Variable Automata over Infinite Alphabets

Orna Grumberyy Orna Kupfermah, and Sarai Sheinvaid

1 Department of Computer Science, The Technion, Haifa 3260&el
2 School of Computer Science and Engineering, Hebrew Urityedgrusalem 91904, Israel

Abstract. Automated reasoning about systems with infinite domaingires|an
extension of regular automataittfinite alphabetsExisting formalisms of such
automata cope with the infiniteness of the alphabet by additize automaton a
set of registers or pebbles, or by attributing the alphajpéalbels from an auxil-
iary finite alphabet that is read by an intermediate transduthese formalisms
involve a complicated mechanism on top of the transitiorcfiam of automata
over finite alphabets and are therefore difficult to undestnd to work with.
We introduce and studyariable finite automata over infinite alphabei¢FA).
VFA form a natural and simple extension of regular (ardegular) automata, in
which the alphabet consists of letters as well as varialilas range over the
infinite alphabet domain. Thus, VFAs have the same struasreegular au-
tomata, only that some of the transitions are labeled byakées. We compare
VFA with existing formalisms, and study their closure prdjes and classical
decision problems. We consider the settings of both finitkiafinite words. In
addition, we identify and study the deterministic fragmeinFA. We show that
while this fragment is sufficiently strong to express martgiiesting properties,
itis closed under union, intersection, and complementatad its nonemptiness
and containment problems are decidable. Finally, we deseideterminization
process for a determinizable subset of VFA.

1 Introduction

Automata-based formal methods are successfully appliadtomated reasoning about
systems. When the systems are finite-state, their behaaiatspecifications can be
modeled by finite automata. When the systems are infinite;st@asoning is undecid-
able, and research is focused on identifying decidableiapeases (e.g., pushdown
systems) and on developing heuristics (e.g., abstract@anjoping with the general
case.

One type of infinite-state systems, motivating this worle, systems in which the
control is finite and the source of infinity is data. This irdss, for example, software
with integer parameters [3], datalog systems with infindeadlomain [15, 4], and XML
documents, whose leaves are typically associated with\ddiies from some infinite
domain [7, 5]. Lifting automata-based methods to the sgitihsuch systems requires
the introduction of automata withfinite alphabets®

The transition function of a nondeterministic automatoerdinite alphabets (NFA)
maps a state and a letter to a set of states the automaton may move to when it is in

3 Different approaches for automatically reasoning aboohsystems are based on extensions
of first-order logic [2] and linear temporal logics [8].

2 O. Grumberg, O. Kupferman, and S. Sheinvald

stateq and the letter in the input is. When the alphabet of the automaton is infinite,
specifying all transitions is impossible, and a new forsralis needed in order to rep-
resent them in a finite manner. Existing formalisms of aut@amath infinite alphabets
fulfill this task by augmenting the automaton tggistersor pebblesor by attributing
the alphabet by labels from an auxilary finite alphabet thaead by an intermediate
transducer. We elaborate of the existing formalisms below.

A register automaton [13] has a finite set of registers, edathich may contain
a letter from the infinite alphabet. The transitions of a s&gyiautomaton compare the
letter in the input with the content of the registers, and ralsp store the input letter
in a register. Several variants of this model have beenetluéior example, [10] forces
the content of the registers to be different, [12] adds a#tBon and two-wayness, and
[9] allows the registers to change their content nondetgigtically during the run.

A pebble automaton [12] places pebbles on the input word tagkdike manner.
The transitions of a pebble automaton compare the lettdreiimput with the letters in
positions marked by the pebbles. Several variants of thidaiwave been studied. For
example, [12] studies alternating and two-way pebble aatamand [14] introduces
top-view weak pebble automata.

The newest formalism idata automatd2, 1]. For an infinite alphabel’, a data
automaton runs odata words which are words over the alphabBtx F', whereF is
a finite auxilary alphabet. Intuitively, the finite alphaleaccessed directly, while the
infinite alphabet can only be tested for equality, and is deethducing an equivalence
relation on the set of positions. Technically, a data automaonsists of two compo-
nents. The first is a letter-to-letter transducer that rumshe projection of the input
word on F' and generates words over yet another alphébédthe second is a regular
automaton that runs on subwords (determined by the equisalelasses) of the word
generated by the transducer.

The quality of a formalism is measured by its simplicity, eegsive power, compo-
sitionality, and computability. Isimplicity, we refer to the effort required in order to
understand a given automaton, work with it, and implememtitompositionalitywe
refer to closure under the basic operations of union, ietgisn, and complementation.
In computability we refer to the decidability and complexity of classicallgems like
nonemptiness, membership, universality, and containment

The formalisms of register, pebble, and data automata dllhard the simplicity
criterion. Augmenting NFAs with registers or pebbles requires a suatisianodifica-
tion of the transition function. The need to maintain theistsgs and pebbles makes
the automata hard to understand and work with. Unfortupatebst researchers in the
formal-method community are not familiar with register grebble automata. Indeed,
even the definition of the basic notion of a run of such autammahnot simply rely on
the familiar definition of a run of an NFA, and involves the ioos of configurations,
successive configurations, and so on, with no possibleaitsrt

Data automata do not come to the rescue. The need to accepalssvbwords per
input word and to go through an intermediate alphabet amddhacer makes them very
complex. Even trivial languages such @srequire extra letters and checks in order
to be recognized. Simplicity is less crucial in the procdssubomatic algorithms, and
indeed, data automata have been succesfully used for thdatddity of two-variable

Variable Automata over Infinite Alphabets 3

first order logic on words with data - a formalism that is vesgful in XML reasoning
[2,1]. For the purpose of specification and design, and feelbping new algorithms
and applications, simplicity is crucial. A simpler, fridie formalism is needed.

Data and register automata and most of their variants faittmpositionality and
computability criteria too. Data automata and registepanaita are not closed under
complementation, apart from specific fragments of regat¢omata that limit the num-
ber of registers [8]. Their universality and containmemtpems are undecidable [12].
Pebble automata and most of their variants fail the comjilityabriterion, as apart
from weaker models [14], their nonemptiness, universadityl containment problems
are undecidable. Nonemptiness of data and register automaecidable, but is far
more complex than the easy reachability-based nonemptaigsrithm for NFAs.

We introduce and study a new formalism for recognizing laggs over infinite
alphabets. Our formalisnvariable finite automatdVFA), forms a natural and simple
extension of NFAs. We also identify and study a fragment ofAVfat fulfills the sim-
plicity, compositionality, and computability criteriand is still sufficiently expressive
to specify many interesting properties. Intuitively, a VisAan NFA some of whose
letters are variables ranging over the infinite alphabeg fight connection with NFAs
enables us to apply much of the constructions and algorikmoan for them.

More formally, a VFA is a paitd = (X, A), whereX is an infinite alphabet and
A'is an NFA, referred to as thgattern automatorof 4. The alphabet ofd consists
of constant letters- a finite subset of, a set ofbounded variablesand a singldree
variable The language ofd consists of words in¥* that are formed by assigning
letters inX to the occurrences of variables in words in the language &ach bounded
variable is assigned a different letter (also differentfrthe constant letters), thus all
occurrences of a particular bounded variable must be a=gigre same letter. This
allows describing words it0* in which some letter is repeated. The free variable may
be assigned different letters in every occurrence, diffefrem the constant letters and
from letters assigned to the bounded variables. This alliesribing words in which
every letter may appear. For example, consider a VFA= (N, A), where A has a
bounded variable and its free variable ig. if the language ofd is (z + y)* - = - (z +
y)* -z - (x 4+ y)*, then the language o consists of all words oveé¥ in which at least
some letter occurs at least twice.

We prove that VFAs are closed under union and intersectitie. donstructions
we present use the union and product constructions for NRAsdir basis, but some
pirouettes are needed in order to solve conflicts betwederdift assignments to the
variables of the underlying automata. Such pirouettes aljgldss for the problem of
complementation, and we prove that VFAs are not closed urmaplementation. We
study the classical decision problems for VFAs. We showdhaEA is nonempty iff its
pattern automaton is nonempty. Thus, the nonemptinessgmndb NL-complete, and
is not more complex than the one for NFAs. We also show thatibership problem
is NP-complete. Thus, while the problem is more complex tharone for NFAs, it is
still decidable. The universality and containment protdehowever, are undecidable.

We then define and studieterministic VFADVFA), a fragment of VFA in which
there exists exactly one run on every word. Unlike the caderis, determinism is
not a syntactic property. Indeed, since the variables arpmoeassigned, there may be

4 O. Grumberg, O. Kupferman, and S. Sheinvald

several runs on a word even when the pattern automaton isntleistic. However, a
syntactic definition does exist and deciding whether a gities is deterministic is NL-
complete. We introduce amwinding operatofor VFAs. In an unwinded VFA, each
state is labeled by the variables that have been read, arefdhe assigned, in paths
leading to the state. Using the unwinding operator, we céinel®VFAs for the union
and intersection of DVFAs. Moreover, the closure under demgentation of DVFAS
is immediate, and it enables us to solve the universalitycamdainment problems for
DVFAs. Thus, DVFAs suggest an expressive formalism thdill&ithe three criteria.

We study further properties of DVFA. As bad news, we show thatproblem of
determinizing a given VFA (or concluding that no equivalBMFA exists) is undecid-
able. As good news, we show that all VFAs with no free varidtdee an equivalent
DVFA, and present a determinization process for VFAs of kitisl. The advantages of
DVFA make us optimistic about the extensions of algorithhvet involve DFASs, like
symbolic formal verification and synthesis, to the settifinfinite alphabets.

We demonstrate the robustness of our formalism by showiagith extension to
the setting ofu-regular words is straightforward. In Section 5, we introeland study
variable Bichi automatgVBAS), whose pattern automata are nondeterministic Biich
automata on infinite words [6]. VBAs are useful for specifyilanguages of infinite
words over infinite alphabets, and in particular, specificet of systems with variables
ranging over infinite domains. We show that the known refatietween NFAs and
nondeterministic Blichi automata extends to a relatiowéen VFAs and VBAs. This
enables us to easily lift the properties and decision proeedwe presented for VFA to
the setting of VBAs.

2 \Variable Automata over Infinite Alphabets

A nondeterministic finite automaton (NFA) is a tuple = (I, @, Qo, 0, F'), where
I is a finite alphabet() is a finite set ofstates Qo C @ is a set ofinitial states
§: Q x I' = 29 is atransition functionandF C Q is a set ofaccepting statesf there
existsq’ such thaty € é(q, a), we say that exitsq. A run of Aonw = o102...0, in
I'* is a sequence of states= rg,rq, ..., r, suchthaty, € Qg and for everyi g 1<n
it holds thatr; € 6(r;—1,0;). If , € F thenr is accepting Note that a run may not
exist. If a run does exist, we say thatis read alongA. The language ofi, denoted
L(A), is the set of words on which there exists an accepting ru. of

Before defining variable automata with infinite alphabed$,us explain the idea
behind them. Consider the NFEA; over the finite alphabedtz, y} appearing in F|gure 1.
It is easy to see that(A4,) = x - y* - z. Consider the language’ = {i1 - io---ix :
k> 2,4, =iy, andi; # ¢; forall 1 < j < k} over the alphabé¥; that is, L’ contains
exactly all words in which the first letter is equal to the lester, and is different from
all other letters. Sinc& is infinite, an NFW for it needs infinitely many states and
transitions. The idea behind variable automata is to ldteetriansitions of the NFA by
both letters from the infinite alphabet and variables that teke values from it. For
example, if we refer tac as a bounded variable whose value is fixed once assigned,
and refer toy as a free variable, which can take changing values, diftdrem the
value assigned ta, then the NFAA;, when viewed as a variable automaton oMer

Variable Automata over Infinite Alphabets 5

recognizes the languadg. Also, if we want to remove the restriction about the letters
in the middle being different from the first letter, thus cioles L = {1 - i3 i), :
k > 2 andiy = i}, we can label the self loop iA; by bothz andy.

y Y, X X X y
oo S8 Bep
A A> A3

Fig. 1. The pattern automatd,, Az, andA; for the VFAsA;, A2, and.A;

We now definevariable finite automatgVFAs) formally. A VFA is a pairA =
(X, A), whereX' is an infinite alphabet and is an NFA, to which we refer as the
pattern automaton of4. The (finite) alphabet ol is 'y = X4 U X U {y}, where
X4 C X is afinite set otonstant lettersX is a finite set obounded variableandy
is afree variable The variables inX U {y} range over \ X'4.

Consider a wordy = vjvy...v, € I'; read along4, and another wordv =
wiws ... w, € X*. We say thatv is alegal instance of in A if

— v; = w; foreveryv; € X4,
— Forwv;,v; € X, it holds thatw; = w; iff v; = v;, andw;, w; ¢ X4 and
— Forv; = y andv; # v, it holds thatw; # w;.

Intuitively, a legal instance of leaves all occurrences of € 34 unchanged, asso-
ciates every occurrence of € X with the same unique letter, noti,, and associates
every occurrence af freely with letters fromX' \ X4, different from these associated
with X variables.

We say that a word € I} is awitnessing patterrfior a wordw € X* if w is a
legal instance of. Note thaty may be the witnessing pattern for infinitely many words
in X*, and that a word in”* may have several withessing patterns (or have none).
Given a wordw € X*, arun of 4 onw is a run of A on a withessing pattern far.

The language of4, denotedL(.A), is the set of words ir&* for which there exists a
witnessing pattern i (A).

Example 1.Let A, = (¥, A5) whereA, is the automaton appearing in Figure 1. Then,
L(A,) is the language of all words i&* in which some letter appears at least twice.
By deleting ther; labels from the self loops id2, we get the language of all words in
which some letter appears exactly twice.

Example 2.Let A5 = (X, A3) where A; is the NFA appearing in Figure 1. Then
L(Aj3) is the language of all words i&* in which the last letter is different from all
the other letters.

Comparison with Other Formalismm terms of expressive power, VFAs are incompa-
rable with FMAs — the register automata of [10], but can beusited by NFMA [9],
which extend FMAs with nondeterministic updates of thesegs. Intuitively, the vari-
ables of a VFA are analogous to registers, but while a registe change its content

6 O. Grumberg, O. Kupferman, and S. Sheinvald

during the run, a bounded variable cannot change the vasigresl to it. VFAs are also
incomparable with data automata [2], yet a VFA with no consketters can be simu-
lated by a data automaton. Intuitively, the transducersatd dutomata can be used in
order to check that the restrictions imposed by the pattetonaaton apply.

In the full version, we elaborate more on the relation with éxisting formalisms.
As detailed there, the examples showing the expressivengssiority of the existing
formalisms are tightly related to their complexity, and werbt find them appealing
in practice. For example, it is not surprising that a forswlifor which the emptiness
problem can be checked in NL (in Theorem 3 we show that emgtinéa VFA can
be reduced to emptiness of its pattern automaton) cannognée the language of
all words in which all letters are different. Data automeada cecognize this language
since their notion of acceptance involves several runs,ifferent subwords of the
word. Of course, for some applications such an ability isongnt. VFAs, however, are
sufficiently strong to specify many natural properties, fmdmany applications, we
rather give up the expressiveness superiority of the ottvendlisms for a simple and
computationally easy formalism.

3 Properties of VFAs

This section studies closure properties of VFAs and thedaddlity and complexity
of basic problems. We show that VFAs are closed under uniahiratersection, but
are not closed under complementation. In the computalbibiyt, we show that while
the emptiness problem for VFAs is not harder than the one fé&d\the membership
problem is harder, yet decidable, whereas the universaltity containment problems
are undecidable.

Theorem 1. VFAs are closed under union and intersection.

Consider two VFAsA; = (X, A;) and Ay = (X, Ao) with 47 = (¥ U X, U
{y1},Q1,Qf,01, F1) and Ay = (X3 U X5 U {y2}, Q2, QF, 62, F2).

We start with the union construction. The standard constmdor NFAs, which
guesses whether to followt; or A,, does not work for VFAs. To see why, note that
the range of the variables in a standard union constructmmcvbe X \ (X U Xs).
Accordingly, words inL(A;) in which variables are assigned valueslh may be
missed, and dually fof (A2). We solve this problem by defining the union.4f and
As as a union of several copies of the underlying VFAs. In eaglyca subset of the
variables is taken care of, and transitions labeled by kbesafrom the set are labeled
by constants of the other VFA.

We proceed to an intersection construction. Recall thaténproduct construction
for NFAs A; and A,, the state space i§; x Q2, and{q},q5) € §({q1,q2),a) iff
q; € 91(q1,a) andg), € 62(g2,a). SinceA; and A, are pattern automata of VFAs, the
lettera may be a variable. Accordingly, there are cases in whichatikhbe possible to
intersect two differently labeled transitions: intergegttwo transitions with different
bounded variables, meaning they get the same assignmdatand inA,; intersecting
a variable with a lettesr, meaning the variable is assignefdand intersecting the free
variabley with a bounded variable or with a letters, meaning the assignmentgan

Variable Automata over Infinite Alphabets 7

this transition agrees with the assignmentafr with o. Accordingly, we would like to
defined such that for € Xy U Xy U X U {y}, we have thatq], ¢5) € 6({q1, g2), 2) iff
there existy € X3 UX; U{y1} andze € X5 U X, U{ys} such that) € d1(q1,21) and

q5 € 92(q2, 22) and such that; andz, can be matched according to the cases described
above. Formally, we do this by taking several copies of thredpct construction of
the pattern automata, each associated with a rel@idhat matches the variables and
constant letters afl; with the variables and constant letters4f.

Theorem 2. VFAs are not closed under complementation.

Proof: Consider the VFAA, of Example 1. Recall thak(.4;) contains exactly all
words in2* in which some letter appears at least twice. The completharitL (A»)

then contains exactly all words all of whose letters areedéht. It can be shown that

a VFA that recognized needs an unbounded number of variables, and therefore does
not exist. O

We now turn to study the decidability and complexity of thepgimess, membership
and universality problems for VFAs. Checking nonemptinefsexisting formalisms
is complex and even undecidable. The fact that a boundedblarkeeps its value
along the run makes the nonemptiness checking of VFAs vemplsi In fact, a VFA
is nonempty iff its pattern automaton is nonempty. Beyoral straightforward algo-
rithm this induces, it shows that the VFA formalism is indeedy close to the simple
formalism of NFAs.

Theorem 3. The nonemptiness problem for VFA is NL-complete.
Theorem 4. The membership problem for VFA is NP-complete.

The algorithms for the universality and containment protséor the finite-alphabet
case rely on the closure of NFAs under complementation, twhimes not hold for
VFAs. Similarly to [12], for register automata, the undeddity of the universality
problem for VFA is proved by a reduction from Post's Corresgence Problem. Since
we can easily define a universal VFA, undecidability of thatagnment problem fol-
lows too.

Theorem 5. The universality and containment problems for VFAs are aittddle.

4 Deterministic VFA

In this section we define deterministic VFA and study theoparties. We show that
deterministic VFA are simple, expressive, and are closettuall Boolean operations.
In addition, the nonemptiness, membership, universalitgl,containment problems are
all decidable for them.

Recall that an NFA is deterministic €| = 1 and for allg € Q ando € X, we
have|d(g,0)| < 1. Indeed, these syntactic conditions guarantee that theereaion has
at most one run on each input word. To see that such a synthaiacterization does
not exist for VFA, consider the VFA4 appearing in Figure 2. Its pattern automaton is
deterministic, but the word has two different runs itd: one in whichz; is assigned
a, and one in which:, is assigned. Thus, there is a need to define deterministic VFAs
in a non-syntactic manner.

8 O. Grumberg, O. Kupferman, and S. Sheinvald y
xi @

X1 X1

A D

Fig. 2. A nondeterministic VFA whose pattern automaton is deteistiz) and a DVFA that ac-
cepts all words in which the first letter is repeated at |leaitet

Definition 1. AVFAA = (X, A) is deterministigd DVFA, for short), if for every word
w € X*, there exists exactly one run gfonw.

Example 3.Consider the VFAD = (X, D), whereD is the DFA appearing in Figure 2.
The language oD is the set of all words oveX' in which the first letter is repeated at
least twice. To see that it is deterministic, consider a worek wiws . .. w, in X*.

A witnessing pattern fot is overxz; andy. Since onlyz; exits the initial state, then
x1 must be assigned;, and all other occurrences of other letters must be assigned
y. Therefore, every word that has a witnessing pattern hasgesivitnessing pattern.
Since D is deterministic, every witnessing pattern has a singleimub. It is easy to
see that every word id™* can be read alonfy. It follows thatD is deterministic.

Although for VFA, unlike NFA, the definition of determinizah is semantic, an
equivalent syntactic definition does exist, as we show below

Theorem 6. Deciding whether VFA is deterministic is NL-complete.

Proof: We start with the upper bound. Consider a VA= (X, A) with variables
X U {y} and an initial statey;,,. We claim thatA is not deterministic iff one of the
following holds.

— A is nondeterministic, or

— there exists a reachable statsuch that there exist two bounded varialtendzx’
that exits, and a path frong,,, that reaches and does not containandzx’, or

— there exists a bounded variablesuch that both: andy exit s, and a path frong;,,
that reaches but does not contaim, or

— there exists a reachable statsuch that there exists a constant letter that does not
exit s, or a variable that appears along a path figmto s that does not exit.

Intuitively, the first three conditions check that each warde X* has at most
one run inA. Then, the last condition checks thathas at least one run. In order to
implement the above check in NL, we guess the condition thaidlated, and check
that it is indeed violated. Since NL is closed under completatgon, we are done. The
lower bound can be shown by a reduction from the reachalpitiplem. d

Note that Theorem 6 refers to the problem of deciding whethgiven VFA is
deterministic and not whether it has an equivalent DVFA. A&ssvow in the sequel, the
latter problem is much harder.

We now turn to study the closure properties of DVFAs. Note tHasure under
union and intersection does not follow from Theorem 1, as agr want to end up with
a DVFA and not with a VFA. In order to study the closure prositwe introduce

Variable Automata over Infinite Alphabets 9

anunwinding operatofor VFAs. Given a VFA overX with a pattern automatoA =
(ZaUX U{y},Q,Qo, 9, F), theunwindingof A is the VFAU = (X, U), withU =
(XaUXU{y}Q x 2% (Qo,0), p, F x 2%), wherep is defined, for everyq, 0) €
Q x 2% andz € ¥4 U X U {y} as follows.

{6(q,z) x{0U{z}} zeX
(g, z) x {0} z€ XaU{y}

Intuitively, the states it/ keep track of the set of bounded variables that have been
assigned along the paths from the initial state. A ruplaforresponds to a run éf in
which every state is augmented with the set of bounded Vasabat have appeared ear-
lier in the run. Also, a run of{ corresponds to a run of along which the assignments
have been accumulated. Therefore, we have that a VFA is&equimo its unwinding.

We start with union and intersection. The constructionshtie construction for
DFAs in their basis, applied to the unwinding of the DVFA.

p((a:0),2) = (1)

Theorem 7. DVFA are closed under union and intersection.

Proof: The constructions for union and intersection both rely enthwinding of the
DVFAs. Since there is a one-to-one correspondence betweenaf a VFA and its
unwinding, a VFA is deterministic iff its unwinding is detainistic. Letl/; andi/; be
the unwindings of two DVFAs with pattern automdfa andUs,, respectively.

Consider two stategg andqg, in U; andUs, respectively. The intersection construc-
tion is based on the product constructionlaf and U;. Each state in the unwinding
introduces at most one new bounded variable (Theorem 6gwfliounded variables
x1 andzs exit ¢; andgs respectively, the construction matchesandzs together to
form a new bounded variable. Similarly foga transition and a new bounded variable
xo. Transitions labeled by; andy, are matched together to formyetransition. The
states of the intersection construction keep track of thtehirggs of bounded variables.

The union of4/; andif; is constructed on top of the intersection constructionu-Int
itively, a run on the union construction continues alondhlid¥FAs as long as possible.
Once it cannot continue alordg (w.l.0.g.), it continues along a copy b, . As in the
proof of Theorem 1, several such copies are taken, in whiobteats ot/; are assigned
to variables offs. [l

The fact that a DVFA has exactly one run on each input word makecomple-
mentation easy: one only has to complement the pattern atitom~ormally, we have
the following.

Theorem 8. Given a DVFAA = (X, A) with a set of state§) and a set of accepting
statesr”, let A be the pattern automaton obtained frotby defining its set of accepting
states to b&) \ F, and letA = (X, A). Then,L(A) = X*\ L(A).

We now study the computability of the DVFA model. We first stakde problems of
nonemptiness and membership. As argued in the proof of Ene8r a VFA is empty
iff its pattern automaton is empty. Since the nonemptinesisipm in NL-complete also
for DFAs, the NL-complete complexity there applies alsolDMFAs. For the member-
ship problem, determinism makes the problem easier.

10 O. Grumberg, O. Kupferman, and S. Sheinvald

Theorem 9. The membership problem for DVFA is in PTIME.

We note that the question of whether the membership prold&miME-hard, orin
NL is still open, and we suspect that it is very difficult, abdis the same flavor of the
long-standing open problem of the complexity of one-path biodel checking [11].
We now turn to study the universality and containment proisland show that they are
decidable.

Theorem 10. The universality problem for DVFA is NL-complete.

This result follows from the NL-completeness of the empsmproblem, and from
the fact that complementation only involves a dualizatiérthe acceptance condi-
tion. Since DVFA are closed under complementation andiisst¢ion, the containment
problem is also decidable. In fact, we have the following.

Theorem 11. The containment problem for DVFA is in co-NP.

4.1 Determinization

In this section we show that not all VFAs have an equivalenEByand the problem of
determinizing a given VFA (or concluding that no equivalBMFA exists) is undecid-
able. As good news, we point to a fragment of VFAs that can ydviee determinized.
One evidence that not all VFAs have an equivalent DVFA is t that while

DVFA are closed under complementation, VFA are not. As aifipexample, which
also demonstrates the weakness of DVFA, consider the MEAf Example 1. In the
proof of Theorem 2, we showed that there is no VFA for the ceamant of 4. Since

DVFAs are closed under complementation, it follows thatéhe also no DVFA equiv-
alenttoA,.

Theorem 12. The problem of determinizing a given VFA (or concluding tiaequiv-
alent DVFA exists) is undecidable.

Proof: Assume by way of contradiction that there is a Turing Machifi¢hat, given

a VFA, returns an equivalent DVFA or returns that no such D\é&x#sts. We construct
from M a Turing machineV/’ that decides the universality problem for VFA, which,
according to Theorem 5, is undecidable.

The machineV/’ proceeds as follows. Given a VEA, itrunsM on A. If M returns
that A does not have an equivalent DVFA, théf’ returns that4 is not universal.
Otherwise M’ returns a DVFAA’ equivalent tad. By Theorem 10}’ can then check
A’ for universality. O

However, it turns out that VFA have an expressive determabliz fragment.
Definition 2. A VFA issyntactically determinizabliéit has noy transitions.

For example, consider the syntactically determinizabl&\E = ({a,...,z}*, A),
appearing in Figure 3. The VFA accepts all words of the form

Variable Automata over Infinite Alphabets 11

url =www. z;. com emai | =2@;. com or
ur | =www. . t. com enmi | =z@xs. t. cOm

wherex, x2, t, andz are words over the alphabgt, . . ., z}. Thus, A makes sure that
the domain of the url agrees with that of the email, and it mdexdninistically branches
to allow both domain of the form. comand of the forme. ¢. com

Fig. 3. A syntactically determinizable VFA

Theorem 13. A syntactically determinizable VFA has an equivalent DVFA.

The full details of the construction are given in the full papHere, we show the
result of applying the algorithm on the VFA described in Fg3. For clarity, we do
not include in the figure the transition to the rejecting sink

url=www. X .com;email= z @ C X C .com C

¢ .com

Fig. 4. The DVFA equivalent to the VFA from Figure 3

5 \Variable Bilchi Automata

In [6], Buchi extended NFAs to nondeterministic Blchi@mata, which run on infinite
words. The similarity between VFAs and NFAs enables us tereki/FAs to nondeter-
ministic variable Biichi automata (VBA, for short). Fordyah VBA is A = (X, A),
whereA is a nondeterministic Biichi automaton (NBA). Thus, a ruthef pattern au-
tomatonA is accepting iff it visits the set of accepting states inéilyitoften. Similar
straightforward extensions can be described for additianeeptance conditions for
infinite words. As we specify below, the properties and deniprocedures for VFAs
generalize to VBA in the expected way, demonstrating theisbiess of the VFA for-
malism.

We start with closure properties. The union constructionMBA is identical to
the union construction for VFA. The intersection constiarcfor NBAs involves two
copies of the product automaton. Recall that the interseatbnstruction for VFAs
involves several copies of the product automaton. Comgitkia two constructions, we
construct the intersection of two VBAS by taking two copidghese several copies.
Therefore, we have the following.

12 O. Grumberg, O. Kupferman, and S. Sheinvald

Theorem 14. VBA and DVBA are closed under union and intersection.

As with VFAs, VBAs are not closed under complementation.dlgbat a DVFA
can be complemented by complementing its pattern autom&ioce deterministic
Buchi automata are not closed under complementation esDBA. Like determinis-
tic Buchi automata, a DVFA can be complemented to a VBA, bpstating its pattern
automaton to a complementing NBA.

Theorem 15. VBAs and DVBAs are not closed under complementation. A D\&RA ¢
be complemented to a VBA.

As for the various decision problems, the complexities aulictions of VFAs all
apply, with minor modifications.

Theorem 16. —The nonemptiness problem for VBA and DVBA is NL-complete.
— The membership problem for VBA is NP-complete and for DVBARS IME.
— The containment problem for VBA is undecidable and for D\EBA co-NP.
— Deciding whether a given VBA is a DVBA is NL-complete.

References

1. Bojahczyk, M., Muschoall, A., Schwentick, T., Segoufin; Two-variable logic on data trees
and xml reasoning. J. ACM6(3) (2009) 1-48
2. Bojanczyk, M., Muscholl, A., Schwentick, T., Segoufin, David, C.: Two-variable logic
on words with data. In: LICS, IEEE Computer Society (2006)6—
3. Bouajjani, A., Habermehl, P., Mayr, R.: Automatic vefiion of recursive procedures with
one integer parameter. Theoretical Computer Sci@86¢2003) 85-106
4. Bouajjani, A., Habermehl, P., Jurski, Y., Sighireanu; NRewriting systems with data. In
Csuhaj-Varjl, E.Esik, Z., eds.: FCT. Volume 4639 of LNCS., Springer (200732
5. Brambilla, M., Ceri, S., Comai, S., Fraternali, P., Masalu, |.: Specification and design of
workflow-driven hypertexts. J. Web Enff2) (2003) 163-182
6. Bichi, J.: On a decision method in restricted secondradtéhmetic. In: Int. Congress on
Logic, Method, and Philosophy of Science, Stanford UnigiRress (1962) 1-12
7. Ceri, S., Fraternali, P., Bongio, A., Brambilla, M., Cdira., Matera, M.: Designing Data-
Intensive Web Applications. Morgan Kaufmann Publisheis,|8an Francisco, CA, USA
(2002)
8. Demri, S., Lazic, R., Nowak, D.: On the freeze quantifiecamstraint Itl: Decidability and
complexity. Information and Computati@y (2007) 2—24
9. Kaminski, M., Zeitlin, D.: Extending finite-memory autama with non-deterministic reas-
signment. In Csuhaj-Varj{, EEzik, Z.,eds.: AFL, In eds.: (2008) 195-207
10. Kaminski, M., Francez, N.: Finite-memory automata. dreéical Computer Sciende34(2)
(1994) 329-363
11. Markey, N., Schnoebelen, P.: Model checking a path. Iradioy R.M., Lugiez, D., eds.:
CONCUR. Volume 2761 of LNCS., Springer (2003) 248—262
12. Neven, F., Schwentick, T., Vianu, V.: Towards regulaigiaages over infinite alphabets. In:
MFCS '01, London, UK, Springer-Verlag (2001) 560-572
13. Shemesh, Y., Francez, N.: Finite-state unificationraata and relational languages. Infor-
mation and Computatioh14(1994) 192-213
14. Tan, T.: Pebble Automata for Data Languages: Separ@iecidability, and Undecidability.
PhD thesis, Technion - Computer Science Department (2009)
15. Vianu, V.: Automatic verification of database-drivestgyns: a new frontier. In: ICDT '09,
ACM (2009) 1-13

