
A Framework for Translating Models and

Speci�cations �

Shmuel Katz and Orna Grumberg

Computer Science Department
The Technion
Haifa� Israel

fkatz�ornag�cs�technion�ac�il

Abstract� The reasons for translating a description of a model in one
notation into another are reviewed� This includes both translating en�
tire models and describing di�erent aspects of a system using di�erent
notations�
In order to demonstrate the ideas� the VeriTech framework for translation
is described� A system being analyzed is seen as a collection of versions�
along with a description of how the versions are related� The versions are
given in di�erent notations connected through a core notation by compil�
ers from and to the notations of existing tools and speci�cation methods�
The reasons that translations cannot always be exact are analyzed� based
on experience with over ten separate compiler translations among formal
methods notations� Additional information gathered during translation
is described� to facilitate optimizations� error tracing� and analysis�
The concept is presented of a faithful relation among models and families
of properties true of those models� In this framework families of prop�
erties are provided with uniform syntactic transformations� in addition
to the translations of the models� This framework is shown appropriate
for common instances of relations among translations previously treated
in an ad hoc way� The classes of properties that can be faithful for a
given translation provide a measure of the usefulness of the translation�
Open research directions are suggested concerning faithful transforma�
tions� additional information� error tracing� and optimizing translations�

� Introduction

In this survey paper we present the possible uses of �direct or indirect� trans�
lations among model descriptions� show some of the di�culties that must in�
evitably arise during translation� describe the design of the VeriTech translation
framework and how it can alleviate some of the obstacles to translation� and pro�
vide a theoretical basis to quantify the quality of such translations in a formal
framework using faithful translations and syntactic transformations of proper�
ties� Material is included from �		�

� 	�� and �
��

� This research was partially supported by the Fund for the Support of Research at the
Technion and by the Bar�Nir Bergreen Software Technology Center of Excellence�



��� Existing translations

Translations among notations for representing models and hardware designs have
become common� although often there is no available documentation� Such trans�
lations exist from SMV ��� 	��� to PVS�	��� from Murphi�	�� to PVS� from SMV
to Spin�
��
��� from several notations into Cospan�	��� from automata�based
notation into Petri nets� and among many other tools� Moreover� individual ver�
i�cation tools often have multiple input formats for models� and internal source�
to�source translations� For example� the STeP system ��� and the exposition in
�	�� allow presenting designs either in a simple C�like programming language� or
using a modular collection of textual transitions� and internally translates from
the former representation to the latter� In addition to translations among for�
mal methods tools� there is increasing interest in translating standard hardware
design notations such as Verilog or VHDL �or internal industrial notations� to
and from the notations of existing model�checking tools�

Translations are used also in the context of software veri�cation� The Ban�
dera tool set �
�� translates Java source code to the model checking tools SMV�
Spin� and dSpin �
�� and also to the Java PathFinder software veri�cation tool
�JPF� �
�� �� which has its own translation to Spin�

Recently� the VeriTech project has been developed as a general framework for
translation through a simple intermediate notation �

�� The VeriTech project
de�nes a core design language �CDL� in which modules can be combined in
synchronous� asynchronous or partially synchronous manners� and each module
is a set of �rst�order transitions� The VeriTech project provides translations
between existing notations and the core language� in both directions� At present�
VeriTech includes translations between SMV� Murphi� Spin� STeP� Petri�nets�

�
and the core design language� and work is underway to incorporate� among
others� PVS and LOTOS���� Other such frameworks include the SAL system �	��
and the Model Checking Kit�	���

��� Why translate�

Translations among model notations can be used in a variety of ways� and these
in�uence what needs to be true about a translation� Most obviously� a particular
property to be veri�ed can be attacked with di�erent tools� For example� if an
initial attempt to model check a temporal logic property of a system should
fail because of the size of the state space� it is possible to translate the model
�perhaps in stages� through an intermediate notation� to a BDD�based model
checker that can handle the problem� Alternatively� the source could be a model
description in the SMV language� but for which attempts to verify a property
have failed� and the target could be a description appropriate for a tool with
a theorem�proving approach like PVS or STeP� Of course� proving the desired
property in such a target requires using inductive methods and is not automatic�
but at least is not sensitive to the size of the data domain and will not su�er from
the state�explosion problem� We shall also see that in many relevant translations
the property to be proven in target models will not be identical to the property



asserted about the original source model� Nevertheless� a back�implication is
desired� a property should necessarily hold in the source whenever the related
property holds in the target�

In addition� unrelated properties can each be established for a system using
a di�erent veri�cation tool� choosing the most convenient tool for each property�
This should encourage using di�erent veri�cation tools for various aspects of
the same system� For example� a propositional linear�time temporal property
might be proven for a �nite�state model of the system using a linear�time model
checker like Spin� The system model can then be translated to a branching�time
model checker like SMV for properties of that type� It can also be translated to
a language with real�time notation� such as STeP� or to a theorem proving envi�
ronment like PVS to treat in�nite domains and �rst�order temporal properties�
In this case� we would like to import some variant of the properties proven about
the source into the target� so that they can be assumed there and used to help
prove the new desired property�

Translation is also useful when an in�nite or large �nite model needs to be
reduced prior to applying model checking� For methods like abstraction ��� and
convenient executions �	
� the system can �rst be modeled in full and sent to a
theorem prover in which the abstraction or the choice of convenient executions is
shown �correct�� That is� the reduced version is shown to preserve the properties
of interest� so that if the reduced version satis�es them� so does the original� The
reduced version of the model �i�e�� the abstraction or the convenient executions�
can then be translated to a model checking tool that will verify temporal prop�
erties� Here again we would like to have back implication that is an essential
link in guaranteeing the correctness of the proved temporal properties for the
full model�

As already noted� there are also many translations to and from design nota�
tions that do not have associated veri�cation tools� For hardware these include
Verilog and VHDL� and for software� Bandera� JPF� and Statecharts �

�
��
�which provides a hierarchical graphical state�transformation software design no�
tation�� Translating from such a notation to one with associated model�checking
or other veri�cation tools allows checking properties of existing designs� while a
translation in the other direction can introduce a veri�ed high�level design into
a development process�

��� Semantic issues

The quality of a translation depends on guaranteeing a close relation between
the properties true of the source and those true of the target� This can be used to
de�ne the �correctness� of a model translation� As seen above� the relation among
properties can be used in either direction� we may want to �import� versions of
properties already guaranteed true of the original model into the resulting one
�so they can be used in showing additional properties without being themselves
reproven� or we may want to know that properties shown about the resulting
model imply related properties in the original model�



Ideally� the semantic models �e�g�� the execution trees� underlying the nota�
tions would be identical� making the question trivial in either direction� However�
we demonstrate that this is often impossible� In the broader framework proposed
here� a translation and transformation of properties will be faithful with respect
to families of properties represented as classes of formulas in some temporal logic
so that if property X is true of one model� then property Y will be true of the
other�

The quality of translations also is related to the modularity and readability of
the target model� That is� a desirable property of a translation is that it maintain
the modularity of the source� and not lead to an explosion in the number of lines
of code� relative to the source� Identifying inherent di�erences� and minimizing
their in�uence� is crucial to e�ective translation among notations for describing
models�

Investigation of these relations can be seen as a step in the research direction
proposed in �
��� to unify theories of programming� Here those theories used to
describe models for formal veri�cation tools are emphasized� rather than full�
�edged programming languages�

��� Organization of the paper

In Section 	 the design of the VeriTech project is described� as an example of a
general translation framework� and one way to treat the many translation issues
that arise� In Section 
 the semantic assumptions we use to compare source and
target models are de�ned� based on fair execution trees as a common underlying
semantics� In Section �� we identify the translation issues that prevent a system
and its translation from having identical semantics and thus satisfying the exact
same properties� Translations also can lead to loss of the modular structure of
the original in translation� and to a �code explosion� problem� where the number
of lines of code increases radically during translation� The added information
that can alleviate these di�culties is described in Section ��

The notion of a faithful relation among models and speci�cations is de�ned
formally in Section �� with three variants� We then demonstrate in Section �
how such a faithful transformation looks for a common example of the inherent
model incompatibilities seen in the translation issues� In the Conclusions� some
research directions in this area are suggested�

� The design of VeriTech and CDL

The VeriTech project facilitates translations of problem statements from one
formal speci�cation notation to another� A key element in the design of this
project is an intermediate core design language denoted CDL� described below�
Each notation has compiler�like translation programs to and from CDL� thus
requiring only 	n translations in order to achieve all of the possible n� relations
among n di�erent notations�



The core description should facilitate textual analysis and information gath�
ering� transformations to alternative forms� and translations to and from other
notations� The core actually has multiple versions of a system� and additional
information connecting the versions� but discussion of those parts will be post�
poned to Section �� after the semantics and di�erences among notations are
considered�

In CDL emphasis is put on a variety of synchronization methods and possi�
bilities for instantiating declarations of modules with di�erent parameters� On
the other hand� internal control structures common in programming languages
�conditionals� looping statements� etc�� are not included in CDL� and will be
encoded using program counter variables�

The core design language of VeriTech is based on collections of textual transi�
tions� organized in modules� The modular transition system for the core incorpo�
rates ideas from state transition systems �especially the internal representation
in the STeP system ����� Z schemas �
��� and LOTOS ��� �� composition oper�
ators� It is intended to deal with the issues outlined above� and to facilitate
translations� Note that it is not particularly intended for direct human interface�

A system in CDL is composed of global declarations of types� constants� and
variables� and declarations of the components of the system� which are called
modules� A simple two place bu�er example is given in Figure 
� and is explained
below� The syntax and semantics of the globally declared types� constants� and
variables are entirely standard� Module declarations are at the top level of a
system� and are not nested� One module has the special designation SYSTEM
�the COMB module in the example� to indicate that it de�nes the entire system�
Each module declaration has a name� formal parameters� variable declarations�
and a body that de�nes a collection of textual transitions� as described below�
Local variables and their types can be declared for each module� Every variable
name appearing within the body of a module declaration should be declared
globally� declared as a local variable of the module� or be a formal parameter�
The basic element of the body of a module is a transition de�ned as a triple
� � hI� P�Ri� where I is an identi�er �called the name of the transition�� P is
a predicate over states called the precondition or enabling condition� and R is a
relation between states called the transition relation� The relation R is written
as a logical formula including unprimed and primed versions of state variables�
It is also optionally possible to write the relation as an assignment to the primed
versions in terms of the unprimed ones� when appropriate� As will be explained
in Section 
� the intuitive interpretation of a transition is that if the system is
in a state that satis�es the transition�s precondition� then it can be activated�
which means that the state before and the state after the activation satisfy the
transition relation� where the unprimed versions of variables relate to the state
before the activation� and the primed versions represent the state afterwards�

The relation R should be total for the states of the system satisfying P �
That is� if state s satis�es P then there exists a state s� such that the pair �s� s��
satis�es R� This is guaranteed by automatically adding to the precondition of



each transition the requirement that there exist values so that the relation can
be satis�ed� Otherwise� the transition is not enabled in the state�

A module body can be most simply speci�ed by listing such transitions within
a pair of brackets �as in the three �rst modules of the example��

One module can be de�ned in terms of others �as in the COMB module��
by using instantiations of modules� but the de�nitions cannot be recursive� An
instantiation of a module is created by listing the name of the module with
actual parameters �variable names� in place of the formal ones� in the body of
another module� In this case� it is as if a version of the module with the actuals
substituted for the formals has been created� If this creates any con�icts between
the actual parameters and local variable names� a systematic renaming is made
of the local variables� Note that the e�ect of a variable common to two module
instantiations� but not global to the system� can be attained by using the same
actual parameter for two module instantiations in the same body �as is done with
s in the instantiations of SENDER and BUFFER inside the body of COMB��

There are three composition operators used in combining instantiations of
modules�

P jjjQ is called asynchronous composition� and is de�ned semantically as the
union of the transitions in P and in Q� where P and Q are instantiations of
modules with actual parameters� As noted above� a variable common to the in�
stantiations is de�ned by using the same actual parameter in both instantiations�

P jjQ is called synchronous composition and is de�ned as the cross product
of the transitions in P and in Q� The cross product of two transitions has a
precondition of the conjunction of their preconditions� and a relation that is the
intersection of the two relations �the conjunction of the relations written as log�
ical formulas�� From the de�nition of a transition� it follows that elements in the
cross product for which the precondition is false� or for which the relation cannot
be satis�ed when the precondition holds� cannot be activated as transitions� and
thus can be removed�

P js setjQ is partial synchronization� where the synchronization set s set is a
set of pairs of names of transitions� with the �rst from P and the second from
Q� The module is de�ned as the cross products of the pairs of transitions in the
list� plus the union of the other transitions from P and Q that do not appear in
the list�

The COMB module has partial synchronization between the send and get

transitions of the SENDER and BUFFER modules� respectively� The two tran�
sitions can be jointly executed when both of the enabling conditions of those
transitions are true� and the result is the intersection of the results of those
transitions� Otherwise those speci�c transitions cannot be taken� Another sys�
tem could be de�ned by SENDER�s� jjj BUFFER�s�t� jjj RECEIVER�t�� In
this case each transition remains independent� and the SENDER can repeatedly
�produce� and �send� s values� while the BUFFER occasionally decides to �get�
and then later actually moves the most recently sent value �losing the previous
ones�� �Similar e�ects would occur between the BUFFER and the RECEIVER��
Thus the component modules can be combined in a variety of ways� giving some



HOLD PREVIOUS
MODULE SENDER �a� INT	 f

VAR readys� BOOL INIT false
TRANS produce�

enable� � readys
relation� �a
 � � � a
 � 
	 � readys
 � true

TRANS send�
enable� readys
relation� readys
 � false

g
MODULE BUFFER�c�d� INT	 f

VAR cok� BOOL INIT true� dok� BOOL INIT false
TRANS get�

enable� cok
relation� cok
 � false

TRANS move�
enable� �cok � �dok
relation� d
 � c � cok
 � true � dok
 � true

TRANS put�
enable� dok
relation� dok
 � false

g
MODULE RECEIVER�b� INT	 f

VAR vr� INT
readyr� BOOL INIT true

TRANS consume�
enable� � readyr
relation� vr
 � b � readyr
 � true

TRANS receive�
enable� readyr
relation� readyr
 � false

g
MODULE COMB �	 f

SYSTEM
VAR s�t� INT
�SENDER�s	 j�send�get	j �BUFFER�s�t	 j�put�receive	j RECEIVER�t			

g

Fig� �� A bu�er system in CDL



of the advantages of process algebra along with the simplicity of a collection of
transitions�

� The Semantics of Systems and Modules

In order to compare a model in one notation and its translation to a di�erent
notation� a uniform semantic basis is required� We will assume that for each
notation for describing models a fair execution tree semantics can be derived�

Consider the case of a system model given in CDL as a collection of textual
transitions� each with an applicability condition and a state transformation�
As seen� such a collection de�nes a module� and such modules can be composed
into new modules synchronously� asynchronously� or with partial synchronization
�handshaking�� The semantics of such a system and of a module can be de�ned
in two stages� First� for semantic purposes only� each de�nition of a module
can be shown equivalent to a textually expanded ���attened�� version� where
the module is a list of transitions� replacing instantiations of modules by the
collections of transitions they de�ne �including substitution of actual parameters
in place of formal ones� and renaming local variables when necessary to avoid
con�icts��

Now we can de�ne the semantics of such a ��at� module with transitions
given explicitly� by considering the execution sequences �also called traces� that
it de�nes� A state of such a system clearly contains the constants and variables
declared globally� and also those that follow from the instantiations of modules
and their local variables�

Turning to the textual transitions� recall that each is a triple hI� P�Ri with
an identi�er I� a precondition P over states� and a relation R between pairs of
states� The intended semantics is that a transition can be activated in a state s
if s satis�es P � and such an activation can be seen as constructing a new system
state s� from the existing state s of the system� where the pair �s� s�� satis�es
R� For a system or module de�ned by a collection of transitions� the possible
execution sequences are de�ned by the sequences of states reached by successive
activations of transitions� starting from an initial state�

The initial state has all variable values unde�ned �e�g�� equal to a special
value ��� except those with initial values given in their declaration�

The execution sequences are organized into an execution tree� where each
state is the parent of the states reachable from it by activation of an enabled
transition� If all sequences have the same initial state� that is the root of the tree�
Otherwise� a root node with all variables unde�ned is added� and the possible
initializations are the only transitions enabled in that state� �An alternative view
would see the semantics as a forest of trees� each with its own initialization� but
the single�tree view has the advantage of treating the initializations like other
transitions� which can be helpful in some translations� The single�tree view has
the disadvantage that usual temporal logic assertions �including invariants� are
not intended to hold in the root if all its values are unde�ned�� Some of the paths
in this tree can be declared irrelevant due to an additional fairness restriction



that can remove in�nite paths �criteria for which restrictions are reasonable can
be found in �
��� This tree� with fairness restrictions� is the semantic interpreta�
tion of a system or module�

Other notations can also be given an execution tree semantics� allowing com�
parisons among translations� The correctness of a translation is de�ned relative
to such trees� and this semantics is su�cient for the speci�cation languages con�
sidered here�

Note that a richer semantics is possible� e�g�� one that includes what is known
as partial�order information� For example� if it is possible to ask which execution
sequences are equivalent to which other ones under independence of operations in
distributed processes� then semantic information on independence of operations
is needed �	
�	
�� This possibility is not considered further here�

In any case� it is important to note that the properties that are to be shown
about a system can in�uence how much of the information in an execution tree is
relevant� According to various possible conventions� the tree of a system is �equiv�
alent� to reduced versions that� for example� eliminate nonessential variables� or
remove hidden transitions� without otherwise a�ecting the system� Moreover� if
only linear�time temporal properties will be proven� then the set of traces can
be considered� and their organization into a tree structure is irrelevant� Fur�
thermore� if only invariants are of interest� then it is su�cient to consider the
set of reachable states� Such considerations will be crucial in understanding the
relations needed among models� as will be seen in the continuation�

As part of the speci�cation� additional restrictions can be added to de�ne
which traces are relevant� We have already seen that fairness assumptions can
be added on the semantic level� There are also contexts in which an assumption
of �niteness of the traces is appropriate� excluding the in�nite ones�

For speci�c notations� particularly those de�ning �nite�state systems� it will
be convenient to consider also a �nite representation of the execution tree by
means of a �nite state machine� In fact� an �equivalent� alternative semantic
basis could be the fair transition system notation used by �	���

� Issues in Translation

Translating between di�erent modeling paradigms requires �nding suitable so�
lutions for those modeling aspects that are available in one model but not in
the other� Translations generally attempt to keep the translated representation
of the model as similar as possible in structure and size to the original system�
and in addition to de�ne the relation among the underlying semantic models so
that wide categories of properties will be related in the two models�

Even when there is a blow�up in the model representation �the �program
text��� this does not necessarily imply a blow�up in the size of the model �given
as an execution tree or a state machine�� Below we consider some of the key issues
in translation that make it impossible to always maintain the same semantic tree
or state machine for a model and the result of its translation�



��� Synchrony and asynchrony

Notations for describing models commonly use three types of composition op�
erators between system modules� synchronous� asynchronous and partially syn�
chronous �for example� in generally asynchronous composition of processes with
handshaking communications�� Translating among models with the same type
of synchrony avoids the speci�c class of problems of this subsection�

However� we have to resolve cases in which the source model originates from
a system with one type of composition while the resulting target model is in a
notation that uses a di�erent one�

Assume that we want to translate a synchronous system into an asynchronous
tool� In a tool like Murphi� where no synchronization mechanism is available� the
translation is done by constructing a Murphi rule for each pair of transitions to
be synchronized� In SPIN� on the other hand� the original partition into mod�
ules can be preserved and synchronous execution of two transitions is simulated
using handshaking communication �via a zero�length bu�er� thus adding to the
statespace��

Translating from an asynchronous model into a synchronous model �like
SMV� in its most common mode of operation� should guarantee that� at each
step� at most one module executes a transition while all the others are idle� This
can be done by adding a self�loop on each state and a mechanism �a shared vari�
able like running in SMV or an additional process� that enables the transitions
of one module at a time� In this case the modules correspond to processes� Var�
ious fairness constraints can be added to eliminate traces in which all processes
are idling forever� one process idles forever �starvation�� or all processes idle at
the same step �so the global state repeats��

��� Unenabled transitions

In a typical transition system representation� each transition consists of an en�
abling condition� an optional assignment� and a relation that should hold among
values of variables before and after the execution of the transition�

The semantics of the typical transition system notation seen earlier guaran�
tees that a transition is executed only if its enabling condition holds and if its
�nal values satisfy the relation� A precise translation should identify the values
for which the enabling condition and the relation hold and construct a transition
for these values only� This� however� may not be possible as an atomic operation
in the target notation�

One possible solution to this problem is to introduce a special fail state
in the target program� Transitions in the target program are extended with
a conditional statement that results in the original �nal values if these values
satisfy the needed relation� and otherwise results in the fail state� Assuming this
is the only change caused by the translation� the resulting semantic model has
transitions to the fail state added to the execution tree� and that state is a leaf
�or sink� if we view the addition as adding just one such state��



��� Atomicity of transitions

In many notations� transitions are considered atomic� This means that each
transition is performed in isolation� with no interference�

In Murphi each transition �called a rule� is also considered atomic� However�
there a transition can be de�ned by any C program� When such a complex
transition is translated into a notation with a �ner grain of atomicity �e�g�� where
each transition can be a single assignment to the state�� it must be partitioned
into a sequence of steps� A visible �ag �or its equivalent� is typically used to
indicate that the intermediate states do not occur in the original model� and are
an unavoidable result of the di�erence in the possible grain of atomicity�

In other tools� like SPIN and LOTOS atomic actions are generally more
restricted� SPIN� however� includes a mechanism to de�ne a sequence of state�
ments as atomic� Thus� it is straightforward to maintain the atomicity of Murphi
transitions within SPIN� On the other hand� LOTOS does not have such a mech�
anism� As a result� a translation from any notation with large�grained transitions
to LOTOS requires providing a mutual exclusion mechanism that enables the
translation of a transition to run from start to end with no intermediate execu�
tion of actions from other transitions�

��� Variables with unspeci�ed next values

Models of computation di�er also by their convention concerning variables whose
next�state value has not been speci�ed by the executed transition� One con�
vention� usually taken by asynchronous models� assumes that such variables
keep their previous values� This is natural in software� where an assignment to
one variable leaves the others unchanged� Another convention� common to syn�
chronous models� assumes that the unassigned variables can nondeterministically
assume any value from their domain� This is common in hardware descriptions�
because then all options are left open for a variable not updated in one compo�
nent to be changed in a parallel �synchronously executed� component� and still
obtain a consistent result�

If the �rst convention has been taken and we translate the program into a
model where the second holds� then for every transition the resulting program
will have to contain an explicit assignment of the previous value for every vari�
able not already explicitly rede�ned� For the other direction �from a model with
any value as a default to one that keeps the previous value�� we could use nonde�
terministic assignments� if they are available in the target model� Otherwise� the
resulting program could contain a choice among all possible explicit assignments�
for each of the possible values in the domain� Here the blow�up in the size of the
resulting program is unavoidable� and auxiliary variables are often needed� but
at least the semantics does not otherwise change�

��� Partitioning into Components

Partitioning into components �modules� processes� etc�� di�ers conceptually among
languages because they are driven by diverse concerns� In many notations ori�



ented towards programming languages� a component is task�oriented� and a task
can change the values of several variables� In hardware description languages
like SMV� however� it is more common to collect all possible changes to a single
variable into one component� A component then describes� for example� all pos�
sible changes to a given register� Such di�erences sometimes make it di�cult to
maintain the modular structure of the original system� and may force introduc�
ing variables or operations that are global under the partitioning advocated by
the target notation�

��	 State extensions

The addition of a visible �ag� or the need to globally declare variables that orig�
inally were local in a notation with local modules� or the addition of an explicit
mutual exclusion mechanism to simulate di�erences in the grain of atomicity
all mean that the state of the translated program must often be extended� An�
other common problem is that the target notation may not have the sequencing
options of the source� Then the control �ow of the original computation is some�
times maintained by adding a program counter as an explicit part of the state�
and using it in the enabling condition of the transitions�

Such extensions to the state add variables that are needed to express the
model� but usually are not part of the original assertions in the speci�cation of
the source� Such variables are called nonessential for the purposes of assertions
about the model� even though they are needed to express the model itself� Of
course� translations can also eliminate such variables� as when explicit control
variables are replaced by the sequencing of translated steps� in a notation that
does have expressive control commands�

� Versions and additional information

In order to deal with the di�culties seen in the previous section� the core of
VeriTech does not simply include the result of a translation from one of the
component notations� Instead� it has information about multiple versions of the
system being considered� as well as information gathered during the transla�
tion process� which is often not re�ected in the translated code� Some of the
information that connects the source and target codes of a translation are�


 state correspondences and extensions� The variables in the target are
connected to the variables in the source to which they correspond� When
the translation has extended the statespace by adding variables not in the
original� this information is recorded�


 hidden transitions� When atomic steps in the source are translated to a
collection of steps in the target� the intermediate states should be identi�ed
as internal� or hidden� This is because invariant properties corresponding to
those of the source are not expected to hold in such intermediate states�




 operation correspondences�When modularity has to be destroyed or re�
de�ned� the components that are the source of a combined action in the
translation should be identi�able� to facilitate error analysis and retrans�
lation� Thus when separate actions of components that are composed syn�
chronously in the source have to be made into a single step of the target�
because the target language does not support such composition� the fact that
this action came from two parts of the source should be recorded�

Some of the information above is recorded in the target code itself� by using
naming conventions and special prede�ned �ags� Other parts of the added infor�
mation can be in a log �le� Inclusion in the code is indicated when the assertions
to be made about the target model depend on the presence of such conven�
tions� This will be explained further when the faithful correspondence between
properties of the source and of the target is discussed� in Section ��

Note that the added information is useful both for translations into the core
language CDL� and for translations from CDL to a speci�c notation� The infor�
mation added in the translations between CDL and Petri nets can be found in
�	���

For CDL� the simplest naming convention is that identi�ers �variable names�
beginning in ��� are considered nonessential� because they were not in the source
program for which this CDL program is the target� but were rather generated
during the translation� This means that any translation from CDL or equivalent
core representation that eliminates such variables or updates them di�erently is
acceptable� as long as the other parts of the state are not a�ected in any way�
Since those variables are generated during the translation process of VeriTech�
and are not in the original system� they will not appear in any assertion about
the source system� and can be ignored for analysis purposes� except as they a�ect
the other variables�

Another convention is intended to aid in the treatment of control statements
in various notations� CDL itself does not have explicit control constructs� Vari�
ables called control counters enable ordering the enabling conditions of transi�
tions to implement sequential control� conditional� or loop statements from other
notations� Such variables are assumed to begin with the characters ��PC�� This
convention helps in the analysis and translation of CDL programs with such
variables�

It is possible to extend every state of a CDL system automatically with
�boolean� �ags� Here we consider only two possibilities relevant to our discussion�
The visible �ag can both appear in the precondition and be changed by the
relation� Only states for which visible is true will be considered as having to
satisfy speci�cation formulas� Other states are considered to be hidden� This
will allow de�ning di�erent grains of atomicity� and use what has been called
mini�steps �

� in de�ning more complex transitions�

The core handles the issue of unspeci�ed next values by allowing both of the
possible defaults discussed earlier� The HOLD PREVIOUS �ag remains globally
constant in the model� and is used to de�ne the next�state value of a variable
when it is not assigned by a transition� If HOLD PREVIOUS is false� then



such a variable is assumed by default to have arbitrary values� Thus if part
of the state is to be unchanged� that should be listed explicitly� as in x� �
x� Recall that this assumption is appropriate for modules that are composed
synchronously� On the other hand� maintaining the previous value is the natural
default for asynchronous compositions of modules� Thus if HOLD PREVIOUS
is true� unassigned variables are understood to maintain the previous value in
all transitions of the system� as in the example�

Note that states which are hidden �i�e�� for which the �ag visible is false� are
also nonessential�but the overall change of a series of transitions among hidden
states beginning and ending in a visible state must be the same as if there were
a single transition with the cumulative e�ect of the series but directly between
the visible states�

Above we showed that the source� the target� and additional information
gathered during the translation are needed� and thus should be recorded� There
also can be multiple CDL versions of a system� for example� where one could be
an abstraction of another� Such situations occur when an in�nite state program�
say including integers� is abstracted to one with only boolean variables� or when
some other form of reduction has been performed�

Besides the additional information gathered during translation� there is addi�
tional semantic information that can only be obtained through a deeper analysis
and understanding of the models� In particular� for each version� we also are
interested in the properties known to hold for them� say in temporal logic� and
in transformations among classes of properties that ensure faithfulness among
translations� as will be seen in Section �� Just like the other information� this can
be useful in optimizing translations� in tracing error analyses� and in deciding
which properties to check for di�erent versions of the model� These semantic
issues are treated below�

� Faithful Translations

Translations would ideally fully preserve the semantics of the translated system�
thus guaranteeing that the source and the target satisfy exactly the same prop�
erties� However� as already seen� the semantics of the translated model cannot
always be identical to that of the original�

Therefore we loosen the connection between the properties true of the source
and those true of the target� Assume we are given two models� M� and M��
possibly de�ned within two di�erent veri�cation tools� Further assume that the
models are related via some model�translation relation� We identify a set of asser�
tions about M� and a property�translation relation that connects the assertions
in the set of assertions about M� to assertions about M��

One relation among the translations is that for every assertion in the set�
if M� satis�es the assertion then M� satis�es the translated version of that
assertion� The translation is then called import faithful with respect to those
models and families of properties� We may alternatively establish that if the



translated assertion is true of M�� then the original assertion must have been
true about M�� This translation is then called back�implication faithful�

Of course� we may instead require a strongly faithful translation that satis�es
both of the conditions above�

We require faithfulness to be transitive so that a series of translations can
be considered� In particular� for general translation through a core notation� as
in VeriTech� it is su�cient that the translations of models and of families of
properties are faithful between di�erent tool notations and the core �in both
directions� perhaps for di�erent families of properties�� The faithfulness of the
translation from one tool to another will then result from transitivity arguments�

Formally� let M�� M� be two classes of models and L�� L� be sets of prop�
erties expressed as formulas in an assertion language for M� and M�� respec�
tively� Let TR � M� �M� be a model�translation relation indicating that a
model M� � M� is translated to a model M� � M�� Similarly� tr � L� � L� is
a property�translation relation that is total over L� �i�e�� so that each formula of
L� is in the relation tr��

TR and tr are import faithful forM��M�� L�� and L� if �Mi �Mi and fi �
Li� i � 
� 	� whenever TR�M��M�� and tr�f�� f��� then M� j� f� ��M� j� f��

TR and tr are back�implication faithful forM��M�� L�� and L� if �Mi �Mi

and fi � Li� i � 
� 	� whenever TR�M��M�� and tr�f�� f��� then M� j� f� ��
M� j� f��

TR and tr are strongly faithful for M�� M�� L�� and L� if �Mi � Mi and
fi � Li� i � 
� 	� whenever TR�M��M�� and tr�f�� f��� then M� j� f� ��M� j�
f��

A relation �rather than a function� is de�ned among the models in the de�ni�
tions of faithfulness because internal optimizations or �don�t care� situations can
lead to nondeterministic aspects in the translation� Thus� a single source model
may be translated to any one of several target programs� or di�erent source
models can be translated to the same target� Similar considerations hold for the
assertion transformations� Note that it follows from the de�nitions that if tr is
a function� it is total over L��

In this paper� we consider families of properties expressed as sublanguages of
various temporal logics� although other modes of expression are possible� In par�
ticular� various forms of automata with in�nite acceptance conditions are reason�
able alternatives� The sets of languages for which we de�ne faithfulness are not
necessarily subsets of the speci�cation languages used by the tools� For example�
a compiler translation from Spin into SMV �so we have TR�Spin� SMV �� could
be back�implication faithful for a transformation tr of properties expressible in
linear�time temporal logic� In words� if a linear�time temporal logic property
that is the second component in a pair satisfying tr is shown of an SMV model
that is the result of activating the compiler on a Spin source model� then the
�rst component will necessarily hold for the Spin source� This holds even though
the speci�cation language of SMV is the �restricted� branching�time logic CTL�
which cannot express everything expressible in linear�time temporal logic� In
such a situation� model checking �in SMV� of a transformed property in the



intersection of CTL and linear�time temporal logic will be meaningful for the
original Spin model and the appropriate source of the checked property� Clearly�
properties not in the range of tr are irrelevant for back�implication� Although
they may hold of the target model� they give no information about the source
model�

On the other hand� if we show that the translation from Spin to SMV is
import faithful for a transformation of all linear temporal logic safety properties
of Spin� then we can assume that the SMV model satis�es the transformed
versions of all safety properties already shown about the original model in Spin�

To establish that a �TR� tr� pair is faithful for two model notations and
subsets of temporal logic properties� semantic abstractions must be established�
Of course� the source and target models are given as code in di�erent model
description languages� and the translation works on the level of those codes�
In the abstract level we need� the semantic models of the source notation and
the target notation must be described� as must an abstraction of the model
translation� The translation abstraction must show the changes introduced to
the semantic model of the source in going to the target� as a transformation
on the semantic trees� Two examples of such changes could be that a single
transition in the source tree is replaced by a sequence of transitions in the target�
or that some of the in�nite paths of the source are replaced by �nite paths that
end in a specially designated fail state�

The transformation of temporal logic properties is given syntactically� where
the family of properties is also de�ned by a syntactic structure� For this purpose
the hierarchy of properties de�ned for normal forms of linear temporal logic
in �	�� can be used� For example� safety properties are characterized as being
equivalent to a linear assertion Gp� where p only has past operators or is a
property of a state with no modalities� Similarly� classes of properties seen in
branching�time logics can be useful �e�g�� �forall� CTL� that uses only A and
not E �
	��� Then it must be shown that the transformed assertion is necessarily
true of the target execution tree whenever the original is true of the source
tree �for importation� or that the original assertion is necessarily true of the
source tree whenever the transformed assertion is true of the target tree �for
back�implication��

As seen� extensions to the state add variables that are needed to express the
model� but usually are not part of the original assertions in the speci�cation of
the source� Such variables can be directly used in expressing the transformation
of assertions� as will be seen for the visible �ag� in the following section� This is
but one example of how the additional information can be used in de�ning the
property transformation and the relevant families of properties�

� Using Faithful Translations

Below we present an example of a model�translation relation TR and a property
transformation tr that are faithful for given models and families of speci�cations�



Consider a translation where a single action in the source is divided into
several target actions� due to di�erent grains of atomicity� Translations in this
family are called �re�nement translations�� Thus the target model will contain
intermediate states between the states of the original model� Also we assume
that the result program has the additional �ag �state component� called visible

which is turned on when the system is in a state from the original model�� and
turned o� when it is in one of the intermediate states�

De�nition� A path where all the states except the �rst and the last have a
false value for their visible �ag� will be called an intermediate path�

In a generic translation which does such re�nement� the result model is char�
acterized by having�
all of the state variables from the original model� plus an additional visible �ag�
all the states of the original model� with a true value for the visible �ag�
additional states� which have a false value for their visible �ag�
The result model satis�es the following conditions�

� For every two states which were connected by an edge in the original model�
there exists at least one intermediate path between them in the result model�
	� For every two states which were not connected by an edge in the original
model� there is no intermediate path between them in the result model�

� There are no loops of only non�visible states �and thus there cannot be an
in�nite sequence of only non�visible states in the model paths��
�� In the paths of the result model the non�visible states always must appear
as a �nite sequence between visible states and not at the end of a path �This
demand is a consequence of the previous one when the result model contains
only in�nite paths��
Note that we do not demand here that the non�visible intermediate paths for
di�erent pairs of states are distinct� Di�erent intermediate paths can share the
same non�visible states� Also� there can be several intermediate paths instead of
one original edge�

The property transformation We de�ne a property transformation for CTL 
that is strongly faithful for all re�nement translations� The transformation� tr�
will be de�ned by an induction on the structure of the formula�

	 for ��p an atomic proposition� tr�p��p
	 tr�
���� 
tr����
	 tr��� � ����tr���� � tr����
	 tr��� � ����tr���� � tr����
	 tr�X ����X�
visible U �visible�tr������
	 tr�G ����G�visible 
tr�����
	 tr��� U �����visible 
tr����� U �visible�tr�����
	 tr�A ����A tr����
	 tr�E ����E tr����

� We refer to a state from the original model� and the corresponding state in the result
model as the same state� although they are not exactly the same � in this example�
the state from the result has the additional visible �ag� which is true�



The proof that this transformation is indeed strongly faithful for operation
re�nements as de�ned above� is by induction on the structure of the formulas�
and appears in �
��

However� this is not always an acceptable transformation� Often the tool
of the target speci�cation language can only operate for some sub�language of
CTL � If this is the case then we will not be able to use back�implication for all
the properties in the source language of the transformation� but only those with
a transformation result in the language of properties on which the tool of the
target speci�cation language can operate�

Assume we are using a property transformation tr de�ned for a source lan�
guage L� �for simplicity� we assume here that tr is a function�� together with
a translation to some model speci�cation language with a veri�cation tool that
can verify properties from some language L�� We will de�ne the e�ective source

language to be all the properties � from L� such that tr����L��
When using a transformation with a translation to a speci�c language� then

often� what we really want to maximize is not the source language of the trans�
formation� but the e�ective source language�

It may be the case that we have two di�erent strongly faithful transformations
for the same translation� with di�erent source languages �groups of properties��
Now we see that the one with the larger source language is not necessarily the
better one� because it may have a smaller e�ective source language�

For LTL� the transformation given for CTL� is e�ective� because if we begin
with an LTL formula� the transformation will result in one too� However� if the
target only can verify properties in CTL� then the given transformation is not
optimal� For many properties� the result will not be in CTL� and thus cannot be
veri�ed in the target� A better transformation in this case would be to replace
an innermost AGp� where p is atomic� with AG�visible 
 p� and an innermost
AFp� again where p is atomic� by AF �visible�p�� This will yield a larger e�ective
source language when the target is CTL�

Other generic translations can also be analyzed to produce generic property
transformations that can be proven faithful� Moreover� the property transforma�
tions that correspond to the composition of numerous translation steps can be
treated uniformly� to treat more complex translations�

� Conclusions

Translations amongmodels are already common� and their use is growing rapidly�
The ability to easilymove amongmodels� properties of interest� and tools extends
the practical applicability of formal methods� and reduces the dependence on a
single tool� Basic issues in translation� such as the di�ering grains of atomicity�
synchronization primitives� treatment of failures� �niteness or in�nity of the state
space of the model� often force the models and structure of translations to di�er
from the original� Thus the framework of a faithful translation between both
models and properties is essential to express necessary relations among models
and properties of those models�



In practice� many translations involve more than one of the types of di�er�
ences among models that were presented� Thus combinations of the transfor�
mations of properties are needed to guarantee faithful relations for interesting
classes of properties� For example� one version of a model could concentrate on
a particular group of variables� abstracting other parts of the system� while an�
other model could concentrate on di�erent variables� These models are siblings

where neither is an abstraction of the other� but both are di�erent re�nements of
some �perhaps implicit� abstraction� Such models should be related by faithful
classes of transformed properties� even though in other frameworks they are not
comparable�

The additional information gathered during translation and from semantic
analysis of faithful transformations also needs to be further developed� In par�
ticular� much work remains to be done in understanding how such information
can be exploited to aid in later translations� in connecting slightly changed ver�
sions� and in tracing errors discovered in the target program back to errors in
the source�

References


� K� R� Apt� N� Francez� and S� Katz� Appraising fairness in languages for distributed
programming� Distributed Computing� ��������
� 
����

�� Saddek Bensalem� Vijay Ganesh� Yassine Lakhnech� C�esar Mu�noz� Sam Owre�
Harald Rue�� John Rushby� Vlad Rusu� Hassen Sa��di� N� Shankar� Eli Singerman�
and Ashish Tiwari� An overview of SAL� In C� Michael Holloway� editor� LFM
����� Fifth NASA Langley Formal Methods Workshop� pages 
���
��� Hampton�
VA� June ����� Available at http���shemesh�larc�nasa�gov�fm�Lfm�����Proc��

�� M� Berg and S� Katz� Property transformations for translations� Technical Report
CS��������� Computer Science Department� The Technion� �����

�� N� Bjorner� A� Browne� E� Chang� M� Colon� A� Kapur� Z� Manna� H�B� Simpa�
and T�E� Uribe� Step� The stanford temporal prover � user
s manual� Technical
Report STAN�CS�TR����
���� Department of Computer Science� Stanford Uni�
versity� November 
����

�� T� Bolognesi and E� Brinksma� Introduction to the ISO speci�cation language
LOTOS� Computer Networks and ISDN Systems� 
�������� 
����

�� T� Bolognesi� J�v�d� Legemaat� and C�A� Vissars �eds�	� LOTOSphere� software
development with LOTOS� Kluwer Academic Publishers� 
����

�� G� Brat� K� Havelund� S� Park� and W� Visser� Model checking programs� In
In IEEE International Conference on Automated Software Engineering �ASE��
September �����

�� J�R� Burch� E�M� Clarke� K�L� McMillan� D� Dill� and L�J� Hwang� Symbolic model
checking� 
��� states and beyond� Information and Computation� ���
���
��� 
����

�� E�M� Clarke� O� Grumberg� and D�A� Peled� Model Checking� MIT press� December

����


�� C� Demartini� R� Iosif� and R� Sisto� dSPIN� A dynamic extension of SPIN� In
SPIN� pages ��
����� 
����



� O� Grumberg and S� Katz� VeriTech� translating among speci�cations and ver�
i�cation tools�design principles� In Proceedings of third Austria�Israel Sym�
posium Software for Communication Technologies� pages 
���
��� April 
����
http���www�cs�technion�ac�il�Labs�veritech��




�� O� Grumberg and D�E� Long� Model checking and modular veri�cation� ACM
Trans� on Programming Languages and Systems� 
���	�������
� 
����


�� D� Harel� Statecharts� a visual formalism for complex systems� Science of Computer
Programming� ����
����� 
����


�� D� Harel� H� Lachover� A� Naamad� A� Pnueli� M� Politi� R� Sherman� A� Shtull�
Trauring� and M� Trakhtenbrot� Statemate� a working environment for the develop�
ment of complex reactive systems� IEEE Trans� on Software Eng�� 
���	������
��
April 
����


�� J� Hatcli� and M� Dwyer� Using the bandera tool set to model�check properties
of concurrent java software� In International Conference on Concurrency Theory
�CONCUR�� June ���
� Invited tutorial paper�


�� K� Havelund and T� Pressburger� Model checking JAVA programs using JAVA
PathFinder� International Journal on Software Tools for Technology Transfer�
���	�������
� �����


�� C�A�R� Hoare and He Jifeng� Unifying Theories of Programming� Prentice�Hall�

����


�� G� Holzmann� Design and Validation of Computer Protocols� Prentice�Hall Inter�
national� 
��
�


�� G�J� Holzmann and D� Peled� The state of SPIN� In Proceedings of CAV	
� volume


�� of LNCS� pages �������� Springer�Verlag� 
����

��� C�N� Ip and D�L� Dill� Better veri�cation through symmetry� Formal Methods in
System Design� ���
���� 
����

�
� S� Katz� Re�nement with global equivalence proofs in temporal logic� In D� Peled�
V� Pratt� and G� Holzmann� editors� Partial Order Methods in Veri�cation� pages
������ American Mathematical Society� 
���� DIMACS Series in Discrete Mathe�
matics and Theoretical Computer Science� vol� ���

��� S� Katz� Faithful translations among models and speci�cations� In Proceedings of
FME����� Formal Methods for Increasing Software Productivity� volume ���
 of
LNCS� pages �
������ Springer�Verlag� ���
�

��� S� Katz and D� Peled� Interleaving set temporal logic� Theoretical Computer
Science� ����������� 
���� Preliminary version appeared in the �th ACM�PODC�

����

��� K� Korenblat� O� Grumberg� and S� Katz� Translations between texual transition
systems and petri nets� In Third international conference on Integrated Formal
Methods �IFM
���� Turku� Finland� May �����

��� R�P� Kurshan� Computer�aided Veri�cation of Coordinating Processes� Princeton
University Press� 
����

��� Z� Manna and A� Pnueli� The Temporal Logic of Reactive and Concurrent Systems�
Speci�cation� Springer�Verlag� 
����

��� K� L� McMillan� Symbolic Model Checking� An Approach to the State Explosion
Problem� Kluwer Academic Publishers� 
����

��� http���wwwbrauer�informatik�tu�muenchen�de�gruppen�theorie�KIT��
��� Sam Owre� John Rushby� Natarajan Shankar� and Friedrich von Henke� Formal

veri�cation for fault�tolerant architectures� Prolegomena to the design of PVS�
IEEE Transactions on Software Engineering� �
��	�
���
��� February 
����

��� B� Potter� J� Sinclair� and D� Till� An introduction to Formal Speci�cation and Z�
Prentice Hall� 
��
�

�
� W� Reisig� Elements of Distributed Algorithms� Modeling and Analysis with Petri
Nets� Springer�Verlag� 
����


