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Aspects of parallelism

• Why to parallelize – gain memory or 
time

– For model checking: usually memory

• Special purpose hardware or network of 
workstations 

– Networks of workstations

• Distributed or shared memory

– Distributed memory with message passing
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Parallel and distributed 

algorithms were developed for 
• Explicit state methods

- reachability and model construction
- LTL model checking
- model checking for alternation-free -calculus

• BDD-based methods
- reachability and generation of counter example
- model checking for full -calculus

• Operations on BDDs

• SAT solvers

• Timed and probabilistic model checking
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Elements of 

distributed algorithms

• Partitioning the work among the processes

• Dynamic or static load balance to maintain 
balanced use of memory

• Maintaining a good proportion between 
computation at each process and 
communication 

• Distributed or centralized termination 
detection
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Reachability analysis

(BDD- based)
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Reachability analysis

Goal: 

Given a system (program or circuit) to 

compute the set of reachable states from 

the set of initial states

Commonly done by Depth First Search (DFS) 

or Breadth First search (BFS)
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Symbolic (BDD-based) 

model checking

• BDD – a data structure for representing Boolean 

functions that is often concise in space

• BDDs are particularly suitable for representing 

and manipulating sets

• Symbolic model checking algorithms 

– hold the transition relation and the computed sets of 

states as BDDs

– Apply set operations in order to compute the model 

checking steps
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Sequential reachability by BFS

Reachable = new = InitialStates

While  (new  ) {

next = successors(new)

new = next \ reachable

reachable = reachable  new

}
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The distributed algorithm

• The state space is partitioned into slices

• Each slice is owned by one process

• Each process runs BFS on its slice

• When non-owned states are discovered 
they are sent to the process that owns 
them

Goal: reducing space requirements

(and possibly time)
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The distributed algorithm (cont.)

The initial sequential stage

• BFS is performed by a single process until some 
threshold is reached

• The state space is sliced into k slices.
Each slice is represented by a window function.

• Each process is informed of:

- The set of window functions W1,…,Wk

- Its own slice of reachable

- Its own slice of new
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Elements of distributed symbolic algorithm

• Slicing algorithm that partitions the set of 

states among the processes

• Load balance algorithm that keeps these 

sets similar in size during the execution

• Distributed termination detection

• Compact BDD representation that can be 

transferred between processes and allows 

different variable orders
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that causes BDD to be a compact representation

When slicing a BDD we loose the sharing

Slicing:
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Slicing (cont.)

• We choose a variable v and partition a Boolean  

function f to fv=1 and fv=0.

• The chosen v has minimal cost that guarantees:

– The size of each slice is below a threshold. 

I.e., the partition  is not trivial

(no | f1|  | f2 |  | f |   or  | f2 |  0  )

– The duplication is kept as small as possible

• An adaptive cost function is used to keep the 

duplication as small as possible 
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Load Balance

• The initial slicing distributes the memory 

requirements equally among the processes.

• As more states are discovered, the memory 

requirements might become unbalanced.

• Therefore, at the end of each step in the 

computation of the reachable states a load 

balance procedure is applied.
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Load Balance (Cont.)

• Process i with a small slice sends its slice to 

process j with a large slice.

• Process j applies the slicing procedure for 

k=2 and obtains two  new balanced slices.

• Process j sends process i its new slice and 

informs all other processes of the change in 

windows.
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The parallel stage requires a coordinator for:

Pairing processes for exchanging non-

owned states

• Processes notify the coordinator of the 

processes they want to communicate with.

• The coordinator pairs processes that need to 

communicate. 

• Several pairs are allowed to communicate in 

parallel.
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Important: Data is transferred directly 

between the processes and not via the 

coordinator
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Coordinator can also be used for:

• Pairing processes for load balancing

• Distributed termination detection
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Experimental results 

On 32 non-dedicated machines, running IBM 

RuleBase model checker:

• On examples for which reachability terminates 

with one process, adding more processes reduces 

memory (number of BDD nodes)

• On examples for which reachability explodes, 

more processes manage to compute more steps of 

the reachability algorithm
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• Communication was not a bottleneck

• Time requirements were better in some 

examples and worse in others

– better – because BDDs are smaller

– worse – overhead and  lack of optimizations 

for improving time
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Future work

• Improve slicing

• Exploit different orderings in different 

processes

• Adapt the algorithm to dynamic networks

• Adapt the algorithm for hundreds and 

thousands of parallel machines
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Model checking safety properties

• Checking AGp can be performed by 

– Computing the set of reachable states

– For each state checking whether it satisfies p

• If a state which satisfies p is found, a 
counter example – a path leading to the 
error state - is produced

• Checking other safety properties can also be 
reduced to reachability
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Back to reachability

(explicit state)
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Sequential reachability

• States are kept in a hash table

• Reachability is done using a DFS algorithm
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Distributed Reachability

• The state space is statically partitioned

• When a process encounters a state that does 

not belong to it - the state is sent to the owner

• Received states are kept in a FIFO queue

• Verification ends when all processes are idle

and all queues are empty
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Choosing the partition function

• Must depend only on the state

• Should divide the state space evenly

• Should minimize cross-transitions

• First solution - partition the space of the hash 
function

 cannot be implemented on a heterogeneous network

 even distribution, but not necessarily of the reachable 
states

 does not minimize cross transitions
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A better partition function for 

asynchronous programs (like in SPIN)

A global state s consists of the local states si of each 

concurrent sub-program

• Choose a specific sub-program progi

• Define the partition function according to the 

value of the local state si of sub-program progi

Since a transition generally involves one or two sub-

programs, this partition

minimizes cross-transitions

distributes the state-space evenly
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LTL model checking with
Büchi automata

(explicit state)
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LTL model checking with

Büchi automata

• A Büchi automaton is a finite automaton on 
infinite words.

• An infinite word is accepted if the 
automaton, when running on this word, 
visits an accepting state infinitely often.

• Every LTL formula can be translated into a 
Büchi automaton that accepts exactly all
infinite paths that satisfy the formula.
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Checking M |= 

for an LTL formula 

In order to verify a property , an automaton 

A is built.

• A contains all behaviors that satisfy .

• M x A contains all the behaviors of M 

that do not satisfy  .

• M |=  iff  M x A is empty.
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Checking for (non)emptiness

• Looking for a reachable loop that contains 

an accepting state

• Tarjan’s algorithm, O(|Q| + |T|)
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Nested DFS Algorithm

• Two DFS searches are interleaved

– The first looks for an accepting state

– The second looks for a cycle back to this state

• When the first DFS backtracks from an 

accepting state it starts the second (nested) 

DFS 
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• The second DFS looks for a loop back to 

the accepting state

• When the second DFS is done (without 

success) the first DFS resumes

• Each DFS goes through every reachable 

state only once!
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Why nested-DFS won’t work 

in parallel 

Relative speed determines if a cycle is found

S3

S4

S1 S2
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• The order matters

A nested DFS should start from s iff all accepting 

states below s have finished their nested DFS

S3

S1

S5S4

S2

Process A

Process B
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Inefficient solution

• Holding for each state the list of NDFSs it 

participated in

– Requires too much space

– Allows each state to be traversed more than 

once for each of the two DFSs
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Main characteristics of

the distributed algorithm
• Dependency graph, containing only accepting 

states and border states, is used to preserve 

limited amount of information

• Each process holds its own dependency graph

• NDFS starts from a state only after all its 

successors are search by DFS and NDFS

• NDFS is not performed in parallel with another 

NDFS
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Experimental results

• Preliminary

• 9 workstations interconnected by Ethernet

• Implemented within SPIN and compared to 

standard, sequential SPIN

• Could apply LTL model checking to larger 

problems
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Future work

• Improve the partition function

• Increase the level of parallelism by allowing 

NDFSs to work in parallel under certain 

conditions
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SAT-based model checking
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State explosion problem 

in model checking

• Systems are extremely large

• State of the art symbolic model checking 
can handle medium to small size systems 
effectively:
a few hundreds Boolean variables

Other solutions for the state explosion 
problem are needed.
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SAT-based model checking

• Translates the model and the specification to a 

propositional formula

• Uses efficient tools for solving the 

satisfiability problem 

Since the satisfiability problem is NP-complete, 

SAT solvers are based on heuristics.
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SAT tools

• Using heuristics, SAT tools can solve very large 

problems fast.

• They can handle systems with 1000 variables that 

create formulas with a few thousands of variables.

GRASP (Silva, Sakallah)

Prover (Stalmark)

Chaff (Malik)
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Bounded model checking

for checking AGp

• Unwind the model for k levels, i.e., 

construct all computations of length k

• If a state satisfying p is encountered, then 

produce a counter example

The method is suitable for falsification, not 

verification
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Bounded model checking with SAT

• Construct a formula fM describing all possible 

computations of M of length k

• Construct a formula f expressing =EFp

• Check if  f = fM  f is satisfiable

If f is satisfiable then  M |AGp

The satisfying assignment is a counterexample
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Bounded model checking

• Can handle LTL formulas, when interpreted 
over finite paths.

• Can be used for verification by choosing k 
which is large enough so that every path of 
length k contains a cycle.

– We then need to identify cycles using 
propositional formulas.

– Using such k is often not practical due to the 
size of the model.
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SAT  Solvers

Main problem: time

Secondary problem: space
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Propositional formula in

Conjunctive Normal Form (CNF)

CNF consists of a conjunction of clauses.

A clause is a disjunction of literals.

A literal is either a proposition or a negation 

of a proposition.

(a e)  (c  b)  (c  d)  (c)
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A Simple Davis-Putnam Algorithm

Function Satisfiable (set S) 

return boolean

repeat /* unit propagation */

for each unit clause L in S do

delete (L  Q) from S    /* unit subsumption */

delete L from ( L  Q) in S  /* unit resolution */

od

If S is empty return TRUE

else if null clause in S return FALSE

until no further changes result      
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Davis-Putnam Algorithm (Cont.)

/* case splitting */

choose a literal L occurring in S

if Satisfiable ( S  {L} ) return TRUE

else if Satisfiable (S {L}) return TRUE

else return FALSE

end function
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(a e)  (a  e)  (c  b)  (c  d)  (c)

• Unit clause: c=0
(a e)  (a  e)  ( b)

• Unit clause:  b=1
(a e)  (a  e) 

• Selecting splitting literal: a=0
(e)  ( e) – conflict!

• Create conflict clause: (c  b  a )

• Backtracking and choosing a=1

• Satisfying assignment: c=0, b=1, a=1
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Points of wisdom

• Clever choice of the splitting literal.

• Clever back-jumping on unsuccessful 

assignments.

• Remembering unsuccessful assignments as 

conflict clauses or lemmas. 
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PSATO
A distributed implementation of   SAT  on 

network of workstations.

• The goal is to exploit their under-used 
computation power, especially after hours:
parallelize and cumulate the work 

• Dynamic load balance is needed since the 
computing power of each workstation is 
not known in advance (it may be shared 
with other programs).
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a

b c

1,B

0,B 1,N

d
0,B 1,N

0,N

e

a <0,N> c <1,N>

a <0,N> c <0,N> d <0.N> e 

a <0,N> c <0,N> d <1.N> 

Partitioning the work
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The Master-Slave Model

of   PSATO

• One master, many slaves

• Communication only between master and slaves 

• Master sends jobs (S,P) to slaves

S – set of clauses,   P – guiding path

• Each slave runs Davis-Putnam according to P

• When a slave stops, it sends master

– TRUE or FALSE, if  job is finished

– guiding path, if job is interrupted
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Balancing the workload

• If a slave returns TRUE, all slaves are 
stopped

• If it returns FALSE, the slave is assigned a
new path.

• If time expires, the master sends halt signal 
to stop the current run and collects new 
paths 

The new paths will be used in the next run 
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Achievements
• Accumulation of work: cumulates  the 

results of separate runs on the same problem

• Scalability: more workstations result in a 

faster solution

• Fault tolerance: minimal damage by failure 

of one workstation or network interruption

• No redundant work: processes explore 

disjoint portions of the search space
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Experimental results

• For random hard 3-SAT problems, the speedup on 

20 machines was from 6 to 18.

– Speedup is the ration between CPU time of the 

sequential machine and the average time over the 

parallel machines.

• For open quasigroup problems they managed to 

solve a problem on 20 machine in 35 “working 

days” that would otherwise require 240 days of 

continuous run on a single machine. 
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PaSAT

Can run on multi-processor computer and on a 

networked standard PCs

Implemented on shared memory with 

dynamic creation of threads
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PaSAT (Cont.)

• Uses guiding paths as in PSATO for partitioning 
the work and for balancing it

• Holds conflict clauses learned by all tasks in a 
shared memory

– implemented so that it allows concurrent access without 
synchronization

• Each task filters its conflict clauses and put only 
the “best” in the global store

• Periodically, each task integrates new clauses from 
the global store into its current set  
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Experimental results

• On a machine with 4 processors, on 

satisfiable SAT problems: 

obtained a speedup (time on sequential/time 

of parallel) of up to 3.99 without exchange 

of conflict clauses and even higher with the 

exchange 
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Future work

• Implement the ideas of PaSAT on 

distributed memory

• Extend the ideas for many machines 

working in parallel
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THE END


