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Abstract. Automated reasoning about systems with infinite domains requires an
extension of regular automata toinfinite alphabets. Existing formalisms of such
automata cope with the infiniteness of the alphabet by addingto the automaton a
set of registers or pebbles, or by attributing the alphabet by labels from an auxil-
iary finite alphabet that is read by an intermediate transducer. These formalisms
involve a complicated mechanism on top of the transition function of automata
over finite alphabets and are therefore difficult to understand and to work with.
We introduce and studyvariable finite automata over infinite alphabets(VFA).
VFA form a natural and simple extension of regular (andω-regular) automata, in
which the alphabet consists of letters as well as variables that range over the
infinite alphabet domain. Thus, VFAs have the same structureas regular au-
tomata, only that some of the transitions are labeled by variables. We compare
VFA with existing formalisms, and study their closure properties and classical
decision problems. We consider the settings of both finite and infinite words. In
addition, we identify and study the deterministic fragmentof VFA. We show that
while this fragment is sufficiently strong to express many interesting properties,
it is closed under union, intersection, and complementation, and its nonemptiness
and containment problems are decidable. Finally, we describe a determinization
process for a determinizable subset of VFA.

1 Introduction

Automata-based formal methods are successfully applied inautomated reasoning about
systems. When the systems are finite-state, their behaviorsand specifications can be
modeled by finite automata. When the systems are infinite-state, reasoning is undecid-
able, and research is focused on identifying decidable special cases (e.g., pushdown
systems) and on developing heuristics (e.g., abstraction)for coping with the general
case.

One type of infinite-state systems, motivating this work, are systems in which the
control is finite and the source of infinity is data. This includes, for example, software
with integer parameters [3], datalog systems with infinite data domain [15, 4], and XML
documents, whose leaves are typically associated with datavalues from some infinite
domain [7, 5]. Lifting automata-based methods to the setting of such systems requires
the introduction of automata withinfinite alphabets. 3

The transition function of a nondeterministic automaton over finite alphabets (NFA)
maps a stateq and a letterσ to a set of states the automaton may move to when it is in

3 Different approaches for automatically reasoning about such systems are based on extensions
of first-order logic [2] and linear temporal logics [8].
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stateq and the letter in the input isσ. When the alphabet of the automaton is infinite,
specifying all transitions is impossible, and a new formalism is needed in order to rep-
resent them in a finite manner. Existing formalisms of automata with infinite alphabets
fulfill this task by augmenting the automaton byregistersor pebbles, or by attributing
the alphabet by labels from an auxilary finite alphabet that is read by an intermediate
transducer. We elaborate of the existing formalisms below.

A register automaton [13] has a finite set of registers, each of which may contain
a letter from the infinite alphabet. The transitions of a register automaton compare the
letter in the input with the content of the registers, and mayalso store the input letter
in a register. Several variants of this model have been studied. For example, [10] forces
the content of the registers to be different, [12] adds alternation and two-wayness, and
[9] allows the registers to change their content nondeterministically during the run.

A pebble automaton [12] places pebbles on the input word in a stack-like manner.
The transitions of a pebble automaton compare the letter in the input with the letters in
positions marked by the pebbles. Several variants of this model have been studied. For
example, [12] studies alternating and two-way pebble automata, and [14] introduces
top-view weak pebble automata.

The newest formalism isdata automata[2, 1]. For an infinite alphabetΣ, a data
automaton runs ondata words, which are words over the alphabetΣ × F , whereF is
a finite auxilary alphabet. Intuitively, the finite alphabetis accessed directly, while the
infinite alphabet can only be tested for equality, and is usedfor inducing an equivalence
relation on the set of positions. Technically, a data automaton consists of two compo-
nents. The first is a letter-to-letter transducer that runs on the projection of the input
word onF and generates words over yet another alphabetΓ . The second is a regular
automaton that runs on subwords (determined by the equivalence classes) of the word
generated by the transducer.

The quality of a formalism is measured by its simplicity, expressive power, compo-
sitionality, and computability. Insimplicity, we refer to the effort required in order to
understand a given automaton, work with it, and implement it. In compositionality, we
refer to closure under the basic operations of union, intersection, and complementation.
In computability, we refer to the decidability and complexity of classical problems like
nonemptiness, membership, universality, and containment.

The formalisms of register, pebble, and data automata all fail hard the simplicity
criterion. Augmenting NFAs with registers or pebbles requires a substantial modifica-
tion of the transition function. The need to maintain the registers and pebbles makes
the automata hard to understand and work with. Unfortunately, most researchers in the
formal-method community are not familiar with register andpebble automata. Indeed,
even the definition of the basic notion of a run of such automata cannot simply rely on
the familiar definition of a run of an NFA, and involves the notions of configurations,
successive configurations, and so on, with no possible shortcuts.

Data automata do not come to the rescue. The need to accept several subwords per
input word and to go through an intermediate alphabet and transducer makes them very
complex. Even trivial languages such asa∗ require extra letters and checks in order
to be recognized. Simplicity is less crucial in the process of automatic algorithms, and
indeed, data automata have been succesfully used for the decidability of two-variable
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first order logic on words with data - a formalism that is very useful in XML reasoning
[2, 1]. For the purpose of specification and design, and for developing new algorithms
and applications, simplicity is crucial. A simpler, friendlier formalism is needed.

Data and register automata and most of their variants fail the compositionality and
computability criteria too. Data automata and register automata are not closed under
complementation, apart from specific fragments of registerautomata that limit the num-
ber of registers [8]. Their universality and containment problems are undecidable [12].
Pebble automata and most of their variants fail the computability criterion, as apart
from weaker models [14], their nonemptiness, universality, and containment problems
are undecidable. Nonemptiness of data and register automata is decidable, but is far
more complex than the easy reachability-based nonemptiness algorithm for NFAs.

We introduce and study a new formalism for recognizing languages over infinite
alphabets. Our formalism,variable finite automata(VFA), forms a natural and simple
extension of NFAs. We also identify and study a fragment of VFA that fulfills the sim-
plicity, compositionality, and computability criteria, and is still sufficiently expressive
to specify many interesting properties. Intuitively, a VFAis an NFA some of whose
letters are variables ranging over the infinite alphabet. The tight connection with NFAs
enables us to apply much of the constructions and algorithmsknown for them.

More formally, a VFA is a pairA = 〈Σ,A〉, whereΣ is an infinite alphabet and
A is an NFA, referred to as thepattern automatonof A. The alphabet ofA consists
of constant letters– a finite subset ofΣ, a set ofbounded variables, and a singlefree
variable. The language ofA consists of words inΣ∗ that are formed by assigning
letters inΣ to the occurrences of variables in words in the language ofA. Each bounded
variable is assigned a different letter (also different from the constant letters), thus all
occurrences of a particular bounded variable must be assigned the same letter. This
allows describing words inΣ∗ in which some letter is repeated. The free variable may
be assigned different letters in every occurrence, different from the constant letters and
from letters assigned to the bounded variables. This allowsdescribing words in which
every letter may appear. For example, consider a VFAA = 〈N, A〉, whereA has a
bounded variablex and its free variable isy. if the language ofA is (x+ y)∗ · x · (x+
y)∗ · x · (x+ y)∗, then the language ofA consists of all words overN in which at least
some letter occurs at least twice.

We prove that VFAs are closed under union and intersection. The constructions
we present use the union and product constructions for NFAs in their basis, but some
pirouettes are needed in order to solve conflicts between different assignments to the
variables of the underlying automata. Such pirouettes are helpless for the problem of
complementation, and we prove that VFAs are not closed undercomplementation. We
study the classical decision problems for VFAs. We show thata VFA is nonempty iff its
pattern automaton is nonempty. Thus, the nonemptiness problem is NL-complete, and
is not more complex than the one for NFAs. We also show that themembership problem
is NP-complete. Thus, while the problem is more complex thanthe one for NFAs, it is
still decidable. The universality and containment problems, however, are undecidable.

We then define and studydeterministic VFA(DVFA), a fragment of VFA in which
there exists exactly one run on every word. Unlike the case ofDFAs, determinism is
not a syntactic property. Indeed, since the variables are not pre-assigned, there may be
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several runs on a word even when the pattern automaton is deterministic. However, a
syntactic definition does exist and deciding whether a givenVFA is deterministic is NL-
complete. We introduce anunwinding operatorfor VFAs. In an unwinded VFA, each
state is labeled by the variables that have been read, and therefore assigned, in paths
leading to the state. Using the unwinding operator, we can define DVFAs for the union
and intersection of DVFAs. Moreover, the closure under complementation of DVFAs
is immediate, and it enables us to solve the universality andcontainment problems for
DVFAs. Thus, DVFAs suggest an expressive formalism that fulfills the three criteria.

We study further properties of DVFA. As bad news, we show thatthe problem of
determinizing a given VFA (or concluding that no equivalentDVFA exists) is undecid-
able. As good news, we show that all VFAs with no free variablehave an equivalent
DVFA, and present a determinization process for VFAs of thiskind. The advantages of
DVFA make us optimistic about the extensions of algorithms that involve DFAs, like
symbolic formal verification and synthesis, to the setting of infinite alphabets.

We demonstrate the robustness of our formalism by showing that its extension to
the setting ofω-regular words is straightforward. In Section 5, we introduce and study
variable B̈uchi automata(VBAs), whose pattern automata are nondeterministic Büchi
automata on infinite words [6]. VBAs are useful for specifying languages of infinite
words over infinite alphabets, and in particular, specifications of systems with variables
ranging over infinite domains. We show that the known relation between NFAs and
nondeterministic Büchi automata extends to a relation between VFAs and VBAs. This
enables us to easily lift the properties and decision procedures we presented for VFA to
the setting of VBAs.

2 Variable Automata over Infinite Alphabets

A nondeterministic finite automaton (NFA) is a tupleA = 〈Γ,Q,Q0, δ, F 〉, where
Γ is a finite alphabet,Q is a finite set ofstates, Q0 ⊆ Q is a set ofinitial states,
δ : Q×Γ → 2Q is atransition function, andF ⊆ Q is a set ofaccepting states. If there
existsq′ such thatq′ ∈ δ(q, a), we say thata exitsq. A run of Aonw = σ1σ2 . . . σn in
Γ ∗ is a sequence of statesr = r0, r1, . . . , rn such thatr0 ∈ Q0 and for every1 ≤ i ≤ n
it holds thatri ∈ δ(ri−1, σi). If rn ∈ F thenr is accepting. Note that a run may not
exist. If a run does exist, we say thatw is read alongA. The language ofA, denoted
L(A), is the set of words on which there exists an accepting run ofA.

Before defining variable automata with infinite alphabets, let us explain the idea
behind them. Consider the NFAA1 over the finite alphabet{x, y} appearing in Figure 1.
It is easy to see thatL(A1) = x · y∗ · x. Consider the languageL′ = {i1 · i2 · · · ik :
k ≥ 2, i1 = ik, andij 6= i1 for all 1 < j < k} over the alphabetN; that is,L′ contains
exactly all words in which the first letter is equal to the lastletter, and is different from
all other letters. SinceN is infinite, an NFW for it needs infinitely many states and
transitions. The idea behind variable automata is to label the transitions of the NFA by
both letters from the infinite alphabet and variables that can take values from it. For
example, if we refer tox as a bounded variable whose value is fixed once assigned,
and refer toy as a free variable, which can take changing values, different from the
value assigned tox, then the NFAA1, when viewed as a variable automaton overN,
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recognizes the languageL′. Also, if we want to remove the restriction about the letters
in the middle being different from the first letter, thus considerL′′ = {i1 · i2 · · · ik :
k ≥ 2 andi1 = ik}, we can label the self loop inA1 by bothx andy.

x x x x

x x x

x

y y, y, y, y1 1 1

1 1 1

A A A1 2 3

Fig. 1. The pattern automataA1, A2, andA3 for the VFAsA1, A2, andA3

We now definevariable finite automata(VFAs) formally. A VFA is a pairA =
〈Σ,A〉, whereΣ is an infinite alphabet andA is an NFA, to which we refer as the
pattern automaton ofA. The (finite) alphabet ofA is ΓA = ΣA ∪ X ∪ {y}, where
ΣA ⊂ Σ is a finite set ofconstant letters, X is a finite set ofbounded variablesandy
is a free variable. The variables inX ∪ {y} range overΣ \ΣA.

Consider a wordv = v1v2 . . . vn ∈ Γ ∗

A read alongA, and another wordw =
w1w2 . . . wn ∈ Σ∗. We say thatw is a legal instance ofv in A if

– vi = wi for everyvi ∈ ΣA,
– Forvi, vj ∈ X , it holds thatwi = wj iff vi = vj , andwi, wj /∈ ΣA and
– Forvi = y andvj 6= y, it holds thatwi 6= wj .

Intuitively, a legal instance ofv leaves all occurrences ofvi ∈ ΣA unchanged, asso-
ciates every occurrence ofvj ∈ X with the same unique letter, not inΣA, and associates
every occurrence ofy freely with letters fromΣ \ ΣA, different from these associated
with X variables.

We say that a wordv ∈ Γ ∗

A is a witnessing patternfor a wordw ∈ Σ∗ if w is a
legal instance ofv. Note thatv may be the witnessing pattern for infinitely many words
in Σ∗, and that a word inΣ∗ may have several witnessing patterns (or have none).
Given a wordw ∈ Σ∗, a run ofA on w is a run ofA on a witnessing pattern forw.
The language ofA, denotedL(A), is the set of words inΣ∗ for which there exists a
witnessing pattern inL(A).

Example 1.LetA2 = 〈Σ,A2〉 whereA2 is the automaton appearing in Figure 1. Then,
L(A2) is the language of all words inΣ∗ in which some letter appears at least twice.
By deleting thex1 labels from the self loops inA2, we get the language of all words in
which some letter appears exactly twice.

Example 2.Let A3 = 〈Σ,A3〉 whereA3 is the NFA appearing in Figure 1. Then
L(A3) is the language of all words inΣ∗ in which the last letter is different from all
the other letters.

Comparison with Other FormalismsIn terms of expressive power, VFAs are incompa-
rable with FMAs – the register automata of [10], but can be simulated by NFMA [9],
which extend FMAs with nondeterministic updates of the registers. Intuitively, the vari-
ables of a VFA are analogous to registers, but while a register can change its content
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during the run, a bounded variable cannot change the value assigned to it. VFAs are also
incomparable with data automata [2], yet a VFA with no constant letters can be simu-
lated by a data automaton. Intuitively, the transducers of data automata can be used in
order to check that the restrictions imposed by the pattern automaton apply.

In the full version, we elaborate more on the relation with the existing formalisms.
As detailed there, the examples showing the expressivenesssuperiority of the existing
formalisms are tightly related to their complexity, and we do not find them appealing
in practice. For example, it is not surprising that a formalism for which the emptiness
problem can be checked in NL (in Theorem 3 we show that emptiness of a VFA can
be reduced to emptiness of its pattern automaton) cannot recognize the language of
all words in which all letters are different. Data automata can recognize this language
since their notion of acceptance involves several runs, on different subwords of the
word. Of course, for some applications such an ability is important. VFAs, however, are
sufficiently strong to specify many natural properties, andfor many applications, we
rather give up the expressiveness superiority of the other formalisms for a simple and
computationally easy formalism.

3 Properties of VFAs

This section studies closure properties of VFAs and the decidability and complexity
of basic problems. We show that VFAs are closed under union and intersection, but
are not closed under complementation. In the computabilityfront, we show that while
the emptiness problem for VFAs is not harder than the one for NFAs, the membership
problem is harder, yet decidable, whereas the universalityand containment problems
are undecidable.

Theorem 1. VFAs are closed under union and intersection.

Consider two VFAsA1 = 〈Σ,A1〉 andA2 = 〈Σ,A2〉 with A1 = 〈Σ1 ∪ X1 ∪
{y1}, Q1, Q

1

0
, δ1, F1〉 andA2 = 〈Σ2 ∪X2 ∪ {y2}, Q2, Q

2

0
, δ2, F2〉.

We start with the union construction. The standard construction for NFAs, which
guesses whether to followA1 or A2, does not work for VFAs. To see why, note that
the range of the variables in a standard union construction would beΣ \ (Σ1 ∪ Σ2).
Accordingly, words inL(A1) in which variables are assigned values inΣ2 may be
missed, and dually forL(A2). We solve this problem by defining the union ofA1 and
A2 as a union of several copies of the underlying VFAs. In each copy, a subset of the
variables is taken care of, and transitions labeled by variables from the set are labeled
by constants of the other VFA.

We proceed to an intersection construction. Recall that in the product construction
for NFAs A1 andA2, the state space isQ1 × Q2, and 〈q′

1
, q′

2
〉 ∈ δ(〈q1, q2〉, a) iff

q′
1
∈ δ1(q1, a) andq′

2
∈ δ2(q2, a). SinceA1 andA2 are pattern automata of VFAs, the

lettera may be a variable. Accordingly, there are cases in which it should be possible to
intersect two differently labeled transitions: intersecting two transitions with different
bounded variables, meaning they get the same assignment inA1 and inA2; intersecting
a variable with a letterσ, meaning the variable is assignedσ; and intersecting the free
variabley with a bounded variablex or with a letterσ, meaning the assignment toy in
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this transition agrees with the assignment ofx or with σ. Accordingly, we would like to
defineδ such that forz ∈ Σ1 ∪Σ2 ∪X ∪ {y}, we have that〈q′

1
, q′

2
〉 ∈ δ(〈q1, q2〉, z) iff

there existz1 ∈ Σ1∪X1∪{y1} andz2 ∈ Σ2∪X2∪{y2} such thatq′
1
∈ δ1(q1, z1) and

q′
2
∈ δ2(q2, z2) and such thatz1 andz2 can be matched according to the cases described

above. Formally, we do this by taking several copies of the product construction of
the pattern automata, each associated with a relationH that matches the variables and
constant letters ofA1 with the variables and constant letters ofA2.

Theorem 2. VFAs are not closed under complementation.

Proof: Consider the VFAA2 of Example 1. Recall thatL(A2) contains exactly all
words inΣ∗ in which some letter appears at least twice. The complementL̃ of L(A2)
then contains exactly all words all of whose letters are different. It can be shown that
a VFA that recognizes̃L needs an unbounded number of variables, and therefore does
not exist. �

We now turn to study the decidability and complexity of the emptiness, membership
and universality problems for VFAs. Checking nonemptinessof existing formalisms
is complex and even undecidable. The fact that a bounded variable keeps its value
along the run makes the nonemptiness checking of VFAs very simple. In fact, a VFA
is nonempty iff its pattern automaton is nonempty. Beyond the straightforward algo-
rithm this induces, it shows that the VFA formalism is indeedvery close to the simple
formalism of NFAs.

Theorem 3. The nonemptiness problem for VFA is NL-complete.

Theorem 4. The membership problem for VFA is NP-complete.

The algorithms for the universality and containment problems for the finite-alphabet
case rely on the closure of NFAs under complementation, which does not hold for
VFAs. Similarly to [12], for register automata, the undecidability of the universality
problem for VFA is proved by a reduction from Post’s Correspondence Problem. Since
we can easily define a universal VFA, undecidability of the containment problem fol-
lows too.

Theorem 5. The universality and containment problems for VFAs are undecidable.

4 Deterministic VFA

In this section we define deterministic VFA and study their properties. We show that
deterministic VFA are simple, expressive, and are closed under all Boolean operations.
In addition, the nonemptiness, membership, universality,and containment problems are
all decidable for them.

Recall that an NFA is deterministic if|Q0| = 1 and for allq ∈ Q andσ ∈ Σ, we
have|δ(q, σ)| ≤ 1. Indeed, these syntactic conditions guarantee that the automaton has
at most one run on each input word. To see that such a syntacticcharacterization does
not exist for VFA, consider the VFAA appearing in Figure 2. Its pattern automaton is
deterministic, but the worda has two different runs inA: one in whichx1 is assigned
a, and one in whichx2 is assigneda. Thus, there is a need to define deterministic VFAs
in a non-syntactic manner.
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x1

x2
x1

y

x1

y,x1

DA

Fig. 2. A nondeterministic VFA whose pattern automaton is deterministic, and a DVFA that ac-
cepts all words in which the first letter is repeated at least twice

Definition 1. A VFAA = 〈Σ,A〉 is deterministic(DVFA, for short), if for every word
w ∈ Σ∗, there exists exactly one run ofA onw.

Example 3.Consider the VFAD = 〈Σ,D〉, whereD is the DFA appearing in Figure 2.
The language ofD is the set of all words overΣ in which the first letter is repeated at
least twice. To see that it is deterministic, consider a wordw = w1w2 . . . wn in Σ∗.
A witnessing pattern forw is overx1 andy. Since onlyx1 exits the initial state, then
x1 must be assignedw1, and all other occurrences of other letters must be assignedto
y. Therefore, every word that has a witnessing pattern has a single witnessing pattern.
SinceD is deterministic, every witnessing pattern has a single runin D. It is easy to
see that every word inΣ∗ can be read alongD. It follows thatD is deterministic.

Although for VFA, unlike NFA, the definition of determinization is semantic, an
equivalent syntactic definition does exist, as we show below.

Theorem 6. Deciding whether VFA is deterministic is NL-complete.

Proof: We start with the upper bound. Consider a VFAA = 〈Σ,A〉 with variables
X ∪ {y} and an initial stateqin. We claim thatA is not deterministic iff one of the
following holds.

– A is nondeterministic, or
– there exists a reachable states such that there exist two bounded variablesx andx′

that exits, and a path fromqin that reachess and does not containx andx′, or
– there exists a bounded variablex such that bothx andy exit s, and a path fromqin

that reachess but does not containx, or
– there exists a reachable states such that there exists a constant letter that does not

exit s, or a variable that appears along a path fromqin to s that does not exits.

Intuitively, the first three conditions check that each wordw ∈ Σ∗ has at most
one run inA. Then, the last condition checks thatw has at least one run. In order to
implement the above check in NL, we guess the condition that is violated, and check
that it is indeed violated. Since NL is closed under complementation, we are done. The
lower bound can be shown by a reduction from the reachabilityproblem. �

Note that Theorem 6 refers to the problem of deciding whethera given VFA is
deterministic and not whether it has an equivalent DVFA. As we show in the sequel, the
latter problem is much harder.

We now turn to study the closure properties of DVFAs. Note that closure under
union and intersection does not follow from Theorem 1, as here we want to end up with
a DVFA and not with a VFA. In order to study the closure properties, we introduce
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anunwinding operatorfor VFAs. Given a VFA overΣ with a pattern automatonA =
〈ΣA ∪X ∪ {y}, Q,Q0, δ, F 〉, theunwindingof A is the VFAU = 〈Σ,U〉, with U =
〈ΣA ∪ X ∪ {y}, Q × 2X , 〈Q0, ∅〉, ρ, F × 2X〉, whereρ is defined, for every〈q, θ〉 ∈
Q× 2X andz ∈ ΣA ∪X ∪ {y} as follows.

ρ(〈q, θ〉, z) =

{

δ(q, z)× {θ ∪ {z}} z ∈ X

δ(q, z)× {θ} z ∈ ΣA ∪ {y}
(1)

Intuitively, the states inU keep track of the set of bounded variables that have been
assigned along the paths from the initial state. A run ofA corresponds to a run ofU in
which every state is augmented with the set of bounded variables that have appeared ear-
lier in the run. Also, a run ofU corresponds to a run ofA along which the assignments
have been accumulated. Therefore, we have that a VFA is equivalent to its unwinding.

We start with union and intersection. The constructions have the construction for
DFAs in their basis, applied to the unwinding of the DVFA.

Theorem 7. DVFA are closed under union and intersection.

Proof: The constructions for union and intersection both rely on the unwinding of the
DVFAs. Since there is a one-to-one correspondence between runs of a VFA and its
unwinding, a VFA is deterministic iff its unwinding is deterministic. LetU1 andU2 be
the unwindings of two DVFAs with pattern automataU1 andU2, respectively.

Consider two statesq1 andq2 in U1 andU2, respectively. The intersection construc-
tion is based on the product construction ofU1 andU2. Each state in the unwinding
introduces at most one new bounded variable (Theorem 6). If new bounded variables
x1 andx2 exit q1 andq2 respectively, the construction matchesx1 andx2 together to
form a new bounded variable. Similarly for ay1 transition and a new bounded variable
x2. Transitions labeled byy1 andy2 are matched together to form ay transition. The
states of the intersection construction keep track of the matchings of bounded variables.

The union ofU1 andU2 is constructed on top of the intersection construction. Intu-
itively, a run on the union construction continues along both DVFAs as long as possible.
Once it cannot continue alongU1 (w.l.o.g.), it continues along a copy ofU2 . As in the
proof of Theorem 1, several such copies are taken, in which constants ofU1 are assigned
to variables ofU2. �

The fact that a DVFA has exactly one run on each input word makes its comple-
mentation easy: one only has to complement the pattern automaton. Formally, we have
the following.

Theorem 8. Given a DVFAA = 〈Σ,A〉 with a set of statesQ and a set of accepting
statesF , let Ã be the pattern automaton obtained fromA by defining its set of accepting
states to beQ \ F , and letÃ = 〈Σ, Ã〉. Then,L(Ã) = Σ∗ \ L(A).

We now study the computability of the DVFA model. We first study the problems of
nonemptiness and membership. As argued in the proof of Theorem 3, a VFA is empty
iff its pattern automaton is empty. Since the nonemptiness problem in NL-complete also
for DFAs, the NL-complete complexity there applies also forDVFAs. For the member-
ship problem, determinism makes the problem easier.
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Theorem 9. The membership problem for DVFA is in PTIME.

We note that the question of whether the membership problem is PTIME-hard, or in
NL is still open, and we suspect that it is very difficult, as ithas the same flavor of the
long-standing open problem of the complexity of one-path LTL model checking [11].
We now turn to study the universality and containment problems and show that they are
decidable.

Theorem 10. The universality problem for DVFA is NL-complete.

This result follows from the NL-completeness of the emptiness problem, and from
the fact that complementation only involves a dualization of the acceptance condi-
tion. Since DVFA are closed under complementation and instersection, the containment
problem is also decidable. In fact, we have the following.

Theorem 11. The containment problem for DVFA is in co-NP.

4.1 Determinization

In this section we show that not all VFAs have an equivalent DVFA, and the problem of
determinizing a given VFA (or concluding that no equivalentDVFA exists) is undecid-
able. As good news, we point to a fragment of VFAs that can always be determinized.

One evidence that not all VFAs have an equivalent DVFA is the fact that while
DVFA are closed under complementation, VFA are not. As a specific example, which
also demonstrates the weakness of DVFA, consider the VFAA2 of Example 1. In the
proof of Theorem 2, we showed that there is no VFA for the complement ofA2. Since
DVFAs are closed under complementation, it follows that there is also no DVFA equiv-
alent toA2.

Theorem 12. The problem of determinizing a given VFA (or concluding thatno equiv-
alent DVFA exists) is undecidable.

Proof: Assume by way of contradiction that there is a Turing MachineM that, given
a VFA, returns an equivalent DVFA or returns that no such DVFAexists. We construct
from M a Turing machineM ′ that decides the universality problem for VFA, which,
according to Theorem 5, is undecidable.

The machineM ′ proceeds as follows. Given a VFAA, it runsM onA. If M returns
thatA does not have an equivalent DVFA, thenM ′ returns thatA is not universal.
Otherwise,M ′ returns a DVFAA′ equivalent toA. By Theorem 10,M ′ can then check
A′ for universality. �

However, it turns out that VFA have an expressive determinizable fragment.

Definition 2. A VFA issyntactically determinizableif it has noy transitions.

For example, consider the syntactically determinizable VFA A = 〈{a, . . . , z}∗, A〉,
appearing in Figure 3. The VFAA accepts all words of the form
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url=www.x1.com;email=z@x1.com or
url=www.x2.t.com;email=z@x2.t.com,

wherex1, x2, t, andz are words over the alphabet{a, . . . , z}. Thus,A makes sure that
the domain of the url agrees with that of the email, and it nondeterministically branches
to allow both domain of the formx.com and of the formx.t.com.

url=www. .com;email= @ .comx xz

x
. t .com;email= @ xz

1

2

t

1

2 . .com

Fig. 3.A syntactically determinizable VFA

Theorem 13. A syntactically determinizable VFA has an equivalent DVFA.

The full details of the construction are given in the full paper. Here, we show the
result of applying the algorithm on the VFA described in Figure 3. For clarity, we do
not include in the figure the transition to the rejecting sinks.

url=www. .com;email= @ .comx xz

.

t .com;email= @ xz t. .com

Fig. 4. The DVFA equivalent to the VFA from Figure 3

5 Variable Büchi Automata

In [6], Büchi extended NFAs to nondeterministic Büchi automata, which run on infinite
words. The similarity between VFAs and NFAs enables us to extend VFAs to nondeter-
ministic variable Büchi automata (VBA, for short). Formally, a VBA is A = 〈Σ,A〉,
whereA is a nondeterministic Büchi automaton (NBA). Thus, a run ofthe pattern au-
tomatonA is accepting iff it visits the set of accepting states infinitely often. Similar
straightforward extensions can be described for additional acceptance conditions for
infinite words. As we specify below, the properties and decision procedures for VFAs
generalize to VBA in the expected way, demonstrating the robustness of the VFA for-
malism.

We start with closure properties. The union construction for VBA is identical to
the union construction for VFA. The intersection construction for NBAs involves two
copies of the product automaton. Recall that the intersection construction for VFAs
involves several copies of the product automaton. Combining the two constructions, we
construct the intersection of two VBAs by taking two copies of these several copies.
Therefore, we have the following.
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Theorem 14. VBA and DVBA are closed under union and intersection.

As with VFAs, VBAs are not closed under complementation. Recall that a DVFA
can be complemented by complementing its pattern automaton. Since deterministic
Büchi automata are not closed under complementation, so are DVBA. Like determinis-
tic Büchi automata, a DVFA can be complemented to a VBA, by translating its pattern
automaton to a complementing NBA.

Theorem 15. VBAs and DVBAs are not closed under complementation. A DVBA can
be complemented to a VBA.

As for the various decision problems, the complexities and reductions of VFAs all
apply, with minor modifications.

Theorem 16. – The nonemptiness problem for VBA and DVBA is NL-complete.
– The membership problem for VBA is NP-complete and for DVBA isin PTIME.
– The containment problem for VBA is undecidable and for DVBA is in co-NP.
– Deciding whether a given VBA is a DVBA is NL-complete.
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