A Tutorial on

Parallel and Distributed
Model Checking

Orna Grumberg
Computer Science Department
Technion, Israel

Aspects of parallelism
» Why to parallelize — gain memory or
time
— For model checking: usually memory

 Special purpose hardware or network of
workstations

— Networks of workstations

* Distributed or shared memory
— Distributed memory with message passing

2

Parallel and distributed
algorithms were developed for

Explicit state methods

- reachability and model construction

- LTL model checking

- model checking for alternation-free u-calculus

BDD-based methods
- reachability and generation of counter example
- model checking for full u-calculus

Operations on BDDs
SAT solvers
Timed and probabilistic model checking

Elements of

distributed algorithms

Partitioning the work among the processes

Dynamic or static load balance to maintain
palanced use of memory

Maintaining a good proportion between
computation at each process and
communication

Distributed or centralized termination
detection

Reachability analysis
(BDD- based)

References

“A scalable parallel algorithm for reachability
analysis of very large circuits”,

Heyman, Geist, Grumberg, Schuster, (CAV’00)

Also:
e Cabodi, Camurati, and Quer, 1999

« Narayan, Jain, Isles, Brayton, and Sangiovanni-
Vincentalli, 1997

Reachability analysis

Goal:

Gliven a system (program or circuit) to
compute the set of reachable states from
the set of Initial states

Commonly done by Depth First Search (DFS)
or Breadth First search (BFS)

Symbolic (BDD-based)
model checking

« BDD - a data structure for representing Boolean
functions that is often concise In space

« BDDs are particularly suitable for representing
and manipulating sets

« Symbolic model checking algorithms

— hold the transition relation and the computed sets of
states as BDDs

— Apply set operations in order to compute the model
checking steps

Sequential reachability by BFS

Reachable = new = InitialStates
While (new = ¢) {
next = successors(new)
new = next \ reachable
reachable = reachable U new

The distributed algorithm

* The state space Is partitioned into slices
« Each slice Is owned by one process
» Each process runs BFS on its slice

« When non-owned states are discovered
they are sent to the process that owns
them

Goal: reducing space requirements
(and possibly time)

10

The distributed algorithm (cont.)

The initial sequential stage

* BFS is performed by a single process until some
threshold is reached

» The state space is sliced into k slices.
Each slice iIs represented by a window function.

» Each process is informed of:
- The set of window functions W,,...,.W,
- Its own slice of reachable
- Its own slice of new

11

Elements of distributed symbolic algorithm

» Slicing algorithm that partitions the set of
states among the processes

 Load balance algorithm that keeps these
sets similar in size during the execution

e Distributed termination detection

« Compact BDD representation that can be
transferred between processes and allows
different variable orders

12

Slicing:

When slicing a BDD we loose the sharing
that causes BDD to be a compact representation

1:vl
()

Slicing (cont.)

» \We choose a variable v and partition a Boolean
function f tof,_, and f .

« The chosen v has minimal cost that guarantees:

— The size of each slice is below a threshold.
l.e., the partition is not trivial
(no [Ty = [T, |=[T]| or |[f,[~0)
— The duplication is kept as small as possible
» An adaptive cost function is used to keep the
duplication as small as possible

14

|_oad Balance

 The initial slicing distributes the memory
requirements equally among the processes.

« As more states are discovered, the memory
requirements might become unbalanced.

» Therefore, at the end of each step in the
computation of the reachable states a load
balance procedure iIs applied.

15

oad Balance (Cont.)

Process 1 with a small slice sends its slice to
process | with a large slice.

Process | applies the slicing procedure for
K=2 and obtains two new balanced slices.

Process | sends process I its new slice and
Informs all other processes of the change In
windows.

16

The parallel stage requires a coordinator for:

Pairing processes for exchanging non-
owned states

 Processes notify the coordinator of the
processes they want to communicate with.

» The coordinator pairs processes that need to
communicate.

» Several pairs are allowed to communicate In
parallel.

17

Important: Data is transferred directly
between the processes and not via the
coordinator

18

Coordinator can also be used for:

» Pairing processes for load balancing
 Distributed termination detection

19

Experimental results

On 32 non-dedicated machines, running IBM
RuleBase model checker:

* On examples for which reachability terminates
with one process, adding more processes reduces
memory (number of BDD nodes)

* On examples for which reachability explodes,
more processes manage to compute more steps of
the reachability algorithm

20

« Communication was not a bottleneck

» Time requirements were better in some
examples and worse In others
— better — because BDDs are smaller

— worse — overhead and lack of optimizations
for improving time

21

Future work

Improve slicing

Exploit different orderings in different
processes

Adapt the algorithm to dynamic networks

Adapt the algorithm for hundreds and
thousands of parallel machines

22

Model checking safety properties

Checking AGp can be performed by

— Computing the set of reachable states

— For each state checking whether it satisfies p
If a state which satisfies —p Is found, a

counter example — a path leading to the
error state - 1s produced

» Checking other safety properties can also be
reduced to reachability

23

Back to reachability
(explicit state)

References

Explicit state reachability:

« “Distributed-Memory Model Checking with SPIN”, Lerda
and Sisto, 1999

Also:

e Caselli, Conte, Marenzomi, 1995

o Stern, Dill 1997

« Garavel, Mateescu, Smarandache, 2001

LTL model checking:

« “Distributed LTL Model-Checking in SPIN”, Barnat,
Brim, and Stribrna, 2001

25

Sequential reachability

o States are kept in a hash table
 Reachability Is done using a DFS algorithm

26

Distributed Reachability

The state space Is statically partitioned

When a process encounters a state that does
not belong to It - the state is sent to the owner

Received states are kept in a FIFO queue

Verification ends when all processes are idle
and all gueues are empty

27

Choosing the partition function

Must depend only on the state
Should divide the state space evenly
Should minimize cross-transitions

First solution - partition the space of the hash
function

X

cannot be implemented on a heterogeneous network

even distribution, but not necessarily of the reachable
states

does not minimize cross transitions
28

A better partition function for
asynchronous programs (like in SPIN)

A global state s consists of the local states s; of each
concurrent sub-program

 Choose a specific sub-program prog;

 Define the partition function according to the
value of the local state s; of sub-program prog;

Since a transition generally involves one or two sub-
programs, this partition

minimizes cross-transitions

distributes the state-space evenly

29

LTL model checking with
Biichi automata

(explicit state)

LTL model checking with
Buchi automata

A Biuchi automaton 1s a finite automaton on
Infinite words.

« An infinite word Is accepted if the
automaton, when running on this word,
visits an accepting state infinitely often.

« Every LTL formula can be translated into a
Biichi automaton that accepts exactly all
Infinite paths that satisfy the formula.

31

Checking M |= ¢
for an LTL formula ¢

In order to verify a property ¢, an automaton
A_, Is bullt.
* A_,, contains all behaviors that satisfy —¢.

* MxA_ contains all the behaviors of M
that do not satisfy .

* M|=¢ ITf MXxA_ Isempty.

32

Checking for (non)emptiness

 Looking for a reachable loop that contains
an accepting state

- Tarjan’s algorithm, O(|Q| + [T|)

VA

Nested DFS Algorithm

e Two DFS searches are interleaved
— The first looks for an accepting state
— The second looks for a cycle back to this state

 \When the first DFS backtracks from an

accepting state It starts the second (nested)
DFS

34

» The second DFS looks for a loop back to
the accepting state

« When the second DFS is done (without
success) the first DFS resumes

« Each DFS goes through every reachable
state only once!

35

Why nested-DFS won’t work
In parallel

Relative speed determines if a cycle is found

36

 The order matters

Process A

Process B

A nested DFS should start from s iff all accepting
states below s have finished their nested DFS

37

Inefficient solution

» Holding for each state the list of NDFSs it
participated Iin
— Requires too much space

— Allows each state to be traversed more than
once for each of the two DFSs

38

Main characteristics of
the distributed algorithm

Dependency graph, containing only accepting
states and border states, Is used to preserve
limited amount of information

Each process holds its own dependency graph

NDFS starts from a state only after all its
successors are search by DFS and NDFS

NDFS is not performed in parallel with another
NDFS

39

Experimental results

Preliminary
9 workstations interconnected by Ethernet

Implemented within SPIN and compared to
standard, sequential SPIN

Could apply LTL model checking to larger
problems

40

Future work

 Improve the partition function

* Increase the level of parallelism by allowing
NDFSs to work in parallel under certain
conditions

41

SAT-based model checking

State explosion problem
In model checking

« Systems are extremely large

» State of the art symbolic model checking
can handle medium to small size systems
effectively:

a few hundreds Boolean variables

Other solutions for the state explosion
problem are needed.

43

SAT-based model checking

 Translates the model and the specification to a
propositional formula

 Uses efficient tools for solving the
satisfiability problem

Since the satisfiability problem is NP-complete,
SAT solvers are based on heuristics.

44

SAT tools

 Using heuristics, SAT tools can solve very large
problems fast.

» They can handle systems with 1000 variables that
create formulas with a few thousands of variables.

GRASP (Silva, Sakallah)
Prover (Stalmark)
Chaff (Malik)

45

Bounded model checking
for checking AGp

« Unwind the model for k levels, I.e.,
construct all computations of length k

» |f a state satisfying —p Is encountered, then
produce a counter example

he method iIs suitable for falsification, not
verification

46

Bounded model checking with SAT

 Construct a formula f,, describing all possible
computations of M of length k

» Construct a formula f, expressing p=EF—p
 Checkif T=1, AT, Issatisfiable

If f Is satisfiable then M |z AGp
he satisfying assignment Is a counterexample

47

Bounded model checking

« Can handle LTL formulas, when interpreted
over finite paths.

 Can be used for verification by choosing k
which Is large enough so that every path of
length k contains a cycle.

— We then need to identify cycles using
propositional formulas.

— Using such k is often not practical due to the
size of the model.

48

SAT Solvers

Main problem: time
Secondary problem: space

49

References

“PSATO: a Distributed Propositional Prover and
Its Application to Quasigroup Problems™, Zhang,
Bonancina and Hsiang, 1996

“PaSAT — parallel SAT-checking with lemma
exchange: implementation and applications”,
Sinz, Blochinger, Kuchlin, 2001

Also:
Bohm, Speckenmeyer 1994
Zhao, Malik, Moskewicz, Madigan, 2001

50

Propositional formula in
Conjunctive Normal Form (CNF)

CNF consists of a conjunction of clauses.
A clause Is a disjunction of literals.

A literal Is either a proposition or a negation
of a proposition.

(av—e)A(cvDb)A(=Ccvd) A (=C)

o1

A Simple Davis-Putnam Algorithm

Function Satisfiable (set S)
return boolean
repeat /* unit propagation */
for each unit clause L in S do
delete (L v Q) from S /* unit subsumption */
delete —L from (— L v Q) In S /* unit resolution */
od
If S Is empty return TRUE
else if null clause in S return FALSE
until no further changes result

52

Davis-Putnam Algorithm (Cont.)

[* case splitting */

choose a literal L occurring in S

If Satisfiable (S {L}) return TRUE
else If Satisfiable (S w{-L}) return TRUE
else return FALSE

end function

53

(av—e)a(ave)a(cvb) A(—=cvd) A (=C)
 Unit clause: ¢c=0
(av—e)Aa(ave)a(b)
« Unit clause: b=1
(av—e) A(ave)
 Selecting splitting literal: a=0
(—e) A (e) —conflict!
 Create conflict clause: (c v —=b v a)
« Backtracking and choosing a=1

o Satisfying assignment: ¢=0, b=1, a=1

o4

Points of wisdom

 Clever choice of the splitting literal.

 Clever back-jumping on unsuccessful
assignments.

« Remembering unsuccessful assignments as
conflict clauses or lemmas.

55

PSATO

A distributed implementation of SAT on
network of workstations.

« The goal is to exploit their under-used
computation power, especially after hours:
parallelize and cumulate the work

« Dynamic load balance is needed since the
computing power of each workstation Is
not known In advance (it may be shared
with other programs).

56

Partitioning the work

a

X

b C

¢ d <O,N>C <1,N>

% a<0,N>C<0,N>d <1.N>

4
i

O,y \LN % a<0,N>C <0,N>d <0.N> €
d

RAY

S7

The Master-Slave Model
of PSATO

One master, many slaves
Communication only between master and slaves

Master sends jobs (S,P) to slaves
S —set of clauses, P — guiding path

Each slave runs Davis-Putnam according to P
When a slave stops, It sends master

— TRUE or FALSE, if job is finished

— guiding path, If job Is Interrupted

58

Balancing the workload

e If aslave returns TRUE, all slaves are
stopped

o |If it returns FALSE, the slave Is assigned a
new path.

» If time expires, the master sends halt signal
to stop the current run and collects new
paths

The new paths will be used in the next run

59

Achievements

Accumulation of work: cumulates the
results of separate runs on the same problem

Scalability: more workstations result in a
faster solution

Fault tolerance: minimal damage by failure
of one workstation or network interruption

No redundant work: processes explore
disjoint portions of the search space

60

Experimental results

» For random hard 3-SAT problems, the speedup on
20 machines was from 6 to 18.

— Speedup is the ration between CPU time of the
sequential machine and the average time over the
parallel machines.

 For open quasigroup problems they managed to
solve a problem on 20 machine in 35 “working
days” that would otherwise require 240 days of
continuous run on a single machine.

61

PaSAT

Can run on multi-processor computer and on a
networked standard PCs

Implemented on shared memory with
dynamic creation of threads

62

PaSAT (Cont.)

Uses guiding paths as in PSATO for partitioning
the work and for balancing it

Holds conflict clauses learned by all tasks in a

shared memory

— Implemented so that it allows concurrent access without
synchronization

Each task filters its conflict clauses and put only
the “best” in the global store

Periodically, each task integrates new clauses from
the global store into Its current set

63

Experimental results

* On a machine with 4 processors, on
satisfiable SAT problems:
obtained a speedup (time on sequential/time
of parallel) of up to 3.99 without exchange
of conflict clauses and even higher with the
exchange

64

Future work

* Implement the ideas of PaSAT on
distributed memory

 Extend the ideas for many machines
working in parallel

65

THE END

