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Abstract� This work presents game�based model checking for abstract
models with respect to speci�cations in ��calculus� interpreted over a ��
valued semantics� If the model checking result is inde�nite �don�t know	�
the abstract model is re�ned� based on an analysis of the cause for this
result� For �nite concrete models our abstraction�re�nement is fully au�
tomatic and guaranteed to terminate with a de�nite result true or false�

� Introduction

This work presents a game�based ���� model checking approach for abstract
models with respect to speci�cations in the ��calculus� interpreted over a 	�
valued semantics
 In case the model checking result is inde�nite �don�t know��
the abstract model is re�ned� based on an analysis of the cause for this result

If the concrete model is �nite then our abstraction�re�nement is fully automatic
and guaranteed to terminate with a de�nite result �true or false�

Abstraction is one of the most successful techniques for �ghting the state

explosion problem in model checking �	�
 Abstractions hide some of the details
of the veri�ed system� thus result in a smaller model
 Usually� they are designed
to be conservative for true� meaning that if a formula is true of the abstract model
then it is also true of the concrete �precise� model of the system
 However� if it
is false in the abstract model then nothing can be deduced of the concrete one

The ��calculus ��� is a powerful formalism for expressing properties of transi�

tion systems using �xpoint operators
 Many veri�cation procedures can be solved
by translating them into ��calculus model checking ���
 Such problems include
�fair� CTL model checking� LTL model checking� bisimulation equivalence and
language containment of ��regular automata

In the context of abstraction� often only the universal fragment of ��calculus

is considered ����
 Over�approximated abstract models are used for veri�cation
of such formulae while under�approximated abstract models are used for their
refutation

Abstractions designed for full ��calculus ��� have the advantage of handling

both veri�cation and refutation on the same abstract model
 A greater advantage
is obtained if ��calculus is interpreted w
r
t the 	�valued semantics ���� ���
 This
semantics evaluates a formula to either true� false or inde�nite
 Abstract models
can then be designed to be conservative for both true and false
 Only if the
value of a formula in the abstract model is inde�nite� its value in the concrete
model is unknown
 Then� a re�nement is needed in order to make the abstract



model more precise
 Previous works ��	���� ��� suggested abstraction�re�nement
mechanisms for various branching time logics over ��valued semantics


Many algorithms for ��calculus model checking with respect to the �valued
semantics have been suggested ��� �� � �� ���
 An elegant solution to this prob�
lem is the game�based approach ����� in which two players� the veri�er �denoted
�� and the refuter �denoted ��� try to win a game
 A formula � is true in a model
M i� the veri�er has a winning strategy� meaning that she can win any play� no
matter what the refuter does
 The game is played on a game graph� consisting of
con�gurations s � �� where s is a state of the model M and � is a subformula
of �
 The players make moves between con�gurations in which they try to verify
or refute � in s
 These games can also be studied as parity games ��� and we
follow this approach as well


In model checking games for the �valued semantics� exactly one of the players
has a winning strategy� thus the model checking result is either true or false
 For
the 	�valued semantics� a third value should also be possible
 Following ����� we
change the de�nition of a game for ��calculus so that a tie is also possible


To determine the winner� if there is one� we adapt the recursive algorithm
for solving parity games by Zielonka �	�
 This algorithm recursively computes
the set of con�gurations in which one of the players has a winning strategy
 It
then concludes that in all other con�gurations the other player has a winning
strategy


In our algorithm we need to compute recursively three sets� since there are
also those con�gurations in which none of the players has a winning strategy

We prove that our algorithm always terminates and returns the correct result


In case the model checking game results in a tie� we identify a cause for the
tie and try to eliminate it by re�ning the abstract model
 More speci�cally� we
adapt the presented algorithm to keep track of why a vertex in the game is
classi�ed as a tie
 We then exploit the information gathered by the algorithm for
re�nement
 The re�nement is applied only to parts of the model from which tie
is possible
 Vertices from which there is a winning strategy for one of the players
are not changed
 Thus� the re�ned abstract models do not grow unnecessarily

If the concrete model is �nite then our abstraction�re�nement is guaranteed to
terminate with a de�nite result


It is the re�nement based on the algorithm which rules out the otherwise
interesting approach taken for example in ���� ��� in which a 	�valued ��calculus
model checking problem is reduced to two �valued ��calculus model checking
problems


Organization of the paper The 	�valued ��calculus is introduced in the next
section
 Then we describe the abstractions we have in mind
 In Section �� a 	�
valued model�checking game for ��calculus is shown
 We give a model�checking
algorithm for 	�valued games with a �nite board in Section �� and� explain how
to re�ne the abstract model� in case of an inde�nite answer in Section �
 We
conclude in Section �






� The ��Valued ��Calculus

Let P be a set of propositional constants� and A be a set of action names
 Every
a � A is associated with a so�called must�action a� and a may�action a�
 Let
A� � fa� j a � Ag and A� � fa� j a � Ag
 A Kripke Modal Transition System
�KMTS� is a tuple T � �S� f x�� j x � A� � A�g� L� where S is a set of states�
and x�� � S 	 S for each x � A� �A� is a binary relation on states� s
t
 for all

a � Act� a��� � a����

Let B� � f
� ���g be partially ordered by 
 � � � �
 Then L � S � BP� �

where BP� is the set of functions from P to B� 
 We use � to denote that a
proposition holds in a state� 
 for not holding� and � if it cannot be determined
whether it holds or not

A Kripke structure in the usual sense can be regarded as a KMTS by setting

a��� �
a���� for all a � A and not distinguishing them anymore
 Furthermore� its

states labelling is over f
��g

Let V be a set of propositional variables
 Formulae of the ��valued modal

��calculus in positive normal form are given by

� ��� q j q j Z j � � � j � � � j hai� j �a�� j �Z�� j �Z��

where q � P� a � A� and Z � V
 Let 	�L� denote the set of closed formulae
generated by the above grammar� where the �xpoint quanti�ers � and � are
variable binders
 We will also write � for either � or �
 Furthermore we assume
that formulae are well�named� i
e
 no variable is bound more than once in any
formula
 Thus� every variable Z identi�es a unique subformula fp�Z� � �Z�� of
�� where the set Sub��� of subformulae of � is de�ned in the usual way

Given variables Y� Z we write Y �� Z if Z occurs freely in fp�Y � in �� and

Y 	� Z if �Y� Z� is in the transitive closure of ��
 The alternation depth ad ���
of � is the length of a maximal	��chain of variables in � s
t
 adjacent variables
in this chain have di�erent �xpoint types

The semantics of a 	�L� formula is an element of B

S
��the functions from S

to B��which forms a boolean lattice when equipped with the following partial
order� let f� g � S � B� 
 f v g i� �s � S � f�s� � g�s�
 Joins �meets� in this
lattice are denoted by f t g �f u g� resp
�
 The complement of f � written f is
de�ned by f �s� �� f�s� for s � S where 
 and � are complementary to each
other� and � ��

Then the semantics �����T� of a 	�L� formula � w
r
t
 a KMTS T � �S� f

x�� j

x � A� �A�g� L� and an environment 
 � V � B
S
� � which explains the meaning

of free variables in �� is an element of BS� 
 We assume T to be �xed and do not
mention it explicitly anymore
 With 
�Z �� f � we denote the environment that
maps Z to f and agrees with 
 on all other arguments
 Later� when only closed
formulae are considered� we will also drop the environment from the semantic
brackets


��q��� �� �s�L�s��q�

��q��� �� �s�L�s��q�

��Z��� �� 
�Z�

	



���� ���� �� ������ t ������
���� ���� �� ������ u ������

��hai���� �� �s�

���
��
� � if �t � S� s
t
 s a��� t and �������t� � �


 � if �t � S� if s a���� t then �������t� � 

� � otherwise

���a����� �� �s�

���
��
� � if �t � S� if s a���� t then �������t� � �


 � if �t � S� s
t
 s a��� t and �������t� � 

� � otherwise

���Z����� �� Fff j �������Z ��f � v fg

���Z����� ��
F
ff j f v �������Z ��f �g

Note that s a��� t implies s a���� t

The functionals �f��������Z ��f � � B

S
� � BS� are monotone w
r
t
 v for any Z��

and S
 According to ���� least and greatest �xpoints of these functionals exist

Approximants of 	�L� formulae are de�ned in the usual way� if fp�Z� � �Z��

then Z� �� �s�
� Z�	� �� �������Z ��Z�� for any ordinal � and any environment


� and Z� �� F��� Z� for a limit ordinal �
 Dually� if fp�Z� � �Z�� then
Z� �� �s��� Z�	� �� �������Z ��Z� �� and Z

� ��
F
��� Z�


Theorem �� ��� For all KMTS T with state set S there is an � � Ord s�t� for
all s � S we have� if ���Z����

�
�s� � x then Z��s� � x�

� Abstraction

We use Kripke Modal Transition Systems ���� �� as abstract models that preserve
satisfaction and falsi�cation of 	�L� formulae


Let TC � �SC � f
a��C j a � Ag� LC� be a �concrete� Kripke structure
 Let SA

be a set of abstract states and  � SA � SC a total concretization function that
maps each abstract state to the set of concrete states it represents
 An abstract
model� a KMTS TA � �SA� f

x��A j x � A� � A�g� LA�� can then be de�ned as
follows

The labelling of an abstract state is de�ned in accordance with the labelling

of all the concrete states it represents
 For p � P � LA�sa��p� � � �
� only if
�sc � �sa� � LC�sc��p� � � �
�
 In the remaining cases LA�sa��p� � �

The may�transitions in an abstract model are computed such that every

concrete transition between two states is represented by them� For every action
a � A� if �sc � �sa� and �s�c � �s�a� such that sc

a��C s
�
c� then there exists a

may transition sa
a����A s

�
a
 Note that it is possible that there are additional may

transitions as well
 The must�transitions� on the other hand� represent concrete
transitions that are common to all the concrete states that are represented by

the source abstract state� a must�transition sa
a���A s

�
a exists only if �sc � �sa�

�s�c � �s�a� such that sc
a��C s

�
c
 Note that it is possible that there are less must

transitions than allowed by this rule
 That is� the may and must transitions do
not have to be exact� as long as they maintain these conditions


�



s � �� � ��

s � �i
� 
 i � f�� �g

s � �� � ��

s � �i
� 
 i � f�� �g

s � �Z��

s � Z
�

s � Z

s � �
� 
 if fp�Z	  �Z��

s � hai�
t � �

� 
 s
a�
�� t or s

a�
��� t

s � �a��
s � �

� 
 s
a�
�� t or s

a�
��� t

Fig� �� The model checking game rules for ��L��

Theorem �� ��� Let T be a Kripke structure and let T � be a KMTS obtained
from T with the abstraction process described above� Let s be a state of T and

s� its corresponding abstract state in T �� For all closed � � 	�L�� �����
T

�

�s�� �� �

implies �����T �s� � �����T
�

�s���

� Model Checking Games for ��L
�

The model checking game �T �s�� ��� on a KMTS T with state set S� initial
state s� � S and a 	�L� formula �� is played by players � and � in order
to determine the truth value of �� in s�� cf
 ����
 Con�gurations are elements
of C � S 	 Sub����� and written t � �
 Each play of �T �s�� ��� is a maximal
sequence of con�gurations that starts with s� � ��
 The game rules are presented
in Figure �
 Each rule is marked by � � � to indicate which player makes the
move
 A rule is applied when the player is in con�guration Ci� which is of the
form of the upper part of the rule
 Ci	� is then the con�guration in the lower
part of the rule
 The rules shown in the �rst and third lines present a choice
which the player can make
 Since no choice is possible when applying the rules
shown in the second line� we arbitrarily assign one player� let us say �� and call
the rules deterministic
 If no rule can be applied the play terminates


De�nition �� A play is called ��consistent	 resp� ��consistent	 if Player �	 resp�

Player �	 never chooses a transition of type a���� for some a � A�
Player � wins an ��consistent play C�� C�� � � � i�

�
 there is an n � N� s
t
 Cn � t � q with L�t��q� � � or Cn � t � q with
L�t��q� � 
� or


 there is an n � N� s
t
 Cn � t � �a�� and there is no t� � S s
t
 t a���� t�� or
	
 the outermost variable that occurs in�nitely often is of type �


Player � wins a ��consistent play C�� C� � � � i�

�
 there is an n � N� s
t
 Cn � t � q with L�t��q� � 
 or Cn � t � q with
L�t��q� � �� or

�
 there is an n � N� s
t
 Cn � t � hai� and there is no t� � S s
t
 t a���� t�� or
�
 the outermost variable that occurs in�nitely often is of type �


In all other cases� the result of the play is a tie


�



De�nition �� The truth value of a con�guration t � � in the context of 
 is
the value of �������t�� The value � improves both � and 
	 while � only improves

� On the other hand	 x worsens y i
 y improves x�
An inspection of game rules and semantics shows� The deterministic rules

preserve the truth value in a move from one con�guration to another
 Player �
cannot improve it but can preserve �
 Player � cannot worsen it but can preserve



A strategy for player p is a partial function � � C � C� such that its domain is

the set of con�gurations where player p moves
 Player p plays a game according
to a strategy � if all his choices agree with �
 A strategy for player p is called
a winning strategy if player p wins every play where he plays according to this
strategy


Theorem �� Given a KMTS T � �S� f x�� j x � A�� Act�g� L�	 an s � S	 and
a closed � � 	�L�	 we have�

�a� �����
T
�s� � � i
 Player � has a winning strategy for �T �s� ��	

�b� �����T �s� � 
 i
 Player � has a winning strategy for �T �s� ��	

�c� �����T �s� � � i
 neither Player � nor Player � has a winning strategy for
�T �s� ���

Theorem �� Let T � �S� f x�� j x � Ag� L� be a Kripke structure with s � S
and T � � �S�� f x�� j x � A��A�g� L�� be an abstraction of T with concretization
function � Let s� � S� with s � �s���

�a� If Player � has a winning strategy for �T ��s�� �� then T � s j� ��
�b� If Player � has a winning strategy for �T ��s�� �� then T � s �j� ��

� Winning Model Checking Games for ��L
�

The previous section relates model checking games with the semantics of 	�L�

An algorithm estimating the winner of the game and a winning strategy is yet to
be given
 Note that the result of the previous section also holds for in�nite�state
systems
 From now on� however� we restrict to �nite KMTS

For the sake of readability we will deal with parity games
 Instead of Player

� and �� we talk of Player � and Player �� resp
� and use � to denote Player �
or � and �� � �� � for the opponent
�

Parity games are traditionally used to describe the model checking game for
��calculus
 In order to describe our game for the 	�L�� we need to generalize them
in the following way� ��� we have two types of edges� must edges and may edges�
where every must edge is also a may edge� �� terminal con�gurations �dead�end�
are classi�ed as either winning for one player� or as tie�con�gurations� and �	� a
consistency requirement is added to the winning conditions


� The numbers � and � have parities and this is more intuitive for this notion of game�

�



A generalized parity game G � �A��� has an arena A � �V�� V�� Vtie�
must

��

�
may

��� for which every v � Vtie is a dead�end and
must

���
may

��
 The set of vertices
is denoted by V � V� � V� � Vtie
 � � V � N is a priority function that maps
each vertex v � V to a priority

A play is a maximal sequence of vertices v�� � � � � where Player � moves from

vi to vi	� when vi � V� and �vi� vi	�� �
may

��
 It is called ��consistent i� Player �

chooses only moves that are �also� in
must

��
 A ��consistent play is winning for
Player � if

� it is �nite and ends in V� � or
� it is in�nite and the maximal priority occurring in�nitely often is even when
� � � or odd when � � �


All other plays are a tie

A model checking game is a generalized parity game �see also ����� Set V�

to the con�gurations in which � moves together with con�gurations in which
the play terminates and � wins
 Set V� to the con�gurations in which � moves�
together with con�gurations in which the play terminates and � wins
 The re�
maining con�gurations� i
e
 the ones of the form t � q or t � q with L�t��q� �

L�t��q� � � are set to Vtie 

must

�� comprises the moves based on the rules shown
in the �rst two lines in Figure � or when a a��transition is taken while

may

�� com�
prises all possible moves
 The priority of a vertex t � � is only non�zero when
� is a �xpoint formula
 Then� it is given by the alternation depth of �� possibly
plus � to assure that it is even i� the outermost �xpoint variable in � is �
 It is
easy to see that the notions of winning and winning strategies for both notions
of games coincide

We de�ne an algorithm for solving generalized parity games
 Our algorithm

partitions V into three sets� W��W��Wtie� where for � � f�� �g� the set W�

consists of all the vertices from which Player � has a winning strategy and the
set Wtie consists of all the vertices from which none of the players has a winning
strategy
 When applied to model checking whether s� j� ��� we check when the
algorithm terminates whether v � s� � �� is in W�� W�� or Wtie and conclude
true� false� or inde�nite� respectively

We adapt the recursive algorithm for solving parity games by Zielonka �	�


Its recursive nature makes it easy to understand and analyze� allows simple
correctness proofs� and can be used as basis for re�nement

The main idea of the algorithmpresented in �	� is as follows
 In each recursive

call� � denotes the parity of the maximal priority in the current game
 The
algorithm computes the set W
� iteratively and the remaining vertices formW� 

In our generalized game� we again compute W
� iteratively� but we then add
a phase where we also compute Wtie iteratively
 Only then� we set W� to the
remaining vertices

We start with some de�nitions
 ForX � V � the subgraph of G induced by X�

denoted by G�X�� is �AjX � �jX� where AjX � �V
�
� � V

�
� � Vtie �X�

must

�� �X 	X�
may

��
�X 	X� and �jX is the restriction of � to X
 For � � f�� �g� let B� denote the
set of non�dead�end vertices that belong to V� in G� but become dead�ends in

�



G�X�
 Then� in G�X�� V �� � ��V� nB�� �B
���X
 That is� vertices that become
dead�ends� move to the set of vertices of the other player


G�X� is a subgame of G w�r�t� �� for � � f�� �g� if all non�dead�end vertices
of V� in G remain non�dead�ends in G�X�
 It is a subgame of G if it is a subgame
w
r
t
 to both players
 That is� if G�X� is a subgame� then every dead�end in it
is also a dead�end in G

For � � f�� �g andX � V � we de�ne the must�attractor set Attr���G�X� � V

and the may�attractor set Attr���G�X� � V of Player � in G

The must�attractor Attr���G�X� � V is the set of vertices from which

Player � has a strategy in the game G to attract the play to X or a dead�
end in V� while maintaining consistency
 The may�attractor Attr���G�X� � V

is the set of vertices from which Player � has a strategy in G to either ��� attract
the play to X or a dead�end in V� � Vtie � possibly without maintaining his own
consistency or �� to prevent �� from playing consistently
 In other words� if ��
plays consistently� � can attract the play to one of the vertices described in ���

Let D�� D�� Dtie denote the dead�end vertices of V�� V�� Vtie respectively �i
e
�

Dtie � Vtie�
 It can be shown that the following is an equivalent de�nition of the
sets Attr���G�X� and Attr���G�X�


Attr����G�X� � X �D�

Attr�i	�
� �G�X� � Attr�i��G�X�

� fv � V� nD� j �v��v
must

�� v� � v� � Attr�i��G�X�g
� fv � V
� nD
� j �v��v

may

�� v� �� v� � Attr�i��G�X�g
Attr���G�X� �

S
fAttr�i��G�X� j i � �g

Attr����G�X� � X �D� �Dtie

Attr�i	�
� �G�X� � Attr�i��G�X�

� fv � V� nD� j �v��v
may

�� v� � v� � Attr�i��G�X�g

� fv � V
� nD
� j �v��v
must

�� v� �� v� � Attr�i��G�X�g
Attr���G�X� �

S
fAttr�i��G�X� j i � �g

The latter de�nition of the attractor sets provides a method for computing
them
 As i increases� we calculate Attr�i��G�X� or Attr�

i
��G�X� until it is the

same as Attr�i��
� �G�X� or Attr�i��

� �G�X�� respectively

Note that Attr�i��G�X� � Attr�

i
��G�X�� and that for X

� � V nAttr���G�X�
we have X � � Attr�
��G�X

��
 Thus� the corresponding must and may attractors
partition V 


Solving the Game

We present a recursive algorithm SolveGame�G� �see Algorithm	� that computes
the sets W�� W�� and Wtie for a parity game G
 Let n be the maximum priority
occurring in G


n 	 
� W� � Attr���G� ��
W� � V nAttr���G� ��
Wtie � Attr���G� �� nAttr���G� ��

�



Algorithm � Winning vertices for the opponent� ComputeOpponentWin

� Function ComputeOpponentWin�G� �� n	
� W�� 
 	�
� repeat

� W �

�� 
W��

� X�� 
 Attr����G�W��	
� X� 
 V nX��

� N 
 fv � X� j ��v	  ng
� Y 
 X� n Attr���G�X���N	
	 �Y�� Y�� Ytie	 
 SolveGame�G�Y �	

�
 W�� 
 X�� 
 Y��

�� until W �

��  W��

�� return W��

Since the maximum priority of G is �� Player � can only win G on dead�
ends in V� or vertices from which he can consistently attract the play to such
a dead�end
 This is exactly Attr���G� ��
 From the rest of the vertices Player �
does not have a winning strategy
 For vertices in V nAttr���G� ��� Player � can
always avoid reaching dead�ends in V� � Vtie � while playing consistently
 Since
the maximum priority in this subgraph is �� it is easy to see that she wins in
such vertices
 The remaining vertices in Attr���G� �� nAttr���G� �� are a subset
of Attr���G� ��� which is why Player � does not win from them �and neither
does Player �� as previously claimed�
 Therefore none of the players wins in
Attr���G� �� nAttr���G� ��


n � �� We assume that we can solve every game with maximumpriority smaller
than n
 Let � � n mod  be the player that wins if the play visits in�nitely
often the maximum priority n

We �rst computeW
� inG
 This is done by the function ComputeOpponentWin

shown in Algorithm �

Intuitively� in each iteration we hold a subset of the winning region of Player ��


We �rst extend it to X
� by using the must�attractor set of Player �� �which en�
sures his consistency� line ��
 From the remaining vertices� we disregard those
from which Player � can attract the play to a vertex with maximum priority
n� perhaps by giving up his consistency
 Left are the vertices in Y �line �� and
Player � is basically trapped in it
 He can only �escape� from it to X
�
 Thus�
we can add the winning region of Player �� in G�Y � to his winning region in G

This way� each iteration results in a better �bigger� under approximation of the
winning region of Player �� in G� until the full region is found �line ���
 The
correctness proof of the algorithm is sketched in the following


Lemma �� � For every X� as used in Algorithm 	 G�X�� is a subgame
w�r�t� ��

�� For every Y as used in Algorithm 	 G�Y � is a subgame�
Moreover� the maximumpriority in G�Y � is smaller than n� which is why the

recursion terminates


�



Lemma �� At the beginning of each iteration in Algorithm 	 W
� is a winning
region for Player �� in G�

Proof� The proof is by induction
 The base case is when W
� � � and the claim
holds
 Suppose that at the beginning of the ith iteration W
� is a winning region
for Player �� in G
 We show that it continues to be so at the end of the iteration
and therefore at the beginning of the i� � iteration

Clearly� X
� � Attr�
��G�W
�� is also a winning region for Player �� in G� by

simply using his strategy to attract the play to D
� or to W
� �where he wins�
while being consistent� and from there using the winning strategy of W
� in G

We now show that Y
� is also a winning region of Player �� in G
 We know

that it is a winning region for him in G�Y � �by the correctness of the algorithm
SolveGame for games with a maximum priority smaller than n�
 As for G� for
every vertex in Y
�� as long as the play remains in Y � Player �� can use his
strategy for G�Y �
 Since G�Y � is a subgame� Player �� will always be able to
stay within Y in his moves in G and if the play stays there� then he wins �since
he uses his winning strategy�
 Clearly Player � cannot move from Y to X� n
Y � Attr���G�X��� N �
 Otherwise the vertex v � Y � X� where this is done
belongs to Attr���G�X���Attr���G�X��� N �� �because the same move is possible
in G�X���
 Hence v belongs to Attr���G�X��� N � as well� in contradiction to
v � Y 
 Finally� if Player � moves to V n X� � X
�� then Player �� will use his
strategy for X
� in G and also win

We conclude that X
� � Y
� is a winning region for Player �� in G
 ut
This lemma ensures that the �nal result W
� of ComputeOpponentWin is in�

deed a subset of the winning region of Player �� in G
 It remains to show that
this is actually an equality� i
e
 that no winning vertices are missing


Lemma �� When W �

� � W
� 	 then V nW
� is a non�winning region for Player ��

in G�

Proof� WhenW �

� �W
� � it must be the case that the last iteration of SolveGame

ended with Y
� � �� andW
� � X
� 
 Therefore it su ces to show that V nX
� � X�

is a non�winning region for Player �� in G

Clearly� Player �� cannot move fromX� to X
� without compromising his con�

sistency
 Otherwise the vertex v � X� where this is done belongs to Attr�
��G�X
��
and so to X
� as well
 This contradicts v � X� 
 Hence� Player �� cannot win by
moving to X
� 
 As G�X�� is a subgame w
r
t
 �� Player � is never obliged to move
to X
� 

Consider the case where the play stays in X�
 In order to prevent Player ��

from winning� Player � will play as follows
 If the current con�guration is in Y �
then Player � will use his strategy on G�Y � for preventing Player �� from winning
�such a strategy exists since Y
� � ��
 If the play visits a vertex v � N � then
Player � will move to any successor v� inside X� 
 Such a successor must exist
since vertices in N are never dead�ends in G
 Furthermore� they belong to V� �
thus since G�X�� is a subgame w
r
t
 � �by Lemma �
��� they remain non�dead�
ends in G�X��
 If the play visits Attr���G�X��� N � n N � then Player � will use
his strategy to either cause Player �� to be inconsistent� or to attract the play

��



Algorithm � Vertices in which no win is possible� ComputeNoWin

�� Function ComputeNoWin�G� �� n�W��	
�� nowin 
W���
�� repeat

�� nowin� 
 nowin

�� X�� 
 Attr����G�nowin	
�� X� 
 V nX��

�	 N 
 fv � X� j ��v	  ng
�
 Y 
 X� n Attr���G�X���N	
�� �Y�� Y�� Ytie	 
 SolveGame�G�Y �	
�� nowin 
 X�� 
 Y�� 
 Ytie

�� until nowin�  nowin

�� return nowin

in a �nite number of steps to N or D�
� � Dtie �such a strategy exists by the

de�nition of a may�attractor set�
 We use D�
� to denote the dead�end vertices

of Player � in G�X��
 Since G�X�� is not necessarily a subgame w
r
t
 ��� D�
�

may contain non�dead�end vertices of Player �� from G that became dead�ends
in G�X��
 However� this means that all their successors are in X
� � and as stated
before Player �� cannot move consistently from X� to X
� � thus he cannot win in
them in G as well

It is easy to see that this strategy indeed prevents Player �� from winning
 ut

Corollary �� The result of ComputeOpponentWin is the full winning region of
Player �� in G�
In the original algorithm in �	�� given the set W
�� we could conclude that

all the remaining vertices form the winning region of Player � in G
 Yet� this
is not the case here
 We now divide the remaining vertices into Wtie and W� 

We �rst compute the set nowin of vertices in G from which Player � does not
have a winning strategy� i
e
 Player �� has a strategy that prevents Player � from
winning
 This is again done iteratively� by the function ComputeNoWin� given as
Algorithm 

The algorithm ComputeNoWin resembles the algorithm ComputeOpponentWin


The initialization here is to W
� � since this is clearly a non�winning region of
Player �
 Furthermore� in this case after the recursive call to SolveGame�G�Y ���
the setX
� is extended not only by the winning region of Player �� inG�Y �� Y
�� but
also by the tie�region Ytie �line �
 Apart from those di�erences� one can see that
the only di�erence is that the use of a must�attractor set is replaced by a may�
attractor set and vice versa
 This is because in the case of ComputeOpponentWin
we are after a de�nite win of Player ��� whereas in the case of ComputeNoWin we
also allow a tie� therefore may edges take a di�erent role
 Namely� in this case�
when we extend the current set nowin �line ���� we use a may�attractor set of
Player �� because when our goal is to prevent Player � from winning� we allow
Player �� to be inconsistent
 On the other hand� in the computation of Y we now
remove from X
� only the vertices from which Player � can consistently attract
the play to the maximumpriority �using the must�attractor set� line ��
 This is

��



because only such vertices cannot contribute to the goal of preventing Player �
from winning
 Other vertices where he can reach the maximumpriority� but only
at the expense of consistency can still be of use for this goal


Lemma �� � For every X� as used in Algorithm �	 G�X�� is a subgame�
�� For every Y as used in Algorithm �	 G�Y � is a subgame�
Again� the maximum priority in G�Y � is smaller than n� which is why the

recursion terminates


Lemma �� At the beginning of each iteration	 the set nowin is a non�winning
region for Player � in G�
This lemma that can be shown with a careful analysis ensures that the �nal

result nowin of ComputeNoWin is indeed a subset of the non�winning region of
Player � in G
 It remains to show that no non�winning vertices are missing


Lemma � When nowin� � nowin	 then V n nowin is a winning region for
Player � in G�

Proof� When nowin� � nowin� it must be the case that the last iteration of
SolveGame ended with Y
� � Ytie � �� and nowin � X
� 
 Therefore it su ces to
show that V nX
� � X� is a winning region for Player � in G

Clearly� Player �� cannot move from X� to X
�
 Otherwise the vertex v � X�

where this is done belongs to Attr�
��G�X
�� and therefore to X
� as well
 This
contradicts v � X� 
 Hence� Player �� is �trapped� in X� and as G�X�� is a
subgame� Player � is never obliged to move to X
� 

Consider the case where the play stays in X� 
 In order to win� Player �

will play as follows
 If the current con�guration is in Y � then Player � will
use his winning strategy on G�Y � �such a strategy exists since Y
� � Ytie � �
and Y� � Y �
 If the play visits a vertex v � N � then Player � will move to
a must successor v� inside X� 
 Such a successor exists because otherwise v �
Attr�
��G�X
�� and hence also in X
� � in contradiction to v � N � X�
 If the
play visits Attr���G�X��� N � nN � then Player � will attract it in a �nite number
of steps to N or D� � while being consistent

This strategy ensures that Player � is consistent and is indeed winning
 ut

Corollary �� ComputeNoWin returns the full non�winning region of Player � in
G�
We can now conclude that the remaining vertices in V n nowin form the full

winning region of Player � in G� and the tie region in G is exactly nowin nW
� 

This is the set of vertices from which neither player wins

Solving the game is now achieved by Function SolveGame shown in Algo�

rithm 	

We have suggested an algorithm for computing the winning �and non�winning�

regions of the players
 The correctness proofs also show how to de�ne strategies
for the players
 Yet� we omit this discussion due to space limitations
 The algo�
rithm can also be used for checking a concrete system in which all may�edges
are also must�edges and Vtie � �


Remark � Let G be a parity game in which Vtie � � and all edges are must

Then Wtie computed by the algorithm SolveGame is empty


�



Algorithm � The main function� SolveGame

�� Function SolveGame�G	
�� n 
maxf��v	 j v � V g
�� if n  � then �� return �W�� W�� Wtie�
�� return �V nAttr���G� 		� Attr���G� 		� Attr���G� 		 n Attr���G� 			
�	 else

�
 � 
 n mod �
�� W�� 
 ComputeOpponentWin�G� �� n	
�� W� 
 V n ComputeNoWin�G� �� n� W��	
�� Wtie 
 V n �W�� 
W�	
�� return �W�� W�� Wtie	

Complexity Let l and m denote the number of vertices and edges of G
 Let n
be the maximum priority
 A careful analysis shows that the algorithm is in
O��l �m�n	��


Theorem �� Function SolveGame computes the winning regions �W��W��Wtie�
for a given parity game in time exponential in the maximal priority� Additionally	
it can be used to determine the winning strategy for the corresponding winner�
We conclude that when applied to a model checking game �T �s�� ���� the

complexity of SolveGame is exponential in the alternation depth of ��


� Re�nement of Generalized Parity Games

Assume we are interested to know whether a concrete state sc satis�es a given
formula �
 Let �W��W��Wtie� be the result of the previous algorithm for the
parity game obtained by the model checking game
 Assume the vertex v � sa �
�� where sa is the abstract state of sc� is in W� or W�
 Then the answer is clear�
sc j� � if v �W� and sc �j� � if v �W�
 Otherwise� the answer is inde�nite and
we have to re�ne the abstraction to get the answer

As in most cases� our re�nement consists of two parts
 First� we choose a

criterion telling us how to split abstract states
 We then construct the re�ned
abstract model using the re�ned abstract state space
 In this section we study
the �rst part

Given that v � Wtie � our goal in the re�nement is to �nd and eliminate at

least one of the causes of the inde�nite result
 Thus� the criterion for splitting
the abstract states is obtained from a failure vertex
 This is a vertex v� � s�a � �

�

s
t
 ��� v� � Wtie! �� the classi�cation of v
� to Wtie a
ects the inde�nite result

of v! and �	� the inde�nite classi�cation of v� can be changed by splitting it

The latter requirement means that v� itself is responsible for introducing �some�
uncertainty
 The others demand that this uncertainty is relevant to the result in
v

The game solving algorithm is adapted to remember for each vertex in Wtie

a failure vertex� and a failure reason
 We distinguish between the case where
n � � and the case where n � � in SolveGame


�	



n 	 
� In this case the set Wtie is computed by Attr���G� ��nW�
 Note that W�

is already updated when the computation of Attr���G� �� starts
 We now enrich
the computation of Attr���G� �� to record failure information for vertices which
are not in W� and thus will be in Wtie 


In the initialization we have two possibilities� ��� vertices in D�� which are
clearly not in Wtie � thus no additional information is needed! and �� vertices in
Dtie� for which the failure vertex and reason are the vertex itself �failDE�


As for the iteration� suppose we have Attr�i��G� ��� with the additional infor�
mation attached to every vertex in it which is not in W�
 We now compute the
set Attr�i	�

� �G� ��
 Let v� be a vertex that is added to Attr�i	�
� �G� ��
 If v� �W��

then no information is needed
 Otherwise� we do the following


�
 If v� � V� and there exists a may edge v
� may

�� v�� s
t
 v�� � W�� then v
� is a

failure state� with this edge being the reason �failP��



 If v� � V� and has a may edge v
� may

�� v�� s
t
 v�� �� Attr�i��G� ��� then v
� is a

failure state� with this edge being the reason �failP��


	
 Otherwise� there exists a may �that is possibly also a must� edge v�
may

�� v��

s
t
 v�� � Attr�i��G� �� nW�
 The failure state and reason of v� are those of
v��


Note that the order of the �if� statements in the algorithmdetermines the failure
state returned by the algorithm
 Di�erent heuristics can be applied regarding
their order
 A careful analysis shows the following


Lemma �� The computation of failure vertices for n � � is well de�ned	 mean�
ing that all the possible cases are handled� Furthermore	 if the failure reason
computed by it is a may edge	 then this edge is not a must edge�

Intuitively� during each iteration of the computation� if the vertex v� �Wtie

that is added to Attr�i	�
� �G� �� is not responsible for introducing the inde�nite

result �cases � and �� then the computation greedily continues with a vertex in
Wtie that a
ects its inde�nite classi�cation �case 	�


There are three possibilities where we say that the vertex itself is responsible
for � and consider it a failure vertex� failDE� failP� and failP�
 For a vertex in
Vtie �case failDE�� the failure reason is clear
 Consider case failP�
 In this case
v� � V� is considered a failure vertex� with the may edge to v�� � W� being the
failure reason
 By Lemma � we have that it is not a must edge
 The intuition
for v� being a failure vertex is that if this edge was a must edge� it would change
the classi�cation of v� to W�
 If no such edge existed� then v� would not be
added to Attr�i	�

� �G� �� and thus to Wtie
 Finally� consider case failP�
 In this
case v� � V� has a may edge to v�� which is still unclassi�ed at the time v� is
added to Attr���G� ��
 This edge is considered a failure reason because if it was
a must edge rather than a may edge then v� would remain unclassi�ed as well
for at least one more iteration
 Thus it would have a better chance to eventually
remain outside the set Attr�i��G� �� until the �xpoint is reached� changing the
classi�cation of v� to W�


��



n � �� In this case the set Wtie is computed by V n �W
� �W��
 This equals
ComputeNoWin�G� �� n� W
�� nW
�� where W
� is already updated when the com�
putation of ComputeNoWin�G� �� n�W
�� starts
 Similarly to the previous case� we
enrich the computation of ComputeNoWin�G� �� n� W
��� and remember a failure
vertex for each vertex which is not in W
� and thus will be in Wtie

In each iteration of ComputeNoWin the vertices added to the computed set

are of three types� X
�� Y
� and Ytie

The set X
� is computed by Attr�
��G�nowin�
 Thus in order to �nd failure

vertices for such vertices that are not in W
� we use an enriched computation of
the may�attractor set� as described in the case of n � �
 This time the role ofW�

is replaced byW
�� � is replaced by � and � by ��
 Furthermore� in the initialization
of the computation we now also have the set nowin from the previous iteration�
for which we already have the required information

Vertices in Ytie already have a failure vertex and reason� recorded during the

computation of SolveGame�G�Y ��

We now explain how to handle vertices in Y
�
 Such vertices have the property

that Player �� wins from them in G�Y �
 Hence� as long as the play stays in G�Y ��
Player �� wins
 Furthermore� Player �� can always stay inG�Y � in his moves
 Thus�
for a vertex v� in Y
� that is not inW
� it must be the case that Player � can force
the play out of G�Y � and into �V nY �nW
� �If the play reaches W
� then Player ��
can win after all�
 Thus� v� � Attr���G� �V nY �nW
��
 Let �Y � V nY be the set of
vertices outside G�Y �
 We get that Y
� nW
� � Y
��Attr���G� �Y nW
��
 Therefore�
to �nd the failure reason in such vertices� we compute Attr���G� �Y nW
��
 During
this computation� for each vertex v� in Y
� that is added to the attractor set �and
thus will be in Wtie� we choose the failure vertex and reason based on the
reason for v� being added to the set
 This is because if the vertex was not in
Attr���G� �Y nW
��� it would be in W
� in G as well
 The information is recorded
as follows

In the initialization of the computation we have vertices inD� �Dtie or �Y nW
�

which are clearly not in Y
�� thus no additional information is needed

As for the iteration� suppose we have Attr�i��G� �Y nW
��� with the additional

information attached to every vertex in it which is in Y
� �by the above equality
such a vertex is not inW
��
 We now compute the set Attr�

i	�
� �G� �Y nW
��
 Let v�

be a vertex that is added to Attr�i	�
� �G� �Y nW
��
 If v� �� Y
� � then no information

is needed
 Otherwise� we do the following


�
 If v� � V� and there exists a may edge v�
may

�� v�� which is not a must edge
s
t
 v�� � �Y nW
�� then v� is a failure state� with this edge being the reason



 If v� � V� and it has a must edge to v�� � X
� nW
� � then we set the failure
vertex and reason of v� to be those of v�� �which are already computed�


	
 Otherwise� v� has a may �possibly must� edge to a vertex v�� � Attr�i��G� �Y n
W
�� � Y
�
 In this case the failure state and reason of v

� are those of v��


Lemma �� The computation of failure vertices for n � � is well de�ned	 mean�
ing that all the possible cases are handled�
Intuitively� in case �� v� is considered a failure state� with the may �not must�

edge to v�� � �Y nW
� being the reason because if this edge did not exist� v
� would

��



not be added to the may�attractor set� and thus would remain in W
� in G
 A
careful analysis shows that the only possibility where there exists such a must
edge to v�� � �Y nW
� is when this edge is to X
� nW
� 
 This is handled separately
in case 
 The set X
� nW
� is a subset of Wtie for which the failure was already
analyzed� and in case  we set the failure vertex and reason of v� to be those
of v�� � X
� nW
�
 This is because changing the classi�cation of v

�� to W
� would
make a step in the direction of changing the classi�cation of v� � V� to W
�

as well
 Similarly� since the edge from v� to v�� is a must edge� changing the
classi�cation of v�� to W� would change the classi�cation of v

� � V� to W�
 In
all other cases� the computation recursively continues with a vertex in Y
� that
was already added to the may�attractor set and that a
ects the addition of v�

to it �case 	�


This concludes the description of how SolveGame records the failure infor�
mation for each vertex in Wtie 
 A simple case analysis shows the following


Theorem � Let vf be a vertex that is classi�ed by SolveGame as a failure
vertex� The failure reason can either be the fact that vf � Vtie 	 or it can be an

edge �vf � v�� �
may

�� n
must

���
Once we are given a failure vertex v� � s�a � �� and a corresponding reason

for failure� we guide the re�nement to discard the cause for failure in the hope
for changing the model checking result to a de�nite one
 This is done as in �����
where the failure information is used to determine how the set of concrete states
represented by s�a should be split in order to eliminate the failure reason
 A
criterion for splitting all abstract states can then be found by known techniques�
depending on the abstraction used �e
g
 ��� ��

After re�nement� one has to re�run the model checking algorithm on the

game graph based on the re�ned KMTS to get a de�nite value for sc and �

However� we can restrict this process to the previous Wtie
 When constructing
the game graph based on the re�ned KMTS� every vertex s�a � �� for which
a vertex sa � �� �where s�a results from splitting sa� exists in W� or W� in
the previous game graph can be considered a dead end winning for Player � or
Player �� respectively
 In this way we avoid unnecessary re�nement


	 Conclusion

This work presents a game�based model checking for abstract models with re�
spect to speci�cations in ��calculus� interpreted over a 	�valued semantics� to�
gether with automatic re�nement� if the model checking result is inde�nite

The closest work to ours is ����� in which a game�based framework is suggested

for abstraction�re�nement for CTL with respect to a 	�valued semantics
 While
it is relatively simple to extend their approach to alternation�free ��calculus� the
extension to full ��calculus is not trivial
 This is because� in the game graph for
alternation�free ��calculus each strongly connected component can be uniquely
identi�ed by a single �xpoint
 For full ��calculus� this is not the case any more�
thus a more complicated algorithm is needed in order to determine who has the
winning strategy


��
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