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Abstract

As the complexity of software and hardware systems grows it becomes necessary
to develop new methods for veri�cation	 We are mainly concerned with temporal logic

model checking algorithms
 which receive a model of the system and a speci�cation
formula and decide whether the model satis�es the speci�cation	 The main restriction
on model checking algorithms is the size of the models they are applied to
 and solving
this problem is the subject of this work	
We suggest ways of using the syntactic description of a system in order to reduce

space consumption of veri�cation methods	 For software systems the syntactic model
is a control��ow graph
 which includes a node for each command in the program and
edges representing the order of execution	 For hardware systems we examine the list
of signals ��ip��ops
 and boolean functions that determine their values at each step	
Our results for software veri�cation include a modular model checking algorithm

and two space reduction methods	 The modular algorithm is based on a partitioning
of the program into sub�programs	 It converts any CTL model checking algorithm so
that it examines each sub�program separately	 We have implemented it in a tool called
SoftVer and got a substantial reduction both space and time consumption	 Our space
reduction methods are based on static analysis
 which is the analysis of the control�
�ow graph of a program in order to extract information on its run�time behavior	
The �rst reduction reduces according to control
 while the second reduction reduces
according to data	 We tested the amount of reduction achieved by our methods on
several examples	 We �nd that in some cases they can be very productive	
The main method for verifying hardware designs is by simulating its behavior under

a given sequence of inputs
 called a test sequence
 and examining the outputs	 We
present a test�sequence generation algorithm
 which given a test sequence to a sub�
circuit
 creates a test sequence for the whole design	 This can be used to translate a
set of test sequences for the sub�circuit into a set of tests for the whole design	
Finally
 we introduce dynamic transition relations
 which are used to compute

the set of predecessors of a given set of states more e�ciently	 The idea is that at
each computation only the parts of the design relevant for this step are considered	
Experimental results show impressive speedups and reduction in space consumptions

even up to two orders of magnitude	
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Chapter �

Introduction

As the complexity of software and hardware systems grows
 the need for automatic
veri�cation tools becomes increasingly apparent	 Traditional testing methods can no
longer give a reasonable assurance for the quality of a product
 and more rigorous and
reliable methods are needed	
The term automatic veri�cation is a general name for all methods of verifying the

correctness of a system by means of an algorithm that is guaranteed to terminate and
deliver accurate results	 This
 of course
 can only be done on �nite�state systems	
Hardware systems are inherently �nite since all signals are boolean and all memory
components contain a speci�c number of bits	 For software systems we must assume
that all variables are over �nite domains
 e	g	 boolean
 enumerated
 or integers of a
speci�ed �nite range	
In this work we are mainly concerned with model checking algorithms	 A model

checking algorithm receives a model of the system and a speci�cation formula and
decides whether the model satis�es the speci�cation	 The most common model used
to represent �nite�state systems is a Kripke structure which is a state transition graph
with labelings on the states �and not on the edges	
The choice of speci�cation language is important since it determines both the

usefulness of the model checking tool
 and the complexity of the algorithm	 It is
important that the speci�cation language will be strong enough to express the type
of properties that the designer expects the system to have
 but usually the stronger
the speci�cation language the more expensive the model checking algorithm becomes	
The systems that we examine are mostly reactive systems
 which means that they
work continuously and react to their environment
 rather then computing a result
and then terminating	 It is widely accepted that temporal logic speci�cations ���

���
 are convenient and e�ective for specifying reactive systems
 and these are the
speci�cation languages that we refer to in this work	 Temporal logic formulas are
capable of describing the behavior of a system over time	 They can express properties
such as �whenever there is a request then some time in the future an acknowledge will
be received� or �it is never possible to receive an acknowledge that is not in response to
a request�	 There are several �avors of temporal logics
 and each has a model checking
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algorithm with a di�erent complexity	 The most general and most powerful temporal
logic we examine is CTL�	 We also use several sub�languages of CTL� because they
poses special properties which we use	
The problem that model checking algorithms of all kinds face is that of space

complexity	 The size of the Kripke structure that represents a system is exponential in
the number of �boolean variables	 When the system is composed of several processes
running in parallel the cross product of the processes� structures also leads to an
exponential blow�up	 In order to perform model checking on any system the whole
state space must be checked in one way or another
 but this cannot be done if the
representation of the structure does no �t into the available memory of the computer	
This problem is known as the state explosion problem and it is the subject of signi�cant
parts of the research done in the area of automatic veri�cation	

��� Model Checking Techniques

There are many types of model checking algorithms ���
 ��
 ��
 �
 ��� and they di�er
in the speci�cation language they use
 and the way they represent the system	 The
�rst model checking algorithms developed were explicit state algorithms
 which use
an explicit representation of the structure of the system	 These algorithms generally
arrive at their conclusion by traversing the state�space of the system in some way or
another	 To overcome the state explosion problem
 a new approach was developed

called symbolic model checking ���
 ��	 Here the structure of the system is represented
implicitly
 by means of Binary Decision Diagrams ��� �BDDs	 BDDs are data struc�
tures that represent boolean functions �functions whose operand is a boolean vector
and the result a boolean value
 and these can be used to represent sets of states and
sets of transitions between states	 Symbolic model checking revolutionized the �eld
of automatic veri�cation by making it possible to verify large systems of up to ���
boolean variables	 However
 there is still a long way to go before model checkers can
be used on real designs in full	
There are many works that try to alleviate the state explosion problem	 We con�

sider here two prominent approaches	 The �rst is introducing modularity	 The idea is
to be able to verify di�erent parts of the system separately
 since each part is much
smaller then the combination of all the parts together	 There are many ways of mak�
ing model checking modular	 We mention here some of the leading methods
 although
there are many more	
One way to create modularity is to separate a process from its environment	 Using a

method called assume guarantee ���
 ��� a process is checked under certain assumptions
on the environment in which it runs
 and these assumptions are proved to hold on
the actual environment �without the process itself	 When several processes interact
through limited interfaces
 each process can be checked while the others are replaced
by a small process that represents only the interface ����	 Modularity can also be
achieved by use of fairness constraints	 The environment is replaced by a constraint
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that states that something good must happen in�nitely often	 Model checking is then
performed
 but only fair computations are considered ����	
An important step in mechanizing modular methods in the context of branching

time temporal logics is the introduction of simulation relation ���� de�ned by ����	
Simulation relations de�ne a preorder on models that preserves the satisfaction of
temporal logic formulas	 This means that if a formula is true in a model then it is
also true in any model which is smaller in the preorder	 To verify a single component
of a system
 we can �nd a formula � that represents the environment of the chosen
component
 build a model that represents � �a tableau and verify the chosen com�
ponent with this model �which is smaller in size instead of the true environment	 In
order to prove that the real environment actually satis�es � we show that the true
environment is smaller in the preorder than the model of �	
A di�erent approach to the state explosion problem is that of reduction
 where

the goal is to create as small a structure as possible while maintaining the properties
that are to be checked	 One useful methodology of reduction is that of partial order
reductions ���
 ��
 ��
 ���	 These methods rely on the observation that the interleav�
ing model of computation is very wasteful
 since in many cases the speci�cation is
not in�uenced by di�erent orderings of the same commands	 Partial order reductions
de�ne models that exclude some of the possible interleavings between processes while
maintaining the validity of the speci�cation	 Another type of reduction is abstrac�
tion ��
 ��
 ��
 ��
 ���	 An abstract model of a system is a model in which certain
details have been omitted	 Care must be taken in the way the abstract model is
created so that it preserves the speci�cation
 i	e	 if the abstract model satis�es the
speci�cation we can safely conclude that the concrete model �the original model of
the system also satis�es the speci�cation	 The simulation relation mentioned earlier
is an important tool for abstraction	 It allows us to prove that an abstract model we
created is in fact a true abstraction
 by showing that it is higher in the preorder than
the concrete model	 However
 if the abstract model does not satisfy the speci�cation
it does not necessarily mean that the concrete model does not satisfy it	 In this case
a di�erent abstraction should be used
 one that will include more detail	

��� Hardware Veri�cation

The process of hardware design consists of many stages
 starting with a very abstract
description of modules
 and ending with a detailed plan of wires and transistors	 Ver�
i�cation is done on all levels
 where at each stage di�erent properties are checked	 We
are concerned with logical behavior �as opposed to physical behavior for example
 and
this is normally checked at a level of description called Register Transfer Level �RTL	
In this stage the design consists of memory components ��ip��ops
 and combinatori�
cal components �logical gates that determine the value of each �ip��op at every clock
cycle	
The main method for verifying logical behavior in hardware design is simulation
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�unrelated to the previously mentioned simulation relations
 also called dynamic val�
idation	 The designs behavior is simulated using random or semi�random inputs
 and
the results are checked for correct behavior	 This process can never cover all possibil�
ities
 and usually veri�es only parts of the state�space	 It is also not fully automatic
since the designer must check the results	 In spite of this
 simulation is the main
method of logical veri�cation today	 In contrast
 model checking can provide an accu�
rate and exhaustive result	 When the circuit fails to satisfy the speci�cation
 model
checking algorithms can also provide a counter�example which is invaluable to the de�
signer in �nding the cause for the error	 The problem remains that most designs can
not be dealt with in full
 and only smaller parts can be model checked	
Since hardware designs are made up of many components that work in parallel

�whether synchronously or not
 modularity is often used to allow veri�cation of larger
designs	 Most of the theoretical results in improving model checking techniques are
targeted at synchronous systems
 and are therefore most useful for synchronous cir�
cuits	 The reason for this is that almost all industrial designs are in fact synchronous
circuits	

��� Software Veri�cation

The use of automatic veri�cation for software systems is much more limited than for
hardware systems
 and so is the body of research on the subject	 There are several
reasons for this	
Most �real�life� programs involve integer variables
 pointers
 and dynamic alloca�

tion of memory	 The use of these constructs creates a model of execution that has
in�nitely many states
 and thus model checking is impossible	 One way to solve this
problem is to limit the programming language so that it allows only �nite domains

thus dynamic allocation is prohibited and integers are over a speci�ed �nite domain	
This solution limits the programmer
 and is not applicable to many software systems
that are used today	 However
 some classes of programs can be written in such a
limited language
 most importantly communication protocols and controllers	 These
programs are not only �nite
 but can be very complex and may indeed require veri��
cation	
A second way of solving the problem of in�nite domains is abstraction	 The main

drawback of using abstraction is that the abstraction is usually created manually
 and
if the abstraction is not checked thoroughly errors may be introduced at this stage	
More importantly
 errors that existed in the original design may be accidently left out
of the abstract design and will not be found	 There are several works that propose
ways of automatically creating abstract models ���
 ���	 Although these methods may
not produce the optimal abstraction
 they are very important since they solve the
problem of errors inserted�omitted at the abstraction stage	
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��� Overview of this work

In this work we look for ways to use the high level description �program text of a
system in order to improve the model checking process
 either by modularity or by
reduction	 The work can be divided into two parts � software and hardware veri�cation	
The �rst thing to note about software systems is the di�erence between the syntac�

tic structure and the semantic structure	 When compiling a program �whether the goal
is to execute it or to create a Kripke structure from it the parser builds a control��ow
graph that represents the syntax of the program	 Each program counter location is
represented by a node
 and the edges express the possible ways in which control can
pass from one location to another	 From this control��ow graph the Kripke structure
representing the program can then be created	 The size of the control��ow graph is
proportional to the size of the program text
 which is very small compared to the size
of the Kripke structure of the program	 We set out to use this control��ow graph and
exploit the special structure that can be found in it	
We �rst show how partitioning the program into sub�programs can help in creating

a modular model checking algorithm	 We introduce the notion of partition graphs

which are a generalization of control��ow graphs in which a node can represent a
sub�program rather than just one program counter location	 Instead of creating a
Kripke structure for the full program we create a structure for each sub�program and
keep each one in a separate �le �therefore
 when not in use these structures are not
in the immediate memory	 We show that any model�checking algorithm for CTL
can be adapted to perform model checking on a partition graph so that each sub�
program is handled separately
 never keeping the structures of two sub�programs in
the immediate memory of the computer at the same time	 This method can not only
enable handling programs that would otherwise not �t in the memory of the computer

but since model checking is performed on smaller structures it can also be much faster
than model checking on the full program	
We have implemented a symbolic model checker called SoftVer that performs our

modular model checking algorithm	 It uses a simple programming language that re�
stricts variables to �nite domains
 and allows the user to determine the partitioning of
the program into sub�programs	 It also allows the use of other symbolicmodel�checking
techniques such as variable reordering and local reachability �both are explained in de�
tail in the appropriate chapter	 We applied the tool on three examples
 each with
di�erent partitionings and compared the space and time requirements needed for model
checking with the space and time used when the program is unpartitioned	
The results show that in some cases a substantial reduction is achieved in both space

and time consumption	 In one example the memory consumption using partitioning
was only ��� of the memory consumption without using partitioning	 Although our
original goal was to reduce memory consumption
 it turns out that modular model
checking can also reduce running times
 and in some cases it even reduces the running
time more than the memory consumption	 This is because the algorithm uses much
smaller models
 and for most of the operations performed running time is polynomial
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in the size of the model	 However
 since the implementation is BDD�based we also
get cases in which the partitioned version actually takes more space than the unpar�
titioned	 This happens because of the use of symbolic model checking	 If we were to
use an explicit�state algorithm the space requirements could not grow as a result of
partitioning	 We review and discuss the results in the appropriate chapter	
We then move to consider reduction methods for programs	 We show two types

of reductions
 both based on static analysis ����	 Static analysis is a general term
for methods that analyze the control��ow graph of a program to reveal information
on the run�time behavior of the program
 without actually running it	 In our case

performing static analysis means that we examine the control��ow graph of a program
�the syntax to extract information on the Kripke structure of the program
 without
actually creating this Kripke structure	 The idea behind both of our reductions is
to use static analysis in order to create a smaller structure for the program
 which
we call the reduced Kripke structure of the program	 The reduced Kripke structure
is built so that it is equivalent to the original structure of the program
 i	e	 a given
speci�cation is true in the original Kripke structure i� it is true in the reduced one	
The speci�cations considered are formulas of the logic CTL�
 and the logic CTL��X
which is similar to CTL�
 but without the next�state operator	
Our algorithms for static analysis are based on syntactic manipulation of expres�

sions
 and therefore we allow variables with both �nite and in�nite domains	 When
the domains are �nite
 our methods can be used for automatic veri�cation using an
explicit representation of the transition system as well as for veri�cation using a BDD
representation	 In either case
 the veri�cation algorithm itself is not changed
 it just
receives a smaller model to work on	
We create the reduced Kripke structure for a program directly out of the control�

�ow graph
 and never build the full Kripke structure	 We are therefore able to verify
systems that would otherwise be too big to handle	 The advantage of this approach
is even more signi�cant when the system is composed of several processes	 In such
a case
 each process is reduced separately and only then they are composed to one
Kripke structure	 This solution thus serves to reduce the exponential blow�up that
occurs when taking the cross product of the structures of the individual processes	
Another important advantage of using static analysis is that in order to implement

our reductions
 changes are made only to the compiler �which is relatively simple and
there is no need to change the veri�cation tool or the veri�cation algorithm	 This
enables integration with existing tools at a very low cost	 It also means that the
overhead of using our reductions is during the �very short compilation stage and not
in the veri�cation process	
When developing a static analysis method for reducing program models we came up

with two orthogonal approaches	 We can examine the control of the program
 which is
the program counter
 or we can examine the values that variables can have �the data	
Reducing according to control means creating a model that performs fewer steps in
order to achieve the same goal
 whereas reducing according to data means creating a
model that uses a smaller part of the variable domains	
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We present and compare two methods that use static analysis to create reduced
models for programs	 The �rst method
 called path reduction
 reduces according to
control
 and the second
 called dead�variable reduction
 reduces according to data	
Both methods automatically create a reduced Kripke structure directly out of the
syntax of the program �the control��ow graph
 thus avoiding the need to create the
full Kripke structure	 The reductions are independent of each other and can be used
together on the same program	 In such a case we perform both analyses on the
program
 and then create a single Kripke structure that is reduced according to both
methods �there is no need to create intermediate models according to one method or
the other	
We used Murphi ���� to test the amount of reduction achieved by our methods	

Murphi is a tool that performs a DFS or BFS traversal of the reachable state space of
a program	 We chose several example programs and translated them into Murphi	 We
then constructed Murphi descriptions of the reduced systems created by our methods	
We used Murphi�s DFS search to compare the sizes of the original and reduced Kripke
structures
 and the time it takes to traverse them	 The experiments with path reduc�
tion gave reduced models that were between �� to ��� of the original model	 This
shows that for some programs path reduction can be very signi�cant	 The results for
dead�variable reduction
 however
 show a much smaller reduction � the reduced models
were between ��� to ���� of the original model	 It is possible that these results are
in�uenced by our choice of examples
 and there may be examples where dead�variable
reduction will be more productive	
We now turn to consider the structure of hardware designs	 We start by presenting

a test�sequence generation algorithm	 It is often the case that a critical sub�circuit
of the design must be checked thoroughly
 and a set of test sequences is created for
this purpose	 Each test sequence is a series of inputs for the sub�circuit
 and together
they simulate all or most of the sub�circuit�s important features	 However
 these test
sequences cannot be used on the full circuit
 since the inputs to the sub�circuit may
be internal signals of the full circuit
 and may not be accessible from the exterior of
the design	 For each test sequence of the small sub�circuit our algorithm creates a
test sequence for the full design
 which reproduces the test sequence of the small sub�
circuit	 This allows the creation of a set of test�sequences for the full design that can
achieve good coverage of the sub�circuit	
To create an e�cient algorithm one must again examine the structure of the system	

We notice that in most designs a single �ip��op is in�uenced by only a small number of
other �ip��ops	 The naive way of creating a test sequence would be a DFS traversal of
the state�space from an initial state
 searching for a path that reproduces the required
test sequence	 This solution is ine�cient because every step the whole design would
be involved in calculating the next state	 Also
 this search will traverse the full state�
space in order to declare that there is no solution	 We �nd that by starting with the
�small number of signals which are actually involved in the input test�sequence we
can create a search that moves backwards
 and involves only the parts of the circuit
that are actually important	 This observation is the basis for our algorithm	
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We then move on to consider the operator Pred
 which is widely used in model
checking algorithms
 and also in our test�generation algorithm	 This operator receives
a set of states �of the Kripke structure representing the design and produces the set
of predecessors of these states	 To do this
 it performs calculations on the transition
relation of the Kripke structure	 We show that this operator can be performed in a
more e�cient way by making it use dynamic transition relations	 Instead of using the
full transition relation
 each time the operator is invoked a partial transition relation
is used	 The partial transition relation includes only parts of the design which are
relevant for this step
 and ignores other parts of the design	 We show that the result
is exactly the same set of states as the original operator
 so the dynamic version can
be used to improve model checking and test�generation	
Following the development of the dynamic Pred operator
 we developed a dynamic

version of our test�generation algorithm	 This version uses dynamic transition relations
in the calculation of the Pred operator
 as well as for other operations the algorithm
performs	
We implemented both the test�generation algorithm and the dynamic Pred opera�

tor
 and ran examples	 Our experimentation shows that the dynamic operator can lead
to signi�cant reductions in time consumption of symbolic model checking
 especially
in cases where it is performed a small number of times in succession	 We also found
that it gives good results in our test�generation algorithm	
The work is organized as follows	 Chapter � gives some preliminary de�nitions

used throughout the work	 Chapter � presents our results for software veri�cation	 It
starts with a discussion of the structure of programs �Section �	� and then presents
the modular model checking algorithm �Section �	� and the static analysis reductions
�Section �	�	 Chapter � presents our results for hardware veri�cation	 Similarly to
the software chapter it starts with a discussion of the structure of hardware designs
�Section �	� and then moves on to present the test�generation algorithm
 dynamic
transition relations
 and the dynamic version of the test�generation algorithm	 Chap�
ter � presents the SoftVer model checker	 Finally
 Chapter � concludes with a summary
of the work
 a discussion of works related to ours
 and some directions for future re�
search	
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Chapter �

Model Checking for Temporal

Logics

��� Models of Systems

We use Kripke structures to model the behavior of a �nite�state system	 Basically

these are state machines with labelings on the states �and no labeling on the edges	

De�nition ��� A Kripke Structure is a tuple M � hS�R� Ii s	t	 S is a set of states

R � S � S is a transition relation and I � S is a set of initial states	 A computation

path �or simply a path inM from a state s� is a sequence � � s�� s�� � � � s	t	 �i�si � S

and �si� si�� � R�	 A maximal path in M is a path which is either in�nite
 or ends
in a state with no outgoing transitions	 Let � be a maximal path in M 	 We write
j�j � n if � � s�� s�� � � � � sn�� and j�j �� if � is in�nite	
When we use a Kripke structure to represent a program
 every state is a pair �l� �

where l is a program location �a value for the program counter and � is a valuation
to the program variables	 When we represent a hardware system each state is simply
a valuation � to the set of signals in the design	
Kripke structures usually come with a set AP of atomic propositions and a labeling

function L � S � �AP that associates each state in the structure with the set the of
atomic propositions that hold in that state	 This is used as a basis for speci�cations

because it gives di�erent attributes to di�erent states in the structure	 In this work
we use expressions over system variables as atomic propositions
 and hence we do not
need a speci�c labeling function	 For each state �which includes values for system
variables we know whether the state satis�es a given expression or not	

De�nition ��� For a Kripke structure M � hS�R� Ii we de�ne the set of ending
states to be� end�M � fs � S j �	s���s� s� � Rg	 We also use init�M to refer to the
set I of initial states	
Most of the time we use boolean formulas to represent sets of states and sets of

transitions	 For example
 if V is the vector of variables of a system then the set of
states in the Kripke structure for this system is represented by a boolean formula
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S�V 	 For every valuation v to the variables in V 
 S�v � � i� v represents a state of
the system	 To represent the transition relation we introduce a new set of variables V

�

which is a duplicate of V 
 only primed	 We use V to represent the state from which
a transition exits and V

�
to represent the state into which it enters
 so the transition

relation is represented by a function R�V � V �	 The set of ending states can then be
represented as� end�V  � S�V  
 �	V

�
�R�V � V

�
	

��� Speci�cations

We consider speci�cations in one of several speci�cation languages globally referred
to as propositional temporal logics	 The feature that makes temporal logics appealing
for automatic veri�cation is that they can describe intricate behavior over time �as
opposed to input�output speci�cations
 for example
 that only compare the starting
and ending points of programs	 This makes them most suitable for specifying reactive
systems such as operating systems
 communication protocols �whether implemented
in software or hardware and sequential hardware designs	
The most powerful speci�cation language we consider is CTL� ����	 All other

languages that we refer to are subsets of this language	
As mentioned before
 we assume a set of atomic propositionsAP 
 which serve as the

base set for de�ning CTL� formulas	 We assume that for every atomic proposition p �
AP and every state s
 it is known whether s j� p or not	 Actually
 atomic propositions
represent attributes of states	 For example
 p might represent the attribute x � �	
Since each state is or includes a value for all system variables
 the set of states that
satisfy p is the set of states in which the variable x has a value larger than �	
De�nition �	� gives the syntax of CTL� formulas
 and de�nition �	� gives the

semantics	

De�nition ��� Given a set of atomic propositions AP
 the set of state formulas

includes�

� atomic propositions p � AP 
 true and false


� �� � ��
 �� 
 ��
 and ��� for state formulas �� and ��


� A� and E� for a path formula �	

The set of path formulas includes�

� any state formula �


� �� � ��
 �� 
 ��
 and ��� for path formulas �� and ��


� X��
 ��U��
 G��
 and F�� for path formulas �� and ��	

The language CTL� is the set of state formulas	

De�nition ��� Given a state s we de�ne�
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� s j� true and s j� false �

� s j� �� � �� i� �s j� �� or s j� ��
s j� �� 
 �� i� �s j� �� and s j� ��
s j� ��� i� s j� ��

� s j�A� i� for every path � that starts from s
 � j� �

s j�E� i� there exists a path � that starts from s and � j� �

Given a path � � s�� s�� � � �
 de�ne �i � si� si��� � � � �the su�x of � starting at si	
We de�ne�

� for a state formula �
 � j� � i� s� j� �


� � j� �� � �� i� �� j� �� � �� j� ��
� j� �� 
 �� i� �� j� �� 
 �� j� ��
� j� ��� i� � j� ��

� � j�X� i� �� j� �

� � j� ��U�� i� there exists i � � such that �i j� �� and for every � � j � i

�j j� ��

� � j�F� i� � j� trueU�

� � j�G� i� � j� �F��

We also use several sub�languages of CTL��

De�nition ��	

CTL��X is the language we get from CTL� by excluding the X operator	

CTL is a language in which temporal operators �X�U�G and F can only be used
in combinations made out of a path quanti�er applied on a temporal operator	
Thus
 besides the boolean operators �
 
 and �
 the only operators allowed are
AX
 EX
 AU
 EU
 AG
 EG
 AF and EF	

CTL�X is the language we get from CTL by excluding the X operator	

De�nition ��� The closure of a formula �
 denoted by cl��
 is the set of all state
sub�formulas of � �including itself	 Note that this includes only sub�formulas which
are state formulas	

�Recall that we assume we know whether or not s j� p for p � AP so there is no need to de�ne it�
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��� Model Checking

We say that a Kripke structure is a model of �satis�es a formula f if every state
s � init�M satis�es the formula	 A Model Checking algorithm is an �automatic
algorithm that decides whether a given structure M is a model of a given formula f 	
There are two types of model�checking algorithms	 Explicit�state algorithms are

those that use an explicit representation of the Kripke structure being examined	
Usually
 these algorithms use a next�state function
 which is a function that given a
state returns the set of successors of this state	 Temporal logic model�checking can
be performed using a DFS or BFS style traversal of the reachable state�space of the
structure
 using the next�state function	 For such algorithms it is usually not necessary
to build in advance the set of states or the transition relation of the structure being
examined	 However
 if the model�checking algorithm needs to scan most or all of the
state space in order to give an answer then it becomes necessary to hold the full state
space of the structure in the immediate memory
 in an explicit representation	
The second type of algorithms is symbolic model checking	 In symbolic model

checking the transition relation of the structure is represented using BDDs ���	 A
BDD is a directed acyclic binary�decision graph in which each internal node is labeled
with a BDD variable	 A BDD is an e�cient representation for boolean functions	
Each state of the Kripke structure is encoded using BDD variables	 A set of states is
represented by the boolean function that gives true i� the input vector is the encoding
of a state in the set	 In a similar manner
 transition relations are represented as sets
of pairs of states	
The importance of BDDs is that in many cases �although not all they give a

polynomial size representation of the transition relation	 Also
 they allow the execution
of operations on sets of states
 instead of traversing the structure one state at a time	
For these reasons BDDs and symbolic model�checking have proved to be extremely
useful veri�cation methods	
It is important to notice that CTL� speci�cations are often de�ned over Kripke

structures with total transition relations
 i	e	 having no ending states	 Most model�
checking algorithms for CTL� �and its sub�languages assume that the input structure
has no ending states	
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Chapter �

Exploiting Structure in Software

Veri�cation

��� The Structure of Programs

����� Non�deterministic While Programs

We de�ne a language that will encompass all the essential programming constructs so
that it has similar power to �real� programming languages
 except that it does not
allow dynamicmemory allocation	 A program in this language is a parallel composition
of sequential processes	 When we want to discuss sequential programs speci�cally
 we
will refer to the set of programs that are built out of a single process that contains no
communication commands	

De�nition ��� A sequential process is de�ned by�

SeqProc � Proc � terminate

Where Proc is de�ned by�

Proc �
simple commands�

skip j
x �� expr j
x �� fexpr�� � � � � exprng j
a�expr�� �� expr� j
a�expr�� �� fexpr�� � � � � exprng j

communication commands�

send�proc name
 expr j
receive�proc name
 x j

compound commands�

Proc� � Proc� j
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if B then Proc� else Proc� � j
while B do Proc� od

where x is a program variable
 expri are expressions over program variables �including
arrays
 and B is a boolean condition	
The statement x �� fexpr�� � � � � exprng is a non�deterministic assignment
 after

which x will contain the value of one of the expressions expr�� � � � � exprn	 This con�
struct is added to allow the simulation of an input command	 Each statement must
have a label
 identifying the program counter location associated with that statement	
As can be seen from the de�nition
 at the end of each sequential process there is an

extra command called �terminate�	 This command represents the point of termination
of the process
 and its program counter location is called the end location	
For the purpose of Model�Checking we require that the program will have a �nite

state space
 in which case variable types must be �nite� boolean
 bounded integer

bounded arrays
 enumerated types
 etc	 When the program is to be veri�ed by other
means
 such as theorem proving
 it is allowed to be in�nite
 and then we also allow
types such as �unbounded integers
 and queues	

De�nition ��� A non�deterministic while program is a parallel composition P �
�P�jj � � � jjPn� of sequential processes	 Each process has its own set of local variables

and is not allowed to examine variables belonging to other processes or update them	
We use several terms to refer to sub�sets of the language of non�deterministic while

programs	 As mentioned before
 a sequential process �or full sequential process is
any text which can be derived from SeqProc in de�nition �	�	 The term full sequential

program is used to denote a sequential process that does not include any communication
commands	 We use the terms sub�process and sub�program to refer to any text which
can be derived from Proc
 and in the case of sub�programs does not include any
communication commands	 If not stated otherwise
 when we refer to �a sequential
program� we mean either a full�program or a sub�program	

����� Control�Flow Graphs

A control��ow graph is used for capturing the syntactic structure of a program	 This
graph is used as part of any translation process from program text to a semantic model
�in our case � Kripke structures	 The size of the graph is proportional to the number
of lines of code
 which is very small compared to the Kripke structure that represents
the semantics of the program	 Control��ow graphs are used by compilers as a data�
structure for representing the syntax of programs	 The majority of optimizations
performed by compilers are done by examining this graph and extracting information
about the execution of the program
 without actually executing it	

De�nition ��� Given a sequential process P 
 its control��ow graph is a graph CFP �
hN�Ei where N is the set of nodes and E is the set of edges	 Each node is labeled
with a program counter location
 and represents the command at that location� either
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a simple command
 a communication command
 or a boolean condition �for �if�s and
�while�s	 The edges capture the �ow of control in the program�

� A node representing a simple command
 or a communication command
 has a
single out�going edge pointing to the node of the next program location �the
next statement to be executed	

� A node representing a non�deterministic assignment x �� fexp�� � � � � expng or
a�expr�� �� fexpr�� � � � � exprng has n outgoing edges labeled with the expressions
exp� through expn
 all pointing to the node of the next program location	

� A node representing an �if� statement is also labeled with the boolean condition
of the statement and has two out�going edges labeled �true� and �false�
 pointing
to the program locations of the �then� and �else� statements respectively	

� A node representing a �while� command is also labeled with the boolean con�
dition of the statement and has two out�going edges labeled �true� and �false�

pointing to the program locations of the body of the while and the next statement
after the while respectively	

� The control��ow graph node representing the end location �the �terminate� com�
mand is the successor of the last statement of the program
 and is the only node
to have a self�loop	

Figure �	� gives an example of a sequential program and its control��ow graph	

l�� x �� x	 z


 � �

CFP �� l�� x �� f
� �� �g

l�� y �� y 	 z

l�� terminate

true false

if x � y then

else

��
x �� x z�

y �� y  z�

P ��

l� �

l� �

l� �

l� �

x �� f�� �� �g�l� �

terminate

l�� x � y

Figure �	�� A sequential process and its control��ow graph

The above de�nition di�ers slightly from the regular de�nition of control��ow
graphs in the de�nition of the edges leaving a non�deterministic assignment node	
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Usually there is a single outgoing edge
 similar to the case of regular assignments

whereas in our de�nition there are several edges � one for each expression possibly
assigned	
To create a control��ow graph of a program which is composed of several processes


we create a separate control��ow graph for each process	 Since this data�structure is
meant to represent syntactic structure and not actual execution behavior
 we do not
account for communications in any way	 The control��ow graph of each process may
include one or more nodes labeled with communication commands	 We do not �yet
worry about who may communicate with whom	
The control��ow graph of a sub�process �or sub�program is created so that the set

of graph nodes is the set of all program locations in the sub�process plus the location
the program counter reaches when the sub�process is done	 The extra node for the
location in which the sub�process ends will have no out�going edges
 even if it is the
node of a �terminate� command	 For example
 for the program �P �� l�� if x � y

then l�� y �� y  z else l�� x �� x  z ��
 which is a sub�process of the process
P from �gure �	�
 the partition graph CFP � will be as depicted in �gure �	�	 The
reason we add the node l� to this graph is that we will later de�ne the semantics of
control��ow graphs so that an edge exiting from a node represents the execution of
the statement in that node	 We include the edges outgoing from locations l� and l�
so that the execution of these statements is included in the semantics associated with
this control��ow graph	 We do not include the self�loop of the terminate command
because it is not part of this sub�process	

l�� x �� x	 zl�� y �� y 	 z

true false
l�� x � y

l�

CFP� ��P� �� if x � y then

else

��
x �� x z�

y �� y  z�

l� �

l� �

l� �

l� �

Figure �	�� A sub�program and its control��ow graph

����� Semantics of Programs

As mentioned before
 we de�ne the semantics of programs by associating each program
P with a Kripke structure struct�P  that represents its behavior	 We start by de�ning
the Kripke structure of a sequential program
 a single process �or sub�process that
contains no communication commands	
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The structure that represents P is created from the control��ow graph CFP of P 

and may also be referred to as struct�CFP 	
Throughout this chapter we use x � x�� � � � � xn as the vector of program variables

�not including the program counter �	 In some cases
 where we want to describe a
transition relation
 we use x for the current state and x� � x��� � � � � x

�
n for the next

state	 We use pc and pc� to describe the current program counter location and the
next program counter location respectively	 We also use ! as the set of all possible
assignments to x
 and Loc as the set of all program locations �all the possible values
that pc can have during the execution of P 	
The set of states of struct�P  is S � Loc � !
 i	e	 the set of all pairs �l� � such

that l is a program counter location and � is an assignment to the program variables	
The set of initial sets is I � lstart � !
 where lstart is the initial program counter
location in the program	 To de�ne the transition relation R of struct�P 
 we de�ne a
transition relation �a set of transitions Re for every edge e in the control��ow graph of
P 	 The relation Re represents the execution of the statement of the node from which e
exits	 The full transition relation of struct�P  is then� R �

S
e�CFP

Re	 The transition
relation Re for the edge e � n� n� �n and n� are nodes in CFP  is de�ned according
to the command at n	 We use ��x� e� for the assignment that results from taking �
and assigning ��e into x �the result of the assignment x �� e	

De�nition ��� Given an edge e � n �� n�
 where n is labeled with the location l

and n� is labeled with the location l�
 we de�ne the transition relation Re according to
the command at l
 and the label on e �if there is one	

� skip�

Re
�
� f��l� �� �l�� � j � � !g

� xi �� expr�

Re
�
� f��l� �� �l�� ��x� expr� j � � !g

� xi �� fexpr�� � � � � exprng
 and e is labeled with exprk�

Re
�
� f��l� �� �l�� ��x� exprk� j � � !g

� a�expr�� �� expr��

Re
�
� f��l� �� �l�� ��a���expr��� expr�� j � � !g

� a�expr�� �� fexpr�� � � � � exprng
 and e is labeled with expri�

Re

�
� f��l� �� �l�� ��a�expr��� expri� j � � !g

�Each array of length t is represented by t variables� and these variables are included in the vector
x�

��



� A positive condition B �l is an �if� or �while� command and e is labeled with
true�

Re
�
� f��l� �� �l�� � j � j� Bg

� A negative condition B �l is an �if� or �while� command and e is labeled with
false�

Re
�
� f��l� �� �l�� � j � j� Bg

� terminate �n � n� and l � l��
Re � f��l� �� �l� � j � � !g

Notice that according to the above de�nition the transition relation of a full program
is total	 The transition relation of a sub�program
 however
 is not necessarily total

and the structure for a sub�program may include ending states	
Figure �	� gives an example of a simple process
 and the Kripke structure that

represents its semantics	

struct(P)::

(l  )  a  b

(l  )  a  b

(l  )  a  b

(l  )  a  !b

(l  )  a  !b

(l  )  a  !b

(l  )  a  !b

(l  )  !a  b

(l  )  !a  b

(l  )  !a  b

(l  )  !a  b

(l  )  !a  !b

(l  )  !a  !b

(l  )  !a  !b

(l  )  !a  !b

init(struct(P))

   b := true;

else

  b := false;

fi;

P :: if a thenl

l

l

l

1

2

3

4

1 1 1 1

terminate

3

4

2 2 2

3 3 3

4 4 4

(l  )  a  b

2

Figure �	�� A sequential process and its Kripke structure�

When we want to create a Kripke structure for a parallel composition of processes
P � �P�jj � � � jjPn� things are slightly more complicated
 since we have to take into
account communication commands and parallel execution of processes	
We �rst create the set of states S which is the cross product of the individual

sets of states of the processes	 The set of states Si for a process Pi is de�ned as was
de�ned above� Si � Loci � !
 where Loci is the set of program counter locations
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in Pi
�	 We make sure that the sets Loci are disjoint	 The set of states for P is�

S � f�s�� � � � � sn j s� � S� 
 � � � 
 sn � Sng	
To build the transition relation for P
 according to an interleaving model of ex�

ecution
 we need to di�erentiate between two types of transitions� those in which
one process executes a single �internal command and the others do not advance
 and
those in which a communication occurs	 The transition relation R will be built of two
separate sets of transitions	 We partition each set of locations Loci into two parts

Loccomm

i is the set of locations in which Pi executes a communication command and
Locinti is the set of locations in which Pi executes an internal command �obviously
Loci � Loccomm

i � Locinti 	
A pair of communication commands is called matching if they describe a possible

communication between two di�erent processes Pi� Pj �i � j	 This is a syntactic
de�nition since the names of the processes appear in the commands	 A matching pair of
communication commands includes a �l�i � send�Pj � expr l�i � command in some process
Pi and a �l�j � receive�Pi� x l�j� command in another process Pj �l�i � Loccomm

i and
l�j � Loccomm

j 	 We create a set of transitions including all possible situations in which
this communication is executed� f��s�� � � � � sn� �s��� � � � � s

�
n j ��k � i� k � j�sk �

s�k and if si � �l
i
�� � and sj � �l

j
�� 	  then �s

�
i � �li�� � 
 s�j � �l

j
�� 	 �x � ��expr�g	

This set describes the passing of the value of expr in Pi to the variable x in Pj 	 We
build the set of transitions Rcomm which is the union of the above for all possible
matching pairs of communication commands	
The transitions in which one process executes an internal command and the others

are idle are built according to the de�nition of the transition relation of a single process	
We create a transition relation Ri for each process Pi which includes transitions created
from commands in Locinti 	
We can now de�ne the transition relation R of P to be�

R
�
� Rcomm �

n�

i��

f��s�� � � � � sn� �s��� � � � � s
�
n j ��k � i�sk � s�k 
 �si� s

�
i � Rig

��� Modular Model Checking

This section describes a modular algorithm for CTL model checking of sequential
non�deterministic while programs	 We suggest a way of partitioning a program into
components
 following the program text	 A given program may have several di�erent
partitions	 A partition of the program is represented by a partition graph
 whose nodes
are sub�programs and whose edges represent the �ow of control between sub�programs	
Once the program is partitioned
 we wish to check each part separately
 so that

when working one part all the others are kept in secondary memory ��les	 However

verifying one component in isolation amounts to checking the speci�cation formula
on a model in which some of the paths are truncated
 i	e	 for certain states in the

�Note that here we discuss only full sequential processes� and not sub�processes� There is no point
in de�ning the parallel execution of sub�processes�
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component we do not know how the computation proceeds �since the continuation
is in another component	 Such states are called ending states	 We notice
 however

that the truth of a formula at a state inside a component can be determined solely
by considering the state transition graph of this component
 and the set of formulas
which are true at the ending states	 Moreover
 the truth of a formula at an ending
state depends only on the paths leaving it
 and not on the paths leading to it	 This
observation is the basis for our algorithm	
We de�ne a notion of assumption function that represents partial knowledge about

the truth of formulas at ending states	 Based on that
 we de�ne a semantics under

assumptions that determines the truth of temporal formulas based on a given assump�
tion function	 Only minor changes are needed in order to adapt any standard CTL
model checking algorithm so that it performs model checking under assumptions	
Given a procedure that performs model checking under assumptions
 we develop a

modular model checking algorithm that checks the program in parts	 To illustrate how
the algorithm works consider the program P � P��P�	 We notice that every path of P
lies either entirely within P� or has a pre�x in P� followed by a su�x in P�	 In order
to check a formula � on P 
 we �rst model check � on P�	 The result does not depend
on P� and therefore the algorithm can be applied to P� in isolation	 We next want to
model check P�
 but now the result does depend on P�	 In particular
 ending states
of P� have their continuations in P�	 However
 each ending state of P� is an initial
state of P� for which we have already the model checking result �	 Using this result as
an assumption for P�
 we can now model check P� in isolation	 Handling loops in the
program is more complicated but follows a similar intuition	
Before presenting our algorithm we give several de�nitions	 The �rst is for as�

sumption functions	 We notice that a sub�program does not necessarily end with the
�terminate� command
 and therefore the Kripke structure representing it may have a
non�empty set of ending states	 Most model�checking algorithms are not designed to
handle such structures	 Assumption functions are introduced to solve this problem

because they hold information about the ending states	 They tell us which formu�
las each ending state satis�es	 This information is not available when examining the
Kripke structure of a sub�program in isolation	 We will later show how assumption
functions are created and used	
Let � be a CTL formula
 which we wish to check on a given program	

De�nition ��	 An assumption function for the Kripke structure M � hS�R� Ii is a

function As � cl��� ��S
�
� f�g where S� is some subset of the set of states S	 We

require that �� � cl��
 if As�� � � then ��� � cl��
 As��� � �	
When As�� � � it means that we have no knowledge regarding the satisfaction of

� in S�	 It is used when we want to represent knowledge relating to other sub�formulas
and ignore � at this stage	 If As�� � � then As�� represents the set of all states in
S� for which we assume �or know that � holds	 For every state s � S� s	t	 s � As��
we assume that �� holds	 The signi�cance of the set S� is that it is the set of states

�The result includes for each sub formula � of � the set of states satisfying ��

��



which we examine	 The assumption function gives no information regarding states
outside of S�	
We say that As is an assumption function over some set of states A if A is the set

S� about which As gives information	
Satisfaction of a CTL formula � in a state s � S under an assumption function

As is denoted M�s j�As �
�	 Satisfaction of formulas in M under an assumption As

is de�ned only when the assumption As is de�ned over a set that includes end�M	
We de�ne it so that it holds if either M�s j� � directly �by in�nite paths only
 or
through the assumption function	 For example
 M�s j�AsE�fUg if there exists an
in�nite path from s satisfying f in all states until a state satisfying g is reached
 but
it is also true if there is a �nite path from s in which the last state
 say s�
 satis�es
s� � As�E�fUg
 and all states until s� satisfy f 	 Formally�

De�nition ��� Let M � hS�R� Ii be a Kripke structure and As an assumption
function over a set S� such that end�M � S�	 For every � � cl���
If As�� � � then s j�As � is not de�ned	
Otherwise
 we di�erentiate between ending states and other states	 If s � end�M
then s j�As � i� s � As��	 If s � end�M then s j�As � is de�ned as follows�

� For every p � AP 
 s j�As p i� s j� p	

� s j�As �� � �� i� �s j�As �� or s j�As ��	

� s j�As ��� i� s j�As ��
�	

� s j�AsAX�� i� �s���s� s� � R� s� j�As ��	

� s j�AsEX�� i� 	s���s� s� � R 
 s� j�As ��	

� s j�AsA���U�� i� for all maximal paths � � s�� s�� � � � from s there is a number
i � j�j such that�
either �si j�As �� or �si � end�M 
 si j�AsA���U��
 and �� � j � i�sj j�As

���	

� s j�AsE���U�� i� there exist a maximal path � � s�� s�� � � � from s and a
number i � j�j such that�
either �si j�As �� or �si � end�M 
 si j�AsE���U��
 and �� � j � i�sj j�As

���	

Note that if the transition relation of M is total then the above de�nition is equiv�
alent to the traditional de�nition of CTL semantics
 because the assumption function
is consulted only on states from which there are no outgoing transitions	 Since the
assumption function is consulted only for states in end�M it seems pointless at this

�When no confusion may occur we omit M �
�Since As���� �� �� which is why s j�As �� is de�ned� we conclude that As��� �� �� This means

that the set of states that satisfy � is de�ned� and s �j�As � i	 s is not in this set�
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point to de�ne an assumption function over a set S� that includes more than just the
ending states	 However
 later on we use assumption functions as �intermediate results
of model checking
 and than we this possibility is used	
We write M j�As � i� �s � I� �M�s j�As ��	 We can now de�ne model�checking

under assumptions	

De�nition ��� Given a structureM � hS�R� Ii
 and an assumption function As over

a set that includes end�M
 we de�ne a function MC�M�As� � cl�� � ��S � f�g
so that for any � � cl��
 if As�� � � then MC�M�As��� � �	 Otherwise

MC�M�As��� � fs � S jM�s j�As �g	
Notice thatMC�M�As� is an assumption function over S� it is a function that given

a formula � produces the set of all states in M that satisfy � under the assumption
As	 Given M and As
 this function can be created using any known model checking
algorithm for CTL ���
 ��
 ��
 after adapting it to the semantics under assumptions	
For example
MC�M�As� can be calculated using BDDs since all the operations in its
de�nition are e�cient BDD operations	

����� Partition Graphs

A Partition Graph of a program P is a �nite directed graph representing a decomposi�
tion of P into several sub�programs while maintaining the original �ow of control	 It is

in fact
 a generalization of the control��ow graph
 in the sense that a control��ow graph
can be viewed as a partition graph
 although there are many other possible partition
graphs for the same program	 The nodes of the graph are labeled with sub�programs
of P or boolean conditions	 A node labeled with a sub�program represents the exe�
cution of this program
 and has one outgoing edge	 A node labeled with a boolean
condition represents the evaluation of this condition
 and has two outgoing edges � one
labeled with �true� and the other with �false�	 We also add dummy nodes with no
labelings which are used to maintain structure
 but have no semantic meaning �they
do not represent execution of commands	 There are three types of edges� null�edges


true�edges
 and false�edges
 denoted n� � n�
 n�
true
�� n� and n�

false
�� n� respectively	

True�edges and false�edges
 also called step edges
 represent the evaluation of a boolean
condition
 and will always exit a node labeled with a boolean condition B	 Null edges
are used only to maintain �ow of control
 and represent no execution step	 A null�edge
always exits a node labeled with a sub�program �or a dummy node and represents
sequential composition	
There are two di�erences between partition graphs and control��ow graphs	 The

�rst is that in control��ow graphs a node may include only a single command
 while in
partition graphs it may include a complicated sub�program
 with �if�s and �while�s in
it	 The second di�erence is that even when the last �and perhaps the only command
in a node is a non�deterministic assignment there will only be one out�going edge from
that node	 This is just a technical di�erence
 the semantics of the non�deterministic
assignment does not change	 We start by de�ning the set of all possible partition
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graphs for a program
 and then de�ne the semantics of partition graphs by associating
a Kripke structure with every partition graph	
Every partition graph has two designated nodes� the entry node
 from which exe�

cution starts
 and the exit node
 at which it stops	 The set pg�P  contains all possible
partition graphs of P 
 representing di�erent ways of partitioning P into sub�programs	
It is de�ned recursively
 where at each step one may decide to break a given program
according to its primary structure
 or to leave it as a single node	 Figure �	� shows the
three di�erent ways in which a program may be decomposed
 according to the three
structures by which programs are created	 We use in� �in� for the entry node of G�

�G� and out� �out� for the exit node	 Every time a node n is partitioned into a graph
G
 all the edges that entered n will enter the initial node of G
 and all the edges that
exited n will exit from the exit node of G	

�	 If P � P��P� we may decompose it into two parts
 by creating �recursively
partition graphs G� � pg�P� and G� � pg�P�
 and connecting them with a null
edge from out� to in�	 The entry node of the resulting graph would be in�
 and
the exit node would be out� �Figure �	� A	

�	 If P � �if B then P� else P� ��
 we again create the two graphs G� � pg�P�
and G� � pg�P� but also create two new nodes
 one labeled with B and the
other a dummy node with no labeling The entry node is the B node
 and the
exit node is the dummy node	 The edges connecting the di�erent components
are according to the semantics of the �if� command
 i	e	 a true�edge from the
B to G�
 a false�edge from the B node to G� and null�edges from G� and G� to
the dummy node	 The edges entering G� and G� are pointed at in� and in� and
the edges exiting G� and G� are from out� and out�	 �Figure �	� B	

�	 If P � �while B do P� od�
 we create a partition graph G� � pg�P� and again
a node for B
 which is the entry node
 and a dummy node as the exit node	 The
edges represent the semantics of the �while� loop
 i	e	 a true�edge from the B
node to G�
 a false�edge from the B node to the dummy node
 and a null edge
from G� to the B node	 �Figure �	� C	

A partition graph is used to represent a decomposition of struct�P  into several
structures of sub�programs	 We associate a Kripke structure with each element of the
graph	

� For a node n labeled with a sub�program P � of P 
 the structure associated with
n is the structure of the sub�program� struct�n � struct�P �	

� A node n labeled with a boolean expression B represents the execution of an �if�
or �while� command that evaluates this condition	 Let l be the program location
of this statement	 The structure associated with n is� struct�n � hS�R� Ii such
that R � � and S � I � f�l� � j � � !g	
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� The Kripke structure associated with the dummy node is empty because this
node does not represent an actual execution step
 but rather is added so that
each sub�graph will have only one exit point	 In the end there will be a null�edge
from the dummy node to some real node n	 Every edge that enters the dummy
node is considered as if it entered n	

� A null edge n� � n� does not re�ect an execution step in itself
 and therefore if
M� � struct�n� and M� � struct�n� then end�M� � init�M� �every ending
state of M� is an initial state of M�	 For this reason
 there is no structure
associated with null�edges	 Step�edges are the edges outgoing from a node labeled
by a boolean expression B	 Let l be the program location of the �if� or �while�
statement that evaluates B
 and l� be the program location of the �rst statement
in n�	 Execution from a state in a node labeled B continues through the true�
edge or the false�edge
 depending on whether the expression evaluates to true
or false in that state	 These edges represent an actual step in the execution
of P 
 and the structures associated with them capture this step	 The structure

associated with an edge e � n�
true
�� n� is de�ned by struct�e � hS�R� Ii where

S � fl� l�g�f� j � j� Bg
R � f��l� �� �l�� � j � j� Bg and I � f�l� � j � j� Bg	

For e � n�
false
�� n� the de�nition is similar
 except that every � j� B becomes

� j� B	

Given a partition graph G � pg�P 
 the structure that de�nes its semantics
 de�
noted struct�G is constructed by taking the union of the structures associated with all
its nodes and edges	 The resulting structure is exactly struct�P 
 the Kripke structure
representing the program	 This follows immediately from the de�nition of struct�P 
given in Section �	�	�
 and the above de�nition of the structures associated with nodes
and edges	 Notice that the connection between structures of sub�programs is through
states that appear in more than one node	 For example
 given a partition graph of
P��P� that has two nodes
 one for P� and one for P�
 the structure for P� will include
the set of states with the location of the beginning of P�
 because that location is
a node in the control��ow graph of the sub�program P�	 The same states will also
appear in the structure of P� because they are the initial states of this sub�program	
We de�ne init�G to be the set of initial states in struct�G and end�G to be the

set of ending states in struct�G	 Figure �	� gives an example of an actual partition
graph
 including the Kripke structures associated with the nodes	

����� Operations on Assumption Functions

Before we present our modular algorithm we de�ne a few operations on assumption
functions that are used in the algorithm	
The most basic operation is performing model checking under assumptions on a

single node n labeled by a sub�program P �	 For this we use MC
 which was de�ned
earlier	 Given an assumption function As over the ending states of struct�P � we
can calculate the assumption function As� � MC�struct�P �� As�	 The function As�
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(C)  P = while B do P1 od(B)  P = if B then P1 else P2 fi(A)  P = P1;P2

G1

G2

G1 G2

B B

G1

false

true false true

Figure �	�� Creation of partition graphs

gives us full knowledge about which states of M satisfy which formulas
 under the
assumption As	
Next we present a function called CheckStepEdge
 which performs model checking

under assumptions over a step edge	 The input to this procedure is a step�edge e �

n�
true
�� n� or e � n�

false
�� n� and an assumption function As over a set including

the initial states of n� �which are the ending states of struct�e 		 The output is
the assumption function As� over struct�e calculated by� As� � MC�struct�e� As�	
Notice that if e is a true�edge �false�edge then As� is de�ned only on states that satisfy
�do not satisfy the condition labeling n�	 Actually
 when calculating As� for a step�
edge there is no need to use a full model�checking algorithm	 The structure struct�e
is de�ned so that each initial state has exactly one successor
 and this successor is
an ending state	 Therefore
 we can calculate As� more e�ciently according to the
following de�nition�

De�nition ��
 Let e � n�
true
�� n� be a true�edge in a partition graph G
 and let As �

cl��� ��S� � f�g be an assumption function over S� such that init�struct�n� �

S�	 De�ne As� � CheckStepEdge�e�As s	t	 As� � cl��� ��ST � f�g	 Let l be the
program location of n� �an �if� or �while� statement
 let l� be the program location
of the beginning of n�
 and let ST � f�l� � j � j� Bg be the set of states of struct�n�
over which As� is de�ned	
If As�� � � then As��� � �	 Otherwise
 As��� is de�ned as follows 
 �

� For any p � AP 
 As��p � fs � ST j s j� pg

� As���� � ST nAs���

� As���� � �� � As���� �As����

� As��AX� � As��EX� � f�l� � � ST j �l�� � � As��g

�The assumption function As must be de�ned over a set S� that includes the initial states of n��
but it may include other states as well�

�If As��� �� � then for all sub�formulas �� of � we are assured that As���� �� ��
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Figure �	�� An example partition graph
This is a partition graph for the program P from �gure �	�	 Instead of writing in each
node the sub�program that it represents
 we show the structure associated with that
node	
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� As��A���U�� � As��E���U�� �
As���� � �As���� � f�l� � � ST j �l�� � � As�A���U��g

For a false�edge n�
false
�� n� the de�nition is the same
 except that instead of ST we use�

SF � f�l� � j � j� Bg	

Lemma ��� For any step edge e and assumption function As over S� such that
end�struct�e � S�

CheckStepEdge�e�As �MC�struct�e� As�	
This statement is obvious from the de�nitions of model�checking under assumptions

and CheckStepEdge	

����� The Modular Algorithm

In this subsection we give an algorithm to check a formula � on a partition graph G

of a sequential process P 	 The result is an assumption function over the set of initial
states of P that gives
 for every sub�formula � of �
 the set of all initial states of
P satisfying �	 We start with an intuitive description of how the algorithm works	
Variable names which are mentioned refer to variables in the algorithm	
The algorithm works on a partition graph G of a program P 
 and traverses it from

the exit node upwards to the entry node	 First the structure struct�v of a leaf node
v of G is checked under an �empty� assumption for cl��
 an assumption in which
all values are �	 Since v is a leaf it must end with the �terminate� command and
therefore all paths in it are in�nite
 and the assumption function has no in�uence on
the result	 The result of the model checking algorithm is an assumption function As�

over init�struct�v that associates with every sub�formula of � the set of all initial
states of struct�v that satisfy that sub�formula	 Once we have As� on v we can derive
a similar function As over the ending states of any node u
 preceding v in G �that is

any node u from which there is an edge into v	 Next
 we model check u under the
assumption As	 Proceeding in this way
 each node in G can be checked in isolation

based on assumptions derived from its successor nodes	 Special care should be taken
when dealing with loops in the partition graph	
The algorithm is called CheckGraph	 Given a procedure that properly computes

MC�M�As�
 CheckGraph takes a partition graph G and an assumption function As

over end�G and performs model checking under assumptions resulting in an assump�
tion As� over init�G	 CheckGraph is able to handle partially de�ned assumption
functions
 in which there are some � values	 For any sub�formula � s	t	 As�� � �
we get As��� � �	 CheckGraph is de�ned by induction on the structure of G	 The
base case handles a single node by using the given procedure MC	 To model check
a partition graph G of P � P��P�
 as in �gure �	� �A
 CheckGraph �rst checks G�

under As
 using a recursive call �see Figure �	�	 As� is the result of this call �As�
is over the set init�struct�G�	 It then uses As� as an assumption over the ending
states of G� and checks G� w	r	t As� using another recursive call	 The second call
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returns for all � � cl�� such that As�� � � the set of all initial states of G� �which
are the initial states of P  that satisfy �
 which is the desired result	
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Figure �	�� The operation of CheckGraph on sequential composition	
The gray area is the set of states that satisfy �	

Let G be a partition graph of P � �if B then P� else P��
 as in �gure �	� �B	 To
check G we �rst check G� and G�
 and then compute "backwards� over the step�edges
�using CheckStepEdge to get the result for the initial states of G	
The most complicated part of the algorithm is for the partition graph G of a

program P � �while B do P� od�
 as in �gure �	� �C	 We start from the dummy
node
 with the assumption As over the set of states of the dummy node �the set
of states with the program counter location of the next command after the while	
Walking backwards on the false�edge we use CheckStepEdge to get an assumption
As�B over the initial states of G that satisfy �B	 We then use recursive calls over the
body of the while to compute the assumption function As�	
In this part it is important that when calculating the set of states that satisfy a

formula we have already �nished all calculations for all of its sub�formulas	 For this
reason we order the formulas in cl�� according to their length and operate on them
one at a time	 We start with an assumption function As� that has a � value for all
formulas except the shortest
 and use a recursive call to evaluate this formula	 The
recursive call will disregard all formulas for which As� � �	 When this is done
 we
move on to the next formula
 changing the value of As� from � to a set of states	 We
continue this process for each sub�formula in cl��	
The value As���k is computed for each �k � cl��
 according to the structure of

the formula �k	 The most complicated part here is the computation for the temporal
operators EU and AU	 We now demonstrate the computation of E���U��	 The
algorithm handles the formulas in cl�� one at a time
 so that when reachingE���U��
it has already dealt with �� and ��	 This means that the assumption functions As����
and As���� are already calculated �over init�G	 Since the algorithm is recursive

every time we apply it to the body of the loop �G� it calculates values for all formulas
which are not � in the input assumption function	 Speci�cally
 this means that it
will calculate correctly the sets of states in struct�G� that satisfy �� and ��	 The
goal is to mark all states that satisfy E���U�� �to create As��E���U��	 Standard
model checking algorithms would start by marking all states that satisfy ��
 and then
repeatedly move backwards on transitions and mark every state that has a transition

��



into a marked state
 and satis�es �� itself	 We reconstruct this computation over the
partition graph of P 	 For initial states of G that satisfy B we have no assumption
regarding E���U��
 so we mark all those that satisfy B and �� and keep them in
InitB	 Together with As�B�E���U�� we have an initial estimate for As��E���U��
�kept in As���k	 We now want to mark all the predecessors in G of these states	
Notice that init�G � end�G�
 because both are de�ned as l � ! where l is the
program location in which B is evaluated	 This means that the predecessors we are
looking for are inside G�	 Hence we continue from end�G� backwards inside G� until
we arrive at init�G�
 and keep the result in Tmp
 which is an assumption function
over init�G�	 We notice that at this point
 only the marks on states of init�G� are
needed to proceed
 the marks on all other states of G� are not preserved	 If and when
we pass through G� again
 some calculations may have to be repeated	 We will later
discuss how to solve this problem	 Notice also that G� itself may consist of more than
one node
 and the creation of Tmp is done by a recursive call to CheckGraph	 From
Tmp we can calculate a new estimate for As��E���U��	
The whole process repeats itself since the body of a �while� loop can be executed

more than once	 It is essential that the initial states satisfying �� and �� be known
before this process can be performed	 Therefore
 we use the � value for E���U��
when working on the assumptions for �� and ��	 Only when calculations for all sub�
formulas are completed we begin calculating the proper result for E���U��	
This process stops when the assumption calculated reaches a �x�point �Asi �

Asi��	 Obviously
 no new information will be revealed by performing another cycle	
The set of states in init�G that are marked increases with each cycle
 until all states
that satisfy the formula are marked
 and the algorithm stops	 This is formally proved
later	
Following is the recursive de�nition of the algorithm	 Given a partition graph

G � pg�P  of a program P
 and an assumption As � cl�� � ��end�G � f�g


CheckGraph�G�As returns an assumption As� � cl��� ��init�G � f�g	

CheckGraph�G�As�
For a single node n �labeled by a sub�program P �
 return As� s	t	 �� � cl��
 if

As�� � � then As��� � �
 otherwise
As��� �MC�struct�P �� As��� � init�struct�P �	
The three possible recursive cases are the ones depicted in Figure �	�	 We assume

that in� �in� is the entry node of G� �G�
 nB is the condition node �if present
 and
nD is the dummy node �if present	

� For a sequential composition P��P� �Figure �	��A perform�

�	 As� �CheckGraph�G�� As	

�	 As� �CheckGraph�G�� As�	

�	 Return As�
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� For a graph of P � �if B then P� else P� �� �Figure �	��B perform�

�	 As� �CheckGraph�G�� As	

�	 As� �CheckGraph�G�� As	

�	 AsB � CheckStepEdge�nB
true
�� in�� As�

�	 As�B � CheckStepEdge�nB
false
�� in�� As�

�	 For every formula � � cl��
 if AsB�� � � then de�ne As��� � � �	
Otherwise
 As��� � AsB�� �As�B��

�	 Return As�

� For a graph of P � �while B do P� od� �Figure �	��C perform�

�	 As�B � CheckStepEdge�nB
false
�� nD� As

�	 Find an ordering ��� ��� � � � � �n of the formulas in cl�� such that each
formula appears after all of its sub�formulas	 Set As���i � � for all i	 For
k � �� � � � � n perform step � to de�ne As���k �	

�	 To de�ne As���k perform one of the following
 according to the form of �k�
�k � AP � As���k� fs � init�G j s j� �kg
�k � ��l� As���k� fs � init�G j s � As���lg	
�k � �l � �m� As���k� As���l �As���m	
�k � fAX�l�EX�lg�

�a Tmp�CheckGraph�G�� As
�

�b Let l be the location of the �while� and l� the �rst location in the body	
As���k� As�B��k � f�l� � j � j� B 
 �l�� � � Tmp��lg ��	

�k � fA��lU�m
 E��lU�mg�

�a InitB � As���m � fs � init�G j s j� Bg	
The initial assumption function is As� � As�	
Initialize the value for �k� As���k� As�B��k � InitB	
Set i� �	

�b do�

� i� i �

� Tmp �CheckGraph�G�� As
i��

� TmpB � CheckStepEdge�nB
true
�� in�� Tmp

	Notice that since AsB and As�B both originate from the same assumption function As� it holds
that AsB��� � � i	 As�B��� � �� Also� the images of AsB and As�B are disjoint�


Notice that when working on �k we have already calculated As� for all of its sub�formulas� so
they are not ��

��The de�nition is the same for AX�l and EX�l because each state �l� �� � init�G� has exactly
one successor state �l�� �� � init�G���
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� De�ne Asi so that for all j � k
 Asi��j� As���j and
Asi��k� TmpB��k �As�B��k

Until Asi � Asi��	

�c As���k� Asi��k

�	 Return As�	

Theorem ��� The above algorithm computes model checking under assumptions
correctly for any partition graph G of any program P 	 Formally
 for any assumption
function As� CheckGraph�G�As �MC�struct�G� As�	
The proof of this theorem is quite long
 and it is de�ered to subsection �	�	�	 The

consequence of the above theorem is the following�

Theorem ��� For any sequential process P 
 CTL formula �
 partition graph G �
pg�P  and empty assumption function As � cl��� f�g
 if As� � CheckGraph�G�As
then for every � � cl�� and s � init�G
 s � As���� s j� �	
This theorem states that if we run the algorithm on a sequential process
 with an

empty assumption function
 the resulting function will give us full knowledge about
which formulas in cl�� hold in the initial states of the program according to the
standard semantics of CTL	
As promised
 we now show how to make the algorithm more e�cient by saving on

recalculations done in recursive calls	 When there is a recursive call to CheckGraph
on a smaller graph
 all sub�formulas for which the input assumption function is not �
are calculated
 even if they were already calculated in a previous call	 To avoid this
calculation
 the results of calculations during recursive calls can be kept in �les	 Of
course
 the result for each node is kept in a separate �le	 When there is a second call
to the same sub�graph
 because this sub�graph is part of the body of a while loop

the input assumption function for sub�formulas that have been calculated before will
not change �because we are now working on a larger formula
 and so the resulting
assumption function for these sub�formulas is identical	 When this case is identi�ed

the previous results can be read from the appropriate �le instead of making the same
calculations again	 This scheme may improve the performance of the algorithm sub�
stantially
 especially in systems where accessing the �le is not too big a problem	
Another way of making the algorithm for a while loop more e�cient is to work on

sub�formulas of the same size together
 instead of one at time	 Any combination that
guarantees that when working on a formula
 all of its sub�formulas have already been
dealt with
 will su�ce	 The simplest way is to choose to work on all formulas of length
�
 then all formulas of length �
 etc	
The space requirements of our modular algorithm will usually be better than that of

algorithms that need to have the full model in the direct memory	 Our algorithm holds
in the direct memory at any particular moment only the model for the subprogram
under consideration at that time	 In addition
 it keeps an assumption function
 which
at its largest holds the results of performing model checking on this subprogram	 This
of course is equivalent to any model checking algorithm that must keep its own results	
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The time requirements depend on the model checking algorithm used for a single
node and on the partition graph	 However
 experimental results show a saving in time
as well as space requirements
 as described in the next section	

����� Results

The modular model checking algorithm presented here can be considered as a frame�
work into which any model checking algorithm for Kripke structures can be integrated	
Since our method uses a given model checking algorithm as a procedure
 whenever a
better algorithm is developed it can immediately be plugged into ours	
An important new notion suggested here is that of partition graphs	 These are

used to partition the model checking task into several sub�tasks	 They also maintain
the �ow of information �by means of assumption functions between the sub�tasks	
Choosing the right partition graph is crucial to the e�ectiveness of our method	 As
presented here
 the algorithm is given a speci�c partition graph
 but it may be possible
to develop some heuristics that will allow automatic creation of the partition graph	
We implemented the modular model checking algorithm in a prototype tool called

SoftVer �the tool itself is described in more detail in chapter �	 The tool is based on
a BDD representation of models and on symbolic model checking	
In order to evaluate the e�ectiveness of partitioning on memory and time require�

ments
 we applied the tool to a few small examples	 Each example program was
checked with two di�erent partitionings	 The moderate partitioning divided the pro�
gram into a few components
 while the extensive partitioning further divided it into
smaller components	 For comparison we also checked the unpartitioned full program	
The largest overhead occurs when applying our algorithm to a program in which

the body of a while loop is partitioned	 Therefore
 all our examples include while
loops which are divided by both partitionings	 Table �	� �on page �� gives the space
and time used by each partitioning	 Times are given in hours
 minutes
 and seconds

memory consumption is given Kilobytes	 The �Min�Max module size� column gives
the minimal and maximal sizes of the �les that keep the structures of single partition
graph nodes	 These are also measured in Kilobytes	 The examples were run on a
machine with ���M RAM	
Besides the partitioning of the program
 the in�uence of two other parameters was

checked	 The �rst is the use of variable reordering �the �reo� option in the table	 This
is an option provided by the BDD package	 When the BDD sizes go over a certain
threshold a variable reordering algorithm is performed	 This algorithm attempts to
�nd a di�erent ordering of the BDD variables
 so that the BDDs will be smaller	 This
option has proved to be very useful for symbolic model checking	 The BDD library we
used enabled us to use di�erent variable orderings for di�erent partition�graph nodes
�which reside in separate �les	 The second parameter is local reachability �the �lr�
option in the table	 This option does not perform full reachability analysis
 but does
eliminate from the state space a certain amount of the unreachable states	 This option
is explained in more detail in Chapter �	
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Table �	� gives results for three examples	 The Learn Monom example is a
learning algorithm that learns a single term by examples	 The moderate partitioning
separates the code into several components so that di�erent tasks are in di�erent
components	 The extensive partitioning breaks down the components even further	
The speci�cation used requires that the algorithm will never give a false negative
result
 i	e	 the algorithm does not make errors on inputs for which the term evaluates
to true	
The Stop andWait example is a simulation of the �stop and wait� communication

protocol	 It consists of a large while loop whose body has two major parts
 one for the
sender and one for the receiver	 The moderate partitioning separates the receiver and
the sender into two components	 The extensive partitioning further separates di�erent
tasks in each of the components	 The speci�cation used requires that the sender does
not move to the next message before the current message has arrived at the receiver	
The Sort example is the shortest of the three
 and it performs bubble sort on an

array of � elements	 This program consists of two nested while loops
 with a single
�if� statement in the body of the inner loop �that compares two adjacent elements	
The moderate partitioning breaks the outer loop and the extensive partitioning breaks
the inner loop as well	 The speci�cation states that the algorithm will terminate
 and
at that point the array will be sorted	 All three examples work with ��bit integers	
In the �rst two examples integers are used mainly as pointers into bu�ers or array
indices
 but in the Sort example the array which is sorted is an array of integers	 For
this reason
 even though it is the shortest example �least number of program counter
locations it is not the smallest in terms of the size of its state�space	 This example
could not complete in the available ���M when run without variable reordering
 so
there are no entries in the table for this example without the reordering option	
To make the results more easy to analyze
 we summarized them in TWO graphs	

Figure �	��a shows the e�ect of partitioning on memory consumption and �gure �	��b
shows the e�ect of partitioning on time consumption	 Each graph contains three sub�
graphs
 one for each example	
From �gure �	��a we can see that partitioning a program can in fact reduce space

consumption considerably	 The sort example is the most notable since it is a type
of application which usually does not work well with BDDs	 However in some cases
partitioning the program can also enlarge the amount of space required	 This happens
only because we used BDDs to represent structures	 When implementing the algorithm
using an explicit�state representation this phenomenon can not happen	 The moderate
partitioning gives good results in � out of �� cases
 whereas the extensive partitioning
gives good results only in � cases �out of which only in � cases the extensive partitioning
gives better results than the moderate partitioning	 On the other hand
 the best result
overall was achieved by the extensive partitioning in the Sort example	 These results
support our claim that the choice of partitioning is crucial	 More research needs to
be done in order to classify the types of programs in which partitioning is expected
to improve performance
 and the way in which such programs should be partitioned	
When choosing a partition one must balance the overhead of partitioning with the
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Figure �	�� Result graphs for Modular Model Checking
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reduction in the sizes of the modules	
By comparing �gures �	��a and �	��b we see that there is no direct link between

the space and time consumption	 There are � cases in which although the extensive
partitioning leads to a greater space consumption than the moderate partitioning

the extensive partitioning requires less run�time than the moderate one
 and one case
where the opposite happens	 This can be explained by the fact that in the extensive
partitioning there is one module for whom the model checking at one point exploded
and required more space
 but since all other modules were small the model checking
for all the other modules took much less time	 The space consumption listed in the
table is the maximum space used by the process
 but in most cases this amount is used
only for a short period of time	
Another point to notice is the ill e�ect of local reachability and the favorable e�ect

of variable reordering	 These will be further investigated and explained in Chapter �	
To summarize our conclusions from the examples
 we believe that the use of our

modular model checking algorithm can be instrumental in verifying some programs

but not in every case	 We would advise the user to use it when it seems that regular
model checking is too expensive
 and to choose the partitioning so that the di�erent
tasks that the program performs reside in di�erent modules	

����� Proof of main theorem

This subsection is devoted to proving theorem �	� which stated that�
The modular model checking algorithm computes model checking under assumptions
correctly for any partition graph G of any program P 	 Formally
 for any assumption
function As over end�G� CheckGraph�G�As �MC�struct�G� As�	
The proof of this theorem requires several stages	 We start with the following

lemma	

Lemma ��� Let M � hS�R� Ii be the structure of some program P 	 Let M � �
hS�� R�� I �i be the structure of a sub�program P � of P 
 or of an edge e in the control�
�ow graph of P 	 Let As be an arbitrary assumption function over end�M and As� an
assumption function over end�M � such that for every s � end�M � and � � cl�� it
holds that s � As���� M�s j�As �

��	 Then for every s � M � and every � � cl���
M �� s j�As� ��M�s j�As �	

Proof The proof is by induction on the top�most operator of �	 For the base case

� � AP 
 and the induction steps that do not involve temporal operators the proof is
trivial since the de�nition ofM�s j�As� � does not depend on the assumption function
As� �only on the induction hypothesis for sub�formulas of �	 The interesting cases
are the ones that involve temporal operators	 We show only the proofs for EX�� and
E���U��
 the proofs for AX�� and A���U�� are dual	 The induction hypothesis is
that for �� and �� the claim holds
 i	e	 for every s � S�� M �� s j�As� �i �M�s j�As �i

��The theorem will also hold if As is over a set that includes end�M � instead of being de�ned
exactly over end�M � �and the same for As� and end�M ���
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for i � �� �	

� Let � �EX��	 For every state s � S� we have�
M �� s j�As� � �
	s� � S��R��s� s� 
M �� s� j�As� �� or s � end�M � � As���
� �since S� � S
 R� � R
 and since R�s� s� 
 s � end�M � implies s� � S�
	s� � S�R�s� s� 
M�s� j�As �� or s � end�M � �As���
� �from our assumption about As���
M�s j�As �	

� Let � �E���U��	 We �rst prove that for every state s � S�� M �� s j�As� � �
M�s j�As ��
M �� s j�As� �

� �by de�nition
There exists a path � � s�� � � � � si inM � �s � s� such that either si � end�M ��
As��� or M �� si j�As� ��
 and for every j � i� M �� sj j�As� ��

� �from the induction hypothesis about �� and �� and what we know of As
�

There exists a path � � s�� � � � � si in M �s � s� such that for every si
 either
M�si j�As � or M�si j�As ��
 and for every j � i� M�sj j�As ��

� �by de�nition
M�s j�AsE���U���E���U��
�M�s j�AsE���U��	

Next
 we prove that for every state s � S�
 M�s j�As � � M �� s j�As� �	
If M�s j�AsE���U�� then there exists a path � � s�� � � � � si in M �s � s�
such that M�si j� �� and for every j � i� M�sj j�As ��	 Here there are two
possibilities�

�	 For every k � i
 sk � S� n end�M �	 In this case
 from the induction
hypothesis about �� and �� we have�
M �� si j�As� �� and for every j � i� M �� sj j�As� ��

�M �� s j�As� �

�	 There exists a state from end�M � along �	 Let sk be the �rst such state
�so for every j � k we have sj � S� n end�M �	 Then we have�
M�sk j�As � and for every j � k� M�sj j�As ��

� �from our assumption about As� and the induction hypothesis
sk � As��� and for every j � k M �� sj j�As� ��

� �by de�nition
M �� s j�As� �

�

The proof of theorem �	� is by induction on the size of the partition graph G	 The
most complicated part to prove is the operation of the algorithm on a while loop	 This
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part is proven by induction on the sub�formulas �k	 The most complicate part of this
inner induction is
 naturally
 the proof for �k �E��lU�m or �k �A��lU�m	 In the
following we prove several lemmas about this part
 and then use them in the proof for
the whole algorithm	 These lemmas are going to be used in the inner�most induction

so the induction hypotheses may be needed as premises	
The �rst premise is the induction hypothesis of the outermost induction on the

size of the partition graph	
Premise ��
Every recursive call of CheckGraph on the partition graph of the body of the while �G�
with an �arbitrary assumption function Asin over end�G�
 results in an assumption
function Asout over init�G� such that
 for every � � cl�� s	t	 Asin�� � � and every
state s � init�G� we have s � Asout��� struct�G�� s j�Asin �	
The second premise is the induction hypothesis for the induction on the sub�

formulas �k	
Premise ��
After running the algorithm for the formulas ��� � � � � �k�� the algorithm built the
sets As����� � � � � As���k�� correctly
 i	e	 for every s � init�G and j � k we have
s � As���j� struct�G� s j�As �j	
To reason about the algorithm for the while loop we de�ne the following three

structures	 The structure of the partition graph G of the whole while�loop is MG �
hSG� RG� IGi	 The structure of the partition graph G� of the body of the while loop is
M� � hS�� R�� I�i	 We de�ne a third structure M � hS�R� Ii which is the structure

MG without the transitions of the false edge e�B � nB
false
�� nD	 This means that

S � SG n end�G �end�G is the set of states that have the program location following
the while loop
 the states you end up at when the loop is done
 and R � RG nRe�B 	
The following observations are at the base of our proof�

� end�M� � init�MG � init�M
The set of ending states of the body of the loop is the set of initial state of the
whole loop	 These are the states in which the condition of the while is evaluated	
Their successors are either in init�M�
 if the condition is true
 or in end�MG

if it is false	

� end�M � init�M
The ending states of M are the states in which the condition B is evaluated and
found not to hold	 The transitions outgoing from these states are included in
MG
 but not in M 	

� For checking satisfaction under assumptions on MG the assumption function
must be de�ned over end�MG
 which is the set of states with the location fol�
lowing the while loop	 For checking satisfaction under assumptions on M the
assumption function must be de�ned over end�M	 Any assumption function de�
�ned over init�M is also de�ned over end�M and can be used for satisfaction
under assumption of states in M 	
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We start by connecting satisfaction of formulas in MG under the assumption As

with satisfaction in M under the assumption As�B	 Recall that As is over end�MG
and As�B is over end�M	

Lemma ��	 For every s � init�G and � � cl��� MG� s j�As ��M�s j�As�B �	

Proof The assumption function As�B is created by a call to CheckStepEdge on the
false edge
 with As	 Therefore
 for every s � init�G such that s j� B and � � cl��
we have s � As�B�� � MG� s j�As �	 We have already noted that the set of states
s � init�G such that s j� B is exactly end�M
 so we can use lemma �	� to conclude
that for every s � init�M� M�s j�As�B ��MG� s j�As �	 �

From here on
 we prove correctness with respect to M and As�B
 and this will
imply correctness with respect to MG and As	
The next lemma we prove makes two claims	 One is that for every s � Asi��k�

M�s j�As�B �k	 This means that every state that is marked as satisfying �k
 actually
does satisfy �k	 The second claim is that the series of sets Asi��k is a monotonically
growing series of sets
 i	e	 each new set includes all the states of the previous set	
This means that we do not �lose� states that have already been found to satisfy �k	
Notice that when calculating the series of assumption functions Asi
 the sets Asi��j
for j � k are always the same
 because they are copied from As�	 The goal of this
part of the algorithm is only to compute the set As���k	 We also notice here that the
assumption functions Asi are de�ned over init�M
 which includes end�M	 During
the calculation of these functions we create the assumption function Tmp over init�G�
and TmpB over the set of states in init�M that satisfy B	

Lemma ��� Assume that premises � and � hold	 Let Asi be one of the assumption
functions calculated by the algorithm when working on a formula �k of the form
A��lU�m or E��lU�m on a graph of a while loop	 Then for every state s � Asi��k

M�s j�As�B �k
 and if i � � then As

i����k � Asi��k	

Proof We prove both claims of the lemma together
 by induction on i	
To show that s � As���k implies M�s j�As�B �k we examine part �a of this

portion of the algorithm
 where As� is created	 If s � InitB then s is an initial
state that satis�es B and
 according to the induction hypothesis for �m
 also satis�es
�m under the assumption As�B	 Therefore
 M�s j�As�B �k	 If
 on the other hand

s � As�B��k then s � end�M and by de�nition M�s j�As�B �k	 To show that
As���k � As���k we move to examine part �b	 We see that As���k � TmpB��k�
As�B��k	 Let s be a state in As���k	 If s � As�B��k then automatically s �
As���k	 Otherwise
 s � InitB
 which means that s j�As �m
 and from our induction
hypothesis for �m �premise � we conclude that CheckStepEdge will create TmpB

correctly �states that satisfy �m also satisfy E��lU�m and A��lU�m and s �
As���k	
We now assume both claims hold for every j � i
 and show them for Asi	 Let

s � init�M be a state such that s � Asi��k	 We show that M�s j�As�B �k	 If
s � As�B��k then as before M�s j�As�B �k	 Assume that s � TmpB��k	 The state
s has a single successor
 which is a state s� � init�M�	 If CheckStepEdge inserted
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s into TmpB��k then it must be that s� � Tmp��k �assuming that s j�As�B �m	
From the induction hypothesis for the recursive call to CheckGraph we deduce that
M�� s

� j�Asi�� �k	 If �k �E��lU�m then there must be a path � � s�� � � � � sn �s� � s�
in M� such that either sn � end�M� � Asi����k or M�� sn j�Asi�� �m
 and for every
j � n� M�sj j�Asi�� �l	 From premises � and � together we deduce that for every
j � n� M�sj j�As�B �l	 If sn � end�M� � Asi����k then M�sn j�As�B �k
 and if
M�� sn j�Asi�� �m again we have M�sn j�As�B �k	 In both cases we conclude that
M�s� j�As�B �k which implies M�s j�As�B �k	 The proof for A��lU�m is similar

except that instead of reasoning about one path � from s� we talk about all the paths
from s�	
We are left with showing that Asi����k � Asi��k	 Let s be a state in Asi����k	

The set Asi����k is created at the end of the �Until� loop
 as the union of TmpB��k
and As�B��k	
If s � As�B��k then it will stay there �since As�B��k does not change and so

we are guaranteed that s � Asi��k	 If s � TmpB��k then we show that it will also
be in TmpB��k when Asi��k is created	 To prevent confusion
 we use TmpBj and
Tmpj for the functions TmpB and Tmp created in the jth iteration of the loop
 which
is the iteration in which i � j and Asj is created	
From the induction hypothesis on the recursive call to CheckGraph
 the correctness

of CheckStepEdge
 and lemma �	�
 we deduce that for every state t � init�M
 and
every j � i
 t � TmpBj��k � M� t j�Asj�� �k	 Obviously
 if s � Asi�� because
M�s j�As�B �m then s � TmpBi��k and so s � Asi��k	 Otherwise
 if s � Asi����k
it is because M�s j�Asi�� �k	 We know that for every j � k we have Asi����j �
Asi����j
 and that Asi����k � Asi����k
 soM�s j�Asi�� �k impliesM�s j�Asi�� �k	
This last step is true because of the monotonicity of the EU and AU operators	 In the
de�nition of satisfaction under assumptions we see that if the sets of states assumed
to satisfy E��lU�m �or A��lU�m grow larger
 then the set of states that satisfy
E��lU�m �or A��lU�m under this assumption cannot grow smaller	 So now we
know that M�s j�Asi�� 
 and this implies s � TmpB��k
 i	e	 s � Asi��k	 �

Lemma ��� Assume that premises � and � hold	 For every state s � init�M such
that M�s j�As�B �k ��k �E��lU�m or �k �A��lU�m there exists a number i such
that s � Asi��k	

Proof We prove lemma �	� for the case of �k �E��lU�m
 the proof for �k �
A��lU�m follows a similar line of reasoning	
Let s be a state in init�M such that M�s j�As�B �k	 Let � � s�� � � � � sn �s � s�

be the shortest path from s that proves this
 i	e	 it is the shortest path such that either
sn � end�M �As�B��k or M�sn j�As�B �m
 and for every j � n� M�sj j�As �l	 We
de�ne n to be the depth of s	
Assume to the contrary that there are one or more states that satisfy �k but will

not get into any set Asi��k	 Obviously
 these must be states that satisfy B	 Let s be
the state with minimal depth
 and n its depth	 Let � � s�� � � � � sn be the path that
shows this	 Then there are two possibilities�
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�	 The state s� is the only state from init�M along �	 In this case we know
that the states s�� � � � � sn are all inside M�	 From the premises of the lemma we
know that when the �rst recursive call to CheckGraph on G� is done we have
s� � Tmp��k because M�� s� j�As� �k can be proven on M� just by examining
the sets of states that satisfy �l and �m in M �	 Therefore we must conclude
that CheckStepEdge will create TmpB so that s� � TmpB��k which implies
s� � As���k in contradiction to the assumption that s � s� does not get into
any set Asi��k	

�	 There exists a state other than s� along � which is in init�M �the path � goes
more than once through the loop	 Let sj �j � � be the �rst such state along �	
Since � was chosen as the shortest path that proves M�s� j�As�B �k
 we know
that sj� � � � � sn is the shortest path that proves M�sj j�As�B �k
 and that the
depth of sj is strictly smaller than the depth of s�	 From the way we chose s
we conclude that there is a function Asi such that sj � Asi��k	 This means
that M�s� j�Asi �k	 For similar reasoning as we have done before
 using the two
premises
 we conclude that s� � Asi����k in contradiction to our assumption
that s � s� never gets into any set Asi��k	

�

We can now �nally prove theorem �	�	

Proof As mentioned before
 the proof of the algorithm is by induction on the size
of the partition graph	 The base case is the application of the given model checking
under assumptions procedure on the structure of a single partition graph node	 For
this case we know that the given procedure is correct	 The induction step is according
to the topmost structure of the partition graph G	 In all the cases bellow we use MG

for the structure of P and Mi for the structure of Pi �i � �� �	

� For a graph of P � P��P� as in �gure �	��A�
From the induction hypothesis for the smaller graph G� we conclude that for
every state t � init�G� and every formula � � cl�� such that As�� � �

t � As����M�� t j�As �	 Similar reasoning shows that for every s � init�G�

s � As��� � M�� s j�As� �	 Using lemma �	�
 and since init�G� � init�G
we have� for every state s � init�G and every formula � � cl�� such that
As�� � �
 s � As����MG� s j�As �	

� For a graph of P � �if B then P� else P� �� as in �gure �	��B�
We use the induction hypothesis for the recursive calls on G� and G� to conclude
that for every t � init�Gi and � such that As�� � �
 t � Asi���Mi� t j�As

� �i � �� �	 From the correctness of CheckStepEdge
 and using lemma �	�

we conclude that for every s � init�G and every � such that As�� � �

s � As����MG� s j�As �	
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� For a graph of P � �while B do P� od� as in �gure �	��C�
For this part we use induction on k	

For �k � AP 
 �k � ��l and �k � �l � �m the proof is trivial
 since we assume
correctness for �l and �m �the induction hypothesis	

For �k �AX�l or �k �EX�l
 we use the induction hypothesis for the recursive
call on G� to conclude that for every t � init�G�
 t � Tmp��l�MG�

� t j�As �l	
For every state s � init�G such that s j� B
 we know that s � As�B��k �
s j�As �k from lemma �	�	 For every state s � init�G such that s j� B we know
that s has only one successor
 so MG� s j� �k i� its successor state t satis�es
t � Tmp��l	 Therefore
 for every state s � init�G we have s � As���k �
MG� s j�As �k	

For �k �A��lU�m or �k �E��lU�m we have already proven
 using both
lemma �	� and lemma �	�
 that for every s � init�G
 s � As���k�MG� s j�As

�k	 This proves that every state we mark actually satis�es the formula	 We
have also shown in lemma �	� that with every iteration the set Asi��k can only
grow larger
 and since there are �nitely many states in init�G the process is
guaranteed to stop	 In lemma �	� we have shown that any state which satis�es
�k will eventually get into one of the sets Asi��k and so we have MG� s j�As

�k � s � As���k
 which concludes the proof for the while loop	

�

��� Static Analysis Reductions

In this section we use static analysis to reduce the Kripke structures representing
programs	 As mentioned earlier
 a program can be described in two levels
 a syntactic
and a semantic level	 We use control��ow graphs to represent the syntax of programs
and Kripke structures for the semantics of programs	 Static analysis is the process
of examining the control��ow graph of a program �the syntax to extract information
on its semantics
 without creating the semantic model	 Our purpose is to use static
analysis in order to create a smaller semantic model for the program
 which we call
the reduced Kripke structure of the program	 The reduced Kripke structure is built so
that it is equivalent to the original structure of the program
 i	e	 a given speci�cation
� is true in the original Kripke structure i� it is true in the reduced one	 In fact

the reduced structure will be equivalent to the original structure with respect to any
formula that refers to the same set of variables as �	 The speci�cations we consider
are formulas of the logic CTL�
 and the logic CTL��X	
Our algorithms for static analysis are based on syntactic manipulation of expres�

sions
 and therefore we allow variables with both �nite and in�nite domains	 When
the domains are �nite
 our methods can be used for automatic veri�cation using an
explicit representation of the Kripke structure as well as for veri�cation using a BDD
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representation	 In either case
 the veri�cation algorithm itself is not changed
 it just
receives a smaller model to work on	
Using static analysis we can create a reduced Kripke structure for a program di�

rectly out of the control��ow graph
 and never build the full structure	 We are therefore
able to verify systems that would otherwise be too big to handle	
The advantage of our approach is even more signi�cant when the system is com�

posed of several processes	 In such a case
 each process is reduced separately and
only then they are composed to one Kripke structure	 This solution thus serves to re�
duce the exponential blow�up that occurs when taking the cross product of the Kripke
structures of the individual processes	
Another important advantage of using static analysis is that in order to implement

our reductions
 changes are made only to the compiler �which is relatively simple to
do and there is no need to change the veri�cation tool or the veri�cation algorithm	
This enables integration with existing tools at a very low cost	 It also means that the
overhead of using our reductions is during the �very short compilation stage and not
in the veri�cation process	
We present and compare two methods that use static analysis to create reduced

models for programs	 The �rst method
 called path reduction
 reduces according to
control
 and the second
 called dead�variable reduction
 reduces according to data	
Path reduction creates an equivalent Kripke structure in which there are less pro�

gram counter locations	 We identify paths in the control �ow graph on which a process
performs a series of consecutive operations that can not in�uence the speci�cation	
Each such path is replaced by a single transition
 representing the computation along
this path �instead of a series of transitions	
Dead�variable reduction reduces the Kripke structure by excluding some of the

possible values that variables can take at given points in the program	 We �nd places
in the program in which the value of a given variable is insigni�cant
 and prune out
of the program model all the states that di�er only on that variable	 A variable x is
dead at a certain point in the code if on all computations from that point on a value is
assigned to x before its value is used	 This means that the current value stored in the
dead variable can not in�uence the computation	 This de�nition is used traditionally
in compiler optimization methods	 We use this information in order to reduce the
state space of the program by ignoring variable values when the variables are dead	
Furthermore
 we expand the traditional de�nition of dead variables so that a vari�

able can be partially dead	 Instead of variables being either dead or not at a given
point in the program
 we de�ne a condition that implies that the variable is dead	
Given a variable x
 we compute a condition dead�l for every program location l so
that dead�l describes the set of states at location l for which the value of x can be
discarded	
Both of our reductions can be used in conjunction with the modular model checking

algorithm of the previous section	 We explain how to do this in sub�section �	�	�	

��



����� Path Reduction

Our �rst static analysis reduction is based on compression of computation paths	 We
identify computation paths along which each state has a single successor
 and which can
be compressed into a single step without a�ecting the satisfaction of the speci�cation
formula	 The speci�cation language preserved by this reduction is CTL��X	

Path Reduction for Sequential Processes

In this section we de�ne a reduction which can be applied to any sequential program
written in our language of non�deterministic while programs	 Later on we use the
reduction for sequential programs to create a similar reduction for parallel programs	
Given a program P and its control��ow graph CFP 
 a reduced Kripke structure

reduced�CFP  is created directly from CFP 	 The structure reduced�CFP  will have
less states and less transitions than the original structure struct�CFP  �which was
de�ned as the semantics of P 
 but will be equivalent with respect to any CTL��X
formula over some given set of atomic propositions	
We de�ne a set of breaking points
 which are nodes in the control��ow graph
 so

that all the commands that may in�uence the speci�cation are considered breaking
points	
When using CTL� speci�cations �or any subset of CTL� for programs we assume

that the atomic propositions in AP are expressions over program variables	 Obviously

the only variables that can in�uence the satisfaction of a formula are those that appear
in �at least one of these expressions	 We call such variables visible variables	 For the
remaining of the discussion on path reduction we �x a CTL��X formula � as the
speci�cation to be veri�ed	

De�nition ��� Given a control��ow graph CFP 
 the set of breaking points BP is a
set of graph nodes s	t	 n � BP i� one of the following holds�

�	 n is the initial or terminating program location


�	 n is associated with the program location of an assignment that changes a visible
variable


�	 n is associated with the program location of a non�deterministic assignment
 or

�	 n is the head of a �while� statement	

De�nition ���� A �nite simple path v�� � � � � vk in a control��ow graph is called
elementary if both v� and vk are breaking points
 and no other node on the way is a
breaking point	
Notice that every elementary path is �nite
 since every loop in the control��ow

graph is broken by at least one breaking point	 The set of breaking points was chosen
so that elementary paths have two properties	 One is that along any elementary path
only the �rst statement might in�uence the speci�cation	 This is why assignments
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that may in�uence atomic propositions and non�deterministic assignments must be
breaking points	 The second property is that in a single traversal of an elementary
path it is possible to compute its underlying semantics
 i	e	 under what conditions it
will execute and what happens to the values of variables when it is executed	 This
property requires that non�deterministic assignments will be breaking points and that
every loop will contain at least one breaking point	
The path�reduced Kripke structure for P 
 denoted by reduced�CFP  � hS�R� Ii


is de�ned so that S � BP � ! and I � flg � ! where l is the initial location of the
program �which must be a breaking point	 Every elementary path 	 in CFP induces
a transition relation R� so that R �

S
� R� 	 In order to determine R� we compute for

every such path 	 the reachability condition RC� � ! � ftrue� falseg and the state
transformation function ST� � !� !	 The de�nitions of these functions are adapted
from the Floyd proof system ���
 ���	 The reachability condition RC� �x is a condition
on the variables at the beginning of 	 that is true i� 	 can be traversed	 The state
transformation function ST��x is a function on states that describes the value of the
variables at the end of 	 as a function of their values at the beginning of 	 
 provided
that 	 is indeed traversed	 Both of these are computed syntactically from the control
�ow graph �i	e	 the program text
 by manipulation of terms
 as described bellow	
As mentioned before
 we use x � x�� � � � � xn to denote the vector of program vari�

ables	 In this subsection we are dealing with a single sequential process
 so x is the
set of local variables of this process	

De�nition ���� Let 	 � v� � � � �� vm be a �nite path in CFP 	 We de�ne RCk
� and

ST k
� to be the corresponding reachability condition and state transformation function

for the su�x vk � � � � � vm
 by induction on k going from k � m to k � �	 We
use the notation expr�a � e� for the expression that results from exchanging every
occurrence of a in expr by the expression e	

Induction basis�
RCm

� �x � true
 STm
� �x � x	

Induction step�
RCk

� and ST
k
� are de�ned according to the command labeling the node vk for � � k �

m�

Skip RCk
� � RCk��

� 
 ST k
� � ST k��

�

An assignment y � expr RCk
� � RCk��

� �y� expr�
 ST k
� � ST k��

� �y� expr�

An array assignment a � expr� � � expr�
RCk

� � RCk��
� �a�expr��� expr�� � RCk��

� �a� �a� expr� � expr��

ST k

� � ST k��
� �a�expr��� expr�� � ST k��

� �a� �a� expr� � expr�� ��

��The notation �a � �a� exp� � exp��� means that the array a is substituted with an array which
is identical to a except that in the exp� cell there is the value exp�� See ��� for further details on its
necessity and use in Hoare style proof systems�
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A non�deterministic assignment y � fexpr�� � � � � exprlg Let expri be the label
on the edge vk � vk��
 then RCk

� � RCk��
� �y � expri�
 ST k

� � ST k��
� �y �

expri�

Positive test This case is when vk is an �if� or �while� and vk�� is the positive son	
Let B be the boolean condition of the command	 Then RCk

� � RCk��
� 
 B


ST k
� � ST k��

�

Negative test This case is when vk is an �if� or �while� and vk�� is the negative
son	 Let B be the boolean condition of the command	 Then RCk

� � RCk��
� 
�B


ST k
� � ST k��

�

Terminate This case can happen only when the edge vk � vk�� is the self loop of
the terminate command	
RCm

� �x � true
 STm
� �x � x	

Finally
 RC� � RC�
� and ST� � ST �

� 	 RC
m
� �x � true
 STm

� �x � x	 Notice that the
path v� � � � � � vm describes a computation that executes the commands labeling
the nodes v�� � � � � vm�� but does not execute the command at vm	 This is the reason
that RC� and ST� do not depend on the command at vm	
In Figure �	�
 RC� and ST� are calculated for a given elementary path �marked

by bold edges	 In this small example the speci�cation does not refer to either of
the variables x� y or z so that the only breaking points are l� and l�	 The result
RC� � �� � y means that when the control is at the beginning of the program
 there
is a computation that travels along 	 i� �� � y	 The result ST��x� y� z � ��� y z� z
means that if 	 is traversed then x� � �
 y� � y  z and z� � z where x� y� z are the
variable values at the beginning and x�� y�� z� are the values at the end of 	 	
We can now de�ne the transition relation R� created from an elementary path

	 � v�� � � � � vm to be� R� � f��l� �� �l�� � j � j� RC� 
 �� � ST���g
 where l is the
program�counter location associated with v� and l� is the program�counter location
associated with vm	
Notice that both the selection of the breaking points and the computation of the

reachability conditions and state�transformation functions is done automatically	 The
user is only required to supply a set of visible variables
 or a set of atomic propositions
which determine the set of visible variables	

Theorem ��� Given a CTL��X speci�cation �� the reduced structure reduced�CFP 
created in the above manner is equivalent with respect to � to the original Kripke

structure struct�CFP  associated with the program�

Proof �Skeleton� From ��� we know that two Kripke structures are equivalent w	r	t
CTL��X formulas if there is a stuttering equivalence relation H s	t	� if �s� s� � H then
s and s� satisfy the same atomic propositions and for every run from s in one system
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l� � x � y

CFP ��

l� � y �� y � z l� � x �� x� z

l� � terminate

false

l� l� l�� l�

l� � x �� f�� �� �g

� � �

�

true

RC�
�
�x� y� z� � true ST �

�
�x� y� z� � �x� y� z�

RC�
�
�x� y� z� � truey � y 	 z� � true ST �

�
�x� y� z� � �x� y� z�y� y 	 z� � �x� y 	 z� z�

RC�
�
�x� y� z� � true � �x � y� � �x � y� ST �

�
�x� y� z� � ST �

�
�x� y� z� � �x� y 	 z� z�

RC�
�
�x� y� z� � �x � y�x� �� � �� � y� ST �

�
�x� y� z� � �x� y 	 z� z�x� �� � ��� y	 z� z�

Figure �	�� An example of a calculation of RC� and ST�

there is a corresponding run from s� in the other system and vice�versa	 Two runs are
corresponding if they can be partitioned into blocks ��nite series of consecutive states
s	t	 every state in the ith block of one run is in the relation H with every state in the
ith block of the other	
We de�ne a relationH between states of struct�CFP  and reduced�CFP  as follows	

Every state in struct�CFP is of the form �l� � where l is a program location �a node in
CFP  and � � !	 The states of reduced�CFP  are of the same form
 only the locations
are all in BP 	 For every location l � BP and � � ! we set ��l� �� �l� � � H	 For
every state s of struct�CFP  in which l � BP we look at the possible runs from
s	 We observe that the only states that have more than one successor are states with
locations that correspond to a non�deterministic assignment
 which is a breaking point	
If l is a boolean condition �of an �if� or �while� command then �l� � has only one
successor
 depending on whether � j� B or � j� B	 Therefore
 if the location of s
is not a breaking point then there is a single run from s to another state s� with a
location which is a breaking point �without passing any other breaking points on the
way	 Since the location of s� is a breaking point
 s� is a state of reduced�CFP 
 and
we de�ne that �s� s� � H	 The states s and s� satisfy the same atomic propositions
because the path from s to s� does not include any statements that may change visible
variables	 Therefore
 s and s� give the same values to all visible variables	
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It can easily be shown that the above relation is indeed a stuttering equivalence
relation	 Figure �	� shows how every state in reduced�CFP  corresponds to a block of
states in struct�CFP 	 Notice that in every block
 the only transition that may in�u�
ence the speci�cation is the �rst one
 all other transitions are guaranteed not to change
values of visible variables and not to be a branching point in the structure	 Therefore
the �rst state of a block in struct�CFP  corresponds to one state in reduced�CFP 

and all the rest of the states in the block �including the last one correspond to another
state in reduced�CFP 	 Notice that since the �rst states in both structures give the
values to variables �and therefore satisfy the same atomic propositions
 and since the
�rst transition is the result of the same command
 we may conclude that the next
state in reduced�CFP  �s�
 and the following states in struct�CFP �s�� � � � � s� all
satisfy the same atomic propositions	

�

Breaking point

Non�breaking point

reduced�CFP �

struct�CFP ��

s

H H H H H

s s

s�

s
� � � s� s�

�

Figure �	�� Stuttering Bisimulation between struct�P � and reduced�P �

The above proof shows
 in fact
 that the reduced structure is equivalent to the
original structure with respect to any formula that uses the same set of atomic propo�
sitions	 This is because the only attribute of � that was used was the set of variables
to which it refers �the set of visible variables	 This means that the same reduction
can be used to check several formulas	

Path Reduction for Parallel Programs

The common method for handling parallel programs is to translate each process into
a Kripke structure and then create the cross product	 As described before
 the cross
product is created by taking the union of all the local transitions from all the processes

and creating a single transition out of each matching pair of communication commands	
It is well known that the main source for state�space explosion in parallel programs
is the cross product of several processes
 since the product must include all possible
interleavings of the individual processes	 It is therefore desirable to reduce the sizes
of the processes as much as possible before attempting to create their cross product	
We propose to reduce each process in a similar fashion to the reduction of sequential
processes	 The only di�erence is that we need to handle send and receive commands	
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Given a parallel program P � �P�jj � � � jjPn� we create the control��ow graph CFi

for each process Pi	 We then create a reduced Kripke structure reduced�CFi for each
process	 The de�nition of reduced�CFi is the same as before
 except for the following
addition to the de�nition of breaking points	 A node n will be in BP if

�	 n is labeled by a communication statement �send or receive
 or is the statement
immediately following a communication	

Note that from every node of the control��ow graph which is labeled with a com�
munication command there is a single out�going edge
 pointing to the next statement
to be executed	 The additional breaking points make sure that any elementary path in
CFi that contains a communication command will not contain any other commands	
The isolation of communications enables us to synchronize �send� and �receive� com�
mands without involving any other local operations in the same transition	 To create
the reduced structure
 every elementary path in the control��ow graph which is not
a communication command is translated into a set of transitions �as in the reduc�
tion for a single sequential program	 The transitions for communication commands
are created from matching pairs of communication commands �elementary paths
 as
described in Section �	�	�	

Theorem ��� Given a CTL��X formula �� the reduced Kripke structure reduced�P 
created in the above manner for a parallel program P is equivalent with respect to � to

the original Kripke structure associated with P �

As before
 to prove that our reduction preserves CTL��X speci�cations we de�ne
a stuttering equivalence relation H	

Proof
We use the same relations Hi between struct�CFi and reduced�CFi that were

de�ned for sequential processes	 The relation H is the combination of these �local�
equivalence relations
 so that ��v�� � � � � vn� �r�� � � � � rn � H � ��v�� r� � H� 
 � � � 

�vn� rn � Hn�	
To show thatH is a stuttering equivalence relation we need the following de�nition�

De�nition ���� A transition �l� �� �l�� �� in struct�CFi is called distinct if the
location l from which it exits is a breaking point	 A transition s� s� in struct�P  is
called distinct if it is a transition in which one process Pi performs a distinct transition
and all other process do not change their local state
 or if it is a communication	
The set of distinct transitions includes all the transitions that might in�uence the

speci�cation
 i	e	 change the value of a variable that appears in an atomic proposition
or create a branching in the structure	 Notice
 however
 that it also includes transitions
that may not in�uence the speci�cation
 for example
 when the breaking point is the
head of a �while� statement	
Given a run � � s� � s� � � � � of struct�CF  and a state r� of reduced�CF  s	t	

�s�� r� � H we show that there exists a corresponding run �� of reduced�CF  from
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r�	 Every state of � is a combination of local states� sk � �s�k� � � � � s
n
k 	 We mark the

distinct transitions in � and then divide � into blocks so that each block begins after
a distinct transition was executed and ends before the next distinct transition is taken
�see �gure �	��

Distinct transition Non�destinct transition

B

s

r

i

� r�

� �s ks

reduced�CF��

struct�CF��

Figure �	��� Partitioning of a run into Blocks

Lemma ��� Let B � s�� � � � � sk be a block of �
 and let r� be a state of reduced�CF 
s	t	 �s�� r� � H	 Then for every � � i � k
 �si� r� � H	
To see why this is true
 notice that for every process i
 if �si�� r

i
� � Hi and Pi

performs a non�distinct operation
 it can lead only to a state which Hi connects to ri�	

Lemma ��� Let s � �s�� � � � � sn and r � �r�� � � � � rn be states in struct�CF  and
reduced�CF  respectively s	t	 �s� r � H	 Then for every distinct transition s� s� in
struct�CF  there is a corresponding transition r � r� s	t	 �s�� r� � H	
If the transition s� s� is not due to a communication then the di�erence between

s and s� is only in the local state of one process Pi	 This transition was created from
a distinct transition si � si

�
in struct�CFi	 From the state si

�
in struct�CFi there

is only one possible continuation of the execution until the next time it arrives at a
state which corresponds to a breaking point	 If we take the program locations along
this run we can recreate an elementary path in CFi
 which was used to create a set
of transitions in reduced�CFi	 There is only one transition in this set that exits ri

�easy to see from the de�nition of R� 
 and it leads to some ri
�
	 By the de�nition of

Hi we have that �s
i�� ri

�
 � Hi
 and therefore
 if we take r and change the ith element

from ri to ri
�
we get a state r� such that r� r� and �s�� r� � H	

If the transition s� s� is a communication then there are two processes Pi and Pj

involved
 and this communication is an elementary path in both of their control��ow
graphs	 This means that there is a transition from r into some r� corresponding to the
exact same communication between these two processes
 and obviously �s�� r� � H	
The combination of the above two lemmas allows us to repeatedly choose states in

reduced�CF  so that each state corresponds to a block in �
 to create the desired run
��	
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We have thus far shown that every path � in struct�CF  has a corresponding path
�� in reduced�CF 	 For the other direction
 we are given a run �� in reduced�CF 
and we need to create a corresponding run in struct�CF 	 This is simple since every
transition in reduced�CF  was created from an elementary path in one of the graphs
CFi
 or from a communication	 If it is a communication then there is a corresponding
transition in struct�CF  and we choose it	 Otherwise
 we look at the path in CFi

that created the transition and execute each command belonging to each edge along
the path	 The states we pass on the way will create a block which is equivalent to a
single state in ��	 �

����� Dead Variables Reduction

Our second reduction focuses on reducing variable domains	 When creating a model
for a program the set of states includes all possible valuations to variables	 The
dead�variable reduction identi�es valuations that induce equivalent computations and
reduces the size of the model by choosing a representative of each equivalence class	
Instead of presenting the dead�variable reduction in full
 we develop it in steps	

We begin by introducing a reduction for sequential processes that utilizes fully dead

variables	 Next
 we improve this reduction by considering partially dead variables	 We
complete the development of the reduction by showing how to create a reduction for
parallel programs as well	

Fully Dead Variables

We say that a variable x is used in a statement if the statement is an assignment and x
appears in the expression on the right hand side of the assignment
 or if the statement
is an �if� or a �while� command and x appears in the condition	 We say that x is
de�ned in a statement if it is the left hand side of an assignment	 Notice that in the
statement �x �� x  �� x is �rst used
 and then it is de�ned	

De�nition ���� A program variable x is said to be dead at a program location l if
on every execution path from l
 x is de�ned before it is used
 or is never used at all	
When a variable is dead at a speci�c program location its value at that point is

insigni�cant since it will not be used	 This means that two states that have that
location
 and di�er only in the value given to x
 will have identical continuations	 To
make these states equivalent with respect to CTL� we need to make sure that the
value of x does not in�uence the truth of atomic propositions	 These conditions are
summarized in theorem �	� bellow	

De�nition ���� Let �� �� � ! be two valuations to program variables	 We write
� ��x �

� if ��y � ���y for every program variable y such that y � x	

Theorem ��	 Let l � Loc be a program location in the process S� and x a non�visible

program variable which is dead at l� For any two states �l� ��� �l� �� s�t� �� ��x �� it

holds that �l� �� �CTL� �l� ���
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To prove this theorem we use the following Lemma�

Lemma ��� Let x be a variable and l a location such that x is neither used nor
de�ned by the command at l	 Let s� � �l� �� and s� � �l� �� be two states such that
�� ��x ��	 Then for every state �l�� ��� such that �l� ��� �l�� ��� there exists a state
�l�� ��� such that �l� ��� �l�� ��� and �

�
� ��x �

�
�	

Proof Since the command at l does not use or de�ne x we know that it is either an
assignment which does not involve x �on either side or a branching command ��if�
or �while� for which the condition does not involve x	 The proof is according to this
command	

� Assume that the command at location l is a non�deterministic assignment �y ��
fe�� � � � � eng�	 Each successor state �l�� ��� of �l� �� is a result of assigning one of
the expressions ei to y	 Since x does not appear in any of these expressions
 for
every successor �l�� ��� of �l� �� there must be a successor �l

�� ��� of �l� �� which
is the result of assigning the same ei to y	 Because ���ei � ���ei we conclude
that the same value is assigned to y in both successors and therefore ��� ��x �

�
�	

� Assume that the command at location l is an assignment �y �� e�	 This case
is similar to the previous one because the assignment can be considered as a
non�deterministic assignment with only one value to choose	

� Assume that the command at location l is either �ifB then S� else S� �� or �while
B do S od�	 Since x does not appear in B we know that �� j� B � �� j� B	
Also
 in all successor states the values of variables do not change	 Therefore the
successor states of �l� �� and �l� �� will have the same location
 and the same
valuations �� and �� for which we know that �� ��x ��	

This concludes the proof of the lemma	 �

We can now prove theorem �	� by de�ning a bisimulation relation ���� on the states
of the structures representing our program	 The resulting relation will contain pairs
of states which are equivalent with respect to CTL�	

Proof Let x be a non�visible program variable	 We build a relation H � H� �H� �
S � S such that

H� � f��l� ��� �l� �� j x is dead at l and �� ��x ��g

H� � f��l� �� �l� � j x is not dead at lg

For every �s�� s� � H we need to prove three things�

�	 L�s� � L�s�

�	 For every s�� s	t	 s� � s�� there exists a state s
�
� s	t	 s� � s�� and �s

�
�� s

�
� � H	

�	 For every s�� s	t	 s� � s�� there exists a state s
�
� s	t	 s� � s�� and �s

�
�� s

�
� � H	
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For every pair ��l� ��� �l� �� � H it holds that �� ��x �� and
 since x is not
visible
 L�l� �� � L�l� ��	 It remains to prove the last two conditions	 The case
when �s�� s� � H� is trivial because then s� � s�	 The interesting case then is for
�s�� s� � H� where s� � �l� �� and s� � �l� ��	 Here there are three possibilities�

� x is neither used nor de�ned by the command at l	 By lemma �	�
 for every
state �l�� ��� s	t	 �l� �� � �l�� ��� there is a state �l

�� ��� s	t	 �l� �� � �l�� ���
and ��� ��x �

�
�	 By de�nition
 this implies that ��l

�� ���� �l
�� ��� � H	 The same

holds for the other direction	

� The command at l is a non�deterministic assignment to x of the set of expressions
fe�� � � � � eng such that none of the expressions depend on x �otherwise x would
not be dead	 For every expression ei chosen
 we know that ���ei � ���ei
 and
so the state created by the assignment of ���ei into x is a successor of both
�l� �� and �l� ��	

� Assume that the command at location l is an assignment �y �� e�
 where e does
not depend on x	 This is similar to the previous case since a simple assignment
can be viewed as a non�deterministic assignment with one possible value	

This concludes the proof of theorem �	�	 �

We now build a reduced equivalent model for a program
 in which we keep only
one representative of each equivalence class	

De�nition ���	 Let d be a representative value from the domain of x	 Given a
program P 
 the reduced model of P is denoted by reduced�P 	 Recall that the Kripke
structure of a process is created from the control��ow graph of P by de�ning a set of
transitions representing every edge in the control��ow graph	 For every edge n � n�

such that x is dead at n� but not at n we create a transition that simultaneously
performs the statement in n and an assignment of d into x	 Take for example a node
n labeled by the assignment �y �� exp� and the edge e � n � n� exiting from it	 If
the expression exp uses x
 but after this assignment x is not used again before it is
de�ned then at n the variable x is not dead
 but at n� it is	 In this case the transition

relation for the edge e is Re
�
� f��l� �� �l�� �� j �� � ��y � exp�x � d�g �where l is

the program location of n and l� is the program location of n�	 All other edges are
translated into sets of transitions in the usual manner	
The reduced transition system reduced�P  can be created statically �from the con�

trol �ow graph of P  without building the structure struct�P 	 The reduced structure
will have less reachable states
 since every equivalence class from H� will be repre�
sented by a single state
 the one that gives x the chosen value d	 Calculating the
locations in which x is dead can also be done statically and e�ciently
 by examining
the text of P 	 Furthermore
 in order to produce a smaller model we may perform this
reduction for more than one variable	 For every variable we wish to use we compute
the locations in which it is dead	 The de�nition of the reduced transition system is
updated accordingly	
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l�� if �y � � then
l�� y �� x�

else
l�� y �� ��

��
l�� x �� ��

Figure �	��� An example of a partially dead variable

Partially Dead Variables

We wish to make our reduction more e�ective �i	e	 create an even smaller reachable
state�space by taking into account more information about the possible uses of vari�
ables	 We notice that in some cases
 even though a variable x is not dead at a location
l
 there are possible computations from l on which x will not be used	 For example
 in
�gure �	�� we see that when the control is at location l� the variable x is used before
it is de�ned only if y � �	 For every state �l�� � such that � j� �y � � we can be
sure that on every computation that starts from �l�� �
 x is de�ned before it is used	
However
 according to the de�nition of the previous subsection
 x is not dead at l�
and therefore there will be no reduction	 In this subsection we show how to �nd such
cases
 and use this information	
We change our de�nition of �dead variables�	 Instead of looking at variables that

are dead at a given program location
 we look at variables being dead at a given state	
For a given program location we will have a condition that tells us when x is dead	
The method in the previous section can be viewed as a version of this new method

using only the conditions true or false	

De�nition ���� Let x be a program variable
 l a program location
 and � a valuation
for the program variables	 We say that x is dead at the state s � �l� � if on all possible
runs from s the value of x is not used before it is de�ned �either x will not be used

or it will be de�ned before the �rst time it is used	
This de�nition is similar to the de�nition of x being dead at a program location


except that wherever we referred to a program location we now refer to a speci�c
combination of program location and variable values	 Again we �nd an equivalence
between states that di�er only on a dead variable	

Theorem ��� If a non�visible variable x is dead at �l� �� and if � ��x ��� then

�l� � �CTL� �l� ���

We omit the proof of this theorem
 but note that it can easily be developed from the
proof of Theorem �	�	
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For the remainder of this section we assume that x is the variable according to
which we want to perform our reduction	
We calculate for each program location l a boolean condition over the program

variables
 called dead�l
 so that for every valuation � it holds that if � j� dead�l
then x is dead at �l� �	 The condition we calculate is an under�approximation since
the implication in the other direction might not be true �i	e	 it is possible that x is
dead at �l� � and yet � j� dead�l	 We compute an under�approximation because
calculating the exact condition cannot be done in a single traversal of the control��ow
graph	
We restrict ourselves to handling only non�array variables
 i	e	 the variable x for

which we want to de�ne the condition dead�l is not an array	
We calculate dead�l for every program location by traversing the control��ow

graph of P 
 bottom up	 At each step
 when we calculate the condition dead�l for a
sub�program
 we have already calculated the conditions for its end location	
The �rst step is to assign a condition to the �nal program location lend �which is

the program counter location of the �terminate� command
 so we de�ne� dead�lend �
true	 We now describe how to calculate the condition for a sub�program
 given that
we have already calculated it for its end location	

� For the sub�program l� skip l��
dead�l � dead�l�	

� For the sub�program l� x �� exp l��
If the expression exp does not use x then dead�l � true	 Otherwise
 dead�l �
false	

� For the sub�program l� y �� exp l� �y � x�
If exp uses x then dead�l � false	 Otherwise
 we change the condition dead�l�
according to the assignment� dead�l � dead�l��y� exp�	

� For the sub�program l� y �� fexp�� � � � � expng l��
We add up the in�uences of all the possible assignments	 If x is used by �at
least one of the expressions exp�� � � � � expn then dead�l � false	 Otherwise
 if
y � x then dead�l � true	 If x is neither used nor de�ned by the assignment
then dead�l �

V
j�������n dead�l

��y� expj�	

� For the sub�program l� a�exp�� �� exp� l
��

If either exp� or exp� use x then dead�l � false	
Otherwise dead�l � dead�l��a�exp��� exp�� � dead�l��a� �a� exp� � exp��	

� For the sub�program l� if B then l�� S� else l�� S� � l��
We use a recursive call to calculate the conditions dead�l� and dead�l�
 using
dead�l� as input for both calculations	 If the condition B uses x then dead�l �
false	 Otherwise
 dead�l � �B 
 dead�l� � ��B 
 dead�l�	
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� For the sub�program l� while B do l�� S� l�� od� l
��

Similarly to the �if� case
 if B uses x then dead�l � false	

Otherwise
 we use a recursive call to calculate dead�l�	 The input to this call
�a value for dead�l�� is the �safest� approximation we can give
 since we do
not have any information on what happens at the end of the body after each
iteration	 If x does not appear in S� at all
 which can be checked while parsing
the program
 and if dead�l� � true then we assume dead�l�� � true	 Otherwise

we have to assume dead�l�� � false	

When the recursive call for S� is done we de�ne� dead�l � �B 
 dead�l� �
��B 
 dead�l�

The above de�nition can be further optimized by adding traversals through the
body of each loop	 The important characteristic that we must maintain is that we tra�
verse the control��ow graph of the program a constant number of times
 and therefore
it is more e�cient than model checking on the full model of the program	 Notice that
the reason we need to perform approximations is the while loop	 All other constructs
create an exact computation of dead	
One optimization
 which we used in our examples
 is to traverse each loop twice

so that we can identify situations in which x is dead at the top of the body �i	e	 at
location l�
 although it is used somewhere inside	 Assume that dead�l� � true
 for
a while loop as in the de�nition above	 In order to have dead�l� � true according
to the above algorithm x must be de�ned on every path from the beginning to the
end of the loop body	 Instead
 we propose to �rst compute dead on S� under the
assumption that dead�l�� � true	 If under this condition we �nd that dead�l� � true

then we can conclude that x can never be used before it is de�ned inside the loop	 We
can therefore set dead�l � true	 If
 on the other hand
 the calculation result is that
dead�l� � true then we have calculated our condition for S� under false assumptions

and the results cannot be used	 We then do another round on S�
 this time with the
original safe assumption� dead�l�� � false	
Notice that the condition dead�l can never be dependent on x	 When it depends on

a variable y it is because during its calculation we passed a statement that evaluates
an expression involving y	 However
 a statement that evaluates an expression that
depends on x is a use of x
 after which we have dead�l � false	
We can now de�ne a reduced transition system according to �partially dead�

variable reduction�

De�nition ���� Given a program P and a choice of a non�visible variable x
 compute
dead�l for all the locations in P 	 De�ne reduced�P  so that every edge e � n� n� in
the control��ow graph is translated into a reduced transition relation according to the
information calculated	 Let l be the program counter location of n
 and l� the location
of n�	 If x is used by the statement at l
 than there is no change in the de�nition of
Re	 Otherwise
 we change the de�nition of Re from subsection �	�	� so that for states
that satisfy dead�l we add the assignment x �� d	 For example
 for an assignment y
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�� exp we de�ne� Re � y� � exp
 ��dead�l
 x� � d � ��dead�l
 x� � x
 � � � �the
continuation states that all other variables do not change value
 and that the program
counter advances according to the appropriate labels	 The de�nition of Re for other
commands is updated in a similar manner	
In the reduced structure some of the transitions have been redirected so that many

states become unreachable	 These states
 and perhaps all of their descendants
 will
not be traversed when performing model�checking	 In e�ect � we have pruned parts of
the state�space	 To show that the pruned structure is CTL� equivalent to the original
structure we build a new bisimulation relation	

De�nition ���
 H � H� �H� � S � S such that�

H� � f��l� ��� �l� �� j �� j� dead�l and �� ��x ��g

H� � f��l� �� �l� � j � j� dead�lg

It is easy to see that this is truly a bisimulation relation	
Again we notice that the reduced structure is equivalent to the original structure

with respect to any formula over the same set of visible variables
 so the same reduction
can be used to check several formulas	
From here on
 when referring to dead�variable reduction
 we are referring to the

reduction according to partially dead�variables	

Dead�Variable Reduction for Parallel Programs

The dead�variable reduction for parallel programs proceeds in a similar manner to the
path reduction	 We �rst reduce each process separately and then create the cross prod�
uct of the reduced models	 However
 in order to perform the dead�variable reduction
on a single process we have to augment the computation of dead�l with instructions
for handling communication commands�

� For the sub�program l� send�Pi
exp l
��

If exp uses x then dead�l � false	 Otherwise
 dead�l � dead�l�	

� For the sub�program l� receive�Pi
x l
��

dead�l � true	

� For the sub�program l� receive�Pi
y l
� �y � x�

Since any value may be assigned to y by this operation
 to be sure that dead�l�
is true after executing the command we must require that it will be true for all
possible values assigned to y� dead�l � �y�dead�l�	

This allows us to compute the condition dead�l for every location of a process and
for each process separately	

Theorem ��
 Let P � �P�jj � � � jjPn� be a parallel program� Then the parallel composi�

tion of the dead�variable reduced structures for the processes is bisimilar to the parallel
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composition of the original structures� Formally� if struct�P  	 struct�P� jj � � � jj
struct�Pn and reduced�P  � reduced�P�jj � � � jjreduced�Pn� then struct�P  �CTL�

reduced�P �

Proof Let Hi be the bisimulation relation from de�nition �	�� between struct�Pi
and reduced�Pi	 Every state s in struct�P  is a tuple �s�� � � � � sn such that si is a
state of struct�Pi
 and similarly every state t in reduced�P  is a tuple �t�� � � � � tn	
We de�ne a relation H such that �s� t � H i� for every i
 �si� ti � Hi	 It is easy to
see that since every Hi is a bisimulation relation
 H is also a bisimulation relation	 �

����� Integration with veri�cation techniques

Our methods for reducing the state�space of programs are carried out according to the
syntax of the program
 creating a reduced model of the program	 Given a program P

it is possible to apply one or both of the reductions	 Furthermore
 when applying the
dead�variable reduction we can do so for more than one variable	 Once our methods
have been applied
 one can choose any veri�cation method to be used on the result	
We now describe in more detail how our reduction methods can be incorporated into
several well known veri�cation techniques
 and also with our own modular model
checking method	
A reduced Kripke structure can be used for state exploration methods	 These are

methods that traverse the state space of the Kripke structure on�the��y
 usually by
means of a DFS algorithm	 Examples of veri�cation tools that use such methods are
Murphi ���� and SPIN ����	 The space consumption of an algorithm based on a DFS
traversal is proportional to the maximal simple path from an initial state �which is the
maximal depth of the stack during the search	 The time complexity is linear in the
number of reachable states	 We notice that when creating a reduced Kripke structure
we do not have to create the set of program states	 We can create only the transition
relation
 which may be represented by a �rst order formula �or a set of formulas	
This formula is used as a next�state function that given a state produces the set of
successors of that state	 In the case of path�reduction the maximal simple path �a
run that does not go through the same state twice is shorter and therefore the DFS
requires less space	 In both reductions the reduced Kripke structure has less reachable
states and so the time needed for the DFS is also reduced	

Partial order reductions ���
 ��
 ��� are methods of reducing the state�space tra�
versed by a state�exploration veri�cation algorithm
 and are implemented in state�
space exploration tools such as SPIN	 In general
 a partial order reduction method de�
�nes for every state a subset of the transitions exiting the state that will be traversed	
This subset is chosen in a way that ensures that although parts of the state�space
will not be visited
 the result of the search will not change	 Our path reduction can
be compared to partial order reduction methods	 Path reduction creates a program
which is still a parallel composition of processes
 only that each transition of a reduced
process may represent a series of transitions of the original process	 Therefore some of
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the possible interleavings between processes are restricted beforehand	 This reduction
might not be achieved by partial order reduction methods
 but the reduced transition
system that path reduction creates may still include several possible interleavings that
can be pruned by a partial order reduction method	 There is no need to make changes
in our method or in the partial order reduction method in order to combine the two	
Note also that since some partial order methods require an initial DFS of the system
in order to perform calculations
 it is an advantage that the system that these methods
get to work on is smaller than the original one	
Our reduction methods can easily be combined with symbolic methods	 A reduced

Kripke structure can be translated directly into a symbolic representation in the same
way the original system would be	 In fact
 the computation of R� and T� for path
reduction and the computation of dead�l for dead�variable reduction can be done
symbolically
 to produce a BDD representation of the resulting transition relation	
Since BDDs are representations of formulas
 and operations on formulas �such as
conjunctions
 disjunctions and quanti�cation are e�cient BDD operations
 R� 
 T� 

and dead�l can be created according to the boolean formulas that de�ne them by
a series of BDD operations	 The transition relation of the whole Kripke structure is
produced by a boolean combination of the BDDs representing each edge	
The size of BDDs is di�cult to predict	 However
 it depends heavily on the number

of bits used to represent each state	 Path reduction reduces the number of program
counter locations
 and therefore reduces the number of bits needed for the representa�
tion of a single state	 For dead�variable reduction it might be preferable to replace the
assignment of a single chosen value d into x with a non�deterministic assignment that
allows x to have any value	 In this way
 x might be quanti�ed out of the transition
relation �or parts of it	 It also appears that in some cases it would be better to use the
fully�dead version of reduction �subsection �	�	� so as not to introduce dependencies
between variables	
Some veri�cation methods which consider weaker speci�cation languages than

CTL� use a notion of fairness to enhance the expressibility of the language ���
 �
 ���	
A special condition determines which computations are fair
 and only those computa�
tions are confronted with the speci�cation	 The fairness condition is usually given in
terms of a formula in the same speci�cation language or a weaker one
 and a compu�
tation is fair if this condition is true in in�nitely many states along the computation	
In order to use such methods with our reduction we have to consider the fairness
condition in the same way we consider the speci�cation	 The only change is that vari�
ables that appear in the fairness condition will also be considered visible	 Assuming
that the fairness condition is in the language that the reduction preserves �CTL� or
CTL��X
 every state in the original system has an equivalent state in the reduced one
�w	r	t the fairness condition
 and for every fair computation in the original system
the corresponding computation in the reduced system is also fair	
To combine our reductions with the modular model checking algorithm we pre�

sented before
 we �rst perform all the calculations needed for the reductions	 For
dead�variable reduction this means that we calculate dead�l for every program counter
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location l	 For path reduction
 we add the entry and exit location of every node in
the partition graph as a breaking point
 so that elementary paths do not span more
than one node in the partition graph	 We then calculate the reachability condition
and state transformation function as usual	 When creating the Kripke structure for
each partition graph node
 we create the reduced structures
 instead of the original
ones	 The modular model checking algorithm need not be aware that these are not
the original structures associated with nodes	

����� Experimental Results

In order to evaluate our reductions we chose several examples and translated them into
Murphi code	 The Murphi language ���� consists of a list of rules
 where each rule has
a guarding condition and a body	 A rule is executable if its guard evaluates to true	
The semantics of Murphi programs consists of a loop in which the set of executable
rules is computed
 one executable rule is chosen non�deterministically and then its
body is executed	 This process continues until �if ever there are no executable rules	
We used Murphi to perform a traversal of the state�space of each example
 at the end
of which we get the number of states and the number of edges in the reachable state�
space of the model	 Each example was manually translated into a Murphi program
that represents its semantics �struct�P 	 We then performed our reductions using
the original program text �the control��ow graph and created a new Murphi program
that represents the reduced model for that example �reduced�P 	 For each example
we performed path reduction
 dead�variable reduction
 and then a combination of both
reductions	 All the examples were run with a ���M hash�table	 Table �	� summarizes
the results we obtained using our reductions	 For each example we give the number of
states and edges in the model
 and the time it took Murphi to complete the traversal	
Lines in the table that say �failed� signify examples in which the hash�table was �lled
before the whole structure was traversed	 The numbers in parenthesis show the relative
size of the reduced model with respect to the non�reduced model	 In �gure �	�� we
give a block diagram summarizing the results for which the non�reduced example did
not fail	 The reduced models are given as a percentage of the non�reduced model	
The �rst example
 slide
 is a program that simulates the sliding window communi�

cation protocol between a sender and a receiver	 The results in the table were obtained
for an example in which both the receiver and the sender windows were of length �	
The variables chosen for the dead�variable reduction were temporary variables used to
store incoming messages	 Path�reduction was done with respect to a speci�cation that
states that the sender does not advance its window before the receiver has received
the �rst message in the sender�s window	
The second example
 called linked�list
 is an example of a sorting algorithm that

uses a distributed linked�list of processes	 It consists of several processes connected in
a row so that each of them keeps a number	 When a process receives a new number
from the process on its right
 it compares it with the number it already has	 It keeps
the larger of the two and sends the smaller to the next process in the line	 The
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example includes also a main process that inputs a list of numbers and sends them
to the �rst in line �input is simulated by non�deterministic assignment	 The dead�
variable reduction was done with respect to a temporary variable that each node keeps
whenever it holds two numbers �before it sends one of them to the next node in the
line	 The path reduction used a speci�cation that states that whenever a node is
expecting a number from the preceding node
 the preceding node is about to send a
number �thus assuring us that the processes will never block each other	 We ran this
example using � and � nodes in the list	 For the case of � nodes the full model and the
dead�variable reduced model were too large to handle	 However
 after performing path
reduction the resulting reduced model was small enough for the traversal to terminate

and combining both reductions resulted in an even smaller model	
The third example
 �nd�max
 is an algorithm for �nding extrema on a unidirectional

ring of processes
 presented in ����	 Each process is assigned a �unique number and
together they �nd the maximumof these numbers	 For a program with n processes
 the
numbers �� � � � � n are assigned to processes non�deterministically
 so that the process
that gets the number n is the one with the maximum	 The variables used for the dead�
variable reduction were temporary variables used to hold incoming messages	 For this
example we created path�reduced models according to two di�erent speci�cations	 The
algorithm works in phases
 and during each phase each process may either be active
or not	 In the last phase there is only one active process
 and it holds the maximum
number	 The �rst speci�cation makes sure that when a process receives a message
from phase i
 the sending process is also in phase i	 The second speci�cation states
that in any given phase
 no two active processes hold the same number	
The last example simple
 is taken from ���	 This work is closely related to our dead�

variable reduction
 and the di�erences and similarities will be discussed in Chapter �	
The simple example involves two processes where the �rst process repeatedly sends
request or switch messages and the second receives them	 Each request message
is accompanied by a number
 chosen non�deterministically	 The second process has
a state in which a request message results in outputting the number received
 and
another state in which the number is ignored	 Every time the second process receives
a switch message it switches between these two states	 In ��� the example is given in
the form of two state machines
 the �rst having two states and the second three	 We
translated it into two processes in our programming language
 with the state kept in a
program variable	 This introduced more states in the Kripke structure of the example
because of the introduction of a program counter	 Obviously
 when the number sent
with a request message is going to be ignored
 the variable that holds this number is
dead	 Since the program does nothing else than receive the number and output it
 the
size of the domain of this variable is the main factor in the size of the state�space
 and
hence the signi�cant e�ect of dead�variable reduction	 This is also the reason why
 in
this example
 path�reduction is not so e�ective as in other examples	
It is clear that dead�variable reduction in itself does not produce signi�cant reduc�

tion	 This can be a result of the nature of our examples	 We expect this reduction
to be useful on programs that perform several tasks
 where one task requires many
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variables that are not needed for other tasks	 This situation can occur
 for example

when the program does some numerical computation and then goes on to use only
the result of the computation	 The variables that were used during the computation
are now dead	 Another situation in which dead�variables reduction can be expected
to perform well is when applied to a program that was created by some automatic
code generation tool or by an automatic translation from another language	 Auto�
matically generated codes tend to include many redundant variables	 Our examples

being hand�produced demonstrative examples
 are relatively simple
 and perform no
intermediate computation	 It remains to be seen whether real�life examples exhibit
similar behavior or not	
Path reduction
 in contrast
 gives signi�cant reduction in the size of the models


and as a result also reduces computation times	 Using path reduction we get reduced
models which are between �� to ��� of the original model	 The explanation of this
is that a sequential program �or process performs only one operation at each step �
either evaluating a condition
 or assigning into a single variable	 By condensing all the
operations a program does between two observable points into a single step
 we create
a muchmore concise model	 In the last example
 we used two di�erent speci�cations to
create the path�reduced model	 The second speci�cation refers to more variables than
the �rst and therefore creates more breaking points	 This explains why the reduced
model according to the �rst speci�cation is smaller than the reduced model according
to the second speci�cation	 Notice that in two cases �linked�list with � nodes and
�nd�max with � nodes we could not traverse the non�reduced model since it was too
large	 However
 after using path�reduction we got a model which we could traverse
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in full	 In these cases we cannot tell the ratio of reduction
 since we do not know the
size of the non�reduced model
 but we see that it is signi�cant enough to allow us to
perform model�checking on programs that are otherwise too large to handle	 In the
case of the �nd�max example
 we could only handle � processes in the non�reduced
version
 whereas using path�reduction we successfully completed the traversal of the
model with � processes	
When combining both reductions we get an even smaller model in all of the exam�

ples	 Even though the added e�ciency due to dead�variable reduction is not large
 it
seems useful to use since it is practically �for free�	

��



Example Break� Options Time Memory Min�Max
down lr reo �h�m�s �K module size

Learn� None � � ������� ���� ���������
Monom �  ������� ���� �����������

 � ������� ���� �����������
  ������� ���� ���������

Moderate � � ������� ���� ����������
�  ������� ��� ����������
 � ������� ���� ����������
  ������� ���� ����������

Extensive � � ������� ���� ���������
�  ������� ���� ���������
 � ������� ���� ���������
  ������� ���� ���������

Stop and None � � ������� ������ �����������
Wait �  ������� ���� �����������

 � ������� ����� �������������
  ������� ���� �����������

Moderate � � ������� ���� ����������
�  ������� ���� ����������
 � �������� ����� �����������
  ������� ���� ����������

Extensive � � �������� ����� ���������
�  ������� ���� ��������
 � ��������� ����� ���������
  ������� ����� ���������

Sort None �  �������� ����� �������������
  ������� ����� �������������

Moderate �  ������� ����� ����������
  ������� ����� ����������

Extensive �  ������� ���� ���������
  �������� ���� ���������

Table �	�� Results for Modular Model Checking
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Example Reduction used No	 of States No	 of Edges Time �h�m�s

slide
������� ������� ������

dead�vars ���	�� ������� ���	�� ������� ���	�� ������
path ���	�� ������� ���	�� ������� ���	�� ������
both ���	�� ������ ���	�� ������� ���	�� ������

linked�list
� nodes ������� ������� �������

dead�vars ���	�� ������� ���	�� ������� ���� �������
path ������ ������ ���	�� ������� ���	�� ������
both ���	�� ������ ���	�� ������� ���	�� ������

� nodes failed � �
dead�vars failed � �
path �������� �������� �������
both �������� �������� �������

�nd�max
� procs ������� �������� �������

dead�vars ����� ������� ����� �������� ����� �������
path �spec� ��� ������ ��	�� ������� ��	�� ������
path �spec� ���	�� ������� ���	�� ������� ���	�� �������

� procs failed � �
path �spec� ������ ������� ������
path �spec� ������� ������� �������

� procs path �spec� ������� �������� �������
path �spec� ������� �������� �������

simple
������� ������� ������

dead�vars ���	�� ������� ���	�� ������� ���	�� ������
path ���	�� ������� ���	�� ������� ���	�� ������
both ���	�� ������� ���	�� ������� ���� ������

Table �	�� Results for static analysis reductions
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Chapter �

Exploiting Structure in Hardware

Veri�cation

��� The Structure of Hardware Designs

Before we present our results in model checking of hardware designs
 we discuss the
translation of a hardware design into a Kripke structure representing its behavior	
This discussion is important since it gives insight into the special structure of Kripke
structures that represent hardware designs	 This structure will be used in the following
sections	
There are many levels of abstraction in which a hardware design can be described


from a very abstract plan of modules
 to the layout which is the �nal goal	 We
examine hardware designs at the level in which logical behavior is examined
 but
physical behavior is not considered	 This level of description is sometimes referred
to as a Register Transfer Level �RTL model	 It consists of memory components
��ip��ops and logical components	 The value of a �ip��op bit is determined by a
boolean function which is made up of basic logic elements�such as AND
 OR
 NOT
etc		 The parameters of this function can be other memory bits
 input signals
 or
even the previous value of the bit being determined	 In synchronous circuits
 all the
�ip��ops change their value synchronously at the beginning of each clock cycle	 In
asynchronous circuits each component reacts to a change in its inputs and after a
given amount of time may update its output	 In this work we focus on veri�cation of
synchronous hardware designs	
A state of a hardware model is composed of a value for each �ip��op	 Throughout

this section we use V for the set of �ip��op variables in the design
 and I for input
signals	 All circuit variables are boolean	 A state in the model for the design is an
assignment to the variables in I � V 	
In this chapter we also use boolean formulas to represent sets of states and tran�

sition relations	 Sets of states are represented by formulas with free variables �I� V 
and transition relations are represented by formulas with free variables �I� V� I �� V �	
We use the same letter for a set of states �or transition relation and the formula that
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represents it	
The Kripke structure modeling a synchronous circuit is de�ned as� M � �S
 R
 I


where

� The set of states S is the set of all assignments for I � V 	

� Init � S is the set of initial states	

� The transition relation R is de�ned by a set of functions N�� � � � � Nl
 each de�ning
the next�state value for a single variable vi � V by v�i � Ni�I� V 	 The global
transition relation is� R �

V
vi�V �v

�
i � Ni�I� V 	 We assume that every Ni is a

deterministic total function	 Note that the inputs are unrestricted	

��� Test sequence generation for synchronous cir�

cuits

Given a relatively small critical sub�circuit Sub
 with a set of inputs Isub
 the designer
can construct a set of test sequences that guarantees a good coverage of Sub in a rela�
tively straightforward way
 if the sub�circuit is su�ciently small	 However
 in general
the inputs to Sub are not accessible from the exterior of the full circuit	 Therefore
 it
is necessary to produce a set of test sequences for the inputs I of the full circuit that
will induce the required set of test sequences on Isub	 We present a test generation

algorithm that given a test sequence over a small sub�circuit produces a test sequence
for the full circuit that reproduces the original test sequence	
Before we present the algorithm we require several de�nitions	

De�nition ���

� A trace of M is a sequence # � s�
 s�
 � � �
 sn such that �si� si�� � R	

� Let U � �I � V  be a set of variables	 A partial assignment with respect to U
is an assignment that gives values only to variables in U �as opposed to a state

which is an assignment that gives values to all the variables of the circuit	 A
partial assignment � with respect to U represents the set of states s that agree
with � on U 
 i	e	 for every v � U 
 s�v � ��v	

� The projection of a state s on U is a partial assignment over U that agrees with s	
The projection of a trace # on U is the trace obtained by taking the projection
of each state in # on U 	

� Given a partial assignment � with respect to U 
 an expansion of � to U � �s	t	
U � U � is a partial assignment �� over U � that agrees with � on U 	

� A test sequence over U is a series of partial assignments over U 	
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Formally
 our problem is de�ned as follows	 Given a set Isub � I � V of vari�
ables
 which are the inputs to the critical sub�circuit Sub
 and a test sequence #sub �
t�� � � � � tn over Isub
 we must produce an initial state sinit and a test sequence #in �
inm
 � � �
 in�
 � � �
 inn �m � � where every ini is a partial assignment over I	 Let # �
sm
 � � �
 s�
 � � �
 sn be the trace generated by #in and sinit �sm � sinit �	 We require
that the projection of s�� � � � � sn on Isub will be identical to #sub	
The algorithm has two stages	 The �rst is a backward search that creates a series

of sets of states	 Any computation path that goes through these sets �starting at an
initial state is a solution to our problem	 Given #sub � t�
 � � �
 tn we construct a series
of sets of states Am
 � � �
 A�
 � � �
 An in reverse order
 i	e	 we start by computing the
set An and end with Am	 For everym � i � �n��
 every state s � Ai has a successor
in Ai�� �see �gure �	�	 Using a slight abuse of notation
 we view every ti in the test
sequence as a set of states
 namely
 the set of states �assignments to all variables that
agree with ti	 When creating the sets A�
 � � �
 An we make sure that Ai � ti	 Thus

A�
 � � �
 An represent the set of traces that agree with #sub	 In order to make sure
that a trace that runs through these sets can be created starting at an initial state
 we
continue to compute A��� A�� and so on
 until we arrive at a set Am in which there
is an initial state	 If such an initial state can be found
 we know that there is a trace
# that
 from some point on
 reproduces the test sequence #sub	 If
 however
 we arrive
at a set Ai � � or Ai �

S�
j�i��Aj
 we can conclude that there is no input sequence

#in that can be used from an initial state to reproduce #	 This means that when the
sub�circuit is run within this design
 the test sequence t�� � � � � tn can never appear at
its inputs
 and we report this	
In the second stage we traverse the sets
 from Am up to An and �nd one suitable

trace # � sm� � � � � sn	 The test sequence #in that generates this trace is created by
taking the projections of the states along # on I	 The output of the algorithm is an
initial state sm
 and a sequence of inputs inm
 � � �
 inn	
The algorithm below uses the following functions and operators�

� The operator Pred computes the set of predecessors of a set of states A according
to the transition relation R	 It is de�ned by� Pred�A � 	I �� V ��R�I� V� I �� V � 

A�I �� V � ����	

� The function choose�A receives a set A and produces a single state �assignment
to I � V  s � A	

� The operator Succ�s returns the set of successors of a state according to R	

Stage I
�� An �� tn
�� for j � n� � downto � do

�Notice that the transition relation R de�nes the next�state value for variables in V � By choosing
a next�state value for the inputs we deterministically de�ne a successor state� Therefore� sinit and
�in �together with R� uniquely determine ��
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�� Aj �� tj � Pred�Aj��
�� endfor
�� All �� �
�� while �Aj � � 
 �Aj � Init � � 
 �Aj � All do
�� All �� All �Aj

�� j �� j � �
�� Aj �� Pred�Aj��
��� endwhile
���m �� j

Stage II
��� if �Am � � � �Am � All then
��� print �Sequence cannot be generated�
��� else
��� sm �� choose�Am � Init�
��� inm �� the projection of sm on I�
��� for j � m � to n do
��� sj �� choose�Succ�sj�� � Aj�
��� inj �� the projection of sj on I�
��� endfor
��� endif

sm

Rm��Init

R�

s� sn��
sn

Am A� � t� An�� � tn�� An � tn

Rn

Figure �	�� The sets produced by the test sequence generation algorithm

The correctness of our algorithm is asserted using three theorems	 It is easy to
see that if stage I completes successfully
 i	e	 the algorithm will not report failure
in line ��
 then stage II creates a sequence of inputs inm� � � � � inn that create a trace
sm� � � � � sn that goes through the sets Ai found in stage I	 We want to show that this
trace is in fact a solution to our problem	

Theorem ��� Every trace � � sm� � � � � sn such that for every m � i � n
 si � Ai

recreates the given test�sequence t�� � � � � tn on the signals in Isub	

Proof From line � in the algorithm it is clear that si � ti for every � � i � n	
Therefore
 if sm� � � � � sn is in fact a trace through the sets Ai
 then the su�x s�� � � � � sn
induces t�� � � � � tn on the signals in Isub	 �
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We next show that there exists a trace through the sets Ai from an initial state	
We do this using a slightly stronger claim	

Theorem ��� For every m � i � n and every state si � Ai there exists a trace
si� � � � � sn such that for every i � j � n
 sj � Aj	

Proof The proof is by induction on the length of the path si� � � � � sn �i	e	 induction
on n � i	 The base case for i � n is obvious	 For the induction step we assume that
from every state si�� there is a trace through Ai��� � � � � An	 We prove the claim for
Ai	 Let si be some state in Ai	 If i � � then Ai was created in line �
 and if i � �
then Ai was created in line �	 In both cases we see that si � Pred�Ai��	 This means
that there is a state si�� � Ai�� such that R�si� si��	 From our assumption on Ai��

there must be a trace si��� � � � � sn through Ai��� � � � � An
 and so there exists the trace
si� si��� � � � � sn through Ai� Ai��� � � � � An
 which proves the claim	 �

The combination of the two theorems above shows that when the algorithm �nishes
successfully it produces a correct result	 We now show that when the algorithm fails

it is also a correct result	

Theorem ��� If the algorithm claims that the sequence generation failed
 then there
is no trace from an initial state that reproduces t�� � � � � tn on the signals in Isub	

Proof We prove this theorem by showing that if there exists a trace from an initial
state that reproduces t�� � � � � tn
 then the algorithm will not fail	 Assume there is
a trace sm� � � � � s�� � � � � sn such that for every � � i � n
 si � ti
 and sm � Init	
Assume also that this is the shortest trace that reproduces the given test sequence

i	e	 sm� � � � � s� is the shortest trace from an initial state that reproduces t�� � � � � tn	
We show that for every Aj that the algorithm computes sj � Aj
 and for j � � also
sj �

S�
i�j�� Ai	 This will prove that the while loop in line � will terminate only when

Aj � Init � �
 and the algorithm will not report failure	 We prove this by induction
on n � j	 For j � n we know that An � tn and also sn � tn so obviously sn � An	
Now we assume that the sets Aj��� � � � � An were already computed and for each Ai we
have si � Ai	 If j � � then the set Aj is computed by Aj � tj � Pred�Aj�� �line �	
Since sj�� � Aj�� we have sj � Pred�Aj��
 and sj was chosen so that sj � tj
 so we
conclude that sj � Aj	 If i � � then Aj � Pred�Aj�� �line � and by similar reasoning
we have that sj � Aj	 For j � � we need also to show that sj �

S�
i�j��Ai	 Assume

to the contrary that there exists a set Ak
 j � k � �
 such that sj � Ak	 This means

as we have already proven
 that there is a trace from sj that goes through the sets
Ak� � � � � A�� � � � � An and reproduces t�� � � � � tn	 We know that there is a trace sm� � � � � sj
that leads from an initial state to sj 
 and so we conclude that sm� � � � � sj��� sk� � � � � sn
is a trace from an initial state that reproduces t�� � � � � tn and is shorter than the trace
sm� � � � � sn that we started with
 in contradiction to the fact that sm� � � � � sn was chosen
to be the shortest such trace	 �

��



��� Dynamic Transition Relations

The algorithm presented in the previous section might not be practical for very large
circuits	 In such circuits
 the transition relation R is too big even if it is represented
by a BDD and the operator Pred becomes too expensive	 This problem is not unique
to our test�generation algorithm	 Other algorithms
 such as model checking
 are also
heavily dependent on the Pred operator and will fail on large circuits	
To alleviate this problem we exploit the partitioning of the transition relation into

functions Ni that de�ne the next state variables v�i	 Recall that a state of our model
gives values to all the variables in I � V 	

De�nition ��� A set of states A is independent of a variable vi
 if for every state s
in A
 the state that di�ers from s only on vi is also in A	 A formula f is independent
of a variable vi if for every two assignments � and �� that di�er only on vi
 � j� f i�
�� j� f �	
We show that when A is independent of a variable vi
 the function Ni �which

determines the value of vi in the next state can be omitted from the transition relation
used in the computation of Pred�A	

De�nition ��� Let f be a formula �representing a set of states or a transition rela�
tion	 The support of f is the set of variables on which f depends	 Also
 de�ne sup�f �
fv � �V � I j f depends on vg and sup��f � fv � �V � I j f depends on v�g	 The
set sup�f is the set of current�state variables that f depends on and sup��f is the
set of next�state variables that f depends on	
We de�ne a dynamic version of Pred
 called PredD	 The operator PredD�A

computes the set of predecessors of states in A according to the partial transition

relation
V
vi�supA��Ni�s � v�i�
 which is a transition relation that includes Ni if and

only if A depends on vi	 The operator PredD is formally de�ned as� PredD�A �
	I �� V ��A�I �� V � 


V
vi�supA��Ni�s � v�i��

Lemma ��� For any set A
 Pred�A � PredD�A	

Proof Assume that the variable vi does not appear in the support of A	 We start
with the de�nition of Pred�
Pred�A � 	I �� V ����v�� � N��I� V  
 � � � 
 �v�l � Nl�I� V  
A�I �� V ��

� 	I �	v��� ��� v
�
i��� v

�
i��� ��� v

�
l��

�v�� � N��I� V  
 ���v�i�� � Ni���I� V  
 �v�i�� � Ni���I� V  
 ��

�v�l � Nl�I� V  
 	v�i���v
�
i � Ni�I� V  
A�I �� V ���

Since A�I� V  does not depend on vi
 A�I �� V � does not depend on v�i and we can move
it through the 	v�i quanti�er to get�

�Notice that a formula f is independent of vi i	 the set of states that it represents is independent
of vi�
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� 	I �	v��� ��� v
�
i��� v

�
i��� ��� v

�
l��

�v�� � N��I� V  
 ���v�i�� � Ni���V  
 �v�i�� � Ni���I� V  
 ��

�v�l � Nl�I� V  
 A�I �� V � 
 	v�i��v
�
i � Ni�I� V ��

We assume that every Ni is a total function
 i	e	 for every V there exists v�i s	t	
v�i � Ni�I� V 
 so 	v�i��v

�
i � Ni�I� V � � true and we get�

� 	I �	v��� ��� v
�
i��� v

�
i��� ��� v

�
l��

�v�� � N��I� V  
 ���v�i�� � Ni���I� V  
 �v�i�� � Ni���I� V  
 ��

�v�l � Nl�I� V  
 A�I �� V ��

The above shows that for every variable vi that does not appear in the support of
A we can drop the term v�i � Ni�I� V  from the transition relation part of Pred�A
without changing the result	 If we do this for all variables not in the support of A we
get PredD�A	 �

��� Test Generation using Dynamic Transition Re�

lations

����� A dynamic algorithm

We now present an updated algorithm for test generation that uses dynamic transition
relations	 This version not only uses PredD in stage I
 but uses the same dynamic
transition relations in the forward search of stage II	 The idea is that in most designs
the next�state value of each variable depends only on a few of the other variables
 and
so the support of the sets we compute will remain small	
We recall that given a state s
 the application of R to s determines the next�state

values for the variables in V 
 but not for the variables in I	 The input variables
I are chosen arbitrarily by the environment	 The dynamic algorithm uses partial
assignments �i instead of the full states si
 and partial transition relations Ri instead of
R	 The output sequence inm� � � � � in�� � � � � inn�� generated by the algorithm is a series
of partial assignments over some �but perhaps not all of the variables in I	 When ini
does not give a value for a variable i � I it means that i does not in�uence the parts
of the circuit that are being considered
 and its value can be chosen arbitrarily	
In the dynamic algorithm we use the following functions�

� choose�A�U accepts a set of states represented by a formula A and a set of
variables U such that sup�A � U 	 It returns a partial assignment � over U that
satis�es A	 If we view � and A as sets
 then the chosen � is a subset of A	 Notice
that if A happens to be given as a partial assignment a
 then the resulting �
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will be an assignment over U that agrees with a	 Notice also that the function
choose that was used in the algorithm of the previous section is simply a call to
this function with U � I � V 	

� project���U receives a partial assignment �or a full state � de�ned over some
set of variables U �
 and a set of variables U such that U � U �
 and returns the
projection of the former on the later
 i	e	 it returns a partial assignment over U
that agrees with �	

� apply�Ri� � receives a partial transition relation Ri and a partial assignment
� over sup�Ri	 The partial transition relation is of the form Ri �

V
v�U�v

� �
Nv�I� V  for some set of variables U 	 The result is a partial assignment �

� over
U 
 such that for every v � U � ���v � Nv��	

Stage I
�� An �� tn
�� for j � n� � downto � do
�� Rj�� ��

V
vk�supAj���

v�k � Nk�I� V 

�� Aj �� tj � PredD�Aj��
�� endfor
�� All �� �
�� while �Aj � � 
 �Aj � Init � � 
 �Aj � All do
�� All �� All �Aj

�� j �� j � �
��� Rj�� ��

V
vk�supAj��� v

�
k � Nk�I� V 

��� Aj �� PredD�Aj��
��� endwhile
���m �� j	

Stage II
��� if �Am � � � �Am � All then
��� print �sequence cannot be generated�
��� else
��� sinit �� choose�Am � Init� I � V 
��� �m �� project�sinit� sup�Rm��
��� inm �� project�sinit� I � sup�Rm��
��� for j � m � to n� � do
��� tmp �� Aj � apply�Rj� �j��
��� �j �� choose�tmp� sup�Rj��
��� inj �� project��j� I
��� endfor
��� tmp �� An � apply�Rn� �n��
��� �n �� choose�tmp� sup�An
��� inn �� project��n� I

��



��� endif

Stage I of the algorithm creates the same sets Am
 � � �
 An that were created in the
previous algorithm
 but uses PredD instead of Pred	 Notice that by the end of stage
I we have that for every m � i � n
 sup�Ai�� � sup�Ri and sup��Ri � sup�Ai�V 	
This allows the use of apply in lines �� and ��	
In stage II
 the forward search for a path through the Ai�s is done using partial

assignments �m
 � � �
 �n instead of states �which are full assignments	 Every partial
assignment �i represents a set of states which di�er only on variables not in the support
of Ai	 When moving from �i�� to �i
 in lines �� and ��
 we use the same partial
transition relation Ri that was used to create Ai�� from Ai �see �gure �	�	 After
applying Ri
 we expand the result to the support of Ri�� �line �� so that we can
apply Ri�� in the next iteration of the loop	 The output of the algorithm is the initial
state sinit and the inputs inm� � � � � inn��	 The inputs calculated by the algorithm do not
necessarily give values to all input variables in I	 When giving inputs to a simulation
tool we need to decide on values for all the input variables	 We therefore expand every
ini to I by choosing arbitrary values for the extra input variables	
To show the correctness of the dynamic algorithm
 we �rst notice that the sets

Am� � � � � A�� � � � � An computed by the dynamic algorithm in stage I are exactly the
same sets computed by the static algorithm	 This is because the only di�erence in
their computation is the use of PredD instead of Pred
 and we have already shown
that they are equivalent	 This means that theorems �	�
 �	�
 and �	� hold for the
dynamic algorithm also	 What is left to show is that the sequence of partial inputs
inm� � � � � inn computed in stage II of the dynamic algorithm will induce a trace through
the sets An� � � � � Am no matter how they are expanded to the full set of inputs I	

Theorem ��� Let inm� � � � � inn and sinit be the output of the dynamic algorithm	
Then any trace that starts at sinit and follows a sequence of inputs that agrees with
inm� � � � � inn will be a trace through the sets Am� � � � � An computed in stage I of the
algorithm	

Proof Let in�m� � � � � in
�
n be a series of full inputs to the circuit that agree with

inm� � � � � inn
 i	e	 every in�i is an assignment that gives value to all the variables in
I
 and for every variable v � I such that ini is de�ned over v we have ini�v � in�i�v	
Let sm� � � � � sn be the path created when starting at sm � sinit and driving the inputs
in�m� � � � � in

�
n	 This means that given a state sj 
 which agrees with in

�
j on I
 we apply

the full transition relation R and get a partial assignment s�j�� which gives values to V
�since R does not determine the next state values for variables in I	 We then expand
s�j�� to the state sj�� by adding the values that inj�� gives to I �thus sj�� agrees with
inj�� on I	 We show that for every m � j � n� sj � Aj	
We �rst show that in every iteration �j � Aj
 by induction on j	 For �m �line ��

it is obvious
 since sinit � Am	 Assume that �j�� � Aj�� �j � n	 From line �� we
know that tmp � Aj
 so from line �� we conclude that �j � Aj	 For �n the reasoning
is similar
 since tmp � An �line ��
 and �n � tmp �line ��	 To show that for every
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j
 sj � Aj we need only show that sj agrees with �j on sup�Aj	 We prove a stronger
claim
 that sj agrees with �j on sup�Rj��
 for j � m� � � � � n � �
 and sn agrees with
sigman on sup�An	 We do this by induction on j	
The basis is trivial since �m was chosen so that sinit and �m agree on sup�Rm��	

Assume that sj�� agrees with �j�� on sup�Rj	 The transition relation R includes all
the processes Ni
 including all those that appear in Rj 	 This means that for every
vi � sup��Rj the value that s

�
j gives to vi is the same value that apply�Rj� �j�� gives

to vi �because they were calculated by the same Ni	 Since sup��Rj � sup�Aj�V 
 we
conclude that s�j agrees with apply�Rj� �j�� on sup�Aj � V �line ��	 Since the sets
Aj were created so that every state in Aj�� has a successor in Aj
 the set tmp cannot
be empty	 The conjunction with Aj only limits the possible values for variables in I

so every state in tmp agrees with s�j on sup�Aj�V 	 We then choose �j �line �� from
tmp
 so we conclude that s�j agrees with �j on sup�Aj�V 	 The partial assignment �j

however
 may also include values for variables in I	 In line �� inj is created so that it is
de�ned over every variable in I which �j is de�ned over	 Since sj is created from s�j by
adding the values for I that in�j gives
 and since in

�
j agrees with inj
 we must conclude

that sj agrees with �j on variables from both V and I	 In fact
 they agree on all the
variables that �j is de�ned over
 which means they agree on sup�Rj	 To conclude the
proof we need to show that sn and �n agree on sup�An	 Lines �����
 which de�ne
�n and inn are similar to lines �����
 except that �n is chosen over sup�An �line ��
instead of sup�Rj�� �line ��	 Similar reasoning as above leads us to conclude that
sn agrees with �n on sup�An	 �

����� BDD implementation

Both the original test�generation algorithm and the dynamic algorithm can easily be
implemented using BDD representations	 The components Init
 S and N�� � � � � Nl of
the model are represented using BDDs in the usual manner	 In addition
 the sets Aj

computed by the algorithm are represented by BDDs	 The input to the algorithm is a
sequence of binary vectors over T 	 It is straightforward to translate each vector into a
BDD that represents the set ti needed for the algorithm	 Most BDD libraries include
a function to compute sup and sup�
 which are simply the sets of current or next
state variables that appear in the BDD	 All other operations used in our algorithm
are standard BDD operations	
A BDD implementation of the algorithm will bene�t signi�cantly from the use

of partial transition relations	 The size of a BDD representing a set A is generally
related to the size of sup�A	 In many cases
 each Ni will not depend on all the
variables in I � V 	 Thus
 taking fewer Ni�s will result in a smaller support for the
partial transition relation

V
vi�supA��Ni�s � v�i�	 The BDDs computed at intermediate

stages in the computation of Pred using the partial transition relation will depend on
less variables and will often be smaller	
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Model Vars Seq	 Time Space
length Static Dynamic Relative Static Dynamic Relative

$� � �� �	�� �	�� ���� �	�� �	�� ����
$� � �� �	�� �	�� ���� �	�� �	�� ����
$� � � ��	�� �	�� �� �	�� �	�� ���
$� � � ��	�� ��	�� ��� �	�� �	�� ����
$� � � ��	�� ��	�� ��� �	�� �	�� ����
$� � �� ��	�� ��	� ��� �	�� �	� ����
$� � � ���� ��	�� �	�� ��� �	�� �	��
$� � �� ���� ��	�� �	�� ��� �	�� �	��
$� � �� ���� ��	�� �� ��� �	�� �	��
$� � � fail �	� � fail �	�� �
$� �� � fail �	�� � fail �	�� �
$� �� � fail �	�� � fail �	�� �
$� � � ��	�� �	�� �	�� ��	�� �	�� �	��
$� � � ��	�� �	�� �	�� ��	�� �	�� �	��
$� � � fail �� � fail �	�� �
$� � � fail ��	�� � fail �	�� �
$� � � fail ��	�� � fail �	�� �

Table �	�� Results for symbolic test�sequence generation algorithms

����� Results

Both the original and the dynamic algorithm were implemented by Fady Copty at
Intel Israel	 The algorithms were used to create test sequences on hardware models
designed at Intel	
Nine di�erent examples were used
 and for each one both algorithms were applied

to create test sequences	 Since di�erent test sequences can create di�erent behaviors of
the algorithm
 for some examples more than one test sequence was used	 The results
are presented in table �	�	
Times are given in seconds and measures of space are given in megabytes	 The

�Dynamic� columns relate to the dynamic algorithm
 while the �Static� columns relate
to the static algorithm	 The �Relative� column gives the dynamic result divided by
the static result	 The numbers in the table are rounded
 but the �relative� column
is calculated from the original numbers	 The �Vars� column is the sub�circuit input
vector width �the number of variables in Isub	 The �Seq	 length� column shows the
length of the test sequence for the sub�circuit �the constant n in the algorithm	
Out of the �� examples
 in �� examples both the static and dynamic algorithms

completed successfully
 while in the others �mostly the largest the static algorithm
could not complete in the given amount of memory but the dynamic algorithm could	
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As can be seen from these results
 the dynamic algorithm is better suited for large
examples	 In the smallest ones �the �rst two
 there were no gains from using dynamic
transition relations	 In fact
 the dynamic algorithm required more run time and more
space than the static algorithm	 This happens because it is necessary to reconstruct the
transition relation at each iteration
 which in small examples may take more time and
space �due to intermediate computations than simply using the transition relation for
the complete circuit in all stages	 On large examples
 however
 the gains are signi�cant

as for model $�	 On the second example for this model the dynamic algorithm ran in
���� of the time taken by the static one
 while using only ����� of the memory	
The results for model $�
 however
 are puzzling
 since in � out of � sequences the

gains are an order of magnitude less than those for the �rst sequence
 and for the larger
examples	 The dynamic algorithm required more space than the static
 although less
time	 This indicates that the method can be more e�cient for some types of circuits
than others	 Future work includes the characterization of which are the �good� circuits
and which are the �bad� ones	
Even better results were achieved by the examples that only �nished with the

dynamic algorithm	 For model $�
 the dynamic version ran for �	� seconds using only
�	��M of memory	 During experiments we killed a process whenever it used all of the
memory available
 ���M	 This example was killed after running more than � hours	
From this we can conclude that in this example the dynamic algorithm ran in less

than ������ �� hour � �	� seconds of the time using less than ����� ������	�� of the
memory of the original algorithm	
These results show that the dynamic transition relations method can provide signif�

icant gains in veri�cation time and space
 in some cases up to two orders of magnitude	
As expected
 it does not work in the same way for all kinds of circuits
 but our exper�
iments seem to indicate that it works extremely well for several types of circuits that
are used in industry today	

��� Dynamic Transition Relations in Model Check�

ing

����� Incorporating PredD into symbolic model checking

The most expensive computation step in CTL model checking algorithms is the appli�
cation of the EX operator	 State explosion often occurs during this step	 We notice
that the EX operator is exactly the Pred operator that was de�ned earlier in this
section	 We replace the computation of EX by the operator PredD that uses a partial
transition relation	 As before
 we compute the partial transition relation dynamically

according to the set to which EX is applied	 Since in most cases each Ni is de�ned
over a small number of �unprimed variables
 by referring to the smallest number of
Ni�s
 we reduce the number of variables used in intermediate computations	
The same treatment also handles model checking for Fair�CTL which is the logic
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CTL
 extended with fairness constraints that restrict the set of paths in the model
which are required to satisfy a given formula ���
 ��	
In many cases it is useful to know the set of reachable states when performing a

model checking algorithm	 This is done by taking the set of initial states and repeatedly
computing the set of successors
 until no new states can be found	 This process is called
a forward search �or reachability	 We propose to use dynamic transition relations in
this case also	 The result of the forward search will be an over�approximation of the set
of reachable states	 This is in contrast to previous uses of dynamic transition relations
where precise results were obtained	 We are not guaranteed to �nd only reachable
states
 but we may still �nd a set of states which is signi�cantly smaller than the set
of all possible states	
The operator that computes the set of successors is called Succ and is de�ned as�

Succ�A � 	I �� V �� R�I �� V �� I� V 
A�I �� V � �the result is the set S�I� V  of states that
satisfy the formula	 We de�ne a dynamic operator SuccD that will use only some of
the transition relations Ni
 but not all of them	
As before
 we determine which transition relations to use according to the support

of the set on which we are operating	 This time
 however
 we choose the functions Ni

according to their current state support
 and not their next state support	 We de�ne
the set of processes which are relevant to the set A as� relevant�A � fi j sup�Ni �
sup�A � �g	 We then de�ne� SuccD�A � 	u� A�u 


V
i�relevantA� v

�
i � Ni�u	

When examining the formula for SuccD�S we see that Succ�A � SuccD�A

which means that we do not lose reachable states by using SuccD instead of Succ	 We
will
 however
 take into account states which are not necessarily reachable	 This may
happen if for some i and j we have that i � relevant�A
j � relevant�A
 and Ni and
Nj depend on common variables	 This dependency may disallow certain combinations
of values of v�i and v�j	 By omitting a relation we relax the condition on next�state
variables and allow combinations which were originally impossible	 We expect that
using the approximate set of reachable states will help model checking
 even if it is a
larger set than the real one	
It is also possible to compute the minimal set of processes that need to be used in

order to get accurate results	 To do this
 we start with the set of indices exact�A �
relevant�A and iteratively add to exact�A every i such that
sup�Ni �

S
j�exactA� sup�Nj � �
 until no indices are added	 Using exact�A instead

of relevant�A in SuccD�A results in a larger transition relation
 and less saving in
time and space
 but gives an accurate result	

����� Implementation and Experimental Results

The dynamic transition relations method was implemented in SMV	 In order to test
the ideas proposed the SMV code was modi�ed in the following way	

� A table is created
 which associates a variable in the model �vi to a transition
relation describing the value of that variable in the next state �Ni	
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� Each ASSIGN statement in the program describes the next�state value for a
variable as a function of the current�state values of several variables	 The ex�
pression generated by each ASSIGN is used to �ll the table above	 This replaces
the original SMV code that produces the global transition relation	

� The computation of the set of predecessors of a state set S is performed by
determining the support set of S
 and using those variables in PredD	

This implementation does not support many features of SMV including the TRANS
statement
 asynchronous modules
 and fairness	 Moreover
 it has not been optimized

while the original SMV code contains many optimizations	 Because of this the results
obtained are preliminary	 We expect better results once these issues are addressed	
We have tested our method on models that have already been veri�ed by SMV

such as the robotics controller described in ���� and the PCI local bus ���	 Table �	�
summarizes the results obtained for the following examples�

� The distributed heterogeneous real�time system described in �����

� A simpli�ed cache coherence protocol derived from the PCI Local bus�

� The model of the PCI Local bus discussed in ����

� The robotics controller presented in �����

� The model of a real�time pipelined system with � phases	 This model checks the
timing properties of the architecture	

Time measurements are given in seconds
 space measurements and transition re�
lation sizes �TR are given in �����s of BDD nodes	 The �St	� columns refer to the
static version �using Pred and the �Dyn	� columns refer to the dynamic version �using
PredD	 The transition relation size reported for the dynamic algorithm is the aver�
age of the sizes of the transition relations used in all iterations	 The �D�S� columns
summarize the gains of the method by dividing the dynamic result by the static result
�and multiplying by ��� to get percentages	 The column �Var� presents the total
number of variables in the model �source code variables
 not boolean variables and
the maximum number of �source code variables used by PredD at any iteration	
From this table we can see that the gains in time were signi�cant
 but the gains

in space were not	 In fact
 in most cases the method used more memory than the
original one
 an unexpected e�ect	 This may be caused by an unoptimized feature in
the preliminary implementation
 but it cannot be guaranteed	 One positive result is
a signi�cant decrease in the transition relation size on average	 Also
 it is important
to see that the gains are relevant even in the cases where the number of variables
considered during the search was close to the total number of variables	 Of particular
interest is the last example where in spite of the fact that all variables were considered
at some point in the search
 the average transition relation size was a quarter of the
total size	
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Ex Time Space TR var
St	 Dyn	 D�S St	 Dyn	 D�S St	 Dyn	 D�S

� ��� �� ��� �� �� ��� �	� 	� ��� ����
� ��� �� ��� ��� ��� ���� �	� �	� ��� �����
� ��� ��� ��� ��� ��� ���� �	� �	� ���� �����
� �� �� ��� ��� ��� ��� �	� �	� ��� ����
� ��� �� ��� ��� ��� ���� �� �� ��� �����

Av ��� ���� ���

Table �	�� Results of using dynamic transition relations in SMV

One other example was veri�ed
 an extremely large and complex cache coherence
protocol derived from a more detailed speci�cation of the PCI bus than the one men�
tioned above	 The model for this circuit is very large and on our machines we have
not been able to �nish the veri�cation	 We have run both algorithms only on the �rst
three iterations of this model	 The original SMV took ���� seconds to complete these
iterations �about two hours
 used ���
��� BDD nodes and the transition relation size
was ��
��� BDD nodes	 This model has �� variables	 The dynamic transition relations
algorithm was much more e�cient
 taking ��� seconds to perform the same search
 a
gain of almost �� times% It used ���
��� BDD nodes and the average transition rela�
tion had ���� BDD nodes	 The algorithm reported a maximum number of variables
used of ��	
Unfortunately
 we cannot extrapolate these results because it is often the case that

the initial steps in the search use signi�cantly less variables than later ones	 However

this indicates another very important use for the dynamic transition relations method	
During early phases of the design errors appear very frequently
 and they are usually
found in short execution sequences	 The method proposed can then be used to perform
shallow searches in a much more e�cient manner than the original one
 and in this
way we may considerably speed up the debugging phase of the design	
These results show that the dynamic transition relations method can provide sig�

ni�cant gains in veri�cation time
 even though more research is needed to study the
behavior of the algorithm with respect to space requirements	 We expect better gains
once the prototype implementation is optimized	
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Chapter �

SoftVer

��� Overview

The SoftVer system is a model�checker that implements modular model checking for
the temporal logic CTL	 Its features include�

� A simple
 structured programming language
 with boolean
 integer and array
types	

� Control over the partitioning of a program into modules by use of a special
directive	

� Local reachability	 When enabled
 this option may result in smaller memory
consumptions	

� A BDD based model checker that utilizes all the advantages of symbolic model
checking	 The tool uses a BDD library by David Long ����	

The following sections will elaborate on the above	
The main two units of the SoftVer code are the compilation and the model�checking

units	 The compiler module parses the program
 creates the partition graph
 and
creates the transition relation for each module in the partition graph	 The model�
checking unit receives the partition graph created by the compiler unit and performs
modular model�checking according to the algorithm described in section �	�	

��� The SoftVer Programming Language

The SoftVer language is based on the simple non�deterministic while programs language
that was presented in the theoretical part of this work
 and allows veri�cation of
sequential processes	 Figure �	� gives an example of a short program written in the
SoftVer programming language �the numbers on the left are used as reference and are
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not part of the programming language	 The example program inputs an array of
numbers
 and then performs a bubble sort on it	
Program variables can be of type boolean
 integer
 array of boolean
 or array of

integers	 Comments are written in the C style
 starting with ���� and ending with ����	
All the usual operators can be used in expressions� the boolean operators &&
 jj
 � �

and % �not� integer operators  
 � �both binary and unary minus� and comparison
operators �
 %�
 ������� and ��	 The program starts with the preamble in which
variables are declared �lines ���	 The program body is inclosed in curly�brackets �lines
� and ��	 The $MODULE$ directive �line � is inserted at the beginning of each
module	 The parser checks that the partitioning adheres to the rules	 In the present
version
 non�deterministic assignment �line �� is allowed only when assigning into
basic variables
 and not when assigning into arrays	 The command �label� �line �� is
used to name speci�c program counter locations
 which will later be referred to in the
speci�cation	 Its semantics is identical to the �skip� command	
The speci�cation to be checked is given after the program �line ��	 It is a CTL

formula that may use all the above mentioned operators
 plus the temporal operators
AX
 EX
 AU
 EU
 AF
 EF
 AG
 and EG	 The operators AU and EU are binary and
are written as A�p U q� or E�p U q� �where p and q are boolean expressions	

��� Creating The Transition Relation of a Program

The process of creating a transition relation for the program starts with the allocation
of BDD variables	 Knowing the number of program locations
 we calculate the mini�
mum number of bits needed for the program counter and allocate the BDD variables
pc � pc�� � � � � pck and pc� � pc��� � � � � pc

�
k 	 The BDD variables pc are used to represent

the current program location
 and pc� are used for the next program location	 For each
program variable we calculate the number of bits needed to represent its value �� for
boolean
 more for integer	 We then allocate two sets of BDD variables� v � v�� � � � � vn
are used to represent the current state and v� � v��� � � � � v

�
n are used to represent the

next state	
The transition relation of a module is a disjunction of the relations of the individual

commands	 Before we can create transition relations for the individual commands we
must be able to create BDD representations for the di�erent expressions that may
appear on the right hand side of assignments and in boolean expressions �in �if�s
and �while�s	 This is done according to the structure of the expression	 We start
by de�ning BDD representations for constants and variables �of all types
 and then
de�ne the e�ect of the di�erent operators	 We give here the de�nitions for only a few
representative operators
 as the list of operators that SoftVer supports is quite long	
BDD representations are given as boolean formulas over BDD variables	

� A boolean constant c�
The boolean constants �TRUE� and �FALSE� are represented by the BDDs
true and false	
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�� int tmp�
�� int index�
�� int sub ind�
�� boolean �ag�
�� int a��� �� array with places 
�� �

�� f
�� �MODULE�
�� �� input numbers into array ��
�� index �� 
�
�
� while �index � �� do
��� tmp �� f
������g�
��� aindex� �� tmp�
��� index �� index 	 ��
��� od�
��� �ag �� TRUE�
��� index �� ��

��� �MODULE�
��� while ��ag �� �index � 
�� do
��� �MODULE�
��� sub ind �� 
�
��� �ag �� FALSE�
��� while �sub ind � index� do
��� if �asub ind� � asub ind 	 ��� then
��� tmp �� asub ind��
��� asub ind� �� asub ind 	 ���
��� asub ind 	 �� �� tmp�
��� �ag �� TRUE�
��� else
�
� skip�
��� ��
��� sub ind �� sub ind 	 ��
��� od�
��� index �� index � ��
��� od�

��� �MODULE�
��� label halt�
��� g

��� SPEC AF �label�halt� �� �a
���a��� �� �a����a��� ��
�a����a��� �� �a����a����
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� A boolean variable x�
Let ui be the BDD variable that represents the program variable x	 The formula
representing the expression x is ui	

� An integer constant c�
Integers are represented by an array of BDDs	 All integers are of the same
�xed length integer length	 An expression of type integer is an array of length
integer length of boolean expressions
 that represents numbers in binary code	
For example
 if integer length � � then the constant � is represented by the
array �true� false� true�	

� An integer variable x�
Assume that u�� ��� um are the BDD variables allocated for x �m � integer length	
The ith element of the array representing x is the BDD ui	

� A boolean array dereference b�e� �e is an integer expression�
At this point of the compilation the BDD for e has already been created	 Ac�
tually
 since e is an integer expression it is represented by an array of BDDs

each representing a bit in binary code	 Let u�� � � � � ut be the variables that rep�
resent b
 i	e	 u� represents b���
 u� represents b��� and so on	 The value of
b�e� is b��� if e � �
 b��� if e � � and so on	 Therefore
 the BDD for b�e� is�
�e � � 
 u� � �e � � 
 u� � � � � � �e � t 
 ut	 The formula e � �
 for example

is created by equating the least�signi�cant bit to true and all the rest to false	

� An integer array dereference a�e� �e is an integer expression�
The result of dereferencing an integer array is an integer number	 To create a
BDD representation for an integer we create an array of length integer length

of BDDs	 Each place in the array represents a bit in binary code
 and is created
in a similar way to the expression for a boolean array dereference	 Let u�� � � � � ut
be the BDD variables allocated for the ith bit of a	 This means that u� is the
ith bit of the number a��� and ut is the ith bit of the number a�t�	 The ith bit of
the BDD representation for a�e� is �e � �
 u�� �e � � 
 u�� � � �� �e � t
 ut	

� The boolean operator && �logical AND�
If F �v is the BDD for the boolean expression f 
 and G�v is the BDD for the
boolean expression g
 then the BDD for the expression f && g is F �v 
G�v	

� The integer operator  �
Given two numbers
 represented in binary code as arrays of BDDs
 the operator
 is computed in the usual manner	 The least�signi�cant bit of the result is the
exclusive�or of the least�signi�cant bits of the parameters	 The carry is computed
as the conjunction of both least�signi�cant bits
 and then the next bit can be
calculated	

The above is only a partial list
 that shows the basic types of operations used to
compute BDD representations for expressions	 For more details refer to the code itself	
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Following is a description of the translation of commands into relations
 using
BDD operations �	 Each relation R is described as a formula with pc� v� pc�� v� as its
free variables	 The label l is a number representing the current program location
 i	e	
the location of the command being translated	 The label l� is a number representing
the location of the subsequent command	 These numbers do not appear in the text of
the program
 but are created by the parser	

� l� skip l��
The transition relation of the skip command re�ects the fact that the program
counter location moves from l to l�
 but no other variable changes	

R�pc� v� pc�� v� � �pc � l 
 �pc� � l� 
 �
�

��i�n

vi � v�i

� l� x �� e l�� �where x is a simple variable and e is an expression
We break the set of BDD variables into two parts
 u � u�� � � � � uk are the variables
associated with x
 and w�� � � � � wn are all the rest	 Let �e��u�w� � � � � ek�u�w� be
the array of BDDs that represents the expression e	 If x is boolean �and so is e
then k � �	 Otherwise
 k � integer length	

R�pc� u�w� pc�� u�� w� � �pc � l 
 �pc� � l� 
 �
n�

i��

wi � w�
i 


k�

j��

u�j � ej

� l� a�ind� �� e l��
Assume that uj � u

j
�� � � � � u

j
k is the set of BDD variables that is associated with

a�j� �� � j � t
 and let w be all the rest of the BDD variables	 The expression e
must be of the same type as each element of a
 so it is represented by the BDDs
e�� � � � � ek	 If a is a boolean array then k � �
 otherwise k � integer length	

R�pc� u�w� pc�� u�� w� � �pc � l 
 �pc� � l� 
 �
n�

i��

wi � w�
i


t�

i��

�ind � i 
 �
�

j�f������i���i�������lg

uj � uj
�
 
 �

k�

j��

uij
�
� ej

� x �� fe�� � � � � eng
The transition relation for a non�deterministic assignment is the disjunction of
the relations of the assignments �x �� e�� through �x �� en�	

� l� if B then l� � S� else l� � S� � l��
The transition relations of S� and S� have already been computed and disjuncted

�This description is a simpli�ed version� The actual code is slightly more complicated since it
incorporates some optimizations�
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into the global transition relation	 All we need to add are the transitions in which
B is evaluated�

R�pc� u�w� pc�� u�� w� � �pc � l
�
�

��i�n

vi � v�i
��B
�pc
� � l����B
�pc

� � l�

� l� while B do l�� S od l��
Similarly to the previous case�

R�pc� u�w� pc�� u�� w� � �pc � l
�
�

��i�n

vi � v�i
��B
�pc
� � l����B
�pc

� � l�

��� Analyzing the performance of the tool

We now describe the methods that were used when analyzing the performance of
SoftVer and the modular model checking algorithm	 This is important because
 as we
will show
 not all methods of analysis that seem plausible are in fact accurate	
When analyzing the performance of any algorithm we look at memory consumption

and run�times	 Run�times are relatively easy to measure
 using the Unix command
timex
 which gives the overall running time
 the amount of time used for system
�swapping and other system operations
 and the amount of time used by the program
itself	 The running times reported throughout the work are the actual user times	 The
system part of the run time is ignored
 since it never went over � or � seconds �in most
cases it was less than a second	
Analyzing the memory consumption of a model checking algorithm is a little more

tricky
 especially if it is BDD based
 as SoftVer is	 Any BDD library includes a function
that
 when called
 will return the number of BDD nodes currently in use	 Naturally

garbage collection algorithms are used to dispose of unused nodes every once in a
while
 since it would be ine�cient to dispose of every node as soon as it is freed	 It
would seem natural to examine the number of BDD nodes in the system just before
each time garbage collection is performed
 and regard the maximum of these numbers
as the maximal memory consumption of the algorithm	 However
 this method is inac�
curate	 Garbage collection is only performed between BDD operations
 and memory
consumption usually �almost always in fact reaches its peak in the middle of di�cult
operations
 usually the computation of a relational product as in the calculation of
the EX or AX operators	 To get an exact measure of how much memory a run of the
algorithm used we used the Unix command limit	 This command enabled us to limit
the amount of memory a shell process can use	 When a process tries to exceed this
amount it will fail
 and report failure of allocation or some other similar message	 We
ran each example several times
 each time changing the limit on the amount of data
the process is allowed to use
 until we found a tight bound on the actual amount of
memory used	 A tight bound is a pair of numbers l� h such that when limiting the
shell to l K �Kilo Bytes the process failed
 but when limiting the shell to h K it was
able to �nish
 and the di�erence h � l is less than �� of h	
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Figure �	�� Comparison of methods for analysis of memory consumption	

The method of determining memory consumption described above requires a lot
of work
 since each example must be run many times	 However
 we �nd that it is
necessary since the method of printing the number of BDD nodes used is inaccurate	
To prove this we used both methods for our examples and compared them	 Figure �	�
shows a graph depicting the memory consumption of several runs of the Stop and
Wait example
 using both measurement methods	 Although generally the two lines
rise and fall together
 runs � and � prove that in some cases the method of printing
BDD nodes can lead us to believe that one example used less space than the other

when in fact the opposite is true	 For this reason
 all the memory consumption results
given for the modular model checking algorithm were calculated using the accurate
method	 The results given in the hardware veri�cation part of the work were done
using the accurate method	

��� Variable Reordering and Local Reachability

The SoftVer model checker supplies two options that may help in handling large pro�
grams� variable reordering and local reachability	
As mentioned before
 an ordering is de�ned over BDD variables
 and this ordering

may in�uence the size of the BDD	 Variable reordering is a heuristic algorithm that
attempts to �nd a better ordering for the variables	 When the reordering option is
enabled
 the variable reordering algorithm is triggered when the BDD size exceeds a
certain limit	
In Figure �	� we give graphs that show the e�ect of variable reordering on space

��gure �	��a and time ��gure �	��b consumption	 There is no graph for the Sort
example
 since it could not �nish at all without variable reordering	 It is easy to
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see that variable reordering is a valuable tool in handling large programs	 In most
cases variable reordering reduced both space and time consumption
 and the most
impressive reductions were achieved in the largest examples	 It seems that although
the variable reordering algorithm itself takes a signi�cant amount of running time
 this
time is well spent since it saves time in the overall run	 There is another advantage in
using variable reordering in our case	 Since we work on di�erent modules separately

when variable reordering is enabled each module may have a di�erent reordering
 one
which is suitable for this module and may not be suitable for others	
Computing the set of reachable states before performing model checking can some�

times reduce the space requirements needed for model checking
 and it is a common
practice in symbolic model checking	 However
 this computation may be expensive
in both running time and space requirement	 The SoftVer model�checker o�ers the
possibility to perform local reachability	 Local reachability means that we do not
compute the exact set of reachable states
 and yet we limit the state�space used for
model�checking	
The reason why reachability can be so di�cult is because wherever there is a loop

in the program
 the reachability algorithm must pass through this loop time after time
until reaching a �x�point	
When performing local reachability we compute the reachable state�space in the

regular way as long as we are translating simple commands� skip
 assignment
 and
conditions	 After creating the transition relation for such a statement we compute
the set of ending states according to this transition relation
 and limit the transition
relation of the next statement to include only transitions that start from reachable
states	 For a program without loops this process will produce the same result as
regular reachability	 When there is a loop
 however
 we refrain from computing the
�x�point	 We translate the head of the loop
 the point at which the boolean condition
is evaluated
 into a BDD representation according to the de�nition given in the pre�
vious subsection	 The body of the loop is created using local reachability under the
assumption that all initial states of the body are reachable �which
 of course
 might
not be true	 Using local reachability means that the state�space of our model will
now include some unreachable states
 but not as much as without reachability	
In Figure �	� we give graphs that show the e�ect of using local reachability on space

��gure �	��a and time ��gure �	��b consumption	 From these graphs we see that
in most cases the use of local reachability actually increased both space and time con�
sumption	 However
 there are cases in which local reachability improved performance	
It is interesting to note that in one case �learn�monom
 no partitioning with reorder�
ing space consumption was reduced while time consumption was increased
 and in
another case �stop�and�wait
 moderate partitioning with reordering space consump�
tion was increased while time consumption was reduced	 All of the above suggests that
local reachability should not be a default option
 since in many cases it is not useful

but in cases where SoftVer runs too long
 or requires too much space
 one should try
using local reachability
 in the hope that it would help in this case	 It is worth noting
that local reachability seems to help mainly when combined with variable reordering	
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This is a known behavior of BDDs where reducing the number of states in a set does
not necessarily reduce the size of the BDD representing this set	 However
 when the
states that are eliminated are �irregular� in some sense
 then there may be a variable
ordering that will reduce the size of the BDD	
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Chapter �

Conclusions

	�� Related Works

There are not many works that deal with automatic veri�cation of software systems

and especially in programs written in high level languages	
A very interesting work by Godfroid ���� presents a veri�cation method for software

written in actual programming languages such as C or C  	 This method searches
the state�space of a concurrent program by repetitively running each process until it
reaches its next communication statement	 The SPIN system ���� is another example
of model checking for high�level languages	 It uses a language called PROMELA and is
mainly used to verify communication protocols	 Both of these tools are not modular in
nature
 and it is not clear whether they can make use of our modular model checking
algorithm
 but they may be able to incorporate our reduction methods into their
veri�cation process	
Works that use process algebras to represent a program can be considered as han�

dling software
 although not written in a high�level language	 One of the most relevant
works
 which bears some resemblance to our modular model checking algorithm
 is
the work of Burkart and Ste�en ��
 ��	 They present model checking algorithms for
context�free processes
 and for a generalization of context�free processes called push�
down processes	 They consider the semantics of �fragments�
 which are interpreted
as �incomplete portions� of the process	 The model checking algorithms they propose
are based on the calculation of the property transformer of each fragment
 which is a
function that represents the semantics of a fragment with respect to alternation�free 
�
calculus formulas	 A property transformer receives a set of 
�calculus formulas which
are true at the exit point of a fragment
 and returns the set of 
�calculus formulas
true at the entry to the fragment	 After calculating the property transformers of all
fragments
 the property transformer of the main fragment is given the set of 
�calculus
properties that hold when a process halts
 and the result computed by the property
transformer is the result of the model�checking algorithm	 The main draw�back of
this algorithm
 in our opinion
 is that it is de�ned for Pushdown Processes Systems

which can hardly be considered as a high level programming language
 and 
�calculus
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properties
 which are not easy to use	 This makes it an interesting theoretical result

but not useful for use by real designers of hardware or software systems	 It should also
be noted that the property transformers of all the fragments are computed together

one depending on the other
 and it is not clear whether using secondary memory to
store partial results would prove useful
 or even possible	
As mentioned before
 our path reduction method is closely related to partial or�

der reduction methods since it excludes possible interleavings between processes	 The
dead�variable reduction can also be considered a partial order reduction since it ex�
cludes some of the successors of a state in which x is dead	 It should be noted
 though

that the reduction we achieve is di�erent than the reduction achieved by most partial
order methods
 and it should be bene�cial to use one on�top of the other	
A similar type of reduction to our path reduction was introduced by Miller and

Katz in ����	 Their approach was to eliminate invisible states from the model of a
program
 where invisible states are states for which all the entering transitions cannot
in�uence the speci�cation	 Their method constructs the projected visible state space
relative to a speci�cation through a DFS traversal that eliminates invisible states	
The construction of the visible state space requires a linear traversal of a model that
is somewhat reduced from the original model of the system
 but is still larger than
the reduced model which is produced	 The di�erence from our approach is that we
produce the reduced model from the syntactic model of the program �the control��ow
graph and not from the Kripke structure representing it	 The syntactic model is
signi�cantly smaller since it expands only the program counter and not the program
variables
 which are the source for the enormous size of the semantic model	
The main advantage of our reduction methods is that they use static analysis to

create the reduced Kripke structure	 In ���
 ��� static analyses are used for partial
order reductions	 An analysis of the statements in the program ����� or of the control�
�ow graphs of the processes ���� is used to determine the transitions to be traversed
�ample sets and to create a reduced model on which a full state�space exploration
is performed	 The main di�erence between our reduction methods and theirs is in
the model that is produced
 each method creates a di�erent reduced model	 Another
important distinction is that our reductions work for either CTL� or CTL��X whereas
the reductions presented in ���
 ��� are appropriate only for the subset LTL�X	
The closest related work to our dead�variable reduction is ���
 where a live variable

analysis is used to create a reduced model for asynchronous processes that commu�
nicate via queues	 The analysis they present is similar to what we present as fully
dead variable analysis	 Our dead�variable reduction is more e�ective since it allows
variables to be partially dead	 We used the example that is presented in ��� and it
shows better results than our other examples	 However
 we believe that this reduction
is achieved because the example was tailored for demonstrating the e�ectiveness of the
method	 Our examples are implementations of known protocols	
Our state�space reductions are also related to works like ��
 ��
 ��
 ��� that use

abstract interpretation techniques ���� to obtain reduced models that preserve subsets
of the logic CTL�	 Their reductions
 however
 are not fully automatic since the user
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must de�ne the abstract domain	 Furthermore
 these works provide weak preservation
while our reductions provide strong preservation	
Test sequence generation from precomputed tests has been studied out of the con�

text of symbolicmodel checking ���
 ��
 ��
 ��
 ��
 ���	 However
 all of these techniques
depend on the internal structure of the circuit being tested
 �e	g	 in some cases they
rely on a regular bus structure in the design
 and consequently are not as general as
the one presented here	 In the context of model checking the problem has been ad�
dressed in ����
 but their work is concerned mostly with expressing the test sequence
and not with the complexity of dealing with large circuits	 In fact
 in ���� the authors
state that they have only used their method on small examples	 Another work relat�
ing to model checking and test sequence generation is ���
 in which ATPG algorithms
�Automatic Test Pattern Generation are used to perform model checking	 ATPG al�
gorithms do not guarantee that they will eventually �nd a test sequence even in cases
when it does exist
 as our algorithm does	
One important aspect of our work is that it does not build a model of the complete

circuit beforehand and that it may never actually construct such model	 In this aspect
it relates to techniques such as partitioned transition relations ����	 It di�ers from it

however
 because in that case all partitions are used in every iteration
 and this may
not be necessary	 Examples of techniques that may not consider all parts of the circuit
are the cone of in�uence reduction ����	 However
 these techniques are static in the
sense that they determine only once which parts of the circuit can be ignored	 Our
method does it dynamically taking advantage that not all parts of the circuit are
relevant during all iterations	 Because of this our method produces better results

since it can use less of the circuit during most iterations	 In fact
 the cone of in�uence
can be seen as an upper bound on the behavior of our algorithm	

	�� Directions for further research

There are several directions for research which we have not yet pursued	 The �rst is
utilizing the procedural structure of programs	 Procedures are sub�programs which
are de�ned once
 and then used in several places in the program
 with some changes in
variables	 It would be interesting to �nd a way to verify the program while examining
the body of each procedure only once	 The ideal solution would be some algorithm
that would examine the structure of the procedure
 extract the minimal information
needed
 and then
 when working on the program that called the procedure
 use only the
information kept about the procedure
 without examining its structure once again	 For
this to be possible we need to keep information about the semantics of the procedure
that would enable us to verify every call to the procedure
 although di�erent calls
may use di�erent actual parameters	 The problem we encountered here is that any
information we keep that does not include the full branching structure of the body
of the procedure was not enough for an exact model checking algorithm	 A possible
solution might be to settle for partial knowledge
 and get results which under or over
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approximate the correct results	 Another possibility is to �nd a speci�cation language
which is not as sensitive to branching structure as CTL is
 and yet be compositional

and expressive enough to be interesting	
Another possible continuation of our work in software veri�cation is to exploit

other kinds of static analysis algorithms	 There are other attributes of programs and
variables which can be extracted using static analysis
 and may be helpful in reducing
the state space of a program
 or making the model checking algorithm more e�cient	
It may also be possible to extend the reductions we present to handle more cases	
For example
 in our dead�variable reduction we cannot reduce according to an array
variable	 This is because our simple calculations cannot determine to which element
of the array an expression such as a�i� refers to	 The only safe assumption that can be
made is that such an expression is a reference to the whole array
 which would make
the reduction un�e�ective	 Extending the method to handle arrays will require a new
type of static analysis	
As for our research in hardware veri�cation
 our algorithm for test�sequence gen�

eration should be extended to handle sets of test�sequences �instead of working on a
single test�sequence for the critical sub�circuit	 This would prove very practical since
in real life a design is checked using many di�erent test�sequences	
The idea of dynamic transition relations seems to be very useful
 and a similar

result may be obtained for asynchronous models	 Such a result would be practical for
both asynchronous hardware designs as well as parallel programs	
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