
1

A Tutorial on

Parallel and Distributed
Model Checking

Orna Grumberg

Computer Science Department

Technion, Israel

2

Aspects of parallelism

• Why to parallelize – gain memory or
time

– For model checking: usually memory

• Special purpose hardware or network of
workstations

– Networks of workstations

• Distributed or shared memory

– Distributed memory with message passing

3

Parallel and distributed

algorithms were developed for
• Explicit state methods

- reachability and model construction
- LTL model checking
- model checking for alternation-free -calculus

• BDD-based methods
- reachability and generation of counter example
- model checking for full -calculus

• Operations on BDDs

• SAT solvers

• Timed and probabilistic model checking

4

Elements of

distributed algorithms

• Partitioning the work among the processes

• Dynamic or static load balance to maintain
balanced use of memory

• Maintaining a good proportion between
computation at each process and
communication

• Distributed or centralized termination
detection

5

Reachability analysis

(BDD- based)

6

References

“A scalable parallel algorithm for reachability

analysis of very large circuits”,

Heyman, Geist, Grumberg, Schuster, (CAV’00)

Also:

• Cabodi, Camurati, and Quer, 1999

• Narayan, Jain, Isles, Brayton, and Sangiovanni-

Vincentalli, 1997

7

Reachability analysis

Goal:

Given a system (program or circuit) to

compute the set of reachable states from

the set of initial states

Commonly done by Depth First Search (DFS)

or Breadth First search (BFS)

8

Symbolic (BDD-based)

model checking

• BDD – a data structure for representing Boolean

functions that is often concise in space

• BDDs are particularly suitable for representing

and manipulating sets

• Symbolic model checking algorithms

– hold the transition relation and the computed sets of

states as BDDs

– Apply set operations in order to compute the model

checking steps

9

Sequential reachability by BFS

Reachable = new = InitialStates

While (new  ) {

next = successors(new)

new = next \ reachable

reachable = reachable  new

}

10

The distributed algorithm

• The state space is partitioned into slices

• Each slice is owned by one process

• Each process runs BFS on its slice

• When non-owned states are discovered
they are sent to the process that owns
them

Goal: reducing space requirements

(and possibly time)

11

The distributed algorithm (cont.)

The initial sequential stage

• BFS is performed by a single process until some
threshold is reached

• The state space is sliced into k slices.
Each slice is represented by a window function.

• Each process is informed of:

- The set of window functions W1,…,Wk

- Its own slice of reachable

- Its own slice of new

12

Elements of distributed symbolic algorithm

• Slicing algorithm that partitions the set of

states among the processes

• Load balance algorithm that keeps these

sets similar in size during the execution

• Distributed termination detection

• Compact BDD representation that can be

transferred between processes and allows

different variable orders

13

v1

v3

v2

0

0 1

1

v3

v2

v1

0

0

v1

v3

v2

1

1

v2

f fv1 fv1

that causes BDD to be a compact representation

When slicing a BDD we loose the sharing

Slicing:

14

Slicing (cont.)

• We choose a variable v and partition a Boolean

function f to fv=1 and fv=0.

• The chosen v has minimal cost that guarantees:

– The size of each slice is below a threshold.

I.e., the partition is not trivial

(no | f1|  | f2 |  | f | or | f2 |  0)

– The duplication is kept as small as possible

• An adaptive cost function is used to keep the

duplication as small as possible

15

Load Balance

• The initial slicing distributes the memory

requirements equally among the processes.

• As more states are discovered, the memory

requirements might become unbalanced.

• Therefore, at the end of each step in the

computation of the reachable states a load

balance procedure is applied.

16

Load Balance (Cont.)

• Process i with a small slice sends its slice to

process j with a large slice.

• Process j applies the slicing procedure for

k=2 and obtains two new balanced slices.

• Process j sends process i its new slice and

informs all other processes of the change in

windows.

17

The parallel stage requires a coordinator for:

Pairing processes for exchanging non-

owned states

• Processes notify the coordinator of the

processes they want to communicate with.

• The coordinator pairs processes that need to

communicate.

• Several pairs are allowed to communicate in

parallel.

18

Important: Data is transferred directly

between the processes and not via the

coordinator

19

Coordinator can also be used for:

• Pairing processes for load balancing

• Distributed termination detection

20

Experimental results

On 32 non-dedicated machines, running IBM

RuleBase model checker:

• On examples for which reachability terminates

with one process, adding more processes reduces

memory (number of BDD nodes)

• On examples for which reachability explodes,

more processes manage to compute more steps of

the reachability algorithm

21

• Communication was not a bottleneck

• Time requirements were better in some

examples and worse in others

– better – because BDDs are smaller

– worse – overhead and lack of optimizations

for improving time

22

Future work

• Improve slicing

• Exploit different orderings in different

processes

• Adapt the algorithm to dynamic networks

• Adapt the algorithm for hundreds and

thousands of parallel machines

23

Model checking safety properties

• Checking AGp can be performed by

– Computing the set of reachable states

– For each state checking whether it satisfies p

• If a state which satisfies p is found, a
counter example – a path leading to the
error state - is produced

• Checking other safety properties can also be
reduced to reachability

24

Back to reachability

(explicit state)

25

References
Explicit state reachability:

• “Distributed-Memory Model Checking with SPIN”, Lerda
and Sisto, 1999

Also:

• Caselli, Conte, Marenzomi, 1995

• Stern, Dill 1997

• Garavel, Mateescu, Smarandache, 2001

LTL model checking:

• “Distributed LTL Model-Checking in SPIN”, Barnat,
Brim, and Stribrna, 2001

26

Sequential reachability

• States are kept in a hash table

• Reachability is done using a DFS algorithm

27

Distributed Reachability

• The state space is statically partitioned

• When a process encounters a state that does

not belong to it - the state is sent to the owner

• Received states are kept in a FIFO queue

• Verification ends when all processes are idle

and all queues are empty

28

Choosing the partition function

• Must depend only on the state

• Should divide the state space evenly

• Should minimize cross-transitions

• First solution - partition the space of the hash
function

 cannot be implemented on a heterogeneous network

 even distribution, but not necessarily of the reachable
states

 does not minimize cross transitions

29

A better partition function for

asynchronous programs (like in SPIN)

A global state s consists of the local states si of each

concurrent sub-program

• Choose a specific sub-program progi

• Define the partition function according to the

value of the local state si of sub-program progi

Since a transition generally involves one or two sub-

programs, this partition

minimizes cross-transitions

distributes the state-space evenly

30

LTL model checking with
Büchi automata

(explicit state)

31

LTL model checking with

Büchi automata

• A Büchi automaton is a finite automaton on
infinite words.

• An infinite word is accepted if the
automaton, when running on this word,
visits an accepting state infinitely often.

• Every LTL formula can be translated into a
Büchi automaton that accepts exactly all
infinite paths that satisfy the formula.

32

Checking M |= 

for an LTL formula 

In order to verify a property , an automaton

A is built.

• A contains all behaviors that satisfy .

• M x A contains all the behaviors of M

that do not satisfy .

• M |=  iff M x A is empty.

33

Checking for (non)emptiness

• Looking for a reachable loop that contains

an accepting state

• Tarjan’s algorithm, O(|Q| + |T|)

34

Nested DFS Algorithm

• Two DFS searches are interleaved

– The first looks for an accepting state

– The second looks for a cycle back to this state

• When the first DFS backtracks from an

accepting state it starts the second (nested)

DFS

35

• The second DFS looks for a loop back to

the accepting state

• When the second DFS is done (without

success) the first DFS resumes

• Each DFS goes through every reachable

state only once!

36

Why nested-DFS won’t work

in parallel

Relative speed determines if a cycle is found

S3

S4

S1 S2

37

• The order matters

A nested DFS should start from s iff all accepting

states below s have finished their nested DFS

S3

S1

S5S4

S2

Process A

Process B

38

Inefficient solution

• Holding for each state the list of NDFSs it

participated in

– Requires too much space

– Allows each state to be traversed more than

once for each of the two DFSs

39

Main characteristics of

the distributed algorithm
• Dependency graph, containing only accepting

states and border states, is used to preserve

limited amount of information

• Each process holds its own dependency graph

• NDFS starts from a state only after all its

successors are search by DFS and NDFS

• NDFS is not performed in parallel with another

NDFS

40

Experimental results

• Preliminary

• 9 workstations interconnected by Ethernet

• Implemented within SPIN and compared to

standard, sequential SPIN

• Could apply LTL model checking to larger

problems

41

Future work

• Improve the partition function

• Increase the level of parallelism by allowing

NDFSs to work in parallel under certain

conditions

42

SAT-based model checking

43

State explosion problem

in model checking

• Systems are extremely large

• State of the art symbolic model checking
can handle medium to small size systems
effectively:
a few hundreds Boolean variables

Other solutions for the state explosion
problem are needed.

44

SAT-based model checking

• Translates the model and the specification to a

propositional formula

• Uses efficient tools for solving the

satisfiability problem

Since the satisfiability problem is NP-complete,

SAT solvers are based on heuristics.

45

SAT tools

• Using heuristics, SAT tools can solve very large

problems fast.

• They can handle systems with 1000 variables that

create formulas with a few thousands of variables.

GRASP (Silva, Sakallah)

Prover (Stalmark)

Chaff (Malik)

46

Bounded model checking

for checking AGp

• Unwind the model for k levels, i.e.,

construct all computations of length k

• If a state satisfying p is encountered, then

produce a counter example

The method is suitable for falsification, not

verification

47

Bounded model checking with SAT

• Construct a formula fM describing all possible

computations of M of length k

• Construct a formula f expressing =EFp

• Check if f = fM  f is satisfiable

If f is satisfiable then M |AGp

The satisfying assignment is a counterexample

48

Bounded model checking

• Can handle LTL formulas, when interpreted
over finite paths.

• Can be used for verification by choosing k
which is large enough so that every path of
length k contains a cycle.

– We then need to identify cycles using
propositional formulas.

– Using such k is often not practical due to the
size of the model.

49

SAT Solvers

Main problem: time

Secondary problem: space

50

References
• “PSATO: a Distributed Propositional Prover and

Its Application to Quasigroup Problems”, Zhang,

Bonancina and Hsiang, 1996

• “PaSAT – parallel SAT-checking with lemma

exchange: implementation and applications”,

Sinz, Blochinger, Kuchlin, 2001

• Also:

• Bohm, Speckenmeyer 1994

• Zhao, Malik, Moskewicz, Madigan, 2001

51

Propositional formula in

Conjunctive Normal Form (CNF)

CNF consists of a conjunction of clauses.

A clause is a disjunction of literals.

A literal is either a proposition or a negation

of a proposition.

(a e)  (c  b)  (c  d)  (c)

52

A Simple Davis-Putnam Algorithm

Function Satisfiable (set S)

return boolean

repeat /* unit propagation */

for each unit clause L in S do

delete (L  Q) from S /* unit subsumption */

delete L from ( L  Q) in S /* unit resolution */

od

If S is empty return TRUE

else if null clause in S return FALSE

until no further changes result

53

Davis-Putnam Algorithm (Cont.)

/* case splitting */

choose a literal L occurring in S

if Satisfiable (S  {L}) return TRUE

else if Satisfiable (S {L}) return TRUE

else return FALSE

end function

54

(a e)  (a  e)  (c  b)  (c  d)  (c)

• Unit clause: c=0
(a e)  (a  e)  (b)

• Unit clause: b=1
(a e)  (a  e)

• Selecting splitting literal: a=0
(e)  (e) – conflict!

• Create conflict clause: (c  b  a)

• Backtracking and choosing a=1

• Satisfying assignment: c=0, b=1, a=1

55

Points of wisdom

• Clever choice of the splitting literal.

• Clever back-jumping on unsuccessful

assignments.

• Remembering unsuccessful assignments as

conflict clauses or lemmas.

56

PSATO
A distributed implementation of SAT on

network of workstations.

• The goal is to exploit their under-used
computation power, especially after hours:
parallelize and cumulate the work

• Dynamic load balance is needed since the
computing power of each workstation is
not known in advance (it may be shared
with other programs).

57

a

b c

1,B

0,B 1,N

d
0,B 1,N

0,N

e

a <0,N> c <1,N>

a <0,N> c <0,N> d <0.N> e

a <0,N> c <0,N> d <1.N>

Partitioning the work

58

The Master-Slave Model

of PSATO

• One master, many slaves

• Communication only between master and slaves

• Master sends jobs (S,P) to slaves

S – set of clauses, P – guiding path

• Each slave runs Davis-Putnam according to P

• When a slave stops, it sends master

– TRUE or FALSE, if job is finished

– guiding path, if job is interrupted

59

Balancing the workload

• If a slave returns TRUE, all slaves are
stopped

• If it returns FALSE, the slave is assigned a
new path.

• If time expires, the master sends halt signal
to stop the current run and collects new
paths

The new paths will be used in the next run

60

Achievements
• Accumulation of work: cumulates the

results of separate runs on the same problem

• Scalability: more workstations result in a

faster solution

• Fault tolerance: minimal damage by failure

of one workstation or network interruption

• No redundant work: processes explore

disjoint portions of the search space

61

Experimental results

• For random hard 3-SAT problems, the speedup on

20 machines was from 6 to 18.

– Speedup is the ration between CPU time of the

sequential machine and the average time over the

parallel machines.

• For open quasigroup problems they managed to

solve a problem on 20 machine in 35 “working

days” that would otherwise require 240 days of

continuous run on a single machine.

62

PaSAT

Can run on multi-processor computer and on a

networked standard PCs

Implemented on shared memory with

dynamic creation of threads

63

PaSAT (Cont.)

• Uses guiding paths as in PSATO for partitioning
the work and for balancing it

• Holds conflict clauses learned by all tasks in a
shared memory

– implemented so that it allows concurrent access without
synchronization

• Each task filters its conflict clauses and put only
the “best” in the global store

• Periodically, each task integrates new clauses from
the global store into its current set

64

Experimental results

• On a machine with 4 processors, on

satisfiable SAT problems:

obtained a speedup (time on sequential/time

of parallel) of up to 3.99 without exchange

of conflict clauses and even higher with the

exchange

65

Future work

• Implement the ideas of PaSAT on

distributed memory

• Extend the ideas for many machines

working in parallel

66

THE END

