A Framework for Translating Models and
Specifications *

Shmuel Katz and Orna Grumberg

Computer Science Department
The Technion
Haifa, Israel
{katz,orna}@cs.technion.ac.il

Abstract. The reasons for translating a description of a model in one
notation into another are reviewed. This includes both translating en-
tire models and describing different aspects of a system using different
notations.

In order to demonstrate the ideas, the VeriTech framework for translation
is described. A system being analyzed is seen as a collection of versions,
along with a description of how the versions are related. The versions are
given in different notations connected through a core notation by compil-
ers from and to the notations of existing tools and specification methods.
The reasons that translations cannot always be exact are analyzed, based
on experience with over ten separate compiler translations among formal
methods notations. Additional information gathered during translation
is described, to facilitate optimizations, error tracing, and analysis.

The concept is presented of a faithfulrelation among models and families
of properties true of those models. In this framework families of prop-
erties are provided with uniform syntactic transformations, in addition
to the translations of the models. This framework is shown appropriate
for common instances of relations among translations previously treated
in an ad hoc way. The classes of properties that can be faithful for a
given translation provide a measure of the usefulness of the translation.
Open research directions are suggested concerning faithful transforma-
tions, additional information, error tracing, and optimizing translations.

1 Introduction

In this survey paper we present the possible uses of (direct or indirect) trans-
lations among model descriptions, show some of the difficulties that must in-
evitably arise during translation, describe the design of the VeriTech translation
framework and how it can alleviate some of the obstacles to translation, and pro-
vide a theoretical basis to quantify the quality of such translations in a formal
framework using faithful translations and syntactic transformations of proper-
ties. Material is included from [22,11,24] and [3].

* This research was partially supported by the Fund for the Support of Research at the
Technion and by the Bar-Nir Bergreen Software Technology Center of Excellence.

1.1 Existing translations

Translations among notations for representing models and hardware designs have
become common, although often there is no available documentation. Such trans-
lations exist from SMV [8,27], to PVS[29], from Murphi[20] to PVS, from SMV
to Spin[18,19], from several notations into Cospan[25], from automata-based
notation into Petri nets, and among many other tools. Moreover, individual ver-
ification tools often have multiple input formats for models, and internal source-
to-source translations. For example, the STeP system [4] and the exposition in
[26] allow presenting designs either in a simple C-like programming language, or
using a modular collection of textual transitions, and internally translates from
the former representation to the latter. In addition to translations among for-
mal methods tools, there is increasing interest in translating standard hardware
design notations such as Verilog or VHDL (or internal industrial notations) to
and from the notations of existing model-checking tools.

Translations are used also in the context of software verification. The Ban-
dera tool set [15] translates Java source code to the model checking tools SMV,
Spin, and dSpin [10] and also to the Java PathFinder software verification tool
(JPF) [16,7] which has its own translation to Spin.

Recently, the VeriTech project has been developed as a general framework for
translation through a simple intermediate notation [11]. The VeriTech project
defines a core design language (CDL) in which modules can be combined in
synchronous, asynchronous or partially synchronous manners, and each module
is a set of first-order transitions. The VeriTech project provides translations
between existing notations and the core language, in both directions. At present,
VeriTech includes translations between SMV, Murphi, Spin, STeP, Petri-nets[31]
and the core design language, and work is underway to incorporate, among
others, PVS and LOTOS[6]. Other such frameworks include the SAL system [2],
and the Model Checking Kit[28].

1.2 Why translate?

Translations among model notations can be used in a variety of ways, and these
influence what needs to be true about a translation. Most obviously, a particular
property to be verified can be attacked with different tools. For example, if an
initial attempt to model check a temporal logic property of a system should
fail because of the size of the state space, it is possible to translate the model
(perhaps in stages, through an intermediate notation) to a BDD-based model
checker that can handle the problem. Alternatively, the source could be a model
description in the SMV language, but for which attempts to verify a property
have failed, and the target could be a description appropriate for a tool with
a theorem-proving approach like PVS or STeP. Of course, proving the desired
property in such a target requires using inductive methods and is not automatic,
but at least is not sensitive to the size of the data domain and will not suffer from
the state-explosion problem. We shall also see that in many relevant translations
the property to be proven in target models will not be identical to the property

asserted about the original source model. Nevertheless, a back-implication is
desired: a property should necessarily hold in the source whenever the related
property holds in the target.

In addition, unrelated properties can each be established for a system using
a different verification tool, choosing the most convenient tool for each property.
This should encourage using different verification tools for various aspects of
the same system. For example, a propositional linear-time temporal property
might be proven for a finite-state model of the system using a linear-time model
checker like Spin. The system model can then be translated to a branching-time
model checker like SMV for properties of that type. It can also be translated to
a language with real-time notation, such as STeP, or to a theorem proving envi-
ronment like PVS to treat infinite domains and first-order temporal properties.
In this case, we would like to import some variant of the properties proven about
the source into the target, so that they can be assumed there and used to help
prove the new desired property.

Translation is also useful when an infinite or large finite model needs to be
reduced prior to applying model checking. For methods like abstraction [9] and
convenient executions [21] the system can first be modeled in full and sent to a
theorem prover in which the abstraction or the choice of convenient executions is
shown ‘correct’. That is, the reduced version is shown to preserve the properties
of interest, so that if the reduced version satisfies them, so does the original. The
reduced version of the model (i.e., the abstraction or the convenient executions)
can then be translated to a model checking tool that will verify temporal prop-
erties. Here again we would like to have back implication that is an essential
link in guaranteeing the correctness of the proved temporal properties for the
full model.

As already noted, there are also many translations to and from design nota-
tions that do not have associated verification tools. For hardware these include
Verilog and VHDL, and for software, Bandera, JPF, and Statecharts [13,14]
(which provides a hierarchical graphical state-transformation software design no-
tation). Translating from such a notation to one with associated model-checking
or other verification tools allows checking properties of existing designs, while a
translation in the other direction can introduce a verified high-level design into
a development process.

1.3 Semantic issues

The quality of a translation depends on guaranteeing a close relation between
the properties true of the source and those true of the target. This can be used to
define the ‘correctness’ of a model translation. As seen above, the relation among
properties can be used in either direction: we may want to ‘import’ versions of
properties already guaranteed true of the original model into the resulting one
(so they can be used in showing additional properties without being themselves
reproven) or we may want to know that properties shown about the resulting
model imply related properties in the original model.

Ideally, the semantic models (e.g., the execution trees) underlying the nota-
tions would be identical, making the question trivial in either direction. However,
we demonstrate that this is often impossible. In the broader framework proposed
here, a translation and transformation of properties will be faithful with respect
to families of properties represented as classes of formulas in some temporal logic
so that if property X is true of one model, then property Y will be true of the
other.

The quality of translations also 1s related to the modularity and readability of
the target model. That is, a desirable property of a translation is that it maintain
the modularity of the source, and not lead to an explosion in the number of lines
of code, relative to the source. Identifying inherent differences; and minimizing
their influence, is crucial to effective translation among notations for describing
models.

Investigation of these relations can be seen as a step in the research direction
proposed in [17], to unify theories of programming. Here those theories used to
describe models for formal verification tools are emphasized, rather than full-
fledged programming languages.

1.4 Organization of the paper

In Section 2 the design of the VeriTech project is described, as an example of a
general translation framework, and one way to treat the many translation issues
that arise. In Section 3 the semantic assumptions we use to compare source and
target models are defined, based on fair execution trees as a common underlying
semantics. In Section 4, we identify the translation issues that prevent a system
and its translation from having identical semantics and thus satisfying the exact
same properties. Translations also can lead to loss of the modular structure of
the original in translation, and to a ‘code explosion’ problem, where the number
of lines of code increases radically during translation. The added information
that can alleviate these difficulties is described in Section 5.

The notion of a faithful relation among models and specifications is defined
formally in Section 6, with three variants. We then demonstrate in Section 7
how such a faithful transformation looks for a common example of the inherent
model incompatibilities seen in the translation issues. In the Conclusions, some
research directions in this area are suggested.

2 The design of VeriTech and CDL

The VeriTech project facilitates translations of problem statements from one
formal specification notation to another. A key element in the design of this
project is an intermediate core design language denoted CDL, described below.
Each notation has compiler-like translation programs to and from CDL, thus
requiring only 2n translations in order to achieve all of the possible n? relations
among n different notations.

The core description should facilitate textual analysis and information gath-
ering, transformations to alternative forms, and translations to and from other
notations. The core actually has multiple versions of a system, and additional
information connecting the versions, but discussion of those parts will be post-
poned to Section 5, after the semantics and differences among notations are
considered.

In CDL emphasis is put on a variety of synchronization methods and possi-
bilities for instantiating declarations of modules with different parameters. On
the other hand, internal control structures common in programming languages
(conditionals, looping statements, etc.) are not included in CDL, and will be
encoded using program counter variables.

The core design language of VeriTech is based on collections of textual transi-
tions, organized in modules. The modular transition system for the core incorpo-
rates ideas from state transition systems (especially the internal representation
in the STeP system [4]), Z schemas [30], and LOTOS [5,6] composition oper-
ators. It is intended to deal with the issues outlined above, and to facilitate
translations. Note that it is not particularly intended for direct human interface.

A system in CDL is composed of global declarations of types, constants, and
variables, and declarations of the components of the system, which are called
modules. A simple two place buffer example is given in Figure 1, and is explained
below. The syntax and semantics of the globally declared types, constants, and
variables are entirely standard. Module declarations are at the top level of a
system, and are not nested. One module has the special designation SYSTEM
(the COMB module in the example) to indicate that it defines the entire system.
Each module declaration has a name, formal parameters, variable declarations,
and a body that defines a collection of textual transitions, as described below.
Local variables and their types can be declared for each module. Every variable
name appearing within the body of a module declaration should be declared
globally, declared as a local variable of the module, or be a formal parameter.
The basic element of the body of a module is a transition defined as a triple
= (I, P, R), where I is an identifier (called the name of the transition), P is
a predicate over states called the precondition or enabling condition, and R is a
relation between states called the transition relation. The relation R is written
as a logical formula including unprimed and primed versions of state variables.
It is also optionally possible to write the relation as an assignment to the primed
versions in terms of the unprimed ones, when appropriate. As will be explained
in Section 3, the intuitive interpretation of a transition is that if the system is
in a state that satisfies the transition’s precondition, then it can be activated,
which means that the state before and the state after the activation satisfy the
transition relation, where the unprimed versions of variables relate to the state
before the activation, and the primed versions represent the state afterwards.

The relation R should be total for the states of the system satisfying P.
That is, if state s satisfies P then there exists a state s’ such that the pair (s, s’)
satisfies R. This is guaranteed by automatically adding to the precondition of

each transition the requirement that there exist values so that the relation can
be satisfied. Otherwise, the transition is not enabled in the state.

A module body can be most simply specified by listing such transitions within
a pair of brackets (as in the three first modules of the example).

One module can be defined in terms of others (as in the COMB module),
by using instantiations of modules, but the definitions cannot be recursive. An
instantiation of a module 1s created by listing the name of the module with
actual parameters (variable names) in place of the formal ones, in the body of
another module. In this case, it 1s as if a version of the module with the actuals
substituted for the formals has been created. If this creates any conflicts between
the actual parameters and local variable names, a systematic renaming is made
of the local variables. Note that the effect of a variable common to two module
instantiations, but not global to the system, can be attained by using the same
actual parameter for two module instantiations in the same body (as is done with
s in the instantiations of SENDER and BUFFER inside the body of COMB).

There are three composition operators used in combining instantiations of
modules.

P|||Q is called asynchronous composition, and is defined semantically as the
union of the transitions in P and in), where P and () are instantiations of
modules with actual parameters. As noted above, a variable common to the in-
stantiations is defined by using the same actual parameter in both instantiations.

P||Q is called synchronous composition and is defined as the cross product
of the transitions in P and in (. The cross product of two transitions has a
precondition of the conjunction of their preconditions, and a relation that is the
intersection of the two relations (the conjunction of the relations written as log-
ical formulas). From the definition of a transition, it follows that elements in the
cross product for which the precondition is false, or for which the relation cannot
be satisfied when the precondition holds, cannot be activated as transitions, and
thus can be removed.

P|s_set|Q is partial synchronization, where the synchronization set s_set is a
set of pairs of names of transitions, with the first from P and the second from
(. The module is defined as the cross products of the pairs of transitions in the
list, plus the union of the other transitions from P and @ that do not appear in
the list.

The COMB module has partial synchronization between the send and get
transitions of the SENDER and BUFFER modules, respectively. The two tran-
sitions can be jointly executed when both of the enabling conditions of those
transitions are true, and the result is the intersection of the results of those
transitions. Otherwise those specific transitions cannot be taken. Another sys-
tem could be defined by SENDER(s) ||| BUFFER(s,t) ||| RECEIVER(t). In
this case each transition remains independent, and the SENDER, can repeatedly
‘produce’ and ‘send’ s values, while the BUFFER, occasionally decides to ‘get’
and then later actually moves the most recently sent value (losing the previous
ones). (Similar effects would occur between the BUFFER and the RECEIVER).

Thus the component modules can be combined in a variety of ways, giving some

HOLD_PREVIOUS
MODULE SENDER (a: INT) {
VAR readys: BOOL INIT false
TRANS produce:
enable: — readys
relation: (2’ = 0 V a’ = 1) A readys’ = true
TRANS send:
enable: readys
relation: readys’ = false
}
MODULE BUFFER(c,d: INT) {
VAR cok: BOOL INIT true, dok: BOOL INIT false
TRANS get:
enable: cok
relation: cok’ = false
TRANS move:
enable: —cok A —dok
relation: d’ = ¢ A cok’ = true A dok’ = true
TRANS put:
enable: dok

relation: dok’ = false

MODULE RECEIVER(b: INT) {

VAR vr: INT

readyr: BOOL INIT true
TRANS consume:

enable: — readyr

relation: vr’ = b A readyr’ = true
TRANS receive:

enable: readyr

relation: readyr’ = false

}
MODULE COMB () {
SYSTEM
VAR s,t: INT
(SENDER(s) |(send,get)| (BUFFER(s,t) |(put,receive)] RECEIVER(t)))

Fig. 1. A buffer system in CDL

of the advantages of process algebra along with the simplicity of a collection of
transitions.

3 The Semantics of Systems and Modules

In order to compare a model in one notation and its translation to a different
notation, a uniform semantic basis is required. We will assume that for each
notation for describing models a fair execution tree semantics can be derived.

Consider the case of a system model given in CDL as a collection of textual
transitions, each with an applicability condition and a state transformation.
As seen, such a collection defines a module, and such modules can be composed
into new modules synchronously, asynchronously, or with partial synchronization
(handshaking). The semantics of such a system and of a module can be defined
in two stages. First, for semantic purposes only, each definition of a module
can be shown equivalent to a textually expanded (“flattened”) version, where
the module is a list of transitions, replacing instantiations of modules by the
collections of transitions they define (including substitution of actual parameters
in place of formal ones, and renaming local variables when necessary to avoid
conflicts).

Now we can define the semantics of such a ‘flat” module with transitions
given explicitly, by considering the execution sequences (also called traces) that
it defines. A state of such a system clearly contains the constants and variables
declared globally, and also those that follow from the instantiations of modules
and their local variables.

Turning to the textual transitions, recall that each is a triple (I, P, R) with
an tdentifier I, a precondition P over states, and a relation R between pairs of
states. The intended semantics is that a transition can be activated in a state s
if s satisfies P, and such an activation can be seen as constructing a new system
state s’ from the existing state s of the system, where the pair (s,s’) satisfies
R. For a system or module defined by a collection of transitions, the possible
execution sequences are defined by the sequences of states reached by successive
activations of transitions, starting from an initial state.

The initial state has all variable values undefined (e.g., equal to a special
value L), except those with initial values given in their declaration.

The execution sequences are organized into an execution tree, where each
state 1s the parent of the states reachable from it by activation of an enabled
transition. If all sequences have the same initial state, that is the root of the tree.
Otherwise, a root node with all variables undefined is added, and the possible
initializations are the only transitions enabled in that state. (An alternative view
would see the semantics as a forest of trees, each with its own initialization, but
the single-tree view has the advantage of treating the initializations like other
transitions, which can be helpful in some translations. The single-tree view has
the disadvantage that usual temporal logic assertions —including invariants— are
not intended to hold in the root if all its values are undefined.) Some of the paths
in this tree can be declared irrelevant due to an additional fairness restriction

that can remove infinite paths (criteria for which restrictions are reasonable can
be found in [1]). This tree, with fairness restrictions, is the semantic interpreta-
tion of a system or module.

Other notations can also be given an execution tree semantics, allowing com-
parisons among translations. The correctness of a translation is defined relative
to such trees, and this semantics is sufficient for the specification languages con-
sidered here.

Note that a richer semantics 1s possible, e.g., one that includes what is known
as partial-order information. For example, if it is possible to ask which execution
sequences are equivalent to which other ones under independence of operations in
distributed processes, then semantic information on independence of operations
is needed [23,21]. This possibility is not considered further here.

In any case, it is important to note that the properties that are to be shown
about a system can influence how much of the information in an execution tree 1s
relevant. According to various possible conventions, the tree of a system is ‘equiv-
alent’ to reduced versions that, for example, eliminate nonessential variables, or
remove hidden transitions, without otherwise affecting the system. Moreover, if
only linear-time temporal properties will be proven, then the set of traces can
be considered, and their organization into a tree structure is irrelevant. Fur-
thermore, if only invariants are of interest, then it is sufficient to consider the
set of reachable states. Such considerations will be crucial in understanding the
relations needed among models, as will be seen in the continuation.

As part of the specification, additional restrictions can be added to define
which traces are relevant. We have already seen that fairness assumptions can
be added on the semantic level. There are also contexts in which an assumption
of finiteness of the traces i1s appropriate, excluding the infinite ones.

For specific notations, particularly those defining finite-state systems, it will
be convenient to consider also a finite representation of the execution tree by
means of a finite state machine. In fact, an (equivalent) alternative semantic
basis could be the fair transition system notation used by [26].

4 Issues in Translation

Translating between different modeling paradigms requires finding suitable so-
lutions for those modeling aspects that are available in one model but not in
the other. Translations generally attempt to keep the translated representation
of the model as similar as possible in structure and size to the original system,
and 1n addition to define the relation among the underlying semantic models so
that wide categories of properties will be related in the two models.

Even when there is a blow-up in the model representation (the ‘program
text’), this does not necessarily imply a blow-up in the size of the model (given
as an execution tree or a state machine). Below we consider some of the key issues
in translation that make it impossible to always maintain the same semantic tree
or state machine for a model and the result of its translation.

4.1 Synchrony and asynchrony

Notations for describing models commonly use three types of composition op-
erators between system modules: synchronous, asynchronous and partially syn-
chronous (for example, in generally asynchronous composition of processes with
handshaking communications). Translating among models with the same type
of synchrony avoids the specific class of problems of this subsection.

However, we have to resolve cases in which the source model originates from
a system with one type of composition while the resulting target model is in a
notation that uses a different one.

Assume that we want to translate a synchronous system into an asynchronous
tool. In a tool like Murphi, where no synchronization mechanism is available, the
translation is done by constructing a Murphi rule for each pair of transitions to
be synchronized. In SPIN, on the other hand, the original partition into mod-
ules can be preserved and synchronous execution of two transitions is simulated
using handshaking communication (via a zero-length buffer, thus adding to the
statespace).

Translating from an asynchronous model into a synchronous model (like
SMV, in its most common mode of operation) should guarantee that, at each
step, at most one module executes a transition while all the others are idle. This
can be done by adding a self-loop on each state and a mechanism (a shared vari-
able like running in SMV or an additional process) that enables the transitions
of one module at a time. In this case the modules correspond to processes. Var-
ious fairness constraints can be added to eliminate traces in which all processes
are idling forever, one process idles forever (starvation), or all processes idle at
the same step (so the global state repeats).

4.2 TUnenabled transitions

In a typical transition system representation, each transition consists of an en-
abling condition, an optional assignment, and a relation that should hold among
values of variables before and after the execution of the transition.

The semantics of the typical transition system notation seen earlier guaran-
tees that a transition is executed only if its enabling condition holds and if its
final values satisfy the relation. A precise translation should identify the values
for which the enabling condition and the relation hold and construct a transition
for these values only. This, however, may not be possible as an atomic operation
in the target notation.

One possible solution to this problem is to introduce a special faul state
in the target program. Transitions in the target program are extended with
a conditional statement that results in the original final values if these values
satisfy the needed relation, and otherwise results in the fail state. Assuming this
is the only change caused by the translation, the resulting semantic model has
transitions to the fail state added to the execution tree, and that state is a leaf
(or sink, if we view the addition as adding just one such state).

4.3 Atomicity of transitions

In many notations, transitions are considered atomic. This means that each
transition is performed in isolation, with no interference.

In Murphi each transition (called a rule) is also considered atomic. However,
there a transition can be defined by any C program. When such a complex
transition is translated into a notation with a finer grain of atomicity (e.g., where
each transition can be a single assignment to the state), it must be partitioned
into a sequence of steps. A wvisible flag (or its equivalent) is typically used to
indicate that the intermediate states do not occur in the original model, and are
an unavoidable result of the difference in the possible grain of atomicity.

In other tools, like SPIN and LOTOS atomic actions are generally more
restricted. SPIN, however, includes a mechanism to define a sequence of state-
ments as atomic. Thus, it is straightforward to maintain the atomicity of Murphi
transitions within SPIN. On the other hand, LOTOS does not have such a mech-
anism. As a result, a translation from any notation with large-grained transitions
to LOTOS requires providing a mutual exclusion mechanism that enables the
translation of a transition to run from start to end with no intermediate execu-
tion of actions from other transitions.

4.4 Variables with unspecified next values

Models of computation differ also by their convention concerning variables whose
next-state value has not been specified by the executed transition. One con-
vention, usually taken by asynchronous models, assumes that such variables
keep their previous values. This is natural in software, where an assignment to
one variable leaves the others unchanged. Another convention, common to syn-
chronous models, assumes that the unassigned variables can nondeterministically
assume any value from their domain. This is common in hardware descriptions,
because then all options are left open for a variable not updated in one compo-
nent to be changed in a parallel (synchronously executed) component, and still
obtain a consistent result.

If the first convention has been taken and we translate the program into a
model where the second holds, then for every transition the resulting program
will have to contain an explicit assignment of the previous value for every vari-
able not already explicitly redefined. For the other direction (from a model with
any value as a default to one that keeps the previous value), we could use nonde-
terministic assignments, if they are available in the target model. Otherwise, the
resulting program could contain a choice among all possible explicit assignments,
for each of the possible values in the domain. Here the blow-up in the size of the
resulting program is unavoidable, and auxiliary variables are often needed, but
at least the semantics does not otherwise change.

4.5 Partitioning into Components

Partitioning into components (modules, processes, etc.) differs conceptually among
languages because they are driven by diverse concerns. In many notations ori-

ented towards programming languages, a component is task-oriented, and a task
can change the values of several variables. In hardware description languages
like SMV, however, it is more common to collect all possible changes to a single
variable into one component. A component then describes, for example, all pos-
sible changes to a given register. Such differences sometimes make it difficult to
maintain the modular structure of the original system, and may force introduc-
ing variables or operations that are global under the partitioning advocated by
the target notation.

4.6 State extensions

The addition of a wisible flag, or the need to globally declare variables that orig-
inally were local in a notation with local modules, or the addition of an explicit
mutual exclusion mechanism to simulate differences in the grain of atomicity
all mean that the state of the translated program must often be extended. An-
other common problem is that the target notation may not have the sequencing
options of the source. Then the control flow of the original computation is some-
times maintained by adding a program counter as an explicit part of the state,
and using it in the enabling condition of the transitions.

Such extensions to the state add variables that are needed to express the
model, but usually are not part of the original assertions in the specification of
the source. Such variables are called nonessential for the purposes of assertions
about the model, even though they are needed to express the model itself. Of
course, translations can also eliminate such variables, as when explicit control
variables are replaced by the sequencing of translated steps, in a notation that
does have expressive control commands.

5 Versions and additional information

In order to deal with the difficulties seen in the previous section, the core of
VeriTech does not simply include the result of a translation from one of the
component notations. Instead, it has information about multiple versions of the
system being considered, as well as information gathered during the transla-
tion process, which is often not reflected in the translated code. Some of the
information that connects the source and target codes of a translation are:

— state correspondences and extensions. The variables in the target are
connected to the variables in the source to which they correspond. When
the translation has extended the statespace by adding variables not in the
original, this information is recorded.

— hidden transitions. When atomic steps in the source are translated to a
collection of steps in the target, the intermediate states should be identified
as internal, or hidden. This is because invariant properties corresponding to
those of the source are not expected to hold in such intermediate states.

— operation correspondences. When modularity has to be destroyed or re-
defined, the components that are the source of a combined action in the
translation should be identifiable, to facilitate error analysis and retrans-
lation. Thus when separate actions of components that are composed syn-
chronously in the source have to be made into a single step of the target,
because the target language does not support such composition, the fact that
this action came from two parts of the source should be recorded.

Some of the information above is recorded in the target code itself, by using
naming conventions and special predefined flags. Other parts of the added infor-
mation can be in a log file. Inclusion in the code is indicated when the assertions
to be made about the target model depend on the presence of such conven-
tions. This will be explained further when the faithful correspondence between
properties of the source and of the target is discussed, in Section 6.

Note that the added information is useful both for translations into the core
language CDL, and for translations from CDL to a specific notation. The infor-
mation added in the translations between CDL and Petri nets can be found in
[24].

For CDL, the simplest naming convention is that identifiers (variable names)
beginning in ‘&’ are considered nonessential, because they were not in the source
program for which this CDL program is the target, but were rather generated
during the translation. This means that any translation from CDL or equivalent
core representation that eliminates such variables or updates them differently is
acceptable, as long as the other parts of the state are not affected in any way.
Since those variables are generated during the translation process of VeriTech,
and are not in the original system, they will not appear in any assertion about
the source system, and can be ignored for analysis purposes, except as they affect
the other variables.

Another convention is intended to aid in the treatment of control statements
in various notations. CDL itself does not have explicit control constructs. Vari-
ables called control counters enable ordering the enabling conditions of transi-
tions to implement sequential control, conditional, or loop statements from other
notations. Such variables are assumed to begin with the characters ‘&PC’. This
convention helps in the analysis and translation of CDL programs with such
variables.

It is possible to extend every state of a CDL system automatically with
(boolean) flags. Here we consider only two possibilities relevant to our discussion.
The wvisible flag can both appear in the precondition and be changed by the
relation. Only states for which wisible 1s true will be considered as having to
satisfy specification formulas. Other states are considered to be hidden. This
will allow defining different grains of atomicity, and use what has been called
mini-steps [13] in defining more complex transitions.

The core handles the issue of unspecified next values by allowing both of the
possible defaults discussed earlier. The HOLD_PREVIOUS flag remains globally
constant in the model, and is used to define the next-state value of a variable
when it is not assigned by a transition. If HOLD_PREVIOUS is false, then

such a variable is assumed by default to have arbitrary values. Thus if part
of the state is to be unchanged, that should be listed explicitly, as in z’ =
z. Recall that this assumption 1s appropriate for modules that are composed
synchronously. On the other hand, maintaining the previous value is the natural
default for asynchronous compositions of modules. Thus if HOLD_PREVIOUS
is true, unassigned variables are understood to maintain the previous value in
all transitions of the system, as in the example.

Note that states which are hidden (i.e., for which the flag visible is false) are
also nonessential-but the overall change of a series of transitions among hidden
states beginning and ending in a visible state must be the same as if there were
a single transition with the cumulative effect of the series but directly between
the visible states.

Above we showed that the source, the target, and additional information
gathered during the translation are needed, and thus should be recorded. There
also can be multiple CDL versions of a system, for example, where one could be
an abstraction of another. Such situations occur when an infinite state program,
say including integers, is abstracted to one with only boolean variables, or when
some other form of reduction has been performed.

Besides the additional information gathered during translation, there is addi-
tional semantic information that can only be obtained through a deeper analysis
and understanding of the models. In particular, for each version, we also are
interested in the properties known to hold for them, say in temporal logic, and
in transformations among classes of properties that ensure faithfulness among
translations, as will be seen in Section 6. Just like the other information, this can
be useful in optimizing translations, in tracing error analyses, and in deciding
which properties to check for different versions of the model. These semantic
issues are treated below.

6 Faithful Translations

Translations would ideally fully preserve the semantics of the translated system,
thus guaranteeing that the source and the target satisfy exactly the same prop-
erties. However, as already seen, the semantics of the translated model cannot
always be identical to that of the original.

Therefore we loosen the connection between the properties true of the source
and those true of the target. Assume we are given two models, M; and M>,
possibly defined within two different verification tools. Further assume that the
models are related via some model-translation relation. We identify a set of asser-
tions about M; and a property-translation relation that connects the assertions
in the set of assertions about M to assertions about M.

One relation among the translations is that for every assertion in the set,
if M, satisfies the assertion then M-, satisfies the translated version of that
assertion. The translation is then called import faithful with respect to those
models and families of properties. We may alternatively establish that if the

translated assertion is true of M5, then the original assertion must have been
true about M. This translation is then called back-implication faithful.

Of course, we may instead require a strongly faithful translation that satisfies
both of the conditions above.

We require faithfulness to be transitive so that a series of translations can
be considered. In particular, for general translation through a core notation, as
in VeriTech, it is sufficient that the translations of models and of families of
properties are faithful between different tool notations and the core (in both
directions, perhaps for different families of properties). The faithfulness of the
translation from one tool to another will then result from transitivity arguments.

Formally, let M1, M5 be two classes of models and £1, L5 be sets of prop-
erties expressed as formulas in an assertion language for M; and Ms, respec-
tively. Let TR C M3 x Mas be a model-translation relation indicating that a
model My € M is translated to a model My € Ma. Similarly, tr C £q x L2 is
a property-translation relation that is total over £, (i.e., so that each formula of
Ly is in the relation tr).

TR and tr are import faithful for My, Mo, L1, and Lo if VM; € M, and f; €
L;,i=1,2, whenever TR(My, M) and tr(fi, f2), then My E fi = Ms = fs.

TR and tr are back-implication faithful for My, Mo, £, and Lo 1f VM; € M;
and f; € L£;,¢ = 1,2, whenever TR(My, M) and tr(f1, f2), then M E fo =
M, E h.

TR and tr are strongly faithful for My, My, £1, and Lo if YM; € M; and
fi € Li,i=1,2, whenever TR(My, M3) and tr(f1, f2), then My E fi <= M> |
fa.

A relation (rather than a function) is defined among the models in the defini-
tions of faithfulness because internal optimizations or ‘don’t care’ situations can
lead to nondeterministic aspects in the translation. Thus, a single source model
may be translated to any one of several target programs, or different source
models can be translated to the same target. Similar considerations hold for the
assertion transformations. Note that it follows from the definitions that if ¢r is
a function, it is total over L.

In this paper, we consider families of properties expressed as sublanguages of
various temporal logics, although other modes of expression are possible. In par-
ticular, various forms of automata with infinite acceptance conditions are reason-
able alternatives. The sets of languages for which we define faithfulness are not
necessarily subsets of the specification languages used by the tools. For example,
a compiler translation from Spin into SMV (so we have TR(Spin, SMV')) could
be back-implication faithful for a transformation tr of properties expressible in
linear-time temporal logic. In words, if a linear-time temporal logic property
that is the second component in a pair satisfying ¢r is shown of an SMV model
that is the result of activating the compiler on a Spin source model, then the
first component will necessarily hold for the Spin source. This holds even though
the specification language of SMV is the (restricted) branching-time logic CTL,
which cannot express everything expressible in linear-time temporal logic. In
such a situation, model checking (in SMV) of a transformed property in the

intersection of CTL and linear-time temporal logic will be meaningful for the
original Spin model and the appropriate source of the checked property. Clearly,
properties not in the range of ¢{r are irrelevant for back-implication. Although
they may hold of the target model, they give no information about the source
model.

On the other hand, if we show that the translation from Spin to SMV is
import faithful for a transformation of all linear temporal logic safety properties
of Spin, then we can assume that the SMV model satisfies the transformed
versions of all safety properties already shown about the original model in Spin.

To establish that a (T'R,tr) pair is faithful for two model notations and
subsets of temporal logic properties, semantic abstractions must be established.
Of course, the source and target models are given as code in different model
description languages, and the translation works on the level of those codes.
In the abstract level we need, the semantic models of the source notation and
the target notation must be described, as must an abstraction of the model
translation. The translation abstraction must show the changes introduced to
the semantic model of the source in going to the target, as a transformation
on the semantic trees. Two examples of such changes could be that a single
transition in the source tree is replaced by a sequence of transitions in the target,
or that some of the infinite paths of the source are replaced by finite paths that
end in a specially designated fail state.

The transformation of temporal logic properties is given syntactically, where
the family of properties is also defined by a syntactic structure. For this purpose
the hierarchy of properties defined for normal forms of linear temporal logic
in [26] can be used. For example, safety properties are characterized as being
equivalent to a linear assertion Gp, where p only has past operators or is a
property of a state with no modalities. Similarly, classes of properties seen in
branching-time logics can be useful (e.g., ‘forall’ CTL* that uses only A and
not E [12]). Then it must be shown that the transformed assertion is necessarily
true of the target execution tree whenever the original is true of the source
tree (for importation) or that the original assertion is necessarily true of the
source tree whenever the transformed assertion is true of the target tree (for
back-implication).

As seen, extensions to the state add variables that are needed to express the
model, but usually are not part of the original assertions in the specification of
the source. Such variables can be directly used in expressing the transformation
of assertions, as will be seen for the wvisible flag, in the following section. This is
but one example of how the additional information can be used in defining the
property transformation and the relevant families of properties.

7 Using Faithful Translations

Below we present an example of a model-translation relation T'R and a property
transformation ¢r that are faithful for given models and families of specifications.

Consider a translation where a single action in the source is divided into
several target actions, due to different grains of atomicity. Translations in this
family are called ’refinement translations’. Thus the target model will contain
intermediate states between the states of the original model. Also we assume
that the result program has the additional flag (state component) called wvisible
which is turned on when the system is in a state from the original model', and
turned off when 1t is in one of the intermediate states.

Definition- A path where all the states except the first and the last have a
false value for their visible flag, will be called an intermediate path.

In a generic translation which does such refinement, the result model is char-
acterized by having:
all of the state variables from the original model, plus an additional wvisible flag;
all the states of the original model, with a true value for the wvisible flag;
additional states, which have a false value for their visible flag.

The result model satisfies the following conditions:

1. For every two states which were connected by an edge in the original model,
there exists at least one intermediate path between them in the result model.
2. For every two states which were not connected by an edge in the original
model, there is no intermediate path between them in the result model.

3. There are no loops of only non-visible states (and thus there cannot be an
infinite sequence of only non-visible states in the model paths).

4. In the paths of the result model the non-visible states always must appear
as a finite sequence between visible states and not at the end of a path (This
demand 1s a consequence of the previous one when the result model contains
only infinite paths).

Note that we do not demand here that the non-visible intermediate paths for
different pairs of states are distinct. Different intermediate paths can share the
same non-visible states. Also, there can be several intermediate paths instead of
one original edge.

The property transformation We define a property transformation for CTL*
that is strongly faithful for all refinement translations. The transformation, ¢r,
will be defined by an induction on the structure of the formula.

* for ¢=p an atomic proposition: tr(p)=p

* t?“("QSl): —nfr(qbl)

* tr(q/)l vV ¢)2):t7“(¢1) vV tr(d)z)
* tr(q/)l A ¢)2):t7“(¢1) A tr(d)z)
* tr(X ¢1)=X[-wisible U (visibleAtr(¢1))]
* tr(G ¢1)=Glvisible =tr(¢1)]
x tr(¢1 U ¢o)=[visible =tr(¢1)] U [visibleAtr(¢2)]
* tT(A ¢)1):A tr(q/)l)
* t?“(E ¢1):E tr(q/)l)

! We refer to a state from the original model, and the corresponding state in the result
model as the same state, although they are not exactly the same - in this example,
the state from the result has the additional wvisible flag, which is true.

The proof that this transformation is indeed strongly faithful for operation
refinements as defined above, is by induction on the structure of the formulas,
and appears in [3].

However, this is not always an acceptable transformation. Often the tool
of the target specification language can only operate for some sub-language of
CTL*. If this is the case then we will not be able to use back-implication for all
the properties in the source language of the transformation, but only those with
a transformation result in the language of properties on which the tool of the
target specification language can operate.

Assume we are using a property transformation ¢r defined for a source lan-
guage Ly (for simplicity, we assume here that tr is a function), together with
a translation to some model specification language with a verification tool that
can verify properties from some language L,. We will define the effective source
language to be all the properties ¢ from L, such that tr(¢)€L..

When using a transformation with a translation to a specific language, then
often, what we really want to maximize i1s not the source language of the trans-
formation, but the effective source language.

It may be the case that we have two different strongly faithful transformations
for the same translation, with different source languages (groups of properties).
Now we see that the one with the larger source language is not necessarily the
better one, because it may have a smaller effective source language.

For LTL, the transformation given for CT'L* is effective, because if we begin
with an LTL formula, the transformation will result in one too. However, if the
target only can verify properties in CTL, then the given transformation is not
optimal. For many properties, the result will not be in CTL, and thus cannot be
verified in the target. A better transformation in this case would be to replace
an innermost AGp, where p is atomic, with AG(visible — p) and an innermost
APFp, again where p is atomic, by AF (visible Ap). This will yield a larger effective
source language when the target is CTL.

Other generic translations can also be analyzed to produce generic property
transformations that can be proven faithful. Moreover, the property transforma-
tions that correspond to the composition of numerous translation steps can be
treated uniformly, to treat more complex translations.

8 Conclusions

Translations among models are already common, and their use is growing rapidly.
The ability to easily move among models, properties of interest, and tools extends
the practical applicability of formal methods, and reduces the dependence on a
single tool. Basic issues in translation, such as the differing grains of atomicity,
synchronization primitives, treatment of failures, finiteness or infinity of the state
space of the model, often force the models and structure of translations to differ
from the original. Thus the framework of a faithful translation between both
models and properties is essential to express necessary relations among models
and properties of those models.

In practice, many translations involve more than one of the types of differ-
ences among models that were presented. Thus combinations of the transfor-
mations of properties are needed to guarantee faithful relations for interesting
classes of properties. For example, one version of a model could concentrate on
a particular group of variables, abstracting other parts of the system, while an-
other model could concentrate on different variables. These models are siblings
where neither is an abstraction of the other, but both are different refinements of
some (perhaps implicit) abstraction. Such models should be related by faithful
classes of transformed properties, even though in other frameworks they are not
comparable.

The additional information gathered during translation and from semantic
analysis of faithful transformations also needs to be further developed. In par-
ticular, much work remains to be done in understanding how such information
can be exploited to aid in later translations, in connecting slightly changed ver-
sions, and in tracing errors discovered in the target program back to errors in
the source.

References

1. K. R. Apt, N. Francez, and S. Katz. Appraising fairness in languages for distributed
programming. Distributed Computing, 2:226-241, 1988.

2. Saddek Bensalem, Vijay Ganesh, Yassine Lakhnech, César Munoz, Sam Owre,
Harald Rue8, John Rushby, Vlad Rusu, Hassen Saidi, N. Shankar, Eli Singerman,
and Ashish Tiwari. An overview of SAL. In C. Michael Holloway, editor, LFM
2000: Fifth NASA Langley Formal Methods Workshop, pages 187-196, Hampton,
VA, June 2000. Available at http://shemesh.larc.nasa.gov/fm /I.fm2000/Proc/.

3. M. Berg and S. Katz. Property transformations for translations. Technical Report
(CS-2002-05, Computer Science Department, The Technion, 2002.

4. N. Bjorner, A. Browne, E. Chang, M. Colon, A. Kapur, Z. Manna, H.B. Simpa,
and T.E. Uribe. Step: The stanford temporal prover - user’s manual. Technical
Report STAN-CS-TR-95-1562, Department of Computer Science, Stanford Uni-
versity, November 1995.

5. T. Bolognesi and E. Brinksma. Introduction to the ISO specification language
LOTOS. Computer Networks and ISDN Systems, 14:25-59, 1987.

6. T. Bolognesi, J.v.d. Legemaat, and C.A. Vissars (eds.). LOTOSphere: software
development with LOTOS. Kluwer Academic Publishers, 1994.

7. G. Brat, K. Havelund, S. Park, and W. Visser. Model checking programs. In
In IEEE International Conference on Automated Software Engineering (ASE),
September 2000.

8. J.R. Burch, E.M. Clarke, K.L.. McMillan, D. Dill, and L..J. Hwang. Symbolic model
checking: 10%° states and beyond. Information and Computation, 98:142-170, 1992.

9. E.M. Clarke, O. Grumberg, and D.A. Peled. Model Checking. MIT press, December
1999.

10. C. Demartini, R. losif, and R. Sisto. dSPIN: A dynamic extension of SPIN. In
SPIN, pages 261-276, 1999.

11. O. Grumberg and S. Katz. VeriTech: translating among specifications and ver-
ification tools—design principles. In Proceedings of third Austria-Israel Sym-
posium Software for Communication Technologies, pages 104-109, April 1999.
http://www.cs.technion.ac.il/Labs/veritech/.

12

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

O. Grumberg and D.E. Long. Model checking and modular verification. ACM
Trans. on Programming Languages and Systems, 16(3):843-871, 1994.

D. Harel. Statecharts: a visual formalism for complex systems. Science of Computer
Programming, 8:231-274, 1987.

D. Harel, H. Lachover, A. Naamad, A. Pnueli, M. Politi, R. Sherman, A. Shtull-
Trauring, and M. Trakhtenbrot. Statemate: a working environment for the develop-
ment of complex reactive systems. IEEE Trans. on Software Eng., 16(4):403-414,
April 1990.

J. Hatcliff and M. Dwyer. Using the bandera tool set to model-check properties
of concurrent java software. In International Conference on Concurrency Theory
(CONCUR), June 2001. Invited tutorial paper.

K. Havelund and T. Pressburger. Model checking JAVA programs using JAVA
PathFinder. International Journal on Software Tools for Technology Transfer,
2(4):366-381, 2000.

C.A.R. Hoare and He Jifeng. Unifying Theories of Programming. Prentice-Hall,
1998.

G. Holzmann. Design and Validation of Computer Protocols. Prentice-Hall Inter-
national, 1991.

G.J. Holzmann and D. Peled. The state of SPIN. In Proceedings of CAV96, volume
1102 of LNCS, pages 385-389. Springer-Verlag, 1996.

C.N. Ip and D.L. Dill. Better verification through symmetry. Formal Methods in
System Design, 9:41-75, 1996.

S. Katz. Refinement with global equivalence proofs in temporal logic. In D. Peled,
V. Pratt, and G. Holzmann, editors, Partial Order Methods in Verification, pages
59-78. American Mathematical Society, 1997. DIMACS Series in Discrete Mathe-
matics and Theoretical Computer Science, vol. 29.

S. Katz. Faithful translations among models and specifications. In Proceedings of
FME2001: Formal Methods for Increasing Software Productivity, volume 2021 of
LNCS, pages 419-434. Springer-Verlag, 2001.

S. Katz and D. Peled. Interleaving set temporal logic. Theoretical Computer
Science, 75:263-287, 1990. Preliminary version appeared in the 6th ACM-PODC,
1987.

K. Korenblat, O. Grumberg, and S. Katz. Translations between texual transition
systems and petri nets. In Third international conference on Integrated Formal
Methods (IFM’02), Turku, Finland, May 2002.

R.P. Kurshan. Computer-aided Verification of Coordinating Processes. Princeton
University Press, 1994.

7. Manna and A. Pnueli. The Temporal Logic of Reactive and Concurrent Systems:
Specification. Springer-Verlag, 1992.

K. L. McMillan. Symbolic Model Checking: An Approach to the State Explosion
Problem. Kluwer Academic Publishers, 1993.
http://wwwbrauer.informatik.tu-muenchen.de/gruppen /theorie/KIT/.

Sam Owre, John Rushby, Natarajan Shankar, and Friedrich von Henke. Formal
verification for fault-tolerant architectures: Prolegomena to the design of PVS.
IEEE Transactions on Software Engineering, 21(2):107-125, February 1995.

B. Potter, J. Sinclair, and D. Till. An introduction to Formal Specification and Z.
Prentice Hall, 1991.

W. Reisig. Elements of Distributed Algorithms— Modeling and Analysis with Petri
Nets. Springer-Verlag, 1998.

