and for every σ ∈ ContA(w), it
checks whether M accepts w ·σ. If M rejects w ·σ, the equivalence oracle returns False

and returns w · σ as a counterexample. Thus it alleviates the need to run symbolic
execution to answer the query. Note that, the cache stores alphabet symbols after
resolving collisions, and not message type candidates. This is necessary so that the
cache can return counterexamples over the current alphabet. When alphabet symbol
is removed, all cache entries containing the removed symbol are erased.

The correctness of this optimization follows from the definition of ContA(w). Ac-
cording to the definition, every state machine M that claims L(M) = L should satisfy
w · σ ∈ L(M).

Checking consistency with the continuations cache is considered fast compared to
symbolic execution of the program. Because we begin an equivalence query with check-
ing consistency with the continuations cache, we make sure that if a counterexample
can be provided faster than symbolic executions of a test suite (See Section 5.3), it is
provided, obviating the need to generate and check a test suite.

6.3 Execution Cache

This optimization uses symbolic states s resulting at the end of the monitoring phase
for w as initial states for query wx for any x ∈ Σ∗. All queries w for which the teacher
returns True are stored in a cache called ”Execution Cache” with all active symbolic
states resulting at the end of the monitoring phase for w. Then, whenever a query w′ is
sent, the teacher finds decomposition w′ = p · s, p = p1 . . . pk such that p is the longest
word in the cache. Then, the monitoring phase for w′ begins with the states saved for
p, in the i = k +1 stage of the monitoring. We skip the first k stages because the states
saved for p contains exactly all execution paths for sessions p1 . . . pk. The rest of the
query remains the same as described in Section 5.5.

Without this optimization, our algorithm would apply symbolic execution multiple
times for the same sequence p1 . . . pk. This optimization assures that we use states
obtained during previous symbolic executions instead of developing them again from
the initial state of the program.

This optimization is implemented in our algorithm. We note that, when alphabet
symbols are removed, all entries in the cache that include the removed symbol should
also be removed.

6.3.1 Example

Consider again the example shown in Section 5.5.2. The query w1 = ⟨S,P⟩ has finished
its monitoring phase with a single state s in line 2. This state is saved in the execution
cache and is associated with w1. When a query w2 = ⟨S,P⟩.⟨R,P1⟩.⟨R,P2⟩ is received

38

by the teacher, the teacher finds that w1 is in the cache with s as active state and that
there is no need to start the symbolic execution from the initial state. s is cloned to
s′, ws′ is set to w2, and the set of active states is initialized with {s′}. The monitoring
phase for this query begins in the second stage (i = 2).

39

40

Chapter 7

Implementation and Results

In this chapter we present the details of our implementation of the presented method
and explore its performance. We evaluated our method against various protocol im-
plementations (including SMTP and other non-standard protocols). Even though our
method expects a binary file as input, we preferred to work with binaries for which
we have the source code. This enables us to validate our method: having the source
code of a binary, it is simpler to infer its protocol manually and compare it against the
result of an experiment.

7.1 Implementation

The algorithm was implemented1 as two independent modules for the Learner and the
Teacher. The Learner is implemented as a Java program that communicates with the
Teacher using local socket. The Teacher is implemented as a Python program that
serves the Learner’s queries. An illustration of the implementation components and
their interactions is shown in Figure 7.1. We base our implementation on two open
source tools:

1. LearnLib [IHS15] – implements the L* algorithm and its variations (for example,
[SG09])

2. angr [SWS+16] – a library that provides static analysis and symbolic execution
engine for binary codes

7.1.1 LearnLib

[IHS15] An open-source Java tool for automata learning. It provides generic implemen-
tations for various learning algorithms, including L* and its variations (for example,
[SG09]). LearnLib also provides implementations of membership oracles, equivalence
oracles and cache optimizations. These implementations can be configured to use one

1https://github.com/ron4548/{InferenceClient,InferenceServer}

41

BinaryTeacher
(Python)

Learner
(Java) Symbolic Execution

Queries Results

Membership Queries

Figure 7.1: Illustration of our implementation and the interactions between its compo-
nents

another to provide layers of approximations and caching. For example, sampling or-
acle approximation for equivalence queries is configured to use a membership oracle.
The approximation uses this oracle to test its test suite. The implementation of L* in
LearnLib also implements L* algorithm that supports growing alphabets and we use
this capability in our work.

7.1.2 angr

angr [SWS+16] is Python tool providing static analysis and symbolic execution engine
for binary codes. Its execution engine works with program states that comprises of
registers and memory data, as well as constraints on symbolic variables. angr includes
a solver that can generate concrete values for symbolic variables. angr also supports
hooking procedures of a binary code.

7.1.3 Learning Client (Learner)

The Learner begins by initializing a learning process with LearnLib’s implementation of
L*. Membership queries are first checked with the prefix-closed cache (See Section 6.1).
In case of a miss, the query is sent to the Teacher. If the Teacher answers that w ∈ L,
then ContA(w) is analyzed for new message types which are added to Σ. Intersections
between message types are handled as described in Section 5.2.

Conjectured DFA is first checked against the continuations cache as described in
Section 6.2. If the conjectured DFA is found to accept all continuations in the cache,
an equivalence query approximation is triggered. A test suite is generated using the
Wp-Method [FvBK+91] and is tested as explained in Section 5.3. Missing message type
are handled as described in Section 5.2. Counterexamples are handled by the internal
implementation of L*.

We use the following features of LearnLib:

1. Classical L* implementation

2. Support for growing alphabet in L*

3. Test suite generation with Wp-Method

4. Prefix-closed cache (See Section 6.1)

42

On the other hand, we implemented the following modifications:

1. Alphabet symbols as tuples ⟨D,P⟩

2. Handling of alphabet changes and collisions (Section 5.2)

3. Continuations cache to support Fast equivalence queries. (Section 6.2)

4. Running tests suites to approximate modified equivalence queries (Section 5.3)

7.1.4 Symbolic Execution Server (Teacher)

Our Teacher runs symbolic execution using angr, and is the only component that in-
teracts with the binary code. The Teacher initializes symbolic execution for the binary
code and setups the hooking of the send/receive functions the user provides. The
Teacher receives membership queries in a loop, until the Learner finishes the learning.
When a membership query is received, we first check the execution cache optimization
(See Section 6.3).In case of a miss the monitoring phase executes as described in Sec-
tion 5.5. If the query results with True, the probing phase runs and generates message
type candidates. These candidates are collected and sent back to the Learner. The
learner then incorporates the candidates in the alphabet.

7.2 SMTP Client Experiment

We applied our method to a basic SMTP client. SMTP (Simple Mail Transfer Protocol)
is a common email protocol. The SMTP client was built using an SMTP library 2. The
basic SMTP client we worked with, simply connects to a server and sends an email.
The communication with the server is done by the library. The client connects with
the server, sends and receives messages according to the client’s actions. The source
code of the client is available as part of the SMTP library.

SMTP is text-based protocol. That is, messages consist of ASCII3 encoded char-
acters. In particular, every message in the protocol is terminated by a character that
represents a new line. Every message from the server begins with a status code. When
a client sends a message to the server, the server may respond with multiple messages.
In case the server responds with a sequence of multiple messages, every message except
the last message in the response will contain a hyphen (-) after the status code.

The receive function we choose to hook in this example is the function smtp_getline.
This function reads a line from the network stream (a message). The function has only
one argument, which is a structure that represents the connection. It allocates a buffer
for the message (the line) and stores it inside that structure. We provide a code snip-
pet to emulate this allocation. We note that the logic of the program handles multiple

2https://github.com/somnisoft/smtp-client
3A representation of characters in a digital form

43

messages in the server’s response: for each such message, the smtp_getline function
will be called. The send function we hook is smtp_write. This function simply sends
a message (writes a line) to the network stream. These two functions are provided to
our method as hooks.

Applying symbolic execution on string operations is generally computationally dif-
ficult. For example, a symbolic buffer of length N may contain any string of length
varying from 0 to N − 1 (string is always terminated with a zero byte). The SMTP
protocol, for example, parses the status code from received messages by converting
the first three ASCII characters of the message to an integer value. String operations,
like these two, tend to result with state explosion in the symbolic execution and com-
plex constraints to solve. Therefore, applying our method on the SMTP protocol was
challenging.

We applied our method on the binary of the SMTP client. Recall that the client
simply sends an email to a remote server. When applying our method, and during
the probing phase for one of the queries sent by the learner - the symbolic execution
of angr [SWS+16] probably reached an infinite loop or a very heavy computation.
Even when we let the symbolic execution run for a few hours, the execution did not
terminate. However, from the traces of our method, we could see the various message
types correctly discovered by the method until that point, as well as the different queries
sent by the learner.

7.3 Gh0st RAT Experiment

Gh0st RAT is a well known malware4 that runs on Windows machines. Once an
instance of Gh0st RAT is run on the victim’s computer, the attacker has full control over
the system. This includes access to the screen, microphone and camera. The attacker
controls the malware using a C&C protocol. The source code of some variants of Gh0st
is available on the web. We chose to work with one5 of these implementations. In this
variant, the RAT runs in a multi-threaded process which connects to the attacker’s
server. When a command is received, a new thread and a new connection are created
to handle the command and its further communications.

Our experiment with Gh0st required an adaptation of our method. The Gh0st RAT
implementation we worked with receives messages from the network in an asynchronous
manner, which is different than the synchronous manner we assumed initially. In our
method, we assume that we can hook the receive function of the binary and that
the receive function returns the received message (Figure 7.2a). To handle incoming
messages in the implementation we worked with, the receive function is run in a loop
in a background thread. That is, the receive function is called once and never returns.
Instead, once enough data is received to compose the entire received message, a callback

4https://attack.mitre.org/software/S0032/
5https://github.com/yuanyuanxiang/SimpleRemoter

44

receive() receive()

(a) Synchronous communication

receive()

callback() callback()

(b) Asynchronous communication.

Figure 7.2: Illustration of synchronous vs. asynchronous communication

function is executed to handle the message (Figure 7.2b). If we hook this function in the
same way we described in Chapter 5, the callback will never be executed and the hook
will run only once. The adaptation we suggest to our method introduces a slightly
different hooking logic. The adapted hooking is identical to the one we present in
Section 5.5.2 except that it triggers the callback function after monitoring an incoming
message. As a result, we require the user of the adapted hook to identify the callback
function and provide its address, in addition to send and receive functions. The rest of
the method is not affected by this adaptation.

Initially, we applied our method on this variant. However, angr [SWS+16] is not
well-suited for multi-threaded programs. In addition, angr does not fully support Win-
dows API. This lead to difficulties with applying our method on the Gh0st RAT binary
directly. To validate that the proposed method can infer a state machine as complex
as that of Gh0st RAT, we opted for a different approach. We re-implemented most of
the malware’s C&C protocol with a simpler architecture that does not involve threads.
Consequently, it was not necessary to use the adaptation we developed for the original
binary. We applied our method on the re-implementation of the protocol.

We provided our method with two functions that the program uses in order to send
and receive messages from the network: get_message and send_message. Both get
a message buffer and its length. The full state machine is complex and contains 27
states and 52 transitions (without rejecting states). We show the full state machine
and the discovered alphabet symbols in Figure 7.4. In the protocol a message type is
determined by the first byte of the message and some message types provide additional
information in the second byte. In Table 7.2 we present the predicate of each type as
the prefix common to all the messages in that type.

In Figure 7.3 we show a branch of the state machine, that handles a command to
stream the camera of the victim. In this branch, the attacker sends a command to
open the camera stream ([R] WEBCAM). Then, the client sends information regarding
the stream ([S] BMPINFO) and waits to receive from the attacker a command to begin
streaming ([R] NEXT). From now on, the client sends periodically a bitmap of the
webcam to the attacker’s server ([S] BMP). By default, this bitmap is not compressed.
The attacker can enable compression of the stream ([R] COMPR_ON) and disable it ([R]
COMPR_OFF). When the compression is on, the bitmap is sent compressed (COMPR_BMP).

45

q0

start

q1 q2 q3 q4
[R] WEBCAM [S] BMPINFO

[R] NEXT

[R] COMPR_OFF

[S] BMP

[R] COMPR_ON

[S] COMPR_BMP

[R] COMPR_ON

[R] COMPR_OFF

Figure 7.3: The branch in Gh0st RAT C&C protocol that handles webcam streaming.
The letter in the square brackets indicates whether the message is sent or received.

Learning time: 142 seconds
Total Membership queries: 45488
Total Equivalence queries: 1

Prefix-Closed cache miss rate: 0.2184
Alphabet size: 45

Table 7.1: Gh0st RAT learning statistics

Statistics of the learning process are shown in Table 7.1. 45 message types were
discovered. The learner issued about 45,000 membership queries; more than 78% of
them were answered by the prefix-closed cache. Only a single equivalence query was
issued. This shows the dramatic effectiveness of the continuations cache to reduce the
number of costly equivalence queries. There are no discrepancies between the learnt
DFA and the protocol’s state machine.

46

M
SG

ID
N
am

e
Pr

efi
x

M
SG

ID
N
am

e
Pr

efi
x

[R
:0
]

SE
RV

ER
_E

XI
T

0x
cd

[R
:1
]

CM
D_

BY
E

0x
cc

[R
:2
]

CM
D_

TA
LK

0x
34

[R
:3
]

CM
D_

RE
GE

DI
T

0x
33

[R
:4
]

CM
D_

AU
DI

O
0x

22
[R

:5
]

CM
D_

SH
EL

L
0x

28
[R

:6
]

CM
D_

SE
RV

IC
ES

0x
32

[R
:7
]

CM
D_

SC
RE

EN
_S

PY
0x

10
[R

:8
]

CM
D_

CA
M

0x
1a

[R
:1
45

]
CM

D_
SC

RE
EN

_B
LO

CK
_I

NP
UT

0x
15

[R
:1
0]

CM
D_

SY
ST

EM
0x

23
[S
:2
77

]
TO

KE
N_

CL
IP

BO
AR

D_
TE

XT
0x

76
[S
:1
2]

TO
KE

N_
BI

TM
AP

IN
FO

0x
73

[S
:1
3]

TO
KE

N_
AU

DI
O_

ST
AR

T
0x

79
[S
:1
4]

TO
KE

N_
SE

RV
ER

LI
ST

0x
81

[R
:1
40

]
CM

D_
SC

RE
EN

_S
ET

_C
LI

PB
OA

RD
0x

19
[S
:1
6]

TO
KE

N_
WS

LI
ST

0x
7e

[S
:1
7]

TO
KE

N_
TA

LK
_S

TA
RT

0x
84

[S
:1
9]

TO
KE

N_
SH

EL
L_

ST
AR

T
0x

80
[S
:2
0]

TO
KE

N_
CA

M_
BI

TM
AP

IN
FO

0x
77

[S
:2
1]

CM
D_

BY
E

0x
cc

[R
:3
2]

CM
D_

SV
CC

FG
/S

TA
RT

0x
83

0x
01

[R
:2
4]

CM
D_

NE
XT

0x
1e

[R
:3
0]

CM
D_

SV
CC

FG
/D

EM
AN

D_
ST

AR
T

0x
83

0x
04

[R
:2
9]

CM
D_

SE
RV

IC
EL

IS
T

0x
82

[R
:3
1]

CM
D_

SV
CC

FG
/A

UT
O

0x
83

0x
03

[S
:2
2]

SE
RV

ER
_E

XI
T

0x
cd

[R
:3
3]

CM
D_

SV
CC

FG
/S

TO
P

0x
83

0x
02

[R
:3
4]

CM
D_

RE
G_

FI
ND

0x
c9

[R
:3
6]

CM
D_

WI
ND

OW
_C

LO
SE

0x
00

[R
:3
7]

CM
D_

PS
LI

ST
0x

24
[S
:6
7]

TO
KE

N_
FI

RS
TS

CR
EE

N
0x

74
[S
:6
8]

TO
KE

N_
AU

DI
O_

DA
TA

0x
7a

[S
:7
4]

TO
KE

N_
CA

M_
DI

B
0x

78
0x

00
[S
:7
3]

TO
KE

N_
TA

LK
CM

PL
T

0x
85

[R
:7
5]

CM
D_

CA
M_

EN
AB

LE
CO

MP
RE

SS
0x

1b
[S
:1
12

]
TO

KE
N_

PS
LI

ST
0x

7d
[R

:7
6]

CM
D_

CA
M_

DI
SA

BL
EC

OM
PR

ES
S

0x
1c

[S
:1
37

]
TO

KE
N_

NE
XT

SC
RE

EN
0x

75
[R

:1
38

]
CM

D_
SC

RE
EN

_G
ET

_C
LI

PB
OA

RD
0x

18
[S
:1
5]

TO
KE

N_
RE

GE
DI

T
0x

c8
[R

:1
44

]
CM

D_
SC

RE
EN

_C
ON

TR
OL

0x
14

[R
:9
]

CM
D_

WS
LI

ST
0x

25
[S
:1
99

]
TO

KE
N_

CA
M_

DI
B/

CO
MP

RE
SS

0x
78

0x
01

[R
:1
1]

CM
D_

LI
ST

_D
RI

VE
0x

01

Table 7.2: Learnt message types

47

0

3

[R:7]

4

[R:4]

5

[R:6]

6

[R:3]

8

[R:10]

9

[R:2]

10

[R:9] 11

[R:5]

12

[R:8]

13

[R:1]

14

[R:0]

17

[R:11]2

19

[R:24]

[S:12]

18

[S:13]

15

[S:14]

16

[S:15]

7

[R:37]

[R:9][R:36]

[S:16]

20

[S:17]

[S:18] 22

[S:19]24

[S:20]

[S:21]

[S:22]

[R:30] [R:29] [R:32] [R:31] [R:33]

[R:34]

21

[R:24]

26

[S:67]

23

[R:24]

[R:4][S:68] [R:24]

[S:73]

25

[R:24]

[S:74][R:76]

27

[R:75]

[R:144][R:145][R:140][S:137]

28

[R:138]

[R:76]

[R:75][S:199]

[S:277]

Figure 7.4: Gh0st RAT full state machine learnt by our method

48

Chapter 8

Conclusions

In this work we present a novel method for inferring the state machine of a protocol
implemented by a binary with no a-priori knowledge of the protocol. Our method is
based on extended symbolic execution and modified automata learning. The method
assumes access to a binary code that implements the protocol.

8.1 Method Validation

We implemented and validated our method on several protocols implementations.
When applying the method on SMTP client and Gh0st RAT, we were able to validate
the method’s techniques to discover message types and to validate sessions (sequences
of message types). We faced difficulties with complex program flows due to limitations
of the symbolic execution engine. Symbolic execution of complex APIs1 often results
with state explosion or long constraints which take long time to solve. angr tries to
solve this problem with SimProcedures2 that emulate complex API operations. How-
ever, there are many API calls that are not emulated, or cannot be emulated efficiently.
We are certain that further work on symbolic execution of low-level binary code, along
with fine tuning of the symbolic execution for a specific program, will improve our
method’s contribution to practical use cases.

To conclude, we validated our ideas to infer the state machine of a protocol and to
uncover its message types. For the validation we used examples from various protocols.
Nonetheless, we claim that the method we propose will preform as a good as the
symbolic execution engine it relies on. As long as a symbolic execution engine is fully
capable of executing the binary code given, our method will be able to extract the
protocol and its messages format.

1Functions that the program uses and are provided by the operating system or by libraries provided
with the operating system

2Code snippet that imitates the API functionality

49

8.2 Future Works

There are several directions in which future works can enhance our method:

1. Symbolic Execution: There are some improvements that can be implemented
in the symbolic execution part. One of them is merging states that represent
the same state of the protocol, in order to relieve the problem of state explosion
that is likely to arise when applying our method to complex binaries. As already
mentioned, the method may also benefit from the application of different symbolic
execution engines for binaries. Further methods for symbolic execution of binaries
might be developed in the future.

2. Message Types Inference: Several aspects of the message types inference may
be improved. First, we introduced a simple approach to extract a predicate to
describe a message type. A more sophisticated method can be deployed in a future
work and a better representation for message types may be introduced. Second,
we introduced a certain algorithm to solve collisions between intersecting message
types. A future work may develop a different method to maintain the partition of
the messages. For example, a method that is able to merge two different message
types may be developed to handle the case where two or more message types are
found to serve the same role in the protocol. The method can benefit from such
optimization because a smaller set of message types may decrease the running
time of the learning process.

3. Parallelization: LearnLib [IHS15] learner, which we use in our implementation,
generates membership queries in batches. Therefore, it is possible to apply sym-
bolic execution to check every one of these queries in parallel. We did not deal
with this optimization, but we do believe it will improve performances.

50

Bibliography

[ACMN05] Rajeev Alur, Pavol Cerný, P. Madhusudan, and Wonhong Nam. Synthesis
of interface specifications for java classes. In Proceedings of the 32nd ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
POPL 2005, Long Beach, California, USA, January 12-14, 2005, pages
98–109, 2005.

[Ang87] Dana Angluin. Learning regular sets from queries and counterexamples.
Inf. Comput., 75(2):87–106, 1987.

[BCCZ99] Armin Biere, Alessandro Cimatti, Edmund M. Clarke, and Yunshan Zhu.
Symbolic model checking without bdds. In Rance Cleaveland, editor, Tools
and Algorithms for Construction and Analysis of Systems, 5th Interna-
tional Conference, TACAS ’99, Held as Part of the European Joint Con-
ferences on the Theory and Practice of Software, ETAPS’99, Amsterdam,
The Netherlands, March 22-28, 1999, Proceedings, volume 1579 of Lecture
Notes in Computer Science, pages 193–207. Springer, 1999.

[CBP+11] Chia Yuan Cho, Domagoj Babić, Pongsin Poosankam, Kevin Zhijie Chen,
Edward XueJun Wu, and Dawn Song. MACE: Model-inference-Assisted
Concolic Exploration for Protocol and Vulnerability Discovery. In Proceed-
ings of the 20th USENIX Security Symposium, 8 2011.

[CBSS10] Chia Yuan Cho, Domagoj Babic, Eui Chul Richard Shin, and Dawn Song.
Inference and analysis of formal models of botnet command and control
protocols. In Proceedings of the 17th ACM Conference on Computer and
Communications Security, CCS 2010, Chicago, Illinois, USA, October 4-8,
2010, pages 426–439, 2010.

[CGK+18] E.M. Clarke, O. Grumberg, D. Kroening, D. Peled, and H. Veith. Model
Checking – Second Edition. MIT Press, 2018.

[CGP03] Jamieson M. Cobleigh, Dimitra Giannakopoulou, and Corina S. Pasareanu.
Learning assumptions for compositional verification. In Hubert Garavel
and John Hatcliff, editors, Tools and Algorithms for the Construction and
Analysis of Systems, 9th International Conference, TACAS 2003, Held as

51

Part of the Joint European Conferences on Theory and Practice of Software,
ETAPS 2003, Warsaw, Poland, April 7-11, 2003, Proceedings, volume 2619
of Lecture Notes in Computer Science, pages 331–346. Springer, 2003.

[Cho78] Tsun S. Chow. Testing software design modeled by finite-state machines.
IEEE Trans. Software Eng., 4(3):178–187, 1978.

[CKL04] Edmund Clarke, Daniel Kroening, and Flavio Lerda. A tool for checking
ANSI-C programs. In Kurt Jensen and Andreas Podelski, editors, Tools
and Algorithms for the Construction and Analysis of Systems (TACAS
2004), volume 2988 of Lecture Notes in Computer Science, pages 168–176.
Springer, 2004.

[CKW07] Weidong Cui, Jayanthkumar Kannan, and Helen J. Wang. Discoverer:
Automatic protocol reverse engineering from network traces. In Proceedings
of the 16th USENIX Security Symposium, Boston, MA, USA, August 6-10,
2007, 2007.

[CPC+08] Weidong Cui, Marcus Peinado, Karl Chen, Helen J. Wang, and Luis Irún-
Briz. Tupni: automatic reverse engineering of input formats. In Proceedings
of the 2008 ACM Conference on Computer and Communications Security,
CCS 2008, Alexandria, Virginia, USA, October 27-31, 2008, pages 391–
402, 2008.

[CS07] Sagar Chaki and Ofer Strichman. Optimized l*-based assume-guarantee
reasoning. In Orna Grumberg and Michael Huth, editors, Tools and Al-
gorithms for the Construction and Analysis of Systems, 13th International
Conference, TACAS 2007, Held as Part of the Joint European Conferences
on Theory and Practice of Software, ETAPS 2007 Braga, Portugal, March
24 - April 1, 2007, Proceedings, volume 4424 of Lecture Notes in Computer
Science, pages 276–291. Springer, 2007.

[CS13] Juan Caballero and Dawn Song. Automatic protocol reverse-engineering:
Message format extraction and field semantics inference. Computer Net-
works, 57(2):451–474, 2013.

[CWKK09] Paolo Milani Comparetti, Gilbert Wondracek, Christopher Krügel, and
Engin Kirda. Prospex: Protocol specification extraction. In 30th IEEE
Symposium on Security and Privacy (S&P 2009), 17-20 May 2009, Oak-
land, California, USA, pages 110–125, 2009.

[CYLS07] Juan Caballero, Heng Yin, Zhenkai Liang, and Dawn Xiaodong Song. Poly-
glot: automatic extraction of protocol message format using dynamic bi-
nary analysis. In Proceedings of the 2007 ACM Conference on Computer

52

and Communications Security, CCS 2007, Alexandria, Virginia, USA, Oc-
tober 28-31, 2007, pages 317–329, 2007.

[EGP08] Michael Emmi, Dimitra Giannakopoulou, and Corina S. Pasareanu.
Assume-guarantee verification for interface automata. In FM 2008: For-
mal Methods, 15th International Symposium on Formal Methods, Turku,
Finland, May 26-30, 2008, Proceedings, pages 116–131, 2008.

[FvBK+91] Susumu Fujiwara, Gregor von Bochmann, Ferhat Khendek, Mokhtar
Amalou, and Abderrazak Ghedamsi. Test selection based on finite state
models. IEEE Trans. Software Eng., 17(6):591–603, 1991.

[GGP07] Mihaela Gheorghiu, Dimitra Giannakopoulou, and Corina S. Pasareanu.
Refining interface alphabets for compositional verification. In Tools and Al-
gorithms for the Construction and Analysis of Systems, 13th International
Conference, TACAS 2007, Held as Part of the Joint European Conferences
on Theory and Practice of Software, ETAPS 2007 Braga, Portugal, March
24 - April 1, 2007, Proceedings, pages 292–307, 2007.

[IHS15] Malte Isberner, Falk Howar, and Bernhard Steffen. The open-source learn-
lib. In Daniel Kroening and Corina S. Păsăreanu, editors, Computer Aided
Verification, pages 487–495, Cham, 2015. Springer International Publish-
ing.

[JMK22] Natasha Yogananda Jeppu, Tom Melham, and Daniel Kroening. Active
learning of abstract system models from traces using model checking. In
Proceedings of the 2022 Conference & Exhibition on Design, Automation
& Test in Europe, DATE ’22, page 100–103, Leuven, BEL, 2022. European
Design and Automation Association.

[LRL06] Junghee Lim, Thomas W. Reps, and Ben Liblit. Extracting output formats
from executables. In 13th Working Conference on Reverse Engineering
(WCRE 2006), 23-27 October 2006, Benevento, Italy, pages 167–178, 2006.

[PGB+08] Corina S. Pasareanu, Dimitra Giannakopoulou, Mihaela Gheorghiu Bo-
baru, Jamieson M. Cobleigh, and Howard Barringer. Learning to divide
and conquer: applying the l* algorithm to automate assume-guarantee rea-
soning. Formal Methods Syst. Des., 32(3):175–205, 2008.

[PVY02] Doron A. Peled, Moshe Y. Vardi, and Mihalis Yannakakis. Black box
checking. Journal of Automata, Languages and Combinatorics, 7(2):225–
246, 2002.

[SG09] Muzammil Shahbaz and Roland Groz. Inferring mealy machines. In FM
2009: Formal Methods, Second World Congress, Eindhoven, The Nether-
lands, November 2-6, 2009. Proceedings, pages 207–222, 2009.

53

[SWS+16] Yan Shoshitaishvili, Ruoyu Wang, Christopher Salls, Nick Stephens, Mario
Polino, Andrew Dutcher, John Grosen, Siji Feng, Christophe Hauser,
Christopher Krügel, and Giovanni Vigna. SOK: (state of) the art of war:
Offensive techniques in binary analysis. In IEEE Symposium on Security
and Privacy, SP 2016, San Jose, CA, USA, May 22-26, 2016, pages 138–
157. IEEE Computer Society, 2016.

[WCKK08] Gilbert Wondracek, Paolo Milani Comparetti, Christopher Krügel, and
Engin Kirda. Automatic network protocol analysis. In Proceedings of the
Network and Distributed System Security Symposium, NDSS 2008, San
Diego, California, USA, 10th February - 13th February 2008, 2008.

54

מציעים אנו מהרגיל, ארוך זמן להימשך ועלולות משאבים דורשות תכנית של סימבוליות שהרצות כיוון

לייעל מנת על וכן נחוצות, שאינן סימבוליות מהרצות הניתן ככל להימנע במטרה אופטימיזציות שלוש

תקשורת פרוטוקולי של תכונות על מתבססת הראשונה האופטימיזציה הכרחיות. סימבוליות הרצות

השנייה האופטימיזציה שלילית. היא שתשובתן מראש לדעת שניתן שייכות משאילתות להימנע מנת על

במקרים שקילות שאילתות על במהירות לענות מנת על השייכות לשאילתת שלנו בהרחבה מסתייעת

המופיעים רצפים של במקרה חוזרות סימבוליות הרצות חוסכת השלישית האופטימיזציה מסוימים.

אחרים. רצפים של רישות בתור

מכן, לאחר אוטומט. וללמידת סימבולית להרצה קיימות ספריות בעזרת שלנו השיטה את מימשנו

של ניתוח היה עבדנו עליו העיקרי הניסוי אמיתיים. תרחישים מול השיטה של ניסויים להרצת פנינו

את ללמוד מצליחה שלנו השיטה כי הראנו הניסויים במהלך .gh0st הנוזקה של C&C-ה פרוטוקול

במנוע מאוד תלויה השיטה כי הוכח זאת, עם יחד נכונה. בצורה הפרוטוקול של המצבים מכונת

את לנתח מסוגלת שלנו השיטה כי מסכמים אנו כן, על מתבססת. היא עליו הסימבולית ההרצה

של הרצה לבצע מסוגל הסימבולית ההרצה שמנוע ככל מסוימת, תכנית של התקשורת פרוטוקול

התכנית.

iii

אורקל לממש מציאותי זה שאין כיוון שהוצעה, התיאורטית לשיטה קירוב מציעים אנו מכן, לאחר

הפרוטוקול. על מידע ברשותנו אין כאשר במדויק הדרישות על העונה מורה

הקיימות ההודעות כל את לאחסן במקום הפרוטוקול. של הודעות לסוגי יעיל ייצוג מציעים אנו תחילה

מוגדר זה לוגי פסוק לוגי. פסוק בעזרת הודעות קבוצת לייצג מציעים אנו הודעה, של סוג כל עבור

למבנה זהה מבנה בעלות הודעות עבור אמת הפסוק של ערכו ההודעה. את המרכיבים הבתים על

המתאים הפסוק את לחלץ נאיבית שיטה מציעים אנו אחרת. הודעה כל עבור ושקר בקבוצה, ההודעות

בקבוצה. ההודעות כל עבור בתוכנם הזהים הבתים על המבוסס פסוק בונה זו שיטה הודעות. לקבוצת

בהיסט מוסכם ערך ידי על מסומן ההודעה סוג שלרוב כיוון תקשורת, לפרוטוקולי מתאימה זה שיטה

הסוג. מאותו ההודעות לכל משותף יהיה ולכן ההודעה של מסוים

שאילתות ידי על שמתגלים ההודעות שסוגי הכרח אין מורה, לאורקל קירוב מציעים שאנו כיוון

לפיתרון אלגוריתם מציגים אנו לכן כנדרש. זרות לקבוצות בפרוטוקול ההודעות של חלוקה מהווים

ההודעות. סוגי את שמתארים לוגים פסוקים בין התנגשויות כלומר, הודעות. סוגי בין התנגשויות של

ההתנגשויות. פיתרון לאחר לאלפבית נוספות שאילתות, בעזרת שמתגלות ההודעות סוגי

בעבודה שהוצעה לשיטה דומה בשיטה משתמשים אנו שקילות, לשאילתת התשובה את לקרב מנת על

בדיקה אוסף בדיקה. אוסף בעזרת השאילתא את לקרב הוצע המקורית, בעבודה .L* של המקורית

מקרבים אני שלנו, בשיטה שייכות. בשאילתת נבדק רצף כל כאשר האלפבית, מעל רצפים מכיל

לבין המוצע האוטומט בין אי-הסכמה של במקרה כאשר בדיקה אוסף בעזרת שקילות שאילתת

שאילתת מסוים, בדיקה רצף עבור אם כן, כמו שקול. אינו האוטומט כי נקבע השייכות, שאילתת

באלפבית חסרים אלה הודעות וסוגי שנבדק, הרצף לאחר להופיע היכולים הודעות סוגי מזהה השייכות

זה. מצב יזהה השקילות שאילתת של הקירוב הנוכחי,

הריצה את הנתונה. התכנית של סימבולית בהרצה משתמשים אנו שייכות, שאילתת לקרב מנת על

השלב את מכנים אנו שלבים. לשני אותה מחלקים שאנו כך מבוקר, באופן מבצעים אנו הסימבולית

ההודעות סוגי לרצף המתאימות התכנית של ריצות מחפשים אנו שבמהלכו כיוון המעקב שלב הראשון

הודעות סוגי מחפשים אנו שמהלכו כיוון הגישוש שלב נקרא השני השלב השייכות. בשאילתת שהתקבל

שנבדק. הרצף לאחר להופיע היכולים

הלוגים הפסוקים על המבוססים אילוצים הסימבולית לריצה מוסיפים אנו המעקב, שלב במהלך

הסימבולית לריצה גורמים אלה אילוצים בשאילתא. נשאלנו עליו ההודעות סוגי לרצף שמשוייכים

הרי לרצף, המתאימות ריצות נמצאו המעקב, שלב בסוף אם בלבד. לרצף המתאימות ריצות לאתר

זאת, לעומת בחיוב. תשיב השייכות שאילתת כן ועל בתכנית, אפשרי הודעות סוגי רצף מייצג שהרצף

בשלילה. תשיב השייכות שאילתת מתאימות ריצות נמצאו לא אם

מאתרים אנו זה בשלב לפרוטוקול. שייך נשאלנו עליו שהרצף נקבע בו במקרה רק יורץ הגישוש שלב

מועמד נייצר אנו הודעה, שולחת התכנית כאשר נוספות. הודעות מקבלת או שולחת התכנית בהן ריצות

על שמתקבלות הודעות עבור מנגד, ההודעה. נשלחה בו התכנית מצב של ניתוח לאחר הודעה לסוג

לגביהן. מידע שום לנו אין ולכן לתכנית קלט מהוות אלה הודעות אחר. פיתרון נדרש התכנית, ידי

שהתכנית ההנחה על מתבסס שלנו הפיתרון זו. לבעיה חדשני פיתרון מציגים אנו שלנו בעבודה

המקרים, בשני אלה. הודעות המאפיין המבנה את מגלים אנו וכך שמתקבלות ההודעות את מפענחת

התנגשויות. פיתרון לאחר באלפבית מוכללים אשר הודעה, לסוג מועמדים מייצרים אנו

ii

תקציר

ברחבי מחשבים בין מידע להעביר כדי האינטרנט ברשת שימוש עושות בימינו רבות מחשב תכניות

צד כיצד המגדירים כללים של אוסף תקשורת: בפרוטוקולי שימוש עושות אלה תכניות העולם.

פרוטוקול הנפוץ, במקרה אחרים. מחשבים עם תקשורת ביצוע בעת להגיב יכול או אמור בתקשורת

מתייחסת פרוטוקול הסקת התכנית. מפתח ידי על מכונה לשפת ומתורגם תכנות בשפת ממומש

הסקת בו. המשתמשת מחשב תכנית מתוך הפרוטוקול מאפייני את להסיק נדרש בו ההפוך, לתהליך

לבחון רבות פעמים מעוניינים חוקרים זה בתחום מידע. אבטחת של בתחום שימושית הינה פרוטוקול

ירצו חוקרים כי אפשרי בנוסף, במחשב. שנמצאה נוזקה של (C&C) והבקרה השליטה פרוטוקול את

אותן. ולתקן אבטחה פרצות לאתר במטרה לגיטימית תוכנה של הפרוטוקול את לבחון

בו. המשתמשת תכנית מתוך תקשורת פרוטוקול להסקת אוטומטית שיטה מציגים אנו זו בעבודה

בפרוטוקול. ההודעות סוגי של הפורמט ואת הפרוטוקול של המצבים מכונת את מחלצת השיטה

(בנפרד) והמתקבלות הנשלחות ההודעות כלל את לסווג ניתן כי מניחים אנו הבעיה, עולם בהגדרת

המתקבלות. הודעות או הנשלחות הודעות לייצג יכול הודעה סוג הודעות. סוגי הנקראות זרות לקבוצות

אפשריות הודעות רצפי המייצגים הודעות, סוגי של מרצפים מורכבת הפרוטוקול שפת כי מניחים אנו

בפרוטוקול.

סימבולית ובהרצה הפרוטוקול של המצבים מכונת את לבנות כדי אוטומט בלמידת משתמשת השיטה

בפרוטוקול. הודעות של האפשריים הרצפים הם מה לבחון וכדי בפרוטוקול ההודעות סוגי את לגלות כדי

מניחים אנו כן, כמו לנתח. נדרשים אנו אותה התכנית של מכונה בשפת קוד שברשותנו מניחים אנו

מוגבל. הוא בפרוטוקול הודעה ושאורך אוטומט בעזרת לתיאור ניתן מממשת שהתכנית שהפרוטוקול

או רשת תעבורת של הקלטות הפרוטוקול, של נוסף למימוש גישה מניחים אנו אין זו בעבודה מנגד,

תשאול. לצורך וזמינה בפרוטוקול המשתמשת אחרת תכנית

של המצבים מכונת ללמידת מותאמת אשר אוטומט ללמידת תיאורטית שיטה מציגים אנו ראשית,

בעבודה שהוצג אוטומט ללמידת L* אלגוריתם על מבוססת השיטה ידוע. לא תקשורת פרוטוקול

קרי המצבים, מכונת של שהאלפבית ההנחה עם להתמודד שמאפשרת התאמה מבצעים אנחנו קודמת.

שאנחנו השיטה ,L* לאלגוריתם בדומה הלמידה. תהליך בתחילת ידוע אינו בפרוטוקול, ההודעות סוגי

השאילתא שאילתות. של סוגים שני על לענות המסוגל מורה אורקל של קיומו את מניחה מציגים

המתאים רצף מתאר הודעות סוגי רצף האם לבדוק ומטרתה שייכות, שאילתת נקראת הראשונה

השאילתא הנבדק. הרצף לאחר להופיע היכולים ההודעות סוגי על מידע לספק וכן לפרוטוקול,

הפרוטוקול את נכונה מתאר מסוים אוטומט האם לבדוק ומטרתה שקילות, שאילתת נקראת השנייה

שאילתות בעזרת שנחשפים הודעות סוגי כה. עד שנצבר באלפבית הודעות סוגי חסרים האם וכן

כה. עד הידוע לאלפבית נוספים

i

המחשב. למדעי בפקולטה נקיבלי גבי ודוקטור גרומברג ארנה פרופסור של בהנחייתם בוצע המחקר

ובכתבי-עת בכנסים למחקר ושותפיו המחבר מאת כמאמרים פורסמו זה בחיבור התוצאות מן חלק

הינן: ביותר העדכניות גרסאותיהם אשר המחבר, של המאסטר מחקר תקופת במהלך

Ron Marcovich and Gabi Nakibly. Automatic protocol reverse engineering. In Black Hat
USA, 2022.

תודות

לי. שנתנו והפורה המקצועית וההכוונה התמיכה הזמן, על וגבי, ארנה שלי, למנחים להודות רוצה אני

גם ובפרט בטכניון לימודיי כל במשך גב לי שהיו היקרה, למשפחתי בנוסף להודות רוצה אני

המסטר. תואר במהלך

ולכוון. לייעץ לתמוך, תמיד, לצידי שם שהיו היקרים, לחבריי להודות מבקש אני כן, כמו

וההבנה. ההכלה התמיכה, על אהובתי, ללירון

בהשתלמותי. הנדיבה הכספית התמיכה על לטכניון מודה אני

הרצה מקובץ תקשורת פרוטוקול הסקת
אוטומט ולמידת סימבולית הרצה בעזרת

מחקר על חיבור

התואר לקבלת הדרישות של חלקי מילוי לשם

המחשב במדעי למדעים מגיסטר

מרקוביץ רון

לישראל טכנולוגי מכון — הטכניון לסנט הוגש

2022 יולי חיפה התשפ"ב תמוז

הרצה מקובץ תקשורת פרוטוקול הסקת
אוטומט ולמידת סימבולית הרצה בעזרת

מרקוביץ רון

	List of Figures
	Abstract
	1 Introduction
	1.1 Problem Setting
	1.2 Motivation
	1.3 Previous Works

	2 Preliminaries
	2.1 Deterministic Finite Automaton (DFA)
	2.2 Automata Learning
	2.2.1 Growing Alphabet
	2.2.2 Equivalence query approximations

	2.3 Model Checking
	2.4 Symbolic Execution
	2.4.1 Example

	3 Problem Definition
	3.1 Definitions and Notations
	3.2 Assumptions

	4 Learning a DFA of a Protocol (Exact Version)
	4.1 Modified Membership Queries
	4.2 Modified Equivalence Queries
	4.3 Handling a growing alphabet
	4.4 Initialization and Output
	4.5 Correctness

	5 Learning a DFA of a Protocol (Approximation)
	5.1 Characterizing Message Types
	5.1.1 Extracting predicate to represent a set of messages
	5.1.2 Example

	5.2 Handling Alphabet Changes
	5.2.1 Insertion of message type candidate
	5.2.2 Insertion of multiple message type candidates
	5.2.3 Example of alphabet changes

	5.3 Equivalence Oracle
	5.4 Modified Symbolic Execution
	5.4.1 Implementing assumptions and assertions in symbolic execution
	5.4.2 Hooking calls to send and receive procedures
	5.4.3 Extending symbolic states to track query state

	5.5 Membership Oracle
	5.5.1 Monitoring phase
	5.5.2 Probing phase

	6 Optimizations
	6.1 Prefix Closed Property
	6.2 Fast Equivalence Queries
	6.3 Execution Cache
	6.3.1 Example

	7 Implementation and Results
	7.1 Implementation
	7.1.1 LearnLib
	7.1.2 angr
	7.1.3 Learning Client (Learner)
	7.1.4 Symbolic Execution Server (Teacher)

	7.2 SMTP Client Experiment
	7.3 Gh0st RAT Experiment

	8 Conclusions
	8.1 Method Validation
	8.2 Future Works

	Bibliography
	Hebrew Abstract

