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1 Abstract

This thesis presents a novel BDD-based distributed algorithm for reachability
analysis which is completely asynchronous. Previous BDD-based distributed
schemes are synchronous: they consist of interleaved rounds of computation and
communication, in which the fastest machine (or one which is lightly loaded)
must wait for the slowest one at the end of each round.

We make two major contributions. First, the algorithm performs image com-
putation and message transfer concurrently, employing non-blocking protocols
in several layers of the communication and the computation infrastructures. As a
result, regardless of the scale and type of the underlying platform, the maximal
amount of resources can be utilized efficiently. Second, the algorithm incor-
porates an adaptive mechanism which splits the workload, taking into account
the availability of free computational power. In this way, the computation can
progress more quickly because, when more CPUs are available to join the com-
putation, less work is assigned to each of them. Less load implies additional
important benefits, such as better locality of reference, less overhead in com-
paction activities (such as reorder), and faster and better workload splitting.

We implemented the new approach by extending a symbolic model checker
from Intel. The effectiveness of the resulting scheme is demonstrated on a num-
ber of large industrial designs as well as public benchmark circuits, all known to
be hard for reachability analysis. Our results show that the asynchronous algo-
rithm enables efficient utilization of higher levels of parallelism. High speedups
are reported, up to an order of magnitude, when computing reachability for mod-
els with higher memory requirements than was previously possible.

1



2 Introduction

This work presents a novel BDD-based asynchronous distributed algorithm for
reachability analysis. Our research focuses on obtaining high speedups while
computing reachability for models with high memory requirements. We achieve
this goal by designing an asynchronous algorithm which incorporates mech-
anisms to increase process utilization. The effectiveness of the algorithm is
demonstrated on a number of large circuits, which show significant performance
improvement.

Model checking [12] is a technique for verifying the correctness of finite-
state systems with respect to temporal logic properties. Reachability analysis
is a main component of model checking. Most temporal safety properties can
easily be checked by reachability analysis [4]. Furthermore, liveness property
checking can be efficiently translated into safety property checking [5].

Despite numerous improvements in model checking techniques over recent
years, the so-called state explosion problem remains their main obstacle. In the
case of industrial-scale models, time becomes a crucial issue as well. Exist-
ing BDD-based symbolic verification algorithms are typically limited by mem-
ory resources, while SAT-based verification algorithms are limited by time re-
sources. Despite recent attempts to use SAT-based algorithms for full verifica-
tion (pure SAT in [26, 10, 24, 18] and SAT with BDDs in [20, 19, 21]), it is still
widely acknowledged that the strength of SAT-based algorithms lies primarily
in falsification, while BDD-based model checking continues to be the de facto
standard for verifying properties (see surveys in [28] and [6]). The goal of this
work is verification, rather than falsification, of large systems. Therefore, we
based our techniques on BDDs.

The use of distributed processing to increase the speedup and capacity of
model checking has recently begun to generate interest [8, 29, 25, 3, 27, 22, 17].
Distributed algorithms that achieve these goals do so by exploiting the cumu-
lative computational power and memory of a cluster of computers. In general,
distributed model checking algorithms can be classified into two categories: ex-
plicit state representation based [29, 25, 3, 27] and symbolic (BDD-based) state
representation based [22, 17]. Explicit algorithms use the fact that each state
is manipulated separately in an attempt to divide the work evenly among pro-
cesses; given a state, a hash-function identifies the process to which the state
was assigned. The use of hash-functions is not applicable in symbolic algo-
rithms which manipulatesetsof states, represented as BDDs. In contrast to sets
of explicit states, there is no direct correlation between the size of a BDD and
the number of states it represents. Instead, the workload can be balanced by
partitioning a BDD into two smaller BDDs (each representing a subset of the
states) which are subsequently given to two different processes.
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The symbolic work-efficient distributed synchronous algorithm presented
in [17] is the algorithm that is closest to ours. In [17], as well as in our algorithm,
processes (called workers) join and leave the computation dynamically. Each
workerownsa part of the state space and is responsible for finding the reachable
states in it. A worker splits its workload when its memory overflows, in which
case it passes some of its owned states to a free worker.

Unlike the algorithm proposed in this work, the one in [17] works in syn-
chronized iterations. At any iteration, each of the workers applies image com-
putation and then waits for the others to complete the current iteration. Only
then do all workers send the non-owned states discovered by them to their cor-
responding owners.

The method in [17] has several drawbacks. First, the synchronized iterations
result in unnecessary and sometimes lengthy idle time for ”fast” processes. Sec-
ond, the synchronization phase is time-consuming, especially when the number
of processes is high. Consequently, processes split as infrequently as possible
in an attempt to reduce the overhead caused by synchronization. This leads to
the third drawback: processes underutilize the given computational power, since
available free processes are not used until there is absolutely no other choice but
to join them in. These drawbacks make the algorithm insufficiently adaptive to
the checked system and the underlying parallel environment. Furthermore, the
combined effect of these drawbacks worsens with two factors: the size of the
parallel environment and the presence of heterogeneous resources in it (as are
commonly found today in non-dedicated grid and large-scale systems). These
drawbacks limit the scalability of the algorithm and make it slow down substan-
tially.

In order to exploit the full power of the parallel machinery and achieve scal-
ability, it was necessary to design a new algorithm which is asynchronous in
nature. We had to change the overall scheme to allow concurrency of compu-
tation and communication, to provide non-blocking protocols in several layers
of the communication and the computation infrastructures, and to develop an
asynchronous distributed termination detection scheme for a dynamic system
in which processes join and leave the computation. In contrast to the approach
presented in [17], the new algorithm does not synchronize the iterations among
processes. Each process carries on the image computations at its own pace. The
sending and receiving of states is carried out “in the background,” with no co-
ordination whatsoever. In this way, image computation and non-owned state
exchange becomeconcurrentoperations.

Our algorithm is aimed at obtaining high speedup while fully utilizing the
available computational power. To this end, when the number of free processes
is relatively high the splitting rate is increased. This mechanism imposesadap-
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tive early splittingto split a process even if its memory does not overflow. This
approach ensures that free computational power will be utilized in full. In addi-
tion to using more processes, splitting the workload before memory overflows
means that processes will handle smaller BDDs. This turned out to be a critical
contribution to the speedup achieved by the new approach because a smaller
BDD is easier to manipulate (improved locality of reference, faster image com-
putation, faster and less frequent reorders, faster slicing, etc.).

In the asynchronous approach, when a process completes an iteration it car-
ries on to the next one without waiting for the others. Consequently, splitting
the workload with new processes is an efficient method for speeding up the
computation since the overhead in adding more workers is negligible. However,
this approach poses a huge challenge from the viewpoint of parallel software
engineering. Given that the state space partition varies dynamically and that
the communication is asynchronous, messages containing states may reach the
wrong processes. By the time a message containing states is sent and received,
the designated process may cease to own some or all of these states due to
change of ownerships. Our algorithm overcomes this problem by incorporating
adistributed forwarding mechanismthat avoids synchronization but still assures
that these states will eventually reach their owners. In addition, we developed a
new method for opening messages containing packed BDDs which saves local
buffer space and avoids redundant work: the mechanism ensures that only the
relevant part of the BDD in the message is opened at every process visited by
the message.

Distributed termination detection presents another challenge: although a cer-
tain process may reach a fixpoint, there may be states owned by this process that
were discovered (or, are yet to be discovered) by others and are on their way to
this process (in the form of BDDs packed in messages). The two-phase Dijk-
stra [13] termination detection algorithm is an efficient solution in such cases.
However, we had to face yet another algorithmic complication that was not ad-
dressed by Dijkstra: the number of processes in the computation can vary dy-
namically and cannot be estimated or bounded in advance. We found no solution
to this problem in the distributed computing literature. Thus, we had to develop
the solution ourselves as an extension of the Dijkstra algorithm.

3 The Distributed Asynchronous Approach

We begin by describing the sequential symbolic (BDD-based) reachability al-
gorithm. The pseudo-code is given in Figure 1. The set of reachable states is
computed sequentially by applying Breadth-First Search(BFS) starting from the
set of initial statesS0. The search is preformed by means ofimage computa-
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tion which, given a set of states, computes a set containing their successors. In
general, two sets of states have to be maintained during reachability analysis:

1) The set of reachable states discovered so far, calledR. This set becomes
the set of reachable states when the exploration ends.

2) The set of reached but not yet developed states, calledN . These states
are developed in each iteration by applying image computation onN .

Reachability(S0)
1) R = N = S0

2) while (N 6= φ)
3) N = Image(N)
4) N = N \R
5) R = R ∪N
6) returnR

Fig. 1.Sequential Reachability Analysis

The distributed reachability algorithm relies on the notion of Boolean func-
tion slicing [1]. The state space is partitioned intoslices, where each slice is
ownedby one process. A set,w1 . . . wk, of Boolean functions calledwindow
functionsdefines for each process the slice it owns. Windows are represented as
BDDs. The set of window functions is complete and disjoint, that is,∨k

i=1wi = 1
and ∀i 6= j : wi ∧ wj = 0, respectively. States that do not belong to the slice
owned by a process are callednon-ownedstates for this process.

As noted earlier, reachability analysis is usually carried out by means of a
BFS exploration of the state space. Both the sequential algorithm (previously
described in Figure 1) and the distributed synchronous algorithm (as in [22,
17]) use this technique: in iterationi, image computation is applied to the set
of states,N , which are reachable ini steps (and no fewer thani steps) from
the set of initial states. Thus, when iterationi completes, all the states which
are reachable in at mosti + 1 steps have already been discovered. While in
a sequential search a single process develops the states inN , in a distributed
searchN is developed by a number of processes, according to the state space
partition. In the latter, at the end of each iteration, the processes synchronize
on a barrier ,i.e., wait until all processes complete the current iteration. Only
then do the processes exchange their recently discovered non-owned states and
continue to the next iteration.

However, reachability analysis need not be performed in such a manner.
Note that reachability analysis would be correct even if, in iterationi, not all
the states which are reachable ini steps are developed, as long as they will be
developed in a future iteration. Thus, when a process completes iterationi, it
does not have to wait until the other processes complete it. It can continue in
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the image computation on the newly discovered states and receive owned states
discovered by other processes at a later time. This is the key idea behind the
asynchronous approach.

Like [22, 17], our algorithm uses two types of processes: workers and co-
ordinators. Each active workerownsa slice of the state space and is responsible
for discovering the reachable states within its slice. The algorithm is initial-
ized with one active worker that runs a symbolic reachability algorithm, starting
from the set of initial states. During its run, workers are allocated and freed. The
algorithm works iteratively. At each iteration, each active worker computes an
image and exchanges non-owned states, until a fixpoint is reached and termina-
tion is detected. During image computation, each worker computes the new set
of states that can be reached in one step from the owned part ofN of which it
is aware. The new computed set contains owned as well as non-owned states.
During the exchange operation, each worker sends the non-owned states to their
corresponding owners. The novelty of our algorithm is that the iterations are
not synchronized among workers. In addition, image computation and state ex-
change become concurrent operations.

Image computation and the receiving of owned states from other workers are
critical points in which memory overflow may occur. In either case, the compu-
tation stops and the worker splits its ownership intok parts. One slice is left
with the overflowed worker andk − 1 parts are distributed tok − 1 free work-
ers. While in a distributed synchronous algorithm splitting occurs only when
memory overflows, in our approach splitting is also used to obtain speedups. In
particular, a worker willsplit-on-timeoutif it has been working fort minutes
without splitting and free workers are available. In addition, if the memory re-
quirements of several workers decrease below a certain threshold, they merge
their ownership and all but one become free.

The concurrency between image computation and state exchange is made
possible by the asynchronous sending and receiving of states. Non-owned states
are transformed into BDD messages. The sending of the BDD message is done
in the background, by the operating system. As a result, a worker who sends
a BDD message to a colleague is not blocked until the BDD message is actu-
ally sent or received. Similarly, a worker need not immediately process a BDD
message that it receives. Received BDD messages are accumulated in a buffer
InBuff . The worker can retrieve them whenever it chooses. We assume that
the operating system enables sending and receiving of messages in such a non-
blocking manner. The worker retrieves BDD messages fromInBuff during
image computation, transforms them to BDDs, and stores them in a set called
OpenBuff until the current image operation is completed. To summarize, a
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worker has to maintain three sets of states as well as one buffer during the dis-
tributed asynchronous reachability analysis:

1) A set of reachable statesR.
2) A set of reachable states that were not yet developedN .
3) A buffer InBuff containing unopened BDD messages received asyn-

chronously by the operating system from other workers.
4) A temporary set of statesOpenBuff . These states are obtained by

opening BDD messages that were retrieved fromInBuff .

In addition, our algorithm uses three coordinators: theexch coord , which
holds the current set of owned windows and is notified on every split or merge.
Theexch coord is also responsible for termination detection; thepool mgr,
which keeps track of free workers; and thesmall coord , which merges the
work of underutilized workers. Following is an explanation of how we handle
BDD messages. The algorithm itself will be explained in detail in Sections 5, 6
and 7.

4 Forwarding and Sending of BDD Messages

Workers often exchange non-owned states during reachability analysis. BDDs
are translated into and from messages as described in [17]. This method reduces
the size of the original BDD by 50% when forming a BDD message. Thus,
BDD messages are transferred across the net quite efficiently. Moreover, recall
that there is no exchange phase in which the processes send BDD messages all
at once; messages are sent and received asynchronously during the computation.
In addition, received BDD messages are opened during image computation and
pending messages do not accumulate. As a result, the communication overhead
is negligible and the memory required to store BDD messages that are wait-
ing to be sent or opened is relatively small. These observations held in all the
experiments we conducted.

As mentioned earlier, the asynchronous nature of our algorithm along with
the fact that the state partition changes dynamically during the distributed com-
putation imply that messages of non-owned states may reach the wrong worker
(some or all of the states in the BDD message do not belong to the worker),
and must be forwarded to their owner(s). Therefore, we attach a window to each
BDD message. We refer to a BDD message as a pair〈T, w〉, whereT is the mes-
sage containing the BDD andw is the attached window. Before workerPi sends
workerPj a BDD message, it receives from theexch coord the windoww′j
whichPj owned when it last updated theexch coord . This is the windowPi

assumesPj owns. As illustrated in Figure 2(a), whenPi sends a message toPj
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it attaches the windoww′j it assumesPj owns. IfPj is required to forward this
message to workerPk with an assumed windoww′k, it will change the window
to w′j ∧ w′k before doing so (see Figure 2(b)). Note that our algorithm guaran-
tees that all non-owned states will eventually reach their owners (see Section 8,
Theorem 1). Thus, a BDD message may be forwarded more than once but only
a finite number of times.

w’    jT  

(a)

w’    w’j k∧T  

(b)

Fig. 2. (a)Pi sendsPj a BDD message with an assumed windoww′j (b) Pj forwards a BDD
message toPk with an assumed windoww′k

The OpenBuffer procedure, described in Figure 3, retrieves BDD messages
from InBuff . Recall that those messages are received asynchronously into
InBuff by the operating system. When a worker retrieves BDD messages
from InBuff , it requests and receives from theexch coord the updated list
of window functions owned by the workers. Next, it asynchronously forwards
each BDD message to each worker whose window’s intersection with the mes-
sage window is non-empty. Then it opens the BDD message.

procedureOpen Buffer(w, OpenBuff )
1) {〈T, w′〉} ← get waiting BDD messages fromInBuff
2) {〈Pj , wj〉} ← receive from exchcoor all window functions
3) foreach(〈T, w′〉)
4) foreach((j 6= my id) ∧ (w′ ∩ wj 6= ®))
5) send〈T, w′ ∩ wj〉 to Pj

6) Res=SelectiveOpening(T, w′ ∩ w, Failed)
7) if Failed = TRUE
8) return BDD message toInBuff
9) Split(R, w, N, OpenBuff)

10) elseOpenBuff = OpenBuff ∪Res

Fig. 3. OpenBuffer algorithm performed by worker with idmy id and windoww

We use a new method, calledselective opening, for opening BDD messages.
This method extracts from a BDD message only the states that are under a
given window, without transforming the entire message to BDD form. Thus,
redundant work is avoided. Before explaining how the selective opening is im-
plemented, we first describe how a BDD is represented in a message form as
suggested in [17].
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BDD nodes represent a boolean functionf recursively. The functions 0 and
1 are represented by special BDDs called ZERO and ONE, respectively. Other
functions are represented by a node that contains a variable identificationx, and
two pointersleftPtr andrightPtr , that point to two other BDD nodes that
representfx̄ andfx respectively. The functionf is expresses based on the Shan-
non expression:̄xfx̄ +xfx. A BDD in a message form is a sequence of records.
Each record has four fields: an index for that record (a symbolic pointer), de-
noted asSid . The variable id of the record denoted asXid . An Sid for the left
son, and anSid for the right son. The index field indicates the record location
in the message. The records ZERO and ONE have special indices.

A BDD message is obtained by traversing the nodes of a BDDf in Depth
First Search (DFS) order. The corresponding records are created from the leaves
upwards. Every time a new message record is created, a special index is incre-
mented. This index serves as theSid for that record. The relationship between
the actual BDD node and the correspondingSid is recorded in a dictionary.
Since the records are created in a DFS order, every time a new record needs
to be created theSid for its left and right sons are already in the dictionary.
The reverse operation, i.e., transforming a message back to a BDD form is per-
formed as follows. The message records are traversed from start to end while
creating the corresponding BDD nodes one by one using a Shanon expression.
The relationship between theSid and the corresponding pointer of the BDD
node is again recorded in a dictionary. Because of the way the message is orga-
nized, every time a new node need to be created its function can be calculated
using the pointers of its left and right sons which are already in the dictionary.

The idea in the selective opening method is to replace in the dictionary the
node which represents the ONE leaf with the pointer to the BDD which rep-
resents the window. Thus, the resulting BDD is an intersection of the original
BDD with the given window. In our algorithm, the selective opening method is
used to extract only the owned stated, i.e., states which are under the window
of the message intersected with the window of the worker. In particular, if the
intersection between the window of the message and the window of the worker
is empty, the message will not be opened at all. The worker holds the states ex-
tracted from the BDD message inOpenBuff . This buffer contains only owned
states.

Though the selective opening method only extracts the required states, the
operation may fail due to memory overflow. In this case, the worker splits its
ownership and thereby reduces its workload. Note that BDD messages pending
in InBuff do not need special handling due to the split; the next time the
worker calls the OpenBuffer procedure and retrieves a pending BDD message,
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it forwards it according to the updated state partition given by theexch coord
and extracts the owned states according to its new window.

5 The Worker Algorithm

A high level description of the algorithm performed by a worker with IDmy id
is shown in Figure 4. We will first describe each procedure in general, and then
in detail.

procedureReachTask (R, w, N, OpenBuff)
1) loop forever
2) BoundedImage(R, w, N, OpenBuff)
3) Exchange(OpenBuff )
4) if (Terminate() =TRUE)
5) returnR
6) Collect Small(R, w, N)
7) if (w = ®)
8) send〈‘to pool′, my id〉 to pool mgr
9) return to pool but keep forwarding BDD messages (by callingOpen Buffer)

Fig. 4. Pseudo-code for a worker in the asynchronous distributed reachability computation

During the BoundedImage procedure, a worker computes the set of states
that can be reached in one step fromN , and stores the result inN . During
the computation, the worker also calls the OpenBuffer procedure and extracts
owned states intoOpenBuff (N andR will be updated with those states only
in the Exchange procedure). If memory overflows during image computation
or during the opening of a buffer, the worker splitsw and updatesN,R and
OpenBuff according to the new window. The same holds true if a split timeout
occurs.

During the Exchange procedure the worker sends out the non-owned states
(N \w) to their assumed owners and updatesN, R with new states accumulated
in OpenBuff (new states are states that do not appear inR).

If only a small amount of work remains, i.e.,N and R are very small,
the worker applies the CollectSmall procedure. The CollectSmall procedure
merges the work of several workers into one task by merging their windows. As
a result, one worker is assigned the unified ownership (merge as owner) and the
rest become ”free” (w = ®, merge as non-owners) and return to the pool of free
workers.

After performing CollectSmall, the worker checks in the ReachTask pro-
cedure if its window is empty and it needs to join the pool of free workers. The
window of a worker can be empty if it merged as non-owner in the CollectSmall
procedure, or if it joined the computation with an empty window (this will be
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discussed later). Such workers, which participated in the computation once and
then joined the pool of free workers, are calledfreed. The set of freed workers
is contained in the set of free workers.

Freed workers may still receive misrouted BDD messages and thus need to
forward them. For example, before workerPi is freed, another worker may send
it a message containing states that were owned byPi. Should this message reach
Pi after it was freed,Pi must then forward the message to the current owner(s) of
these states. Methods for avoiding this situation will be discussed later. Note that
if freed workers are required to forward BDD messages, they must participate in
the termination algorithm. Following is a detailed description of each procedure.

procedureBounded Image(R, w, N, OpenBuff)
1) Completed = FALSE
2) whileCompleted = FALSE
3) Bounded Image Step(R, w, N, Max, Failed, Completed)
4) SplitOnT ime ← (t < SplitT imer)∧ (query〈pool mgr, ”free workers”〉 = TRUE)
5) if ((Failed = TRUE) ∨ (SplitOnTime = TRUE) )
6) Split(R, w, N, OpenBuff)
7) Open Buffer(w, OpenBuff)

Fig. 5. Pseudo-code for a worker in the BoundedImage procedure

The Bounded Image Procedureis described in Figure 5. The image is com-
puted by means ofBounded Image Step operations, which are repeated until
the computation is complete. This algorithm uses apartitioned transition re-
lation. Each partition defines the transition for one variable. The conjunction
of all partitions gives the transition of all variables. Each BoundedImageStep
applies one more partition and adds it to the intermediate result. The steps are
bounded in the sense that the BoundedImageStep procedure receives as an ar-
gument the maximal amount of memory that it may use. If it exceeds this limit,
the procedure stops andFailed becomes true.

The technique for computing an image using the partitioned transition re-
lation was suggested by Burch et al. [9] and was used for the synchronous dis-
tributed algorithm in [17]. Using bounded steps to compute the image allows
memory consumption to be monitored and the computation stopped if there is
memory overflow. Also explained in [17] is how the partitioned transition re-
lation helps to avoid repeating an overflowed computation from the beginning:
each worker resumes the computation of its part of the image from the point at
which it stopped and does not repeat the bounded steps that were completed in
the overflowed worker.

Our asynchronous algorithm exploits the partitioned computation even fur-
ther. During image computation, between each bounded step, we retrieve pend-
ing BDD messages fromInBuff , forward them if necessary, and extract owned
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states intoOpenBuff . By doing so, we free the system buffer which con-
tained the messages and produce asynchronous send operations, if forwarding
is needed. Note thatR andN are updated withOpenBuff only after the cur-
rent image computation is completed. In addition, during image computation,
the worker can perform early split according to the progress of its computation
and availability of free workers in the pool. We chose to implement the early
splitting mechanism as follows: a worker willsplit-on-timeoutaccording to the
SplitT imer value and the availability of free workers.

procedureExchange(R, N, OpenBuff )
1) {〈Pj , wj〉} ← receive from exchcoor all window functions
2) foreach(j 6= my id)
3) send〈N ∩ wj , wj〉 to Pj

4) N = N \ wj

6) N = N ∪OpenBuff
7) N = N \R
8) R = R ∪N
9) OpenBuff = ®

Fig. 6. Pseudo-code for a worker in the Exchange procedure

The Exchange Procedureis described in Figure 6. First, the worker requests
and receives from theexch coord the list of window functions owned by
the workers. Then it uses this list to asynchronously send recently discovered
non-owned states to the other workers. The only guarantee we have is that the
window list is complete, disjoint and that the window owned by the requesting
worker is equal to its window in the list. Recall that the state space partition
changes dynamically during the algorithm, and it is possible that this list is not
up to date anymore. However, the forwarding mechanism guarantees that non-
owned states will eventually reach their owners (Section 8, Theorem 1). After
sending the non-owned states, the worker updatesN,R with states accumulated
in OpenBuff and recalculatesN,R.
Collect Small Procedure. The pseudo-code for the CollectSmall procedure
is described in Figure 7. If the worker has enough work, it exits immediately.
Otherwise, it informs thesmall coord the sizes of itsN andR sets. Note that
when the worker enters the CollectSmall procedure itsOpenBuff is empty
(OpenBuff was set to be empty in the Exchange procedure). The worker then
waits for a reply from thesmall coord . It can receive one of three commands
and proceed as following:

– 〈‘end′〉, means that the coordinator could not find any other worker to merge
with this worker or that the worker is not small enough. Upon receiving this
command the worker exits the CollectSmall procedure.
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procedureCollect Small (R, w, N)
1) while |N |+ |R| < Min
2) send〈|N |+ |R|〉 to small coord
3) 〈action〉 ← receive fromsmall coord
4) if action = 〈‘end′〉
5) return
6) if action = 〈‘merge as non owner′, Pcollegue〉
7) send〈R, w, N, InBuff〉 to Pcolleague

8) R = N = w = InBuff = ®
9) 〈release〉 ← receive fromexch coord

10) return
11) if action = 〈‘merge as owner′, Pcolleague〉
12) 〈R′, w′, N ′, InBuff ′〉 ← receive fromPcolleague

13) R = R ∪R′; w = w ∪ w′; N = N ∪N ′; InBuff = InBuff ∪ InBuff ′

14) send〈‘collect small′, w, my id, colleague id〉 to exch coord
15) 〈release〉 ← receive fromexch coord

Fig. 7. Pseudo-code for a worker in the CollectSmall procedure

– 〈‘merge as non owner′, Pcolleague〉 commands the worker to deliver its
ownership and owned states to a colleague workerPcolleague. The worker
changes its window to be empty and waits for an acknowledgment from
the exch coord that the window was updated byPcolleague and by the
exch coord . Only then it can exit the procedure.

– 〈‘merge as owner′, Pcolleague〉 commands it to take over the ownership
and states of another workerPcolleague, and report the new ownership to
exch coord . The worker waits for an acknowledgment from theexch coord
that the window was updated before existing the procedure.

A worker which merges as non-owner is freed. As mentioned before, freed
workers keep forwarding BDD messages. However, this can be avoided. A freed
worker can stop forwarding BDD messages if all the messages that were sent
to it have arrived and no new messages will be sent to it. First, if all the other
workers have already requested and received a set of windows that does not
include this freed worker, then no new messages will be sent to it. In addition,
to ensure that all the already sent BDD messages have arrived, we can either
bound the arrival time of a BDD message or run a termination-like algorithm.
The termination algorithm will be discussed later.
Split Procedure. The pseudo-code for the Split procedure is described in Figure
8. This procedure starts by asking thepool mgr for k − 1 free workers. Split
is called during the BoundedImage procedure due to memory overflow that
occurred in BoundedImageStep or while opening a BDD message. A worker
may also call the Split procedure during the BoundedImage procedure in case
a split-on-timeout occurred and there are available free workers.
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procedureSplit(R, w, N, OpenBuff)
1) if (N is big enough)
2) {NewNwi} ← Slice(N, k)
3) If (max(R, OpenBuff) is big enough
4) {NewWi} ← Slice(max(R, OpenBuff), k)
5) else
6) NewW1 ← w; ∀i ∈ {2 . . . k} : {NewWi} ← ®
7) else
8) NewNw1 ← w; ∀i ∈ {2 . . . k} : {NewNwi} ← ®
9) NewWi ← Slice(max(R, OpenBuff), k)

10) foreachi ∈ {2 . . . k}
11) send〈R ∩NewWi, OpenBuff ∩NewWi, w ∩NewWi, N ∩NewNwi〉 to Pi

12) R = R ∩NewW1; OpenBuff = OpenBuff ∩NewW1

13) w = w ∩NewW1; N = N ∩NewNw1

14) send〈‘split′, my id, {(Pi, w ∩NewWi)|i ∈ {1 . . . k}}〉 to exch coord
15) 〈release〉 ← receive fromexch coord
16) resetSplitT imer

Fig. 8. Pseudo-code for a worker in the Split procedure

In all the above cases, two sets ofk window functions are computed. We
compute two different sets of partitions. The partition ofN (the set of win-
dows{NewNwi}) is done in an attempt to balance its size among the workers
which will continue developing it. Notice thatN may be containing interme-
diate results and not actual states since the image computation may be stopped
and need to be continued. The partition ofR andOpenBuff (the set of win-
dows{NewWi}) is done in an attempt to balance the BDDs representing real
states which were already discovered. Notice that the workers are essentially
functioning as storage area by holding these states until termination is detected.

We compute the two sets of partitions as follows. IfN is big enough, first,w
is split into a set of window functions{NewNwi} according toN . Then,w is
split into another set of window functions{NewWi}. If eitherR orOpenBuff
is big enough we splitw into{NewWi} according to the bigger one; Otherwise,
if they are too small or empty,{NewWi} will be empty for all other workers
except forNewW1 which will be equal tow. In that case, the new colleagues
which have an empty window are calledHelpers. Helpers are simply assisting
the overflowed worker with a single image computation. Once the image com-
putation is completed, all the Helpers will send the states they produced to their
owners and join the pool of free workers in the ReachTask procedure. In our
experiments, we observed that the creation of helpers is a common occurrence.

In caseN is too small the worker keeps all of it (meaning thatNewW1

is equal tow and all other{NewWi} are empty) and splitR andOpenBuff
according to the bigger one.

14



The two sets ofk window functions are computed using theSlice proce-
dure. TheSlice procedure, when given a BDD and a splitting degreek, com-
putes a set ofk windows that partition the BDD tok parts. The slices do not
have to be equally sized. Our algorithm can run in a heterogenic environment of
computers, with different computational power and memory size. Therefore, if
thepool mgr is able to provide technical information about the free workers,
the slicing algorithm can adjust the slices accordingly.

After computing the partitions ofR, OpenBuff andN , the splitting worker
sends each worker its new window and its part ofR, OpenBuff andN . It also
updates theexch coord with the new windows the workers own and waits for
an acknowledgement indicating that theexch coord is updated. At the end of
the procedure, theSplitT imer variable is reset. This timer measures the time
elapsed from the last split. It is used to determine whether a worker should split
its workload (see BoundedImage procedure, Figure 5)

6 Asynchronous Termination Detection

Our termination detection algorithm is an extension of the two-phase Dijk-
stra [13] termination detection algorithm. Dijkstra’s algorithm assumes a fixed
number of processes and synchronous communication. In our extension, the
communication is asynchronous and processes may join and leave the compu-
tation.

The presented termination detection algorithm has two phases: the first phase
during which theexch coord receiveswant term requests from all the ac-
tive and freed workers, and the second phase, during which theexch coord
queries all the workers that participated in the previous phase as to whether
they regret the termination. After receiving all responses, it decides whether
to terminate or reset termination and notifies the workers of its decision. The
exch coord is discussed in Section 7.

Each worker detects termination locally and notifies theexch coord when
it wants to terminate. Upon receiving a regret query, the worker answers as to
whether it regrets its request. The next message the worker will receive from the
exch coord will command it to terminate or reset termination. Note that the
communication described above is asynchronous and does not block the work-
ers.

The pseudo-code for the Terminate function performed by a worker is given
in Figure 9. A worker enters this function after completing each image step and
sending the non-owned states. It decides whether to terminate or not according
to the return value of the function. The termination status of a worker can be
one of the following:no term, if it does not want to terminate;want term, if
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it wants to terminate;regret term, if its status waswant term when it discov-
ered that it still has work to do;terminate, if it should terminate. The initial
termination status isno term.

functionTerminate()
1) if (TerminationStatus = ‘terminate′)
2) return (TRUE)
3) if (N = ® ∧ ’there are no pending BDD messages inInBuff ’ ∧ ‘all async’ sends are complete’)
4) if (TerminationStatus = ‘no term′)
5) TerminationStatus = ‘want term′

6) sendexch coord 〈TerminationStatus, my id〉
7) returnFALSE
8) else if (TerminationStatus = ‘want term′)
9) TerminationStatus = ‘regret term′

10) 〈action〉 ← receive fromexch coord if any
11) if action = ‘regret termination query′

12) send〈‘regret status′, T eminationStatus, my id〉
13) if action = ‘reset term′

14) TerminationStatus = ‘no term′

15) if action = ‘terminate′

16) TerminationStatus = ‘terminate′

17) returnTRUE
18) returnFALSE

Fig. 9. Pseudo-code for a worker in the Terminate procedure

Upon entering the Terminate function the worker checks whether all of the
following three conditions hold:

– It does not have any new states to develop (N = ®)
– it does not have any pending BDD messages inInBuff
– all its asynchronous send operations have been completed

We will clarify the last condition. If a worker receives a BDD message, the
sender will not consider the send operation complete until it receives an ac-
knowledgement from this worker. Without acknowledgement, there could be a
BDD message that was sent but not received, and no worker would know of its
existence. Note that the acknowledgement is sent and received asynchronously.

If the termination status isno term and all conditions hold, the termination
status is changed towant term. The worker will notify theexch coord that
it wants to terminate and exit the function (with return value false). If the ter-
mination status iswant term and one of the conditions does not hold, it may
have more work to do. Thus, the termination status is changed toregret term.
If the worker has a pending command from theexch coord , it acts accord-
ingly. It can be prompted to send its termination status, or else to set it to either
no term or terminate. The return value of the function is true, only if the
worker changed its status toterminate.
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7 The Coordinators

7.1 Theexch coord

Theexch coord holds the set of window functions and coordinates the termi-
nation detection algorithm. The set of window functions that theexch coord
holds is disjoint and complete; theexch coord is notified on every split or
merge of windows (a worker will not change its window until it receives a ’re-
lease‘ which indicates theexch coord is updated with the change). Note that
even though theexch coord is updated on every window change, BDD mes-
sage forwarding may still occur because of the asynchronous nature of the algo-
rithm (see Section 4 for further details).

Figure 10 describes a high-level pseudo-code for the algorithm performed
by theexch coord . Theexch coord maintains a set of window functions
Ws, whereWs[Pi] holds the window owned byPi. The exch coord also
maintains two lists: a list of active workers,ActiveWL, and a list of freed
workers,FreedWL. The algorithm is initiated with one active worker,P0,
which owns the entire state space. Thus,Ws[0] is initialized toone, the ac-
tive workers list to{0} and the freed workers list to®. Theexch coord re-
ceives notifications from workers and acts accordingly: when a worker splits, the
exch coord updates the set of window functions, removes the new workers
from the freed workers list (note that the freed workers list does not necessarily
contain those workers) and adds them to the active workers list; when workers
perform CollectSmall and join their ownership, theexch coord updates the
set of window functions and moves the freed worker from the active workers list
to the freed workers list. Theexch coord is also responsible for termination
detection.

functionExch Coord()
1) Ws[0] = one
2) ActiveWL = {0}; FreedWL = ®
3) Loop-forever
4) 〈cmd〉 = receive fromanyworker
5) if cmd = 〈‘collect small′, Pid, wid, Pi〉
6) Ws[Pid] = wid

7) ActiveWL = ActiveWL \ Pi

8) FreedWL = FreedWL ∪ Pi

9) send〈‘release′〉 to Pi and toPid

10) if cmd = 〈‘split′, Pid, NewWs = {(pi, wi)}〉
11) foreach(pi, wi) ∈ NewWs

12) Ws[Pi] = wi

13) ActiveWL = ActiveWL ∪ Pi

14) FreedWL = FreedWL \ Pi

15) send〈‘release′〉 to Pid

16) TerminationDetection(cmd)

Fig. 10.High-level pseudo-code for theexch coord
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Theexch coord detects termination according to the TerminationDetection
function (Figure 11(a)). TheTPhase variable indicates the termination phase
and can have one of the following values:no term, which means that no ter-
mination request has yet been received;want term, where theexch coord
collects termination requests;regret term, where theexch coord collects
regret termination responses.The initial value ofTPhase is no term. In addi-
tion, theexch coord holds the following three lists: theWantTL list, which
is used in thewant term phase and contains all the active and freed workers
that havenot sent a termination request; theRegretQueryL list, which is used
in theregret term phase and contains all the workers that havenot sent a regret
response; and theResetOrTermL list, which contains all the workers that will
be notified of the termination decision when theregret term phase ends. The
CancelTerm variable holds the termination decision (true if the termination
should be cancelled and false otherwise).

The phase changes are triggered by commands received from the workers.
Theexch coord can receive one of four commands and proceed accordingly.
Thewant term phase begins upon receiving awant term request. Then the
WantTL is assigned the value of all active and freed workers. During this
phase, theexch coord receiveswant term requests from all the workers
in this list. Each worker that sends a request is removed from theWantTL list
and added to theRegretQueryL. When theWantTL list becomes empty, the
regret term phase begins and all the workers in theRegretQueryL are sent a
regret query (see MoveToRegretPhaseIfNeeded procedure, Figure 11(b)). Dur-
ing this phase, those workers send a response to the query (their regret status).
Each worker that sends a response is removed from the listRegretQueryL
and added to theResetOrTermL. Only when theRegretQueryL becomes
empty are the workers in theResetOrTermL sent the decision as to whether
or not to terminate (see ResetOrTerminateIfNeeded procedure, Figure 11(c)).
Theexch coord decides not to terminate if one of the workers regretted the
termination or if split or merge occurred. In the latter case, theexch coord
also updates the appropriate lists, as follows.

As noted earlier, the termination algorithm supports a dynamic number of
processes, i.e., workers may join and leave the computation. Workers join the
computation only if a split occurs. In this case, theexch coord receives a split
notification,〈′split′, Pid, NewWs = {(pi, wi)}〉, which means that workerPid

split and several workersPi joined the computation. Theexch coord acts
according to the termination phase. If the termination phase isno term, the
termination status remains unchanged. Otherwise, theCancelTerm is set to
true. If the termination phase iswant term, the exch coord adds the new
workers to theWantTL. However, if the termination phase isregret term,
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procedureTerminationDetection(cmd)
1) Initialization:
2) CancelTerm = FALSE
3) RegretQueryL = ®
4) TPhase = ‘no term′
5) if cmd = 〈‘want term′, Pi〉
6) if TPhase = ‘no term′
7) WantTL = ActiveWL ∪ FreedWL
8) TPhase = ‘want term′
9) if TPhase = ‘regret term′ (Pi is a split colleague)

10) send〈‘regret termination query′〉 to Pi

11) RegretQueryL = RegretQueryL ∪ {Pi}
12) MoveToRegretPhaseIfNeeded(Pi)
13) if cmd = 〈‘regret status′, stat, Pi〉
14) CancelTerm = CancelTerm ∨ (stat = ‘regretterm′)
15) ResetOrTermL = ResetOrTermL ∪ {Pi}
16) ResetOrTerminateIfNeeded(Pi)
17) if (cmd = 〈‘split′, Pid, {(Pi, wi)}〉 ∧ TPhase 6= ‘no term′)
18) CancelTerm = TRUE
19) if TPhase = ‘want term′
20) add new workers to toWantTL
21) if (cmd = 〈‘collect small′, Pid, wid, Pi〉 ∧ TPhase 6= ‘no term′)
22) CancelTerm = TRUE

(a) TerminationDetection procedure

procedureMoveToRegretPhaseIfNeeded(Pi)
1) WantTL = WantTL \ {Pi}
2) if (WantTL = ® ∧ TPhase = ‘want term′)
3) TPhase = ‘regret phase′
4) ∀Pj ∈ RegretQueryL :
5) send〈‘regret termination query′〉 to Pj

(b) MoveToRegretPhaseIfNeeded Auxiliary proce-
dure

procedureResetOrTerminateIfNeeded(Pi)
1) RegretQueryL = RegretQueryL \ {Pi}
2) if (RegretQueryL = ® ∧ CancelTerm = FALSE)
3) ∀Pj ∈ ResetOrTermL : send〈‘terminate′〉 to Pj

4) if (RegretQueryL = ® ∧ CancelTerm = TRUE)
5) ∀Pj ∈ ResetOrTermL : send〈‘reset term′〉 to Pj

6) ResetOrTermL = ®; CancelTerm = FALSE
7) TPhase = ‘no term′

(c) ResetOrTerminateIfNeeded Auxiliary procedure

Fig. 11. (a) Pseudo-code for theexch coord in the TerminationDetection procedure (b) Auxiliary proce-
dure MoveToRegretPhaseIfNeeded (c) Auxiliary procedure ResetOrTerminateIfNeeded

those workers are not added to any list. Nevertheless, it is possible that one of
the new workers will send awant term request while the termination phase is
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regret term. In this case, the worker will be sent a regret query and be added
to theRegretQueryL (see Figure 11(a), lines 9,10).

A worker can leave the computation only if CollectSmall occurs. In this
case, theexch coord receives a collectsmall notification,〈‘collect small′, Pid, wid, Pi〉,
which means that workerPi was freed. If the termination phase isno term, the
termination status remains unchanged. Otherwise,CancelTerm is set to true.
Since freed workers still participate in the termination algorithm, none of the list
is updated. However, the presented termination algorithm can be easily modified
to handle the case in which freed workers are not obliged to participate in the ter-
mination detection. In that case, theFreedWL is redundant and the algorithm
should be modified as follows. When theexch coord receives a collectsmall
notification the freed worker should be removed from all the lists in which it
appears (according to the current termination phase). Then, theexch coord
should check whether a phase move is needed (by invoking MoveToRegretPha-
seIfNeeded or ResetOrTerminateIfNeeded).

7.2 Thesmall coord

The smallcoord collects as many under-utilized workers as possible. It receives
merge requests from under-utilized (small) workers. The smallcoord stops a
small worker for a predefined time; if timeout occurs and no other small worker
has arrived in the meantime, it releases the worker. If a small worker arrives
while another is waiting, it matches the two for merging.

7.3 Thepool mgr

The poolmgr keeps track of free workers. During initialization it marks all
workers as free, except for one. When a worker becomes free, it returns to the
pool. When a worker splits, it sends thepool mgr a request fork − 1 free
workers. Thepool mgr sends in reply a list ofk − 1 IDs of free workers,
which are then removed from the pool. If thepool mgr is asked fork − 1
workers and there are not enough free workers in the pool, it stops the execution
globally and announces ”worker overflow.” Thepool mgr also responds to
queries as to whether there is high availability of free workers.

8 Proof of Correctness

Assumption 1 Messages are not lost

Definition 1. [slice failure] If the Slice procedure is unable to partition a BDD
tok parts, each smaller than the original BDD, then the execution stops globally
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Definition 2. [workers overflow] If thepool mgr is asked fork free workers
and there are not enough free workers in the pool, then the execution stops
globally

From now on, when we say that the algorithm terminates we mean that the
exch coord detects termination and that there is no slice failure or workers
overflow.

Lemma 1. Every state is developed only once

Proof: Immediate from the fact that the state space partition is kept disjoint and
that each worker only develops the states that are under its window. 2

Lemma 2. The state space partition does not change forever

Proof: The state space partition can change only when a worker splits or when
workers merge their ownership in the CollectSmall procedure. Note that if the
number of splits is finite, the number of mergers is finite as well. Therefore, it is
enough to prove that the number of splits is finite.

By way of contradiction, suppose there is an infinite number of splits. After
a workers splits, the first operation it performs is a BoundedImageStep. Then
it can split again without completing the bounded image step due to memory
overflow. It can also complete the bounded image step and split due to mem-
ory overflow while opening a buffer or split-on-timeout. Recall that the number
of reachable states is finite and each state is developed only once. Therefore,
from some point in time, no new states are being developed. Since each image
computation operation consists of a finite number of BoundedImageSteps to
be executed, we can conclude that there exists a BoundedImageStep which
is being executed with fail indefinitely. Since a slice failure did not occur, the
Slice procedure which is called on every split, partitioned each BDD tok parts
(wherek is the splitting degree), such that each slice is smaller than the original
BDD. Workers split an infinite number of times and therefore the size of the
BDD reduces infinitely. This is not possible. 2

Lemma 3. If a worker receives a BDD message after sending a negative re-
gret response, then one of the other workers sent or will send a positive regret
response.

Proof: By way of contradiction. Assume workerPi received a BDD message
after sending a negative regret response. Further assume all the other workers
sent or will send a negative regret response as well. Notice that at the point in
time whichPi sent a negative regret response all other workers must have sent
awant term request to theexch coord (otherwise theexch coord would
not send a regret query). As a result, we can conclude the following:

21



I All the messages each worker sent before sending awant term re-
quest were received and acknowledged (if there are unacknowledged
messages a worker will not send awant term request).

II None of the workers sent or received a message before sending the
(negative) regret response (otherwise it would send a positive regret re-
sponse).

Therefore each worker which sent a BDD message after sending itswant term
request did so after sending a negative regret response. Let us look at the first
worker which sent a message after sending awant term request. Since it was
the first worker, it did not receive any message before sending the message and
after sending thewant term request and had no pending messages. Moreover
since it sent awant term request itsN andOpenBuff sets were empty. Ac-
cording to the algorithm a worker which has an emptyN , an emptyOpenBuff
and does not have any pending messages will not send a message. This contra-
dicts the hypothesis. 2

Definition 3. The termination detection algorithm performed by theexch coord
is said to haveinitiated when theexch coord receives a‘want term′ request
when its termination phase is‘no term′

Lemma 4. If a split occurred after the termination detection algorithm initi-
ated, the termination decision would be to reset termination

Proof: Let us look at the first split (by a workerPi) that occurred after the
termination detection algorithm initiated and show that the termination decision
would be to reset termination. There are several options:

– If the worker split before it sent its termination request, then theexch coord
will receive the split notification before its termination request and therefore
would decide to cancel termination (line 18, TerminationDetection proce-
dure, Figure 11(a)).

– If the worker split after it sent its termination request but before it sent its
(negative) regret response, then theexch coord will receive the split no-
tification before its regret response and therefore would decide to cancel
termination (line 18, TerminationDetection procedure, Figure 11(a)).

– If the worker split after it sent its negative regret response we will show that
it is not possible that all other workers also sent a negative regret response.
SincePi sent a negative regret response itsN was empty and there were
no pending messages inInBuff . A split can only occur while opening a
BDD message or while computing image. Therefore, the worker must have
received a BDD message before splitting (and after sending a negative regret
response). According to Lemma 3 one of the other workers will send or have
already sent a positive regret response.
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2

Lemma 5. The algorithm does not terminate if there are BDD messages that
were sent but not received

Proof: By way of contradiction, assume that there is a message that was sent but
not received, however, the exchcoord decides to terminate the algorithm. Ac-
cording to the termination algorithm performed by the exchcoord (Figure 11)
all the active and freed workers must have sent theexch coord a negative
regret response. Furthermore, according to Lemma 4 no new workers joint the
computation after the termination algorithm was initiated and therefore all the
workers participate in the termination detection algorithm. Assume there is a
messageB sent by workerPi to workerPj which was not yet received byPj .

We know that bothPi and Pj had sent a negative regret response to the
exch coord . We will show that according to the termination algorithm de-
scribed in Figure 9, ifPi did not receive an acknowledgement forB, then it is
not possible that the termination decision would be to terminate:

– If Pi sent the message before changing its status to‘want term′ then the
condition in line 3 would never hold since not all the asynchronous send
operations will be complete. Therefore,Pi would never send a termination
request. This contradicts the hypothesis.

– If Pi sent the message after changing its status to‘want term′ and before
sending the regret response then the next time it enters the Terminate proce-
dure, the condition in line 8 would hold andPi would have a positive regret
response (regret its termination request). This also contradicts the hypothe-
sis.

– If Pi sent the message after sending the negative regret response then it
must have been as a result of a messageB′ it received from a workerPk

after it sent the regret response (since before that he had nothing to send).
According to Lemma 3 one of the other workers will send or have already
sent a positive regret response and therefore the termination decision would
be not to terminate.

2

Theorem 1. Every BDD message will eventually reach its owner

Proof: According to Lemma 5 the algorithm will not terminate if there is a BDD
messages that was sent but was not received. According to Assumption 1 mes-
sages are not lost in the communication level, i.e., a sent message will reach its
destination with a finite period of time. Following Lemma 5 and our assumption,
a BDD message will not reach its owner only if it is being forwarded forever.
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Notice that every workerPi which receives a BDD message〈T,w〉 will
only forward the part of the BDD message which does not belong to it, i.e.,
〈T, w r wi〉. A BDD message will keep being forwarded to one or more work-
ers as long asw r wi 6= ®. Moreover, if a BDD message〈T,w〉 is being for-
warded as〈T, w′〉 its window can only reduce (w′ ⊂ w, i.e., the set of states
represented byw′ is smaller than the set of states represented byw) or stay
unchanged (w′ = w). Since the window of the BDD message is finite (it rep-
resents a subset of the state space, which is finite), it can only reduce a finite
number of times.

By the way of contradiction, suppose there is a BDD messageB that from
some point in timet1 is being forwarded forever, i.e., its window never reduces.
According to Lemma 2, the state space partition does not change forever. There-
fore, there exist a timet2 from which theexch coord holds the final state
space partition. Let us look at timet s.t. t > t1 andt > t2 in which B arrives
to workerPi. According to the OpenBuffer procedure described in Figure 3,
Pi will receive the updated list of window functions fromexch coord and
forwardB to its ownerPj . Note thatB can only be forwarded to one worker
since the window ofB does not reduce. SincePj is the owner ofB it will not
forwardB. This contradicts the hypothesis. 2

Lemma 6. The algorithm does not terminate if there are reachable states that
were not developed

Proof: We will prove that every state which is reachable from the set of initial
states will be developed. Recall that the algorithm is initiated with one active
worker which is given the set of initial states and owns the entire state space. A
worker with a non emptyN set will not send a termination request. However,
since workers may split or merge their ownership and receive non-owned states
during the computation we need to prove that termination is not detected before
each worker updates itsN with all the non-owned states which are under its
window.

– Both during the Split and the CollectSmall procedures the state space par-
tition is kept complete and disjoint. Every worker will receive its part of
N andR and no states will be lost. Moreover, according to Lemma 4 if a
worker split after the termination algorithm was initiated than termination
will be cancelled. Similarly, if a worker merge after the termination algo-
rithm was initiated than termination will ne cancelled. Moreover, in a merge
operation states are not lost, the worker which mergers as owner updates its
N andR sets with the ones of the other worker.

– According to Theorem 1, every BDD message will eventually reach its
owner (before the algorithm terminates). Thus, each workerPi will receive
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all the BDD messages sent to it before the algorithm terminates.Pi will
updateN (andR) with the new states found in the opened BDD message
(see Figure 6) and develop them. Moreover, assuming thatPi received all
the BDD messages sent to it, termination will not be detected ifN is not
empty: according to the termination algorithm described in Figure 9,Pi will
not change its termination status from‘no term′ to ‘want term′ since the
condition in line 3 would not hold. IfN became non-empty only afterPi

changed its status to‘want term′, then the condition in line 8 will hold and
Pi will regret the termination.

2

Lemma 7. Every state discovered by the algorithm is a reachable state

Proof: Straightforward. The image computation starts from the set of initial
states. Image computation is preformed only on states discovered in a previous
image computation operation (by the current worker or by another worker).2

Theorem 2. When termination is detected the set of states discovered by the
algorithm is the set of reachable states

Proof: Immediate from Lemma 6 and Lemma 7. 2

Lemma 8. Every worker with aTerminationStatus which is equal to‘no term′

will eventually have aTerminationStatus which is equal to‘want term′ so
that it will never change to‘regret term′.
Proof: According to the termination algorithm described in Figure 9, line 3, it
is enough to show that from some point in timeN = ®, InBuff is empty and
all the asynchronous send operations were acknowledged.

According to Lemma 2, the state space partition does not change forever.
Therefore, there is some point in timet1 from which workers do not split or
merge anymore.

Notice that since the number of reachable states is finite and each state is
developed only once, the number of non-owned states discovered is also finite.
Thus, the number of BDD messages each process sends is finite . Moreover,
according to Theorem 1 every message is forwarded only a finite number of
times. Therefore, from some point in time no messages will be received. Since
each worker retrieves every BDD message which is inInBuff , there is some
point in time t2 > t1 from which InBuff will stay empty, for all workers.
Since messages are not lost, there exists some point in timet3 > t2 from which
all the previously sent messages are acknowledged, and no new messages are
sent. Hence, from timet3 and on,InBuff is empty and all the asynchronous
send operations are acknowledged, for all workers.
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By way of contradiction, assume there exists a processPi for whichN never
becomes empty. This implies that from timet4 > t3 worker Pi discovers an
infinite number of states (since it does not split or merge and does not receive
any BDD messages). This is not possible. 2

Definition 4. A set of workers is called ”termination free” if all the workers in
it are either in‘no term′ status or in‘want term′ status but their termination
request was not yet received by theexch coord

Lemma 9. If all the active and freed workers are a termination free set before
theexch coord receives awant term request of one of these workers, then
the termination detection algorithm performed by theexch coord will decide.
In addition, the set of workers to which theexch coord does not send its
decision is a termination free set.

Proof: We will prove that theTPhase variable in the TerminationDetection
procedure preformed by theexch coord in Figure 11(a) will change to‘want term′,
then toregret term, and eventually the ResetOrTerminateIfNeeded procedure
will be called when theRegretQueryL is empty (i.e., theexch coord will
send its termination decision).

Upon receiving the‘want term′ request theTPhase is set to‘want term′

and theWantTL is set to the active workers list united with the freed workers
list. First we show that this list will become empty.

All the workers in this list either sent a termination request which was not yet
received, or are in‘no term′ status and thus according to Lemma 8 will eventu-
ally send a termination request. Therefore, according to line 1 in the MoveToRe-
gretPhaseIfNeeded procedure all the workers will eventually be removed from
this list. However, according to line 20 of the TerminationDetection procedure
it is possible that a new worker will be added to this list. Since new workers that
join the computation are inno term status, according to Lemma 8 they will
eventually send a termination request and thus be removed from theWantTL.
To conclude, theWantTL will become empty and all the workers which sent
a termination request will be sent a regret query when theTPhase is set to
‘regret term′, i.e., when the regret termination query phase begins. Notice that
if there are active workers which are not in this list they are new workers that
joint the computation and are either inno term status or inwant term status
but their termination request was not received while theexch coord was in
thewant term phase.

We next show that the regret phase ends, i.e., theRegretQueryL becomes
empty. Since all the workers in the regret query list were sent a regret query,
and since messages are not lost, they will all respond to the query and thus
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be removed from theRegretQueryL according to line 16 of the Termination-
Detection procedure. However, according to line 11 it is possible to receive a
want term request from a worker which was not in theRegretQueryL, this
worker must be a new worker which joint the computation in a split operation
since any other worker will not send another termination request. According to
line 10, this worker will also be sent a regret query and thus it will send its
regret response (and be removed from theRegretQueryL list). To conclude,
the RegretQueryL will become empty and all the workers which responded
to the regret query will be sent the termination decision. Notice that if there
are active workers which were not in this list, they are new workers that joint
the computation and are either inno term status or inwant term status but
their termination request was not received while theexch coord was in the
regret term phase. 2

Theorem 3. The algorithm terminates

Proof: According to the TerminationDetection procedure, the termination deci-
sion would be to terminate if all the workers do not regret the termination request
and no split or merge were reported since the termination detection algorithm
initiated. According to Lemma 2 there is a point in timet1 from which there are
no splits or merges. According to Lemma 9, since the algorithm is initiated with
one worker inno term status, there will be repeated initiations of the Termina-
tionDetection procedure in all of which theexch coord decides. In addition,
when the termination algorithm initiates all the workers are a termination free
set. According to Lemma 8 there is a timet2 > t1 from which all the workers
do not regret their termination request. Let us look at an initiation of the ter-
mination algorithm which starts in timet3 > t2: since non of the workers will
regret its decision and no splits or merges will occur, the termination decision
would be to terminate. 2

9 Experimental Results

We implemented our algorithm on top of Division [16], a generic platform for
the study of distributed symbolic model checking which requires an external
model checker. The algorithm was implemented in C and C++ and consisted
of over 6,000 code lines. We used FORECAST [15] for this purpose. FORE-
CAST is an industrial strength high-performance implementation of a BDD-
based model checker developed at Intel, Haifa.

This section describes our preliminary experimental results on two ISCAS89
benchmarks (s1269, s3330) known to be hard for reachability analysis. Addi-
tional large-size examples are industrial designs taken from Intel. Our parallel
testbed included a maximum of 28 PC machines, dual 2.4GHz Xeon processors
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with 4GB memory. The communication between the nodes was via LAM MPI
over fast Ethernet. We used daemon based communication, which allows true
asynchronous message passing (i.e., the sending of messages progresses while
the user’s program is executing).

Our results are compared to FORECAST and to the work-efficient dis-
tributed synchronous implementation in [17]. The work-efficient implementa-
tion originally used NuSMV [11] as an external BDD-based model checker.
For comparability, we replaced it with FORECAST. The work-efficient imple-
mentation which uses FORECAST will be referred to as FORECAST-D (Dis-
tributed FORECAST), and our prototype as FORECAST-AD (Asynchronous
FORECAST-D). The splitting degree throughout the experiments was set to
k = 2. We found this to be the optimal degree.

Speedup 

(AD Vs. D)

s1269 55 9 9 45 50 12 15 6 3.3

s330 172 8 8 141 85 6 52 14 1.64

D_1 178 36 36 91 100 8 70 10 1.43

D_5 310 68 68 1112 897 5 150 18 5.98

D_6 328 94 94 81 101 5 76 3 1.3

Head_1_1 300 98 ovf(44) - 9180 10 900 15 10.2

Head_2_0 276 85 ovf(44) - 2784 4 390 55 7.14

Head_2_1 274 85 ovf(55) - 1500 8 460 50 3.26

I1 138 139 ovf(102) - 7178 18 2760 36 2.6

  Forecast-D  Forecast-AD

 # Workers Max. Step
Circuit 
Name

# Vars # Steps
 Time(m)  Time(m)  # Workers  Time(m)

            Forecast             

Fig. 12. A comparison between FORECAST, FORECAST-D and FORECAST-AD. If FORECAST was
unable to complete an image step, we reported the overflowing step in parentheses. FORECAST-D and
FORECAST-AD reached a fixpoint on all circuits. Column 10 shows the speedup when comparing
FORECAST-AD and FORECAST-D run times.

Figure 12 clearly shows a significant speedup on all examples, up to an
order of magnitude. When comparing FORECAST-D to FORECAST-AD, we
were able to obtain a speedup even when the number of workers decreased. For
instance, in the s1269 circuit, we obtained a speedup of 3.3 even though the
number of workers decreased by a factor of 2. It can also be seen that the split-
on-timeout mechanism in FORECAST-AD enables using more workers than in
FORECAST-D. Using more workers clearly increases efficiency: for example
in the Head1 1 circuit, FORECAST-AD uses 1.5 times more workers, but the
speedup is of an order of magnitude.

We analyzed worker utilization when using the split-on-timeout mechanism.
Figure 13 provides utilization graphs for the Head2 0 circuit, with this mech-
anism enabled and disabled. The Head2 0 is a large circuit, difficult for reach-
ability analysis. As can be seen in Figure 12, FORECAST is unable to reach a
fixpoint on this circuit and overflows at step 44, while FORECAST-D requires
over 46 hours to reach a fixpoint. Figure 13(a) clearly shows that when the split-
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Fig. 13. FORECASTAD worker utilization with and without the split-on-timeout mechanism in the
Head2 0 circuit. In each graph, theY axis represents the worker’s ID. TheX axis represents the time(in
minutes) from the beginning of the distributed computation. For each worker, each point indicates that it
computed an image at that time; a sequence of points represents a time segment in which a worker computed
an image; a sequence in which points do not appear represents a time segment in which a worker is idle (it
does not have any new states to develop). An asterisk on the time line of a worker represents the point when it
split. TheXY curve connects times at which workers join the computation. This curve separates theworking
from thenon-workingarea.

on-timeout mechanism is disabled, the workers are idle for much of the time.
For instance, between 850 and 1100 minutes, onlyP7 is working. This situa-
tion occurs when workers do not have any new states to develop and wait to
receive new owned states. In this case, only whenP7 finds non-owned states
and sends them to their corresponding owners are those workers utilized again.
It is evident in Figure 13(b) that early splitting can significantly reduce such a
phenomena. As can be seen, the phenomenon still exists, but on a much smaller
scale, for instance between 360 and 380 minutes. In addition, when using split-
on-timeouts, we are able to use more machines more quickly. In Figure 13(a) it
takes 1600 minutes for 10 machines to come into use, whereas in Figure 13(b)
this takes 70 minutes.

Circuit # Vars

Name Speedup 

 Time(m)  # Workers  Time(m)  # Workers (A Vs. B)

s330 172 120 8 52 14 2.3

D_5 310 617 14 150 18 4.1

Head_1_1 300 1140 4 900 15 1.3

Head_2_0 276 1793 11 390 55 4.6

Head_2_1 274 1200 5 460 50 2.6

 Forecast-AD

No Split on Timeouts (A) Split on Timeouts (B)

Fig. 14.The split-on-timeout effect in FORECAST-AD. The ”Speedup” column reports the speedup obtained
when using the split-on-timeout mechanism.
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Figure 13 also illustrates that when the number of workers increases, the
relative size of the non-working area (the area above theXY curve) increases
significantly. In the working area (the area below theXY curve), workers are
dedicated to the distributed computation, whereas in non-working area, workers
are in the pool and can be used for other computations. Thus theeffectiveness
of the mechanism, i.e, the relation between the speedup and the increase in the
number of workers, should actually be measured with respect to the relative size
of the working area. Figure 14 presents the speedup obtained on several circuits,
when using the split-on-timeout mechanism.
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Fig. 15. The speedup obtained when increasing the number of workers on the Head2 0 circuit (in
FORECAST-AD). TheX axis represents the time required to reach a fixpoint. TheY axis represents the
maximal number of workers that participated in the computation. An asterisk on the(x, y) coordinate indi-
cates that when the threshold of free workers is set tox, the reachability analysis ended aftery minutes.

As can be seen in Figure 15, there is an almost linear correlation between the
increase in computational power and the reduction in runtime on the Head2 0
circuit. As the number of workers increases, the effectiveness decreases slightly.
This can be explained by the fact that the relative size of the non-working area
becomes larger as the number of workers increases (since we are not able to
utilize free workers fast enough).

10 Related Work

Existing BDD-based symbolic verification algorithms are limited by memory
resources, while SAT-based verification algorithms are limited by time resources.
The strength of SAT-based verification algorithms lies primarily in falsification,
while BDD-based symbolic model checking continues to be the de-facto stan-
dard for verifying properties [28].

Bounded Model Checkingis a complementary technique to BDD-based model
checking, introduced by Biereet al. [7]. The basic idea in BMC is to search
for counterexample in executions whose length is bounded by some integerk.
Hence, when using BMC the user has to provide a bound on the number of cy-
cles that should be explored, which implies that the method is incomplete if the
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bound is not high enough. BMC has also the disadvantage of not being able to
prove the absence of errors, in most realistic cases [6].

In recent years there have been several attempts to use SAT solvers for full
verification, i.e., to perform unbounded reachability analysis (as oppose to the
BMC technique in which reachability analysis is performed up to a predefined
bound). These techniques can be classified into three categories. The first cate-
gory includes techniques which have their root in BDD-based symbolic state
space traversal. In these techniques the use of BDD have been partially or
completely replaced with SAT solver. The second category consists of meth-
ods based on inductive reasoning. Inductive techniques are sound but usually
incomplete. The third category of methods are iterative abstraction-refinement
frameworks. In these methods, SAT-based BMC is used for abstraction or re-
finement. Other techniques are used for obtaining proofs on the smaller abstract
models.

Pure SAT-Based methods for unbounded reachability analysis [26, 10, 24,
18] are based on All-SAT engines, i.e. a SAT solver is used to enumerate all
solutions of a given formula. The All-SAT engine subsequently generates the
set of newly reached states in a clausal form, until a fixpoint is reached. As
opposed to BDD-based image computation which obtains all solutions at once,
All-SAT engines enumerate solutions one by one; a problem occurs when the
image set contains millions of solutions. In this case the enumeration and storage
of solutions becomes impossible due to both time and space requirements.

The first purely SAT-based unbounded reachability algorithm was recently
suggested by McMillan [26]. Similar approaches were suggested by [10, 24,
18]. These approaches differ from one another in the way state sets are repre-
sented, i.e, as CNF or as DNF formulas, and in the algorithms used to enlarge
cubes, i.e., the method used to compress the formulas representing the set of
reachable states.

In [20, 19, 21], the authors suggest a methodology which employs both SAT
and BDD methods for image computation. In their approach, the transition rela-
tion is represented as a CNF formula, and state sets are represented using BDDs.
BDD-based image computation is used to obtain all solutions bellow interme-
diate points in a SAT decision tree. By doing so, they avoid using an All-SAT
engine which enumerates all solutions.

A different approach for combining SAT with decision diagrams was sug-
gested by [2]. In the proposed algorithms for forward and backward reachability
analysis the use of BDDs is replaced by SAT Solvers.Reduced Boolean Circuits
(RBCs)are used to represent and perform manipulations on Boolean formulas.
The fixpoint problem is formulated as a SAT problem by mapping theRBCs
back to a formula. The produced formula is then given to an external SAT-solver.
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There has been significate progress in the area of SAT-based full verification
over the last decade. However, much remains to be done to make this technology
pervasive in industrial designs. In particular, the experimental results presented
for all the SAT-based techniques [10, 24, 18, 20, 19, 21, 2] were on small scale
designs with very few latches on which a sequential BDD-based model checker
can complete reachability analysis without any difficulty.

Distributed processing is another approach to increase the speedup and ca-
pacity of model checking. Distributed model checking algorithms can be clas-
sified into two categories: explicit state representation based [29, 25, 3] and
symbolic state representation based [22, 17]. Stern and Dill present a way to
parallelize the explicit Murϕ verifier [29]. They present an asynchronous algo-
rithm for reachability analysis. Their algorithm is intended to achieve speedup
and indeed it does. Each process has a unique ID but runs the same code. A
hash function maps each state to one of the processes. The randomness of the
hash function provides random load balance. A process first computes the set
of successors from one of its states. Next, it performs symmetry reduction, and
only then sends the states to their owners.

There are several differences between this algorithm and ours. The main
difference is that this algorithm is explicit while ours is symbolic. The explicit
algorithm uses the fact that each of the states is manipulated separately to di-
vide the work among the processes. Their experimental results show that the
randomness of the hash function indeed distributes the reachable states evenly,
but there is no way to guarantee this in general. Another difference is that the
number of processes in this algorithm is fixed while in our algorithm processes
can join and leave the computation as needed.

In [25] the authors propose a way to distribute the SPIN [23] model checker.
This approach is similar to the one proposed in the distributed Murϕ veri-
fier [29], however, it partitions the state space differently. Another method to
distribute the SPIN [23] model checker was suggested in [3]. The distributed
state space exploration in [25] is based on a nested depth-first search, whereas
in [3] it is based on a non-nested depth-first search.

The closest work to ours is the symbolic work-efficient distributed syn-
chronous algorithm for reachability analysis [17]. A comparison between our
algorithm and the one in [17] as well as its drawbacks were discussed in the
Introduction.

Distributed termination detection is a core problem of the theory of dis-
tributed computing. Our asynchronous termination detection algorithm is an
extension of the two-phase Dijkstra [13, 14] termination detection algorithm.
In our extension we handle the case where the number of workers varies dy-
namically (workers join and leave the computation) and the communication is
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asynchronous whereas Dijkstra’s algorithm requires synchronous communica-
tion and a fixed number of process. Dijkstra’s algorithm is based on thetwo-
phase wave concept, that is, a single process called the initiator sends out a
probe, this probe is propagated to the other processes and then returned to the
initiator. This wave algorithm is said to bea centralized wavesince it is initiated
by a single process.

Our termination detection algorithm can be initiated by a number of pro-
cesses which send a termination request to the master. Only after all the pro-
cesses send a termination request, does the master initiate a wave which queries
as to whether anyone regrets its request. Our algorithm handles the asynchronous
sending and receiving of BDD messages by an acknowledgement mechanism
(as described in Section 6). The dynamic join and leave of processes requires
the master to maintain a list of participating process for each of the termination
phases, and update those lists when a process joins or leaves the computation.
In addition, a join or leave of processes affects the termination decision and can
prompt a phase move.

11 Conclusions and Future Work

This thesis presents a novel algorithm for distributed symbolic reachability anal-
ysis which is asynchronous in nature. We employed non-blocking protocols in
several layers of the communication and the computation infrastructures: asyn-
chronous sending and receiving of BDD messages (concurrency between image
computation and state exchange), opening of messages between bounded im-
age steps, a non-blocking distributed forwarding mechanism, non-synchronized
iterations, and an asynchronous termination detection algorithm for a dynamic
number of processes. Our dynamic approach tries to utilize contemporary non-
dedicated large-scale computing platforms, such as Intel’s Netbatch high-performance
grid system, which controls all (tens of thousands) Intel servers around the
world.

The experimental results show that our algorithm is able to compute reacha-
bility for models with high memory requirements while obtaining high speedups
and utilizing the available computational power to its full extent.

Additional research should be conducted on better adapting the reorder mech-
anism to a distributed environment. One of the benefits of the distributed ap-
proach which we exploit is that each worker can perform reorder independently
of other workers and thus find the best order for the BDD it holds. We did
not elaborate on this matter since it is not the focus of the paper. Our adaptive
early splitting approach not only better utilizes free workers but also results in
processes handling smaller-sized BDDs, which are easier to manipulate. In par-
ticular, the reorders in small BDDs are faster and less frequent. Nevertheless,
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the BDD package still spent a considerable time on reordering. We intend to
explore the use of splitting as an alternative method for reordering.
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