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Abstract

As the complexity of software and hardware systems grows it becomes necessary
to develop new methods for verification. We are mainly concerned with temporal logic
model checking algorithms, which receive a model of the system and a specification
formula and decide whether the model satisfies the specification. The main restriction
on model checking algorithms is the size of the models they are applied to, and solving
this problem is the subject of this work.

We suggest ways of using the syntactic description of a system in order to reduce
space consumption of verification methods. For software systems the syntactic model
is a control-flow graph, which includes a node for each command in the program and
edges representing the order of execution. For hardware systems we examine the list
of signals (flip-flops), and boolean functions that determine their values at each step.

Our results for software verification include a modular model checking algorithm
and two space reduction methods. The modular algorithm is based on a partitioning
of the program into sub-programs. It converts any CTL model checking algorithm so
that it examines each sub-program separately. We have implemented it in a tool called
SoftVer and got a substantial reduction both space and time consumption. Our space
reduction methods are based on static analysis, which is the analysis of the control-
flow graph of a program in order to extract information on its run-time behavior.
The first reduction reduces according to control, while the second reduction reduces
according to data. We tested the amount of reduction achieved by our methods on
several examples. We find that in some cases they can be very productive.

The main method for verifying hardware designs is by simulating its behavior under
a given sequence of inputs, called a test sequence, and examining the outputs. We
present a test-sequence generation algorithm, which given a test sequence to a sub-
circuit, creates a test sequence for the whole design. This can be used to translate a
set of test sequences for the sub-circuit into a set of tests for the whole design.

Finally, we introduce dynamic transition relations, which are used to compute
the set of predecessors of a given set of states more efficiently. The idea is that at
each computation only the parts of the design relevant for this step are considered.
Experimental results show impressive speedups and reduction in space consumptions,
even up to two orders of magnitude.



Chapter 1

Introduction

As the complexity of software and hardware systems grows, the need for automatic
verification tools becomes increasingly apparent. Traditional testing methods can no
longer give a reasonable assurance for the quality of a product, and more rigorous and
reliable methods are needed.

The term automatic verification is a general name for all methods of verifying the
correctness of a system by means of an algorithm that is guaranteed to terminate and
deliver accurate results. This, of course, can only be done on finite-state systems.
Hardware systems are inherently finite since all signals are boolean and all memory
components contain a specific number of bits. For software systems we must assume
that all variables are over finite domains, e.g. boolean, enumerated, or integers of a
specified finite range.

In this work we are mainly concerned with model checking algorithms. A model
checking algorithm receives a model of the system and a specification formula and
decides whether the model satisfies the specification. The most common model used
to represent finite-state systems is a Kripke structure which is a state transition graph
with labelings on the states (and not on the edges).

The choice of specification language is important since it determines both the
usefulness of the model checking tool, and the complexity of the algorithm. It is
important that the specification language will be strong enough to express the type
of properties that the designer expects the system to have, but usually the stronger
the specification language the more expensive the model checking algorithm becomes.
The systems that we examine are mostly reactive systems, which means that they
work continuously and react to their environment, rather then computing a result
and then terminating. It is widely accepted that temporal logic specifications [51,
22], are convenient and effective for specifying reactive systems, and these are the
specification languages that we refer to in this work. Temporal logic formulas are
capable of describing the behavior of a system over time. They can express properties
such as “whenever there is a request then some time in the future an acknowledge will
be received” or “it is never possible to receive an acknowledge that is not in response to
a request”. There are several flavors of temporal logics, and each has a model checking



algorithm with a different complexity. The most general and most powerful temporal
logic we examine is CTL*. We also use several sub-languages of CTL* because they
poses special properties which we use.

The problem that model checking algorithms of all kinds face is that of space
complexity. The size of the Kripke structure that represents a system is exponential in
the number of (boolean) variables. When the system is composed of several processes
running in parallel the cross product of the processes’ structures also leads to an
exponential blow-up. In order to perform model checking on any system the whole
state space must be checked in one way or another, but this cannot be done if the
representation of the structure does no fit into the available memory of the computer.
This problem is known as the state explosion problem and it is the subject of significant
parts of the research done in the area of automatic verification.

1.1 Model Checking Techniques

There are many types of model checking algorithms [14, 53, 41, 6, 24] and they differ
in the specification language they use, and the way they represent the system. The
first model checking algorithms developed were explicit state algorithms, which use
an explicit representation of the structure of the system. These algorithms generally
arrive at their conclusion by traversing the state-space of the system in some way or
another. To overcome the state explosion problem, a new approach was developed,
called symbolic model checking [44, 6]. Here the structure of the system is represented
implicitly, by means of Binary Decision Diagrams [5] (BDDs). BDDs are data struc-
tures that represent boolean functions (functions whose operand is a boolean vector
and the result a boolean value), and these can be used to represent sets of states and
sets of transitions between states. Symbolic model checking revolutionized the field
of automatic verification by making it possible to verify large systems of up to 300
boolean variables. However, there is still a long way to go before model checkers can
be used on real designs in full.

There are many works that try to alleviate the state explosion problem. We con-
sider here two prominent approaches. The first is introducing modularity. The idea is
to be able to verify different parts of the system separately, since each part is much
smaller then the combination of all the parts together. There are many ways of mak-
ing model checking modular. We mention here some of the leading methods, although
there are many more.

One way to create modularity is to separate a process from its environment. Using a
method called assume guarantee [52, 34] a process is checked under certain assumptions
on the environment in which it runs, and these assumptions are proved to hold on
the actual environment (without the process itself). When several processes interact
through limited interfaces, each process can be checked while the others are replaced
by a small process that represents only the interface [16]. Modularity can also be
achieved by use of fairness constraints. The environment is replaced by a constraint



that states that something good must happen infinitely often. Model checking is then
performed, but only fair computations are considered [35].

An important step in mechanizing modular methods in the context of branching
time temporal logics is the introduction of simulation relation [31] defined by [45].
Simulation relations define a preorder on models that preserves the satisfaction of
temporal logic formulas. This means that if a formula is true in a model then it is
also true in any model which is smaller in the preorder. To verify a single component
of a system, we can find a formula v that represents the environment of the chosen
component, build a model that represents ¢ (a tableau) and verify the chosen com-
ponent with this model (which is smaller in size) instead of the true environment. In
order to prove that the real environment actually satisfies b we show that the true
environment is smaller in the preorder than the model of .

A different approach to the state explosion problem is that of reduction, where
the goal is to create as small a structure as possible while maintaining the properties
that are to be checked. One useful methodology of reduction is that of partial order
reductions [50, 56, 30, 55]. These methods rely on the observation that the interleav-
ing model of computation is very wasteful, since in many cases the specification is
not influenced by different orderings of the same commands. Partial order reductions
define models that exclude some of the possible interleavings between processes while
maintaining the validity of the specification. Another type of reduction is abstrac-
tion [1, 15, 18, 19, 42]. An abstract model of a system is a model in which certain
details have been omitted. Care must be taken in the way the abstract model is
created so that it preserves the specification, i.e. if the abstract model satisfies the
specification we can safely conclude that the concrete model (the original model of
the system) also satisfies the specification. The simulation relation mentioned earlier
is an important tool for abstraction. It allows us to prove that an abstract model we
created is in fact a true abstraction, by showing that it is higher in the preorder than
the concrete model. However, if the abstract model does not satisfy the specification
it does not necessarily mean that the concrete model does not satisfy it. In this case
a different abstraction should be used, one that will include more detail.

1.2 Hardware Verification

The process of hardware design consists of many stages, starting with a very abstract
description of modules, and ending with a detailed plan of wires and transistors. Ver-
ification is done on all levels, where at each stage different properties are checked. We
are concerned with logical behavior (as opposed to physical behavior for example), and
this is normally checked at a level of description called Register Transfer Level (RTL).
In this stage the design consists of memory components (flip-flops), and combinatori-
cal components (logical gates) that determine the value of each flip-flop at every clock
cycle.

The main method for verifying logical behavior in hardware design is simulation



(unrelated to the previously mentioned simulation relations), also called dynamic val-
idation. The designs behavior is simulated using random or semi-random inputs, and
the results are checked for correct behavior. This process can never cover all possibil-
ities, and usually verifies only parts of the state-space. It is also not fully automatic
since the designer must check the results. In spite of this, simulation is the main
method of logical verification today. In contrast, model checking can provide an accu-
rate and exhaustive result. When the circuit fails to satisfy the specification, model
checking algorithms can also provide a counter-example which is invaluable to the de-
signer in finding the cause for the error. The problem remains that most designs can
not be dealt with in full, and only smaller parts can be model checked.

Since hardware designs are made up of many components that work in parallel
(whether synchronously or not), modularity is often used to allow verification of larger
designs. Most of the theoretical results in improving model checking techniques are
targeted at synchronous systems, and are therefore most useful for synchronous cir-
cuits. The reason for this is that almost all industrial designs are in fact synchronous
circuits.

1.3 Software Verification

The use of automatic verification for software systems is much more limited than for
hardware systems, and so is the body of research on the subject. There are several
reasons for this.

Most “real-life” programs involve integer variables, pointers, and dynamic alloca-
tion of memory. The use of these constructs creates a model of execution that has
infinitely many states, and thus model checking is impossible. One way to solve this
problem is to limit the programming language so that it allows only finite domains,
thus dynamic allocation is prohibited and integers are over a specified finite domain.
This solution limits the programmer, and is not applicable to many software systems
that are used today. However, some classes of programs can be written in such a
limited language, most importantly communication protocols and controllers. These
programs are not only finite, but can be very complex and may indeed require verifi-
cation.

A second way of solving the problem of infinite domains is abstraction. The main
drawback of using abstraction is that the abstraction is usually created manually, and
if the abstraction is not checked thoroughly errors may be introduced at this stage.
More importantly, errors that existed in the original design may be accidently left out
of the abstract design and will not be found. There are several works that propose
ways of automatically creating abstract models [17, 20]. Although these methods may
not produce the optimal abstraction, they are very important since they solve the
problem of errors inserted/omitted at the abstraction stage.



1.4 Overview of this work

In this work we look for ways to use the high level description (program text) of a
system in order to improve the model checking process, either by modularity or by
reduction. The work can be divided into two parts - software and hardware verification.

The first thing to note about software systems is the difference between the syntac-
tic structure and the semantic structure. When compiling a program (whether the goal
is to execute it or to create a Kripke structure from it) the parser builds a control-flow
graph that represents the syntax of the program. Fach program counter location is
represented by a node, and the edges express the possible ways in which control can
pass from one location to another. From this control-flow graph the Kripke structure
representing the program can then be created. The size of the control-flow graph is
proportional to the size of the program text, which is very small compared to the size
of the Kripke structure of the program. We set out to use this control-flow graph and
exploit the special structure that can be found in it.

We first show how partitioning the program into sub-programs can help in creating
a modular model checking algorithm. We introduce the notion of partition graphs
which are a generalization of control-flow graphs in which a node can represent a
sub-program rather than just one program counter location. Instead of creating a
Kripke structure for the full program we create a structure for each sub-program and
keep each one in a separate file (therefore, when not in use these structures are not
in the immediate memory). We show that any model-checking algorithm for CTL
can be adapted to perform model checking on a partition graph so that each sub-
program is handled separately, never keeping the structures of two sub-programs in
the immediate memory of the computer at the same time. This method can not only
enable handling programs that would otherwise not fit in the memory of the computer,
but since model checking is performed on smaller structures it can also be much faster
than model checking on the full program.

We have implemented a symbolic model checker called SoftVer that performs our
modular model checking algorithm. It uses a simple programming language that re-
stricts variables to finite domains, and allows the user to determine the partitioning of
the program into sub-programs. It also allows the use of other symbolic model-checking
techniques such as variable reordering and local reachability (both are explained in de-
tail in the appropriate chapter). We applied the tool on three examples, each with
different partitionings and compared the space and time requirements needed for model
checking with the space and time used when the program is unpartitioned.

The results show that in some cases a substantial reduction is achieved in both space
and time consumption. In one example the memory consumption using partitioning
was only 13% of the memory consumption without using partitioning. Although our
original goal was to reduce memory consumption, it turns out that modular model
checking can also reduce running times, and in some cases it even reduces the running
time more than the memory consumption. This is because the algorithm uses much
smaller models, and for most of the operations performed running time is polynomial



in the size of the model. However, since the implementation is BDD-based we also
get cases in which the partitioned version actually takes more space than the unpar-
titioned. This happens because of the use of symbolic model checking. If we were to
use an explicit-state algorithm the space requirements could not grow as a result of
partitioning. We review and discuss the results in the appropriate chapter.

We then move to consider reduction methods for programs. We show two types
of reductions, both based on static analysis [48]. Static analysis is a general term
for methods that analyze the control-flow graph of a program to reveal information
on the run-time behavior of the program, without actually running it. In our case,
performing static analysis means that we examine the control-flow graph of a program
(the syntax) to extract information on the Kripke structure of the program, without
actually creating this Kripke structure. The idea behind both of our reductions is
to use static analysis in order to create a smaller structure for the program, which
we call the reduced Kripke structure of the program. The reduced Kripke structure
is built so that it is equivalent to the original structure of the program, i.e. a given
specification is true in the original Kripke structure iff it is true in the reduced one.
The specifications considered are formulas of the logic CTL*, and the logic CTL*-X
which is similar to CTL*, but without the next-state operator.

Our algorithms for static analysis are based on syntactic manipulation of expres-
sions, and therefore we allow variables with both finite and infinite domains. When
the domains are finite, our methods can be used for automatic verification using an
explicit representation of the transition system as well as for verification using a BDD
representation. In either case, the verification algorithm itself is not changed, it just
receives a smaller model to work on.

We create the reduced Kripke structure for a program directly out of the control-
flow graph, and never build the full Kripke structure. We are therefore able to verify
systems that would otherwise be too big to handle. The advantage of this approach
is even more significant when the system is composed of several processes. In such
a case, each process is reduced separately and only then they are composed to one
Kripke structure. This solution thus serves to reduce the exponential blow-up that
occurs when taking the cross product of the structures of the individual processes.

Another important advantage of using static analysis is that in order to implement
our reductions, changes are made only to the compiler (which is relatively simple) and
there is no need to change the verification tool or the verification algorithm. This
enables integration with existing tools at a very low cost. It also means that the
overhead of using our reductions is during the (very short) compilation stage and not
in the verification process.

When developing a static analysis method for reducing program models we came up
with two orthogonal approaches. We can examine the control of the program, which is
the program counter, or we can examine the values that variables can have (the data).
Reducing according to control means creating a model that performs fewer steps in
order to achieve the same goal, whereas reducing according to data means creating a
model that uses a smaller part of the variable domains.



We present and compare two methods that use static analysis to create reduced
models for programs. The first method, called path reduction, reduces according to
control, and the second, called dead-variable reduction, reduces according to data.
Both methods automatically create a reduced Kripke structure directly out of the
syntax of the program (the control-flow graph), thus avoiding the need to create the
full Kripke structure. The reductions are independent of each other and can be used
together on the same program. In such a case we perform both analyses on the
program, and then create a single Kripke structure that is reduced according to both
methods (there is no need to create intermediate models according to one method or
the other).

We used Murphi [46] to test the amount of reduction achieved by our methods.
Murphi is a tool that performs a DFS or BF'S traversal of the reachable state space of
a program. We chose several example programs and translated them into Murphi. We
then constructed Murphi descriptions of the reduced systems created by our methods.
We used Murphi’s DFS search to compare the sizes of the original and reduced Kripke
structures, and the time it takes to traverse them. The experiments with path reduc-
tion gave reduced models that were between 8% to 70% of the original model. This
shows that for some programs path reduction can be very significant. The results for
dead-variable reduction, however, show a much smaller reduction - the reduced models
were between 65% to 100% of the original model. It is possible that these results are
influenced by our choice of examples, and there may be examples where dead-variable
reduction will be more productive.

We now turn to consider the structure of hardware designs. We start by presenting
a test-sequence generation algorithm. It is often the case that a critical sub-circuit
of the design must be checked thoroughly, and a set of test sequences is created for
this purpose. Each test sequence is a series of inputs for the sub-circuit, and together
they simulate all or most of the sub-circuit’s important features. However, these test
sequences cannot be used on the full circuit, since the inputs to the sub-circuit may
be internal signals of the full circuit, and may not be accessible from the exterior of
the design. For each test sequence of the small sub-circuit our algorithm creates a
test sequence for the full design, which reproduces the test sequence of the small sub-
circuit. This allows the creation of a set of test-sequences for the full design that can
achieve good coverage of the sub-circuit.

To create an efficient algorithm one must again examine the structure of the system.
We notice that in most designs a single flip-flop is influenced by only a small number of
other flip-flops. The naive way of creating a test sequence would be a DFS traversal of
the state-space from an initial state, searching for a path that reproduces the required
test sequence. This solution is inefficient because every step the whole design would
be involved in calculating the next state. Also, this search will traverse the full state-
space in order to declare that there is no solution. We find that by starting with the
(small number of) signals which are actually involved in the input test-sequence we
can create a search that moves backwards, and involves only the parts of the circuit
that are actually important. This observation is the basis for our algorithm.



We then move on to consider the operator Pred, which is widely used in model
checking algorithms, and also in our test-generation algorithm. This operator receives
a set of states (of the Kripke structure representing the design) and produces the set
of predecessors of these states. To do this, it performs calculations on the transition
relation of the Kripke structure. We show that this operator can be performed in a
more efficient way by making it use dynamic transition relations. Instead of using the
full transition relation, each time the operator is invoked a partial transition relation
is used. The partial transition relation includes only parts of the design which are
relevant for this step, and ignores other parts of the design. We show that the result
is exactly the same set of states as the original operator, so the dynamic version can
be used to improve model checking and test-generation.

Following the development of the dynamic Pred operator, we developed a dynamic
version of our test-generation algorithm. This version uses dynamic transition relations
in the calculation of the Pred operator, as well as for other operations the algorithm
performs.

We implemented both the test-generation algorithm and the dynamic Pred opera-
tor, and ran examples. Qur experimentation shows that the dynamic operator can lead
to significant reductions in time consumption of symbolic model checking, especially
in cases where it is performed a small number of times in succession. We also found
that it gives good results in our test-generation algorithm.

The work is organized as follows. Chapter 2 gives some preliminary definitions
used throughout the work. Chapter 3 presents our results for software verification. It
starts with a discussion of the structure of programs (Section 3.1) and then presents
the modular model checking algorithm (Section 3.2) and the static analysis reductions
(Section 3.3). Chapter 4 presents our results for hardware verification. Similarly to
the software chapter it starts with a discussion of the structure of hardware designs
(Section 4.1) and then moves on to present the test-generation algorithm, dynamic
transition relations, and the dynamic version of the test-generation algorithm. Chap-
ter 5 presents the SoftVer model checker. Finally, Chapter 6 concludes with a summary
of the work, a discussion of works related to ours, and some directions for future re-
search.



Chapter 2

Model Checking for Temporal
Logics

2.1 Models of Systems

We use Kripke structures to model the behavior of a finite-state system. Basically,
these are state machines with labelings on the states (and no labeling on the edges).

Definition 2.1: A Kripke Structure is a tuple M = (S, R, I) s.t. S is a set of states,
R C S x S is a transition relation and [ C S is a set of initial states. A computation
path (or simply a path) in M from a state s is a sequence m = sg, s1,... s.t. Vi[s; €
and (s;,8;41) € R]. A maximal path in M is a path which is either infinite, or ends
in a state with no outgoing transitions. Let m be a maximal path in M. We write
|7| = nif m = sq,81,...,8,-1 and || = oo if 7 is infinite.

When we use a Kripke structure to represent a program, every state is a pair ([, o)
where [ is a program location (a value for the program counter) and o is a valuation
to the program variables. When we represent a hardware system each state is simply
a valuation o to the set of signals in the design.

Kripke structures usually come with a set AP of atomic propositions and a labeling
function I : S — 24 that associates each state in the structure with the set the of
atomic propositions that hold in that state. This is used as a basis for specifications,
because it gives different attributes to different states in the structure. In this work
we use expressions over system variables as atomic propositions, and hence we do not
need a specific labeling function. For each state (which includes values for system
variables) we know whether the state satisfies a given expression or not.

Definition 2.2: For a Kripke structure M = (S, R, ) we define the set of ending
states to be: end(M) = {s € S| =3s'.(s,s') € R}. We also use init(M) to refer to the
set [ of initial states.

Most of the time we use boolean formulas to represent sets of states and sets of
transitions. For example, if V is the vector of variables of a system then the set of
states in the Kripke structure for this system is represented by a boolean formula

10



S(V). For every valuation ¥ to the variables in V., S(¥) = 1 iff © represents a state of
the system. To represent the transition relation we introduce a new set of variables Vv
which is a duplicate of V, only primed. We use V to represent the state from which
a transition exits and V' to represent the state into which it enters, so the transition
relation is represented by a function R(V, V7). The set of ending states can then be

represented as: end(V) = S(V) A -3V .R(V, V).

2.2 Specifications

We consider specifications in one of several specification languages globally referred
to as propositional temporal logics. The feature that makes temporal logics appealing
for automatic verification is that they can describe intricate behavior over time (as
opposed to input-output specifications, for example, that only compare the starting
and ending points of programs). This makes them most suitable for specifying reactive
systems such as operating systems, communication protocols (whether implemented
in software or hardware) and sequential hardware designs.

The most powerful specification language we consider is CTL* [23]. All other
languages that we refer to are subsets of this language.

As mentioned before, we assume a set of atomic propositions AP, which serve as the
base set for defining CTL* formulas. We assume that for every atomic proposition p €
AP and every state s, it is known whether s |= p or not. Actually, atomic propositions
represent attributes of states. For example, p might represent the attribute = > 0.
Since each state is or includes a value for all system variables, the set of states that
satisfy p is the set of states in which the variable = has a value larger than 0.

Definition 2.3 gives the syntax of CTL* formulas, and definition 2.4 gives the
semantics.

Definition 2.3: Given a set of atomic propositions AP, the set of state formulas
includes:

e atomic propositions p € AP, true and false,
o 1 Vs, 1 A s, and iy for state formulas ¢, and ¢,
e Ay and E¢ for a path formula .
The set of path formulas includes:
e any state formula ¢,
o 1 V )y, 11 A Wby, and =Py for path formulas ¢ and g,
o Xy, Y1 Uy, Gopy, and Fip; for path formulas ¢y and .

The language CTL* is the set of state formulas.

Definition 2.4: Given a state s we define:
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o s |=true and s £ false!

o s =1 Ve iff (s |E gy or s = ¢2)
S g1 A g iff (5 = gy and s = )
s |y iff s g
o s =AY iff for every path 7 that starts from s, 7 | ¢
s EE iff there exists a path 7 that starts from s and 7

Given a path 7 = s, 51, ..., define " = s;, 5,41, ... (the suffix of 7 starting at s;).

We define:

o for a state formula ¢, 7 |E ¢ iff 5o = ¢,

o T Y1V il (1 |=¢n) V(7 = ¢)
T YL A (= ) A (T = ¢e)
Ty iff T

o T =Xy iff w! =

o 7 |= ¢ Uty iff there exists i > 0 such that 7' = 1, and for every 0 < j < 1,
ml =y

o 7 EFy iff m = trueUvy

o T EGY iff 7 = -F-1

We also use several sub-languages of CTL*:
Definition 2.5:

CTL*-X is the language we get from CTL* by excluding the X operator.

CTL is a language in which temporal operators (X,U,G and F) can only be used
in combinations made out of a path quantifier applied on a temporal operator.
Thus, besides the boolean operators V, A and —, the only operators allowed are

AX, EX, AU, EU, AG, EG, AF and EF.

CTL-X is the language we get from CTL by excluding the X operator.

Definition 2.6: The closure of a formula ¢, denoted by cl()), is the set of all state
sub-formulas of ¢ (including itself). Note that this includes only sub-formulas which
are state formulas.

!Recall that we assume we know whether or not s = p for p € AP so there is no need to define it.
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2.3 Model Checking

We say that a Kripke structure is a model of (satisfies) a formula f if every state
s € init(M) satisfies the formula. A Model Checking algorithm is an (automatic)
algorithm that decides whether a given structure M is a model of a given formula f.

There are two types of model-checking algorithms. Fzxplicit-state algorithms are
those that use an explicit representation of the Kripke structure being examined.
Usually, these algorithms use a next-state function, which is a function that given a
state returns the set of successors of this state. Temporal logic model-checking can
be performed using a DFS or BFS style traversal of the reachable state-space of the
structure, using the next-state function. For such algorithms it is usually not necessary
to build in advance the set of states or the transition relation of the structure being
examined. However, if the model-checking algorithm needs to scan most or all of the
state space in order to give an answer then it becomes necessary to hold the full state
space of the structure in the immediate memory, in an explicit representation.

The second type of algorithms is symbolic model checking. In symbolic model
checking the transition relation of the structure is represented using BDDs [5]. A
BDD is a directed acyclic binary-decision graph in which each internal node is labeled
with a BDD variable. A BDD is an efficient representation for boolean functions.
Each state of the Kripke structure is encoded using BDD variables. A set of states is
represented by the boolean function that gives true iff the input vector is the encoding
of a state in the set. In a similar manner, transition relations are represented as sets
of pairs of states.

The importance of BDDs is that in many cases (although not all) they give a
polynomial size representation of the transition relation. Also, they allow the execution
of operations on sets of states, instead of traversing the structure one state at a time.
For these reasons BDDs and symbolic model-checking have proved to be extremely
useful verification methods.

It is important to notice that CTL* specifications are often defined over Kripke
structures with total transition relations, i.e. having no ending states. Most model-
checking algorithms for CTL* (and its sub-languages) assume that the input structure
has no ending states.
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Chapter 3

Exploiting Structure in Software
Verification

3.1 The Structure of Programs

3.1.1 Non-deterministic While Programs

We define a language that will encompass all the essential programming constructs so
that it has similar power to “real” programming languages, except that it does not
allow dynamic memory allocation. A program in this language is a parallel composition
of sequential processes. When we want to discuss sequential programs specifically, we
will refer to the set of programs that are built out of a single process that contains no
communication commands.

Definition 3.1: A sequential process is defined by:

SeqProc — Proc ; terminate

Where Proc is defined by:

Proc —
simple commands:
skip |
T = expr |
x = {expry, ..., expr,} |
alexpre] := expry |
alexpro] := {expry,... expr,} |
communication commands:
send(proc_name, expr) |
receive(proc_name, x) |
compound commands:
Proc; ; Procy |
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if B then Proc; else Procs fi |
while B do Proc; od

where x is a program variable, expr; are expressions over program variables (including
arrays), and B is a boolean condition.

The statement x := {expry,...,expr,} is a non-deterministic assignment, after
which « will contain the value of one of the expressions expry,...,expr,. This con-
struct is added to allow the simulation of an input command. Each statement must
have a label, identifying the program counter location associated with that statement.

As can be seen from the definition, at the end of each sequential process there is an
extra command called “terminate”. This command represents the point of termination
of the process, and its program counter location is called the end location.

For the purpose of Model-Checking we require that the program will have a finite
state space, in which case variable types must be finite: boolean, bounded integer,
bounded arrays, enumerated types, etc. When the program is to be verified by other
means, such as theorem proving, it is allowed to be infinite, and then we also allow
types such as (unbounded) integers, and queues.

Definition 3.2: A non-deterministic while program is a parallel composition P =
[P1]]...||P.] of sequential processes. Each process has its own set of local variables,
and 1s not allowed to examine variables belonging to other processes or update them.

We use several terms to refer to sub-sets of the language of non-deterministic while
programs. As mentioned before, a sequential process (or full sequential process) is
any text which can be derived from SeqProc in definition 3.1. The term full sequential
programis used to denote a sequential process that does not include any communication
commands. We use the terms sub-process and sub-program to refer to any text which
can be derived from Proc, and in the case of sub-programs does not include any
communication commands. If not stated otherwise, when we refer to “a sequential
program” we mean either a full-program or a sub-program.

3.1.2 Control-Flow Graphs

A control-flow graph is used for capturing the syntactic structure of a program. This
graph is used as part of any translation process from program text to a semantic model
(in our case - Kripke structures). The size of the graph is proportional to the number
of lines of code, which is very small compared to the Kripke structure that represents
the semantics of the program. Control-flow graphs are used by compilers as a data-
structure for representing the syntax of programs. The majority of optimizations
performed by compilers are done by examining this graph and extracting information
about the execution of the program, without actually executing it.

Definition 3.3: Given a sequential process P, its control-flow graph is a graph C'Fp =
(N, E) where N is the set of nodes and F is the set of edges. Each node is labeled

with a program counter location, and represents the command at that location: either
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a simple command, a communication command, or a boolean condition (for “if”s and
“while”s). The edges capture the flow of control in the program:

e A node representing a simple command, or a communication command, has a
single out-going edge pointing to the node of the next program location (the
next statement to be executed).

e A node representing a non-deterministic assignment = := {expy,...,exp,} or
alexpro] := {expry, ..., expr,} has n outgoing edges labeled with the expressions
exp; through exp,, all pointing to the node of the next program location.

o A node representing an “if” statement is also labeled with the boolean condition
of the statement and has two out-going edges labeled “true” and “false”, pointing
to the program locations of the “then” and “else” statements respectively.

e A node representing a “while” command is also labeled with the boolean con-
dition of the statement and has two out-going edges labeled “true” and “false”,
pointing to the program locations of the body of the while and the next statement
after the while respectively.

e The control-flow graph node representing the end location (the “terminate” com-
mand) is the successor of the last statement of the program, and is the only node
to have a self-loop.

Figure 3.1 gives an example of a sequential program and its control-flow graph.

Py 2:=1{0,1,2); Ckp = [lo: r = {07172}J
[y - if x >y then
ly: Yy i=y+ z; 0 1 2
else J
fi;
l4:  terminate
‘lz:yt:y—l-z ‘ [ZS;x:x—l—z ‘
l4: terminatel, |

Figure 3.1: A sequential process and its control-flow graph

The above definition differs slightly from the regular definition of control-flow
graphs in the definition of the edges leaving a non-deterministic assignment node.
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Usually there is a single outgoing edge, similar to the case of regular assignments,
whereas in our definition there are several edges - one for each expression possibly
assigned.

To create a control-flow graph of a program which is composed of several processes,
we create a separate control-flow graph for each process. Since this data-structure is
meant to represent syntactic structure and not actual execution behavior, we do not
account for communications in any way. The control-flow graph of each process may
include one or more nodes labeled with communication commands. We do not (yet)
worry about who may communicate with whom.

The control-flow graph of a sub-process (or sub-program) is created so that the set
of graph nodes is the set of all program locations in the sub-process plus the location
the program counter reaches when the sub-process is done. The extra node for the
location in which the sub-process ends will have no out-going edges, even if it is the
node of a “terminate” command. For example, for the program “P’: [;: if x > y
then l3: y := y + z else [3: @ := & + z fi”, which is a sub-process of the process
P from figure 3.1, the partition graph C'Fp: will be as depicted in figure 3.2. The
reason we add the node [4 to this graph is that we will later define the semantics of
control-flow graphs so that an edge exiting from a node represents the execution of
the statement in that node. We include the edges outgoing from locations l; and I3
so that the execution of these statements is included in the semantics associated with
this control-flow graph. We do not include the self-loop of the terminate command
because it is not part of this sub-process.

| A y then CFP’ : _true false
[y Yy i=y+z;

else

I3 : ri=x 4z ‘lz;y;:y—kz} {l;;x::x—l—z}

ﬁ.
l4 .

?
Figure 3.2: A sub-program and its control-flow graph

3.1.3 Semantics of Programs

As mentioned before, we define the semantics of programs by associating each program
P with a Kripke structure struct(P) that represents its behavior. We start by defining
the Kripke structure of a sequential program, a single process (or sub-process) that
contains no communication commands.
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The structure that represents P is created from the control-flow graph C'Fp of P,
and may also be referred to as struct(C Fp).

Throughout this chapter we use T = x4, ..., x, as the vector of program variables
(not including the program counter) '. In some cases, where we want to describe a
transition relation, we use T for the current state and & = z,..., 2/ for the next
state. We use pc and pc to describe the current program counter location and the
next program counter location respectively. We also use ¥ as the set of all possible
assignments to T, and Loc as the set of all program locations (all the possible values
that pe can have during the execution of P).

The set of states of struct(P) is S = Loc x X, i.e. the set of all pairs (/,0) such
that [ is a program counter location and o is an assignment to the program variables.
The set of initial sets is [ = [g4+ X X, where [g,,+ 1s the initial program counter
location in the program. To define the transition relation R of struct(P), we define a
transition relation (a set of transitions) R, for every edge e in the control-flow graph of
P. The relation R, represents the execution of the statement of the node from which e
exits. The full transition relation of struct(P) is then: R = U.cop, K. The transition
relation R, for the edge e = n — n’ (n and n’ are nodes in C'Fp) is defined according
to the command at n. We use o[z < ¢] for the assignment that results from taking o
and assigning o(e) into x (the result of the assignment = := e).

Definition 3.4: Given an edge ¢ = n — n’, where n is labeled with the location [
and n’ is labeled with the location {’; we define the transition relation R. according to
the command at [, and the label on e (if there is one).

o skip:
R. = {((L,0).(I' o)) | o € X}

o 1, := capr:
Re2{((L,o), (I o[ + expr])) | o € £}
o u; := {expry,... expr,}, and e is labeled with expry:

R. 2 {((L,0),(I' oz + capry])) | o € £}

o alexprg] := expry:

R. 2 {((l,0),(l', olalo(capro)] + cxpri])) | o € T}

o alexpro] := {expry,...,expr,}, and e is labeled with expr;:
Re £ {((1.0). (I olaleapro] & capri])) | o € X}

!Each array of length ¢ is represented by t variables, and these variables are included in the vector
.
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e A positive condition B ([ is an “if” or “while” command and e is labeled with

true):

R.={((Lio), (I o)) | o = B}

e A negative condition B ({ is an “if” or “while” command and e is labeled with
false):
A
ke ={((l,0),(l',0)) | o [~ B}

e terminate (n =n' and [ =1'):

Re={((l,0),(l,0)) | o € X}

Notice that according to the above definition the transition relation of a full program
is total. The transition relation of a sub-program, however, is not necessarily total,
and the structure for a sub-program may include ending states.

Figure 3.3 gives an example of a simple process, and the Kripke structure that

represents its semantics.

init(struct(P))

P:1; if a then Ctpab ) Cipaw)
1 b := true;
else
fi;

14 terminate

Figure 3.3: A sequential process and its Kripke structure.

When we want to create a Kripke structure for a parallel composition of processes
P = [Pi||...]|P,] things are slightly more complicated, since we have to take into
account communication commands and parallel execution of processes.

We first create the set of states S which is the cross product of the individual
sets of states of the processes. The set of states S; for a process P; is defined as was
defined above: S; = Loc¢; x X, where Loc; is the set of program counter locations
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in P; 2. We make sure that the sets Loc; are disjoint. The set of states for P is:
S =A{(s1,-..,80) | 51 € S1TA...Ns, €5}

To build the transition relation for P, according to an interleaving model of ex-
ecution, we need to differentiate between two types of transitions: those in which
one process executes a single (internal) command and the others do not advance, and
those in which a communication occurs. The transition relation R will be built of two
separate sets of transitions. We partition each set of locations Loc; into two parts,
Loci?™™ is the set of locations in which P; executes a communication command and
Loci™ is the set of locations in which P; executes an internal command (obviously
Loc; = Loco™™ U Loct™).

A pair of communication commands is called matching if they describe a possible
communication between two different processes P;, P; (i # 7). This is a syntactic
definition since the names of the processes appear in the commands. A matching pair of
communication commands includes a “I} : send(P;, expr) {?” command in some process
P; and a “l} : receive(P;, x) [3” command in another process P; (I} € Loc;”™™ and
l]l € Loci™™). We create a set of transitions including all possible situations in which
this communication is executed: {((s1,...,5,),(s,...,5,)) | (VE # i,k # jsp =
st) and if s; = (I,0) and s; = (I, 7) then (s; = (I5,0) A s} = (I3, 7[x + o(expr)]}.
This set describes the passing of the value of expr in P; to the variable x in P;. We
build the set of transitions R.,m, which is the union of the above for all possible
matching pairs of communication commands.

The transitions in which one process executes an internal command and the others
are idle are built according to the definition of the transition relation of a single process.
We create a transition relation R; for each process P; which includes transitions created

int
;.

from commands in Loc
We can now define the transition relation R of P to be:

RE Reppn U U{((51 1 50), (51 80)) | (Vh # dsp = ) A (56,8]) € Ry}

=1

3.2 Modular Model Checking

This section describes a modular algorithm for CTL model checking of sequential
non-deterministic while programs. We suggest a way of partitioning a program into
components, following the program text. A given program may have several different
partitions. A partition of the program is represented by a partition graph, whose nodes
are sub-programs and whose edges represent the flow of control between sub-programs.

Once the program is partitioned, we wish to check each part separately, so that
when working one part all the others are kept in secondary memory (files). However,
verifying one component in isolation amounts to checking the specification formula
on a model in which some of the paths are truncated, i.e. for certain states in the

?Note that here we discuss only full sequential processes, and not sub-processes. There is no point
in defining the parallel execution of sub-processes.
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component we do not know how the computation proceeds (since the continuation
is in another component). Such states are called ending states. We notice, however,
that the truth of a formula at a state inside a component can be determined solely
by considering the state transition graph of this component, and the set of formulas
which are true at the ending states. Moreover, the truth of a formula at an ending
state depends only on the paths leaving it, and not on the paths leading to it. This
observation is the basis for our algorithm.

We define a notion of assumption function that represents partial knowledge about
the truth of formulas at ending states. Based on that, we define a semantics under
assumptions that determines the truth of temporal formulas based on a given assump-
tion function. Only minor changes are needed in order to adapt any standard CTL
model checking algorithm so that it performs model checking under assumptions.

Given a procedure that performs model checking under assumptions, we develop a
modular model checking algorithm that checks the program in parts. To illustrate how
the algorithm works consider the program P = Py; P,. We notice that every path of P
lies either entirely within P; or has a prefix in P; followed by a suffix in ;. In order
to check a formula ¢» on P, we first model check ) on P,. The result does not depend
on P; and therefore the algorithm can be applied to P; in isolation. We next want to
model check Py, but now the result does depend on F,. In particular, ending states
of P; have their continuations in P,. However, each ending state of P, is an initial
state of P, for which we have already the model checking result ®. Using this result as
an assumption for P, we can now model check P; in isolation. Handling loops in the
program is more complicated but follows a similar intuition.

Before presenting our algorithm we give several definitions. The first is for as-
sumption functions. We notice that a sub-program does not necessarily end with the
“terminate” command, and therefore the Kripke structure representing it may have a
non-empty set of ending states. Most model-checking algorithms are not designed to
handle such structures. Assumption functions are introduced to solve this problem,
because they hold information about the ending states. They tell us which formu-
las each ending state satisfies. This information is not available when examining the
Kripke structure of a sub-program in isolation. We will later show how assumption
functions are created and used.

Let © be a CTL formula, which we wish to check on a given program.

Definition 3.5: An assumption function for the Kripke structure M = (S, R, ) is a

function As : el(v) — (25/ U{L}) where S’ is some subset of the set of states S. We
require that Vo € el(v), if As(¢) # L then Vo' € cl(p), As(¢') # L.

When As(p) = L it means that we have no knowledge regarding the satisfaction of
@ in S’. It is used when we want to represent knowledge relating to other sub-formulas
and ignore o at this stage. If As(p) # L then As(¢) represents the set of all states in
S’ for which we assume (or know) that ¢ holds. For every state s € 5" s.t. s € As(p)
we assume that —¢ holds. The significance of the set S’ is that it is the set of states

3The result includes for each sub formula ¢ of v the set of states satisfying ¢.
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which we examine. The assumption function gives no information regarding states
outside of 5.

We say that As is an assumption function over some set of states A if A is the set
S’ about which As gives information.

Satisfaction of a CT'L formula ¢ in a state s € S under an assumption function
As is denoted M, s =4, ¢ *. Satisfaction of formulas in M under an assumption As
is defined only when the assumption As is defined over a set that includes end(M).
We define it so that it holds if either M, s |= ¢ directly (by infinite paths only), or
through the assumption function. For example, M, s E=4;E(fUyg) if there exists an
infinite path from s satisfying f in all states until a state satisfying ¢ is reached, but
it is also true if there is a finite path from s in which the last state, say s’, satisfies
s € As(E(fUg)), and all states until s’ satisfy f. Formally:

Definition 3.6: Let M = (S, R,[) be a Kripke structure and As an assumption
function over a set S’ such that end(M) C S’. For every ¢ € cl(¢):

If As(p) = L then s |=45 ¢ is not defined.

Otherwise, we differentiate between ending states and other states. If s € end(M)

then s =45 @ iff s € As(p). If s & end(M) then s =4, ¢ is defined as follows:
o For every p € AP, s a5 piff s = p.

o s =45 o1 Vo iff (s Eas 1 or s Fas p2).

s Eas o1 iff s Fas o1 °.

s FasAXepy iff V' (s,8") € R = 5" Fas o1
o s EAEXp iff 3s'.(s,8") € RA S Eas o1

o s =4;A(p1Ugpy) iff for all maximal paths m = sg, s1,. .. from s there is a number
i < |m| such that:
either (s; Fas @2) or (s; € end(M) A s; FasA(p1Ups)), and V0 < j < i[s; Fas
p1).

o s EasE(p1Upsy) iff there exist a maximal path 7 = sg,s1,... from s and a
number 7 < || such that:
either (s; Fas @2) or (s; € end(M) A s; EasE(01Ugpz)), and V0 < 5 < i[s; Fas
1)

Note that if the transition relation of M is total then the above definition is equiv-
alent to the traditional definition of C'T'L semantics, because the assumption function
is consulted only on states from which there are no outgoing transitions. Since the
assumption function is consulted only for states in end(M) it seems pointless at this

*When no confusion may occur we omit M.
5Since As(—g) # L, which is why s =45 —¢ is defined, we conclude that As(p) # L. This means
that the set of states that satisfly ¢ is defined, and s [£45 ¢ iff s is not in this set.
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point to define an assumption function over a set S’ that includes more than just the
ending states. However, later on we use assumption functions as (intermediate) results
of model checking, and than we this possibility is used.

We write M |4, ¢ iff Vs € 1,[M,s Eas ¢]. We can now define model-checking

under assumptions.

Definition 3.7: Given a structure M = (S, R, I'), and an assumption function As over

a set that includes end(M), we define a function MC[M, As] : el(yp) — (25 u{L})
so that for any ¢ € cl(¢), if As(p) = L then MC[M, As](¢) = L. Otherwise,
MCIM, AS)(9) = {5 € 8 | My fea, 9}

Notice that MC[M, As] is an assumption function over S it is a function that given
a formula ¢ produces the set of all states in M that satisfy ¢ under the assumption
As. Given M and As, this function can be created using any known model checking
algorithm for C'T'L [14, 53, 6], after adapting it to the semantics under assumptions.
For example, MC[M, As] can be calculated using BDDs since all the operations in its
definition are efficient BDD operations.

3.2.1 Partition Graphs

A Partition Graph of a program P is a finite directed graph representing a decomposi-
tion of P into several sub-programs while maintaining the original flow of control. It is,
in fact, a generalization of the control-flow graph, in the sense that a control-flow graph
can be viewed as a partition graph, although there are many other possible partition
graphs for the same program. The nodes of the graph are labeled with sub-programs
of P or boolean conditions. A node labeled with a sub-program represents the exe-
cution of this program, and has one outgoing edge. A node labeled with a boolean
condition represents the evaluation of this condition, and has two outgoing edges - one
labeled with “true” and the other with “false”. We also add dummy nodes with no
labelings which are used to maintain structure, but have no semantic meaning (they
do not represent execution of commands). There are three types of edges: null-edges,

true-edges, and false-edges, denoted n; — ny, ny trug ng and n, fa—>ls6 ny respectively.
True-edges and false-edges, also called step edges, represent the evaluation of a boolean
condition, and will always exit a node labeled with a boolean condition B. Null edges
are used only to maintain flow of control, and represent no execution step. A null-edge
always exits a node labeled with a sub-program (or a dummy node) and represents
sequential composition.

There are two differences between partition graphs and control-flow graphs. The
first is that in control-flow graphs a node may include only a single command, while in
partition graphs it may include a complicated sub-program, with “if”s and “while”s in
it. The second difference is that even when the last (and perhaps the only) command
in a node is a non-deterministic assignment there will only be one out-going edge from
that node. This is just a technical difference, the semantics of the non-deterministic
assignment does not change. We start by defining the set of all possible partition
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graphs for a program, and then define the semantics of partition graphs by associating
a Kripke structure with every partition graph.

Every partition graph has two designated nodes: the entry node, from which exe-
cution starts, and the exit node, at which it stops. The set pg(P) contains all possible
partition graphs of P, representing different ways of partitioning P into sub-programs.
It is defined recursively, where at each step one may decide to break a given program
according to its primary structure, or to leave it as a single node. Figure 3.4 shows the
three different ways in which a program may be decomposed, according to the three
structures by which programs are created. We use in;y (inz) for the entry node of Gy
(G3) and outy (outy) for the exit node. Every time a node n is partitioned into a graph
(7, all the edges that entered n will enter the initial node of (G, and all the edges that
exited n will exit from the exit node of G.

1. If P = Pi; P, we may decompose it into two parts, by creating (recursively)
partition graphs Gy € pg(P1) and Gy € pg(P,), and connecting them with a null
edge from out; to iny. The entry node of the resulting graph would be in;, and
the exit node would be outy (Figure 3.4 A).

2. If P ="if B then P, else P, fi”, we again create the two graphs Gy € pg(Py)
and Gy € pg(Py) but also create two new nodes, one labeled with B and the
other a dummy node with no labeling The entry node is the B node, and the
exit node is the dummy node. The edges connecting the different components
are according to the semantics of the 7if” command, i.e. a true-edge from the
B to (1, a false-edge from the B node to (G5 and null-edges from Gy and G5 to
the dummy node. The edges entering (¢4 and (5 are pointed at iny and iny and
the edges exiting (1 and (5 are from out; and outy. (Figure 3.4 B).

3. If P ="while B do P, od”, we create a partition graph G; € pg(P;) and again
a node for B, which is the entry node, and a dummy node as the exit node. The
edges represent the semantics of the "while” loop, i.e. a true-edge from the B
node to (41, a false-edge from the B node to the dummy node, and a null edge
from (1 to the B node. (Figure 3.4 C).

A partition graph is used to represent a decomposition of struct(P) into several
structures of sub-programs. We associate a Kripke structure with each element of the
graph.

e For a node n labeled with a sub-program P’ of P, the structure associated with
n is the structure of the sub-program: struct(n) = struct(P’).

e A node n labeled with a boolean expression B represents the execution of an “if”
or “while” command that evaluates this condition. Let [ be the program location
of this statement. The structure associated with n is: struct(n) = (S, R, I) such

that R=0and S=1={(l,0)| 0 € X}.
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e The Kripke structure associated with the dummy node is empty because this
node does not represent an actual execution step, but rather is added so that
each sub-graph will have only one exit point. In the end there will be a null-edge
from the dummy node to some real node n. Every edge that enters the dummy
node is considered as if it entered n.

e A null edge ny — ny does not reflect an execution step in itself, and therefore if
M,y = struct(ny) and My = struct(ns) then end(My) = init(Mz) (every ending
state of M; is an initial state of M,). For this reason, there is no structure
associated with null-edges. Step-edges are the edges outgoing from a node labeled
by a boolean expression B. Let [ be the program location of the ”if” or ”while”
statement that evaluates B, and {’ be the program location of the first statement
in ny. Execution from a state in a node labeled B continues through the true-
edge or the false-edge, depending on whether the expression evaluates to true
or false in that state. These edges represent an actual step in the execution
of P, and the structures associated with them capture this step. The structure
associated with an edge e = ny =5 n, is defined by struct(e) = (S, R, I) where
S={lLlI'}x{o|oc B}, R={((l,0),(lI'yo))| o= B}and I ={(l,0) | o = B}.

alse .. . .
For e = n, falss ny the definition is similar, except that every o = B becomes

o= B.

Given a partition graph GG € pg(P), the structure that defines its semantics, de-
noted struct(() is constructed by taking the union of the structures associated with all
its nodes and edges. The resulting structure is exactly struct(P), the Kripke structure
representing the program. This follows immediately from the definition of struct(P)
given in Section 3.1.3, and the above definition of the structures associated with nodes
and edges. Notice that the connection between structures of sub-programs is through
states that appear in more than one node. For example, given a partition graph of
Pi; P, that has two nodes, one for P; and one for P;, the structure for P; will include
the set of states with the location of the beginning of P, because that location is
a node in the control-flow graph of the sub-program FP;. The same states will also
appear in the structure of P, because they are the initial states of this sub-program.

We define init((7) to be the set of initial states in struct(G) and end(G) to be the
set of ending states in struct((). Figure 3.5 gives an example of an actual partition
graph, including the Kripke structures associated with the nodes.

3.2.2 Operations on Assumption Functions

Before we present our modular algorithm we define a few operations on assumption
functions that are used in the algorithm.

The most basic operation is performing model checking under assumptions on a
single node n labeled by a sub-program P’. For this we use MC, which was defined
earlier. Given an assumption function As over the ending states of struct(P’) we
can calculate the assumption function As’ = MC|[struct(P’), As]. The function As’
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Figure 3.4: Creation of partition graphs

gives us full knowledge about which states of M satisfy which formulas, under the
assumption As.
Next we present a function called C'heckStepFEdge, which performs model checking

under assumptions over a step edge. The input to this procedure is a step-edge e =

true false . . . .
ny — Ny Oor € = ny — ny and an assumption function As over a set including

the initial states of ny (which are the ending states of struct(e)) ®. The output is
the assumption function As’ over struct(e) calculated by: As’" = MC|struct(e), As].
Notice that if e is a true-edge (false-edge) then As’ is defined only on states that satisfy
(do not satisfy) the condition labeling n;. Actually, when calculating As’ for a step-
edge there is no need to use a full model-checking algorithm. The structure struct(e)
is defined so that each initial state has exactly one successor, and this successor is
an ending state. Therefore, we can calculate As’" more efficiently according to the
following definition:

Definition 3.8: Let ¢ = ny 25 ny be a true-edge in a partition graph GG, and let As :
cl(y) — (251 U {L}) be an assumption function over Sy such that init(struct(nz)) C
S1. Define As’ = CheckStepEdge(e, As) s.t. As': el(¢) — (ZST U{L}). Let [ be the

program location of ny (an “if” or “while” statement), let I’ be the program location
of the beginning of nq, and let S7 = {({,0) | o = B} be the set of states of struct(n,)
over which As’ is defined.

If As(p) = L then As'(¢) = L. Otherwise, As'(p) is defined as follows 7 :

o For any p € AP, As'(p) = {s € 57 | s |= p}

o As'(~p) = S\ As(¢)

o As'(p1 Vipz) = As'(ip1) U A/ (2)

o As'(AXy) = As'(EXyp)={(l,0) € Sp | (I',o) € As(p)}

5The assumption function As must be defined over a set S’ that includes the initial states of na,
but it may include other states as well.
If As(p) # L then for all sub-formulas ¢’ of ¢ we are assured that As(y') # L.
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Figure 3.5: An example partition graph
This is a partition graph for the program P from figure 3.3. Instead of writing in each
node the sub-program that it represents, we show the structure associated with that
node.
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o As'(A(¢p1Ugpy)) = As'(E(p1Ugpy)) =
A9(2) U (As'(1) N {{1,0) € 81 | (,0) € As(A(1Uga))})

For a false-edge n, fa—>ls6 no the definition is the same, except that instead of S we use:

Sr=A(l,0) |0 [~ B}.
Lemma 3.1: For any step edge e and assumption function As over S; such that
end(struct(e)) C Sy,
CheckStepEdge(e, As) = MC[struct(e), As].
This statement is obvious from the definitions of model-checking under assumptions

and CheckStepFEdge.

3.2.3 The Modular Algorithm

In this subsection we give an algorithm to check a formula #» on a partition graph G
of a sequential process P. The result is an assumption function over the set of initial
states of P that gives, for every sub-formula ¢ of i, the set of all initial states of
P satisfying ¢. We start with an intuitive description of how the algorithm works.
Variable names which are mentioned refer to variables in the algorithm.

The algorithm works on a partition graph GG of a program P, and traverses it from
the exit node upwards to the entry node. First the structure struct(v) of a leaf node
v of GG is checked under an "empty” assumption for ¢/(¢), an assumption in which
all values are (). Since v is a leaf it must end with the “terminate” command and
therefore all paths in it are infinite, and the assumption function has no influence on
the result. The result of the model checking algorithm is an assumption function As’
over init(struct(v)) that associates with every sub-formula of ¢ the set of all initial
states of struct(v) that satisfy that sub-formula. Once we have As’ on v we can derive
a similar function As over the ending states of any node u, preceding v in GG (that is,
any node u from which there is an edge into v). Next, we model check u under the
assumption As. Proceeding in this way, each node in GG can be checked in isolation,
based on assumptions derived from its successor nodes. Special care should be taken
when dealing with loops in the partition graph.

The algorithm is called CheckGraph. Given a procedure that properly computes
MC[M, As], CheckGraph takes a partition graph GG and an assumption function As
over end((7) and performs model checking under assumptions resulting in an assump-
tion As’ over init((). CheckGraph is able to handle partially defined assumption
functions, in which there are some L values. For any sub-formula ¢ s.t. As(p) = L
we get As'(¢) = L. CheckGraph is defined by induction on the structure of . The
base case handles a single node by using the given procedure M. To model check
a partition graph G of P = P;; P,, as in figure 3.4 (A), CheckGraph first checks G
under As, using a recursive call (see Figure 3.6). As; is the result of this call (As;
is over the set init(struct(Gz))). It then uses As; as an assumption over the ending
states of (; and checks Gy w.r.t As; using another recursive call. The second call
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returns for all ¢ € ¢l(1) such that As(p) # L the set of all initial states of Gy (which
are the initial states of P) that satisfy ¢, which is the desired result.

init(G1) the result

G1 init( GL 2

end(GY % Gl Gl

——

., Aslw
init( G2Y_—_—=

=

end( G1)

1 () (©) 4

Figure 3.6: The operation of CheckGraph on sequential composition.
The gray area is the set of states that satisfy .

Let (G be a partition graph of P = "if B then P else P”, as in figure 3.4 (B). To
check GG we first check GGy and (5, and then compute ‘backwards’ over the step-edges
(using C'heckStepFEdge) to get the result for the initial states of G.

The most complicated part of the algorithm is for the partition graph G of a
program P = "while B do P od”, as in figure 3.4 (C). We start from the dummy
node, with the assumption As over the set of states of the dummy node (the set
of states with the program counter location of the next command after the while).
Walking backwards on the false-edge we use C'heckStepFEdge to get an assumption
As_p over the initial states of G that satisfy =B. We then use recursive calls over the
body of the while to compute the assumption function As’.

In this part it is important that when calculating the set of states that satisfy a
formula we have already finished all calculations for all of its sub-formulas. For this
reason we order the formulas in ¢l(¢) according to their length and operate on them
one at a time. We start with an assumption function As’ that has a L value for all
formulas except the shortest, and use a recursive call to evaluate this formula. The
recursive call will disregard all formulas for which As’ = L. When this is done, we
move on to the next formula, changing the value of As’ from L to a set of states. We
continue this process for each sub-formula in ¢l(p).

The value As'(¢y) is computed for each @i € ¢l(p), according to the structure of
the formula ¢j. The most complicated part here is the computation for the temporal
operators EU and AU. We now demonstrate the computation of E(p;Ugy). The
algorithm handles the formulas in ¢/(p) one at a time, so that when reaching E(y¢1Ug:)
it has already dealt with ¢ and ¢5. This means that the assumption functions As'(¢1)
and As'(yy) are already calculated (over init(()). Since the algorithm is recursive,
every time we apply it to the body of the loop ((1) it calculates values for all formulas
which are not L in the input assumption function. Specifically, this means that it
will calculate correctly the sets of states in struct(G) that satisfy ¢; and ¢y. The
goal is to mark all states that satisfy E(p1Ugs) (to create As'(E(¢1Ugps)). Standard
model checking algorithms would start by marking all states that satisfy 9, and then
repeatedly move backwards on transitions and mark every state that has a transition
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into a marked state, and satisfies ¢ itself. We reconstruct this computation over the
partition graph of P. For initial states of G that satisfy B we have no assumption
regarding E(¢1Ugps), so we mark all those that satisfy B and ¢y and keep them in
Initg. Together with As_p(E(v1Ugs)) we have an initial estimate for As'(E(¢1Ugps2))
(kept in As%(py)). We now want to mark all the predecessors in G of these states.
Notice that init(G') = end(G4), because both are defined as [ x ¥ where [ is the
program location in which B is evaluated. This means that the predecessors we are
looking for are inside (1. Hence we continue from end((/1) backwards inside G4 until
we arrive at init((Gy), and keep the result in T'mp, which is an assumption function
over init(Gy). We notice that at this point, only the marks on states of init(Gy) are
needed to proceed, the marks on all other states of (G; are not preserved. If and when
we pass through (7 again, some calculations may have to be repeated. We will later
discuss how to solve this problem. Notice also that Gy itself may consist of more than
one node, and the creation of T'mp is done by a recursive call to CheckGraph. From
Tmp we can calculate a new estimate for As'(E(¢1Ugpz)).

The whole process repeats itself since the body of a "while” loop can be executed
more than once. It is essential that the initial states satisfying ¢; and @2 be known
before this process can be performed. Therefore, we use the L value for E(p1Ugp:y)
when working on the assumptions for ¢, and 3. Only when calculations for all sub-
formulas are completed we begin calculating the proper result for E(¢1Ugps).

This process stops when the assumption calculated reaches a fix-point (As' =
As~1). Obviously, no new information will be revealed by performing another cycle.
The set of states in init(G') that are marked increases with each cycle, until all states
that satisfy the formula are marked, and the algorithm stops. This is formally proved
later.

Following is the recursive definition of the algorithm. Given a partition graph

G € pg(P) of a program P, and an assumption As : cl(y)) — (ZGnd(G) u{L}),
CheckGraph(G, As) returns an assumption As’: cl(y) — (ZMN(G) U{L}).

CheckGraph(G,As):

For a single node n (labeled by a sub-program P’), return As’ s.t. Vo € cl(v), if
As(p) = L then As'(¢) = L, otherwise
As'(p) = MC[struct(P'), As|(e) Ninit(struct(P')).

The three possible recursive cases are the ones depicted in Figure 3.4. We assume
that iny (inz) is the entry node of Gy (Giy), np is the condition node (if present), and
np is the dummy node (if present).

e For a sequential composition Py; Py (Figure 3.4(A)) perform:

1. Asy <CheckGraph(Gly, As).
2. As' «CheckGraph(Gy, Asy).
3. Return As’
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e For a graph of P = ”if B then P; else P, fi” (Figure 3.4(B)) perform:

AR

6.

Asy «CheckGraph(Gy, As).

Asy «CheckGraph(Gy, As).

Asp < CheckStepEdge(ng trug iny, Asy)
As_p < CheckStepEdge(np fatse ing, Asy)

For every formula ¢ € cl(3), if Asg(¢) = L then define As'(¢) = L &.
Otherwise, As'(¢) = Asp(p) U As_p(p)

Return As’

e For a graph of P = "while B do P; od” (Figure 3.4(C)) perform:

1.
2.

As_p < CheckStepEdge(np falsg np, As)

Find an ordering ¢1,p2,...,@, of the formulas in ¢l(¢) such that each
formula appears after all of its sub-formulas. Set As'(¢;) = L for all i. For
k=1,...,n perform step 3 to define As'(¢y) ?.

To define As'(py) perform one of the following, according to the form of ¢y:

or € AP As'(¢r) + {s € init(G) | s E ¢r}

or = i As'(pr) «— {s € init(G) | s & As'(¢1)}.

pr =01V o As'(pr) = As' () U A (@)

or € {AX ¢, EXp }:

(a) T'mp <—CheckGraph(Gy, As')

(b) Let [ be the location of the “while” and {” the first location in the body.
As'(¢r) ¢ As-p(er) UL o) [o = BA (o) € Tmp(en)} 7.

er € {A(0Upn), E(0Up,)}:

(a) Initg + As'(¢n) N{s € mit(G) | s E B}.
The initial assumption function is As® < As’.
Initialize the value for ¢r: As®(py) < As_p(pr) U Initg.
Set 1 + 0.

(b) do:
—141+1
— Tmp =CheckGraph(G;, As*™1)
— TmpB < CheckStepEdge(np e iny, T'mp)

8Notice that since Asp and As_p both originate from the same assumption function As, it holds
that Asp(p) = L iff As.p(¢) = L. Also, the images of Asp and As.p are digjoint.

“Notice that when working on ¢, we have already calculated As’ for all of its sub-formulas, so
they are not L.

0The definition is the same for AX¢; and EX¢; because each state (I,0) € init((G) has exactly
one successor state (I', o) € init(Gy).
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— Define As‘ so that for all j < k, As’(p;) + As%(¢;) and
As'(@r) ¢ TmpB(er) U As-p(#k)
Until As’ = Asi™,
(c) As'(on) ¢ As'(¢r)
4. Return As'.

Theorem 3.2: The above algorithm computes model checking under assumptions
correctly for any partition graph G of any program P. Formally, for any assumption
function As: CheckGraph(G, As) = MC|struct(G), As].

The proof of this theorem is quite long, and it is deffered to subsection 3.2.5. The
consequence of the above theorem is the following:

Theorem 3.3: For any sequential process P, C'T'L formula 1, partition graph G €
pg(P) and empty assumption function As : cl(¢)) — {0}, if As’ = CheckGraph(G, As)
then for every ¢ € cl(v) and s € init(G), s € As'(p) & s = .

This theorem states that if we run the algorithm on a sequential process, with an
empty assumption function, the resulting function will give us full knowledge about
which formulas in ¢l()) hold in the initial states of the program according to the
standard semantics of C'T'L.

As promised, we now show how to make the algorithm more efficient by saving on
recalculations done in recursive calls. When there is a recursive call to C'heckGraph
on a smaller graph, all sub-formulas for which the input assumption function is not L
are calculated, even if they were already calculated in a previous call. To avoid this
calculation, the results of calculations during recursive calls can be kept in files. Of
course, the result for each node is kept in a separate file. When there is a second call
to the same sub-graph, because this sub-graph is part of the body of a while loop,
the input assumption function for sub-formulas that have been calculated before will
not change (because we are now working on a larger formula), and so the resulting
assumption function for these sub-formulas is identical. When this case is identified,
the previous results can be read from the appropriate file instead of making the same
calculations again. This scheme may improve the performance of the algorithm sub-
stantially, especially in systems where accessing the file is not too big a problem.

Another way of making the algorithm for a while loop more efficient is to work on
sub-formulas of the same size together, instead of one at time. Any combination that
guarantees that when working on a formula, all of its sub-formulas have already been
dealt with, will suffice. The simplest way is to choose to work on all formulas of length
1, then all formulas of length 2. etc.

The space requirements of our modular algorithm will usually be better than that of
algorithms that need to have the full model in the direct memory. Our algorithm holds
in the direct memory at any particular moment only the model for the subprogram
under consideration at that time. In addition, it keeps an assumption function, which
at its largest holds the results of performing model checking on this subprogram. This
of course is equivalent to any model checking algorithm that must keep its own results.
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The time requirements depend on the model checking algorithm used for a single
node and on the partition graph. However, experimental results show a saving in time
as well as space requirements, as described in the next section.

3.2.4 Results

The modular model checking algorithm presented here can be considered as a frame-
work into which any model checking algorithm for Kripke structures can be integrated.
Since our method uses a given model checking algorithm as a procedure, whenever a
better algorithm is developed it can immediately be plugged into ours.

An important new notion suggested here is that of partition graphs. These are
used to partition the model checking task into several sub-tasks. They also maintain
the flow of information (by means of assumption functions) between the sub-tasks.
Choosing the right partition graph is crucial to the effectiveness of our method. As
presented here, the algorithm is given a specific partition graph, but it may be possible
to develop some heuristics that will allow automatic creation of the partition graph.

We implemented the modular model checking algorithm in a prototype tool called
SoftVer (the tool itself is described in more detail in chapter 5). The tool is based on
a BDD representation of models and on symbolic model checking.

In order to evaluate the effectiveness of partitioning on memory and time require-
ments, we applied the tool to a few small examples. Each example program was
checked with two different partitionings. The moderate partitioning divided the pro-
gram into a few components, while the extensive partitioning further divided it into
smaller components. For comparison we also checked the unpartitioned full program.

The largest overhead occurs when applying our algorithm to a program in which
the body of a while loop is partitioned. Therefore, all our examples include while
loops which are divided by both partitionings. Table 3.1 (on page 64) gives the space
and time used by each partitioning. Times are given in hours, minutes, and seconds,
memory consumption is given Kilobytes. The "Min/Max module size” column gives
the minimal and maximal sizes of the files that keep the structures of single partition
graph nodes. These are also measured in Kilobytes. The examples were run on a
machine with 400M RAM.

Besides the partitioning of the program, the influence of two other parameters was
checked. The first is the use of variable reordering (the “reo” option in the table). This
is an option provided by the BDD package. When the BDD sizes go over a certain
threshold a variable reordering algorithm is performed. This algorithm attempts to
find a different ordering of the BDD variables, so that the BDDs will be smaller. This
option has proved to be very useful for symbolic model checking. The BDD library we
used enabled us to use different variable orderings for different partition-graph nodes
(which reside in separate files). The second parameter is local reachability (the “Ir”
option in the table). This option does not perform full reachability analysis, but does
eliminate from the state space a certain amount of the unreachable states. This option
is explained in more detail in Chapter 5.
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Table 3.1 gives results for three examples. The Learn Monom example is a
learning algorithm that learns a single term by examples. The moderate partitioning
separates the code into several components so that different tasks are in different
components. The extensive partitioning breaks down the components even further.
The specification used requires that the algorithm will never give a false negative
result, i.e. the algorithm does not make errors on inputs for which the term evaluates
to true.

The Stop and Wait example is a simulation of the “stop and wait” communication
protocol. It consists of a large while loop whose body has two major parts, one for the
sender and one for the receiver. The moderate partitioning separates the receiver and
the sender into two components. The extensive partitioning further separates different
tasks in each of the components. The specification used requires that the sender does
not move to the next message before the current message has arrived at the receiver.

The Sort example is the shortest of the three, and it performs bubble sort on an
array of 5 elements. This program consists of two nested while loops, with a single
“if” statement in the body of the inner loop (that compares two adjacent elements).
The moderate partitioning breaks the outer loop and the extensive partitioning breaks
the inner loop as well. The specification states that the algorithm will terminate, and
at that point the array will be sorted. All three examples work with 8-bit integers.
In the first two examples integers are used mainly as pointers into buffers or array
indices, but in the Sort example the array which is sorted is an array of integers. For
this reason, even though it is the shortest example (least number of program counter
locations) it is not the smallest in terms of the size of its state-space. This example
could not complete in the available 400M when run without variable reordering, so
there are no entries in the table for this example without the reordering option.

To make the results more easy to analyze, we summarized them in TWO graphs.
Figure 3.7(a) shows the effect of partitioning on memory consumption and figure 3.7(b)
shows the effect of partitioning on time consumption. Each graph contains three sub-
graphs, one for each example.

From figure 3.7(a) we can see that partitioning a program can in fact reduce space
consumption considerably. The sort example is the most notable since it is a type
of application which usually does not work well with BDDs. However in some cases
partitioning the program can also enlarge the amount of space required. This happens
only because we used BDDs to represent structures. When implementing the algorithm
using an explicit-state representation this phenomenon can not happen. The moderate
partitioning gives good results in 7 out of 10 cases, whereas the extensive partitioning
gives good results only in 5 cases (out of which only in 4 cases the extensive partitioning
gives better results than the moderate partitioning). On the other hand, the best result
overall was achieved by the extensive partitioning in the Sort example. These results
support our claim that the choice of partitioning is crucial. More research needs to
be done in order to classify the types of programs in which partitioning is expected
to improve performance, and the way in which such programs should be partitioned.
When choosing a partition one must balance the overhead of partitioning with the
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Figure 3.7: Result graphs for Modular Model Checking
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reduction in the sizes of the modules.

By comparing figures 3.7(a) and 3.7(b) we see that there is no direct link between
the space and time consumption. There are 2 cases in which although the extensive
partitioning leads to a greater space consumption than the moderate partitioning,
the extensive partitioning requires less run-time than the moderate one, and one case
where the opposite happens. This can be explained by the fact that in the extensive
partitioning there is one module for whom the model checking at one point exploded
and required more space, but since all other modules were small the model checking
for all the other modules took much less time. The space consumption listed in the
table is the maxzimum space used by the process, but in most cases this amount is used
only for a short period of time.

Another point to notice is the ill effect of local reachability and the favorable effect
of variable reordering. These will be further investigated and explained in Chapter 5.

To summarize our conclusions from the examples, we believe that the use of our
modular model checking algorithm can be instrumental in verifying some programs,
but not in every case. We would advise the user to use it when it seems that regular
model checking is too expensive, and to choose the partitioning so that the different
tasks that the program performs reside in different modules.

3.2.5 Proof of main theorem

This subsection is devoted to proving theorem 3.2 which stated that:
The modular model checking algorithm computes model checking under assumptions
correctly for any partition graph G of any program P. Formally, for any assumption
function As over end(G): CheckGraph(G, As) = MC[struct(G), As].

The proof of this theorem requires several stages. We start with the following
lemma.

Lemma 3.4: Let M = (S, R,I) be the structure of some program P. Let M' =
(S', R, I") be the structure of a sub-program P’ of P, or of an edge e in the control-
flow graph of P. Let As be an arbitrary assumption function over end(M) and As’ an
assumption function over end(M’) such that for every s € end(M’') and ¢ € cl(v)) it
holds that s € As'(¢) & M, s [Eas ¢ . Then for every s € M’ and every ¢ € cl(¢):
M' s Eag p & M, s Eas .

Proof: The proof is by induction on the top-most operator of ¢. For the base case,
@ € AP, and the induction steps that do not involve temporal operators the proof is
trivial since the definition of M, s =44 ¢ does not depend on the assumption function
As' (only on the induction hypothesis for sub-formulas of ¢). The interesting cases
are the ones that involve temporal operators. We show only the proofs for EX¢; and
E(p1Ugp,), the proofs for AXp; and A(¢1Ugpz) are dual. The induction hypothesis is
that for @1 and 5 the claim holds, i.e. for every s € S: M’ s Eay i & M, s Eas

UThe theorem will also hold if As is over a set that includes end(M) instead of being defined
exactly over end(M) (and the same for As’ and end(M').
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for:=1,2.

o Let p =EX¢;. For every state s € 5" we have:
M/, S |:A5/ Y =
ds" € S".R(s,8") N M', 8" |E=as 1 or s € end(M') N As'(¢)
& (since 8" C S, R C R, and since R(s,s') A s & end(M') implies s’ € ")
ds" € S.R(s,8') ANM,s" =45 o1 or s € end(M') N As'(p)
& (from our assumption about As'(¢))

M, s =45 ©.

o Let ¢ =E(p;Upy). We first prove that for every state s € 5"t M’ s |Fay ¢ =
M, s =45 ¢:
Mlv‘S |:AS’ ¥

= (by definition)

There exists a path 7 = sg,...,s;in M’ (s = s¢) such that either s; € end(M')N
As'(p) or M',s; Eas @2, and for every j < i: M',s; Fas 1

= (from the induction hypothesis about ¢; and 3 and what we know of As')
There exists a path 7 = sq,...,s, in M (s = s¢) such that for every s;, either
M, s; Eas ¢ or M, s; [Fas @2, and for every j < i: M, s; =45 @1

= (by definition)

M, s FasE(01Up VE(p1Upy))

= M, s EasE(¢1Ugp2).

Next, we prove that for every state s € S’ M,s Eas ¢ = M' s Fas .
If M,s EasE(¢1Ugpy) then there exists a path m = sg,..., 8 in M (s = s¢)
such that M,s; = @2 and for every j < i: M,s; =as ¢1. Here there are two
possibilities:

1. For every k < i, s € 5"\ end(M'). In this case, from the induction
hypothesis about ¢; and ¢y we have:
M, s; Eas p2 and for every j < i: M',s; =as @1
= M' s Eas ¢
2. There exists a state from end(M’) along w. Let s be the first such state
(so for every j < k we have s; € 5"\ end(M")). Then we have:
M, sy Eas ¢ and for every j < k: M, s; Fas @1
= (from our assumption about As’ and the induction hypothesis)
sk € As'(p) and for every 7 <k M',s; Eas 1
= (by definition)
M' s =as @

O
The proof of theorem 3.2 is by induction on the size of the partition graph G'. The
most complicated part to prove is the operation of the algorithm on a while loop. This
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part is proven by induction on the sub-formulas ;. The most complicate part of this
inner induction is, naturally, the proof for ¢ =E(¢;Uep,,) or o =A(¢Upy,). In the
following we prove several lemmas about this part, and then use them in the proof for
the whole algorithm. These lemmas are going to be used in the inner-most induction,
so the induction hypotheses may be needed as premises.

The first premise is the induction hypothesis of the outermost induction on the
size of the partition graph.
Premise 1:
Every recursive call of CheckGraph on the partition graph of the body of the while (G)
with an (arbitrary) assumption function As™ over end((), results in an assumption
function As®* over init(() such that, for every o € cl(3) s.t. As™(p) # L and every
state s € init(G) we have s € As”™(¢) & struct(Gy), s E4n .

The second premise is the induction hypothesis for the induction on the sub-
formulas ¢y
Premise 2:
After running the algorithm for the formulas ¢4,...,©r_1 the algorithm built the
sets As'(p1),..., As'(pr—1) correctly, i.e. for every s € init(G) and j < k we have
s € Ad(p;) & struct(G), s Eas ¢;.

To reason about the algorithm for the while loop we define the following three
structures. The structure of the partition graph G of the whole while-loop is Mg =
(Sa, Ra, Ig). The structure of the partition graph G of the body of the while loop is

My = (S1, Ri, [1). We define a third structure M = (S, R, I) which is the structure

Mg without the transitions of the false edge e.p = np fa—>ls6 np. This means that

S =S¢\ end(G) (end(() is the set of states that have the program location following
the while loop, the states you end up at when the loop is done), and R = Rg \ R._,.
The following observations are at the base of our proof:

o end(My) = init(Mg) = init(M)
The set of ending states of the body of the loop is the set of initial state of the
whole loop. These are the states in which the condition of the while is evaluated.
Their successors are either in init(My), if the condition is true, or in end(Mg),
if it is false.

o end(M) Cinit(M)
The ending states of M are the states in which the condition B is evaluated and
found not to hold. The transitions outgoing from these states are included in

M, but not in M.

o For checking satisfaction under assumptions on Mg the assumption function
must be defined over end(Mc), which is the set of states with the location fol-
lowing the while loop. For checking satisfaction under assumptions on M the
assumption function must be defined over end(M). Any assumption function de-
fined over init(M) is also defined over end(M) and can be used for satisfaction
under assumption of states in M.
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We start by connecting satisfaction of formulas in Mg under the assumption As
with satisfaction in M under the assumption As_p. Recall that As is over end(Mg)
and As_p is over end(M).

Lemma 3.5: For every s € init(() and ¢ € cl(v): Mg, s Fas ¢ & M, s =4, @

Proof: The assumption function As_p is created by a call to CheckStepEdge on the
false edge, with As. Therefore, for every s € init(G) such that s = B and ¢ € cl(v))
we have s € As_p(p) & Mg, s [Eas ¢. We have already noted that the set of states
s € nit(G) such that s £ B is exactly end(M), so we can use lemma 3.4 to conclude
that for every s € init(M): M, s Fas., ¢ & Mg, s Fas . O

From here on, we prove correctness with respect to M and As_p, and this will
imply correctness with respect to Mg and As.

The next lemma we prove makes two claims. One is that for every s € As'(¢y):
M, s Eas.p ¢k This means that every state that is marked as satisfying ¢y, actually
does satisfy ;. The second claim is that the series of sets As’(¢y) is a monotonically
growing series of sets, i.e. each new set includes all the states of the previous set.
This means that we do not ”lose” states that have already been found to satisfy .
Notice that when calculating the series of assumption functions As‘, the sets As'(;)
for j < k are always the same, because they are copied from As’. The goal of this
part of the algorithm is only to compute the set As'(¢r). We also notice here that the
assumption functions As' are defined over init(M), which includes end(M). During
the calculation of these functions we create the assumption function T'mp over init(Gy)
and T'mpB over the set of states in init(M) that satisfy B.

Lemma 3.6: Assume that premises 1 and 2 hold. Let As’ be one of the assumption
functions calculated by the algorithm when working on a formula ¢ of the form
A(pUgp,,) or E(p;Up,,) on a graph of a while loop. Then for every state s € As'(¢y),
M,s Eas_y @r, and if i > 0 then As'™'(¢) C As'(op).

Proof: We prove both claims of the lemma together, by induction on 1.

To show that s € As°(py) implies M, s [Eas., ¢r we examine part (a) of this
portion of the algorithm, where As® is created. If s € Initg then s is an initial
state that satisfies B and, according to the induction hypothesis for ¢,,, also satisfies
©m under the assumption As_pg. Therefore, M,s E4s_, @r. If, on the other hand,
s € As_p(¢k) then s € end(M) and by definition M,s =45, pr. To show that
As%(pr) C As'(¢r) we move to examine part (b). We see that As'(¢r) = TmpB(px)U
As_p(pr). Let s be a state in As®(py). If s € As.p(¢x) then automatically s €
As'(pr). Otherwise, s € Initg, which means that s a5 ¢, and from our induction
hypothesis for ¢, (premise 2) we conclude that CheckStepEdge will create TmpB
correctly (states that satisfy ¢, also satisfy E(¢;Ug,,) and A(p,Up,,)) and s €
Ast(pr). .

We now assume both claims hold for every 5 < 1, and show them for As'. Let
s € 1nit(M) be a state such that s € As(pg). We show that M,s =4, , wr. If
s € As_p(pr) then as before M, s |=45_, k. Assume that s € TmpB(¢y). The state
s has a single successor, which is a state s’ € init(M;). If CheckStepEdge inserted
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s into TmpB(pk) then it must be that s" € T'mp(ex) (assuming that s FEas_, ©m).
From the induction hypothesis for the recursive call to CheckGraph we deduce that
My, s Easi-r ¢r. f o =E(¢;Up,,) then there must be a path m = sg, ..., 8, (s’ = s¢)
in M; such that either s, € end(M;) N As*=Y(py) or My, s, Easi-1 ¢m, and for every
J < n: M,sj Eas-1 . From premises 1 and 2 together we deduce that for every
J<mn: M s; Eas, o If s, €endMy) N As'™Y(pg) then M, s, FEas_, @r, and if
My, s, Easi-t ©n again we have M, s, [E=as_, ¢r. In both cases we conclude that
M, s" Eas., wr which implies M, s [=as_, ¢r. The proof for A(pUeg,,) is similar,
except that instead of reasoning about one path 7 from s" we talk about all the paths
from s'.

We are left with showing that As‘=!(;) C As'(pr). Let s be a state in As*~!(py).
The set As'=!(p}) is created at the end of the “Until” loop, as the union of TmpB(¢y)
and As_p(@k)-

If s € As_p(¢r) then it will stay there (since As_p(¢k) does not change) and so
we are guaranteed that s € As'(py). If s € TmpB(¢y) then we show that it will also
be in TmpB(py) when As'(p}) is created. To prevent confusion, we use TmpB? and
Tmyp’ for the functions T'mpB and T'mp created in the jth iteration of the loop, which
is the iteration in which ¢ = j and As’ is created.

From the induction hypothesis on the recursive call to CheckGraph, the correctness
of CheckStepEdge, and lemma 3.4, we deduce that for every state ¢t € init(M), and
every j < 1, t € TmpBi(pr) & M,t Esp-1 pp. Obviously, if s € As'™! because
M, s =45, pm then s € TmpBi(py) and so s € As'(pg). Otherwise, if s € As'(¢y)
it is because M,s =45-2 ¢p. We know that for every j < k we have As'=2(p;) =
As™Yp;), and that As*=2(p,) C As' " (pr), 50 M, s =442 @ implies M, s = 4,i-1 @
This last step is true because of the monotonicity of the EU and AU operators. In the
definition of satisfaction under assumptions we see that if the sets of states assumed
to satisfy E(¢/Ug,) (or A(@Up,,)) grow larger, then the set of states that satisfy
E(p/Up,,) (or A(¢Up,,)) under this assumption cannot grow smaller. So now we
know that M, s [=4,i-1, and this implies s € TmpB(py), i.e. s € As'(pp). O
Lemma 3.7: Assume that premises 1 and 2 hold. For every state s € init(M) such
that M, s Fuas_, ¢ (¢ =E(0iUpn) or o =A(¢1Up,,)) there exists a number ¢ such
that s € As'(¢y).

Proof: We prove lemma 3.7 for the case of pr =E(¢;Up,,), the proof for ¢ =
A(pUgp,,) follows a similar line of reasoning.

Let s be a state in init(M) such that M,s Eas_, pr. Let m = so,...,8, (s = $0)
be the shortest path from s that proves this, i.e. it is the shortest path such that either
sn € end(M) N As_p(er) or M, s, Fasp ©m, and for every j < n: M,s; =45 1. We
define n to be the depth of s.

Assume to the contrary that there are one or more states that satisfy 5 but will
not get into any set As‘(¢). Obviously, these must be states that satisfy B. Let s be
the state with minimal depth, and n its depth. Let 7 = sq,...,s, be the path that
shows this. Then there are two possibilities:
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1. The state sq is the only state from init(M) along m. In this case we know
that the states sq,...,s, are all inside M;. From the premises of the lemma we
know that when the first recursive call to CheckGraph on Gy is done we have
s1 € Tmp(py) because My, 81 [Ea0 @ can be proven on M; just by examining
the sets of states that satisfy ¢; and ¢, in M’. Therefore we must conclude
that CheckStepEdge will create TmpB so that sy € T'mpB(¢x) which implies
So € Asl(c,ok) in contradiction to the assumption that s = sy does not get into
any set As'(py).

2. There exists a state other than sg along 7 which is in init(M) (the path 7 goes
more than once through the loop). Let s; (7 > 0) be the first such state along .
Since m was chosen as the shortest path that proves M, sq Euas_, ¢k, we know
that s;,...,s, is the shortest path that proves M,s; Eis_, @k, and that the
depth of s; is strictly smaller than the depth of sy. From the way we chose s
we conclude that there is a function As' such that s; € As'(py). This means
that M, sg [Easi pr. For similar reasoning as we have done before, using the two
premises, we conclude that so € As'™(py) in contradiction to our assumption
that s = so never gets into any set As'(yy).

We can now finally prove theorem 3.2.

Proof: As mentioned before, the proof of the algorithm is by induction on the size
of the partition graph. The base case is the application of the given model checking
under assumptions procedure on the structure of a single partition graph node. For
this case we know that the given procedure is correct. The induction step is according
to the topmost structure of the partition graph . In all the cases bellow we use Mg
for the structure of P and M, for the structure of P; (i = 1,2).

e For a graph of P = Pi; P, as in figure 3.4(A):
From the induction hypothesis for the smaller graph G5 we conclude that for
every state ¢t € init((Gy) and every formula ¢ € cl(¢) such that As(¢) # L,
t € Asi(p) & My, t [Eas ¢. Similar reasoning shows that for every s € init(Gy),
s € As'(p) & My, s Euas, ¢. Using lemma 3.4, and since init(Gy) = init(G)
we have: for every state s € init(() and every formula ¢ € cl(¢)) such that
As(p) # L, s € As'(¢) & Mg, s =4, ¢.

e For a graph of P = “if B then P; else P, fi” as in figure 3.4(B):
We use the induction hypothesis for the recursive calls on (¢4 and G5 to conclude
that for every ¢ € init((;) and ¢ such that As(¢) # L, t € Asi(¢) < M, t FEas
¢ (i = 1,2). From the correctness of CheckStepEdge, and using lemma 3.4,
we conclude that for every s € init(G) and every ¢ such that As(p) # L,
s € Ad (@) & Mg, s =as ¢.
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e For a graph of P = “while B do P; od” as in figure 3.4(C):

For this part we use induction on k.

For o € AP, v = ~¢; and ¢ = ¢; V @, the proof is trivial, since we assume
correctness for ¢; and ¢, (the induction hypothesis).

For o, =AXp; or o, =EX;, we use the induction hypothesis for the recursive
call on (4 to conclude that for every t € init(Gy),t € Tmp(e)) & Ma,,t Eas @1
For every state s € init((G) such that s = B, we know that s € As_p(¢r) <
s F=as @r from lemma 3.5. For every state s € init(() such that s = B we know

that s has only one successor, so Mg, s |= ¢ ifl its successor state ¢ satisfies
t € Tmp(p;). Therefore, for every state s € init(GG) we have s € As'(¢r) <
Mg, s [Fas ¢r-

For o =A(p/Ugp,,) or ¢ =E(p;Ug,,) we have already proven, using both
lemma 3.5 and lemma 3.6, that for every s € init(G), s € As'(¢r) = Mg, s Fas
wr. This proves that every state we mark actually satisfies the formula. We
have also shown in lemma 3.6 that with every iteration the set As‘(¢y) can only
grow larger, and since there are finitely many states in init(G) the process is
guaranteed to stop. In lemma 3.7 we have shown that any state which satisfies
¢ will eventually get into one of the sets As’(¢) and so we have Mg,s Fa,
wr = s € As'(¢r), which concludes the proof for the while loop.

3.3 Static Analysis Reductions

In this section we use static analysis to reduce the Kripke structures representing
programs. As mentioned earlier, a program can be described in two levels, a syntactic
and a semantic level. We use control-flow graphs to represent the syntax of programs
and Kripke structures for the semantics of programs. Static analysis is the process
of examining the control-flow graph of a program (the syntax) to extract information
on its semantics, without creating the semantic model. Our purpose is to use static
analysis in order to create a smaller semantic model for the program, which we call
the reduced Kripke structure of the program. The reduced Kripke structure is built so
that it is equivalent to the original structure of the program, i.e. a given specification
@ is true in the original Kripke structure iff it is true in the reduced one. In fact,
the reduced structure will be equivalent to the original structure with respect to any
formula that refers to the same set of variables as . The specifications we consider
are formulas of the logic CTL*, and the logic CTL*-X.

Our algorithms for static analysis are based on syntactic manipulation of expres-
sions, and therefore we allow variables with both finite and infinite domains. When
the domains are finite, our methods can be used for automatic verification using an
explicit representation of the Kripke structure as well as for verification using a BDD
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representation. In either case, the verification algorithm itself is not changed, it just
receives a smaller model to work on.

Using static analysis we can create a reduced Kripke structure for a program di-
rectly out of the control-flow graph, and never build the full structure. We are therefore
able to verify systems that would otherwise be too big to handle.

The advantage of our approach is even more significant when the system is com-
posed of several processes. In such a case, each process is reduced separately and
only then they are composed to one Kripke structure. This solution thus serves to re-
duce the exponential blow-up that occurs when taking the cross product of the Kripke
structures of the individual processes.

Another important advantage of using static analysis is that in order to implement
our reductions, changes are made only to the compiler (which is relatively simple to
do) and there is no need to change the verification tool or the verification algorithm.
This enables integration with existing tools at a very low cost. It also means that the
overhead of using our reductions is during the (very short) compilation stage and not
in the verification process.

We present and compare two methods that use static analysis to create reduced
models for programs. The first method, called path reduction, reduces according to
control, and the second, called dead-variable reduction, reduces according to data.

Path reduction creates an equivalent Kripke structure in which there are less pro-
gram counter locations. We identify paths in the control flow graph on which a process
performs a series of consecutive operations that can not influence the specification.
Each such path is replaced by a single transition, representing the computation along
this path (instead of a series of transitions).

Dead-variable reduction reduces the Kripke structure by excluding some of the
possible values that variables can take at given points in the program. We find places
in the program in which the value of a given variable is insignificant, and prune out
of the program model all the states that differ only on that variable. A variable x is
dead at a certain point in the code if on all computations from that point on a value is
assigned to = before its value is used. This means that the current value stored in the
dead variable can not influence the computation. This definition is used traditionally
in compiler optimization methods. We use this information in order to reduce the
state space of the program by ignoring variable values when the variables are dead.

Furthermore, we expand the traditional definition of dead variables so that a vari-
able can be partially dead. Instead of variables being either dead or not at a given
point in the program, we define a condition that implies that the variable is dead.
Given a variable x, we compute a condition dead(/) for every program location [ so
that dead(l) describes the set of states at location [ for which the value of x can be
discarded.

Both of our reductions can be used in conjunction with the modular model checking
algorithm of the previous section. We explain how to do this in sub-section 3.3.3.
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3.3.1 Path Reduction

Our first static analysis reduction is based on compression of computation paths. We
identify computation paths along which each state has a single successor, and which can
be compressed into a single step without affecting the satisfaction of the specification
formula. The specification language preserved by this reduction is CTL*-X.

Path Reduction for Sequential Processes

In this section we define a reduction which can be applied to any sequential program
written in our language of non-deterministic while programs. Later on we use the
reduction for sequential programs to create a similar reduction for parallel programs.

Given a program P and its control-flow graph C' Fp, a reduced Kripke structure
reduced(C Fp) is created directly from C'Fp. The structure reduced(C Fp) will have
less states and less transitions than the original structure struct(C Fp) (which was
defined as the semantics of P), but will be equivalent with respect to any CTL*-X
formula over some given set of atomic propositions.

We define a set of breaking points, which are nodes in the control-flow graph, so
that all the commands that may influence the specification are considered breaking
points.

When using CTL* specifications (or any subset of CTL*) for programs we assume
that the atomic propositions in AP are expressions over program variables. Obviously,
the only variables that can influence the satisfaction of a formula are those that appear
in (at least) one of these expressions. We call such variables visible variables. For the
remaining of the discussion on path reduction we fix a CTL*-X formula ¢ as the
specification to be verified.

Definition 3.9: Given a control-flow graph C Fp, the set of breaking points BP is a
set of graph nodes s.t. n € BP iff one of the following holds:

1. n is the initial or terminating program location,

2. n is associated with the program location of an assignment that changes a visible
variable,

3. n is associated with the program location of a non-deterministic assignment, or

4. n is the head of a “while” statement.

Definition 3.10: A finite simple path vq,...,v; in a control-flow graph is called
elementary if both vy and vy are breaking points, and no other node on the way is a
breaking point.

Notice that every elementary path is finite, since every loop in the control-flow
graph is broken by at least one breaking point. The set of breaking points was chosen
so that elementary paths have two properties. One is that along any elementary path
only the first statement might influence the specification. This is why assignments
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that may influence atomic propositions and non-deterministic assignments must be
breaking points. The second property is that in a single traversal of an elementary
path it is possible to compute its underlying semantics, i.e. under what conditions it
will execute and what happens to the values of variables when it is executed. This
property requires that non-deterministic assignments will be breaking points and that
every loop will contain at least one breaking point.

The path-reduced Kripke structure for P, denoted by reduced(CFp) = (S, R, I),
is defined so that S = BP x ¥ and [ = {l} x ¥ where [ is the initial location of the
program (which must be a breaking point). Every elementary path 7 in C' Fp induces
a transition relation R, so that R = J, R,. In order to determine R, we compute for
every such path 7 the reachability condition RC, : ¥ — {true, false} and the state
transformation function ST, : ¥ — Y. The definitions of these functions are adapted
from the Floyd proof system [27, 28]. The reachability condition RC (%) is a condition
on the variables at the beginning of 7 that is true iff 7 can be traversed. The state
transformation function ST,(7) is a function on states that describes the value of the
variables at the end of 7 as a function of their values at the beginning of 7, provided
that 7 is indeed traversed. Both of these are computed syntactically from the control
flow graph (i.e. the program text), by manipulation of terms, as described bellow.

As mentioned before, we use T = xy,..., 2, to denote the vector of program vari-
ables. In this subsection we are dealing with a single sequential process, so T is the
set of local variables of this process.

Definition 3.11: Let 7 = v; — ... — v,, be a finite path in C'Fp. We define RC* and
ST* to be the corresponding reachability condition and state transformation function
for the suffix vy — ... — v,, by induction on k going from k = m to k = 1. We
use the notation exprla < e] for the expression that results from exchanging every
occurrence of a in expr by the expression e.

Induction basis:

RC™(T) = true, ST™(T)=7.

Induction step:
RCF and STF are defined according to the command labeling the node vy, for 1 <k <
m:

Skip: RCF = RCF STk = STH!
An assignment y := cxpr: RCF = RC* 'y « expr], STF = STy ¢ expr]

An array assignment a [ expry | := expry:
RCF = RC*a[expr,] + expry) = RO [a + (a;expry : expry)],
STk = ST alexpr] + expry] = ST a < (a; expry : expry)] 2

12The notation (a < (a;exp; : exps)) means that the array a is substituted with an array which
is identical to a except that in the exp; cell there is the value exps. See [28] for further details on its
necessity and use in Hoare style proof systems.
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A non-deterministic assignment y := {expry,...,expr;}: Let expr; be the label
on the edge vy — v, then RCE = ROMF[y - capr], STE = STHI]y
expr;]

Positive test: This case is when vy is an “if” or “while” and vy is the positive son.
Let B be the boolean condition of the command. Then RC* = RC*! A B,
STk = STk

Negative test: This case is when vy is an “if” or “while” and vy, is the negative
son. Let B be the boolean condition of the command. Then RC* = RC*'A-B,
STk = STk

Terminate: This case can happen only when the edge vy — vy is the self loop of
the terminate command.

RCT(T) = true, ST™(T)=7.

Finally, RC; = RC! and ST, = ST!. RC"™ (%) = true, ST™(T) =7. Notice that the
path vy — ... — v, describes a computation that executes the commands labeling
the nodes vy, ...,v,,_1 but does not execute the command at v,,. This is the reason
that RC, and ST, do not depend on the command at v,,.

In Figure 3.8, RC, and ST, are calculated for a given elementary path (marked
by bold edges). In this small example the specification does not refer to either of
the variables x,y or z so that the only breaking points are [y and [4. The result
RC, = (1 > y) means that when the control is at the beginning of the program, there
is a computation that travels along 7 iff (1 > y). The result ST;(x,y,z) = (1,y+ =z, 2)
means that if 7 is traversed then ' = 1, ¥y = y + 2z and 2/ = z where z,y, z are the
variable values at the beginning and 2.y, 2’ are the values at the end of 7.

We can now define the transition relation R, created from an elementary path
T =01,...,0, to be: R, ={(({,0),(l'0))| 0 = RC, No' = ST,(0)}, where [ is the
program-counter location associated with v; and [’ is the program-counter location
associated with v,,.

Notice that both the selection of the breaking points and the computation of the
reachability conditions and state-transformation functions is done automatically. The
user is only required to supply a set of visible variables, or a set of atomic propositions
which determine the set of visible variables.

Theorem 3.1 Given a CTL*-X specification @, the reduced structure reduced(C Fp)
created in the above manner is equivalent with respect to ¢ to the original Kripke
structure struct(C Fp) associated with the program.

Proof: [Skeleton] From [4] we know that two Kripke structures are equivalent w.r.t

CTL*-X formulas if there is a stuttering equivalence relation H s.t.: if (s,s’) € H then
s and s’ satisfy the same atomic propositions and for every run from s in one system
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RC*(z,y,z) = true STz, y,2) = (z,y, 2)

RC3(x,y,z) = truely « y+ z] =true  ST>(x,y,z) = (2,y,2) [y y+ 2] = (x,y+ 2, 2)
RC*(z,y,z) =true A(z >y)=(x>y) ST (z,y,2)=ST>(z,y,2) = (z,y+ z, 2)
RCY(w,y,2) = (@ > y)le 1] = (1 >y) STi(w,y,2) = (v,y+ 7z, 2)[v 1] =(Ly+z2)

Figure 3.8: An example of a calculation of RC, and ST,

there is a corresponding run from s’ in the other system and vice-versa. Two runs are
corresponding if they can be partitioned into blocks (finite series of consecutive states)
s.t. every state in the ¢th block of one run is in the relation H with every state in the
1th block of the other.

We define a relation H between states of struct(C Fp) and reduced(C Fp) as follows.
Every state in struct(C Fp) is of the form (/, o) where [ is a program location (a node in
C'Fp) and 0 € ¥. The states of reduced(C Fp) are of the same form, only the locations
are all in BP. For every location [ € BP and o € ¥ we set (({,0),(l,0)) € H. For
every state s of struct(CFp) in which [ ¢ BP we look at the possible runs from
s. We observe that the only states that have more than one successor are states with
locations that correspond to a non-deterministic assignment, which is a breaking point.
If I is a boolean condition (of an “if” or “while” command) then (/,c) has only one
successor, depending on whether o | B or o £ B. Therefore, if the location of s
is not a breaking point then there is a single run from s to another state s’ with a
location which is a breaking point (without passing any other breaking points on the
way). Since the location of s’ is a breaking point, s’ is a state of reduced(C Fp), and
we define that (s,s’) € H. The states s and s satisfy the same atomic propositions
because the path from s to s’ does not include any statements that may change visible
variables. Therefore, s and s’ give the same values to all visible variables.
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It can easily be shown that the above relation is indeed a stuttering equivalence
relation. Figure 3.9 shows how every state in reduced(C Fp) corresponds to a block of
states in struct(C Fp). Notice that in every block, the only transition that may influ-
ence the specification is the first one, all other transitions are guaranteed not to change
values of visible variables and not to be a branching point in the structure. Therefore
the first state of a block in struct(C Fp) corresponds to one state in reduced(C Fp),
and all the rest of the states in the block (including the last one) correspond to another
state in reduced(C Fp). Notice that since the first states in both structures give the
values to variables (and therefore satisfy the same atomic propositions), and since the
first transition is the result of the same command, we may conclude that the next
state in reduced(C Fp) (s4), and the following states in struct(CFp) (s1,...,54) all

satisfy the same atomic propositions.
O

So 5y
reduced(C Fp): o -0
! 1 \\\\\\\ @ Breaking point

' N (O Non-breaking point
! I \ «H>.
o H, H' H. .

S

struct(C'Fp): ‘ O \ ¢ \\.
0 5

Figure 3.9: Stuttering Bisimulation between struct(P) and reduced(P)

The above proof shows, in fact, that the reduced structure is equivalent to the
original structure with respect to any formula that uses the same set of atomic propo-
sitions. This is because the only attribute of ¢ that was used was the set of variables
to which it refers (the set of visible variables). This means that the same reduction
can be used to check several formulas.

Path Reduction for Parallel Programs

The common method for handling parallel programs is to translate each process into
a Kripke structure and then create the cross product. As described before, the cross
product is created by taking the union of all the local transitions from all the processes,
and creating a single transition out of each matching pair of communication commands.
It is well known that the main source for state-space explosion in parallel programs
is the cross product of several processes, since the product must include all possible
interleavings of the individual processes. It is therefore desirable to reduce the sizes
of the processes as much as possible before attempting to create their cross product.
We propose to reduce each process in a similar fashion to the reduction of sequential
processes. The only difference is that we need to handle send and receive commands.
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Given a parallel program P = [P||...||P,] we create the control-flow graph CF;
for each process P;. We then create a reduced Kripke structure reduced(CF;) for each
process. The definition of reduced(C F;) is the same as before, except for the following
addition to the definition of breaking points. A node n will be in BP if

5. n is labeled by a communication statement (send or receive), or is the statement
immediately following a communication.

Note that from every node of the control-flow graph which is labeled with a com-
munication command there is a single out-going edge, pointing to the next statement
to be executed. The additional breaking points make sure that any elementary path in
C'F; that contains a communication command will not contain any other commands.
The isolation of communications enables us to synchronize “send” and “receive” com-
mands without involving any other local operations in the same transition. To create
the reduced structure, every elementary path in the control-flow graph which is not
a communication command is translated into a set of transitions (as in the reduc-
tion for a single sequential program). The transitions for communication commands
are created from matching pairs of communication commands (elementary paths), as
described in Section 3.1.3.

Theorem 3.2 Given a CTL*-X formula ¢, the reduced Kripke structure reduced(P)
created in the above manner for a parallel program P is equivalent with respect to ¢ to
the original Kripke structure associated with P.

As before, to prove that our reduction preserves CTL*-X specifications we define
a stuttering equivalence relation H.

Proof:

We use the same relations H; between struct(CF;) and reduced(CF;) that were
defined for sequential processes. The relation H is the combination of these ”local”
equivalence relations, so that ((vy,...,v,),(r1,...,1m)) € H < [(v1,71) € HI A ... A
(U, 1) € Hy).

To show that H is a stuttering equivalence relation we need the following definition:

Definition 3.12: A transition ({,0) — (I',0’) in struct(CF;) is called distinet if the
location [ from which it exits is a breaking point. A transition s — &' in struct(P) is
called distinet if it is a transition in which one process P; performs a distinct transition
and all other process do not change their local state, or if it is a communication.

The set of distinct transitions includes all the transitions that might influence the
specification, i.e. change the value of a variable that appears in an atomic proposition
or create a branching in the structure. Notice, however, that it also includes transitions
that may not influence the specification, for example, when the breaking point is the
head of a “while” statement.

Given a run m = $; — s3 — ... of struct(C'F) and a state ry of reduced(C'F') s.t.
(s1,71) € H we show that there exists a corresponding run 7’ of reduced(CF') from
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ri. Every state of 7 is a combination of local states: sp = (s},...,s). We mark the
distinct transitions in m and then divide 7 into blocks so that each block begins after
a distinct transition was executed and ends before the next distinct transition is taken

(see figure 3.10)

2

struct(CF): Q () / g >O

s T a

reduced (CF): O—N >—>< _ 5 .
I r,

- Distinct transition — = Non-destinct transition

Figure 3.10: Partitioning of a run into Blocks

Lemma 3.3: Let B = s1,...,s; be a block of m, and let r; be a state of reduced(CF)
s.b. (s1,71) € H. Then for every 2 <i <k, (s;,7m1) € H.

To see why this is true, notice that for every process i, if (si,r}) € H; and P;
performs a non-distinct operation, it can lead only to a state which H; connects to ri.

Lemma 3.4: Let s = (s1,...,8,) and r = (r1,...,7,) be states in struct(C'F') and
reduced(C F') respectively s.t. (s,r) € H. Then for every distinct transition s — s in
struct(C'F') there is a corresponding transition r — 1’ s.t. (s',r') € H.

If the transition s — s’ is not due to a communication then the difference between
s and s’ is only in the local state of one process P;. This transition was created from
a distinct transition st — s in struct(C'F;). From the state s in struct(C'F;) there
is only one possible continuation of the execution until the next time it arrives at a
state which corresponds to a breaking point. If we take the program locations along
this run we can recreate an elementary path in C'F;, which was used to create a set
of transitions in reduced(CF;). There is only one transition in this set that exits r*
(easy to see from the definition of R.), and it leads to some . By the definition of
H; we have that (Si/, ri/) € H;, and therefore, if we take r and change the ith element
from 7 to r'’ we get a state r’ such that r — ' and (s',r') € H.

If the transition s — s’ is a communication then there are two processes F; and P,
involved, and this communication is an elementary path in both of their control-flow
graphs. This means that there is a transition from r into some r’ corresponding to the
exact same communication between these two processes, and obviously (s',r') € H.

The combination of the above two lemmas allows us to repeatedly choose states in
reduced(C F') so that each state corresponds to a block in 7, to create the desired run

7',
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We have thus far shown that every path 7 in struct(C F') has a corresponding path
7' in reduced(CF). For the other direction, we are given a run 7’ in reduced(CF)
and we need to create a corresponding run in struct(CF'). This is simple since every
transition in reduced(C F') was created from an elementary path in one of the graphs
C'F;, or from a communication. If it is a communication then there is a corresponding
transition in struct(C'F) and we choose it. Otherwise, we look at the path in C'F;
that created the transition and execute each command belonging to each edge along
the path. The states we pass on the way will create a block which is equivalent to a
single state in 7’ O

3.3.2 Dead Variables Reduction

Our second reduction focuses on reducing variable domains. When creating a model
for a program the set of states includes all possible valuations to variables. The
dead-variable reduction identifies valuations that induce equivalent computations and
reduces the size of the model by choosing a representative of each equivalence class.

Instead of presenting the dead-variable reduction in full, we develop it in steps.
We begin by introducing a reduction for sequential processes that utilizes fully dead
variables. Next, we improve this reduction by considering partially dead variables. We
complete the development of the reduction by showing how to create a reduction for
parallel programs as well.

Fully Dead Variables

We say that a variable z is used in a statement if the statement is an assignment and «
appears in the expression on the right hand side of the assignment, or if the statement
is an “if” or a “while” command and z appears in the condition. We say that z is
defined in a statement if it is the left hand side of an assignment. Notice that in the
statement “x := x + 17 x is first used, and then it is defined.

Definition 3.13: A program variable x is said to be dead at a program location [ if
on every execution path from [, = is defined before it is used, or is never used at all.

When a variable is dead at a specific program location its value at that point is
insignificant since it will not be used. This means that two states that have that
location, and differ only in the value given to z, will have identical continuations. To
make these states equivalent with respect to CTL* we need to make sure that the
value of x does not influence the truth of atomic propositions. These conditions are
summarized in theorem 3.5 bellow.

Definition 3.14: Let 0,0’ € ¥ be two valuations to program variables. We write
o=_, 0" ifo(y) = o'(y) for every program variable y such that y # «.

Theorem 3.5 Let! € Loc be a program location in the process S, and x a non-visible
program variable which is dead at l. For any two states (I, 01),(l,02) s.t. 01 =_, 09 it

holds that (1,01) =crr« (I, 09).
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To prove this theorem we use the following Lemma:

Lemma 3.6: Let x be a variable and [ a location such that z is neither used nor
defined by the command at [. Let s; = (I, 01) and s3 = ([, 02) be two states such that
01 =_; 03. Then for every state (I', o) such that (I,01) — (I, 0}) there exists a state
(I, o) such that ({,049) — (I',0}) and o} =_, 0.

Proof: Since the command at [ does not use or define  we know that it is either an
assignment which does not involve x (on either side) or a branching command (“if”
or “while”) for which the condition does not involve x. The proof is according to this
command.

o Assume that the command at location [ is a non-deterministic assignment “y :=
{e1,...,e,}". Each successor state (I',o7) of ([, 01) is a result of assigning one of
the expressions €; to y. Since x does not appear in any of these expressions, for
every successor ({',07) of (I, 01) there must be a successor (I, 04) of (I, 049) which
is the result of assigning the same e; to y. Because o1(¢;) = o2(e;) we conclude
that the same value is assigned to y in both successors and therefore o] =_, o).

o Assume that the command at location [ is an assignment “y := €”. This case
is similar to the previous one because the assignment can be considered as a
non-deterministic assignment with only one value to choose.

e Assume that the command at location [ is either “if B then 5] else S5 fi” or “while
B do S od”. Since x does not appear in B we know that o7 | B < o3 E B.
Also, in all successor states the values of variables do not change. Therefore the
successor states of ({,01) and ([, 02) will have the same location, and the same
valuations o, and oy for which we know that oy =_, o03.

This concludes the proof of the lemma. a

We can now prove theorem 3.5 by defining a bisimulation relation [49] on the states
of the structures representing our program. The resulting relation will contain pairs
of states which are equivalent with respect to CTL*.

Proof: Let x be a non-visible program variable. We build a relation H = H; U Hy C
S x S such that

Hy ={((l,01),(l,02)) | x is dead at [ and oy =_, 02}

Hy ={((l,0),(l,0)) | « is not dead at [}

For every (s1,85) € H we need to prove three things:
1. L(Sl) = L(Sg)
2. For every s} s.t. s — s there exists a state s}, s.t. s — s} and (s}, s)) € H.

3. For every s}, s.t. sy — s}, there exists a state s| s.t. sy — s} and (s],s)) € H.
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For every pair ((l,01),(l,02)) € H it holds that oy =_, o2 and, since x is not
visible, L(l,01) = L(l,02). It remains to prove the last two conditions. The case
when (s1,82) € Hy is trivial because then s; = s3. The interesting case then is for
(s1,82) € Hy where sy = (I,01) and s3 = ([, 02). Here there are three possibilities:

e v is neither used nor defined by the command at [. By lemma 3.6, for every
state (I',01) s.t. (l,01) — (I',o1) there is a state (I',0)) s.t. (l,09) — (I',0%)
and of =_, o). By definition, this implies that ((I’,0%), (I',04)) € H. The same
holds for the other direction.

e The command at [ is a non-deterministic assignment to z of the set of expressions
{€1,...,e,} such that none of the expressions depend on z (otherwise & would
not be dead). For every expression e; chosen, we know that o1(¢;) = o3(e;), and
so the state created by the assignment of oy(e;) into @ is a successor of both

(I,01) and (I, o).

o Assume that the command at location [ is an assignment “y := €”, where e does
not depend on x. This is similar to the previous case since a simple assignment
can be viewed as a non-deterministic assignment with one possible value.

This concludes the proof of theorem 3.5. O
We now build a reduced equivalent model for a program, in which we keep only
one representative of each equivalence class.

Definition 3.15: Let d be a representative value from the domain of z. Given a
program P, the reduced model of P is denoted by reduced(P). Recall that the Kripke
structure of a process is created from the control-flow graph of P by defining a set of
transitions representing every edge in the control-flow graph. For every edge n — n'
such that z is dead at n’ but not at n we create a transition that simultaneously
performs the statement in n and an assignment of d into x. Take for example a node
n labeled by the assignment “y := exp” and the edge e = n — n’ exiting from it. If
the expression exp uses x, but after this assignment z is not used again before it is
defined then at n the variable x is not dead, but at n’ it is. In this case the transition

relation for the edge ¢ is R, 2 {((l,0),(I',c")) | o' = oly  exp;x < d]} (where [ is
the program location of n and [’ is the program location of n’). All other edges are
translated into sets of transitions in the usual manner.

The reduced transition system reduced(P) can be created statically (from the con-
trol flow graph of P) without building the structure struct(P). The reduced structure
will have less reachable states, since every equivalence class from H; will be repre-
sented by a single state, the one that gives x the chosen value d. Calculating the
locations in which x is dead can also be done statically and efficiently, by examining
the text of P. Furthermore, in order to produce a smaller model we may perform this
reduction for more than one variable. For every variable we wish to use we compute
the locations in which it is dead. The definition of the reduced transition system is
updated accordingly.
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l[i:  if (y <0) then

[5: TR
else

[3: y = 0;
fi;

lyo =0

Figure 3.11: An example of a partially dead variable

Partially Dead Variables

We wish to make our reduction more effective (i.e. create an even smaller reachable
state-space) by taking into account more information about the possible uses of vari-
ables. We notice that in some cases, even though a variable z is not dead at a location
[, there are possible computations from [ on which x will not be used. For example, in
figure 3.11 we see that when the control is at location [; the variable x is used before
it is defined only if y < 0. For every state (I1,0) such that o [~ (y < 0) we can be
sure that on every computation that starts from (/;,0), « is defined before it is used.
However, according to the definition of the previous subsection, x is not dead at [y
and therefore there will be no reduction. In this subsection we show how to find such
cases, and use this information.

We change our definition of “dead variables”. Instead of looking at variables that
are dead at a given program location, we look at variables being dead at a given state.
For a given program location we will have a condition that tells us when z is dead.
The method in the previous section can be viewed as a version of this new method,
using only the conditions true or false.

Definition 3.16: Let x be a program variable, [ a program location, and ¢ a valuation
for the program variables. We say that x is dead at the state s = (I, ) if on all possible
runs from s the value of x is not used before it is defined (either x will not be used,
or it will be defined before the first time it is used).

This definition is similar to the definition of = being dead at a program location,
except that wherever we referred to a program location we now refer to a specific
combination of program location and variable values. Again we find an equivalence
between states that differ only on a dead variable.

Theorem 3.7 [f a non-visible variable x is dead at (I,0), and if 0 =_, o', then
(Z,O') =CTLx (Z,O'/).

We omit the proof of this theorem, but note that it can easily be developed from the
proof of Theorem 3.5.
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For the remainder of this section we assume that = is the variable according to
which we want to perform our reduction.

We calculate for each program location [ a boolean condition over the program
variables, called dead(l), so that for every valuation o it holds that if o | dead(!)
then x is dead at (I/,0). The condition we calculate is an under-approximation since
the implication in the other direction might not be true (i.e. it is possible that x is
dead at ([,0) and yet o [£ dead(l)). We compute an under-approximation because
calculating the exact condition cannot be done in a single traversal of the control-flow
graph.

We restrict ourselves to handling only non-array variables, i.e. the variable x for
which we want to define the condition dead(/) is not an array.

We calculate dead(l) for every program location by traversing the control-flow
graph of P, bottom up. At each step, when we calculate the condition dead(l) for a
sub-program, we have already calculated the conditions for its end location.

The first step is to assign a condition to the final program location l.,q (which is
the program counter location of the “terminate” command), so we define: dead(l.nq) =
true. We now describe how to calculate the condition for a sub-program, given that
we have already calculated it for its end location.

e For the sub-program [: skip {":
dead(l) = dead(l').

e For the sub-program [: x := exp "
If the expression exp does not use « then dead(!) = true. Otherwise, dead(l) =
false.

e For the sub-program [: y := exp ' (y # ):
If exp uses x then dead(l) = false. Otherwise, we change the condition dead(!’)
according to the assignment: dead(l) = dead(!")[y < exp].

e For the sub-program [: y := {expy,...,exp,} "
We add up the influences of all the possible assignments. If x is used by (at
least) one of the expressions expy,...,exp, then dead(l) = false. Otherwise, if
y = x then dead(l) = true. If  is neither used nor defined by the assignment
then dead(l) = A=, dead(l')[y + exp;].

e For the sub-program [: a[exp;] := expy "

If either exp; or expy use x then dead(l) = false.
Otherwise dead(l) = dead(!")[a[exp:] < exps] = dead(!")[a < (a; exp; : exps)].

e For the sub-program [: if B then {y: Sy else [3: S, fi [
We use a recursive call to calculate the conditions dead(/;) and dead(l;), using
dead(!’) as input for both calculations. If the condition B uses x then dead(l) =
false. Otherwise, dead(l) = (B A dead(ly)) V (=B A dead(lz)).
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e For the sub-program [: while B do [;: Sy [] od: {":
Similarly to the “if” case, if B uses = then dead(l) = false.

Otherwise, we use a recursive call to calculate dead(l;). The input to this call
(a value for dead(})) is the “safest” approximation we can give, since we do
not have any information on what happens at the end of the body after each
iteration. If = does not appear in 57 at all, which can be checked while parsing
the program, and if dead(!’) = true then we assume dead(l]) = true. Otherwise,
we have to assume dead(l}) = false.

When the recursive call for 57 is done we define: dead(l) = (B A dead(ly)) V
(=B A dead(l"))

The above definition can be further optimized by adding traversals through the
body of each loop. The important characteristic that we must maintain is that we tra-
verse the control-flow graph of the program a constant number of times, and therefore
it is more efficient than model checking on the full model of the program. Notice that
the reason we need to perform approximations is the while loop. All other constructs
create an exact computation of dead.

One optimization, which we used in our examples, is to traverse each loop twice
so that we can identify situations in which « is dead at the top of the body (i.e. at
location [y), although it is used somewhere inside. Assume that dead(!’) = true, for
a while loop as in the definition above. In order to have dead(l;) = true according
to the above algorithm = must be defined on every path from the beginning to the
end of the loop body. Instead, we propose to first compute dead on S; under the
assumption that dead(l]) = true. If under this condition we find that dead(l;) = true
then we can conclude that = can never be used before it is defined inside the loop. We
can therefore set dead (/) = true. If, on the other hand, the calculation result is that
dead(ly) # true then we have calculated our condition for S under false assumptions,
and the results cannot be used. We then do another round on 57, this time with the
original safe assumption: dead(l]) = false.

Notice that the condition dead([) can never be dependent on . When it depends on
a variable y it is because during its calculation we passed a statement that evaluates
an expression involving y. However, a statement that evaluates an expression that
depends on z is a use of x, after which we have dead(l) = false.

We can now define a reduced transition system according to (partially) dead-
variable reduction:

Definition 3.17: Given a program P and a choice of a non-visible variable x, compute
dead(!) for all the locations in P. Define reduced(P) so that every edge e =n — n in
the control-flow graph is translated into a reduced transition relation according to the
information calculated. Let [ be the program counter location of n, and {” the location
of n’. If « is used by the statement at [, than there is no change in the definition of
R.. Otherwise, we change the definition of R, from subsection 3.1.3 so that for states
that satisfy dead(/) we add the assignment x := d. For example, for an assignment y
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:= exp we define: R, =y’ = exp A ((dead(l) A2’ = d) V (=dead({) Az’ = x)) A ... (the
continuation states that all other variables do not change value, and that the program
counter advances according to the appropriate labels). The definition of R. for other
commands is updated in a similar manner.

In the reduced structure some of the transitions have been redirected so that many
states become unreachable. These states, and perhaps all of their descendants, will
not be traversed when performing model-checking. In effect - we have pruned parts of
the state-space. To show that the pruned structure is CTL* equivalent to the original
structure we build a new bisimulation relation.

Definition 3.18: H = H; U H, C S x S such that:
Hy ={((l,01),(l,02)) | o1 = dead(l) and 01 =_, 02}

Hy ={((l,0),(l,0)) | o | dead(l)}
It is easy to see that this is truly a bisimulation relation.

Again we notice that the reduced structure is equivalent to the original structure
with respect to any formula over the same set of visible variables, so the same reduction
can be used to check several formulas.

From here on, when referring to dead-variable reduction, we are referring to the
reduction according to partially dead-variables.

Dead-Variable Reduction for Parallel Programs

The dead-variable reduction for parallel programs proceeds in a similar manner to the
path reduction. We first reduce each process separately and then create the cross prod-
uct of the reduced models. However, in order to perform the dead-variable reduction
on a single process we have to augment the computation of dead(/) with instructions
for handling communication commands:

e For the sub-program [: send(P;,exp) I":
If exp uses x then dead(l) = false. Otherwise, dead(l) = dead(l’).

e For the sub-program [: receive(P;x) I":

dead(l) = true.

e For the sub-program [: receive(P,y) ' (y # x):
Since any value may be assigned to y by this operation, to be sure that dead({’)

is true after executing the command we must require that it will be true for all
possible values assigned to y: dead(l) = Vy.dead(l’).

This allows us to compute the condition dead(!) for every location of a process and
for each process separately.

Theorem 3.8 Let P = [P]||...||P.] be a parallel program. Then the parallel composi-
tion of the dead-variable reduced structures for the processes is bisimilar to the parallel
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composition of the original structures. Formally, if struct(P) = struct(Py) || ... ||
struet(P,) and reduced(P) = reduced(Py)||...||reduced(P,), then struct(P) =crr.
reduced(P).

Proof: Let H; be the bisimulation relation from definition 3.18 between struct(F;)
and reduced(P;). Every state s in struct(P) is a tuple (s1,...,8,) such that s; is a
state of struct(F;), and similarly every state ¢ in reduced(P) is a tuple (t1,...,1,).
We define a relation H such that (s,t) € H iff for every ¢, (s;,t;) € H;. It is easy to
see that since every H; is a bisimulation relation, H is also a bisimulation relation. O

3.3.3 Integration with verification techniques

Our methods for reducing the state-space of programs are carried out according to the
syntax of the program, creating a reduced model of the program. Given a program P
it is possible to apply one or both of the reductions. Furthermore, when applying the
dead-variable reduction we can do so for more than one variable. Once our methods
have been applied, one can choose any verification method to be used on the result.
We now describe in more detail how our reduction methods can be incorporated into
several well known verification techniques, and also with our own modular model
checking method.

A reduced Kripke structure can be used for state exploration methods. These are
methods that traverse the state space of the Kripke structure on-the-fly, usually by
means of a DFS algorithm. Examples of verification tools that use such methods are
Murphi [46] and SPIN [32]. The space consumption of an algorithm based on a DFS
traversal is proportional to the maximal simple path from an initial state (which is the
maximal depth of the stack during the search). The time complexity is linear in the
number of reachable states. We notice that when creating a reduced Kripke structure
we do not have to create the set of program states. We can create only the transition
relation, which may be represented by a first order formula (or a set of formulas).
This formula is used as a next-state function that given a state produces the set of
successors of that state. In the case of path-reduction the maximal simple path (a
run that does not go through the same state twice) is shorter and therefore the DFS
requires less space. In both reductions the reduced Kripke structure has less reachable
states and so the time needed for the DF'S is also reduced.

Partial order reductions [50, 56, 55] are methods of reducing the state-space tra-
versed by a state-exploration verification algorithm, and are implemented in state-
space exploration tools such as SPIN. In general, a partial order reduction method de-
fines for every state a subset of the transitions exiting the state that will be traversed.
This subset is chosen in a way that ensures that although parts of the state-space
will not be visited, the result of the search will not change. Our path reduction can
be compared to partial order reduction methods. Path reduction creates a program
which is still a parallel composition of processes, only that each transition of a reduced
process may represent a series of transitions of the original process. Therefore some of
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the possible interleavings between processes are restricted beforehand. This reduction
might not be achieved by partial order reduction methods, but the reduced transition
system that path reduction creates may still include several possible interleavings that
can be pruned by a partial order reduction method. There is no need to make changes
in our method or in the partial order reduction method in order to combine the two.
Note also that since some partial order methods require an initial DFS of the system
in order to perform calculations, it is an advantage that the system that these methods
get to work on is smaller than the original one.

Our reduction methods can easily be combined with symbolic methods. A reduced
Kripke structure can be translated directly into a symbolic representation in the same
way the original system would be. In fact, the computation of R, and T, for path
reduction and the computation of dead(/) for dead-variable reduction can be done
symbolically, to produce a BDD representation of the resulting transition relation.
Since BDDs are representations of formulas, and operations on formulas (such as
conjunctions, disjunctions and quantification) are efficient BDD operations, R., T,
and dead(/) can be created according to the boolean formulas that define them by
a series of BDD operations. The transition relation of the whole Kripke structure is
produced by a boolean combination of the BDDs representing each edge.

The size of BDDs is difficult to predict. However, it depends heavily on the number
of bits used to represent each state. Path reduction reduces the number of program
counter locations, and therefore reduces the number of bits needed for the representa-
tion of a single state. For dead-variable reduction it might be preferable to replace the
assignment of a single chosen value d into # with a non-deterministic assignment that
allows = to have any value. In this way, * might be quantified out of the transition
relation (or parts of it). It also appears that in some cases it would be better to use the
fully-dead version of reduction (subsection 3.3.2) so as not to introduce dependencies
between variables.

Some verification methods which consider weaker specification languages than
CTL* use a notion of fairness to enhance the expressibility of the language [14, 6, 41].
A special condition determines which computations are fair, and only those computa-
tions are confronted with the specification. The fairness condition is usually given in
terms of a formula in the same specification language or a weaker one, and a compu-
tation is fair if this condition is true in infinitely many states along the computation.
In order to use such methods with our reduction we have to consider the fairness
condition in the same way we consider the specification. The only change is that vari-
ables that appear in the fairness condition will also be considered visible. Assuming
that the fairness condition is in the language that the reduction preserves (CTL* or
CTL*-X), every state in the original system has an equivalent state in the reduced one
(w.r.t the fairness condition), and for every fair computation in the original system
the corresponding computation in the reduced system is also fair.

To combine our reductions with the modular model checking algorithm we pre-
sented before, we first perform all the calculations needed for the reductions. For
dead-variable reduction this means that we calculate dead(() for every program counter
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location [. For path reduction, we add the entry and exit location of every node in
the partition graph as a breaking point, so that elementary paths do not span more
than one node in the partition graph. We then calculate the reachability condition
and state transformation function as usual. When creating the Kripke structure for
each partition graph node, we create the reduced structures, instead of the original
ones. The modular model checking algorithm need not be aware that these are not
the original structures associated with nodes.

3.3.4 Experimental Results

In order to evaluate our reductions we chose several examples and translated them into
Murphi code. The Murphi language [46] consists of a list of rules, where each rule has
a guarding condition and a body. A rule is executable if its guard evaluates to true.
The semantics of Murphi programs consists of a loop in which the set of executable
rules is computed, one executable rule is chosen non-deterministically and then its
body is executed. This process continues until (if ever) there are no executable rules.
We used Murphi to perform a traversal of the state-space of each example, at the end
of which we get the number of states and the number of edges in the reachable state-
space of the model. Each example was manually translated into a Murphi program
that represents its semantics (struct(P)). We then performed our reductions using
the original program text (the control-flow graph) and created a new Murphi program
that represents the reduced model for that example (reduced(P)). For each example
we performed path reduction, dead-variable reduction, and then a combination of both
reductions. All the examples were run with a 350M hash-table. Table 3.2 summarizes
the results we obtained using our reductions. For each example we give the number of
states and edges in the model, and the time it took Murphi to complete the traversal.
Lines in the table that say 'failed’ signify examples in which the hash-table was filled
before the whole structure was traversed. The numbers in parenthesis show the relative
size of the reduced model with respect to the non-reduced model. In figure 3.12 we
give a block diagram summarizing the results for which the non-reduced example did
not fail. The reduced models are given as a percentage of the non-reduced model.

The first example, slide, is a program that simulates the sliding window communi-
cation protocol between a sender and a receiver. The results in the table were obtained
for an example in which both the receiver and the sender windows were of length 2.
The variables chosen for the dead-variable reduction were temporary variables used to
store incoming messages. Path-reduction was done with respect to a specification that
states that the sender does not advance its window before the receiver has received
the first message in the sender’s window.

The second example, called linked-list, is an example of a sorting algorithm that
uses a distributed linked-list of processes. It consists of several processes connected in
a row so that each of them keeps a number. When a process receives a new number
from the process on its right, it compares it with the number it already has. It keeps
the larger of the two and sends the smaller to the next process in the line. The
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example includes also a main process that inputs a list of numbers and sends them
to the first in line (input is simulated by non-deterministic assignment). The dead-
variable reduction was done with respect to a temporary variable that each node keeps
whenever it holds two numbers (before it sends one of them to the next node in the
line). The path reduction used a specification that states that whenever a node is
expecting a number from the preceding node, the preceding node is about to send a
number (thus assuring us that the processes will never block each other). We ran this
example using 4 and 5 nodes in the list. For the case of 5 nodes the full model and the
dead-variable reduced model were too large to handle. However, after performing path
reduction the resulting reduced model was small enough for the traversal to terminate,
and combining both reductions resulted in an even smaller model.

The third example, find-maz, is an algorithm for finding extrema on a unidirectional
ring of processes, presented in [21]. Each process is assigned a (unique) number and
together they find the maximum of these numbers. For a program with n processes, the
numbers 1,...,n are assigned to processes non-deterministically, so that the process
that gets the number n is the one with the maximum. The variables used for the dead-
variable reduction were temporary variables used to hold incoming messages. For this
example we created path-reduced models according to two different specifications. The
algorithm works in phases, and during each phase each process may either be active
or not. In the last phase there is only one active process, and it holds the maximum
number. The first specification makes sure that when a process receives a message
from phase 7, the sending process is also in phase ¢. The second specification states
that in any given phase, no two active processes hold the same number.

The last example simple, is taken from [3]. This work is closely related to our dead-
variable reduction, and the differences and similarities will be discussed in Chapter 6.
The simple example involves two processes where the first process repeatedly sends
request or switch messages and the second receives them. FEach request message
is accompanied by a number, chosen non-deterministically. The second process has
a state in which a request message results in outputting the number received, and
another state in which the number is ignored. Every time the second process receives
a switch message it switches between these two states. In [3] the example is given in
the form of two state machines, the first having two states and the second three. We
translated it into two processes in our programming language, with the state kept in a
program variable. This introduced more states in the Kripke structure of the example
because of the introduction of a program counter. Obviously, when the number sent
with a request message is going to be ignored, the variable that holds this number is
dead. Since the program does nothing else than receive the number and output it, the
size of the domain of this variable is the main factor in the size of the state-space, and
hence the significant effect of dead-variable reduction. This is also the reason why, in
this example, path-reduction is not so effective as in other examples.

It is clear that dead-variable reduction in itself does not produce significant reduc-
tion. This can be a result of the nature of our examples. We expect this reduction
to be useful on programs that perform several tasks, where one task requires many
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Figure 3.12: Diagram of reduction results

variables that are not needed for other tasks. This situation can occur, for example,
when the program does some numerical computation and then goes on to use only
the result of the computation. The variables that were used during the computation
are now dead. Another situation in which dead-variables reduction can be expected
to perform well is when applied to a program that was created by some automatic
code generation tool or by an automatic translation from another language. Auto-
matically generated codes tend to include many redundant variables. Our examples,
being hand-produced demonstrative examples, are relatively simple, and perform no
intermediate computation. It remains to be seen whether real-life examples exhibit
similar behavior or not.

Path reduction, in contrast, gives significant reduction in the size of the models,
and as a result also reduces computation times. Using path reduction we get reduced
models which are between 8% to 37% of the original model. The explanation of this
is that a sequential program (or process) performs only one operation at each step -
either evaluating a condition, or assigning into a single variable. By condensing all the
operations a program does between two observable points into a single step, we create
a much more concise model. In the last example, we used two different specifications to
create the path-reduced model. The second specification refers to more variables than
the first and therefore creates more breaking points. This explains why the reduced
model according to the first specification is smaller than the reduced model according
to the second specification. Notice that in two cases (linked-list with 5 nodes and
find-max with 5 nodes) we could not traverse the non-reduced model since it was too
large. However, after using path-reduction we got a model which we could traverse
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in full. In these cases we cannot tell the ratio of reduction, since we do not know the
size of the non-reduced model, but we see that it is significant enough to allow us to
perform model-checking on programs that are otherwise too large to handle. In the
case of the find-max example, we could only handle 4 processes in the non-reduced
version, whereas using path-reduction we successfully completed the traversal of the
model with 8 processes.

When combining both reductions we get an even smaller model in all of the exam-
ples. Even though the added efficiency due to dead-variable reduction is not large, it
seems useful to use since it is practically for free’.
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Example | Break- | Options Time Memory Min/Max
down Ir | reo || (h:m:s) (K) module size

Learn- None - - 0:03:46 2600 1450/1450
Monom - |+ 0:01:56 1864 15058/15058
+ | - 0:05:00 3625 20860/20860

+ | + 0:02:11 1420 4787/8168

Moderate | - - 0:01:49 1352 3024/10661

- |+ 0:01:06 968 3150/10968

+ | - 0:02:25 2025 4495 /15502

+ | + 0:01:22 1160 4648 /15788

Extensive | - - 0:00:36 1192 2911/5357

- |+ 0:50:00 1128 3016/5450

+ | - 0:00:49 1450 4495 /5165

+ | + 0:01:18 1545 4787/8168

Stop and None - - 6:46:18 AT8TRT 83440/83440
Wait - |+ 7:04:06 6560 36145/36145
+ | - 6:21:51 10975 | 198592/198592

+ | + 6:35:50 4475 75249/75249

Moderate | - - 5:51:22 8130 4908 /45129

- |+ 5:58:28 6050 4986/22226

+ | - 10:17:00 13650 4078/120447

+ | + 4:09:43 9225 4727 /37508

Extensive | - - 47:12:55 29200 695/19890

- |+ 8:40:44 7800 695/8430

+ | - 109:15:03 | 65000 695/52559

+ | + 8:24:52 12050 695/13023

Sort None - |+ 12:05:04 61500 | 109285/109285
+ | + 3:33:31 19100 | 205829/205829

Moderate | - | + 8:32:54 73500 839/103324

+ | + 4:13:22 18300 875/205197

Extensive | - | + 6:24:38 8150 842/49058

+ | + 11:45:27 9500 830/19718

Table 3.1: Results for Modular Model Checking
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‘ Example ‘ Reduction used H No. of States ‘ No. of Edges ‘ Time (h:m:s) ‘
slide
2895333 6158396 0:6:35
dead-vars (98.6%) 2854863 | (98.8%) 6085068 | (84.3%) 0:5:33
path (36.6%) 1061947 | (37.3%) 2302118 | (23.5%) 0:1:33
both (32.1%) 929967 | (33.3%) 2051234 | (15.9%) 0:1:23
linked-list
4 nodes 1203536 4147621 0:13:28
dead-vars (87.6%) 1054448 | (88.7%) 3679149 (86%) 0:11:35
path (37/1%) 446849 | (35.3%) 1466866 | (21.4%) 0:2:53
both (32.6%) 392849 | (31.4%) 1304450 | (19.9%) 0:2:41
5 nodes failed - -
dead-vars failed - -
path 12463025 47998708 1:55:55
both 10213613 39767184 1:38:06
find-max
4 procs 7450357 25373736 1:38:47
dead-vars (100%) 7450357 | (100%) 25373736 | (100%) 1:38:47
path (specl) (8%) 598913 | (6.9%) 1774912 (4.3%) 0:4:15
path (spec2) (15.6%) 1168793 | (14.4%) 3659832 | (11.3%) 0:11:10
5 procs failed - -
path (specl) 534532 1979482 0:5:41
path (spec2) 1280152 5040509 0:15:38
8 procs path (specl) 2517233 11205360 0:39:38
path (spec2) 4560483 20309124 1:24:23
simple
2270000 4767582 0:1:44
dead-vars (72.3%) 1641400 | (74.8%) 3570746 | (75.9%) 0:1:19
path (67.1%) 1524686 | (74.8%) 3566299 | (66.3%) 0:1:09
both (47.8%) 1085746 | (54.7%) 2608879 (50%) 0:0:52

Table 3.2: Results for static analysis reductions
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Chapter 4

Exploiting Structure in Hardware
Verification

4.1 The Structure of Hardware Designs

Before we present our results in model checking of hardware designs, we discuss the
translation of a hardware design into a Kripke structure representing its behavior.
This discussion is important since it gives insight into the special structure of Kripke
structures that represent hardware designs. This structure will be used in the following
sections.

There are many levels of abstraction in which a hardware design can be described,
from a very abstract plan of modules, to the layout which is the final goal. We
examine hardware designs at the level in which logical behavior is examined, but
physical behavior is not considered. This level of description is sometimes referred
to as a Register Transfer Level (RTL) model. It consists of memory components
(flip-flops) and logical components. The value of a flip-flop bit is determined by a
boolean function which is made up of basic logic elements(such as AND, OR, NOT
etc.). The parameters of this function can be other memory bits, input signals, or
even the previous value of the bit being determined. In synchronous circuits, all the
flip-flops change their value synchronously at the beginning of each clock cycle. In
asynchronous circuits each component reacts to a change in its inputs and after a
given amount of time may update its output. In this work we focus on verification of
synchronous hardware designs.

A state of a hardware model is composed of a value for each flip-flop. Throughout
this section we use V' for the set of flip-flop variables in the design, and [ for input
signals. All circuit variables are boolean. A state in the model for the design is an
assignment to the variables in TU V.

In this chapter we also use boolean formulas to represent sets of states and tran-
sition relations. Sets of states are represented by formulas with free variables (I, V)
and transition relations are represented by formulas with free variables (1, V, I’ V').
We use the same letter for a set of states (or transition relation) and the formula that
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represents it.
The Kripke structure modeling a synchronous circuit is defined as: M = (5, R, I),
where

o The set of states S is the set of all assignments for T U V.
o [nit C S is the set of initial states.

o The transition relation R is defined by a set of functions Ny, ..., N;, each defining
the next-state value for a single variable v; € V by v/ = N;(I,V). The global
transition relation is: B = A, cy (v = N;(I,V)). We assume that every N; is a
deterministic total function. Note that the inputs are unrestricted.

4.2 Test sequence generation for synchronous cir-
cuits

Given a relatively small critical sub-circuit Sub, with a set of inputs I,,;, the designer
can construct a set of test sequences that guarantees a good coverage of Sub in a rela-
tively straightforward way, if the sub-circuit is sufficiently small. However, in general
the inputs to Sub are not accessible from the exterior of the full circuit. Therefore, it
is necessary to produce a set of test sequences for the inputs I of the full circuit that
will induce the required set of test sequences on [,;,. We present a test generation
algorithm that given a test sequence over a small sub-circuit produces a test sequence
for the full circuit that reproduces the original test sequence.
Before we present the algorithm we require several definitions.

Definition 4.1:
e A trace of M is a sequence Il = sq, s1, ..., s, such that (s;,s;41) € R.

o Let U C ({UV) be a set of variables. A partial assignment with respect to U
is an assignment that gives values only to variables in U (as opposed to a state,
which is an assignment that gives values to all the variables of the circuit). A
partial assignment o with respect to U represents the set of states s that agree
with o on U, i.e. for every v € U, s(v) = o(v).

o The projection of a state s on U is a partial assignment over U that agrees with s.
The projection of a trace Il on U is the trace obtained by taking the projection
of each state in IT on U.

e Given a partial assignment o with respect to U, an expansion of o to U’ (s.t.
U C U') is a partial assignment o’ over U’ that agrees with o on U.

o A test sequence over U is a series of partial assignments over U.
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Formally, our problem is defined as follows. Given a set I, C I UV of vari-
ables, which are the inputs to the critical sub-circuit Sub, and a test sequence 1l;,; =

toy ...ty over Iy, we must produce an initial state s;,;; and a test sequence II;, =
My « v oy 1Moy « ..y 10y, (M < 0) where every in; is a partial assignment over /. Let Il =
Sy -+ S0, - -+ S, e the trace generated by II;, and s (S = Sini) ' We require
that the projection of sq, ..., s, on Iy, will be identical to Il,;.

The algorithm has two stages. The first is a backward search that creates a series
of sets of states. Any computation path that goes through these sets (starting at an
initial state) is a solution to our problem. Given Il = to, ..., t,, we construct a series
of sets of states A,,, ..., Ao, ..., A, in reverse order, i.e. we start by computing the
set A, and end with A,,. For every m < i < (n—1), every state s € A, has a successor
in A;q1 (see figure 4.1). Using a slight abuse of notation, we view every ¢; in the test
sequence as a set of states, namely, the set of states (assignments to all variables) that
agree with ¢;. When creating the sets Ag, ..., A, we make sure that A; C ¢;. Thus,
Ao, ..., A, represent the set of traces that agree with Il,;. In order to make sure
that a trace that runs through these sets can be created starting at an initial state, we
continue to compute A_;, A_y and so on, until we arrive at a set A,, in which there
is an initial state. If such an initial state can be found, we know that there is a trace
IT that, from some point on, reproduces the test sequence Ilg,;. If, however, we arrive
at a set A; = 0 or A; C U?:H_l A;, we can conclude that there is no input sequence
II;, that can be used from an initial state to reproduce 1I. This means that when the
sub-circuit is run within this design, the test sequence tq,...,t, can never appear at
its inputs, and we report this.

In the second stage we traverse the sets, from A,, up to A, and find one suitable
trace Il = s,,,...,5,. The test sequence II;, that generates this trace is created by
taking the projections of the states along Il on /. The output of the algorithm is an
initial state s,,, and a sequence of inputs in,,, ..., in,.

The algorithm below uses the following functions and operators:

o The operator Pred computes the set of predecessors of a set of states A according
to the transition relation R. It is defined by: Pred(A) =3I, V'.R(I,V,I', V') A
A(I', V') [44].

e The function choose( A) receives a set A and produces a single state (assignment

to ITUV) s e A.

e The operator Succ(s) returns the set of successors of a state according to R.

Stage I:
1: A, =1,
2: for 3 = n —1 downto 0 do

'Notice that the transition relation R defines the next-state value for variables in V. By choosing
a next-state value for the inputs we deterministically define a successor state. Therefore, s;,;¢ and
I1;,, (together with R) uniquely determine II.
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3 Aj:=1t;N Pred(Aj1)

4: endfor

5: All =10

6: while (A; £ 0) A (A; N Init = 0) A (A; € All) do
7 All = AllU A;

8 =71

9: Aj:= Pred(Aj11)
10: endwhile
1l:m =y

Stage II:
12:if (A, = 0) Vv (A,, C All) then

13:  print “Sequence cannot be generated”

14: else
15: s, := choose(A,, N Init);
16:  in,, := the projection of s,, on I;

17: for j =m+1 tondo
18: sj := choose(Suce(sj_1) N Aj);

19: in; := the projection of s; on I;
20:  endfor
21: endif
Am Ao Cto Ap_1 Cing Ap Cip
Ry Ry
R
(X X J YY)

Figure 4.1: The sets produced by the test sequence generation algorithm

The correctness of our algorithm is asserted using three theorems. It is easy to
see that if stage I completes successfully, i.e. the algorithm will not report failure
in line 13, then stage Il creates a sequence of inputs in,,,...,in, that create a trace
Smy .-+, S, that goes through the sets A; found in stage I. We want to show that this
trace is in fact a solution to our problem.

Theorem 4.1: Every trace m = s,,,...,8, such that for every m <1 < n, s; € A;
recreates the given test-sequence ¢y, ..., 7, on the signals in Ig,;.

Proof: From line 3 in the algorithm it is clear that s; € ¢; for every 0 < ¢ < n.
Therefore, if s,,,...,s, 1s in fact a trace through the sets A;, then the suffix sq,..., s,
induces tg, ...,t, on the signals in [. O
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We next show that there exists a trace through the sets A; from an initial state.
We do this using a slightly stronger claim.

Theorem 4.2: For every m < 1 < n and every state s; € A; there exists a trace
Siy...,8, such that for every 1 < j <n, s; € Aj.
Proof: The proof is by induction on the length of the path s;,...,s, (i.e. induction
on n —i). The base case for ¢« = n is obvious. For the induction step we assume that
from every state s;y; there is a trace through A;yq,...,A,. We prove the claim for
A;. Let s; be some state in A;. If ¢ > 0 then A; was created in line 3, and if 7+ < 0
then A; was created in line 9. In both cases we see that s; € Pred(A;41). This means
that there is a state s;11 € A;41 such that R(s;,s;41). From our assumption on A;44
there must be a trace s;y1,...,s, through A;y1,..., A,, and so there exists the trace
SiySidls .-, Spy through A; Aiyq, ..., A,, which proves the claim. a
The combination of the two theorems above shows that when the algorithm finishes
successfully it produces a correct result. We now show that when the algorithm fails,
it is also a correct result.

Theorem 4.3: If the algorithm claims that the sequence generation failed, then there
is no trace from an initial state that reproduces tg, ..., ¢, on the signals in [,;.

Proof: We prove this theorem by showing that if there exists a trace from an initial
state that reproduces ty,...,¢,, then the algorithm will not fail. Assume there is
a trace S,,,...,80,...,8, such that for every 0 <1 < n, s; € t;, and s,, € Init.
Assume also that this is the shortest trace that reproduces the given test sequence,
i.e. S,,...,80 18 the shortest trace from an initial state that reproduces to,...,1%,.
We show that for every A; that the algorithm computes s; € A;, and for 7 < 0 also
s; & U?:j+1 A;. This will prove that the while loop in line 6 will terminate only when
A; N Init # ), and the algorithm will not report failure. We prove this by induction
on n — j. For j = n we know that A, = ¢, and also s, € t, so obviously s, € A,.
Now we assume that the sets A;;;,..., A, were already computed and for each A4; we
have s; € A;. If j > 0 then the set A; is computed by A; =¢; N Pred(A;+1) (line 3).
Since sj11 € Aj41 we have s; € Pred(Aj;1), and s; was chosen so that s; € ¢;, so we
conclude that s; € A;. If7 < 0 then A; = Pred(A;+1) (line 9) and by similar reasoning
we have that s; € A;. For j < 0 we need also to show that s; ¢ U?:j-H A;. Assume
to the contrary that there exists a set Ay, 7 < k <0, such that s; € A;. This means,
as we have already proven, that there is a trace from s; that goes through the sets
Ag, ..., Ag, ..., A, and reproduces to,...,1,. We know that there is a trace s,,,...,s;
that leads from an initial state to s;, and so we conclude that s,,,...,s;_1,85,...,5,
is a trace from an initial state that reproduces tq,...,%, and is shorter than the trace
Sy« -« 58, that we started with, in contradiction to the fact that s,,,...,s, was chosen
to be the shortest such trace. O
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4.3 Dynamic Transition Relations

The algorithm presented in the previous section might not be practical for very large
circuits. In such circuits, the transition relation R is too big even if it is represented
by a BDD and the operator Pred becomes too expensive. This problem is not unique
to our test-generation algorithm. Other algorithms, such as model checking, are also
heavily dependent on the Pred operator and will fail on large circuits.

To alleviate this problem we exploit the partitioning of the transition relation into
functions NN; that define the next state variables v]. Recall that a state of our model
gives values to all the variables in T U V.

Definition 4.2: A set of states A is independent of a variable v;, if for every state s
in A, the state that differs from s only on v; is also in A. A formula f is independent
of a variable v; if for every two assignments ¢ and ¢’ that differ only on v;, o = f iff
o

We show that when A is independent of a variable v;, the function N; (which
determines the value of v; in the next state) can be omitted from the transition relation
used in the computation of Pred(A).

Definition 4.3: Let f be a formula (representing a set of states or a transition rela-
tion). The supportof f is the set of variables on which f depends. Also, define sup(f) =
{ve(VUI)| f depends on v} and sup’(f) ={v e (VUI)| f depends on v'}. The
set sup(f) is the set of current-state variables that f depends on and sup/'(f) is the
set of next-state variables that f depends on.

We define a dynamic version of Pred, called Predp. The operator Predp(A)
computes the set of predecessors of states in A according to the partial transition
relation A, esup(ay[Ni(s) = v{], which is a transition relation that includes N; if and
only if A depends on v;. The operator Predp is formally defined as: Predp(A) =
0, VITAL, V) A /\vlesup [NZ(S) = v]]]

Lemma 4.1: For any set A, Pred(A) = Predp(A).

Proof: Assume that the variable v; does not appear in the support of A. We start
with the definition of Pred:
Pred(A) =3I V' [(v; = Ni(L[,V)) Ao oA (v = Ni(I, V) NAT, V)]

= 3030y, ., vl vl o
(v = Nl([, V) A (ving = Nica(L, V) A (v = Niga(L, V) A
(v = Ni(1,V)) A Foy. [( = Ni(1,V)) N AL, V)]

Since A(1,V) does not depend on v;, A(I’, V") does not depend on v} and we can move
it through the Jv! quantifier to get:

ZNotice that a formula f is independent of v; iff the set of states that it represents is independent
of v;.
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= 30", v, v, -, 0]
(v = Ni(1, V) Ao viog = Niea(V)) A
(v = Ni(L, V) NAL, V) A Fol vl =

= Nipt(LV)) A

(Vi1
Ni(1, V)]
We assume that every N; is a total function, i.e. for every V there exists v! s.t.

vl = N;(1,V), so Jul.[vl = N,(I,V)] = true and we get:

= '3, . v, Vi, )
. lzNi—l([vv))/\(Uz/'-l—l :Ni-l-l([vv))/\
(U; =N [7 V)) A A([/v V/)]

The above shows that for every variable v; that does not appear in the support of
A we can drop the term v] = N;(I,V) from the transition relation part of Pred(A)
without changing the result. If we do this for all variables not in the support of A we
get Predp(A). O

4.4 Test Generation using Dynamic Transition Re-
lations

4.4.1 A dynamic algorithm

We now present an updated algorithm for test generation that uses dynamic transition
relations. This version not only uses Predp in stage I, but uses the same dynamic
transition relations in the forward search of stage II. The idea is that in most designs
the next-state value of each variable depends only on a few of the other variables, and
so the support of the sets we compute will remain small.

We recall that given a state s, the application of R to s determines the next-state
values for the variables in V', but not for the variables in I. The input variables
I are chosen arbitrarily by the environment. The dynamic algorithm uses partial
assignments o; instead of the full states s;, and partial transition relations R; instead of
R. The output sequence in,,,...,ing,...,in,_ generated by the algorithm is a series
of partial assignments over some (but perhaps not all) of the variables in . When in;
does not give a value for a variable ¢ € I it means that ¢ does not influence the parts
of the circuit that are being considered, and its value can be chosen arbitrarily.

In the dynamic algorithm we use the following functions:

o choose(A,U) accepts a set of states represented by a formula A and a set of
variables U such that sup(A) C U. It returns a partial assignment o over U that
satisfies A. If we view o and A as sets, then the chosen o is a subset of A. Notice
that if A happens to be given as a partial assignment a, then the resulting o
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will be an assignment over U that agrees with a. Notice also that the function
choose that was used in the algorithm of the previous section is simply a call to
this function with U = T U V.

e project(o,U) receives a partial assignment (or a full state) o defined over some
set of variables U’ and a set of variables U such that U C U’, and returns the
projection of the former on the later, i.e. it returns a partial assignment over U
that agrees with o.

o apply(R;, o) receives a partial transition relation R; and a partial assignment
o over sup(R;). The partial transition relation is of the form R; = A ¢y (v" =
N,(I,V)) for some set of variables UU. The result is a partial assignment o’ over
U, such that for every v € U: o'(v) = N,(0).

Stage I:

1: A, =1,

2: for 3 = n —1 downto 0 do

3 Rig1 := Aoesup(a; 1) v, = Nk(1, V)
4. AJ‘ = t]‘ N PTGdD(A]‘_H)

5: endfor

6: All :=10

7: while (A; £ D) A (A; N Init = 0) A (A; € All) do
8 All:= AllU A,

9: =7 -1

100 Rjyi = Avpesup(aj) U = Vi1, V)

11: A, := Predp(A;+1)

12: endwhile

13:m = 3.

Stage II:

14:if (A, =0) v (A,, C All) then

15:  print “sequence cannot be generated”
16: else

17: Sinit := choose( A, N Init, [UV)

18: o, = project(Sinit, Sup(Rm+1))

19: ing, = project(Sini, I N sup(Ryq1))
20 forj=m+1ton—1do

21: tmp = A; Napply(R;,0;-1)
22: o := choose(tmp, sup(R;11))
23: in; := project(o;, I)

24:  endfor

25 tmp = A, Napply(R,, 0n-1)
26: o, = choose(tmp, sup(A,))
27 ing, = project(o,, )
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28: endif

Stage I of the algorithm creates the same sets A,,, ..., A, that were created in the
previous algorithm, but uses Predp instead of Pred. Notice that by the end of stage
[ we have that for every m < ¢ < n, sup(A;—1) C sup(R;) and sup'(R;) = sup(A;)NV.
This allows the use of apply in lines 21 and 25.

In stage II, the forward search for a path through the A;’s is done using partial
assignments o, ..., 0, instead of states (which are full assignments). Every partial
assignment o; represents a set of states which differ only on variables not in the support
of A;. When moving from o,_; to o;, in lines 21 and 25, we use the same partial
transition relation R; that was used to create A,_; from A; (see figure 4.1). After
applying R;, we expand the result to the support of R;1; (line 22) so that we can
apply R;11 in the next iteration of the loop. The output of the algorithm is the initial
state s;,;; and the inputs in,,,...,in,_;. The inputs calculated by the algorithm do not
necessarily give values to all input variables in I. When giving inputs to a simulation
tool we need to decide on values for all the input variables. We therefore expand every
in; to I by choosing arbitrary values for the extra input variables.

To show the correctness of the dynamic algorithm, we first notice that the sets
Anyeoooy Aoy ..o Ay computed by the dynamic algorithm in stage I are exactly the
same sets computed by the static algorithm. This is because the only difference in
their computation is the use of Predp instead of Pred, and we have already shown
that they are equivalent. This means that theorems 4.1, 4.2, and 4.3 hold for the
dynamic algorithm also. What is left to show is that the sequence of partial inputs
My -« -, 20, computed in stage II of the dynamic algorithm will induce a trace through
the sets A,,..., A, no matter how they are expanded to the full set of inputs I.

Theorem 4.1: Let in,,...,in, and s;,;; be the output of the dynamic algorithm.
Then any trace that starts at s;,;; and follows a sequence of inputs that agrees with
My -« -2, Will be a trace through the sets A,,,..., A, computed in stage I of the

algorithm.

Proof: Let in!/ ,...,in/ be a series of full inputs to the circuit that agree with
My .« ., 1My, 1.6, every in, is an assignment that gives value to all the variables in
I, and for every variable v € I such that in, is defined over v we have in;(v) = in’(v).
Let s,,...,5, be the path created when starting at s,, = s;,;; and driving the inputs
Ny, ... 1n,. This means that given a state s;, which agrees with in; on I, we apply

the full transition relation R and get a partial assignment s, which gives values to V'
(since R does not determine the next state values for variables in I'). We then expand
sty; to the state s;; by adding the values that in;;; gives to I (thus s;;; agrees with
in;+1 on I). We show that for every m < j < mn: s; € Aj.

We first show that in every iteration o; C A;, by induction on j. For o, (line 18)
it is obvious, since $;,i+ € A,,. Assume that o;_1 C A;—; (7 < n). From line 21 we
know that tmp C A;, so from line 22 we conclude that o; C A;. For o, the reasoning
is similar, since tmp C A, (line 25), and o, C tmp (line 26). To show that for every

74



J, 8; € A; we need only show that s; agrees with o; on sup(A;). We prove a stronger
claim, that s; agrees with o; on sup(R;41), for 5 =m,...,n — 1, and s, agrees with
sigma, on sup(A,). We do this by induction on j.

The basis is trivial since o, was chosen so that s;,;; and o, agree on sup(R,,+1).
Assume that s;_; agrees with o;_; on sup(R;). The transition relation R includes all
the processes N;, including all those that appear in R;. This means that for every
v; € sup’(R;) the value that s’ gives to v; is the same value that apply(R;,0;_1) gives
to v; (because they were calculated by the same N;). Since sup'(R;) = sup(A;)NV, we
conclude that s’ agrees with apply(R;,0;_1) on sup(A;) NV (line 21). Since the sets
A; were created so that every state in A;_; has a successor in A;, the set tmp cannot
be empty. The conjunction with A; only limits the possible values for variables in I,
so every state in tmp agrees with s’ on sup(A;) V. We then choose o; (line 22) from
tmp, so we conclude that s’ agrees with o; on sup(A;)NV. The partial assignment o;,
however, may also include values for variables in I. In line 23 in; is created so that it is
defined over every variable in [ which o; is defined over. Since s; is created from s’ by
adding the values for I that in gives, and since in’ agrees with in;, we must conclude
that s; agrees with o; on variables from both V' and I. In fact, they agree on all the
variables that o; is defined over, which means they agree on sup(R;). To conclude the
proof we need to show that s, and o, agree on sup(A,). Lines 25-27, which define
o, and in, are similar to lines 21-23, except that o, is chosen over sup(A,) (line 26)
instead of sup(R;+1) (line 22). Similar reasoning as above leads us to conclude that
s, agrees with o, on sup(A4,). O

4.4.2 BDD implementation

Both the original test-generation algorithm and the dynamic algorithm can easily be
implemented using BDD representations. The components Init, S and Ny,..., N; of
the model are represented using BDDs in the usual manner. In addition, the sets A;
computed by the algorithm are represented by BDDs. The input to the algorithm is a
sequence of binary vectors over T'. It is straightforward to translate each vector into a
BDD that represents the set ¢; needed for the algorithm. Most BDD libraries include
a function to compute sup and sup’, which are simply the sets of current or next
state variables that appear in the BDD. All other operations used in our algorithm
are standard BDD operations.

A BDD implementation of the algorithm will benefit significantly from the use
of partial transition relations. The size of a BDD representing a set A is generally
related to the size of sup(A). In many cases, each N; will not depend on all the
variables in [ U V. Thus, taking fewer N;’s will result in a smaller support for the
partial transition relation A, ¢ up(4)[NVi(s) = v{]. The BDDs computed at intermediate
stages in the computation of Pred using the partial transition relation will depend on
less variables and will often be smaller.
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Model | Vars | Seq. Time Space ‘
length || Static | Dynamic || Relative | Static || Dynamic | Relative
#1 5 30 0.93 0.95 102% 0.76 1.23 161%
#2 4 25 1.35 1.51 112% 1.02 1.50 146%
#3 8 1 49.27 2.08 4% 1.95 1.80 93%
#3 8 3 50.68 24.72 49% 1.95 2.42 124%
#3 8 5 51.27 27.57 54% 1.95 2.42 124%
#3 8 10 50.78 35.4 0% 1.95 2.2 124%
#4 8 5 2301 73.39 3.2% 595 2.51 0.4%
#4 8 10 3947 61.32 1.6% 598 2.51 0.4%
#4 8 15 4550 89.65 2% 598 2.51 0.4%
#5 3 8 fail 2.4 - fail 3.77 -
#6 15 5 fail 7.59 - fail 3.19 -
#6 10 5 fail 6.65 - fail 3.19 -
#7 8 5 13.92 0.73 5.2% 17.98 1.74 9.7%
#7 8 5 16.43 0.44 2.7% 17.98 1.53 8.5%
#8 8 5 fail 18 - fail 7.29 -
#8 8 5 fail 31.72 - fail 7.29 -
#9 4 5 fail 21.51 - fail 5.54 -

Table 4.1: Results for symbolic test-sequence generation algorithms

4.4.3 Results

Both the original and the dynamic algorithm were implemented by Fady Copty at
Intel Israel. The algorithms were used to create test sequences on hardware models
designed at Intel.

Nine different examples were used, and for each one both algorithms were applied
to create test sequences. Since different test sequences can create different behaviors of
the algorithm, for some examples more than one test sequence was used. The results
are presented in table 4.1.

Times are given in seconds and measures of space are given in megabytes. The
”Dynamic” columns relate to the dynamic algorithm, while the ”Static” columns relate
to the static algorithm. The ”"Relative” column gives the dynamic result divided by
the static result. The numbers in the table are rounded, but the "relative” column
is calculated from the original numbers. The ”Vars” column is the sub-circuit input
vector width (the number of variables in [5,;). The "Seq. length” column shows the
length of the test sequence for the sub-circuit (the constant n in the algorithm).

Out of the 17 examples, in 11 examples both the static and dynamic algorithms
completed successfully, while in the others (mostly the largest) the static algorithm
could not complete in the given amount of memory but the dynamic algorithm could.
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As can be seen from these results, the dynamic algorithm is better suited for large
examples. In the smallest ones (the first two), there were no gains from using dynamic
transition relations. In fact, the dynamic algorithm required more run time and more
space than the static algorithm. This happens because it is necessary to reconstruct the
transition relation at each iteration, which in small examples may take more time and
space (due to intermediate computations) than simply using the transition relation for
the complete circuit in all stages. On large examples, however, the gains are significant,
as for model #4. On the second example for this model the dynamic algorithm ran in
1/64 of the time taken by the static one, while using only 1/238 of the memory.

The results for model #3, however, are puzzling, since in 3 out of 4 sequences the
gains are an order of magnitude less than those for the first sequence, and for the larger
examples. The dynamic algorithm required more space than the static, although less
time. This indicates that the method can be more efficient for some types of circuits
than others. Future work includes the characterization of which are the "good” circuits
and which are the "bad” ones.

Even better results were achieved by the examples that only finished with the
dynamic algorithm. For model #5, the dynamic version ran for 2.4 seconds using only
3.77TM of memory. During experiments we killed a process whenever it used all of the
memory available, 800M. This example was killed after running more than 2 hours.
From this we can conclude that in this example the dynamic algorithm ran in less
than 1/3000 (2 hour / 2.4 seconds) of the time using less than 1/212 (800/3.77) of the
memory of the original algorithm.

These results show that the dynamic transition relations method can provide signif-
icant gains in verification time and space, in some cases up to two orders of magnitude.
As expected, it does not work in the same way for all kinds of circuits, but our exper-
iments seem to indicate that it works extremely well for several types of circuits that
are used in industry today.

4.5 Dynamic Transition Relations in Model Check-
ing
4.5.1 Incorporating Predp into symbolic model checking

The most expensive computation step in CTL model checking algorithms is the appli-
cation of the EX operator. State explosion often occurs during this step. We notice
that the EX operator is exactly the Pred operator that was defined earlier in this
section. We replace the computation of EX by the operator Predp that uses a partial
transition relation. As before, we compute the partial transition relation dynamically
according to the set to which EX is applied. Since in most cases each N; is defined
over a small number of (unprimed) variables, by referring to the smallest number of
N;’s, we reduce the number of variables used in intermediate computations.

The same treatment also handles model checking for Fair-CTL which is the logic
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CTL, extended with fairness constraints that restrict the set of paths in the model
which are required to satisfy a given formula [14, 6].

In many cases it is useful to know the set of reachable states when performing a
model checking algorithm. This is done by taking the set of initial states and repeatedly
computing the set of successors, until no new states can be found. This process is called
a forward search (or reachability). We propose to use dynamic transition relations in
this case also. The result of the forward search will be an over-approximation of the set
of reachable states. This is in contrast to previous uses of dynamic transition relations
where precise results were obtained. We are not guaranteed to find only reachable
states, but we may still find a set of states which is significantly smaller than the set
of all possible states.

The operator that computes the set of successors is called Succ and is defined as:
Suce(A) =3I V' R,V ILVYNA(I', V') (the result is the set S(1, V') of states that
satisfy the formula). We define a dynamic operator Sucep that will use only some of
the transition relations N;, but not all of them.

As before, we determine which transition relations to use according to the support
of the set on which we are operating. This time, however, we choose the functions N;
according to their current state support, and not their next state support. We define
the set of processes which are relevant to the set A as: relevant(A) = {7 | sup(N;) N
sup(A) # 0}. We then define: Sucep(A) = Ju. A(u) A Aierelevant(a) vl = N;i(u).

When examining the formula for Sucep(S) we see that Suce(A) C Sucep(A),
which means that we do not lose reachable states by using Sucep instead of Suce. We
will, however, take into account states which are not necessarily reachable. This may
happen if for some ¢ and j we have that ¢ € relevant(A),j &€ relevant(A), and N; and
N; depend on common variables. This dependency may disallow certain combinations
of values of v; and v};. By omitting a relation we relax the condition on next-state
variables and allow combinations which were originally impossible. We expect that
using the approximate set of reachable states will help model checking, even if it is a
larger set than the real one.

It is also possible to compute the minimal set of processes that need to be used in
order to get accurate results. To do this, we start with the set of indices exact(A) =
relevant(A) and iteratively add to exact(A) every ¢ such that
sup(N;) N Ujeexact(a) sup(N;) # 0, until no indices are added. Using exact(A) instead
of relevant(A) in Sucep(A) results in a larger transition relation, and less saving in
time and space, but gives an accurate result.

4.5.2 Implementation and Experimental Results

The dynamic transition relations method was implemented in SMV. In order to test
the ideas proposed the SMV code was modified in the following way.

e A table is created, which associates a variable in the model (v;) to a transition
relation describing the value of that variable in the next state (V).
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o Fach ASSIGN statement in the program describes the next-state value for a
variable as a function of the current-state values of several variables. The ex-
pression generated by each ASSIGN is used to fill the table above. This replaces
the original SMV code that produces the global transition relation.

e The computation of the set of predecessors of a state set S is performed by
determining the support set of S, and using those variables in Predp.

This implementation does not support many features of SMV including the TRANS
statement, asynchronous modules, and fairness. Moreover, it has not been optimized,
while the original SMV code contains many optimizations. Because of this the results
obtained are preliminary. We expect better results once these issues are addressed.

We have tested our method on models that have already been verified by SMV
such as the robotics controller described in [11] and the PCI local bus [9]. Table 4.2
summarizes the results obtained for the following examples:

1 The distributed heterogeneous real-time system described in [10];

2 A simplified cache coherence protocol derived from the PCI Local bus;
3 The model of the PCI Local bus discussed in [9];

4 The robotics controller presented in [11];

5 The model of a real-time pipelined system with 9 phases. This model checks the
timing properties of the architecture.

Time measurements are given in seconds, space measurements and transition re-
lation sizes (TR) are given in 1000’s of BDD nodes. The ”St.” columns refer to the
static version (using Pred) and the "Dyn.” columns refer to the dynamic version (using
Predp). The transition relation size reported for the dynamic algorithm is the aver-
age of the sizes of the transition relations used in all iterations. The "D/S” columns
summarize the gains of the method by dividing the dynamic result by the static result
(and multiplying by 100 to get percentages). The column ”Var” presents the total
number of variables in the model (source code variables, not boolean variables) and
the maximum number of (source code) variables used by Predp at any iteration.

From this table we can see that the gains in time were significant, but the gains
in space were not. In fact, in most cases the method used more memory than the
original one, an unexpected effect. This may be caused by an unoptimized feature in
the preliminary implementation, but it cannot be guaranteed. One positive result is
a significant decrease in the transition relation size on average. Also, it is important
to see that the gains are relevant even in the cases where the number of variables
considered during the search was close to the total number of variables. Of particular
interest is the last example where in spite of the fact that all variables were considered
at some point in the search, the average transition relation size was a quarter of the
total size.
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Ex Time Space TR var
St. | Dyn. | D/S || St. | Dyn. | D/S | St. | Dyn. | D/S

1 223 | 43 [ 19% || 39 32 8% ||44] .9 20% || 14/9
2 115 56 | 49% || 248 | 294 | 118% || 9.6 | 4.9 | 51% | 33/26
3 515 | 161 | 31% || 147 | 354 | 240% || 4.9 | 4.9 | 100% || 31/26
4 19 13 | 68% || 238 | 186 | 78% | 4.7 | 3.6 | 77% | 10/8
5 136 | 67 | 49% || 104 | 233 | 224% || 70 | 18 26% || 13/13
Aav] [ %[ [ Jus%l [ [ 55% | |

Table 4.2: Results of using dynamic transition relations in SMV

One other example was verified, an extremely large and complex cache coherence
protocol derived from a more detailed specification of the PCI bus than the one men-
tioned above. The model for this circuit is very large and on our machines we have
not been able to finish the verification. We have run both algorithms only on the first
three iterations of this model. The original SMV took 6952 seconds to complete these
iterations (about two hours), used 160,000 BDD nodes and the transition relation size
was 10,983 BDD nodes. This model has 51 variables. The dynamic transition relations
algorithm was much more efficient, taking 146 seconds to perform the same search, a
gain of almost 50 times! It used 186,000 BDD nodes and the average transition rela-
tion had 2209 BDD nodes. The algorithm reported a maximum number of variables
used of 22.

Unfortunately, we cannot extrapolate these results because it is often the case that
the initial steps in the search use significantly less variables than later ones. However,
this indicates another very important use for the dynamic transition relations method.
During early phases of the design errors appear very frequently, and they are usually
found in short execution sequences. The method proposed can then be used to perform
shallow searches in a much more efficient manner than the original one, and in this
way we may considerably speed up the debugging phase of the design.

These results show that the dynamic transition relations method can provide sig-
nificant gains in verification time, even though more research is needed to study the
behavior of the algorithm with respect to space requirements. We expect better gains
once the prototype implementation is optimized.
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Chapter 5

Soft Ver

5.1 Overview

The SoftVer system is a model-checker that implements modular model checking for
the temporal logic CTL. Its features include:

o A simple, structured programming language, with boolean, integer and array
types.

e Control over the partitioning of a program into modules by use of a special
directive.

o Local reachability. When enabled, this option may result in smaller memory
consumptions.

e A BDD based model checker that utilizes all the advantages of symbolic model
checking. The tool uses a BDD library by David Long [43].

The following sections will elaborate on the above.

The main two units of the SoftVer code are the compilation and the model-checking
units. The compiler module parses the program, creates the partition graph, and
creates the transition relation for each module in the partition graph. The model-
checking unit receives the partition graph created by the compiler unit and performs
modular model-checking according to the algorithm described in section 3.2.

5.2 The SoftVer Programming Language

The SoftVer language is based on the simple non-deterministic while programslanguage
that was presented in the theoretical part of this work, and allows verification of
sequential processes. Figure 5.2 gives an example of a short program written in the
SoftVer programming language (the numbers on the left are used as reference and are
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not part of the programming language). The example program inputs an array of
numbers, and then performs a bubble sort on it.

Program variables can be of type boolean, integer, array of boolean, or array of
integers. Comments are written in the C style, starting with ’/*” and ending with ™/’

All the usual operators can be used in expressions: the boolean operators &&, ||, — >
and ! (not); integer operators +, - (both binary and unary minus); and comparison
operators =, =, <, >, <=,and >=. The program starts with the preamble in which

variables are declared (lines 1-5). The program body is inclosed in curly-brackets (lines
6 and 38). The #MODULE# directive (line 7) is inserted at the beginning of each
module. The parser checks that the partitioning adheres to the rules. In the present
version, non-deterministic assignment (line 11) is allowed only when assigning into
basic variables, and not when assigning into arrays. The command “label’ (line 37) is
used to name specific program counter locations, which will later be referred to in the
specification. Its semantics is identical to the ’skip’ command.

The specification to be checked is given after the program (line 39). It is a CTL
formula that may use all the above mentioned operators, plus the temporal operators
AX, EX, AU, EU, AF, EF, AG, and EG. The operators AU and EU are binary and
are written as A[p U q] or E[p U ¢] (where p and q are boolean expressions).

5.3 Creating The Transition Relation of a Program

The process of creating a transition relation for the program starts with the allocation
of BDD variables. Knowing the number of program locations, we calculate the mini-
mum number of bits needed for the program counter and allocate the BDD variables
pe = pey, ..., peg and peé = pel, ..., pc). . The BDD variables p¢ are used to represent
the current program location, and pc’ are used for the next program location. For each
program variable we calculate the number of bits needed to represent its value (1 for

boolean, more for integer). We then allocate two sets of BDD variables: © = vy,..., v,
are used to represent the current state and ¥ = v],..., v/ are used to represent the
next state.

The transition relation of a module is a disjunction of the relations of the individual
commands. Before we can create transition relations for the individual commands we
must be able to create BDD representations for the different expressions that may
appear on the right hand side of assignments and in boolean expressions (in “if”s
and “while”s). This is done according to the structure of the expression. We start
by defining BDD representations for constants and variables (of all types), and then
define the effect of the different operators. We give here the definitions for only a few
representative operators, as the list of operators that SoftVer supports is quite long.
BDD representations are given as boolean formulas over BDD variables.

e A boolean constant ¢:
The boolean constants “TRUE” and “FALSE” are represented by the BDDs

true and false.
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U= W N~

17:
18:
19:
21:
22:
23:
24:
25:
26:
27:
28:
29:
30:
31:
32:
33:
34:
35:

36:
37:
38:

39:

int tmp;

int index;

int sub_ind;

boolean flag;

int a[5]; /* array with places 0-4 *

{
#MODULE#

/* input numbers into array */
index := 0;

: while (index < 4) do

tmp := {0,1,2,3};
a[index] := tmp;
index := index + 1;

: od;
: flag := TRUE;

: index = 4;

4MODULE#
while (flag && (index > 0)) do
4MODULE#
sub_ind := 0;
flag := FALSE;
while (sub.ind < index) do
if (a[sub_.ind] > a[sub_.ind + 1]) then
tmp := a[sub_ind];
a[sub_ind] := a[sub_ind + 1J;
a[subind + 1] := tmp;

flag := TRUE;
else
skip;
fi;
sub_ind := sub_ind + 1;
od;
index := index - 1;
od;
HAMODULE#
label halt;
}

SPEC AF (label(halt) && (a[0]<=a[l]) && (a[l]<=a[2]) &&
(a[2]<=a[3]) && (a[3]<=al4]))
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A boolean variable z:

Let u; be the BDD variable that represents the program variable . The formula
representing the expression x is u;.

An integer constant ¢:

Integers are represented by an array of BDDs. All integers are of the same
fixed length integer_length. An expression of type integer is an array of length
integer_length of boolean expressions, that represents numbers in binary code.
For example, if integer _length = 3 then the constant 5 is represented by the
array [true, false, true).

An integer variable x:
Assume that uy, .., u,, are the BDD variables allocated for @ (m = integer_length).
The ith element of the array representing z is the BDD u;.

e A boolean array dereference ble] (e is an integer expression):
At this point of the compilation the BDD for ¢ has already been created. Ac-
tually, since e is an integer expression it is represented by an array of BDDs,
each representing a bit in binary code. Let wq,...,u; be the variables that rep-
resent b, i.e. wuy represents b[1], uy represents b[2] and so on. The value of
ble] is b[1] if e = 1, b[2] if ¢ = 2 and so on. Therefore, the BDD for b|e] is:
(e=1Au)V(e=2ANuz)V...V(e=1tAu). The formula e = 1, for example,
is created by equating the least-significant bit to ¢true and all the rest to false.

e An integer array dereference afe] (e is an integer expression):
The result of dereferencing an integer array is an integer number. To create a
BDD representation for an integer we create an array of length integer_length
of BDDs. Each place in the array represents a bit in binary code, and is created
in a similar way to the expression for a boolean array dereference. Let uq, ..., uy
be the BDD variables allocated for the 7th bit of . This means that u; is the
ith bit of the number a[1] and u; is the ¢th bit of the number a[t]. The ith bit of
the BDD representation for afe] is (e = 1 Aug) V(e =2Au) V...V (e=1tAu).

e The boolean operator && (logical AND):
If F(v) is the BDD for the boolean expression f, and G(v) is the BDD for the
boolean expression g, then the BDD for the expression f && g is F(v) A G(9).

e The integer operator +:
Given two numbers, represented in binary code as arrays of BDDs, the operator
+ is computed in the usual manner. The least-significant bit of the result is the
exclusive-or of the least-significant bits of the parameters. The carry is computed
as the conjunction of both least-significant bits, and then the next bit can be
calculated.

The above is only a partial list, that shows the basic types of operations used to
compute BDD representations for expressions. For more details refer to the code itself.
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Following is a description of the translation of commands into relations, using
BDD operations !. Each relation R is described as a formula with pe,v,pé’, v as its
free variables. The label [ is a number representing the current program location, i.e.
the location of the command being translated. The label I’ is a number representing
the location of the subsequent command. These numbers do not appear in the text of
the program, but are created by the parser.

o [: skip I
The transition relation of the skip command reflects the fact that the program
counter location moves from [ to {, but no other variable changes.

R(}TQ@?p_c’?@’) = (p_c = l) A (p_cl = l/) A ( /\ Vi = Uz/)

1<i<n
o I: v := el (where x is a simple variable and e is an expression)
We break the set of BDD variables into two parts, w = wy, ..., u; are the variables
associated with x, and wy, ..., w, are all the rest. Let [e1(w, @), ..., ex(wW,@)] be

the array of BDDs that represents the expression e. If x is boolean (and so is €)
then & = 1. Otherwise, k = integer_length.

n k
R(pe,u,w,pc, @, @)= (pe =) A(pc =I)AN(\ wi=w) A \u'=¢
=1 7=1
o [: alind] :=el" 4 4
Assume that w/ = ui,...,uj is the set of BDD variables that is associated with

afj] (1 <7 <t),and let @ be all the rest of the BDD variables. The expression e
must be of the same type as each element of a, so it is represented by the BDDs
€1,...,¢k If @ is a boolean array then k = 1, otherwise k = integer_length.

R(pe,w,w,pe,w,w') = (pc =) A (p& = U') A ( )\ wi = wl)A
=1

—.

(ind = 1) A ( A w:w/)/\(/_\u;/:ej)

=1 je{l,i—1a+1,..,0}
o v :={ey,...,e,}
The transition relation for a non-deterministic assignment is the disjunction of
the relations of the assignments “x := e;” through “x :=e¢,”.

o [:if Bthenl, :Syelsely: Sy il

The transition relations of 57 and 55 have already been computed and disjuncted

!This description is a simplified version. The actual code is slightly more complicated since it
incorporates some optimizations.
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into the global transition relation. All we need to add are the transitions in which
B is evaluated:

R(pe.w,m,p¢ 0, w) = (pe=DA( \ v = V)A((BAE = 1)V (~BAE = 1))

=
o,

e [: while B do ly: Sod "

Similarly to the previous case:

R(pe. w5 0, w) = (pe = DA( N\ v = W)A(BAGE = 1)V (-BAGE = 1)

5.4 Analyzing the performance of the tool

We now describe the methods that were used when analyzing the performance of
SoftVer and the modular model checking algorithm. This is important because, as we
will show, not all methods of analysis that seem plausible are in fact accurate.

When analyzing the performance of any algorithm we look at memory consumption
and run-times. Run-times are relatively easy to measure, using the Unix command
timez, which gives the overall running time, the amount of time used for system
(swapping and other system operations), and the amount of time used by the program
itself. The running times reported throughout the work are the actual user times. The
system part of the run time is ignored, since it never went over 3 or 4 seconds (in most
cases it was less than a second).

Analyzing the memory consumption of a model checking algorithm is a little more
tricky, especially if it is BDD based, as SoftVer is. Any BDD library includes a function
that, when called, will return the number of BDD nodes currently in use. Naturally,
garbage collection algorithms are used to dispose of unused nodes every once in a
while, since it would be inefficient to dispose of every node as soon as it is freed. It
would seem natural to examine the number of BDD nodes in the system just before
each time garbage collection is performed, and regard the maximum of these numbers
as the maximal memory consumption of the algorithm. However, this method is inac-
curate. Garbage collection is only performed between BDD operations, and memory
consumption usually (almost always in fact) reaches its peak in the middle of difficult
operations, usually the computation of a relational product as in the calculation of
the EX or AX operators. To get an exact measure of how much memory a run of the
algorithm used we used the Unix command limit. This command enabled us to limit
the amount of memory a shell process can use. When a process tries to exceed this
amount it will fail, and report failure of allocation or some other similar message. We
ran each example several times, each time changing the limit on the amount of data
the process is allowed to use, until we found a tight bound on the actual amount of
memory used. A tight bound is a pair of numbers [, such that when limiting the
shell to [ K (Kilo Bytes) the process failed, but when limiting the shell to h K it was
able to finish, and the difference A — [ is less than 1% of h.
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Figure 5.1: Comparison of methods for analysis of memory consumption.

The method of determining memory consumption described above requires a lot
of work, since each example must be run many times. However, we find that it is
necessary since the method of printing the number of BDD nodes used is inaccurate.
To prove this we used both methods for our examples and compared them. Figure 5.1
shows a graph depicting the memory consumption of several runs of the Stop and
Wait example, using both measurement methods. Although generally the two lines
rise and fall together, runs 8 and 9 prove that in some cases the method of printing
BDD nodes can lead us to believe that one example used less space than the other,
when in fact the opposite is true. For this reason, all the memory consumption results
given for the modular model checking algorithm were calculated using the accurate
method. The results given in the hardware verification part of the work were done
using the accurate method.

5.5 Variable Reordering and Local Reachability

The SoftVer model checker supplies two options that may help in handling large pro-
grams: variable reordering and local reachability.

As mentioned before, an ordering is defined over BDD variables, and this ordering
may influence the size of the BDD. Variable reordering is a heuristic algorithm that
attempts to find a better ordering for the variables. When the reordering option is
enabled, the variable reordering algorithm is triggered when the BDD size exceeds a
certain limit.

In Figure 5.2 we give graphs that show the effect of variable reordering on space
(figure 5.2(a)) and time (figure 5.2(b)) consumption. There is no graph for the Sort
example, since it could not finish at all without variable reordering. It is easy to
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see that variable reordering is a valuable tool in handling large programs. In most
cases variable reordering reduced both space and time consumption, and the most
impressive reductions were achieved in the largest examples. It seems that although
the variable reordering algorithm itself takes a significant amount of running time, this
time is well spent since it saves time in the overall run. There is another advantage in
using variable reordering in our case. Since we work on different modules separately,
when variable reordering is enabled each module may have a different reordering, one
which is suitable for this module and may not be suitable for others.

Computing the set of reachable states before performing model checking can some-
times reduce the space requirements needed for model checking, and it is a common
practice in symbolic model checking. However, this computation may be expensive
in both running time and space requirement. The SoftVer model-checker offers the
possibility to perform local reachability. Local reachability means that we do not
compute the exact set of reachable states, and yet we limit the state-space used for
model-checking.

The reason why reachability can be so difficult is because wherever there is a loop
in the program, the reachability algorithm must pass through this loop time after time
until reaching a fix-point.

When performing local reachability we compute the reachable state-space in the
regular way as long as we are translating simple commands: skip, assignment, and
conditions. After creating the transition relation for such a statement we compute
the set of ending states according to this transition relation, and limit the transition
relation of the next statement to include only transitions that start from reachable
states. For a program without loops this process will produce the same result as
regular reachability. When there is a loop, however, we refrain from computing the
fix-point. We translate the head of the loop, the point at which the boolean condition
is evaluated, into a BDD representation according to the definition given in the pre-
vious subsection. The body of the loop is created using local reachability under the
assumption that all initial states of the body are reachable (which, of course, might
not be true). Using local reachability means that the state-space of our model will
now include some unreachable states, but not as much as without reachability.

In Figure 5.3 we give graphs that show the effect of using local reachability on space
(figure 5.3(a)) and time (figure 5.3(b)) consumption. From these graphs we see that
in most cases the use of local reachability actually increased both space and time con-
sumption. However, there are cases in which local reachability improved performance.
It is interesting to note that in one case (learn-monom, no partitioning with reorder-
ing) space consumption was reduced while time consumption was increased, and in
another case (stop-and-wait, moderate partitioning with reordering) space consump-
tion was increased while time consumption was reduced. All of the above suggests that
local reachability should not be a default option, since in many cases it is not useful,
but in cases where SoftVer runs too long, or requires too much space, one should try
using local reachability, in the hope that it would help in this case. It is worth noting
that local reachability seems to help mainly when combined with variable reordering.
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Figure 5.2: The effect of variable reordering
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This is a known behavior of BDDs where reducing the number of states in a set does
not necessarily reduce the size of the BDD representing this set. However, when the
states that are eliminated are “irregular” in some sense, then there may be a variable
ordering that will reduce the size of the BDD.
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Figure 5.3: The effect of local reachability
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Chapter 6

Conclusions

6.1 Related Works

There are not many works that deal with automatic verification of software systems,
and especially in programs written in high level languages.

A very interesting work by Godfroid [29] presents a verification method for software
written in actual programming languages such as C or C++. This method searches
the state-space of a concurrent program by repetitively running each process until it
reaches its next communication statement. The SPIN system [32] is another example
of model checking for high-level languages. It uses a language called PROMELA and is
mainly used to verify communication protocols. Both of these tools are not modular in
nature, and it is not clear whether they can make use of our modular model checking
algorithm, but they may be able to incorporate our reduction methods into their
verification process.

Works that use process algebras to represent a program can be considered as han-
dling software, although not written in a high-level language. One of the most relevant
works, which bears some resemblance to our modular model checking algorithm, is
the work of Burkart and Steffen [7, 8]. They present model checking algorithms for
context-free processes, and for a generalization of context-free processes called push-
down processes. They consider the semantics of "fragments’, which are interpreted
as 'incomplete portions’ of the process. The model checking algorithms they propose
are based on the calculation of the property transformer of each fragment, which is a
function that represents the semantics of a fragment with respect to alternation-free u-
calculus formulas. A property transformer receives a set of p-calculus formulas which
are true at the exit point of a fragment, and returns the set of p-calculus formulas
true at the entry to the fragment. After calculating the property transformers of all
fragments, the property transformer of the main fragment is given the set of p-calculus
properties that hold when a process halts, and the result computed by the property
transformer is the result of the model-checking algorithm. The main draw-back of
this algorithm, in our opinion, is that it is defined for Pushdown Processes Systems,
which can hardly be considered as a high level programming language, and p-calculus
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properties, which are not easy to use. This makes it an interesting theoretical result,
but not useful for use by real designers of hardware or software systems. It should also
be noted that the property transformers of all the fragments are computed together,
one depending on the other, and it is not clear whether using secondary memory to
store partial results would prove useful, or even possible.

As mentioned before, our path reduction method is closely related to partial or-
der reduction methods since it excludes possible interleavings between processes. The
dead-variable reduction can also be considered a partial order reduction since it ex-
cludes some of the successors of a state in which x is dead. It should be noted, though,
that the reduction we achieve is different than the reduction achieved by most partial
order methods, and it should be beneficial to use one on-top of the other.

A similar type of reduction to our path reduction was introduced by Miller and
Katz in [36]. Their approach was to eliminate invisible states from the model of a
program, where invisible states are states for which all the entering transitions cannot
influence the specification. Their method constructs the projected visible state space
relative to a specification through a DFS traversal that eliminates invisible states.
The construction of the visible state space requires a linear traversal of a model that
is somewhat reduced from the original model of the system, but is still larger than
the reduced model which is produced. The difference from our approach is that we
produce the reduced model from the syntactic model of the program (the control-flow
graph) and not from the Kripke structure representing it. The syntactic model is
significantly smaller since it expands only the program counter and not the program
variables, which are the source for the enormous size of the semantic model.

The main advantage of our reduction methods is that they use static analysis to
create the reduced Kripke structure. In [33, 38| static analyses are used for partial
order reductions. An analysis of the statements in the program ([33]) or of the control-
flow graphs of the processes [38] is used to determine the transitions to be traversed
(ample sets) and to create a reduced model on which a full state-space exploration
is performed. The main difference between our reduction methods and theirs is in
the model that is produced, each method creates a different reduced model. Another
important distinction is that our reductions work for either CTL* or CTL*-X whereas
the reductions presented in [33, 38] are appropriate only for the subset LTL-X.

The closest related work to our dead-variable reduction is [3], where a live variable
analysis is used to create a reduced model for asynchronous processes that commu-
nicate via queues. The analysis they present is similar to what we present as fully
dead variable analysis. Our dead-variable reduction is more effective since it allows
variables to be partially dead. We used the example that is presented in [3] and it
shows better results than our other examples. However, we believe that this reduction
is achieved because the example was tailored for demonstrating the effectiveness of the
method. Our examples are implementations of known protocols.

Our state-space reductions are also related to works like [1, 15, 20, 37] that use
abstract interpretation techniques [17] to obtain reduced models that preserve subsets
of the logic C'T'L*. Their reductions, however, are not fully automatic since the user
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must define the abstract domain. Furthermore, these works provide weak preservation
while our reductions provide strong preservation.

Test sequence generation from precomputed tests has been studied out of the con-
text of symbolic model checking [47, 12, 40, 39, 54, 26]. However, all of these techniques
depend on the internal structure of the circuit being tested, (e.g. in some cases they
rely on a regular bus structure in the design), and consequently are not as general as
the one presented here. In the context of model checking the problem has been ad-
dressed in [25], but their work is concerned mostly with expressing the test sequence
and not with the complexity of dealing with large circuits. In fact, in [25] the authors
state that they have only used their method on small examples. Another work relat-
ing to model checking and test sequence generation is [2], in which ATPG algorithms
(Automatic Test Pattern Generation) are used to perform model checking. ATPG al-
gorithms do not guarantee that they will eventually find a test sequence even in cases
when it does exist, as our algorithm does.

One important aspect of our work is that it does not build a model of the complete
circuit beforehand and that it may never actually construct such model. In this aspect
it relates to techniques such as partitioned transition relations [13]. It differs from it,
however, because in that case all partitions are used in every iteration, and this may
not be necessary. Examples of techniques that may not consider all parts of the circuit
are the cone of influence reduction [13]. However, these techniques are static in the
sense that they determine only once which parts of the circuit can be ignored. Our
method does it dynamically taking advantage that not all parts of the circuit are
relevant during all iterations. Because of this our method produces better results,
since it can use less of the circuit during most iterations. In fact, the cone of influence
can be seen as an upper bound on the behavior of our algorithm.

6.2 Directions for further research

There are several directions for research which we have not yet pursued. The first is
utilizing the procedural structure of programs. Procedures are sub-programs which
are defined once, and then used in several places in the program, with some changes in
variables. It would be interesting to find a way to verify the program while examining
the body of each procedure only once. The ideal solution would be some algorithm
that would examine the structure of the procedure, extract the minimal information
needed, and then, when working on the program that called the procedure, use only the
information kept about the procedure, without examining its structure once again. For
this to be possible we need to keep information about the semantics of the procedure
that would enable us to verify every call to the procedure, although different calls
may use different actual parameters. The problem we encountered here is that any
information we keep that does not include the full branching structure of the body
of the procedure was not enough for an exact model checking algorithm. A possible
solution might be to settle for partial knowledge, and get results which under or over
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approximate the correct results. Another possibility is to find a specification language
which is not as sensitive to branching structure as CTL is, and yet be compositional,
and expressive enough to be interesting.

Another possible continuation of our work in software verification is to exploit
other kinds of static analysis algorithms. There are other attributes of programs and
variables which can be extracted using static analysis, and may be helpful in reducing
the state space of a program, or making the model checking algorithm more efficient.
It may also be possible to extend the reductions we present to handle more cases.
For example, in our dead-variable reduction we cannot reduce according to an array
variable. This is because our simple calculations cannot determine to which element
of the array an expression such as afi] refers to. The only safe assumption that can be
made is that such an expression is a reference to the whole array, which would make
the reduction un-effective. Extending the method to handle arrays will require a new
type of static analysis.

As for our research in hardware verification, our algorithm for test-sequence gen-
eration should be extended to handle sets of test-sequences (instead of working on a
single test-sequence for the critical sub-circuit). This would prove very practical since
in real life a design is checked using many different test-sequences.

The idea of dynamic transition relations seems to be very useful, and a similar
result may be obtained for asynchronous models. Such a result would be practical for
both asynchronous hardware designs as well as parallel programs.
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