
Model Checking Techniques

for Behavioral UML Models

Yael Meller

Model Checking Techniques

for Behavioral UML Models

Research Thesis

Submitted in partial fulfillment of the requirements

for the degree of Doctor of Philosophy

Yael Meller

Submitted to the Senate of

the Technion — Israel Institute of Technology

Shvat 5776 Haifa January 2016

The research thesis was done under the supervision of Prof. Orna Grumberg

and Dr. Karen Yorav in the Computer Science Department.

First and foremost I would like to thank my supervisor Orna Grumberg for

her incredible guidance and support throughout my studies. Thank you for

guiding me how to be a researcher, and for showing me the beauty and fun of

research. You have always provided me with inspiration and encouragement,

and knew how to always do it with a smile. More importantly, I thank you

for your friendship: for the coffee breaks, for the talks, and for the parties

and dancing. These all have made my studies so enjoyable. I feel lucky to

have had you as my advisor.

I would also like to thank my other supervisor, Karen Yorav. Thank

you for introducing me to the world of UML. For always finding the time

to guide and help me, and to share your ideas with me. I feel privileged to

have had the opportunity to work and learn from you.

I would like to thank my parents Kobi and Tami Kalka, for your love

and support in every aspect of my life and studies, from elementary school

to graduate school. I thank my parents in law, Daniella and Isaac Meller,

who went out of their way to help me during my studies.

Last but not least I thank my husband, Nimrod and my daughters, Adi,

Maya and Noga, for your love, for making me so happy, and for showing me

each and every day what are the most important things in my life. Nimrod,

thank you for your friendship and endless support throughout my studies.

I could not have made it without you.

The generous financial support of the Technion is gratefully acknowledged.

Contents

Abstract 1

Abbreviations and Notations 3

1 Introduction 5

2 Preliminaries 9

2.1 UML Behavioral Systems . 9

2.1.1 UML State Machines 9

2.1.2 Systems . 13

2.2 Linear-time Temporal Logic (LTL) 17

3 Semantics of System Computations 19

4 Applying Software Model Checking Techniques For Behav-

ioral UML Systems 23

4.1 Preliminaries . 25

4.1.1 Bounded Model Checking 25

4.1.2 Restrictions, Notations and Abbreviations 26

4.2 Translation to Verifiable Bounded C 29

4.3 System Verification . 31

4.3.1 Verifying LTL Safety Properties 31

4.3.2 Verify Mutually-Dependent Livelocks 32

4.4 Experimental Results . 37

4.5 Conclusions . 40

5 Verifying Behavioral UML Systems via CEGAR 42

5.1 Abstract State Machines . 44

i

5.1.1 Abstracting a State Machine 44

5.1.2 Abstracting a System 50

5.2 Correctness of The Abstraction 51

5.2.1 Proving Correctness of the Abstraction 56

5.3 Using Abstraction . 77

5.4 Refinement . 78

5.4.1 Constructing π From πA 80

5.5 Conclusion . 89

6 Learning-Based Compositional Verification of Behavioral UML

Systems 90

6.1 Preliminaries . 92

6.1.1 Assume Guarantee Reasoning and Compositional Ver-

ification . 92

6.1.2 The L∗ Algorithm . 93

6.2 Representing Executions as Words 93

6.3 AG for State Machines . 98

6.3.1 A Framework For Employing Rule AG-UML and

Its Correctness . 99

6.3.2 Membership Queries 104

6.3.3 Conjecture Queries . 106

6.3.4 Correctness . 114

6.3.5 Performance Analysis 115

6.4 AG for Systems with Multiple State Machines 116

6.4.1 Membership Queries 120

6.4.2 Conjecture Queries . 123

6.5 Applying Assume-Guarantee Reasoning Recursively 127

6.5.1 Membership Queries 131

6.5.2 Conjecture Queries . 133

6.6 Conclusion . 135

7 Conclusions 136

ii

List of Figures

2.1 Example State Machine . 12

4.1 State Machine for Class DB 27

4.2 State Machine for Class Agent 28

4.3 RunRTCStepi Method . 29

4.4 main Method . 30

4.5 FindMDLivelock Method . 36

4.6 Soft-UMC vs. HWMC . 38

4.7 Scalability Comparison . 39

4.8 Optimizations on Ticket Ordering 40

5.1 The Abstraction Construct ∆(A) 46

5.2 DB State Machine . 49

5.3 Abstract DB State Machine 50

5.4 Stuttering Computation Inclusion 53

6.1 Example State Machine for Class server 95

6.2 Example State Machine for Class client 96

6.3 State Machine M(w) . 104

6.4 Conjecture DFA C and Resulting State Machine A(C) 107

6.5 General Scheme for M(M2, A(C)) 109

6.6 Non Star-Type System Example 119

6.7 Mi(w) Representing w ⇂Σi
. 121

6.8 Example State Machine for Class clienti 122

6.9 Example for M1(w) and M2(w) 122

6.10 Conjecture DFA C for Multiple Clients 123

6.11 State Machines A1(C) and A2(C) 124

6.12 The conjecture DFA C . 128

iii

6.13 General Scheme for M̂(∆i(w), Ai) 133

iv

Abstract

The Unified Modeling Language (UML) is a widely accepted modeling lan-

guage for embedded and safety critical systems. As such the correct behav-

ior of systems represented as UML models is crucial. Model checking is a

successful automated verification technique for checking whether a system

satisfies a desired property. In this thesis, we present several approaches to

enhancing model checking to behavioral UML systems.

The applicability of model checking is often impeded by its high time and

memory requirements. The first approach we propose aims at avoiding this

limitation by adopting software model checking techniques for verification of

UML models. We translate UML to verifiable C code which preserves the

high level structure of the models, and abstracts details that are not needed

for verification. We combine static analysis and bounded model checking for

verifying LTL safety properties and absence of livelocks. We implemented

our approach on top of the bounded software model checker CBMC. We

compared it to an IBM research tool that verifies UML models via a trans-

lation to IBM’s hardware model checker RuleBasePE. Our experiments show

that our approach is more scalable and more robust for finding long coun-

terexamples. We also demonstrate the usefulness of several optimizations

that we introduced into our tool.

A successful approach to avoiding the high time and memory require-

ments of model checking is CounterExample-Guided Abstraction-Refinement

(CEGAR). In the second approach we propose a CEGAR-like method for

UML systems. We present a model-to-model transformation that generates

an abstract UML system from a given concrete one, and formally prove that

our transformation creates an over-approximation. The abstract system is

often much smaller, thus model checking is easier. Because the abstrac-

tion creates an over-approximation we are guaranteed that if the abstract

1

model satisfies the property then so does the concrete one. If not, we check

whether the resulting abstract counterexample is spurious. In case it is, we

automatically refine the abstract system, in order to obtain a more precise

abstraction.

Another successful approach to tackle the limitations of model checking

is compositional verification. Recently, great advances have been made in

this direction via automatic learning-based Assume-Guarantee reasoning. In

the last approach we present a framework for automatic Assume-Guarantee

reasoning for behavioral UML systems. We apply an off-the-shelf learning al-

gorithm for incrementally generating assumptions on the environment, that

guarantee satisfaction of the property. A unique feature of our approach

is that the generated assumptions are UML state machines. Moreover, our

Teacher works at the UML level: All queries from the learning algorithm

are answered by generating and verifying behavioral UML systems.

2

Abbreviations and Notations

S — Set of states

R — Set of regions

Ω : S ∪R→ S ∪R ∪ {ǫ} — Mapping function from states

and regions to their container

s⊳ s′ — s′ contains s

V — Set of variables

λ — Variable assignment

EVsys — Set of system events

EVenv — Set of environment events

EV = EVsys ∪EVenv — Set of events

act — Action (sequence of statements)

modif(act) — Set of variables modified on act

TR — Set of transitions

trig(t) — Trigger of transition t

grd(t) — Guard of transition t

act(t) — Action of transition t

L : TR→ EV × B ×Actions — Labeling function for transitions

H — History marker

SM = (S,R,Ω, init, TR,L,H) — State machine

ω ⊆ S — Set of currently active states

ρ — Event currently dispatched

H : R→ S — History information function

c = (ω, ρ,H) — State machine configuration

EQ — Event queue

Qi — Event queue instance

qi — Contents of Qi

3

Γ = (SM1, ..., SMn, Q1, ..., Qm, thread, V) — System

C = (c1, ..., cn, q1, ..., qm, id1, ..., idm, λ) — System configuration

π = C0, step0, C1, step1, ... — Computation of a system

RTC — Run-to-completion

LTL — Linear time logic

LTLx — Linear time logic without

the next-time operator

4

Chapter 1

Introduction

Computerized systems dominate almost every aspect of our lives and their

correct behavior is crucial. Model checking [11] is a successful automated

verification technique for checking whether a given system satisfies a desired

property. The system is usually described as a finite-state model and the

specification is given as a formula in temporal logic. The process of model

checking considers all of the system behaviors, and either confirms that the

system is correct w.r.t. the checked property, or provides a counterexample

that demonstrates an erroneous behavior.

Model checking is widely recognized as an important approach to in-

creasing reliability of hardware and software systems and is widely used in

industry. Unfortunately, the applicability of model checking is often impeded

by its high time and memory requirements, referred to as the state explosion

problem. Much of the research in this area is dedicated to increasing model

checking applicability and scalability.

The Unified Modeling Language (UML) [6] is a widely accepted modeling

language that is used to visualize, specify, and construct systems. It pro-

vides means to represent a system as a collection of objects and to describe

the system’s internal structure and behavior. UML has been accepted as

a standard object-oriented modeling language by the Object Management

Group (OMG) [25]. It is becoming the dominant modeling language for

embedded systems. As such, the correct behavior of systems represented

as UML systems is crucial and verification techniques for such models are

required.

In this work we present new techniques for improving model checking

5

of behavioral UML systems. Our main goal is to keep the model checking

process at the UML level. That is, instead of translating the behavioral

UML system to some low level representation (e.g., Kripke structure) and

applying optimizations on the low level representation, our goal is to ap-

ply optimizations on the UML system directly. This approach enables us

to exploit high level information, which results from the unique structure

and behavior of such models, in our optimizations, information which is

otherwise lost. It is important to note that remaining at the UML level is

also highly beneficial to the user, since the property, the optimizations and

the counterexamples are all given at the UML level and are therefore more

meaningful.

There are two orthogonal challenges to tackle when addressing model

checking of behavioral UML systems. The first is how to apply existing

model checking tools for verification of UML systems. The second challenge

is, given a model checker for behavioral UML systems, how to fight the

state explosion problem in the context of behavioral UML systems. Two

of the most promising approaches for fighting the state explosion problem

are abstraction and compositional verification. We propose applying these

approaches for behavioral UML systems.

Following, we describe these challenges and our techniques for fighting

them.

Model Checking Behavioral UML Systems

Model checking tools expect the checked system to be presented in an ap-

propriate description language. Previous works on UML model checking

translate UML systems to SMV [8, 12] or VIS1 [52], both particularly suit-

able for hardware; to PROMELA (the input language of SPIN) [38, 34, 42,

17, 1, 31, 19]), which is mainly suitable for communication protocols; or to

IF3 [40], which is oriented to real-time systems.

We believe that behavioral UML systems most resemble high-level soft-

ware systems. We therefore choose to translate UML systems to C and

adopt software model checking techniques for their verification. Our trans-

lation preserves the high-level structure of the UML system: event-driven

objects communicate with each other via an event queue. An execution con-

1These works were developed as part of the European research project OMEGA [41].

6

sists of a sequence of Run To Completion (RTC) steps. Each RTC step is

initiated by the event queue by sending an event to its target object, which

in turn executes a maximal series of enabled transitions. In Chapter 4 we

present our approach for verifying behavioral UML systems by applying

software model checking techniques. This work was published in [27].

Abstraction and Refinement for Behavioral UML Systems

Abstractions hide some of the system details in order to result in an over-

approximated system that has more behaviors and fewer states than the

concrete (original) system. The abstract system has the feature that if a

property holds on the abstract system, then it also holds on the concrete

system. However, if the property does not hold, then nothing can be con-

cluded of the concrete system. The CounterExample-Guided Abstraction

Refinement (CEGAR) approach [10] provides an automatic and iterative

framework for abstraction and refinement, where the refinement is based

on a spurious counterexample. When model checking returns an abstract

counterexample, a search is make for a matching concrete counterexample.

If one exists, then a real bug on the concrete system is found. Otherwise, the

counterexample is spurious and a refinement is needed. In the refinement

stage, more details are added to the abstract system, in order to eliminate

the spurious counterexample.

In Chapter 5 we propose a CEGAR-like framework for verifying be-

havioral UML systems. We present a model-to-model transformation that

generates an abstract model from a given concrete one. Our transformation

is done on the UML level, thus resulting in a new behavioral UML system

which is an over-approximation of the original model. We adapt the CE-

GAR approach to our UML framework, and apply refinement if needed.

Our refinement is also performed as a model-to-model transformation. This

work was published in [36].

Compositional Verification for Behavioral UML Systems

Another promising solution to the state explosion problem is compositional

model checking, where parts of the system are verified separately in order

to avoid the construction of the entire system and to reduce the model

checking cost. Due to dependencies among components’ behaviors, it is

7

usually impossible to verify one component in complete isolation from the

rest of the system. To take such dependencies into account the Assume-

Guarantee (AG) paradigm [30, 44, 26] suggests how to verify a component

based on an assumption on the behavior of its environment, which consists

of the other system components. The environment is then verified in order

to guarantee that the assumption is actually correct.

Learning [2] has been a major technique to construct assumptions for the

AG paradigm automatically. An automated learning-based AG framework

was first introduced in [15]. It uses iterative AG reasoning, where in each

iteration an assumption is constructed and checked for suitability, based on

learning and on model checking. Many works suggest optimizations of the

basic framework and apply it in the context of different AG rules ([7, 23,

57, 20, 39, 28, 5, 14, 43, 9]).

In Chapter 6 we propose a framework for automated learning-based AG

reasoning for behavioral UML systems. Our framework is similar to the

one presented in [15], with the main difference being that our framework

remains at the state machine level. That is, the system’s components are

state machines, and the learned assumptions are state machines as well.

This is in contrast to [15], where the system’s components and the learned

assumptions are all presented as Labeled Transition Systems (LTSs). This

work was published in [37].

8

Chapter 2

Preliminaries

2.1 UML Behavioral Systems

Behavioral UML systems include objects (instances of classes) that process

events. Event processing is defined by state machines, which include complex

features such as hierarchy, concurrency and communication. UML objects

communicate by sending each other events (asynchronous messages) that

are kept in event queues (EQs). Every object is associated with a single

EQ, and several objects can be associated with the same EQ. In a single-

threaded system there is one EQ, while in a multi-threaded system there are

several EQs, one for each thread. Each thread executes a never-ending loop,

taking an event from its EQ, and dispatching it to the target object. The

target object makes a run-to-completion (RTC) step, where it processes the

event and continues execution until it cannot continue anymore. Only when

the target object finishes its RTC step, the thread dispatches the next event

available in its EQ. Next we formally define state machines, UML systems,

and the set of behaviors associated with them. The following definitions

closely follow the UML2 standard.

2.1.1 UML State Machines

Definition 2.1 (States and Regions) Let S denote a set of states parti-

tioned into disjoint subsets according to two types: simple states Ssim and

compound states Scom. Let R be a non-empty set of regions. We assume R

contains the region TOP . Let Ω : S ∪ R → S ∪ R ∪ {ǫ} be a function that

9

associates regions to their containing states, and states to their containing

regions. We assume the following constraints on Ω:

• For every s ∈ S, Ω(s) ∈ R (the container of a state is a region).

• For every r ∈ R if r = TOP then Ω(r) = ǫ, otherwise Ω(r) ∈ S (the

container of a region is a state and TOP has no container).

• For every r ∈ R s.t. r 6= TOP , Ω(r) ∈ Scom (only compound states

contain regions)

• For every r ∈ R there exists at least one s ∈ S such that Ω(s) = r

• The transitive closure of Ω is irreflexive

The function Ω induces a partial order on S ∪R: u⊳ u′ denotes that u′

contains u.

We say that two different regions r1, r2 ∈ R are orthogonal, denoted

ORTH(r1, r2), if they are contained in the same state.

Formally, ORTH(r1, r2) = true iff r1 6= r2 and Ω(r1) = Ω(r2).

From here on we assume a fixed set V of variables over finite domains. We

use Λ to denote the set of all possible valuations for the variables in V , and λ

or λi to denote specific assignments. We use B to denote the set of Boolean

expressions over V . We also assume a fixed set of environment events EVenv
and a fixed set of system events EVsys, and we denote EV = EVenv ∪EVsys.

An event e is a pair (type(e), trgt(e)), where type(e) denotes the event name

(or type), and trgt(e) denotes the state machine to which the event was sent

(formally defined later).

Definition 2.2 (Actions) An action is a sequence of statements in some

programming language. A simple statement is either an assignment “x = e”

over variables in V , or “GEN(e)”, which is the generation of an event

from EVsys. skip represents an empty sequence of statements. A compound

statement is a sequence of statements, “a1; a2” or a branching statement “if

b then a1 else a2”, for actions a1 and a2 and b ∈ B .

Given an action act, we denote by modif(act) the set of variables that

may be modified on act. Formally, x ∈ modif(act) if statement “x = e” is

part of act.

10

Note that we restrict the action language and disallow dynamic allocation

of objects and memory, dynamic pointers, unbounded loops, and recursion.

These restrictions enable us to focus on the model checking of UML systems,

while avoiding orthogonal issues such as termination and pointer analysis.

Definition 2.3 (State Machines) A state machine is a tuple

(S,R,Ω, init, TR,L,H) such that:

• S, R, and Ω are the sets of states and regions and the Ω function, as

defined above.

• init ⊆ S are initial states, such that there is exactly one initial state

in each region.

• TR ⊆ S × S is the set of transitions. Each transition t connects a

single source state src(t) with a single target state trgt(t).

• L : TR → EV × B × Actions is a function that labels each transition

with a trigger (an event from EV), a guard, and an action. Since none

of these components are mandatory we assume ǫ ∈ EV representing

no trigger, true ∈ B representing an empty guard, and skip ∈ Actions

representing no action. We use trig(t), grd(t), and act(t) to refer to

the trigger, guard, and action of t respectively.

• H ⊆ R is the history marker, marking those regions that have his-

tory (these would have a history pseudostate in them in the graphical

representation).

Transitions t where trig(t) = ǫ and grd(t) = true are referred to as null

transitions. Recall that modif(act) denotes the set of variables that may be

modified on act. By abuse of notation, modif(t) denotes the set of variables

that may be modified on act(t).

Figure 2.1 describes a state machine. States are denoted as squares.

Regions are graphically represented only if they are orthogonal. Orthogo-

nal regions are denoted by a dashed line. For example, state Work con-

tains two orthogonal regions, where one region contains states s4, s5 and

s6, and the other region contains states s7, s8, s9 and the compound state

process. Assume these regions are r1 and r2, then ORTH(r1, r2) = true

11

✁�✂✄

✆☎

✝✂�✞✟✠✠

✟✂✡☛☞✌✌✍
✞✎✏✍ ✑✡

✟✞✡☛
✒✓✓

✆✔
☛✕✖✗✘✟✡✙✚✛✠✜✂✢✛ ✣

✆✤

✟✡✥✒✦✏✧
✆✡

✟✂✥☞✎✎✏✧

✟✡✥✒✦✏✧☛
☛✕✖✗✘✞★✙✚✛✠✜✂✢✛ ✣

✆✩
☛✕✖✗✘✞✡✙✚✛✠✜✂✢✛ ✣

✟✞✡

✆✪

✆✫

✟✂✡

✑✡✥☞✦✬✧

✆✭

✮✯
✰✱
✲✳✴✵✶✷✸✹✺✻✼✸
✽

✾✒✞✒✛✚�✿

✟✂✡☛☞✌✌✍
✞✎✏✍

Figure 2.1: Example State Machine

(since Ω(r1) = Ω(r2) = Work). Note that these are the only orthogonal

regions in the state machine.

A transition t is denoted with tr[g]/a where tr = trig(t), g = grd(t)

and a = act(t). If tr = ǫ, g = true or a = skip they are omitted from the

representation. For example, in Figure 2.1, for transition t from s0 to s1 (i.e.,

src(t) = s0 and trgt(t) = s1), trig(t) = er, grd(t) = (b == 0), and act(t) =

skip (thus the action is omitted from the representation). The transition

from s7 to process is a null transition whose action is GEN(e1, itsT rgt).

Definition 2.4 (State Machine Configurations) Let SM = (S,R,Ω, init

, TR,L,H) be a state machine. An SM-configuration is a tuple (ω, ρ,H)

such that:

• ω ⊆ S is the set of currently active states. ω has the property that

for every s ∈ ω and for every r ∈ R such that Ω(r) = s there exists a

single s′ ∈ S such that Ω(s′) = r and s′ ∈ ω. Also, there exists a state

s ∈ ω such that Ω(s) = TOP .

• ρ ∈ type(EV) ∪ {ǫ} holds an event currently dispatched (formally

defined later) to the state machine and not yet consumed (and ǫ if

there is no event to be consumed).

• H : R→ S is the history information. It records the last active state in

each region marked with history (r ∈ H), or the initial state if either

the region has not yet been visited or the region is not marked with

history.

12

The requirements on ω ensure that for every compound state s in ω,

and for every region r contained in s (i.e., Ω(r) = s), there exists a single

state s′ contained in r (Ω(s′) = r) such that s′ is in ω as well. For example,

{V acation} and {Work, s6, process, s0} are both possible sets of currently

active states of the state machine in Figure 2.1

From here on, we assume that state machines do not include complex

UML syntactic features: cross-hierarchy transitions, fork, join, entry and

exit actions. It is straightforward to eliminate these features, at the expense

of additional states, transitions and variables. Note that the hierarchical

structure of the state machines is maintained, thus avoiding the exponential

blow-up incurred by flatenning.

2.1.2 Systems

Next we define UML systems and their behavior. UML2 places no restric-

tions on the implementation of the event queue and neither do we. We use

a finite sequence q = (e1, ..., el) of events ei ∈ EV to represent the contents

of an event queue at a particular point in time (thus the set of all possible

values for an event queue is EV ∗). We assume the functions pop(q), top(q),

and push(q, e) are correctly defined with respect to the semantics of the

event queue.

Definition 2.5 (System) A system is a tuple (SM1, ..., SMn, Q1, ..., Qm,

thread, V) s.t. SM1, ..., SMn are state machines, Q1, ..., Qm (m ≤ n) are

event queues (one for each thread), thread : {1, ..., n} → {1, ...,m} assigns

each state machine to a thread, and V is a collection of variables over finite

domains.

Note that in the original UML system variables are partitioned into

private attributes, public attributes, and global variables. These definitions

govern the constraints on which variables each state machine may read or

write to. For the semantic model we bundle all variables together into a

single vector V and assume that all accesses are legal.

Definition 2.6 (System Configuration) Let Γ = (SM1, ..., SMn, Q1, ..., Qm,

thread, V) be a system. A system-configuration is a tuple (c1, ..., cn, q1, ..., qm,

id1, ..., idm, λ) such that:

13

• ci is an SM-configuration of SMi

• qj is the contents of Qj

• idj ∈ {0, ..., n} is the id of the state machine associated with thread j

that is currently executing a run-to-completion step. idj = 0 means

that all the state machines of thread j are inactive.

• λ is an assignment giving each variable in V a value from its legal

domain.

From now on we fix a given system Γ = (SM1, ..., SMn, Q1, ..., Qm, thrd, V).

We use lower case c for SM-configurations and capital C for system-configurations.

We use k as a superscript to range over steps in time, making cki the SM-

configuration of SMi at time k. For every e ∈ EV , we define trgt(e) ∈

{0, ..., n} to give the index of the state machine that is the target of e.

trgt(e) = 0 means the event is sent to the environment of Γ.

Next we define computations of a system. In principle, a computation

is a series of transitions fired according to certain constraints and following

the run-to-completion semantics per-thread. The main difference between

our definition and the majority of formal semantic theories suggested for

UML state machines is that we differentiate between the extraction of an

event from the event queue and the state machine transition that is fired as

a result of this event being dispatched.

In order to define computations we require a few more definitions.

Definition 2.7 (Enabled Transition) A transition t of a state machine

SMi is enabled in a configuration C = (c1, ..., cn, q1, ..., qm, id1, ..., idm, λ)

(where ci = (ωi, ρi,Hi)), denoted enabled(t, C), if the following conditions

hold:

• src(t) ∈ ωi (the source state of t is active)

• trig(t) = ρi (the trigger is the currently dispatched event, or no trigger

on the transition if ρi = ǫ)

• λ |= grd(t) (the guard of the transition is satisfied under the current

assignment to variables)

14

• For every t′ ∈ TRi such that src(t′) ∈ ωi and src(t
′)⊳src(t): trig(t′) 6=

ρi or λ 6|= grd(t′) (a transition is enabled if all transitions from states

contained in src(t) are not enabled)

By abuse of notation we say that a state machine SMi is enabled in

configuration C, denoted enabled(i, C), if SMi has an enabled transition

in C. That is, enabled(i, C) is true iff there exists t ∈ TRi such that

enabled(t, C).

We say that a state machine configuration ci is stable in a configuration

C = (c1, ..., cn, q1, ..., qm, id1, ..., idm, λ) if there are no enabled transitions in

SMi.

Example 2.8 Assume the state machine in Figure 2.1, denoted SM1, is

part of a system Γ. Assume a system-configuration C of Γ, where the SM-

configuration of SM1 is c1 = (ω1, ρ1,H1), ω1 = {Work, s6, process, s0}, and

ρ1 = er. Assume also that for the variable assignment λ in C, λ(b) = 0. Let

t ∈ TR1 be the transition from s0 to s1, then enabled(t, C) = true. More-

over, for every other transition t′ ∈ TR1 such that t′ 6= t, enabled(t′, C) =

false, since either src(t′) 6∈ ω1 or trig(t′) 6= ρ1.

Definition 2.9 (Transition Execution on state machine) When a tran-

sition t of a state machine SMi in state machine configuration ci = (ωi, ρi,Hi)

is executed, SMi moves to a new state machine configuration c′i = (ω′
i, ρ

′
i,H

′
i),

denoted dest(ci, t), which is defined as follows:

• ω′
i = (ωi \ {s ∈ ωi|s = src(t) ∨ s⊳ src(t)}) ∪ {s ∈ S|s = trgt(t) ∨ (s⊳

trgt(t) ∧ s = Hi(Ω(s)) ∧ ∀s′ ∈ S : s ⊳ s′ ⊳ trgt(t) → s′ = Hi(Ω(s
′)))}

(ω′
i is obtained by removing from ωi states contained in src(t) and then

adding states contained in trgt(t), based on the history).

• ρ′i = ǫ (an event is consumed once)

• For every region r ∈ Ri where r ∈ Hi: If there exists s ∈ Si s.t. s ∈ ω′
i

and Ω(s) = r then H ′
i(r) = s (if region r is an active region that has

history marker, then we update the history according to the current

state). Otherwise, H ′
i(r) = Hi(r).

Example 2.10 Let SM1 be the state machine in Figure 2.1. Let c1 =

(ω1, ρ1,H1) be a SM-configuration of SM1 where ω1 = {Work, s6, process, s0},

15

and ρ1 = er. Let t ∈ TR1 be the transition from s0 to s1, then execu-

tion of t results in a new SM-configuration dest(c1, t) = (ω′
1, ρ

′
1,H

′
1), where

ω′
1 = {Work, s6, process, s1}, ρ

′
1 = ǫ, and H ′

1 = H1 (since no region with

history marker in SM1).

Let C be a system-configuration, SMi be a state machine in Γ, and let

s1, s2 ∈ Si and t, t1, ..., ty ∈ TRi. We will further use the following notations:

• Qpush(t, (q1, ..., qm)) = (q′1, ..., q
′
m) denotes the effect of executing tran-

sition t on the different queues of the system; if for some event e,

GEN(e) ∈ act(t), then executing t pushes e to the relevant event queue

(to Qthrd(trgt(e))). The rest of the event queues remain unchanged.

• act(t)(λ,C) = λ′ represents the effect of executing the assignments in

act(t) on the valuation λ of C, which results in a new assignment, λ′.

• ORTH(s1, s2) is true if the states are contained in orthogonal regions,

and false otherwise. Formally, ORTH(s1, s2) = true iff ∃r1, r2 ∈

Ri s.t. ORTH(r1, r2) and for k ∈ {1, 2}: sk ⊳ rk. For example, in

Figure 2.1, ORTH(s0, s4) = true since s0 and s4 are each contained

in a region of state Work.

• ORTH(t1, ..., ty) is true iff t1, ..., ty are pairwise orthogonal. I.e., for

every k, l ∈ {1, ..., y} s.t. k 6= l: ORTH(src(tk), src(tl)).

• maxORTH((t1, ..., ty), C) is true iff (t1, ..., ty) is a maximal set of en-

abled orthogonal transitions. Formally maxORTH((t1, ..., tq), C) =

true iff (1) for every i ∈ {1, ..., q}, enabled(ti, C), and (2) ORTH(t1, ..., ty),

and (3) there is no t ∈ TRi such that enabled(t, C) andORTH(t, t1, ..., ty).

Note that for some configuration C and state machine SMi there can

be several different sets transitions for which maxORTH is true.

Example 2.11 Assume the state machine in Figure 2.1, denoted SM1, is

part of a system Γ. Assume a system-configuration C of Γ, where the SM-

configuration of SM1 is c1 = (ω1, ρ1,H1), ω1 = {Work, s4, s7}, and ρ1 =

ǫ. Let t1 ∈ TR1 be the transition from s7 to process, and let t2 be the

transition from s4 to s6. Then orth(t1, t2) = true, and enabled(t1, C) =

enabled(t2, C) = true. Therefore maxORTH((t1), C) = false and

maxORTH((t1, t2), C) = true.

16

Definition 2.12 (Transition Execution on System) Let C = (c1, ..., cn,

q1, ..., qm, id1, ..., idm, λ) be a configuration on Γ, and let t1, ..., tq ∈ TRi (pos-

sibly q = 1) be a set of transitions. apply((t1, ..., tq), C) = C ′ represents the

effect of executing t1 of C followed by t2 on the result etc. until executing ty,

which results in configuration C ′ = (c1, ..., c
′
i, ..., cn, q

′
1, ..., q

′
m, id1, ..., idm, λ

′)

defined as follows:

• c′i = dest(...dest(dest(dest(ci, t1), t2), t3)..., tq)

• λ′ = act(tq)(...act(t3)(act(t2)(act(t1)(λ,C), C), C)..., C)

• q′1, ..., q
′
m = Qpush(tq, (...Qpush(t3, (Qpush(t2, (Qpush(t1, (q1, ..., qm))))))...))

2.2 Linear-time Temporal Logic (LTL)

Let AP be a set of atomic propositions. A Kripke structure is a tuple

M = (S, I0,R,L), where S is a set of K-states, I0 ⊆ S is a set of initial

K-states, R ⊆ S × S is a total K-transition relation, and L : S → 2AP is

a labeling function that maps each K-state to a set of atomic propositions.

A path of M is an infinite set of K-states s0, s1, ... s.t. for every i ≥ 0,

(si, si+1) ∈ R.

The Linear-time Temporal Logic (LTL) [45] is suitable for expressing

properties of a system along a path. Formulas of LTL are constructed from

a set AP of atomic propositions using the usual Boolean operators and the

temporal operators X (“next time”), and U (“until”). Formally, an LTL

formula over AP is defined as follows:

• true|false|p for p ∈ AP

• ¬ψ1|ψ1 ∧ ψ2|Xψ1|ψ1Uψ2 for ψ1, ψ2 LTL formulas.

Let π = s0, s1, be a path in a Kripke structureM . πi = si, si+1, ... de-

notes the suffix of π starting at state si. The semantics of LTL is inductively

defined as follows:

• π |= true, π 6|= false.

• For p ∈ AP : π |= p iff p ∈ L(s0).

• π |= ¬ψ1 iff π 6|= ψ1

17

• π |= ψ1 ∧ ψ2 iff π |= ψ1 and π |= ψ2

• π |= Xψ1 iff π1 |= ψ1

• π |= ψ1Uψ2 iff there exists k ≥ 0 s.t. πk |= ψ2 and for all 0 ≤ i < k,

πi |= ψ1.

We use the following abbreviations in writing formulas:

• ∨,→,↔ are interpreted in the usual way.

• Fψ ≡ trueUψ (“eventually”).

• Gψ ≡ ¬F¬ψ (“always”).

A Kripke structure M satisfies an LTL formula ψ, denoted M |= ψ, if

every path of M starting at an initial K-state satisfies ψ. A general method

for on-the-fly verification of LTL safety properties is based on a construction

of a regular automaton A¬ψ, which accepts exactly all the executions that

violate ψ. Given M and ψ, we construct M ×A¬ψ to be the product of M

and A¬ψ. A path in M × A¬ψ from an initial K-state (s, q) to a K-state

(s′, q′) where q′ is an accepting state in A¬ψ represents an execution of M ,

and a word accepted by A¬ψ. It therefore represents an execution showing

why M does not satisfy ψ. Such executions are called counterexamples for

ψ. Clearly, if M ×A¬ψ is unsatisfiable, then M satisfies ψ.

18

Chapter 3

Semantics of System

Computations

In this chapter we formalize the notion of system computation, and present

formal semantics for behavioral UML systems that rely on state machines.

Works such as [18, 22, 35] also give formal semantics to state machines,

however they all differ from our semantics: [18] defines the semantics on flat

state machines and present a translation from hierarchical to flat state ma-

chines, whereas we maintain the hierarchical structure of the state machines.

[22] define the semantics of a single state machine. Thus it neither addresses

the semantics of the full system, nor the communication between state ma-

chines. [35] addresses the communication of state machines, however their

notion of run-to-completion step does not enable context switches during

a run-to-completion step. Our formal semantics is defined for a system,

possibly multi-threaded, where the atomicity level is a transition execution.

Definition 3.1 (System Computations) A computation of a system Γ

is a maximal sequence C0, step0, C1, step1, ... such that: (1) each Ck is a

system-configuration, (2) each step Ck
stepk

−−−→ Ck+1 can be generated by one

of the inference rules detailed below, and (3) each stepk is a pair (thidk, tk)

where thidk ∈ {1, ...,m} represents the id of the thread executing the step

(tk is described in the inference rules).

We now define the set of inference rules describing C
step
−−→ C ′. We specify

only the parts of C ′ that change w.r.t. C due to step.

19

Initialization In the initial configuration all event queues are empty, and

the state machines are in their initial state and are inactive. Formally:

C0 is the initial system configuration, such that for every j: q0j = φ

and id0j = 0. c0i is the initial configuration of SMi (ρ
0
i = ǫ and ω0

i =

{s ∈ Si|s ∈ initi ∧ ∀s′ ∈ Si.s⊳ s′ → s′ ∈ initi}),

Dispatch An event can be dispatched from thread j’s event queue only if

the processing of the previous event on thread j has terminated (i.e.

the run-to-completion step ended) and the queue is not empty. A

dispatch step pops the event out of the thread’s queue and places it in

the target object’s ρ element. It also updates the corresponding idk+1
j

with the index of the state machine that is the target of the event.

Formally:

DISP (j, e) :
idj = 0 qj 6= φ top(qj) = e trgt(e) = l

id′j = l q′j = pop(qj) c′l = (ωl, type(e),Hl)

Transition A transition can be fired if it is enabled and the state ma-

chine containing it is currently executing a RTC step. If the state

machine’s ρ element is not empty then the fired transition has ρ

as its trigger. After firing the transition ρ is set to ǫ (so that an

event cannot be consumed twice). There is a single case where more

than one transition can be fired together. It is the case where tran-

sitions are in orthogonal regions and several transitions simultane-

ously consume the event (the state machine’s ρ element is not empty).

UML2 defines a simultaneous execution of the transitions in this case.

Since it is not clear how to define simultaneous execution of actions,

we define an interleaved execution of these transitions. Only after

all transitions have executed, the next step is enabled. Note that

the transitions are executed according to their order in the TRANS

step (t1 executed first, followed by t2 etc.). However, since the step

itself can be defined with any order of transitions, then if from a

given configuration step = TRANS(j, (t1, ..., tq)) is possible, then also

step = TRANS(j, (t′1, ..., t
′
q)) is possible for any permutation (t′1, ..., t

′
q)

of (t1, ..., tq). Formally:

20

TRANS(j, (t1, ..., ty)) :

idj = l > 0 t1, ..., ty ∈ TRl
ρl 6= ǫ→ (maxORTH((t1, ..., ty), C) = true)

ρl = ǫ→ (y = 1 ∧ enabled(t1, C))

C ′ = apply((t1, ..., ty), C)

EndRTC If the currently running state machine on thread j is stable, then

the RTC step is complete, idj is set to zero, and the ρ element of the

state machine that finished the RTC is cleared. Formally:

EndRTC(j, ǫ) :
idj = l > 0 stable(cl, C)

id′j = 0 c′l = (ωl, ǫ,Hl)

ENV The behavior of the environment is not precisely described in the

UML standard. We assume the most general definition, where the

evnironment may insert events into the event queues at any step. For-

mally:

ENV (j, e) :
e ∈ EVenv thrd(trgt(e)) = j

q′j = push(qj, e)

Let π be a computation. A run-to-completion (RTC) step w.r.t. π

on thread j is a maximal sequence of TRANS steps of state machine i

where thread(i) = j, s.t. the TRANS steps appear between a DISP step

(initiating the RTC step) and a EndRTC step (terminating the RTC step).

Note that between each DISP step and its following EndRTC step on

thread j, the currently active state machine remains the same (the value of

idj does not change).

Definition 3.2 (Run-to-Completion Steps) Given a computation π =

C0, step0, C1, step1, ..., a run-to-completion (RTC) step is a maximal series

of steps χ = stepi0 , stepi1 , ..., stepid where for every r ∈ {1, ..., d}: ir−1 < ir,

and for some thread j the following holds:

• stepi0 = DISP (j, e)

• For every r ∈ {1, ..., d − 1}: stepir = TRANS(j, (t1, ..., tq))

21

• stepid = EndRTC(j, ǫ)

• For every r ∈ {i0, i0 + 1, ..., id} s.t. r 6= i0, i1, ..., id: if stepr is on

thread j, then stepr == ENV (j, e′) (for some event e′). This item

ensures the maximality of χ.

22

Chapter 4

Applying Software Model

Checking Techniques For

Behavioral UML Systems

In this chapter we present a novel approach for the verification of Behavioral

UML systems by means of software model checking.

We translate UML systems to C and adopt software model checking

techniques for their verification. Our translation preserves the high-level

structure of the UML system: event-driven objects communicate with each

other via an event queue. The hierarchical structure of the objects is main-

tained. An execution consists of a sequence of RTC steps. Each RTC step

is initiated by the event queue by sending an event to its target object,

which in turn executes a maximal series of enabled transitions. Therefore,

we maintain the granularity of transitions as well as the RTC step semantics.

Model checking assumes a finite-state representation of the system in

order to guarantee termination with a definite result. One approach for

obtaining finiteness is to bound the length of the traversed executions by

an iteratively increased bound. This is called Bounded Model Checking

(BMC) [4]. BMC is highly scalable, and widely used, and is particularly

suitable for bug hunting. We find this approach most suitable for UML

systems, which are inherently infinite due to the unbound size of the event

queue1.

1Variables are treated as finite width bit vectors and therefore do not hurt the model

23

We emphasize that our goal is to translate the UML system into ver-

ifiable C code that suits model checking, rather than produce executable

code. Also, we only wish to verify user-created artifacts. When translating

to C, we therefore simplify implementation details that are irrelevant for

verification. For instance, the event queue is described at a high level of

abstraction, and code is sometimes duplicated to avoid pointers and sim-

plify the verification. The resulting code is significantly easier for model

checking than automatically generated code produced by UML tools such

as Rhapsody [49]. It is important to note that the automatically gener-

ated code produced by tools such as Rhapsody are very complex to analyze,

and the relevant parts for verification are tightly tangled along with parts

not relevant for verification. Thus, trying to slice relevant parts from the

automatically generated code is a task that cannot be done automatically.

Recall that the verifiable C code will be checked by BMC with some

bound k. We choose k to count the number of RTC steps. This implies that

along an execution of size k only the first k events in the event queue are

consumed, even if more were produced. It is therefore sufficient to hold an

event queue of size k. We thus obtain a finite-state model without losing any

precision. Counterexamples are also returned as a sequence of RTC steps,

but zooming in to intermediate states is available upon request.

We verify two types of properties: LTL safety properties and livelocks.

Safety properties require that the system never arrives at bad states, such as

deadlock states, or states violating mutual exclusion. LTL safety properties

can further require that no undesired finite execution occurs. Checking

(LTL) safety properties can be reduced to traversing the reachable states of

the system while searching for bad states. We apply Bounded reachability

with increasing bounds for finding bad states. Our method can also be

extended to proving the absence of bad states, using k-induction [55].

Another interesting type of properties is the absence of livelocks. Live-

locks are a generalization of deadlocks. While in deadlock states the full

system cannot progress, in livelock states part of the system is “stuck” for-

ever while other parts continue to run. Livelocks can be hazardous in safety

critical systems and often indicate a faulty design.

Scalable bounded model checking tools mostly handle safety or linear-

time properties. However, absence of livelocks is neither safety nor linear-

finiteness.

24

time property and is therefore not amenable to bounded model checking. We

identify an important subclass of livelocks, which we refer to as mutually-

dependent livelocks, and show that they can be found by combining static

analysis and bounded reachability.

The property of deadlock has been the subject of many works. In the

context of UML, [32] presents model checking for deadlocks via process

algebra. The SPIN model checker itself supports checking for deadlocks. To

the best of our knowledge, the property of livelocks has never been studied

in the context of behavioral UML systems.

We implemented our approach to verifying behavioral UML systems with

respect to LTL safety properties and mutually-dependent livelocks in a tool

called soft-UMC (software-based UML Model Checking). Our tool is built

on top of the software model checker CBMC [13] which applies BMC to C

programs and safety properties. We ran it on several UML examples and

interesting properties, and found erroneous behaviors and livelocks. For

safety properties, we also compared soft-UMC with an IBM research tool

that verifies behavioral UML systems via a translation to IBM’s hardware

model checker RuleBasePE [51]. Our experiments show that soft-UMC is

more scalable and more robust for finding long counterexamples. Our exper-

imental results also demonstrate the usefulness of the optimizations applied

in the creation of the verifiable C code.

The rest of the chapter is organized as follows. In Section 4.1 we present

some background. Our translation to verifiable C code is presented in Sec-

tion 4.2, and our method for verification of (LTL) safety properties and

mutually-dependent livelocks is presented in Section 4.3. We show our ex-

perimental results in Section 4.4, and conclude in Section 4.5.

4.1 Preliminaries

4.1.1 Bounded Model Checking

Bounded Model Checking (BMC) [4] is an iterative process for checking

models against LTL formulas. The transition relations for a Kripke structure

M and its specification are jointly unwound for k steps and are represented

by a boolean formula that is satisfiable iff there exists an execution of M of

length k that violates the specification. The formula is then checked by a

25

SAT solver. If the formula is satisfiable, a counterexample is extracted from

the output of the SAT procedure. Otherwise, k is increased.

BMC is widely used for finding bugs in large systems, including soft-

ware systems ([13, 3, 16]). BMC for software is performed by unwinding

the loops in the program k times, and verifying the required property. The

property is often described by an assertion added to the program text. The

model checker then searches for a program execution that violates the as-

sertion. Our method for verifying UML models relies on invoking a software

BMC tool. We require that the tool supports assumptions on the program,

given as assume(b) commands, where b is some boolean condition. Having

assume(b) at location ℓ of the program means that only executions π that

satisfy b when passing at ℓ are considered. If b is violated then π is ignored.

4.1.2 Restrictions, Notations and Abbreviations

In the rest of the chapter we focus on systems that run on a single thread.

Thus, a system (Definition 2.5) is Γ = (SM1, ..., SMn, Q, V) and a sys-

tem configuration (Definition 2.6) is C = (c1, ..., cn, q, id, λ), where ci =

(ωi, ρi,Hi). As described in Section 2.1.2, UML2 places no restrictions on

the implementation of the event queue. In this work we choose to follow the

Rhapsody semantics, and implement event processing as a FIFO.

We use a flight ticket ordering system as a running example throughout

the rest of the chapter. The system includes two DB objects and two Agent

objects. The system is therefore represented as (a1, a2, db1, db2, Q, V), where

a1 and a2 are state machines of type Agent, presented in Figure 4.2, and

db1 and db2 are state machines of type DB, presented in Figure 4.1. Each

DB object communicates with a single Agent object, and with the other

DB object. These are denoted as itsA and itsDB respectively in the state

machine. Each Agent object communicates with a single DB object, de-

noted as itsDB in the state machine. Formally, for i, j ∈ {1, 2}, itsDB of

ai is dbi, and itsA of dbi is ai. Also, itsDB of dbi is dbj, where i 6= j.

The definition of enabled transitions (Definition 2.7) requires that the

trigger of the transition matches the dispatched event, or no trigger on

the transition if the value of the dispatched event is ǫ (i.e., this is not the

first transition executed in the RTC step). In this chapter we follow the

Rhapsody semantics and require that either the transition has no trigger or

26

❀❁❂❃

❄❅❆❇❈❉❇❊

❃❋●❃❍■❂❈❏

❑❆❉❈▲●❃▼◆❖■❂❉❊P❈◆❃❇❉❃❁

◗

❘❉❙❚❯■❂❈❱❱❲❳❏

❄❨❩❬❬❃❋●❃❍❭❪❇❃❅❙P❉❫❴❉❈❙◆❖❵❵❛

❜❅❝❞❃❙❙❉❇❊

❃❋●❃❍❭❪❇❃❅❙P❉❫❏

❄❨❩❬❬❃❋❄❅❆❇❈❭❪❇❃❅❙P❉❫❴❉❈❙◆❖❵❵❛

❏❉❙❚❯■❂❈❱❲❛

❁❡❚❆❉❇

■❂❉❊P❈❢❫❫❅❝❋❃❁❏❙❫❆❞❃❣❣❛ ❘❉❙❚❯■❂❈ ❤❤ ❙❫❆❞❃✐❱❥❳❏

❄❨❩❬❃❋■❂❈❢❫❅❋❴❉❈❙❢❵❛

❘❉❙❚❯■❂❈ ❤❤ ❙❫❆❞❃❱❱❲❳❏

❄❨❩❬❃❋■❂❈◆❃❇❉❃❁❴❉❈❙❢❵❛

❃❋❄❅❆❇❈❭❪❇❃❅❙P❉❫❏

❉❙❚❯■❂❈❱❥❛

Figure 4.1: State Machine for Class DB

the trigger matches the dispatched event (i.e., the first transition in the RTC

step might not be marked with a trigger). Note that if the first transition

in the RTC step of state machine SM is not marked with a trigger, then

the transition is marked with a guard whose value was false in the previous

RTC step of SM (if such RTC step exists). That is, the value of some

variable was modified by a state machine different from SM .

The following terminology will be needed later. State machines that

can send some event (ev, i) are called producers of (ev, i). In our example,

the (only) producer of event (evReqOwnership, db1) is db2. State machines

that can modify some variable x of state machine SM are called modifiers

of (x, SM). In our example, the (only) modifier of variable isMyF lt of db1

is db1. Let b be a guard in a state machine SM , where b includes variables

{x1, ..., xm}. The set of modifiers of all variables in b are called the modifiers

of (b, SM).

Throughout the rest of the chapter we will use the following notations

and abbreviations. Given a state machine SMi = (Si, Ri,Ωi, initi, TRi, Li,Hi)

and a state s ∈ Si:

• trans(s) ⊆ Ti is the set of transitions whose source is s.

27

❦❧♠♥

♦♣q♣rst✉

✈♣qqt✇✉r①②③④

♣qqt✇✉r⑤⑤⑥

✈♣qqt✇✉r⑦⑧⑨③④

⑩♣sr❶t❷❸❹❺♣♠❻s✉❼

❽

♥❾❸♥❿t➀sr④

♣qqt✇✉r➁➁⑥

♥❾➂♠✉r➃♥➄④

♥❾➅✉❧❺♣♠❻④

➆➅➇➈➈♥❾➃♥➄❶♠r➉sr➀❸❹➊➊⑥

♥❾❶♠r❸♥✉s♥❧④

➂➋♥q❻❶s✉♣✉q♥

♥❾❶♠r➌❿❷❾④

♥❾♦♣q♣rst✉➍r♣❷r④ ♥❾♦♣q♣rst✉➅✉❧④

⑩t❷❻s✉❼

Figure 4.2: State Machine for Class Agent

• evnts(s) =
⋃
t∈trans(s){(trig(t), i)} \ {(ǫ, i)} is the set of triggers on

trans(s).

• grds(s) =
⋃
t∈trans(s){(grd(t), i)} is the set of guards on trans(s).

• prod(s) ⊆ {1, ..., n} denotes indexes of producers of all events in

evnts(s). For example, if evnts(s′) = {(ev, j)}, and the producers

of (ev, SMj) are {SMi1 , ..., SMik}, then prod(s
′) = {i1, ..., ik}.

• modifier(s) ⊆ {1, ..., n} denotes indexes of modifiers of all guards in

grds(s).

These abbreviations are generalized to denote the transitions, events,

guards, producers, and modifiers of a subset of states.

Given a system Γ = (SM1, ..., SMn, Q, V) and a system configuration C,

we say that enabled(i, C) is true if there exists a transition t ∈ TRi such

that enabled(t, C) is true, and false otherwise.

28

1: method RunRTCStepi()
2: while (j < maxRTClen) do
3: if (!enabled(i, currC)) return
4: choose Transition t
5: assume(t ∈ trans(ωi))
6: assume(enabled(t, currC))
7: execute act(t)
8: ρi := ǫ
9: incr j

Figure 4.3: RunRTCStepi method of state machine SMi

4.2 Translation to Verifiable Bounded C

We translate behavioral UML systems to C. Our goal is to create code that

is most suitable for verification, rather then an efficient implementation of

the system. Moreover, we verify our code using a BMC verifier, therefore

our code describes bounded runs of the system. In order to create code

suitable for verification we avoid as much as possible the use of pointers

or of methods called with different parameters. This results in code which

is longer in lines-of-code. However, the model created by the verification

tool is smaller, and the model checker can then perform optimizations more

efficiently.

Every object is translated into a method, representing the behavior of

its associated state machine. When an event ev is dispatched to object oi,

the method associated with oi executes a single RTC step of oi.

Figure 4.3 presents RunRTCStepi, the pseudo-code for a single RTC

step of oi. currC is the current system configuration. The method termi-

nates when there are no enabled transitions to execute. The while loop

iterates up to maxRTClen iterations. maxRTClen represents the maxi-

mum number of transitions of any RTC step of oi. If this value cannot be

extracted by static analysis, then the condition is replaced by true, and the

length of the RTC step is bounded by the BMC bound, k.

Lines 4-6 amount to a non-deterministic choice of a transition t, which

is enabled in currC. When choosing a transition (line 4), no constraints

are assumed on it. Line 5 restricts the program executions to those where

29

1: method main
2: while (true) do
3: (ev, i) := pop(q)
4: ρi := ev
5: RunRTCStepi()

Figure 4.4: main method

t is a transition from ωi (the active states). Line 6 restricts the remaining

program executions to those where t is enabled. In line 7 the action of the

transition is executed. Executing the action updates ωi according to the

destination state of t. Note line 8, where we set ρi to ǫ. This is done since

the event is consumed once, and only in the first transition of the RTC step.

The rest of the transitions of the RTC step can be executed only if their

trigger is ǫ.

The EQ is represented as a bounded array. The main method of the

program executes the never-ending loop of taking an event from the EQ,

and dispatching it to the relevant target object. Figure 4.4 presents the

pseudo-code for the main method. In line 3 an event ev whose target is oi
is taken from the EQ. Line 4 updates ρi according to ev, and in line 5 an

RTC step of oi is initiated.

When applying BMC on the main method in Figure 4.4, the while loop

is unrolled k times, which means that the model is verified for k RTC steps.

Generally, placing a bound on the EQ can make the model inaccurate due to

overflows. However, k is the exact bound for a k-bounded verification over

k RTC steps, since only the first k events that are sent will be dispatched

during k RTC steps.

Another verification oriented optimization we introduce is in the imple-

mentation of the environment. The array is initialized with k environment

events, but with head = tail = 1. When a system event evS is sent, the tail

is incremented non-deterministically, after which evS is added to the EQ,

overriding the environment event there. This models inserting to the EQ

a non-deterministic number of environment events that arrive prior to the

addition of evS to the EQ.

C code can be automatically generated by UML tools such as Rhap-

30

sody, but this code would not be suitable for verification. Automatically

generated code includes generic code, and means for communicating with

different libraries and with the operating system. We, on the other hand,

are interested in verifying only the user-created behavior of the system, and

therefore we can abstract the event queue and the operating system. We

exploit features of the model-checker, such as the assume construct, to make

the verification more efficient. Assuming a static model allows us to apply

direct calls and direct variable manipulation rather than use pointers.

4.3 System Verification

We now describe our method for verification of a given behavioral UML

system. We assume a system Γ = (SM1, ..., SMn, Q, V). Verification is done

using assertions on the code describing the system. We support verification

in a granularity of transition level or RTC level.

A behavioral UML system Γ can be viewed as a Kripke structure M =

(S, I0,R), where S is the set of all possible system configurations of Γ. R

can be defined either at the RTC level (denoted RRTC) or at the transition

level (denoted Rt). (C,C ′) ∈ RRTC iff C ′ is reachable from C in a single

RTC step. (C,C ′) ∈ Rt iff C
′ is reachable from C in an execution of a single

transition. Executions (of M) are defined at RTC or transition level.

Definition 4.1 πr = C0, C1, ... is an execution at the RTC level (RTC-

execution) iff for every n > 0, (Cn−1, Cn) ∈ RRTC .

Definition 4.2 πt = C0, C1, ... is an execution at the transition level (t-

execution) iff for every n > 0, (Cn−1, Cn) ∈ Rt.

For the rest of the chapter, when an execution is either a t-execution

or an RTC-execution, we refer to it as an execution. In the following we

first present how model checking of an LTL safety property over a given

behavioral UML system is done. We then continue to present our algorithm

for verifying mutually-dependent livelocks.

4.3.1 Verifying LTL Safety Properties

We now show how to check safety LTL properties over behavioral UML

systems using an automata based approach. We assume the atomic propo-

31

sitions of the property are predicates over the configurations of the model.

We extend the C program created from Γ with a method representing the

automaton A¬ψ. The method runs in lock step with the system, and iden-

tifies property violations.

A safety property can be verified either at the RTC level or at the tran-

sition level, by placing the call to the automaton method either at the end

of each RTC step (within the method main) or at the end of each transition

(within the method RunRTCStepi). The choice of the level for verification

depends on the property to be verified. For example, in our running ex-

ample we might want to guarantee that, at the end of RTC steps isMyF lt

cannot be true for both db1 and db2 at the same time. This property

must not necessarily hold during an RTC step. We would therefore verify

AG(db1.isMyF lt = 0 ∨ db2.isMyF lt = 0) at the RTC level. If we want to

check for dead states (unreachable states) we need to work at the transition

level in order to recognize as reachable also those states that are passed

through during the RTC step.

Note that our method for BMC can be extended to proof by k-induction

[55] in a straightforward manner. The base case is a BMC of k steps, which

is done in the way we described above. The step is a BMC run of k + 1

steps with the initial state completely non-deterministic, looking for a run

in which a property violation occurs at the k + 1 step after k steps with no

violation. In the initial state of the step case we assume there may already

be any number of events in the queue, of any type. We can still bound

the event queue to k + 1 entries because no more than k + 1 events will be

dispatched in k+1 steps, making it sound to ignore the content of the queue

beyond k + 1 entries.

4.3.2 Verify Mutually-Dependent Livelocks

A Livelock describes the case where part of the system cannot progress, even

though the other parts of the system do. In this section we focus on finding

livelocks in behavioral UML systems. As mentioned before, absence of live-

locks is neither safety nor an LTL property and therefore cannot be handled

by scalable bounded model checking tools. For that reason, we identify a

subclass of livelocks, and present a method for finding such livelocks within

our framework. This is done by a reduction to a safety property, which

32

requires a preceding syntactic analysis of the UML system.

We first define the notion of a livelock-configuration in behavioral UML

systems.

Definition 4.3 Let C = (c1, ..., cn, q, id, λ) be a system configuration of Γ.

We say that SMi is disabled under C if for every t ∈ TRi, enabled(t, C) =

false. That is, no transition t ∈ TRi is enabled.

Definition 4.4 Let C = (c1, ..., cn, q, id, λ) be a system configuration of Γ.

State machine SMi is stuck at C if for every RTC-execution π = C0, C1, ...

s.t. C0 = C the following holds: for every Cj = (cj1, ..., c
j
n, qj , idj , λj) s.t.

j ≥ 0, if top(qj) = (ev, i) then SMi is disabled under Cj .

Thus, SMi is stuck if whenever the event at the top of the queue is targeted

at SMi, meaning it is SMi’s turn to execute, SMi is disabled and cannot

make any progress. Intuitively, whenever it is SMi’s turn to execute, SMi

is either waiting for a different event, or the guard on its transitions is false

under the current system-configuration.

Definition 4.5 A system configuration C is a livelock-configuration if at

least one state machine is stuck at C.

Following, we present a characterization for a subclass of livelock con-

figurations, which we call mutually-dependent livelocks (MD-livelocks). In-

tuitively, a system configuration C is an MD-livelock if there is a subset of

state machines that are stuck at C, and for every state machine SM in the

subset all of the producers of events that SM is stuck on, and all of the

modifiers of the guards that SM is stuck on, are in the subset as well.

Definition 4.6 Let C = (c1, ..., cn, q, id, λ) be a system configuration of Γ.

A vector ω̄ = (ω′
1, ..., ω

′
n) is a partial state of C if for every 1 ≤ i ≤ n,

ω′
i = nil or ω′

i = ωi.

Intuitively, a partial state of C represents the current state of some of

the state machines in Γ. These are the state machines for which ω′
i 6= nil.

Definition 4.7 Let C be a livelock-configuration, and let ω̄ = (ω′
1, ..., ω

′
n)

be a partial state of C. ω̄ is a livelock state of C if for every i ∈ {1, ..., n},

if ω′
i 6= nil then SMi is stuck at C.

33

Definition 4.8 Configuration C is an MD-livelock if there exists a livelock

state of C, ω̄ = (ω′
1, ..., ω

′
n) s.t. for all j ∈ prod(ω̄)∪modifier(ω̄), ω′

j 6= nil.

Intuitively, the partial state describes a set of state machines that are

stuck and will stay stuck forever. This is because all state machines that

may “release” a stuck state machine by producing an event or changing a

guard are in the same set. That is, they are stuck as well.

Our goal is to find reachable MD-livelock configurations. To achieve

scalability, we use SAT-based BMC and only find livelock-configurations

that are reachable within k RTC steps. Our method for finding reachable

MD-livelocks consists of two stages. We first identify system states that are

mutually-dependent states (to be defined later). This is a syntactic iden-

tification and can thus be checked independently of a configuration. This

stage is performed by an analysis of the UML system. We then search for

a reachable MD-livelock configuration. This is done by adding an assertion

describing the fact that the current configuration is an MD-livelock. We

then apply BMC to search for a violation of the assertion. Next we define

the syntactic notion of mutually-dependent state.

Finding Mutually-Dependent States:

A state machine SMi cannot be stuck at C = (c1, ..., cn, q, id, λ), where

ci = (ωi, ρi,Hi), if ωi, the set of currently active states of SMi, has a null-

transition, or if ωi has a transition that can be enabled by an environment

event.

We first define the set of possible-active-states. Intuitively, this set over-

approximates the possible currently active states of a state machine SM .

Definition 4.9 Let SM = (S,R,Ω, init, TR,L,H) be a state machine. ν ⊆

S is a possible-active-state if the following hold.

• For every s ∈ ν and for every r ∈ R s.t. Ω(r) = s there exists a single

s′ ∈ S such that Ω(s′) = r and s′ ∈ ν.

• There exists s ∈ ν such that Ω(s) = TOP .

Note that this definition follows exactly the definition of active states as

part of state machine configuration (Definition 2.4).

34

Definition 4.10 A possible-active-state ν is potentially stuck if for every

t ∈ trans(ν), t is not a null-transition, and if ev(t) is an environment event,

then grd(t) 6= true.

Following, we define mutually-dependent states. Intuitively, a mutually-

dependent state represents a subset of state machines that are all potentially

stuck and the state machines depend on each other, i.e. all the necessary

producers are inside this subset.

Definition 4.11 A mutually-dependent state is a vector ν̄ = (ν1, ..., νn)

s.t. for every i ∈ {1, ..., n}, νi = nil or νi is a possible-active-state of SMi,

and the following holds for every νi 6= nil:

1. νi is a potentially stuck possible-active-state, and

2. There is no j ∈ prod(νi) ∪modifier(νi) such that νj = nil, and

3. ν̄ is minimal. That is, let ν̄ ′ = (ν ′1, ..., ν
′
n) such that for every i ∈

{1, ..., n}, either ν ′i = nil or ν ′i = νi. If ν̄ ′ 6= ν̄ then requirement 2 does

not hold for ν̄ ′.

The requirement of minimality (requirement (3)) is introduced for the

sake of efficiency. It reduces the number of states to be considered and also

simplifies the encoding in BMC. Further, it reduces the number of similar

counterexamples returned to the user.

Note that this definition is syntactic. That is, it depends only on the

possible-active-states of the system. It does not depend on the variable

assignment, the history or the event queue, which can be determined along

a computation. As a result, the set of all mutually-dependent states can

be identified independently of any configuration. We generate this set from

the syntactic structure of the system, as part of the analysis of the UML

system.

Lemma 4.12 The set of mutually-dependent states is complete. Meaning

for every MD-livelock configuration C there exists a partial state of C, ν̄,

that is a mutually-dependent state.

The set of system configurations is infinite, because the size of the EQ

is not limited. However, the set of mutually-dependent states is finite.

35

1: method FindMDLivelock()
2: while (true) do
3: (ev, i) := pop(q)
4: ρi := ev
5: RunRTCStepi()
6: for each mutually-dependent state ν̄ ′ do
7: assert(!(partSt(ν̄ ′, currC)∧

for all t ∈ trans(ν̄ ′) :
notInQ(trig(t), q)∨
grdFalse(grd(t), λ)))

Figure 4.5: FindMDLivelock method

Bounded Search for Mutually-Dependent Livelocks:

We observe that if a given system configuration includes a mutually-dependent

state s.t. for every transition in the mutually-dependent state either the

guard is false or the trigger is a system event which is not in the EQ, then

this system configuration is a MD-livelock.

We adapt the translation of UML systems to C (Section 4.2) to allow

checking whether a MD-livelock configuration is reachable by adding asser-

tions at the RTC level. When the model checker finds an execution violating

the assertion, the last system configuration in the execution is a MD-livelock

configuration. Figure 4.5 presents the pseudo-code of the modified method.

Line 6 and 7 show the added code.

currC represents the current system configuration of the system. At

every iteration of the while loop currC changes (due to the RTC step).

The method partSt(ν̄, C) receives a mutually-dependent state ν̄ and a con-

figuration C, and returns true iff ν̄ is a partial state of C (i.e., partSt(ν̄, C)

returns true iff for every νi ∈ ν̄, if νi 6= nil then νi = ωi). The method

grdFalse(grd, λ) returns true iff grd is false w.r.t. the variable assignment

λ. The method notInQ(ev, q) returns true iff ev is a system event which is

not in the EQ q. The assertion is violated on C if C is a MD-livelock.

There is one subtle point that still needs to be solved: We need a finite

representation of the queue. Recall that for verifying safety properties, for

k-bounded executions we bound the queue to k. However, when searching

36

for MD-livelocks this is incorrect because a configuration is a MD-livelock

if there are no future executions that can release the stuck states. Thus, we

must keep track of all events inserted into the queue (within k RTC steps).

However, only the first k events are dispatched, and therefore their relative

order is important. For the rest of the events, we only need to know whether

they were sent or not, indicating whether or not an instance of that event

exists in the “actual” queue. The method notInQ(ev, q) returns true iff the

flag of event ev is false, indicating that no such event is in the “actual”

queue.

We exemplify our method on our running example. The events evV acati

onStart and evV acationEnd, which are consumed by class Agent, are both

environment events. Note that none of the possible-active-states associated

with the state machine of Agent are potentially stuck possible-active-states.

Thus, a1 and a2 can never be stuck. The vector ({Wait4RemDB, dbMain},

{Wait4RemDB, dbMain}, nil, nil) is a mutually-dependent state because

the producer of the possible-active-state {Wait4RemDB, dbMain} of db1 is

db2, and vice-versa. For this mutually-dependent state, we add the following

assertion:

assert(!(!InEQ(evGrantOwnership, 1)∧!InEQ(evGrantOwnership, 2)∧

!InEQ(evReqOwnership, 1)∧!InEQ(evReqOwnership, 2)∧

partSt(({Wait4RemDB, dbMain}, {Wait4RemDB, dbMain},

nil, nil), currC)))

Note that it is possible to skip the first stage of our algorithm, that finds

the set of mutually-dependent states, and incorporate it within the second

stage. However, this would be inefficient due to the number of checks that

would need to be done during the model checking stage. Further, since the

first stage is applied to the UML system, it is quite “light weight”. Model

checking, on the other hand, is applied to a low-level description and is a

heavy task. Thus, the first stage is essential for the scalability of our method.

4.4 Experimental Results

We have implemented the algorithm described above in a tool called Soft-

UMC (software-based UML Model Checking). The implementation reads

a UML (version 2.0) system, and translates it to verifiable C code. Static

analysis is applied at this stage, according to the type of property to be

37

prop. time #RTCs time # trans

RC1 155 10 44 34

RC2 198 11 145 39

RC3 868 17 2315 57

TO1 17 6 14 8

TO2 23 7 14 13

TO3 51 10 28 31

TO4 514 22 1425 67

DW1 263 12 58 37

DW2 304 18 40 95

DW3 986 30 1345 155

LM1 18 7 12 19

LM3 101 16 79 86

LM2 158 14 1320 37

LM4 555 34 645 176

Soft-UMC HWMC

Figure 4.6: Soft-UMC vs. HWMC. time in secs. ♯RTC and ♯trans is
number of RTC steps and transitions in counterexamples

checked: (LTL) safety or livelock. We then apply CBMC[13] (version 4.1)

as our C verifier.

First, we compared our implementation to the one translating the system

to the input language of RuleBasePE[51], IBM’s hardware model checker (we

call this solution HWMC). HWMC represents the EQ as a bounded FIFO,

where the size of the FIFO is relative to the maximum number of events

generated in a single RTC step. It also preserves the hierarchical structure

of the state machines.

To compare the performance of Soft-UMC and HWMC we used the fol-

lowing four examples. (1) A variant of the railroad crossing system from

[46], including a gate object and three track objects that communicate with

the gate, (2) The ticket ordering system (Figures 4.1 and 4.2), (3) A dish-

washer machine (inspired by the example provided with Rhapsody), (4) A

locking system, including a manager and three lock clients. We have checked

several safety properties on the systems. In Figure 4.6 we present a compar-

ison of the runtime for finding a counterexample in Soft-UMC and HWMC.

It can be seen that HWMC is better on short counterexamples. However,

on long ones Soft-UMC achieves results in shorter times. This can be ex-

plained by the initialization time of CBMC which is significant for short

counterexamples but becomes negligible on long ones.

To check the scalability of our tool compared to HMWC, we considered

38

➎➏➐➏➑

➒➓➔→➣↔↕➙
➛➜

➝➞↕➙
➛➜

➒➓➔→➣↔↕➙
➟➞

➝➞↕➙
➟➞

➒➓➔→➣↔↕➙
➠↕

➝➞↕➙
➠↕

➡ ➢➤ ➥➦ ➧➨ ➥➩ ➫➢ ➩➭
➧ ➯➯➫ ➲➥ ➨➢➨ ➩➳ ➯➵➯ ➸➦
➯➯ ➥➭➥ ➫➧➵ ➢➺➡ ➻➻ ➯➤➨ ➦➼➭
➯➢ ➩➻➳ ➯➧➫➵ ➧➨➡ ➥➽➳ ➫➨➧ ➦➼➸
➯➺ ➻➲➩ ➫➢➺➵ ➯➫➨➾ ➼➦➭ ➡➡➡ ➻➦➩
➨➵ ➦➸➳➭ ➛➚➜ ➦➲➻➳ ➛➚➜ ➺➾➾ ➸➼➲
➨➫ ➛➚➜ ➛➚➜ ➥➲➭➭ ➛➚➜ ➯➯➡➫ ➼➼➲
➨➾ ➛➚➜ ➛➚➜ ➛➚➜ ➛➚➜ ➦➻➽➸ ➯➧➺➾
➨➤ ➛➚➜ ➛➚➜ ➛➚➜ ➛➚➜ ➦➼➽➲ ➨➯➢➨
➫➨ ➛➚➜ ➛➚➜ ➛➚➜ ➛➚➜ ➩➭➳➲ ➛➚➜

Figure 4.7: Compare scalability. time in secs.

three parameterized examples: The ticket ordering system, and variations

of the dishwasher machine and the locking system. E.g., for the ticket or-

dering system, the attribute account of Agent is used as the parameter,

and the checked property is non-determinism. For increasing initial values

of account, the counterexample leading to a non-deterministic state is of

increasing length. This allows us to experiment on the same system with

different lengths of counterexamples. In all examples, a counterexample for

a system with parameter i is of length ∼ 2 ∗ i RTC steps. Each RTC step

is composed of 3-5 transitions. We used a timeout of 1 hour. Results are

presented in Fig 4.7. From the comparison it is clear that HWMC is better

for shallow examples, however our tool is more scalable.

We also evaluated the performance impact of two of our optimizations,

the EQ (Sec. 4.2) and the hierarchical system. We compared a naive imple-

mentation of the EQ against our optimized implementation. To analyze the

impact of maintaining the hierarchy of the state machines we created a flat

system from the ticket ordering system. The flat system has 24 states and 54

transitions, whereas the hierarchical system has 26 states and 36 transitions.

The flat system is missing the hierarchical states. However, it has an addi-

tional attribute for maintaining the history. Figure 4.8 shows the results of

the comparison. We compared the runtime of 4 different implementations:

Hierarchical system with optimized EQ (H-OP-EQ), flat system with opti-

mized EQ (F-OP-EQ), hierarchical system with naive EQ (H-NV-EQ) and

flat system with naive EQ (F-NV-EQ).

We verified three different properties, and modified the system s.t. coun-

39

➪➶➹➘ ➴➷➬➮➷➱✃ ❐➷➬➮➷➱✃ ➴➷❒❮➷➱✃ ❐➷❒❮➷➱✃
➪❰ Ï Ð❰ Ñ❰ ÑÏÒ ÑÒÏ

❰Ó ÏÑ ÒÔ ÑÑÏÐ ➹Õ➬
❰Ö ÐÐÔ ÔÐÓ ➹Õ➬ ➹Õ➬
ÐÏ ×ÐÔ ❰ÐÑ× ➹Õ➬ ➹Õ➬

➪Ð ❰Ó ÖÖ ❰ÑÑ ➹Õ➬ ➹Õ➬
ÐÓ Ö❰Ö Ñ❰×Ø ➹Õ➬ ➹Õ➬

➪Ñ Ï Ð❰ ÑÐ ÑØ❰ ÔÐÓ
❰Ó ØÐ ❰ÓÑ ➹Õ➬ ➹Õ➬
❰Ô ÐØ× ××Ó ➹Õ➬ ➹Õ➬

Figure 4.8: Optimizations on ticket ordering. Bound in RTC steps; time in
secs.

terexample is reached at different bounds. 1,3 are safety properties. 2 is a

livelock check, checked on a slightly modified system: the guard of transi-

tion from Processing to FlightApproved of DB (Figure 4.1) is modified to

[isMyF lt && (space > 1)]. This introduces a reachable livelock state, when

db1 and db2 are in state Processing, space = 1 and isMyF lt = true for

both objects. Each row in Fig 4.8 represents a different setting defined by

the property and the initial values of the attributes, which determine the

length of the counterexample (in RTC steps). Time limit is set to 1 hour.

It is clear that the optimized implementation of the EQ scales much better

w.r.t. the naive EQ implementation. This is because the naive implementa-

tion includes a loop representing the addition of a non-deterministic num-

ber of environment events to the EQ. In the optimized implementation this

amounts to a non-deterministic increment of the tail. The comparison also

shows that the hierarchical implementation scales better than the flat one.

Our conjecture is that flattening increases the number of transitions in the

system, and therefore increases the search space. [19] presents similar results

when comparing verification of hierarchical UML systems to flat systems.

The above shows the significance of optimizations. We expect to be able to

further improve performance of our solution with other optimizations.

4.5 Conclusions

This work is a first step in exploiting software model checking techniques for

the verification of behavioral UML systems. By translating UML systems

to C we could preserve the high-level structure of the system.

40

Our translation to verifiable C code rather than executable one signifi-

cantly eased the workload of the model checker. This is demonstrated, for

instance, by the comparison of our optimized representation of the event

queue with a naive one. In our translation we also took advantage of the

fact that bounded model checking is applied, and obtained a finite represen-

tation in spite of the unbounded size of the queue. Nevertheless, our method

can be extended to unbounded model checking by means of k-induction.

The comparison with IBM’s hardware oriented tool for UML verification

demonstrates that our approach is superior for long counterexamples.

Our approach to finding MD-livelocks in UML models is novel. Static

analysis identifies syntactically mutually-dependent states. During the model

checking phase, we check whether these mutually-dependent states are reach-

able and represent a real MD-livelock. A suitable finite representation of

the event queue then enables to apply BMC for finding such states that are

reachable. We expect similar approaches to be useful for proving additional

non-safety properties.

41

Chapter 5

Verifying Behavioral UML

Systems via CEGAR

In this chapter we present a novel approach for applying abstraction and

refinement for the verification of behavioral UML systems.

The CounterExample-Guided Abstraction Refinement (CEGAR) approach

[10] provides an automatic and iterative framework for abstraction and re-

finement, where the refinement is based on a spurious counterexample. The

concrete system is initially abstracted, which results in an abstract, over-

approximated system. When model checking returns an abstract counterex-

ample, a search is made for a matching concrete counterexample. If one

exists, then a real bug on the concrete system is found. Otherwise, the

counterexample is spurious and a refinement is needed. In the refinement

stage, more details are added to the abstract system, in order to eliminate

the spurious counterexample.

In this chapter we propose a CEGAR-like framework for verifying be-

havioral systems that rely on UML state machines. We present a model-

to-model transformation that generates an abstract system from a given

concrete one. Our transformation is done on the UML level, thus resulting

in a new UML behavioral system which is an over-approximation of the orig-

inal system. We adapt the CEGAR approach to our UML framework, and

apply refinement if needed. Our refinement is also performed as a model-to-

model transformation. It is important to note that by defining abstraction

and refinement in terms of model-to-model transformations, we avoid the

42

translation to lower level representation (such as Kripke structures). This

is highly beneficial to the user, since the property, the abstraction, and the

abstract counterexample are all given at the UML level and are therefore

more meaningful.

Our abstraction is obtained by abstracting some (or all) of the state

machines in the concrete system. When abstracting a state machine, we

over-approximate its interface behavior w.r.t. the rest of the system. In the

context of behavioral UML systems, an interface includes the events gener-

ated/consumed and the (non-private) variables. We thus abstract part of

the system’s variables, and maintain an abstract view of the events generated

by the abstracted state machines. In particular, the abstract state machines

may change the number and order of the generated events. Further, ab-

stracted variables are assigned the “don’t-know” value. Our abstraction

does not necessarily replace an entire state machine. Rather, it enables ab-

stracting different parts of a state machine whose behavior is irrelevant to the

checked property. Our abstraction construction is presented in Section 5.1.

We show that the abstract system is an over-approximation by proving that

for every computation of the concrete system there exists a computation of

the abstract system that “behaves similarly”. This is formally defined and

proved in Section 5.2.

Our CEGAR framework is suitable for verifying LTLx, which is LTL

without the next-time operator. Also, we assume the existence of a model

checker for behavioral UML systems. As mentioned before, we add the

special value “don’t-know” to the domain of the variables. This results in

a 3-valued semantics for UML systems, as shown in Section 5.1. To model

check abstract systems we need a 3-valued model checker. Extending a

model checker to support the 3-valued semantics (e.g., [54, 29]) is straight-

forward.

Many works such as [53, 56, 48, 21, 47] address semantic refinement of

state machines. Semantic refinement is a method for top-down design, where

details are added to a partially defined state machine, while behavior of the

original (abstracted) model is preserved. We, on the other hand, remove

details from a given model during the abstraction stage, in order to obtain

a smaller model. Though we also address an abstraction-refinement relation

between state machines, these works are very different from ours. These

works look at manual refinement as part of the modeling process, whereas

43

we are suggesting an automatic abstraction to improve scalability of the

verification tool. Moreover, these works handle a single state machine level,

where we consider a system which includes possibly many state machines

that interact with each other.

From here on, we assume the following restriction on the actions of state

machines: An action includes at most one “GEN(e)” statement. In ad-

dition, an action that includes “GEN(e)” is a non-branching sequence of

statements. If either one of these restrictions does not hold, then the state

machine can be preprocessed such that the transition is replaced with a

series of states and transitions, each executing part of the original action.

We also assume that state machines do not include history. Therefore,

a state machine SM is a tuple (S,R,Ω, init, TR,L), and a state machine

configuration is a tuple c = (ω, ρ). That is, we exclude the H element in

SM and the H element in c. Note that it is straightforward to eliminate

history at the expense of additional states, transitions and variables.

5.1 Abstract State Machines

We now present the construction of abstract UML systems.

5.1.1 Abstracting a State Machine

The abstraction of a state machine SM = (S,R,Ω, init, TR,L) is defined

w.r.t. a disjoint abstraction collection ABS = {A1, ...,Ag} ⊆ 2S . Every

Aβ is referred to as an abstraction set. Every abstraction set Aβ is a set of

states (simple or composite) for which the following holds.

1. For every s, s′ ∈ Aβ: Ω(s) = Ω(s′), and

2. For every s ∈ Aβ and s′ ∈ Aγ , if β 6= γ then s 6⊳ s′ and s′ 6⊳ s.

The first requirement states that an abstraction set Aβ includes states from

a single region. The second requirement states that the abstraction sets are

disjoint: there are no two states in different abstraction sets s.t. one state

contains the other state. Intuitively, our abstraction replaces every Aβ (and

all states contained in Aβ) with a different construct that ignores the details

of Aβ and maintains an over-approximated behavior of the events generated

by Aβ.

44

We add the value don′t−know, denoted ⊥, to the domain of all variables

in V , where ⊥ represents any value in the domain. The semantics of boolean

operations is extended to 3-valued logic as follows: ⊥ ∧ false = false,

⊥ ∧ true = ⊥ and ¬⊥ = ⊥. An expression is evaluated to ⊥ if one of its

arguments is ⊥. For simplicity of presentation, we enable trig(t) to be a

set of triggers. I.e. trig(t) = {e1, ..., eq} ∪ ǫ, and enabled(t, C) = true if

one of the events from trig(t) matches ρ (the event dispatched to the state

machine).

Next, we define several notions that are concrete and are defined w.r.t.

an abstraction set A ∈ ABS:

• S(A) = {s ∈ S|∃s′ ∈ A.(s⊳ s′)} are the abstracted states.

• R(A) = {r ∈ R|∃s ∈ A.(r ⊳ s)} are the abstracted regions.

• TR(A) = {t ∈ TR|src(t) and trgt(t) ∈ S(A)} are the abstracted

transitions.

• EV (A) = {e ∈ EV |∃t ∈ TR(A).(GEN(e) ∈ act(t))}.

• Trig(A) = {tr|∃t ∈ TR(A).(trig(t) = tr)} \ {ǫ}.

• V (A) = {v ∈ V |∃t ∈ TR(A).(v ∈ modif(t))}.

• GRDV (A) = {v ∈ V |∃t ∈ TR(A).(trig(t) = ǫ ∧ v ∈ grd(t))}.

Let Γ = (SM1, ..., SMn, Q1, ..., Qm, thread, V) be a system, let ABS be an

abstraction collection of SMi, and let A ∈ ABS be an abstraction set. We

require the following restrictions of A:

1. For every v ∈ V (A), if v can be modified by several state machines in

Γ, then all these state machines are assigned to the same thread. For-

mally: if v ∈ modif(TRi) ∩modif(TRj) then thread(i) = thread(j).

This is needed for correctness of the construction (details in the proof

of theorem 5.11). Intuitively, this ensures that the value of v cannot

be changed by a different state machine during the execution of the

abstract state machine.

2. For every t ∈ TR(A), if trig(t) 6= ǫ then for every e ∈ EV , GEN(e) 6∈

act(t).

45

Ù Ú Û Ü Û Ù Ý
Þ ß à á â ã ä å æ ç è é ê ë ì í

î å ï ð ñ ò ó æ ç è ð ë ò

Þ ô à í õ ö ÷ æ á ö ó æ ç è é è ò
Ù ø

Ù ù ú û

Ù ü ý þ Ý

Þ ÿ à ê î å ï ✗ ë ì í î å ï ð ñ ò ó æ ç è ð ë ò

Þ ☎ ý ✆ ÿ à í õ ö ÷ æ á ö ó æ ç è é è ò

Þ ☎ ý ✆ ô Þ ☎ ý ✆ ✝
Þ ÿ ☎ ý ✆ ô

Þ ÿ ☎ ý ✆ ✝

Figure 5.1: ∆(A): The abstraction construct created for abstraction set A

3. There are no loops without triggers within S(A). Further, there are no

self loops without a trigger on states containing S(A). This is needed

to enable the static analysis described next.

In order to explain our abstraction we introduce the notion of an Abs-

round on abstraction set A, which is a maximal, possibly non-consecutive,

sequence of steps from a computation π, s.t. all the steps are part of a single

RTC, every step executes an abstracted transition, and the state machine

remains in an abstracted state throughout the Abs-round. Formally,

Definition 5.1 (Abs-Round) Let A be an abstraction set of state ma-

chine SMi from system Γ, and let τ = stepi0 , ..., stepid be a RTC step

of Γ on SMi. An Abs-round on A is a maximal sub-sequence of τ , τ̃ =

stepij1 , ..., stepijk s.t. the following holds:

1. For every j ∈ {j1, j2, ..., jk}: step
ij = TRANS(j, (t1, ..., ty)) (possibly

y = 1), and there exists a transition t ∈ {t1, ..., ty} s.t. t ∈ TR(A)

(the step executes an abstracted transition), and

2. For every ι ∈ {ij1 , (ij1) + 1, ..., ijk}, ω
ι
i ∩ S(A) 6= φ (the state machine

remains in the abstracted states throughout τ̃ .

Since there are no loops without triggers that include abstracted states,

we can easily apply static analysis in order to determine the maximal number

of events that can be generated by any single Abs-round of abstraction set

A. We denote this number by fA.

Given an abstraction set A ∈ ABS, our abstraction replaces S(A),R(A)

and TR(A) with a new construct, referred to as ∆(A), demonstrated in Fig-

ure 5.1. ∆(A) includes an initial state astrt and a final state aend. Every

46

Abs-round over states from S(A) is represented by a computation that in-

cludes a single loop on ∆(A) from astrt to astrt. ∆(A) includes computations

that can generate any sequence of size 0 to fA events from EV (A). also, all

the variables that can be modified in the Abs-round are given the value ⊥.

An Abs-round whose first transition consumes an event, is represented

by a computation that starts with transition τ1 from astrt to a1, which

can consume any single event from Trig(A). The guard ⊥ on τ1 and τ2
represents a non-deterministic choice between “true” or “false”. If the first

transition on an Abs-round does not consume an event, it will be represented

by transition τ2, which is not marked with a trigger. Since ∆(A) contains a

loop of transitions without triggers we must ensure that all RTCs through

∆(A) are finite. We introduce a new Boolean variable cgA. A trace on ∆(A)

can be initiated without a trigger only if cgA is 1. ∆(A) then sets cgA to 0

on both transitions exiting astrt.

When cgA is set to 1 it signals that it is possible to execute an Abs-round

that does not consume an event. Such a situation abstracts a concrete

execution in which the RTC step that includes the Abs-round starts at

a state that is not abstracted and continues within the abstraction. I.e.,

execution of a transition t whose source is outside of S(A) and whose target

is a state s that either contains A or s ∈ A. The situation can also occur

if an abstracted transition becomes enabled due to some variable change.

I.e., execution of some transition t, which is either orthogonal to A or is in

a different state machine, and t modifies a variable v and v ∈ GRDV (A).

If by static analysis we can conclude that the first transition of every

Abs-round consumes an event, then cgA is redundant (and τ2 can be re-

moved). All the Abs-rounds are then represented by computations that

start by traversing τ1.

We now formally define our abstract state machines. Given SM =

(S,R,Ω, init, TR,L) and an abstraction setA ∈ ABS, SM(A) = (SA, RA,ΩA,

initA, TRA, LA) is the abstraction of SM w.r.t. A. We denote functions

over the abstraction (src, trgt, trig, grd, and act) with a superscript A.

• SA = (S \ S(A)) ∪ {astrt, a1, ..., afA+1, aend}

• RA = (R \R(A))

• For every s ∈ (SA ∩ S) ∪RA: ΩA(s) = Ω(s).

47

For every s ∈ {astrt, a1, ..., afA+1, aend}: Ω
A(s) = Ω(s′) for some s′ ∈ A

(recall that all states in A are contained in the same region).

• If there exists s ∈ A s.t. s ∈ init then initA = (init ∩ SA) ∪ {astrt}.

Otherwise, initA = init ∩ SA.

• TRA = (TR \ TR(A)) ∪ {τ1, ..., τ2fA+5}.

The srcA, trgtA, trigA, grdA and actA functions are redefined as follows:

Transitions τ1, ..., τ2f+4 are defined according to Figure 5.1. Every transition

t ∈ TR\TR(A) has a representation (matching transition) in SM(A). Note

that for every such transition, either src(t) or trgt(t) are not abstracted

(are in S ∩ SA). In SM(A), the connection to the∆(A) is only through

astrt. Thus, if src(t) or trgt(t) are abstracted, then srcA(t) or trgtA(t)

respectively is astrt ∈ ∆(A). The handling of cgA is added to the relevant

actions, as discussed above. In the following we present only the values of

srcA, trgtA, trigA grdA and actA that change in SM(A) w.r.t. SM . For

every t ∈ TR \ TR(A):

1. trgt(t) ∈ S(A) (the target of t is abstracted): we define trgtA(t) =

astrt. If there exists an abstracted transition from trgt(t) whose trigger

is ǫ then actA(t) is act(t); cgA = 1 (otherwise, actA(t) is act(t)). This

describes the case that the RTC can start outside the abstraction and

continue within the abstraction.

2. src(t) ∈ S(A) (the source of t is abstracted): we define srcA(t) = astrt,

actA(t) is cgA = 0; act(t) and grdA(t) = grd(t)&⊥. We add ⊥ to the

guard in order to ensure that executions of possibly enabled transitions

from states containing the abstraction remain (possibly) enabled.

3. Otherwise (neither src(t) nor trgt(t) are abstracted):

Case a: A⊳ trgt(t): An execution of t may result in a new ω (current

active state) that includes an abstracted state s ∈ S(A). If there

exists an abstracted transition from s whose trigger is ǫ, then

actA(t) is act(t); cgA = 1 (otherwise actA(t) = act(t)).

Case b: src(t) and astrt are contained in orthogonal regions (t can be

executed orthogonally to the abstraction): Then actA(t) = act(t)

with the following modifications:

48

✁ � ✂ ✄ ✞ ✟ ✠

✡ ☛ ☞ ✡ ✌ ✍ ✂ ✎ ✏ ✞ ✑ ✒ ✡ ✓ ✔ ✕

✖ ✘ ✞ ✠ ✘ ✙ ✚ ✟ ✛

✜ ✑ ✒ ✡

✢ ✣ ✎ ✣ ✌ ✞ � ✟

✤
✥
✦
✧
★
✩
✪
✫

✤
✥
✦
✧
★
✬
✭✧
✮✭✯✰✫
✱✤
✲

✳ ✘ ✄ ✙ ✡ ✣ ✚ ✟

✡ ☛ ✴ ✵ ✂ ☛ ✶ ✒ ✌ ✏ ✚ ✵ ✣ ✎ ✡ ✷ ✷ ✕ ✞ ✑ ✒ ✡ ✸ ✹ ✕ ✁ ✣ ✞ ✌ ✶ � ✂ ✺ ✻

✖ ✼ ✘ ✞ ✠ ✘ ✙ ✚ ✟ ✛

✡ ☛ ✺ ✡ ✟ ✽ ✶ ✒ ✌ ✏ ✞ ✑ ✒ ✡ ✸ ✹ ✕

✏ ✵ ✂ ✞ ✎ ✡ ✖ ✞ ✑ ✛ ✸ ✎ ✣ ✒ ✎ ✍ ✂ ✎ ✾ ✿ ✕

✏ ✵ ✂ ✞ ✎ ✡ ✖ ✞ ✑ ✛ ✸ ✎ ✣ ✒ ✎ ✺ ✞ ✚ ✎ ✍ ✂ ✎ ✾ ✿ ✕

❀❁
✩
❂
❃✤
✥
❄
✤
✭❅
✮★
❆✰✭❇❈
❉
✪
✭❊❋

✍ ✂ ✞ ✎ ✡ ✍ ✂ � ✎ ✡ ✚ ✚ � ✂

✳ ✘ ✄ ✳ ✒ ✚ ✴ ☛ ✣ ✞ ✒ ✣ ● ✞ ✒ ✞ ✌ ✽

❍ ✵ ✑ ✣ ✌ ✡ ✺ ✻

✳ ✘ ✟ ✠ ✙ ✡ ✣ ✚ ✟

✤
✥
■
❏
✪
❉
✬
❇✪
❀

❏
✰❉
❏
✬
❇✪
❑
▲❏
✰❉
❏
✬
❇✪
❋

✺ � ✟ ✡

✳ ✘ ✄ ✺ ✞ ✚ ✎ ✟ ✌ ✶ ✞ ✟ ✞ ✚ ✘

✍ ✂ ✞ ✎ ✡ ✍ ✂ � ✎ ✡ ✚ ✚ � ✂

Figure 5.2: DB State Machine

• If there exists v ∈ GRDV (A) such that v ∈ modif(t) then

cgA = 1 is added to actA(t), and

• If the current state of SM includes an abstracted state, then

variables that can be modified by abstracted transitions are

given the value ⊥ on the first transition executed on ∆(A)).

The value on these variables should remain ⊥ as long as the

current state of SM includes an abstracted state. In order to

ensure that the value remains ⊥ even if t is executed orthog-

onally to the abstraction, every assignment x = e in act(t), if

x ∈ V (A) then x = e is replaced with: “if (isIn({astrt, a1, ...,

afA+1, aend})) x = ⊥; else x = e;” in actA(t). The current

state is checked using the macro isIn(U) where U is a set of

states, that checks whether a certain state from U is active.

Example 5.2 Consider the DB state machine presented in Figure 5.2. Ab-

stracting the state machine with A = {Working, V acation} results in the

state machine in Figure 5.3. Note that in this state machine, by static anal-

ysis we can conclude that every Abs-round first consumes an event, and

therefore we do not need the cgA flag and transition τ2. Also, on every

Abs-round no more than one event can be generated, therefore fA = 1.

49

▼ ◆ ❖ P ❖ ▼ ◗

❘ ❙ ❚ ❯ ❙ ❱ ❲ ❳ ❨ ❩ ❙ ❚ ❬ ❭ ❳ ❚ ❪ ❫ ❱ ❩ ❙ ❚ ❴ ❙ ❵ ❛ ❪ ❫ ❱ ❩

❙ ❚ ❜ ❝ ❵ ❞ ❡ ❢ ❵ ❩ ❙ ❚ ❣ ❤ ❨ ❡ ❱ ❤ ❳ ❱ ❩ ❙ ❚ ❣ ❤ ❨ ✐ ❵ ❥ ❦ ❧ ♠ ♥ ♦

♣ ❥ ❫ ❙ q ♠ r ❭ ❳ ♣ ❨ ❙ ❧ ♣ ❥ ♥ q ♠ r ❝ ♣ ❞ ❝ ❡ ❢ ❵ q ♠ r

♦ ❯ ✐ s t ❙ ❚ ✉ ❙ ❱ ❲ ❳ ❨ ❩ ♣ ❱ ❢ ❴ ✈ ✇ r
▼ ① ▼ ② ③ ④

Figure 5.3: Abstract DB State Machine

The above definitions enable us to define several different abstractions

over a concrete state machine, by defining them one after the other. Given

an abstraction collection ABS = {A1, ...,Ag}, the abstraction of SM w.r.t.

ABS is defined as SMA = (((SM(A1))(A2))....)(Ag).

5.1.2 Abstracting a System

Next we define an abstract system. This is a system in which some of

the state machines are abstract. For SMi and an abstraction collection

ABSi = {A1, ...,Ag}, SMA
i denotes the abstraction of SMi w.r.t. ABSi.

We denote the cg variable in SMA
i that was added when abstracting SMi

w.r.t. abstraction set Aβ as cgβi .

Definition 5.3 Let Γ and Γ′ be two systems, each with n state machines and

m event queues. We say that Γ′ is an abstraction of Γ w.r.t. {ABS1, ..., ABSn},

denoted ΓA, if the following holds:

1. For i ∈ {1, ..., n}, SM ′
i = SMi or SM

′
i = SMA

i

2. thrd = thrd′

3. V ′ = V ∪ {cgβi |SM
′
i = SMA

i and Aβ ∈ ABSi}

4. For every i, j ∈ {1, ..., n} s.t. i 6= j, and for every t ∈ TR′
j: if there

exists a variable v ∈ GRDV (Aβ) where Aβ ∈ ABSi, and v ∈ modif(t)

then cgβi = 1 is added to act′(t) (in SM ′
j).

Recall that setting cgβi to 1 on SMA
j signals that it is possible to execute

an Abs-round on SMi that does not consume an event. Requirement (4) in

Definition 5.3 handles the case where a guard of an abstracted transition of

50

SMi changes by a transition t of SMj , by ensuring that cgβi is set to 1 on

such transitions of TR′
j.

Adding the value ⊥ to the domain of all variables in V affects the cases

when a transition is enabled, and when a state machine is stable, since

now grd(t)(λ) ∈ {true, false,⊥}. Intuitively, if grd(t)(λ) = ⊥ then we

assume it can be either true or false. We thus consider both cases in

the analysis. Therefore, enabled(t, C) = true iff t can be enabled w.r.t. C

(grd(t)(λ) ∈ {true,⊥}) and all transitions from states contained in src(t)

can be not enabled (grd(t′)(λ) ∈ {false,⊥}). Similarly, stable(ci, C) if ci can

be stable in C. I.e., for every t ∈ TRi, s.t. src(t) ∈ ωi, either trig(t) 6= ρi
or grd(t)(λ) ∈ {false,⊥}.

Note that when enabling 3-valued semantics, a transition may be en-

abled, even though lower level transitions may be enabled as well. Note

also that in the 3-valued context it still holds that for a SM-configuration

ci, if there exists a transition t ∈ TRi s.t. src(t) ∈ ωi, trig(t) = ǫ and

grd(t) = true, then ci is not stable. Thus, when a state machine SMi fin-

ishes an RTC step, if SMi is in an abstract state, then that state can only

be aβstrt (i.e., the start state of the abstraction construct replacing Aβ). Sim-

ilarly, when an event is dispatched on some thread j, then for every state

machine SMi associated with thread j: if SMi is in an abstract state, then

that state can only be aβstrt.

5.2 Correctness of The Abstraction

In this section we prove that ΓA is an over-approximation of Γ by showing

that every computation of Γ has a “matching” computation in ΓA.

Definition 5.4 (Abstraction relation of SM-configuration) Let c =

(ω, ρ) and cA = (ωA, ρA) be SM-configurations of a state machine SM and

its abstraction SMA respectively. cA abstracts c, denoted c � cA, if the

following holds:

• ρ = ρA

• c and cA agree on the joint states: ω 6= ωA iff ω \ ωA ⊆ S(A) and

ωA \ ω ⊆ ∆(A).

51

Definition 5.5 (Abstraction relation of λ) Let λ and λ′ be variable as-

signments over V of Γ and V ′ of ΓA respectively. We say that λ′ abstracts

λ, denoted λ � λ′ if for every v ∈ V either λ(v) = λ′(v) or λ′(v) = ⊥.

Definition 5.6 (Abstraction relation of system-configuration) Let C

and C ′ be two system configurations of Γ and ΓA respectively. We say that

C ′ abstracts C, denoted C � C ′, if C and C ′ agree on the event queues

and id elements, and the state machine configurations and λ′ of ΓA are

abstraction of the matching elements in Γ:

• For j ∈ {1, ...,m}: qj = q′j and idj = id′j

• For i ∈ {1, ..., n}: ci � c′i

• λ � λ′

We will further need the following lemma, stating that when executing

two matching transitions t and ta from two computations C and C ′, where

C ′ is an abstraction of C, then the resulting variable assignments are related.

Lemma 5.7 Let C and C ′ be system-configurations of Γ and ΓA respec-

tively, such that C � C ′. For every l ∈ {1, ..., n}, for every t ∈ TRl and

ta ∈ TRAl : if ta matches t then act(t)(λ,C) � act(ta)(λ
′, C ′).

Proof. We show that for every v ∈ V : either act(t)(λ,C)(v) = act(ta)(λ
′, C ′)(v)

or act(ta)(λ
′, C ′)(v) = ⊥.

Since C � C ′, then for every variable v ∈ V , either λ(v) = λ′(v) or

λ′(v) = ⊥. Note that by the definition of matching transitions, modif(t) =

modif(ta) ∩ V . For every v ∈ V :

• If v 6∈ modif(t) then v 6∈ modif(ta). Therefore act(t)(λ,C)(v) = λ(v)

and act(ta)(λ
′, C ′)(v) = λ′(v), and clearly the requirement holds.

• If v ∈ modif(t): If act(ta)(λ
′, C ′)(v) 6= ⊥ then the value of v is

determined by an evaluation of an expression over V for variables

whose value is not ⊥. These variables have the same value in λ, and

the evaluating expression is the same. Therefore, act(t)(λ,C)(v) =

act(ta)(λ
′, C ′)(v). Otherwise, act(ta)(λ

′, C ′)(v) = ⊥, and clearly the

requirement holds.

52

⑤ ⑥ ⑦ ⑧⑨ ⑩ ❶ ❶

⑤ ❷ ⑧⑨ ❶ ❶ step1⑧ step3⑧ ⑤ ❸ ⑧ ❹ ❺❻ ❼ ❽ ❾ ❷ ⑧ ⑤ ❿ ⑧

➀ ➁ ➂ ➃ ➄

⑤ ➅ ⑧ ❻ ❼ ❽ ❾ ➅ ⑧ ⑤ ➆ ⑧

➀ ➁ ➂ ➃ ➇

step6,⑤ ➈ ⑧⑤ ➉ ⑧ ❻ ❼ ❽ ❾ ➉ ⑧ ⑤ ⑦ ⑧

➀ ➁ ➂ ➃ ➊

❻ ❼ ❽ ❾ ⑦ ⑧

❹ ❺

⑤ ⑥ ❷ ⑧ ⑤ ⑥ ➅ ⑧ step’2, step'3,❻ ❼ ❽ ❾ ➋ ❷ ⑧ ⑤ ⑥ ❿ ⑧ ❻ ❼ ❽ ❾ ➋ ❿ ⑧ ⑤ ⑥ ➆ ⑧ ⑤ ⑥ ➉ ⑧ ❻ ❼ ❽ ❾ ⑥ ➉ ⑧ step’5, ⑤ ⑥ ➈ ❹ ❺

Figure 5.4: Stuttering Computation Inclusion

�

We now define stuttering computation inclusion, which is an extension

of stuttering-trace inclusion ([11]) to system computations. For simplic-

ity of presentation, we assume from now on that computations are infinite.

however, all the results presented hold for finite computations as well. In-

tuitively, there exists stuttering inclusion between π and π′ if they can be

partitioned into infinitely many finite intervals, s.t. every configurations in

the kth interval of π′ abstracts every configuration in the kth interval of π,

and vice versa.

Definition 5.8 (Stuttering Computation Inclusion) Let π = C0, step0,

C1, step1, ... and π′ = C ′0, step′0, C ′1, step′1, ... be two computations over Γ

and ΓA respectively. There exists a stuttering computation inclusion be-

tween π and π′, denoted π �s π′, if there are two infinite sequences of

integers 0 = i0 < i1 < i2 < ... and 0 = i′0 < i′1 < i′2 < ... such that for every

k ≥ 0 the following holds. For every j ∈ {ik, ..., (ik+1) − 1} and for every

j′ ∈ {i′k, ..., (i
′
k+1)− 1}: Cj � C ′j′

Note that corresponding intervals in π and π′ may have different lengths.

Figure 5.4 illustrates two computations where π �s π
′. Definition 5.6 im-

plies that steps of type DISP , ENV and EndRTC cannot be steps within

an interval, due to the effect of these steps on system-configuration. For

example, in Figure 5.4, C6 � C ′5. Assume step6 = EndRTC(j, ǫ), then by

the definition of EndRTC step, the value of idj changes from C6 to C7.

Since system-configuration abstraction requires equality of the id elements,

then clearly C7 6� C ′5. Thus C6 and C7 cannot be in the same interval. For

a similar reason, a step of type DISP , ENV or EndRTC on π implies a

step of the same type on π′, and vice versa. Steps of type TRANS that are

either the first step in a RTC or a step that generates events are also steps

53

that cannot be part of an interval, due to the effect of these steps on the ρ

elements and the event queues.

The above is captured in the following lemma.

Lemma 5.9 Let π = C0, step0, C1, step1, ... and π′ = C ′0, step′0, C ′1, step′1, ...

be two computations over Γ and ΓA respectively, s.t. π �s π
′. Let 0 = i0 <

i1 < i2 < ... and 0 = i′0 < i′1 < i′2 < ... be two infinite sequences of positive

integers describing the intervals of the stuttering inclusion. Then for every

k ≥ 0:

• stepik = DISP (j, e) iff step′i
′
k = DISP (j, e)

• stepik = ENV (j, e) iff step′i
′
k = ENV (j, e)

• stepik = EndRTC(j, ǫ) iff step′i
′
k = EndRTC(j, ǫ)

• stepik = TRANS(j, (t1, ..., ty)) where id
ik
j = l and ρikl 6= ǫ iff step′i

′
k =

TRANS(j, (t′1, ..., t
′
y′)) where id

i′
k

j = l and ρ
i′
k

l 6= ǫ

• stepik = TRANS(j, (t1, ..., ty)) where idikj = l and GEN(e) ∈ act(t)

for some t ∈ {t1, ..., ty} iff step′i
′
k = TRANS(j, (t′1, ..., t

′
y′)) where

id
i′
k

j = l and GEN(e) ∈ act(t′) for some t′ ∈ {t′1, ..., t
′
y′}

An immediate result of the above is that an interval can be of size greater

than one only if the steps in the interval are TRANS steps that are nei-

ther a first step in a RTC nor a step generating an event. Recall that

Definition 5.6 requires a correlation between the current states of the state

machines. It can therefore be shown (for a similar reason as above) that if

stepi = TRANS(j, (t)) is a step inside an interval, i.e. between two configu-

rations in the same interval, then one of the following holds: (1) If stepi ∈ π

then t is an abstracted transition, (2) If stepi ∈ π′ then t ∈ ∆(A).

We extend the notion of stuttering inclusion to systems, and say that

there exists a stuttering inclusion between Γ and ΓA, denoted Γ �s Γ
A, if

for each computation π of Γ from an initial configuration Cinit, there exists

a computation π′ of ΓA from an initial configuration C ′
init s.t. π �s π

′.

Every system Γ can be viewed as a Kripke structure K, where the K-

states are the set of system-configurations, and there exists a K-transition

(C,C ′) iff C ′ is reachable from C within a single step. Thus, every com-

putation of Γ corresponds to a path in K. Let Γ be a system, and let Aψ

54

be an LTL formula, where the atomic propositions are predicates over Γ.

Then Γ |= Aψ iff for every computation π of Γ from an initial configuration,

π |= ψ. By preservation of LTLx over stuttering traces we conclude:

Corollary 5.10 Let Γ and ΓA be two systems, s.t. Γ �s ΓA, and let Aψ

be an LTLx formula over joint elements of Γ and ΓA. If ΓA |= Aψ then

Γ |= Aψ.

Due to the stuttering-inclusion, ΓA preserves LTLx and not LTL. It is

important to note that since Γ itself is a multi-threaded system, properties

of interest are most often defined without the next-time operator.

The following theorem captures the relation between Γ and ΓA, stating

that there exists stuttering inclusion between Γ and ΓA.

Theorem 5.11 If ΓA is an abstraction of Γ then Γ �s Γ
A.

The proof of the above theorem is presented in Section 5.2.1. We give

here an intuitive explanation to why for every π of Γ from Cinit, there exists

π′ of ΓA from C ′
init such that π �s π

′. For every step executed on Γ that does

not include execution of an abstracted transition it is possible to execute the

same step on ΓA. More specifically, for every transition t executed on Γ, if t

has a matching transition ta in ΓA, then ta can be executed on π′. For every

step of type ENV , DISP and EndRTC on π it is possible to execute the

same step on π′. This holds since matching configurations Cr and C ′p of π

and π′ respectively agree on their joint elements, and λ′p might assign ⊥ to

variables. Thus, if a transition t is enabled, then its matching transition ta
can be enabled.

For execution of an abstracted transition on Γ, every Abs-round χ of

abstraction set Aβ on some concrete state machine SMi can be matched to a

trace from aβstrt to a
β
end on SM

A
i . The matching is as follows: every transition

t that is traversed on χ and where t generated an event (GEN(e) ∈ act(t))

matches a transition from aβi to aβi+1 (for some i). Every transition t that is

traversed on χ and where t does not generate or consume an event, matches

an interval of length one on π′ (ΓA does not execute a matching step). Since

χ can generate at most fA events, then indeed we can match the transitions

as described. All variables that can be modified on χ are given the value ⊥

upon execution of the first transition in ∆(A) (transitions from aβstrt to a
β
1).

This value is maintained in the variables throughout the traversal on ∆(A).

55

5.2.1 Proving Correctness of the Abstraction

This section includes the full proof of Theorem 5.11, which states that if

ΓA is an abstraction of Γ then Γ �s Γ
A. We will further use the following

lemma, which captures the fact that when an event is dispatched on some

thread j, then for all of the state machines associated with thread j: if the

state machine is in an abstract state, then that state can only be aβstrt.

Lemma 5.12 Let π = C0, step0, C1, step1, ... be some computation. For

every 1 ≤ j ≤ m, for every r s.t. stepr = DISP (j, e), and for every l s.t.

thread(l) = j: If Aβ ∈ ABSl then {aβ1 , ..., a
β
fβ+1, a

β
end} ∩ ω

r
l = φ.

For simplicity of the proof, we assume the following on Γ: For every i ∈

{1, ..., n} and for every t ∈ TRi, if trig(t) 6= ǫ then act(t) = skip.

Proof. Assume a computation π = C0, step0, C1, step1, ... on Γ such that

C0 is an initial configuration. We prove by induction on the number of

steps in π that there exists a computation π′ = C ′0, step′0, C ′1, step′1, ... on

ΓA such that π �s π
′.

Base: Given C0 = (c1, ..., cn, q1, ..., qm, id1, ..., idm, λ), the initial configu-

ration of π. We define the following initial configuration for π′: C ′0 =

(c′1, ..., c
′
n, q

′
1, ..., q

′
m, id

′
1, ..., id

′
m, λ

′) and show that it is an initial configura-

tion on ΓA.

• For every i ∈ {1, ..., n} c′i is defined as follows. For every s ∈ ci:

– If s ∈ SAi then s ∈ c′i (if state s from SMi exists also in SMA
i ,

then it is part of c′i)

– If s 6∈ SAi and s ∈ Aβ (i.e, s is part of abstraction set Aβ of SMi)

then aβstrt ∈ c′i

• For every 1 ≤ j ≤ m q′j = qj = φ (qj = φ since C0 is an initial

configuration)

• For every 1 ≤ j ≤ m id′j = idj = 0 (idj = 0 since C0 is an initial

configuration)

• For every v ∈ V , λ′(v) = λ(v)

• For every cgβi ∈ V A:

56

– If there exists s ∈ ci s.t. s ∈ S(Aβ) and there exists t ∈ TR(Aβ)

s.t. src(t) = s, trig(t) = ǫ and grd(t)(λ0) = true then cgβi = 1.

– Otherwise, cgβi = 0.

The above captures the case that an abstracted transition on SMi can

be executed without consumption of an event, and without a modifi-

cation of some variable effecting its guard. This situation can occur

if the guard is true under the initial configuration. In this case we

initialize the matching cgβi to 1.

Clearly, C ′0 is an initial configuration and also that C0 � C ′0

Step: We assume that for the first r steps of π: C0, step0, C1, step1, ..., Cr−1,

stepr−1, Cr (r > 0) there exists a partial computation π′ = C ′0, step′0, C ′1,

step′1, ..., Cp over ΓA s.t. there are two sequences of positive integers 0 =

i0 < i1 < i2 < ... < il = r and 0 = i′0 < i′1 < i′2 < ... < i′l = p and for every

0 ≤ k < l, Cik , C(ik)+1, ..., C(ik+1)−1 � C ′i′
k , C ′(i′

k
)+1, ..., C ′(i′

k+1
)−1, and also

Cr � C ′p.

We define the matching extension of π′ based on stepr:

• stepr = DISP (j, ev)

By definition, idrj = 0, qrj 6= φ and top(qrj) = ev. Since Cr � C ′p,

then idri = id′pi and qri = q′pi for every i. Therefore, id′pj = 0, q′pj 6= φ

and top(q′pj) = ev as well, and it is possible to make a step where

step′p = DISP (j, ev) from C ′p.

By definition of DISP step, Cr+1 = (cr1, ..., c
r
n, q

r
1, ..., q

r+1
j , ..., qrm, id

r
1,

..., idr+1
j , ...idrm, λ

r), qr+1
j = pop(qrj), id

r+1
j = trgt(ev) and ρr+1

trgt(ev) =

type(ev).

By definition ofDISP step, C ′p+1 = (c′p1 , ..., c
′p
n , q

′p
1 , ..., q

′p+1
j , ..., q′pm, id

′p
1 ,

..., id′p+1
j , ...id′pm, λ′p), q

′p+1
j = pop(q′pj), id

′p+1
j = trgt(ev) and ρ′p+1

trgt(ev) =

type(ev).

Since Cr � C ′p, it is clear that Cr+1 � C ′p+1 as well.

• stepr = EndRTC(j, ǫ)

Assume idrj = id′pj = l > 0. Since stable(crl , C
r), then for every t ∈ TRl

s.t. src(t) ∈ ωrl either trig(t) 6= ρrl or grd(t)(λr) = false.

For every s ∈ ω′p
l :

57

1. If s ∈ {aβ1 , ..., a
β
fβ+1, a

β
end}: If ρ′pl 6= ǫ, then by definition of

the semantics there exists stepp
′

is π′ such that p′ < p and

step′p
′

= DISP (j, ev) where id′p
′

j = l (an EndRTC step must

appear after a matching DISP step). Also, for every p′ < p′′ < p,

if step′p
′′

= TRANS(j, (t1, ..., tq)) then id′p
′′

j 6= l (otherwise, the

TRANS step would have set the ρ element to ǫ). This means

that s ∈ ω′p′

l (since only TRANS steps can change the current

state of a state machine). However, it is not possible that s ∈ ω′p′

l ,

since there exists a null transition from s. We therefore conclude

that ρ′pl = ǫ.

For s ∈ {aβ1 , ..., a
β
fβ+1} (s = aβend): There exists an enabled tran-

sition t′ s.t. trgt(t′) = aβend (aβstrt) (this is a null transition). We

define step′p = TRANS(j, (t′)). Clearly, if Crl � C ′p
l , then also

Crl � C ′p+1
l . Note that we match C ′p+1 to Cr and not to Cr+1.

We prove stuttering simulation, and this step of π′ is part of the

matching interval, continuing in the handling of aβend (aβstrt).

2. If s = aβstrt then for every t′ s.t. src(t′) = aβstrt, by construction of

SMA
i , grd(t

′)(λ) = ⊥ (for any λ), since ⊥ is included in grd(t′).

3. Otherwise, since crl � c′pl , then s ∈ ωrl . By definition of SMA
l ,

for every transition t ∈ TRl s.t. src(t) = s there exists a

transition ta ∈ TRAl s.t. src(ta) = s, trig(t) = trig(ta) and

grd(t) = grd(ta). Thus, if trig(t) 6= ρrl , then trig(ta) 6= ρ′pl , and

if grd(t)(λr) = false then grd(ta)(λ
′p) ∈ {false,⊥}.

The above means that for cases (2) and (3), for every ta ∈ TRAl s.t.

src(ta) ∈ ω′p
l either trig(ta) 6= ρ′pl or grd(ta)(λ

′p) ∈ {false,⊥}. There-

fore, an EndRTC step is possible s.t. step′p = EndRTC(j, ǫ), and

clearly Cr+1 � C ′p+1.

• stepr = ENV (j, ev).

Since the environment is always enabled, then an ENV step s.t. step′p =

ENV (j, ev) is possible from C ′p, and clearly Cr+1 � C ′p+1.

• stepr = TRANS(j, {t1, ..., tq}).

Assume idrj = id′pj = l. By definition of the semantics, ρrl = ρ′pl 6= ǫ.

Thus, there exists r′ < r s.t. stepr
′

= DISP (j, ev) and idr
′

j = l (only

58

DISP steps can set ρ to a value not ǫ) and there are no TRANS or

EndRTC steps on thread j between stepr
′

and stepr (since these steps

set the value of ρ to ǫ). From lemma 5.9 we know that there exists a

matching step step′p
′

= DISP (j, ev) where id′p
′

j = l. From lemma 5.9

we also know that there are no TRANS or EndRTC steps on thread

j between step′p
′

and step′p (if there was such a TRANS step, then

it had to be the first step in the RTC, in which case it had to have a

matching step on π between stepr
′

and stepr).

From lemma 5.12 we know that none of aβ1 , ...a
β
fβ+1, a

β
end are in ω′p′

l .

Since only TRANS steps on thread j can change the current state of

state machine SMA
l , then we can conclude that none of aβ1 , ...a

β
fβ+1, a

β
end

are in ω′p
l .

For every i ∈ {1, ..., q} we match transition ti with a transition tai ∈

TRAl . Assume s = src(ti).

1. If src(ti) ∈ ω′p
l and for every Aβ ∈ ABSl, a

β
strt 6⊳ s: For every

s′ ∈ ω′p
l s.t. s′⊳ s, and for every t′a ∈ TRAl s.t. src(t′a) = s′, since

s does not contain any abstracted state then s′ ∈ ωrl . Consider

the transition t′ ∈ TRl that matches t′a: trig(t
′) = trig(t′a) and

grd(t′) = grd(t′a). Since enabled(ti, C
r) = true and src(t′) ⊳

src(ti) then enabled(t′, Cr) = false. Thus either trig(t′) 6= ρrl
or grd(t′)(λrl) = false. Since ρ′pl = ρrl then trig(t′a) 6= ρ′pl as

well. Since λr � λ′p then grd(t′a)(λ
′p) ∈ {false,⊥}. Therefore,

we conclude that enabled(t′a, C
′p) ∈ {false,⊥}.

By definition of the abstraction, there exists tai ∈ TRAl that

matches ti. Thus, src(tai) = s, trig(tai) = trig(ti) and grd(t
a
i) =

grd(ti). For similar reasons, since trig(ti) = ρrl and grd(ti) =

true then trig(tai) = ρ′pl and grd(tai) ∈ {⊥, true}.

Therefore, since enabled(ti, C
r) = true then enabled(tai , C

′p) ∈

{⊥, true}.

Since trig(ti) 6= ǫ, then act(ti) = skip. By definition of the

abstraction act(tai) = skip as well. Therefore, since λr � λ′p then

act(ti)(λ
r, Cr) � act(tai)(λ

′p, C ′p)

2. If s ∈ ω′p
l and for some Aβ ∈ ABSl, a

β
strt⊳ s: By definition of the

abstraction, there exists a transition tai ∈ TRAl that matches ti.

59

Thus, src(tai) = src(ti), trig(t
a
i) = trig(ti) and grd(t

a
i) = grd(ti).

For every transition t′ai ∈ TRAl s.t. src(t′ai) = s′ ∈ ω′p
l and s′ ⊳ s:

(a) If s′ = aβstrt then by definition of the abstraction structure

grd(t′ai) = ⊥ or grd(t′ai) = grd&⊥. Therefore enabled(t′ai , C
′p) =

⊥.

(b) If s′ 6= aβstrt then by definition of the simulation, s′ ∈ ωrl , and

by the definition of the abstraction there exists t′i ∈ TRl that

matches t′ai . Thus, src(t
′
i) = src(t′ai), trig(t

′
i) = trig(t′ai) and

grd(t′i) = grd(t′ai). Since enabled(t′i, C
r) = false (otherwise

ti is not enabled), and since Cr � C ′p then enabled(t′ai , C
p) ∈

{false,⊥} as well.

From the above we conclude that enabled(tai , C
′p) ∈ {⊥, true}.

Since trig(ti) 6= ǫ, then act(ti) = skip. By definition of the

abstraction modif(tai)∩V = φ (since tai may only modify cg vari-

ables). Therefore, if λ � λ′ then act(ti)(λ,C
r) � act(tai)(λ

′, C ′p)

3. If s 6∈ ω′p
l : Notice that if s 6∈ ω′p

l , and since crl � c′pl , then s 6∈ SAl .

This means that the transition ti taken is from an abstracted

state s.

(a) If for some Aβ ∈ ABSl, s ∈ Sl(A
β) and trgt(ti) ∈ SAl : This

means that the transition taken is from an abstracted state

s ∈ Sl(A
β) and the target is not an abstracted state.

Since enabled(ti, C
r) = true and ρrl 6= ǫ, then trig(ti) 6= ǫ.

By definition of the abstraction there exists a matching tran-

sition tai ∈ TRAl . Thus, src(tai) = aβstrt, trig(t
a
i) = trig(ti),

grd(tai) = grd(ti)&⊥, and trgt(tai) = trgt(ti). Since Cr �

C ′p, then if enabled(ti, C
r) = true then enabled(tai , C

′p) = ⊥.

Since trig(ti) 6= ǫ, then act(ti) = skip. By definition of the

abstraction modif(tai) = {cgβl }. Therefore, if λ � λ′ then

act(ti)(λ,C
r) � act(tai)(λ

′, C ′p)

(b) If there exist Aβ,Aγ ∈ ABSl (β 6= γ) where s ∈ Sl(A
β) and

trgt(ti) ∈ Sl(A
γ): This means that the transition taken is

from an abstracted state s ∈ Sl(A
β) and the target is an

abstracted state s′ ∈ Sl(A
γ).

Since enabled(ti, C
r) = true and ρrl 6= ǫ, then trig(ti) 6=

ǫ. By definition of the abstraction there exists a transition

60

tai ∈ TRAl s.t. src(tai) = aβstrt, trig(t
a
i) = trig(ti), grd(t

a
i) =

grd(ti)&⊥, and trgt(tai) = aγstrt. Since Cr � C ′p, then if

enabled(ti, C
r) = true then enabled(tai , C

′p) = ⊥.

Since trig(ti) 6= ǫ, then act(ti) = skip. By definition of the

abstraction modif(tai) = {cgβl , cg
γ
l }. Therefore, if λ � λ′

then act(ti)(λ,C
r) � act(tai)(λ

′, C ′p)

(c) Otherwise (for some Aβ ∈ ABSl s, trgt(ti) ∈ Sl(A
β)): This

means that the the transition ti taken is a transition within

the abstraction of Aβ. Since enabled(ti, C
r) = true and

ρrl 6= ǫ, then trig(ti) 6= ǫ. By definition of the abstrac-

tion, this means that ρrl ∈ Trig(Aβ). By the definition of

the abstraction, modif(ti) ⊆ V (Aβ). Consider transition

τβ1 ∈ ∆(Aβ). It holds that enabled(τβ1 , C
′p) = ⊥. We define

tai = τβ1 .

Since trig(ti) 6= ǫ, then act(ti) = skip. By definition of the

abstraction, for every v ∈ V (Aβ), act(tβ1)(λ
′, C ′p)(v) = ⊥.

Therefore, we can conclude that if λ � λ′ then act(ti)(λ,C
r) �

act(tia)(λ
′, C ′p).

Note that there can be several transitions from (t1, ..., ty) that are

abstracted by a single τβ1 . A single occurrence of τβ1 replaces all of

these transitions.

We define step′p = TRANS(j, (ta1, ..., t
a
y′)): If there are several transi-

tions ti1 , ..., tid executed in the current TRANS step for which taij = τβ1

(for a specific Aβ ∈ ABSl), then τβ1 replaces the first occurrence of

abstracted transition in (t1,, tq). Since the first execution of τβ1 sets

all variables in V (Aβ) to ⊥, then the effect of executing only the first

occurrence of τβ1 λp is the same as executing several occurrences of τβ1 .

Since for every t ∈ {t1, ..., tq}, trig(t
′) 6= ǫ then act(t) = skip, then

this step does not change the event queues. We can conclude that

Cr+1 � C ′p+1.

• stepr = TRANS(j, (t)).

Assume idrj = id′pj = l, and src(t) = s. By definition of the semantics,

ρrl = ρ′pl = ǫ. We want to show that if enabled(t, Cr), then there exists

t′ ∈ TR′
l s.t. enabled(t

′, C ′p). We then define step′p = TRANS(j, (t′))

61

and show that Cr+1 � C ′p+1. We separate the proof to the different

cases described below.

1. For every Aβ ∈ ABSl, ∆(Aβ) ∩ ω′p
l = φ

Otherwise (for some Aβ ∈ ABSl, ∆(Aβ) ∩ ω′p
l 6= φ), and:

2. s ∈ ω′p
l and for every Aβ ∈ ABSl, a

β
strt 6⊳ s)

3. s ∈ ω′p
l , for some Aβ ∈ ABSl, and for some i ∈ {1, ..., fβ + 1}:

aβi ∈ ω′p
l , and a

β
i ⊳ s

4. s ∈ ω′p
l , and for some Aβ ∈ ABSl, a

β
end ∈ ω′p

l and aβend ⊳ s

5. s ∈ ω′p
l , for every Aβ ∈ ABSl, if ∆(Aβ) ∩ ω′p

l 6= φ and aβstrt ⊳ s

then aβstrt ∈ ω′p
l (possibly more than one such β)

6. s 6∈ ω′p
l , for some Aβ ∈ ABSl, s ∈ Sl(A

β), for some i ∈ {1, ..., fβ+

1}, aβi ∈ ω′p
l , and trgt(t) 6∈ Sl(A

β)

7. s 6∈ ω′p
l , for some Aβ ∈ ABSl, s ∈ Sl(A

β), aβend ∈ ω′p
l , and

trgt(t) 6∈ Sl(A
β)

8. s 6∈ ω′p
l , for some Aβ ∈ ABSl, s ∈ Sl(A

β), aβstrt ∈ ω′p
l , and

trgt(t) 6∈ Sl(A
β)

9. s 6∈ ω′p
l , for some Aβ ∈ ABSl, s ∈ Sl(A

β), aβstrt ∈ ω′p
l , and

trgt(t) ∈ Sl(A
β)

10. s 6∈ ω′p
l , for some Aβ ∈ ABSl, s ∈ Sl(A

β), for some i ∈ {1, ..., fβ}:

aβi ∈ ω′p
l , and trgt(t) ∈ Sl(A

β)

11. s 6∈ ω′p
l , for some Aβ ∈ ABSl, s ∈ Sl(A

β), aβfβ+1 ∈ ω′p
l , and

trgt(t) ∈ Sl(A
β)

12. s 6∈ ω′p
l , for some Aβ ∈ ABSl, s ∈ Sl(A

β), aβend ∈ ω′p
l , and

trgt(t) ∈ Sl(A
β)

1. For every Aβ ∈ ABSl, ∆(Aβ) ∩ ω′p
l = φ: This means that the

current state of SMA
l does not include any abstraction.

Since crl � c′pl then ω′p
l = ωrl . enabled(t, C

r) = true, therefore for

every s′ ∈ ωrl s.t. s′ ⊳ s, and for every t′ ∈ TRl s.t. src(t
′) = s′,

either trig(t′) 6= ρrl or grd(t
′)(λ) = false.

For every s′ ∈ ω′p
l where s′⊳s, it holds that s′ ∈ ωrl as well (since

ω′p
l = ωrl). By definition of the abstraction, for every t′a ∈ TRAl

62

s.t. src(t′a) = s′ there exists a matching t′ ∈ TRl where src(t
′) =

s′. Also, by definition of the abstraction trig(t′a) = trig(t′) and

grd(t′a) = grd(t′). Since ρrl = ρ′pl and λr � λ′p, then either

trig(t′a) 6= ρ′pl or grd(t′a)(λ
′p) ∈ {false,⊥}.

By definition of the abstraction, there exists a matching ta ∈

TRAl s.t. src(ta) = s, trig(ta) = trig(t) and grd(ta) = grd(t).

For similar reasons, since trig(t) = ρrl and grd(t) = true then

trig(ta) = ρ′pl and grd(ta) ∈ {⊥, true}.

Therefore, since enabled(t, Cr) then also enabled(ta, C
′p).

Thus, stepp = TRANS(j, (ta)) is possible from C ′p.

By definition of the abstraction, act(ta) either equals to act(t),

or equals to act(t) with addition of manipulation of cg vari-

ables. Thus, by lemma 5.7, and since λr � λ′p, act(t)(λr, Cr) �

act(ta)(λ
′p, C ′p). We can then conclude that Cr+1 � C ′p+1.

For some Aβ ∈ ABSl, ∆(Aβ) ∩ ω′p
l 6= φ, and:

2. s ∈ ω′p
l and for every Aβ ∈ ABSl, a

β
strt 6⊳ s): This means that the

current state of SMA
l includes the abstraction, and the transition

taken is from a state s which is in an orthogonal region to each of

the abstractions. For the same reasoning as in the previous item,

there exists ta ∈ TRAl s.t. src(ta) = s and enabled(ta, C
′p) ∈

{⊥, true}.

By definition of the abstraction, act(ta) either equals to act(t),

or equals to act(t) with addition of manipulation of cg vari-

ables. Thus, by lemma 5.7, and since λr � λ′p, act(t)(λr, Cr) �

act(ta)(λ
′p, C ′p). We can then conclude that Cr+1 � C ′p+1.

3. For some Aβ ∈ ABSl, and for some i ∈ {1, ..., fβ + 1}: aβi ∈ ω′p
l ,

s ∈ ω′p
l and aβi ⊳ s: This means that the current state of SMA

l

includes the abstraction, and the transition taken is from a state

s which includes the abstraction (possibly more than one abstrac-

tion). By definition of the abstraction, there exists a transition

ta ∈ TRAl s.t. src(ta) = aβi , trig(ta) = ǫ, grd(ta) = true, and

trgt(ta) = aβend. This means that enabled(ta, C
′p).

We define step′p = TRANS(j, (ta)) and clearly Cr � C ′p+1.

Note that we match C ′p+1 to Cr and not to Cr+1. We prove

63

stuttering simulation, and this step of π′ is part of the matching

interval, continuing in the handling of aβend.

4. For some Aβ ∈ ABSl, a
β
end ∈ ω′p

l , s ∈ ω′p
l and aβend ⊳ s: This

means that the current state of SMA
l includes the abstraction,

and the transition taken is from a state s which includes the

abstraction. By definition of the abstraction, there exists a tran-

sition ta ∈ TRAl s.t. src(ta) = aβend, trig(ta) = ǫ, grd(ta) = true,

and trgt(ta) = aβstrt. This means that enabled(ta, C
′p).

We define step′p = TRANS(j, (ta)) and clearly Cr � C ′p+1.

Note that we match C ′p+1 to Cr and not to Cr+1. We prove

stuttering simulation, and this step of π′ is part of the matching

interval, continuing in the handling of aβstrt.

5. s ∈ ω′p
l , for every Aβ ∈ ABSl, if ∆(Aβ) ∩ ω′p

l 6= φ and aβstrt ⊳ s

then aβstrt ∈ ω′p
l (there can possibly be more than one such β):

This means that the current state of SMA
l includes the abstrac-

tion, and the transition taken is from a state s which includes

the abstraction. By definition of the abstraction, there exists

a transition ta ∈ TRAl s.t. src(ta) = s, trig(ta) = trig(t) and

grd(ta) = grd(t).

For every transition t′a ∈ TRAl s.t. src(t′a) = s′ ∈ ω′p
l and s′ ⊳ s:

(a) If s′ = aβstrt then by definition of the abstraction structure,

grd(t′a) = ⊥ or grd(t′a) = grd&⊥. Therefore enabled(t′a, C
′p) =

⊥.

(b) If s′ 6= aβstrt then s′ ∈ ωrl . By definition of the abstraction

there exists t′ ∈ TRl s.t. src(t
′) = s′, trig(t′) = trig(t′a) and

grd(t′) = grd(t′a). Since enabled(t
′, Cr) = false (otherwise t

is not enabled), and since Cr � C ′p then enabled(t′a, C
p) ∈

{false,⊥} as well.

From the above we conclude that enabled(ta, C
′p) ∈ {⊥, true}.

We define step′p = TRANS(j, (ta)) and Cr+1 � C ′p+1 (reason-

ing regarding the correctness w.r.t. the value of the variables is

similar to the previous case).

6. s 6∈ ω′p
l , for some Aβ ∈ ABSl, s ∈ Sl(A

β), for some i ∈ {1, ..., fβ+

1}, aβi ∈ ω′p
l , and trgt(t) 6∈ Sl(A

β): Notice that if s 6∈ ω′p
l , and

since crl � c′tl , then s 6∈ SAl , and thus for some Aβ ∈ ABSl,

64

s ∈ Sl(A
β). This means that the current state of SMA

l includes

the abstraction, the transition taken is from a state s which is

abstracted by ∆(Aβ), and the target is not a state abstracted by

∆(Aβ). By definition of the abstraction, there exists a transition

ta ∈ TRAl s.t. src(ta) = aβi , trig(ta) = ǫ, grd(ta) = true, and

trgt(ta) = aβend. This means that enabled(ta, C
′t).

We define step′t = TRANS(j, (ta)) and clearly Cr � C ′p+1.

Note that we match C ′p+1 to Cr and not to Cr+1. We prove

stuttering simulation, and this step of π′ is part of the matching

interval, continuing in the handling of aβend.

7. s 6∈ ω′p
l , for some Aβ ∈ ABSl, s ∈ Sl(A

β), aβend ∈ ω′p
l , and

trgt(t) 6∈ Sl(A
β): Notice that if s 6∈ ω′p

l , and since crl � c′pl , then

s 6∈ SAl , and thus for some Aβ ∈ ABSl, s ∈ Sl(A
β). This means

that the current state of SMA
l includes the abstraction, the tran-

sition taken is from a state s which is abstracted by ∆(Aβ), and

the target is not a state abstracted by ∆(Aβ).

By definition of the abstraction, there exists a transition ta ∈

TRAl s.t. src(ta) = aβend, trig(ta) = ǫ, grd(ta) = true, and

trgt(ta) = aβstrt. This means that enabled(ta, C
′p).

We define step′p = TRANS(j, (ta)) and clearly Cr � C ′p+1.

Note that we match C ′p+1 to Cr and not to Cr+1. We prove

stuttering simulation, and this step of π′ is part of the matching

interval, continuing in the handling of aβstrt.

8. s 6∈ ω′p
l , for some Aβ ∈ ABSl, s ∈ Sl(A

β), aβstrt ∈ ω′p
l , and

trgt(t) 6∈ Sl(A
β): Notice that if s 6∈ ω′p

l , and since crl � c′pl ,

then s 6∈ SAl , and thus for some Aβ ∈ ABSl, s ∈ Sl(A
β). This

means that the current state of SMA
l includes the abstraction, the

transition taken is from a state s which is abstracted by ∆(Aβ),

and the target is not a state abstracted by ∆(Aβ).

By definition of the abstraction there exists a matching transition

ta ∈ TRAl s.t. src(ta) = aβstrt, trig(ta) = trig(t), grd(ta) =

grd(t)&⊥. Since Cr � C ′p, then if enabled(t, Cr) = true then

enabled(ta, C
′p) = ⊥. We define stepp = TRANS(j, (ta)).

By definition of the abstraction, act(ta) equals to act(t) with ad-

dition of manipulation of cg variables. Thus, based on lemma 5.7,

and since λr � λ′p, act(t)(λr, Cr) � act(ta)(λ
′p, C ′p).

65

By definition of the abstraction either trgt(ta) = trgt(t) (if trgt(t) ∈

SAl) or trgt(ta) = aγstrt for Aγ ∈ ABSl and γ 6= β (if trgt(t) ∈

Sl(A
γ)).

We conclude that Cr+1 � C ′p+1.

The following lemma is a result of the above items. The lemma states

that if a transition t was taken in Γ during some computation π,

and that transition is not abstracted by a single abstraction construct

∆(Aβ), then the matching transition ta is also taken in the matching

interval in the matching computation π′ of ΓA.

Lemma 5.13 Let Cr ∈ π be a configuration s.t. stepr = TRANS(j, (t1, ..., tq))

(possibly q = 1) and idrj = l. For every transition t ∈ {t1, ..., tq} s.t.

there is no Aβ ∈ ABSl for which src(t), trgt(t) ∈ Sl(A
β):

Assume Cr � C ′p and Cr+1 � C ′p+1. Then step′p = TRANS(j, (ta1 , ..., t
a
q′))

and there exists ta ∈ {ta1, ..., t
a
q′} s.t. ta is the matching transition of t.

Thus the following properties hold:

– If src(t) ∈ SAl then src(ta) = src(t). Otherwise (src(t) ∈ Sl(A
β)

for some β) then src(ta) = aβstrt.

– If trgt(t) ∈ SAl then trgt(ta) = trgt(t). Otherwise (trgt(t) ∈

Sl(A
β) for some β) then trgt(ta) = aβstrt.

– trig(ta) = trig(t)

– either grd(ta) = grd(t) or grd(ta) = grd(t)&⊥

– act(ta) includes act(t) with possible additional manipulation of cg

variables.

We will further need the following definition: Given some active state

s in a state machine SMl, we define the previous step in a computation

which caused reaching to state s.

Definition 5.14 Assume some computation π = C0, step0, C1, step1, ...

over a system Γ, a configuration Cr ∈ π, and a state s ∈ ωrl . We de-

fine the previous configuration leading to s as prev(π, r, l, s) = Cr
′

where r′ < r if the following hold:

66

1. For every r′ < r′′ < r: s ∈ ωr
′′

l

2. stepr
′

= TRANS(j, (t1, ..., tq)) where idr
′

j = l, and there exists

i ∈ {1, ..., q} s.t. s ≤ trgt(ti)

3. For every r′ < r′′ < r: if stepr
′′

= TRANS(j, (t1, ..., tq)) and

idr
′′

j = l, then for every i ∈ {1, ..., q}: s 6≤ src(ti)

If no such Cr
′

exists then prev(π, r, l, s) = ǫ

Notice that when prev(π, r, l, s) = Cr
′

is not ǫ, then we assure that ev-

ery transition of state machine SMl that was executed between stepr
′

and stepr was either in an orthogonal region to s or in a state inside

s. The execution of stepr
′

caused the current state of SMl to move to

state s, since the target of one of the transitions executed in stepr
′

is

either s or a state containing s.

9. s 6∈ ω′p
l , for some Aβ ∈ ABSl, s ∈ Sl(A

β), aβstrt ∈ ω′p
l , and

trgt(t) ∈ Sl(A
β): Notice that if s 6∈ ω′p

l , and since crl � c′pl , then

s 6∈ SAl , and thus for some Aβ ∈ ABSl, s ∈ Sl(A
β). This means

that the current state of SMA
l includes the abstraction, the tran-

sition taken is from a state s which is abstracted by ∆(Aβ), and

the target is a state abstracted by ∆(Aβ) as well. By definition

of the current TRANS step, ρrl = ǫ.

The definition of the matching interval for this step includes a

small induction proof which states the following: For every con-

figuration Cr ∈ π s.t. stepr = TRANS(j, (t1, ..., tq)), and a

matching abstract configuration C ′p s.t. Cr � C ′p: If for some

t ∈ {t1, ..., tq} and for some β ∈ {1, ..., g}, aβstrt ∈ ω′p
l , and

src(t), trgt(t) ∈ Sl(A
β), then step′p = TRANS(j, (ta1 , ..., t

a
q′)),

and there exists ta ∈ {ta1, ..., t
a
q′} s.t. Cr+1 � C ′p+1, src(ta) =

aβstrt, and trgt(t
a) = aβ1 .

For the case where q > 1 the property holds by the definition

of matching interval for TRANS step with multiple transitions.

The case where q = 1 is handled in this item.

This property can be added to the entire induction proof, but it

is relevant only in this item, where we define the interval match-

ing such a step. In the following we define the matching interval

67

for stepr, and show that the matching interval terminates at ab-

stracted state aβ1 .

Assume we can determine that λ′p(cgβl) 6= 0. We can then define

the matching interval as follows. It holds that enabled(τβ2 , C
′p) =

⊥. We define step′p = TRANS(j, τβ2), and differentiate according

to act(t):

(a) If GEN(..) 6∈ act(t) then clearly Cr+1 � C ′p+1.

(b) If GEN(ev′) ∈ act(t) then Cr � C ′p+1. We define stutter-

ing inclusion, and this step is part of the matching interval,

continuing in the handling of aβi .

The correctness of Cr+1 � C ′p+1 or Cr � C ′p+1 w.r.t. the value of

variables holds since by definition of the abstraction, all variables

whose value might modify on act(t) are set to ⊥ on act(τβ2).

For any other variable, since Cr � C ′p then the correct relation

remains after stepr and step′p.

It now remains to be shown that indeed λ′p(cgβl) 6= 0. We mark

the the step representing the beginning of the current RTC step

on thread j as stepr
′

= DISP (j, ev). We denote the matching

DISP step on π′ as step′p
′

= DISP (j, ev). Consider prev(π, r, l, s).

If prev(π, r, l, s) = ǫ then for every α ∈ {0, ..., r}, s ∈ ωαl . Thus

s ∈ initl. By our requirement from abstraction sets, and since

trig(t) = ǫ, we know that grd(t) 6= true. Since enabled(t, Cr),

we know that grd(t)(λr) = true. We denote by r′′ s.t. r′′ < r the

maximal index for which grd(t)(λr
′′

) = false and grd(t)(λr
′′+1) =

true.

– If r′′ = 0: this means that grd(t)(λα) = true for every α ∈

{0, ..., r}. Assume there exists t′ ∈ ∆(Aβ) that was executed

in some step r′′′ prior to the current step. By the property

resented at the beginning of this item, this step did not occur

in the current RTC step (otherwise, the interval matching

that execution should traverse from aβstrt to aβ1). Consider

the EndRTC step on thread j that followed stepr
′′′

, denoted

stepr
∗

= EndRTC(j, ǫ). Since a transition executed on that

RTC step, then ρr
∗

l = ǫ. Also, grd(t)(λr
∗

) = true. Since

s ∈ ωr
∗

l , then clearly enabled(t, Cr
∗

). This is in contradiction

68

to the fact that an EndRTC step occurred. We can then

conclude that no transition t′ ∈ ∆(Aβ) has been executed

prior to the current step.

The above means that for every α′ ∈ {0, ..., p}, aβstrt ∈ ω′α′

l .

Since grd(t)(λ0) = true, trig(t) = ǫ and s ∈ c0l , then λ
′0(cgβl) =

1 (by the base definition). The only transition that can

change the value of cgβl to 0 is a transition from aβstrt to

aβ1 , and we know such transition was not taken. Thus we can

conclude that λ′p(cgβl) 6= 0.

– If r′′ > 0. Assume stepr
′′

is executed on state machine SMl′

(possibly l′ = l). We first notice if grd(t)(λr
′′

) = false and

grd(t)(λr
′′+1) = true, then stepr

′′

= TRANS(j′, (t′1, ..., t
′
y))

and for some t′ ∈ {t′1, ..., t
′
h}, v ∈ modif(t′). Assume idr

′′

j′ = l′

(SMl′ executes stepr
′′

). By the definition of abstraction of

systems, this means that thread(l′) = thread(l), thus j′ =

j. We separate between two cases, based on the relation

between r′′ and r′:

(a) If r′′ < r′: We show that for every α ∈ {r′′, ..., r′}, SMl

did not execute any transition in stepα. Assume, by con-

tradiction, that such a transition did execute. Consider

the EndRTC step on thread j that followed stepα (de-

noted stepr
′′′

). Since a TRANS step occurred in this

RTC step, then ρr
′′′

l = ǫ. We also know that grd(t)(λr
′′′

) =

true. Since s ∈ ωr
′′′

l , then clearly enabled(t, Cr
∗

). This

is in contradiction to the fact that an EndRTC step oc-

curred in stepr
′′′

. We can then conclude that l′ 6= l. Since

SMl and SMl′ are on the same thread, then they cannot

both execute a RTC step simultaneously.

Denote the beginning of the RTC step that ended on

stepr
′′′

with stepr
∗

= DISP (j, e). Denote the step on π′

that matches stepr
∗

as step′p
∗

= DISP (j, e). From the

above, we can conclude that for every α′ ∈ {p∗, ..., p′},

aβstrt ∈ ω′α′

l . Moreover, from the property presented in

the beginning of the item we can conclude that for every

α′ ∈ {p∗, ..., p}, aβstrt ∈ ω′α′

l .

Since for some v ∈ GRDV (Aβ), v ∈ modif(t′), then we

69

know that for some β ∈ {p∗, ..., p′}, cgβl was set to 1 on

step′β (If t′ has a matching transition t′a, then during the

execution of t′a (by lemma 5.13). If t′ is abstracted by

∆(Aγ), then during execution of transition from aγstrt to

aγ1 that occurred due to the property in the beginning of

this item).

The only transition that can set cgβl to 0 is a transition

from aβstrt to aβ1 . Since we know that for every α′ ∈

{p∗, ..., p}, aβstrt ∈ ω
′α′

l , then no such transition executed.

We can then conclude that λp(cgβl) 6= 0.

(b) If r′′ > r′: This means that l′ = l (no other SM on thread

j can execute between stepr
′

and stepr). We know that

aβstrt ∈ ω′p
l . By lemma 5.16 and by the property from

the beginning of this item we can conclude that for every

α′ ∈ {p′, ..., p}, aβstrt ∈ ω
′α′

l .

Since for some v ∈ GRDV (Aβ), v ∈ modif(t′), then we

know that for some ξ ∈ {p′, ..., p}, cgβl was set to 1 on

step′ξ (If t′ has a matching transition t′a, then during the

execution of t′a (by lemma 5.13). If t′ is abstracted by

∆(Aγ), then during execution of transition from aγstrt to

aγ1 that occurred due to the property in the beginning of

this item).

The only transition that can set cgβl to 0 is a transition

from aβstrt to aβ1 . Since we know that for every α′ ∈

{p∗, ..., p}, aβstrt ∈ ω
′α′

l , then no such transition executed.

We can then conclude that λp(cgβl) 6= 0.

If prev(π, r, l, s) = Cr
′′

6= ǫ. By definition of prev, stepr
′′

=

TRANS(j, (t1, ..., tq)) s.t. for some t′ ∈ {t1, ..., tq}, s⊳ trgt(t′).

We separate between two cases, and show that under both cases

λ′p(cgβ) 6= 0:

(a) r′′ > r′: This means that the execution of the transition

leading to s occurred after the beginning of the RTC step.

We first show that it is not possible that t′ ∈ ∆(Aβ). Assume

it is (i.e., both src(t′) and trgt(t′) are in Sl(A
β)). Consider

the first transition in ∆(Aβ) that was executed in the current

RTC step. By the property presented in the beginning of this

70

item, that transition caused a traversal from akstrt to a
k
1 . By

lemma 5.16 and since aβstrt ∈ ω′p
l we can conclude that no

such abstracted transition was executed.

If trgt(t′) 6∈ S(A
β) (i.e., trgt(t′) contains s and is not ab-

stracted): By definition of the abstraction, t′ has a matching

transition t′a ∈ TRAl , and by lemma 5.13, t′a was executed

at step′p
′′

that matches stepr
′′

. Since we have no history

and s ∈ ωr
′′+1
l , then aβstrt ∈ ω′p′′+1

l . By lemma 5.16 we can

conclude that for every α′ ∈ {p′′, ..., p}, aβstrt ∈ ω′α′

l . Since

only transitions exiting aβstrt can set cgβl to 0, then we can

conclude that λp(cgβl) 6= 0.

If trgt(t′) ∈ Sl(A
β) then src(t′) 6∈ Sl(A

β). Since t′ is not an

abstracted transition, then there exists a matching transition

t′a ∈ TRAl . By lemma 5.13, there exists step′p
′′

that matches

stepr
′′

and t′a is executed on step′p
′′

. By definition of the

abstraction, cgβl = 1 ∈ act(t′a). Since src(t′) 6∈ S(A
β) then

src(t′a) 6∈ ∆(Aβ). Since there are no cross hierarchy transi-

tions, then aβstrt 6∈ ω′p′′

l . The only transitions that can set cgβl
to 0 are transitions exiting aβstrt. We can then conclude that

λ′p
′′+1(cgβl) 6= 0.

We now show that if λ′p
′′+1(cgβl) 6= 0 then λ′p(cgβl) 6= 0 as

well. The only transitions that can set cgβl to 0 are transitions

from aβstrt to a
β
1 . We know that aβstrt ∈ ω′p′′+1

l and aβstrt ∈ ω′p
l .

If we show that for every α′ ∈ {p′′+1, ..., p}, aβstrt ∈ ω′α′

l then

clearly no such transition is taken and λ′p(cgβl) 6= 0. Assume

this is not the case, and that for some α′ ∈ {p′′+1, ..., p−1},

aβstrt 6∈ ω′α′

l . By the definition of the abstraction, in order

to return to aβstrt the transition from aβend to aβstrt had to

be executed at some stepξ s.t. α′ < ξ < p. However, by

lemma 5.16, the interval that includes step′ξ either leaves the

abstraction or is part of an EndRTC step. It is not possible

that step′ξ is part of an EndRTC step, since by lemma 5.9

there had to be a matching EndRTC step in π, and we know

that the last EndRTC step on thread j occurred at stepr
′

,

which is prior to stepr
′′

that matches stepp
′′

. Also, we know

that prev(π, r, l, s) = Cr
′′

, thus for every r′′ < r∗ ≤ r, s ∈

71

ωr
∗

l . Therefore, since we assume stuttering simulation on the

prefix of the computations, then abstraction ∆(Aβ) must be

part of the configuration for every ω′p∗

l , for p′′ + 1 < p∗ ≤ p

and it is not possible that step′ξ leaves the abstraction. Thus,

for every p′′ + 1 ≤ α′ ≤ p, aβstrt ∈ ω′α′

l .

We conclude that λ′p(cgβl) 6= 0.

(b) r′ > r′′: This means that the execution of the transition

leading to s occurred before the beginning of the RTC step.

By definition of prev, this means that for every r′′ < r∗ ≤ r,

s ∈ ωr
∗

l . Since the transition execution (stepr
′′

) occurred

before the DISP step (stepr
′

), then by the semantics there

exists r′′ < r′′′ < r′ s.t. stepr
′′′

= EndRTC(j, ǫ) where

idr
′′′

j = l. Consider the last such EndRTC step on state

machine SMl (meaning: for every r′′′ < r∗ < r′, if stepr
∗

=

EndRTC(j, ǫ) then idr
∗

j 6= l). By the semantics of EndRTC

step and since s ∈ ωr
′′′

l , we know that enabled(t, Cr
′′′

) =

false. We also know that enabled(t, Cr) = true. This means

that there exists some variable v ∈ GRDV (Aβ) s.t. the value

of v was modified between steps r′′′ and r. Formally, there

exists r′′′ < r̃ < r s.t. stepr̃ = TRANS(j, (t1, ..., tq)), and for

some t̃ ∈ {t1, ..., tq}, v ∈ modif(t̃) and λr̃(v) 6= λr̃+1(v).

Consider the configuration that matches Cr
′′+1 on π′, de-

noted C ′p′′+1. By definition of prev, for every r∗ ∈ {r′′ +

1, ..., r}, s ∈ ωr
∗

l . Thus ∆(Aβ) ∩ ω′p∗ 6= φ for every p∗ ∈

{p′′ + 1, ..., p}. Assume step′p
′′′

= EndRTC(j, ǫ) matches

stepr
′′′

. Thus, aβstrt ∈ ω′p′′′

l (this is the only state in by ∆(Aβ)

without a null transition).

We want to show that for every p∗ ∈ {p′′′, ..., p}: aβstrt ∈ ω′p∗

l .

Assume this is not the case. Since for every p∗ ∈ {p′′′, ..., p},

∆(Aβ) ∩ ω′p∗ 6= φ, and aβstrt ∈ ω′p′′′

l , then this means that a

transition from aβstrt to a
β
1 was executed at some step′p

∗

, for

p′′′ < p∗ ≤ p. Since aβstrt ∈ ω′p
l then the transition from aβend

to aβstrt had to be executed on some step′p
∗∗

for p∗ < p∗∗ ≤ p.

By lemma 5.16, this means that step′p
∗∗

is either part of an

EndRTC step or a step leaving the abstraction. It is not

part of an EndRTC step, since the last EndRTC step on

72

the current state machine is in step′p
′′′

(and p′′′ < p∗∗). It

is not possible that step′p
∗∗

leaves the abstraction, since we

know ∆(Aβ) is part of the configuration for all the steps until

step′p. We can then conclude that for every p∗ ∈ {p′′′, ..., p}:

aβstrt ∈ ω′p∗

l .

Recall that r′′′ < r̃ < r, stepr̃ = TRANS(j, (t1, ..., tq)) and

for some t̃ ∈ {t1, ..., tq}, v ∈ modif(t̃) and λr̃(v) 6= λr̃+1(v).

Consider the last such r̃ (meaning, for every r∗ ∈ {r̃+1, ..., r}:

λr
∗

(v) = λr̃+1(v)

We separate between two cases, whether or not t̃ is an ab-

stracted transition.

i. If (̃t) is not an abstracted transition. Assume (̃t) ∈ TRl′

(possibly l′ = l). Then by definition of the abstrac-

tion, there exists a matching transition (̃t)a ∈ TRAl′ .

By lemma 5.13 there exists a step′p̃ on π′ that matches

stepr̃ and (̃t)a is executed on step′p̃. By the definition

of the abstraction, cgβl is set to 1 on act((̃t)a. Thus,

λ′p̃+1(cgβl) 6= ǫ. The only transitions that can set cgβl to 0

are transitions exiting aβstrt. However, we know that such

transition was not taken, since for every p∗ ∈ {p′′′, ..., p}:

aβstrt ∈ ω′p∗

l , and p′′′ < p̃ < p. We can therefore conclude

that λ′p(cgβl) 6= 0.

ii. If t̃ is an abstracted transition. First of all, note that t̃′ 6∈

∆(Aβ). This holds as a result of the property presented

at the beginning of this item. Otherwise, by the prop-

erty, the matching interval should traverse from aβstrt to

aβ1 , which did not occur, since for every p∗ ∈ {p′′′, ..., p}:

aβstrt ∈ ω′p∗

l

Since we assume variables can be modified only by state

machines under the same thread, then we know that t̃ ∈

TRl′ s.t. thread(l
′) = j. Under a single thread j RTC

steps are executed one after the other. Assume that the

DISP step initiating the RTC step that includes stepr̃

is stepr̃
′′′

= DISP (j, ǫ) and idr̃
′′′

j = l′. Since r′′′ < r̃ < r,

then r′′′ < r̃′′′ < r̃.

Assume t̃ ∈ ∆(Aγ) (Aγ ∈ ABSl′), and consider the

73

first transition t̃′ executed in the RTC step initiated by

stepr̃
′′′

that is abstracted by ∆(Aγ). This means that

t̃′ ∈ TR(Aγ), and for some r̃′ ∈ {r̃′′′, ..., r̃}, stepr̃
′

=

TRANS(j, (t1, ..., tq)), and t̃
′ ∈ {t1, ..., tq}. Also, for ev-

ery r∗ ∈ {r̃′′′, ..., r̃′−1}, if stepr
∗

= TRANS(j, (t′1, ..., t
′
q))

then for every t ∈ {t′1, ..., t
′
q}, t 6∈ TR(A

γ).

Consider the step matching stepr̃
′

on π′, step′p̃
′

. Since t̃′

is the first executed transition in the RTC step that is

abstracted by Aγ then aγstrt ∈ ω′p̃′

l . Therefore aγ1 ∈ ω′p̃′+1
l

(this is a result of the property presented at the beginning

of this item, stating that if we execute an abstracted

transition and the matching abstract configuration is at

aβstrt, then the matching step executes a transition from

aβstrt to a
β
1).

Since v ∈ modif(t̃) and v ∈ GRDV (Aβ), then by the

definition of the abstraction, cgβl = 1 ∈ act(ta) for every

transition ta where src(ta) = aγstrt and trgt(t
a) = aγ1 . The

only transitions that can set cgβl to 0 are transitions from

aβstrt. We know that such transitions were not taken, since

for every p∗ ∈ {p′, ..., p}: aβstrt ∈ ω′p∗

l , and p′ < p̃ < p.

We can therefore conclude that λ′p(cgβl) 6= 0.

From the above we conclude that indeed λ′p(cgβl) 6= 0.

We formalize the property presented in the previous item in the

following lemma:

Lemma 5.15 For every configuration Cr ∈ π s.t. stepr = TRANS(j,

(t1, ..., tq)), and a matching abstract configuration C ′p s.t. Cr �

C ′p: If for some t ∈ {t1, ..., tq} and for some β ∈ {1, ..., g}, aβstrt ∈

ω′p
l , and src(t), trgt(t) ∈ S(Aβ), then step′p = TRANS(j, (ta1 , ..., t

a
q′)),

and there exists ta ∈ {ta1, ..., t
a
q′} s.t. Cr+1 � C ′p+1, src(ta) =

aβstrt, and trgt(t
a) = aβ1 .

10. s 6∈ ω′p
l , for some Aβ ∈ ABSl, s ∈ Sl(A

β), for some i ∈ {1, ..., fβ}:

aβi ∈ ω′p
l , and trgt(t) ∈ Sl(A

β): Notice that if s 6∈ ω′p
l , and

since crl � c′pl , then s 6∈ SAl , and thus for some Aβ ∈ ABSl,

s ∈ Sl(A
β). This means that the current state of SMA

l includes

the abstraction, the transition taken is from a state s which is

74

abstracted by ∆(Aβ), and the target is a state abstracted by

∆(Aβ) as well. By definition of the current TRANS step, ρrl = ǫ.

The difference between Cr and Cr+1 is in the value of variables

and/or in the value of some event queue (if GEN(e) ∈ act(t)).

We first consider the variables and show that λr+1 � λ′p:

For every variable v 6∈ modif(t), λr(v) = λr+1(v), and thus

clearly either λ′p(v) = ⊥ or λ′p(v) = λr+1(v).

For every variable v ∈ modif(t), we show that λ′p(v) = ⊥: Since

v ∈ modif(t) then by definition v ∈ V (Aβ). By the definition

of the abstract model, if aβi ∈ ω′p
l , then there exists C ′p′ ∈ π′

s.t. aβstrt ∈ ω′p′

l and step′p
′

= TRANS(j, (t′1, ..., t
′
q)) s.t. there

exists t′a ∈ {t′1, ..., t
′
q} where src(t′a) = aβstrt and trgt(t′a) = aβ1 .

This means that for every v ∈ V (Aβ), λ′p
′+1(v) = ⊥. Since

∆(Aβ) can be entered only through aβstrt, we can conclude that

step′p
′

occurred in the current RTC step (meaning, there is no

p′′ ∈ {p′, ..., p} s.t. step′p
′′

= EndRTC(j, ǫ)). We also know that

for every p′′ ∈ {p′, ..., p}, ω′p′′

l ∩∆(Aβ) 6= φ.

Since variables can be modified only by state machines on the

same thread, then if v is modified in some step p′′ where p′′ ∈

{p′, ..., p}, then step′p
′′

= TRANS(j, (t1, ..., tq)) and id′p
′′

j = l.

By the definition of the abstraction, if for some t′a ∈ {t1, ..., tq},

t′a modifies v ∈ V A then one of the following holds:

– t′a is an abstracted transition, in this case v = ⊥ ∈ act(t′a),

or

– t′a is not an abstracted transition, in this case consider t′ the

matching transition of t′a. By definition of the abstraction,

v = e ∈ act(t′) and “if (isIn(Aβ)) v = ⊥; else v = e;”∈

act(t′a). Since isIn(A
β) = true, then act(t′a)(λ

′p′′ , C ′p′′) = ⊥.

We can then conclude that λ′p(v) = ⊥.

We define the matching step based on act(t):

(a) If GEN(e) 6∈ act(t) (for some event e) - this means that

the difference between Cr and Cr+1 is only in the value of

variables. We do not define a matching step in π′, and clearly

Cr+1 � C ′p.

75

(b) If GEN(e) ∈ act(t) (for some event e) then by definition of

the abstraction e ∈ EV (Aβ). By definition of the abstrac-

tion there exists a transition ta ∈ TRAl s.t. src(ta) = aβi ,

trgt(ta) = aβi+1, trig(ta) = ǫ and grd(ta) = true. Since

ρ′pl = ǫ, then enabled(ta, C
′p) = true. We define step′p =

TRANS(j, ta). By definition of the abstraction it is possible

that the action on ta is GEN(e), therefore Cr+1 � C ′p+1.

11. s 6∈ ω′p
l , for some Aβ ∈ ABSl, s ∈ Sl(A

β), aβfβ+1 ∈ ω′p
l , and

trgt(t) ∈ Sl(A
β): Notice that if s 6∈ ω′p

l , and since crl � c′pl ,

then s 6∈ SAl , and thus for some Aβ ∈ ABSl, s ∈ Sl(A
β). This

means that the current state of SMA
l includes the abstraction, the

transition taken is from a state s which is abstracted by ∆(Aβ),

and the target is a state abstracted by ∆(Aβ) as well.

Every computation on ΓA can enter one of ∆(Aβ) states only by

entering aβstrt. Recall that there can be at most fβ events gener-

ated in a single RTC step within the states abstracted by ∆(Aβ)

in Γ. If we reach afβ+1 then by the definition of the abstraction,

fβ events were generated in the current RTC step within the

states abstracted by ∆(Aβ) in Γ. Therefore, GEN(e) 6∈ act(t).

For the same reasoning as in the previous item, we do not define

a matching step in π′, and Cr+1 � C ′p.

12. s 6∈ ω′p
l , for some Aβ ∈ ABSl, s ∈ Sl(A

β), aβend ∈ ω′p
l , and

trgt(t) ∈ Sl(A
β): Notice that if s 6∈ ω′p

l , and since crl � c′pl ,

then s 6∈ SAl , and thus for some Aβ ∈ ABSl, s ∈ Sl(A
β). This

means that the current state of SMA
l includes the abstraction, the

transition taken is from a state s which is abstracted by ∆(Aβ),

and the target is a state abstracted by ∆(Aβ) as well.

This situation is not possible. Every computation on ΓA can enter

the one of ∆(Aβ) states only by entering aβstrt. Recall that there

can be at most fβ events generated in a single RTC step within

the abstracted states in Γ. The simulation is defined s.t. an

execution of an abstracted transition t in Γ matches an execution

of a transition in ΓA only if GEN(e) ∈ act(t). If GEN(e) 6∈

act(t) then there is no execution of a matching transition in ΓA.

Therefore, it is not possible that t is an abstracted transition and

76

aβend ∈ ω′p
l .

The following lemma is based on the definition of the simulation

relation:

Lemma 5.16 The interval that includes a move from state aβi
for 1 ≤ i ≤ fβ + 1 to aβend matches a concrete transition that

either leaves the abstraction or an EndRTC step.

�

5.3 Using Abstraction

We now present the applicability of our abstraction framework through an

example. We consider a system Γ describing a travel agent (of class Agent)

that books flights and communicates with both airline databases (of class

DB) and clients. We assume Γ includes n different DB objects, where the

behavior of each DB is defined in Fig. 5.2. The single Agent object in Γ

communicates with clients (modeled as the environment) and with all of the

DBs. The Agent behavior is as follows: upon receiving a flight request from

a client, it requests a price offer from all DBs by sending event evGetPrc to

them. After getting an answer from the DBs (via evRetPrc), it chooses an

offer, reserves the flight from the relevant DB (via evAprvF lt) and rejects

the offers from the rest of the DB (via evDenyF lt).

Assume now we create an abstract system ΓA, where the DBs are ab-

stracted as in Fig. 5.3 (the Agent remains concrete). If Agent state machine

includes x states, then Γ has (12 ∗ n+ x) states, whereas ΓA has (4 ∗ n+ x)

states. Moreover, ΓA does not include the pieces of code in the actions of the

transitions of DBs, which may be complicated. E.g., the method calcPrc()

is not part of the abstract state machine of DB, and this method might

include complex computations.

Assume we want to verify the property describing that on all computa-

tions of Γ, if Agent orders a flight from some DB, then all the DBs returned

an answer to the Agent before the Agent chooses an offer. For this property

it is enough to consider only the interface of the DBs. The property is

not affected, for example, by the calculation of a price by the DBs. It is

an outcome only of the information that every DB can consume an event

evGetPrc, and can send an event evRetPrc. We can therefore verify the

77

property on ΓA. If the property holds, then we can conclude that Γ also

satisfies the property.

Consider another property: we want to verify that due to a single request

from the client, space decreases by at most 1. Clearly, when verifying the

property on ΓA, the result is ⊥, since ΓA abstracts the variable space. This

means that we cannot conclude whether or not the property holds on Γ

by model checking ΓA. However, it might be possible to refine ΓA, and

create a different abstraction Γ′A for which this property can be verified.

Following, in section 5.4 we present how to refine an abstract system when

the verification does not succeed.

5.4 Refinement

Once we have an abstract system ΓA, we model check our LTLx property

Aψ over the abstract system. Since variables in ΓA can have the value ⊥,

then (ΓA |= Aψ) ∈ {true, false,⊥}. If (ΓA |= Aψ) = true, then from

Theorem 5.11 the property holds on Γ as well. If (ΓA |= Aψ) ∈ {false,⊥}

then due to ΓA being an over-approximation we cannot determine whether

or not the property holds on Γ. Typical model checkers provide the user with

a counterexample in case verification does not succeed. A counterexample

πA on ΓA is either a finite computation or a lasso computation s.t. either

(πA |= ψ) = false or (πA |= ψ) = ⊥.

Next we present a CEGAR-like algorithm for refining ΓA based on πA.

The refinement step shows how to create a new abstract system Γ′A, where

one or more of the abstracted states of Γ are removed from the abstracted

states. Since the concrete system Γ is finite, the CEGAR algorithm ulti-

mately terminates and returns a correct result.

If (πA |= ψ) = ⊥ then we cannot determine the value of the property.

If (πA |= ψ) = false, then this counterexample might be spurious. In both

cases we search for a computation π on Γ s.t. π �s π
A. Given πA, we

inductively construct π w.r.t. πA. Note that if the concrete model enables

non-determinism, then there might be more than one matching concrete

counterexample. In this case, all the matching concrete counterexamples

are simultaneously constructed. Intuitively, the construction of π follows the

steps of πA, maintaining the stuttering inclusion. During the construction, if

for some prefix of πA: C ′0, step′0, ..., step′p−1, C ′p it is not possible to extend

78

any of the matching concrete computations based on step′p, then πA is a

spurious counterexample and we should refine the system. We present a

formal construction of π based on the counterexample πA in Section 5.4.1.

There are three cases where we cannot extend a concrete computation π =

C0, step0, ..., Cr (Cr � C ′p) based on step′p:

1. step′p is an EndRTC step on SM ′
l but there exists an enabled transi-

tion in TRl w.r.t. C
r.

2. step′p is a TRANS step on SM ′
l that executes a transition ta 6∈ ∆(Aβ)

(for some Aβ ∈ ABSl), and the concrete transition t that matches ta
is not enabled.

3. step′p is a TRANS step on SM ′
l that executes a transition ta ∈ ∆(Aβ)

(for some Aβ ∈ ABSl) that generates an event e, and there is no

enabled concrete transition t ∈ TR(Aβ) where GEN(e) ∈ act(t).

We call the configuration C ′p ∈ πA from which we cannot extend a

matching concrete computation a failure-configuration. Following, we dis-

tinguish between two reasons that can cause a failure-configuration, and

show how to refine the system in each case.

Case 1: step′p executes a transition that does not have a matching behavior

in Γ. For example, when step′p = TRANS(j, (ta)), id
′p
j = l, and the concrete

transition t ∈ TRl that matches ta is not enabled, since src(t) 6∈ ωrl . This is

possible only if src(t) ∈ Sl(A
β) and trgt(t) 6∈ Sl(A

β) (for some Aβ ∈ ABSl).

Another example for such failure is where ΓA generates an event e as part

of the action of ta, but e cannot be generated from Cr on any possible step.

This can happen only if ta ∈ Aβ (for some Aβ ∈ ABSl). In both cases we

refine by removing a state s ∈ Sl(A
β) such that s ∈ ωrl from the abstraction.

Case 2: There exists v ∈ V for which λ′p(v) = ⊥ and the value of λr(v)

causes the failure-configuration. For example, when step′p = TRANS(j, (ta))

and the concrete t that matches ta is not enabled w.r.t. Cr, since grd(t)(λr) =

false. Since Cr ⊳ C ′p and grd(ta) = grd(t), then clearly grd(ta)(λ
′p) = ⊥,

and for some v, λ′p = ⊥ and v affects the value of grd(ta). We refine ΓA to

obtain a concrete value of v:

We trace πA back to find the assignment that gave v the value ⊥. The only

place where a variable is initially assigned the value ⊥ is a transition from

aβstrt to a
β
1 in some Aβ (for some Aβ ∈ ABSl). Thus, the tracing back of

79

πA terminates as C ′p′ such that aβstrt ∈ ωαl . We find the matching system-

configuration Cr
′

in π s.t. Cr
′

⊳C ′p′, and refine the model by removing from

the abstraction a state s ∈ Sl(A
β) such that s ∈ ωr

′

l .

If we are able to construct π s.t. π⊳πA, then one of the following holds:

1. If (πA) |= ψ) = false then no need to check π. By construction,

π 6|= ψ, and we can conclude that Γ 6|= Aψ.

2. If (πA) |= ψ) = ⊥ then we check π w.r.t. ψ. If π 6|= ψ then again π is

a concrete counterexample and we conclude that Γ 6|= Aψ. Otherwise

(π |= ψ), the abstraction is too coarse and we need to refine. Notice

that in the latter case, since (πA |= ψ) = ⊥ then there exists v ∈ V

which affects the value of ψ, and v has the value ⊥. We then refine ΓA

in order to have a concrete value on v, as described above (Case 2).

Consider the example system presented in Section 5.3, and consider a

property that addresses the variable space. Recall that under the abstraction

presented for this example, such a property is evaluated to ⊥, since the

variable space is abstracted. During the refinement, state WaitForDB is

suggested for refinement, and is removed from the abstraction. We can then

create a refined system Γ′A, where DB objects are abstracted w.r.t. a new

abstraction collection ABS = {{Idle, PriceProcessor, UpdateDB}}. The

property can then be verified on Γ′A, and we can conclude that it holds on

the concrete system.

5.4.1 Constructing π From π
A

Following we present the inductive construction of π w.r.t. the given coun-

terexample πA:

Base: Given C ′0 = (c′01 , ..., c
′0
n , q

′0
1 , ..., q

′0
m, id

′0
1 , ..., id

′0
m, λ

′0), the initial con-

figuration of πA. We define the following initial configuration for π: C0 =

(c01, ..., c
0
n, q

0
1 , ..., q

0
m, id

0
1, ..., id

0
m, λ

0).

• For every i ∈ {1, ..., n}: ω0
i = {s|s ∈ initi ∧ ∀s′ : s⊳ s′ → s ∈ initi}

• For every i ∈ {1, ..., n}: ρ0i = ǫ.

• For every j ∈ {1, ...,m}: q0j = q′0j = φ

• For every j ∈ {1, ...,m}: id0j = id′0j = 0

80

• For every v ∈ V : λ0(v) = λ′0(v)

It is immediate to see that C ′0 is an initial configuration and also that

C0 � C ′0

Step: Assume that for the first p steps of πA: C ′0, step′0, C ′1, step′1, ..., C ′p−1,

step′p−1, C ′p there exists a partial computation π = C0, step0, C1, step1, ..., Cr

over Γ s.t. there are two sequences of integers 0 = i0 < i1 < i2 < ... < il =

r + 1 and 0 = i′0 < i′1 < i′2 < ... < i′l = p+ 1 and for every 0 ≤ k < l:

For every j ∈ {ik, ..., (ik+1 − 1)} and for every j′ ∈ {i′k, ..., (i
′
k+1) − 1}:

Cj � C ′j′

Note that the requirement on interval (l − 1) induces Cr � C ′p.

The matching extension of π is defined based on step′p:

• step′p = DISP (j, ev)

By definition, id′pj = 0, q′pj 6= φ and top(q′pj) = ev. Since Cr � C ′p,

then idri = id′pi and qri = q′pi for every i. Therefore, idrj = 0, qrj 6= φ

and top(qrj) = ev as well, and stepr = DISP (j, ev) is a possible step

from Cr.

By definition of DISP step, C ′p+1 differs from C ′p in the following:

q′p+1
j = pop(q′pj), id

′p+1
j = trgt(ev) and ρ′p+1

trgt(ev) = type(ev).

By definition of DISP step, Cr+1 differs from Cr in the following:

qr+1
j = pop(qrj), id

r+1
j = trgt(ev) and ρr+1

trgt(ev) = type(ev).

Since Cr � C ′p, it is clear that Cr+1 � C ′p+1 as well.

• step′p = ENV (j, ev).

Since the environment is always enabled, then an ENV step s.t. stepr =

ENV (j, ev) is possible from Cr, and clearly Cr+1 � C ′p+1.

• step′p = EndRTC(j, ǫ)

Assume idrj = id′pj = l > 0. If stable(crl , C
r) then we define stepr =

EndRTC(j, ǫ) and clearly Cr+1 � C ′p+1. Otherwise, stable(crl , C
r) =

false, in which case we might need to refine.

If stable(crl , C
r) = false then there exists s ∈ ωrl and tc ∈ TRl where

src(tc) = s s.t. trig(tc) = ρrl and grd(tc)(λ
r) = true. Assume SMA

l is

an abstraction of SMl w.r.t. ABSl = {A1, ...,Ag}.

1. If for every β ∈ {1, ..., g}, s 6∈ Sl(A
β) then by definition of SMA

l ,

s ∈ SAl and there exists a matching transition ta ∈ TRAl s.t.

81

src(ta) = s, trig(tc) = trig(ta) and grd(tc) = grd(ta). By def-

inition of the simulation, s ∈ ωrl . Since trig(tc) = trig(ta) and

stable(c′pl , C
′p) ∈ {⊥, true} then this means that grd(ta)(λ

′p) ∈

{false,⊥}. However, we know that for every v ∈ V , either

λ′p(v) = ⊥ or λ′p(v) = λr(v). Since grd(tc) = grd(ta) ,then it

is not possible that grd(tc)(λ
r) = true and grd(ta)(λ

′p) = false.

We conclude that grd(ta)(λ
′p) = ⊥. We choose some variable

v ∈ V s.t. λ′p(v) = ⊥ and v effects the evaluation of grd(ta)

and refine ΓA w.r.t. v. We present how to refine ΓA w.r.t. some

variable v (as described above, in Case 2).

2. If for some β ∈ {1, ..., g}, s ∈ Sl(A
β) (s is an abstracted state).

Since cr � c′p then ∆(Aβ)∩ω′p
l 6= φ. We conclude that aβstrt ∈ ω′p

l

(this is the only state in ∆(Aβ) without a null transition). We

separate between different cases.

– If ρrl = ǫ and for every abstracted variable v ∈ V (Aβ),

λ′p(v) = ⊥: this means that the abstraction has been tra-

versed. It is possible that the concrete model might reach

a stable state after traversing abstracted transitions without

GEN . Recall that these transitions do not have a matching

transition in the abstraction. Continue from Cr the RTC

step on abstracted transitions (transitions t′ ∈ TR(Aβ)), as

long as it is on transitions without GEN . Since the by def-

inition of the abstraction, these transitions can only modify

variables from V (Aβ), which have the value ⊥ in λ′p, then

on all such reachable configurations Cr
′

� C ′p. When can-

not progress anymore, check stable(cr
′

l , C
r′). If for one of the

reachable configurations stable(cr
′

l , C
r′) = true then we de-

fine stepr
′

= EndRTC(j, ǫ) and clearly Cr
′+1 � C ′p+1. Oth-

erwise, there exists s′ ∈ ωr
′

l and t′c ∈ TRl where src(t
′
c) = s′

s.t. trig(t′c) = ǫ and grd(t′c)(λ
r′) = true.

∗ If s′ ∈ SAl : then s′ ∈ ω′p
l , and there exists a transition

t′a ∈ TRAl s.t. src(t′a) = s′, trig(t′a) = trig(t′c) = ǫ and

grd(t′c) = grd(t′a). Since stable(c′pl , C
′p) ∈ {⊥, true} and

since for every v ∈ V , either λ′p(v) = ⊥ or λ′p(v) =

λr
′

(v), then grd(t′a)(λ
′p) = ⊥. We choose some variable

v ∈ V s.t. λ′p(v) = ⊥ and v effects the evaluation of

82

grd(t′a) and refine ΓA w.r.t. v.

∗ If s′ 6∈ SAl : then for some γ ∈ {1, ..., g}, s′ ∈ Sl(A
γ). We

refine the abstraction by removing s′ from Sl(A
γ).

– Otherwise: we refine the abstraction by removing s from

Sl(A
β).

• step′p = TRANS(j, (ta1, ..., t
a
q))

For every i ∈ {1, ..., q} we match transition tai with (possibly more

than one) transition ti ∈ TRl.

1. If src(tai) ∈ Sl: Then src(tai) ∈ ωrl . By definition of the ab-

straction, there exists a matching transition t ∈ TRl s.t. src(t) =

src(tai), trig(t) = trig(tai), grd(i) = grd(tai), and act(t) = act(tai) =

skip (since trig(tai) = ρ′pl 6= ǫ). If enabled(t, Cr) = true then we

define ti = t.

Otherwise, if enabled(t, Cr) = false, then we need to refine. We

separate between the different cases that can cause enabled(t, Cr) =

false and enabled(tai , C
′p) ∈ {⊥, true}:

– For every t′ ∈ TRl s.t. src(t′) ⊳ src(t) and src(t′) ∈ ωrl
it holds that enabled(t′, Cr) = false: Since ρrl = ρ′pl , this

means that grd(tai)(λ
′p) ∈ {⊥, true} and grd(t)(λr) = false.

Since λr � λ′p we conclude that grd(tai)(λ
′p) = ⊥. We choose

some variable v ∈ V s.t. λ′p(v) = ⊥ and v effects the evalu-

ation of grd(tai) and refine ΓA w.r.t. v.

– There exists t′ ∈ TRl s.t. src(t
′) ⊳ src(t), src(t′) ∈ ωrl and

enabled(t′, Cr) = true.

(a) If src(t′) ∈ ω′p
l , then by definition of the abstraction,

there exists t′a ∈ TRAl s.t. src(t′a) = src(t′), trig(t′) =

trig(t′a), grd(t
′) = grd(t′a). Since ρrl = ρ′pl , this means

that grd(t′a)(λ
′p) ∈ {false,⊥} and grd(t′)(λr) = true.

Since λr � λ′p we conclude that grd(t′a)(λ
′p) = ⊥. We

choose some variable v ∈ V s.t. λ′p(v) = ⊥ and v effects

the evaluation of grd(t′a) and refine ΓA w.r.t. v.

(b) If src(t′) 6∈ ω′p
l , then by definition of the abstraction,

src(t′) ∈ S(A
β) for some β ∈ {1, ..., g}. Also, by defini-

83

tion of the simulation, ∆(Aβ) ∩ ω′p
l 6= ǫ. We refine the

abstraction by removing src(t′) from Sl(A
β).

2. If src(tai) 6∈ Sl: Then src(t
a
i) 6∈ ωrl . Since trig(t

a
i) = ρ′pl 6= ǫ, then

src(tai) = aβstrt for some β ∈ {1, ..., g}.

– If trgt(tai) = aβ1 : If there exists a maximal set of orthogo-

nal and enabled transitions t′1, ..., t
′
q′ ∈ TRl(A

β), then ti is

defined by t′1, ..., t
′
q′ .

If no such set of transitions exist, then we need to refine.

Refine by removing a state s′ ∈ Sl(A
β) ∩ ωrl from Sl(A

β).

– Otherwise, this means that either (1) trgt(tai) = aγstrt for γ ∈

{1, ..., g} and γ 6= β, or (2) for every γ ∈ {1, ..., g}, trgt(tai) 6∈

Sl(A
γ) (trgt(tai) ∈ Sl): By definition of the abstraction, there

exists a matching transition t′ ∈ TRl s.t. src(t
′) ∈ Sl(A

β),

trig(t′) = trig(tai), and

∗ if trgt(tai) = aγstrt then trgt(t
′) ∈ Sl(A

γ)

∗ if trgt(tai) ∈ Sl then trgt(t
′) = trgt(tai)

Also, by definition of the abstraction, grd(tai) = grd(t′)&⊥.

(a) If src(t′) ∈ ωrl and enabled(t′, Cr) = true: then define

ti = t′.

(b) If src(t′) ∈ ωrl and enabled(t′, Cr) = false: then need to

refine.

We separate between the different cases that can cause

enabled(t′, Cr) = false and enabled(tai , C
′p) ∈ {⊥, true}:

∗ For every t′′ ∈ TRl s.t. src(t
′′) ⊳ src(t′) it holds that

enabled(t′′, Cr) = false: Since ρrl = ρ′pl , this means

that grd(t′)(λ′p) ∈ {⊥, true} and grd(t′)(λr) = false.

Since λr � λ′p we conclude that grd(t′)(λ′p) = ⊥. We

choose some variable v ∈ V s.t. λ′p(v) = ⊥ and v

effects the evaluation of grd(t′) and refine ΓA w.r.t. v.

∗ There exists t′′ ∈ TRl s.t. src(t
′′) < src(t′), src(t′′) ∈

ωrl and enabled(t
′′, Cr) = true. By definition of the ab-

straction, src(t′′) ∈ Sa(A
k). We refine the abstraction

by removing src(t′′) from the abstracted states.

(c) If src(t′) 6∈ ωrl , then need to refine. Remove src(t′) from

S(A
β).

84

We define stepr = TRANS(j, (t1, ..., tq)). For every such transi-

tion, since ρrl 6= ǫ, then for every i ∈ {1, ..., q}, either act(ti) =

skip or act(ti) changes the value of cg variables. By definition

of the abstraction, for every i ∈ {1, ..., q}, act(tai) possibly sets

the value of variables from V to ⊥ and changes the value of cg

variables. Since Cr � C ′p, then clearly Cr+1 � C ′p+1.

• step′p = TRANS(j, ta)

Assume idrj = id′pj = l and src(ta) = s. We know that enabled(ta, C
′p) ∈

{true,⊥}. We separate to the following different cases:

1. If src(ta) ∈ ωrl

2. If src(ta) 6∈ ωrl and for some β ∈ {1, ..., g}, src(ta) = aβend

3. If src(ta) 6∈ ωrl and for some β ∈ {1, ..., g}, src(ta) = aβi

4. If src(ta) 6∈ ωrl and for some β ∈ {1, ..., g}, src(ta) = aβstrt

1. If src(ta) ∈ ωrl : By definition of the abstraction, there exists

a matching transition t ∈ TRl s.t. src(t) = src(ta), trig(t) =

trig(ta), and grd(t) = grd(ta). If enabled(t, Cr) = true then we

define stepr = TRANS(j, t). By definition of the abstraction

construction, act(ta) differs from act(t) in the following:

– act(ta) might include manipulation of cg variables

– assignments of type v = e in act(t) might be replaced with

“if (isIn(A)) v = ⊥; else v = e;” in act(ta).

Since Cr � C ′p and specifically λr � λ′p, then clearly act(t)(λr, Cr) �

act(ta)(λ
′p, C ′p). By definition of the matching transition, either

trgt(ta) = trgt(t) or trgt(ta) = aβstrt and trgt(t) ∈ Aβ. Thus, we

can conclude that Cr+1 � C ′p+1.

Otherwise, if enabled(t, Cr) = false, then we need to refine. We

separate between the different cases that can cause enabled(t, Cr) =

false and enabled(ta, C
′p) ∈ {⊥, true}:

– For every t′ ∈ TRl s.t. src(t′) ⊳ src(t) and src(t′) ∈ ωrl
it holds that enabled(t′, Cr) = false: Since ρrl = ρ′pl , this

means that grd(ta)(λ
′p) ∈ {⊥, true} and grd(t)(λr) = false.

Since λr � λ′p we conclude that grd(ta)(λ
′p) = ⊥. We choose

85

some variable v ∈ V s.t. λ′p(v) = ⊥ and v effects the evalu-

ation of grd(ta) and refine ΓA w.r.t. v.

– There exists t′ ∈ TRl s.t. src(t
′) ⊳ src(t), src(t′) ∈ ωrl and

enabled(t′, Cr) = true.

(a) If src(t′) ∈ ω′p
l , then by definition of the abstraction,

there exists a matching transition t′a ∈ TRAl s.t. src(t′a) =

src(t′), trig(t′) = trig(t′a), grd(t
′) = grd(t′a). Since

ρrl = ρ′pl , this means that grd(t′a)(λ
′p) ∈ {false,⊥} and

grd(t′)(λr) = true. Since λr � λ′p we conclude that

grd(t′a)(λ
′p) = ⊥. We choose some variable v ∈ V s.t.

λ′p(v) = ⊥ and v effects the evaluation of grd(t′a) and

refine ΓA w.r.t. v.

(b) If src(t′) 6∈ ω′p
l , then by definition of the abstraction,

src(t′) ∈ S(Aβ) for β ∈ {1, ..., g}. Since crl � c′pl , this

means that aβstrt ∈ ω′p
l (it is not possible that one of

∆(Aβ) \ {aβstrt} is in ω′p
l since these states have null out-

going transitions, and thus enabled(ta, C
′p) = false). We

separate between two cases, whether or not the abstrac-

tion has been traversed.

∗ If there exists an abstracted variable v ∈ V (Aβ) s.t.

λ′p(v) 6= ⊥: this means that the abstraction has just

been entered. We refine the abstraction by removing

src(t′) from the abstracted states.

∗ If for every abstracted variable v ∈ V (Aβ), λ′p(v) = ⊥:

this means that the abstraction has been traversed.

It is possible that the concrete model might reach a

state where enabled(t, Cr
′

) = true after traversing ab-

stracted transitions without GEN . Continue from Cr

the RTC step on abstracted transitions (transitions

t′ ∈ TR(Aβ)), as long as it is on transitions with-

out GEN . Since by the definition of the abstrac-

tion, these transitions can only modify variables from

V (Aβ), which have the value ⊥ from the abstraction,

then on all such reachable configurations Cr
′

� C ′p.

For every such reachable Cr
′

, if enabled(t, Cr
′

) then

we define stepr
′

= TRANS(j, t).

86

Otherwise, if on all possible reachable configurations

Cr
′

it holds that enabled(t, Cr
′

) = false, then we need

to refine.

· If for some reachable configuration Cr
′

, and for every

t′′ ∈ TRl s.t. src(t′′) ⊳ src(t) and src(t′′) ∈ ωr
′

l it

holds that enabled(t′′, Cr
′

) = false, then this means

that grd(t)(λr
′

) = false. Since enabled(ta, C
′p) =

true, then grd(ta)(λ
′p) ∈ {⊥, true}. Since λr � λ′p

we conclude that grd(ta)(λ
′p) = ⊥. We choose some

variable v ∈ V s.t. λ′p(v) = ⊥ and v effects the

evaluation of grd(ta) and refine ΓA w.r.t. v.

· Otherwise, refine the abstraction by removing src(t′)

from the abstracted states.

2. If src(ta) 6∈ ωrl and for some β ∈ {1, ..., g}, src(ta) = aβend. By

definition of the abstraction, trgt(ta) = aβstrt. Continue on step′p

without matching a step on π. It holds that Cr � C ′p+1.

3. If src(ta) 6∈ ωrl and for some β ∈ {1, ..., g}, src(ta) = aβi : By

definition of the abstraction, trgt(ta) is either a
β
end or aβi+1.

– If trgt(ta) = aβend: Continue on step′p without matching a

step on π. It holds that Cr � C ′p+1.

– If trgt(ta) = aβi+1: By definition of the abstraction, act(ta) =

GEN(EV (Aβ)). Assume the event generated on step′p is

ev ∈ EV (Aβ). Continue from Cr the RTC step on abstracted

transitions (transitions t′ ∈ TR(Aβ)), as long as it is on tran-

sitions without GEN . Since by the definition of the abstrac-

tion, these transitions can only modify variables from V (Aβ),

which have the value ⊥ from the abstraction, then on all of

them Cr
′

� C ′p. On every such reachable Cr
′

, if there ex-

ists a transition t′c ∈ TR(Aβ) where GEN(ev) ∈ act(t′c) and

enabled(t′c, C
r′) = true then stepr

′

= TRANS(j, t′c). For

same reasoning as before, Cr
′+1 � C ′p+1.

Otherwise, if on all possible reachable configurations Cr
′

no

such t′c, then need to refine. For some s ∈ ωrl s.t. s ∈ Sl(A
β),

remove s from Sl(A
β).

4. If src(ta) 6∈ ωrl and for some β ∈ {1, ..., g}, src(ta) = aβstrt: We

87

separate between the different cases for trgt(ta)

– trgt(ta) = aβ1 : Since ρ′pl = ǫ, then ta = τβ2 . For every

abstracted transition t ∈ TR(Aβ) s.t. enabled(t, Cr) de-

fine stepr = TRANS(j, t). By definition of the abstraction,

modif(t) ⊆ V (Aβ). Since for every v ∈ V (Aβ), λ′p+1(v) =

⊥, and since Cr � C ′p, then Cr � C ′p+1.

Otherwise, if no such t exists, then need to refine. For some

s ∈ ωrl s.t. s ∈ Sl(A
β), remove s from Sl(A

β).

– Otherwise: This means that either (1) trgt(ta) ∈ Sl or (2)

trgt(ta) = aγstrt for γ ∈ {1, ..., g} and γ 6= β: By definition

of the abstraction, there exists a matching transition t ∈

TRl s.t. src(t) ∈ Sl(A
β), trig(t) = trig(ta), and grd(ta) =

grd(t)&⊥.

(a) If src(t) ∈ ωrl and enabled(t, Cr) = true: then define

stepr = TRANS(j, t).

By definition of the abstraction construction, act(ta) dif-

fers from act(t) in the following:

∗ act(ta) might include manipulation of cg variables

∗ assignments of type v = e in act(t) might be replaced

with “if (isIn(A)) v = ⊥; else v = e;” in act(ta).

Since Cr � C ′p and specifically λr � λ′p, then clearly

act(t)(λr, Cr) � act(ta)(λ
′p, C ′p). By definition of the

matching transition, either trgt(ta) = trgt(t) or trgt(ta) =

aγstrt and trgt(t) ∈ Aγ . Thus, we can conclude that

Cr+1 � C ′p+1.

(b) If src(t) ∈ ωrl and enabled(t.Cr) = false: then need

to refine. We separate between the different cases that

can cause enabled(t, Cr) = false and enabled(ta, C
′p) ∈

{⊥, true}:

∗ For every t′ ∈ TRl s.t. src(t′) ⊳ src(t) it holds that

enabled(t′, Cr) = false: Since ρrl = ρ′pl , this means

that grd(t)(λ′p) ∈ {⊥, true} and grd(t)(λr) = false.

Since λr � λ′p we conclude that grd(t)(λ′p) = ⊥. We

choose some variable v ∈ V s.t. λ′p(v) = ⊥ and v

effects the evaluation of grd(ta) and refine ΓA w.r.t. v.

88

∗ There exists t′ ∈ TRl s.t. src(t′) ⊳ src(t), src(t′) ∈

ωrl and enabled(t′, Cr) = true. By definition of the

abstraction src(t′) ∈ Sl(A
β). We refine the abstraction

by removing src(t′) from Sl(A
β).

(c) If src(t) 6∈ ωrl , then we need to refine. For some s ∈ ωrl
s.t. s ∈ Sl(A

β), remove s from Sl(A
β).

5.5 Conclusion

In this work we presented a CEGAR-like method for abstraction and refine-

ment of behavioral UML systems.

It is important to note that our framework is completely automatic. An

initial abstraction can be one that abstracts entire state machines, based on

the given property. We presented a basic and automatic refinement method.

Heuristics can be applied during the refinement stage in order to converge

in less iterations. For example, when refining due to a variable v whose

value is ⊥, we can refine by adding all abstracted transitions that modify v

(or v’s cone-of-influence). Note, however, that there always exists a tradeoff

between quick convergence and the growth in size of the abstract system.

89

Chapter 6

Learning-Based

Compositional Verification of

Behavioral UML Systems

In this chapter we present a novel approach for learning-based compositional

verification of behavioral UML systems.

One of the most appealing approaches to fighting the high time and mem-

ory requirements of model checking is compositional model checking, where

parts of the system are verified separately in order to avoid the construction

of the entire system and to reduce the model checking cost. The Assume-

Guarantee (AG) paradigm [30, 44, 26] suggests how to verify a component

based on an assumption on the behavior of its environment, which consists

of the other system components. The environment is then verified in order

to guarantee that the assumption is actually correct.

Learning [2] has been a major technique to construct assumptions for the

AG paradigm automatically. An automated learning-based AG framework

was first introduced in [15]. It uses iterative AG reasoning, where in each

iteration an assumption is constructed and checked for suitability, based on

learning and on model checking. Many works suggest optimizations of the

basic framework and apply it in the context of different AG rules ([7, 23,

57, 20, 39, 28, 5, 14, 43, 9]).

In this chapter we propose a framework for automated learning-based

AG reasoning for behavioral UML systems. Our framework is similar to

90

the one presented in [15], with the main difference being that our framework

remains at the state machine level. That is, the system’s components are

state machines, and the learned assumptions are state machines as well.

This is in contrast to [15], where the system’s components and the learned

assumptions are all presented as Labeled Transition Systems (LTSs).

A naive implementation of our framework might translate a given be-

havioral UML system into LTSs and apply the algorithm from [15] on the

result. However, due to the hierarchical and orthogonal structure of state

machines such translation would result in LTSs that are exponentially larger

than the original UML system. Moreover, state machines communicate via

event queues. Such translation must also include the event queues, which

would also increase the size of the LTSs by an order of magnitude. We

therefore choose to define a framework for automated learning-based AG

reasoning directly on the state machine level. Another important advantage

of working with state machines is that it enables us to exploit high level

information to make the learning much more efficient. It also enables us

to apply model checkers designed for behavioral UML systems. Such model

checkers take into account the specific structure and semantics of UML,

and are therefore more efficient than model checkers designed for low-level

representations (such as Kripke structures or LTSs).

We use the standard AG rule below, where M1 and M2 are UML state

machines. We replace 〈A〉 with [A], to emphasize that A is a state machine

playing the role of an assumption on the environment of M1. The first

premise (Step 1) holds iff A||M1 satisfies ϕ, and the second one (Step 2)

holds iff every execution of M2 has a representative in A. Together they

guarantee that M1||M2 satisfies ϕ.

Rule AG-UML

(Step 1) [A] M1 〈ϕ〉

(Step 2) 〈true〉 M2 [A]

〈true〉 M1||M2 〈ϕ〉

We assume ϕ is a safety property, and use the learning algorithm L∗ [2,

50] to iteratively construct assumptions Ai until both premises of the rule

hold for Ai, implying M1||M2 |= ϕ, or until a real counterexample is found,

demonstrating that M1||M2 6|= ϕ.

We exploit the notion of RTC steps for defining the alphabet Σ of the

91

learned assumptions. We define an alphabet over sequences of events, where

a letter (i.e., a sequence of events) represents a single RTC step of the

assumption. A word w over these letters corresponds to an execution of

the assumption. It also represents the equivalence class of all executions of

the checked system, which are interleaved with w. Our alphabet is defined

based on statically analyzing the behavior of M2.

Learning words over sequences of events makes L∗ highly efficient, as it

avoids learning sequences that can never occur in M2 and therefore should

not be considered in an assumption. Moreover, our learning is executed

w.r.t. equivalence classes of executions. Even though our learning process is

over equivalence classes, we show that our framework is sound and complete.

That is, we do not lose information from grouping executions according to

their representative word.

The remainder of the chapter is organized as follows. Some background

on AG reasoning is given in Section 6.1. Representing UML computa-

tions and execution as words is defined in Section 6.2. In Section 6.3 we

present our basic framework, implementing Rule AG-UML for UML sys-

tems. Sections 6.4 and 6.5 extend the framework to a more general setting.

We conclude in Section 6.6.

6.1 Preliminaries

6.1.1 Assume Guarantee Reasoning and Compositional Ver-

ification

[15] presents a framework for automatically constructing assumption A in

an iterative fashion for applying the standard AG rule, where M1 and M2

are LTSs and ϕ is a safety property. At each iteration i, an assumption Ai
is constructed. Afterwards, Step 1 (〈Ai〉M1〈ϕ〉) is applied in order to check

whether M1 guarantees ϕ in an environment that satisfies Ai. A false

result means that this assumption is too weak, i.e., Ai does not restrict the

environment enough for ϕ to be satisfied. Thus, the assumption needs to

be strengthened (which corresponds to removing behaviors from it) with the

help of the counterexample produced by Step 1. If Step 1 returns true then

Ai is strong enough for the property to be satisfied. To complete the proof,

Step 2 (〈true〉M2〈Ai〉) must be applied to discharge Ai on M2. If Step 2

92

returns true, then the compositional rule guarantees 〈true〉M1||M2〈ϕ〉. That

is, ϕ holds in M1||M2. If it returns false, further analysis is required to

identify whetherM1||M2 violates ϕ or whether Ai is stronger than necessary.

Such analysis is based on the counterexample returned by Step 2. If Ai is

too strong it must be weakened (i.e., behaviors must be added) in iteration

i + 1. The new assumption may be too weak, and thus the entire process

must be repeated.

The framework in [15] uses a learning algorithm for generating assump-

tions Ai and a model checker for verifying the two steps in the rule.

6.1.2 The L
∗ Algorithm

The learning algorithm used in [15] was developed by [2], and later improved

by [50]. The algorithm, named L∗, learns an unknown regular language and

produces a minimal deterministic finite automaton (DFA) that accepts it.

Let U be an unknown regular language over some alphabet Σ. In order to

learn U , L∗ needs to interact with a Minimally Adequate Teacher, called

Teacher. A Teacher must be able to correctly answer two types of questions

from L∗. A membership query, consists of a string w ∈ Σ∗. The answer is

true if w ∈ U , and false otherwise. A conjecture offers a candidate DFA

C and the Teacher responds with true if L(C) = U (where L(C) denotes

the language of C) or returns a counterexample, which is a string w s.t.

w ∈ L(C) \ U or w ∈ U \ L(C).

6.2 Representing Executions as Words

A behavioral UML system with n state machines is denoted Γ =M1||...||Mn.

We assume state machines communicate only through events (all variables

are local), and assume also that every RTC step is finite. These assumptions

enable us to define sequences of events representing a single RTC step, which

will be the letters of our alphabet (formally defined later).

Recall that according to the semantics of RTC steps, only the first tran-

sition may consume an event. An exception is the case of orthogonal regions

that share the same trigger. As mentioned in Chapter 3, these transitions

are executed simultaneously. Since the semantics of simultaneous execution

is unclear, we assume that the actions of transitions in orthogonal regions

93

labeled with the same trigger do not affect other transitions. That is, firing

them in any order yields the same effect on the system.

For simplicity of presentation, we assume the following restrictions: (a)

EQs are implemented as FIFOs, (b) Transitions with triggers do not gen-

erate events, and each transition may generate at most one event, (c) A

state machine does not generate events to itself, (d) An event e cannot be

generated by more than one state machine, and (e) Each state machine runs

in a separate thread1.

Given a state machine M , Con(M) and Gen(M) denote the events that

M can consume and generate, respectively. An over-approximation of these

sets can be found by static analysis. Recall that the events of a system

include events sent by a state machine in the system denoted EVsys, and

events sent by the “environment” of the system denoted EVenv. For a system

Γ, EVsys(Γ) = Gen(M1)∪ ... ∪Gen(Mn), and EVenv(Γ) = {Con(M1) ∪ ...∪

Con(Mn)} \ {Gen(M1) ∪ ... ∪ Gen(Mn)}. We denote EV (Γ) = EVsys(Γ) ∪

EVenv(Γ). We assume the most general environment, that can send any

environment event at any time. Note that the environment of a system

might send events that will always be discarded by the target state machine.

Since we are handling safety properties, such behaviors do not affect the

satisfaction of the property, and we can therefore ignore them.

Let π = C0, step0, C1, ... be a computation of Γ. Based on the above

assumptions on Γ, each stepi in π can be labeled by at most one of tr(e)

and gen(e), where tr(e) denotes that when moving from Ci to Ci+1 event e

was dispatched to the target state machine (i.e., stepi = DISP (j, e)), and

gen(e) denotes that event e was either generated by a state machine in Γ if

e ∈ EVsys(Γ) (i.e., step
i = TRANS(j, t) and GEN(e) ∈ act(t)) or sent by

the environment of Γ if e ∈ EVenv(Γ) (i.e, step
i = ENV (j, e)). Note that it

is possible that a step is denoted with neither (labeled with ǫ).

Note that events are always generated before they are dispatched. Also,

since the EQs are FIFOs, then if e was generated before e′ and the target of

both events is M , then e will be dispatched before e′. Given a set of events

EV , a sequence of labels over {tr(e), gen(e)|e ∈ EV } is an execution over

EV if it adheres to the above ordering requirements. For an execution ex,

we define a mapping function that guarantees the ordering requirements.

1The case where several state machines run on the same thread is simpler, however
presentation of both is cumbersome. We present only the more complex case.

94

➌➍➎➏➍

➐➑➒➓➔→➏➎➣➍↔↕➏➙➛↔➐ ➌➙➣➜➝
➏➙➛↔➐

➞➙➛➟

➞➙➛➝

➠➎➣➠➙➡↔➐

➌↔
➐➑➒➓➔➜➙➣➢↔↕

➌➤➏➙➛➤➐

➐➑➒➓➔➜➙➣➢➤↕ ➏➙➛↔➐

➌➥
➐➑➒➓➔➜➙➣➢↔↕

➌➦➏➙➛➤➐

➐➑➒➓➔➜➙➣➢➤↕
➐➑➒➓➔→➏➎➣➍➤↕

➠➎➣➠➙➡➤➐

➏➙➛➤➐

➌➙➣➜➟

Figure 6.1: Example State Machine for Class server

Definition 6.1 Let EV be a set of events, and let ex be an execution over

EV . There exists a one-to-one function γ : {i|fi = tr(e)} → N that maps

each tr(e) occurrence in ex to its matching gen(e):

1. γ(i) < i

2. If fi = tr(e) then fγ(i) = gen(e).

3. If there exist i < i′ s.t. fi = tr(e), fi′ = tr(e′), and e, e′ are dispatched

to the same Mj, then γ(i) < γ(i′).

γ is the matching function of ex.

A computation matches an execution ex if ex is the sequence of non-ǫ

labels of the computation. We denote the set of executions of Γ by Lex(Γ).

Note that every computation matches a single execution. However, different

computations may match the same execution.

Example 6.2 Consider the system Γ = server||client where server and

client are presented in Figures 6.1 and 6.2, respectively.

Then gen(e1), tr(e1), gen(req1), tr(req1), gen(grant1) ∈ Lex(Γ). However,

gen(e1), tr(e1), gen(cancel1) 6∈ Lex(Γ), since client, when in initial state,

cannot generate cancel1 after consuming e1.

From here on we do not address computations of a system, and consider

only executions. We say that “execution ex satisfies a property ϕ” iff all

computations that match ex satisfy ϕ. Let EV ′ ⊆ EV be a set of events,

95

➧➨➩➫➭➯

➲➭➩➯

➳➵➸➺

➫➻➼

➽➸➾➭➯➻➼

➚➫➭➪➻➼

➫➻➼➾➶➶

➹➫➭➚➘➫➴
➼➷➬➮➱➸➫➴➻✃

➹❐ ➹➻
➫❒➻❮➾❰ÏÐ➼

➹Ñ➹Ò

➼➷➬➮➱Ó➵➭➯➻✃➫❒➻❮➾ÔÔÏÐ➼

➼➷➬➮➱Ó➨➸➻✃
➧➾➭Ó➫➨

➘➫➴

➼➷➬➮➱Ó➾➭Ó➫➨➻✃

➫➻➼

➫➻➼

➹Õ ➹Ö

➫➻➼➾ÔÏ

➚➫➭➪➻➼
➹×

➼➷➬➮➱Ó➨➸➻✃

➧➨➫➾➸

➼➷➬➮➱Ó➨➸➻✃

Figure 6.2: Example State Machine for Class client

and ex be an execution over EV . The projection of ex w.r.t. EV ′, denoted

ex⇂EV ′ , is the projection of ex on {tr(e), gen(e)|e ∈ EV ′}.

A system can include a single state machine M . This is a system where

all events consumed by M are generated by the environment. By abuse

of notation, we denote by Lex(M) the set of executions of a system that

includes the single state machine M . The following lemma is a result of the

fact that state machines communicate only through events.

Lemma 6.3 Let Γ = M1||...||Mn, let ex be an execution over EV (Γ), and

let γ be the matching function of ex. Then, ex ∈ Lex(Γ) iff for every i ∈

{1, ..., n}, ex⇂EV (Mi)∈ Lex(Mi).

Proof: =⇒ Since state machines do not send events to themselves, then

for every i ∈ {1, ..., n}, EVenv(Mi) = Con(Mi). Consider ex ⇂EV (Mi). Since

state machines communicate only through events, and the events consumed

are all generated by the environment, then ex⇂EV (Mi)∈ Lex(Mi).

⇐= The behavior of each state machine is possible by the assumption.

The fact that ex is an execution ensures ordering requirements, since there

exists a correct mapping function γ(ex). �

The following lemma is a direct result of Lemma 6.3

96

Lemma 6.4 Let Sys be a system that includes state machine M . Then,

Lex(Sys)⇂EV (M)⊆ Lex(M).

In order to later apply the L∗ algorithm for learning assumptions on

state machines, we first need to define an alphabet.

Definition 6.5 Let M be a state machine. σ = (t, (e1, .., en)) is in the

alphabet of M , denoted Σ(M), if t ∈ Con(M) and there exists an RTC step

of M that starts by consuming or discarding t, and continues by generating

a sequence of events e1, ..., en.

Letters in Σ(M) where n is 0 are denoted (t, ǫ). The idea behind our

definition is that since the state machines in our systems communicate only

through events, the alphabet maintains only the event information of the

state machines. Since every RTC is finite, then an over-approximation of

Σ(M) can be found by static analysis (by traversing the graph of M), and

the over-approximation is finite.

Example 6.6 Let M = client (Figure 6.2). Then Σ(M) = {(e1, (req1)),

(e1, (clr1, cancel1)), (e1, (cancel1)), (e1, ǫ), (deny1, ǫ), (deny1, (clr1)), (grant1,

ǫ), (ev1, (clr1)), (ev1, (cont1)), (ev1, ǫ). For example, (e1, (clr1, cancel1)) ∈

Σ(M), resulting from a possible RTC step that starts when M is in state

Req. Also (ev1, ǫ) ∈ Σ(M), since client can discard ev1 (e.g., when in ini-

tial state).

For a letter σ = (t, (e1, ..., en)), trig(σ) = t and evnts(σ) = {e1, .., en}.

We extend these notations to the alphabet Σ in the obvious way. Also,

EV (Σ) = trig(Σ) ∪ evnts(Σ).

Following, we define the relation between executions and words. Intu-

itively, an execution ex matches a word w if the behavior ofM in ex matches

w.

Definition 6.7 Let Γ be a system that includes state machine M , let ex =

f1, f2, ∈ Lex(Γ), and let w = σ1, σ2, ... ∈ (Σ(M))∗. Let ξ1 = f ′1, f
′
2, ...

be the projection of ex on {tr(e)|e ∈ Con(M))} ∪ {gen(e)|e ∈ Gen(M))}.

Assume also ξ2 = f ′′1 , f
′′
2 , ... is the sequence created from w by replacing σ =

(t, (e1, ..., en)) with tr(t), gen(e1), ..., gen(en). Then ex matches w, denoted

ex ⊲ w, iff ξ1 = ξ2.

97

Note that an immediate result of the above definition is that if ex ⊲ w

where w ∈ Σ∗, then adding or removing from ex occurrences of events not in

EV (Σ) results in a sequence ex′ s.t. ex′ ⊲ w still holds. Another important

thing to note is that different executions can match the same word w. Thus

w represents all the different executions under which the behavior of M

matches w.

Example 6.8 Consider execution ex = gen(e1), tr(e1),gen(req1), tr(req1),

gen(grant1), gen(ev1),tr(ev1)∈ Lex(server||client). We denote with bold

the parts of the execution that represent behavior of the client. For the word

w = (e1, req1), (ev1, ǫ) ∈ (Σ(client))∗, ex ⊲ w.

It also holds that for the execution ex′ = gen(e1), gen(ev1),tr(e1), gen(req1)

, tr(req1),tr(ev1), gen(grant1), ex
′ ⊲ w.

We consider safety properties over events, based on predicates such as

InQ(e), denoting that e is in the EQ, BeforeQ(e, e′) indicating that e is

before e′ in the EQ, and gen(e) (or tr(e)), indicating that e is generated (or

dispatched). We handle safety properties over LTLx, which is the Linear-

time Temporal Logic (LTL) [45] without the next-time operator. Model

checking safety properties can be reduced to handling properties of the form

AGp for a state formula p ([33]), which means that along every execution

path, p globally holds. That is, every reachable configuration satisfies p.

We therefore assume ϕ = AGp. The following theorem states that if an

execution ex satisfies Gp, then adding or removing occurrences that do not

influence p, results in an execution that satisfies Gp.

Theorem 6.9 Let ex be an execution over EV and let p be a property over

events EV ′ ⊆ EV . Then ex |= Gp iff ex⇂EV ′ |= Gp.

Proof: Every occurrence of ex that does not exist in ex ⇂EV ′ does not

address an event in p. p considers properties that describe the contents of

the event queues only w.r.t. the events in p. Thus, the property can only

be affected by occurrences tr(e) and gen(e) where e is in p. �

6.3 AG for State Machines

Our goal is to efficiently adapt the AG framework for UML state machines.

Following, we first show that Rule AG-UML (presented in Section ??)

98

holds for UML state machines, and present a framework for applying Rule

AG-UML for UML state machines (Section 6.3.1). We give a detailed de-

scription of the framework in sections 6.3.2 and 6.3.3, discuss its correctness

in Section 6.3.4, and present a performance analysis in Section 6.3.5.

6.3.1 A Framework For Employing Rule AG-UML and Its

Correctness

First, we formally define the meaning of the two premises in Rule AG-

UML: [A]M〈AGp〉 holds iff for every ex ∈ Lex(A||M), ex |= Gp. 〈true〉M [A]

holds iff EV (A) ⊆ EV (M) and for every ex ∈ Lex(M), ex⇂EV (A)∈ Lex(A).

Theorem 6.10 LetM1,M2 and A be state machines s.t. EV (A) ⊆ EV (M2),

let p be a property over events EV ′ ⊆ (EV (A)∪EV (M1)), and let ϕ = AGp.

Then Rule AG-UML is sound.

Proof: Assume by means of negation that Step 1 and Step 2 hold, however

〈true〉M1||M2〈AGp〉 does not hold.

This means that there exists an execution ex ∈ Lex(M1||M2) s.t. ex 6|= Gp.

By Lemma 6.3, ex⇂EV (M2)∈ Lex(M2). Thus, since Step 2 holds, ex⇂EV (A)∈

Lex(A). It also holds (by Lemma 6.3) that ex⇂EV (M1)∈ Lex(M1).

Since ex ⇂EV (M1)∈ Lex(M1) and ex ⇂EV (A)∈ Lex(A), then by Lemma 6.3

ex ⇂EV (A)∪EV (M1)∈ Lex(A||M1), and since Step 1 holds, we can conclude

that ex ⇂EV (A)∪EV (M1)|= Gp. Based on Theorem 6.9, ex |= Gp as well.

A contradiction. We then conclude that 〈true〉M1||M2〈AGp〉 holds, which

means that Rule AG-UML is sound. �

We use L∗ to iteratively construct assumptions A, until either both

premises of Rule AG-UML hold, or until a real counterexample is found.

L∗ learns a language over words, where each word represents an equivalence

class of executions.

In order to apply the L∗ algorithm we define Σ, the alphabet of the lan-

guage learned by L∗. Intuitively, Σ includes details of M2 that are relevant

for proving ϕ with M1. The alphabet Σ(M2) (Definition 6.5) may include

events of M2 which are irrelevant. We therefore restrict Σ(M2) to Σ by

keeping only elements of EV (M2) that are relevant for the interaction with

M1 and for ϕ.

99

Definition 6.11 Let M1||M2 be a system and ϕ be a safety property. Σ,

the assumption alphabet of M2 w.r.t. M1 and ϕ, is the maximal set, s.t.

for every σ = (t, (ei1 , ..., ein)) ∈ Σ there exists σ′ = (t, (e1, ..., em)) ∈ Σ(M2)

s.t. both requirements hold:

1. (ei1 , ..., ein) is the maximal sub-vector of (e1, ..., em) (i.e., 1 ≤ i1 <

i2 < ... < in ≤ m) where each eij is consumed by M1 or part of the

property ϕ.

2. If t ∈ EVenv(M1||M2) and n = 0: (t, ǫ) is included in Σ iff either t is

part of ϕ or there exists σ1 = (t, (e′1, ..., e
′
k)) ∈ Σ s.t. k > 0.

Example 6.12 Let Γ = server||client where server is M1 and client is

M2, and let ϕ = AG(¬(InQ(grant1) ∧ InQ(deny1)). The events of ϕ are

grant1 and deny1. Σ, the assumption alphabet of M2 w.r.t. M1 and ϕ,

is {(e1, (req1)), (e1, ǫ), (grant1, ǫ), (deny1, ǫ), (e1, (cancel1))}. Note that al-

though (deny1, (clr1)) ∈ Σ(client), since clr1 is not consumed by the server

and is not part of ϕ, then it is not included in Σ.

Similarly, (e1, (clr1, cancel1)) ∈ Σ(client), but only (e1, (cancel1)) ∈ Σ.

Note also that Σ includes all the interface information between client and

server. Thus, (e1, (req1)) ∈ Σ, although neither e1 nor req1 are part of ϕ.

We define the notion of weakest assumption in the context of state machines.

Definition 6.13 A language Aw ⊆ Σ∗ is the weakest assumption w.r.t.

M1 and ϕ if the following holds: w ∈ Aw iff for every execution ex over

EV (Σ) ∪ EV (M1), if ex ⊲ w and ex⇂EV (M1)∈ Lex(M1), then ex |= Gp.

Assume we could construct a state machine MAw that represents Aw.

That is, for every execution ex over EV (Σ), ex ∈ Lex(MAw) iff there exists

w ∈ Aw s.t. ex ⊲ w. Then, MAw describes exactly those executions over

Σ that when executed with M1 do not violate Gp. The following theorem

states that 〈true〉M1||M2〈ϕ〉 holds iff every execution of M2 matches a word

in Aw.

Theorem 6.14 〈true〉M1||M2〈ϕ〉 holds iff for every execution ex ∈ Lex(M2),

there exists w ∈ Aw s.t. ex ⊲ w, where Aw is the weakest assumption w.r.t.

M1 and ϕ.

100

Proof: ⇐=: We assume that for every execution ex ∈ Lex(M2), there exists

w ∈ Aw s.t. ex ⊲ w and show that 〈true〉M1||M2〈ϕ〉.

Let ex be an execution in Lex(M1||M2). We show that ex |= Gp (ϕ =

AGp).

Since we know that Lex(M1||M2) ⇂EV (M2)⊆ Lex(M2) (Lemma 6.4), then

ex ⇂EV (M2)∈ Lex(M2). From the assumption, there exists w ∈ Aw s.t.

ex⇂EV (M2) ⊲w. Therefore it holds that ex⊲w, and also ex⇂EV (Σ)∪EV (M1) ⊲w.

We denote ex′ = ex⇂EV (Σ)∪EV (M1), and thus

(1) ex′ is an execution over EV (Σ) ∪ EV (M1)

(2) ex′ ⊲ w for w ∈ Aw.

(3) Since ex ∈ Lex(M1||M2), then ex⇂EV (M1)∈ Lex(M1). Clearly, ex
′ ⇂EV (M1)=

ex⇂EV (M1) and thus: ex′ ⇂EV (M1)∈ Lex(M1).

We can then conclude, from the definition of Aw, that ex
′ |= Gp, and based

on Theorem 6.9, ex |= Gp as well.

=⇒: Assume by way of contradiction there exists an execution ex ∈

Lex(M2) and no word w ∈ Aw s.t. ex ⊲ w. Thus, there exists w ∈ Σ∗ \ Aw
s.t. ex ⊲ w (i.e., w 6∈ Aw). We show that this means that there exists an

execution ex′ ∈ Lex(M1||M2) s.t. ex
′ violates Gp.

If w 6∈ Aw then there exists an execution ex1 over EV (Σ)∪EV (M1) s.t.

ex1 ⇂EV (M1)∈ Lex(M1), ex1 ⊲ w and ex1 6|= Gp.

Recall, ex ∈ Lex(M2) and ex ⊲ w. We construct the execution ex′ as

the joint execution of ex1 and ex. Note that the construction of ex′ is

not straightforward; ex1 and ex both match w, however the other parts

of the executions might not match, i.e., the interleaving of M2 and the

environment in ex may be different from the interleaving of M1 and Σ in

ex1. Our construction of ex′ actually shows that there exists an interleaving

that is possible by both M1 and M2, and that still violates Gp.

We first construct the sequence of events generated for M2 on ex. We

denote the γ function that associates the index of the dispatching of event

with the index of its generation on execution ex as γ(ex).

Let 0 < i1 < i2 < ... < in be the indices in ex where an event was dispatched

to M2 (i.e., for j ∈ {1, ..., n}: fij = tr(e)). Then for every j ∈ {1, ..., n− 1},

γ(ex)(ij) < γ(ex)(i(j+1)) (by the definition of γ(ex)).

Similarly, we construct a sequence from ex1 that includes the events that

are not dispatched to M1. I.e., the events which are triggers of Σ:

Let 0 < k1 < k2 < ... < km be the indices in ex1 where an event was dis-

101

patched not to M1 (i.e., for j ∈ {1, ...,m}: fkj = tr(e) and e ∈ trig(Σ)).

Then for every j ∈ {1, ...,m − 1}, γ(ex1)(kj) < γ(ex1)(k(j+1)) (by the defi-

nition of γ(ex1)).

It is important to note that the sequence seq(ex1) = fγ(ex1)(k1),,

fγ(ex1)(km) is a sub-sequence of seq(ex) = fγ(ex)(i1), ..., fγ(ex)(in), since ex ⊲w

and ex1⊲w. We define a one-to-one function γ̂ : {γ(ex1)(k1), ..., γ(ex1)(km)} →

{γ(ex)(i1), ..., γ(ex)(in)} that matches each element in seq(ex1) with its

matching element in seq(ex).

Note also that elements in seq(ex) that are not in seq(ex1) are events

that are not generated byM1 (if they were generated byM1 then they would

have been in Σ). Thus, these events are generated by the environment of

M1||M2, and we can therefore assume that they can be generated at any

time on an execution of M1||M2.

Construction of ex′: First, we want to have a projection of ex that in-

cludes only the behaviors of M2 (i.e., without the events generated by the

environment of M2). We denote this as ẽx. ẽx is the projection of ex on

{tr(e)|e ∈ trig(Σ(M2))} ∪ {gen(e)|e ∈ evnts(Σ(M2))}. Note that ẽx ⊲ w

(since ẽx includes all elements in w).

Intuitively, ex′ follows ex1. When ex1 executes a behavior of Σ, then

we replace that behavior with the behavior of M2 based on ex (taken from

ẽx). We initiate a counter i to 0 that points to the place in ex1 we are at.

We initiate a counter cnt to 0 that points to the place in ẽx we are at. We

denote the elements in ẽx as f ′i .

For every element fi from ex1 execute one of the following:

1. If fi = tr(e) or fi = gen(e) and e ∈ trig(Σ(M1)) (that is, e is dis-

patched to M1 or generated for M1): then add fi to ex
′.

2. If fi = gen(e) and e ∈ trig(Σ): Let i = γ(ex1)(kj) and let i′ =

γ(ex1)(k(j−1)). Also, let g = γ̂(i) and g′ = γ̂(i′). By the definition

of seq(ex), the events on seq(ex) between element fg′ and element fg
are environment events of M1||M2. Add to ex′ all these elements: for

every j ∈ {g′ + 1, ..., g}, if f̃j ∈ seq(ex) then f̃j is added to ex′.

3. If fi = tr(e) and e ∈ trig(Σ) or fi = gen(e) and e ∈ evnts(Σ): Need

to add relevant elements from ẽx. while (f ′cnt 6= fi) { add f ′cnt to ex
′;

cnt++ }. When done, add fi to ex
′.

102

ex′ ⇂EV (M1)= ex1 ⇂EV (M1) (by construction). Since ex1 ⇂EV (M1)∈ Lex(M1)

then also ex′ ⇂E(M1)∈ Lex(M1).

Note that since a state machine cannot generate events to itself, then if

for some execution ex ∈ Lex(M2) the following holds: Let w′ ∈ Σ(M2)
∗ s.t.

ex⊲w′. Then every execution êx over EV (M2), if êx⊲w
′ then êx ∈ Lex(M2).

This is since ex and êx differ in the interleaving of the environment events

sent to M2.

We can therefore conclude the following: Let w′ ∈ Σ(M2)
∗ s.t. ex ⊲ w′.

By definition of ẽx, ẽx ⊲ w′. By construction (since we copy exactly ẽx to

ex′), then ex′ ⇂E(M2) ⊲w
′. Also, due to the construction of ex′, the order

of generated events dispatched to M2 follows that an event was generated

before it was dispatched (item 2 in the construction). Thus ex′ ⇂E(M2)∈

Lex(M2).

By construction of ex′, ex′ is an execution over EV (M1) ∪ EV (M2).

Thus, by Lemma 6.3, ex′ ∈ Lex(M1||M2). Now, recall that ex1 6|= Gp. ex′

adds to ex1 only behaviors that do not effect Gp. Thus, we can conclude

that ex′ 6|= Gp as well. �

From the definition of Aw and from the above theorem we conclude the

following corollary, which states that Rule AG-UML holds if we replace

A with MAw .

Corollary 6.15 Let Aw be the weakest assumption w.r.t. M1 and ϕ. As-

sume there exists a state machine MAw that represents Aw. Then Rule

AG-UML holds when replacing A with MAw .

The goal of L∗ is therefore to learn Aw. To automate L∗ in our set-

ting we now show how to construct a Teacher that answers membership

and conjecture queries. The Teacher answers queries by “translating” the

queries into state machines, and verifying properties on state machines via

a model checker for behavioral UML systems. The model checker must be

able to always return a definite answer (true or false) for properties of type

AGp. Also, when answering false it should give a counterexample. Model

checkers for behavioral UML systems verify the behavior w.r.t. system con-

figurations. Thus, a counterexample is a computation of the system. It is

straightforward to translate the counterexample into a counterexample exe-

cution or word. Although our goal is to learn Aw, our automatic framework

may stop with a definite true or false answer before Aw is constructed.

103

ØÙ

ÚÛÜÝÞßàáâÚÙã ä

Øå
ÚÙäæçèÞéÙà Øê ØëìÙÚëäæçèÞéëà

ÚÛÜÝÞßàáâÚåã ä ÚÛÜÝÞßàáâÚêã ä

ÚÛÜÝÞßà äíîî

ÚåäæçèÞéåà

Figure 6.3: M(w) constructed for w

For a membership query on w, the Teacher constructs a state machine

for w, and checks if, when executed with M1, ϕ is violated. For conjecture

queries, the Teacher constructs a state machine A(C) from conjecture C,

and verifies Step 1 and Step 2 of Rule AG-UML w.r.t. A(C).

From now on, in our following constructions, we sometimes include an

err state in state machines. For simplicity of presentation, for a given a sys-

tem Γ where some of its state machines include err state, Lex(Γ) represents

only the executions that do not reach err state on any of its state machines.

6.3.2 Membership Queries

To answer a membership query for w ∈ Σ∗, the Teacher must return true

iff w ∈ Aw. The Teacher creates a state machine M(w) s.t. Σ(M(w)) ⊆

Σ. M(w) is constructed s.t. for every ex over EV (Σ) ∪ EV (M1): ex ∈

Lex(M(w)||M1) iff ex ⇂EV (M1)∈ Lex(M1) and ex ⊲ w. If this holds, then

(by the definition of Aw in Definition 6.13) w ∈ Aw iff for every execution

ex ∈ Lex(M(w)||M1), ex |= Gp.

Let w = σ1, σ2, ..., σm and let σi = (ti, (e
i
1, e

i
2, ..., e

i
ki
)), for i ∈ {1, ...,m}.

The state machine M(w) is presented in Figure 6.3. A transition labeled

with a set of triggers T (e.g., the transition from s1 to err) is a short-

hand for a set of transitions, each labeled with a single trigger t ∈ T . For

σ = (t, (e1, ..., ek)), a compound transition, denoted as a double arrow ⇒,

labeled with trig[grd]/GEN(σ) is a shorthand for a sequence of states and

transitions, where the first transition is labeled with trig[grd], the second

is labeled with action GEN(e1), the third with action GEN(e2), etc. The

idea behind splitting the compound transition into intermediate states is to

enable all possible interleaving between M(w) and M1, thus ensuring that

104

every execution over EV (Σ) ∪ EV (M1) that represents an execution of M1

and matches w is indeed a possible execution of M(w)||M1.

We explicitly define at each state si the behavior of M(w) in response

to any possible event t ∈ trig(Σ). Not specifying such a behavior implies

that if t is dispatched to M(w) then M(w) discards t and remains in the

same state. This is an undesired behavior of M(w), which is supposed to

execute w with no additional intermediate letters. Thus, transitions that

do not match w are sent to state err. The following theorem describes the

executions of M(w).

Theorem 6.16 Let M(w) be the state machine constructed for word w ∈

Σ∗. For every execution ex over EV (Σ): ex ∈ Lex(M(w)) iff there exists a

prefix w′ of w s.t. ex ⊲ w′.

Proof: =⇒ Recall that by the definition of Lex, if ex ∈ Lex(M(w)) then ex

does not reach state err. Thus, for every execution ex ∈ Lex(M(w)), the

corresponding behavior of M(w), ex ⇂M(w), is a prefix of w. Therefore, for

every execution ex over EV (Σ), if ex ∈ Lex(M(w)) then ex ⊲w′ and w′ is a

prefix of w.

⇐= Let ex be an execution over EV (Σ). Assume ex ⊲ w′ and w′ is a

prefix of w. Note that by the definition of ex ⊲ w′, ex includes exactly the

occurrences that match w′ and gen(e) occurrences for tr(e) ∈ ex. Also,

since ex is an execution over EV (Σ), then there exists a mapping function

γ on ex.

Clearly, M(w) has an execution ex′ s.t. ex′ ⊲ w′. M(w) is constructed

s.t. every transition either consumes a single event or generates a single

event. Since the environment can sent events at any time, we conclude that

every execution over EV (Σ) that matches w′ is available on M(w). Thus,

ex ∈ Lex(M(w)). �

Once M(w) is constructed, the Teacher model checks M(w)||M1 |=

AG(p ∨ IsIn(err)), where IsIn(s) denotes that s is a part of the current

state of the system. The model checker returns true iff for every execution

one of the following holds: (1) the execution does not reach state err, i.e.

the execution matches a prefix of w, and p is satisfied along the entire ex-

ecution, or (2) the execution reaches state err, meaning that the execution

does not match w and therefore we do not need to require p. Note that it

105

is ok to require p on a prefix leading to state err, since Aw is prefix closed

for safety properties. The Teacher returns true, indicating w ∈ Aw iff the

model checker returns true. The following theorem defines the correctness

of the Teacher.

Theorem 6.17 M(w)||M1 |= AG(p ∨ IsIn(err)) iff w ∈ Aw.

Proof: Notice that M(w)||M1 |= AG(p ∨ IsIn(err)) iff for every execution

ex ∈ Lex(M(w)||M1), ex |= Gp. This is an immediate result of the definition

of Lex(Sys) that includes only executions that do not reach state err.

If we show that for every ex over EV (Σ) ∪ EV (M1): ex ⇂EV (M1)∈

Lex(M1) and ex ⊲ w iff ex ∈ Lex(M(w)||M1). Then from Definition 6.13

we can conclude that w ∈ Aw iff for every execution ex ∈ Lex(M(w)||M1),

ex |= Gp, and this is what we need to prove.

Let ex be an execution over EV (Σ) ∪ EV (M1). ex ⊲ w iff ex ⇂EV (Σ) ⊲w

iff (Theorem 6.16) ex ⇂EV (Σ)∈ Lex(M(w)). Thus, ex ⇂EV (M1)∈ Lex(M1)

and ex ⊲ w iff ex ⇂EV (M1)∈ Lex(M1) and ex ⇂EV (Σ)∈ Lex(M(w)). From

Lemma 6.3 we can conclude that ex ⇂EV (M1)∈ Lex(M1) and ex ⊲ w iff ex ∈

Lex(M(w)||M1). �

6.3.3 Conjecture Queries

A conjecture of the L∗ algorithm is a DFA over Σ. Our framework first

transforms this DFA, C, into a state machine A(C). Then, Step 1 and

Step 2 are applied in order to verify the correctness of A(C).

Constructing a State Machine From a DFA:

A DFA is a five tuple C = (Q,α, δ, q0, F), whereQ is a finite non-empty set of

states, α is the alphabet, δ ⊆ Q×α×Q is a deterministic transition relation,

q0 ∈ Q is the initial state, and F ⊆ Q is a set of accepting states. For a

string w, δ(q, w) denotes the state that C arrives at after reading w, starting

from state q. A string w is accepted by C iff δ(q0, w) ∈ F . The language of

C, denoted L(C), is the set {w|δ(q0, w) ∈ F}. The DFAs returned by the

L∗ algorithm are complete, minimal, and prefix-closed. Thus they contain

a single non-accepting state, qerr, and for every σ ∈ α and q ∈ Q, δ(q, σ) is

defined.

106

ïðñòïóðôñõõ

ö÷öø ð÷ù

úðñòûóü÷øñòùð÷ýñþÿô✆✒ô✂✓�ô✆✕✒ô✂
ðñÿô✆✒ô✂✓�ô✆✕✒ô✂✖✁✄☎ï✝ü÷✝ð✞ñõ

ðñÿô✆✒ô✂✓�ô✆✕✒ôñ✖✁✄☎ïóðôñõ
ô✂ ôñ

ïðñò✟õ

ïûóü÷øñò✟õ

ïùð÷ýñò✟õ

ïðñòï✝ü÷✝ð✞ñõõ

ïûóü÷øñò✟õ

ïùð÷ýñò✟õ

ïðñò✟õ

ïðñòï✝ü÷✝ð✞ñõõ

úûóü÷øñòùð÷ýñþÿô✆✒ôñ✓�ô✆✕✒ô✂
ðñÿô✆✒ôñ✓�ô✆✕✒ôñ
ðñÿô✆✒ôñ✓�ô✆✕✒ôñ✖✁✄☎ï✝ü÷✝ð✞ñõ

ô✠✡✡
ïðñòïóðôñõõ

ðóó
ðñÿô✆✒ôñ✓�ô✆✕✒ô✠✡✡✖✁✄☎ïóðôñõ

Figure 6.4: Conjecture DFA C (left) and state machine A(C) (right)

The alphabet α of the DFA in our framework is exactly Σ. Given a

DFA C = (Q,Σ, δ, q0, Q \ {qerr}), we construct a state machine A(C) where

EV (A(C)) = EV (Σ). We then show that A(C) represents L(C), i.e., for

every execution ex over EV (Σ), ex ∈ Lex(A(C)) iff there exists w ∈ L(C)

s.t. ex ⊲ w.

Definition 6.18 [A(C) Construction] Let C = (Q,Σ, δ, q0, Q \ {qerr}).

A(C) includes 3 states: init, end and err, where init is the initial state.

A(C) includes a single variable qs whose domain is Q, initialized to q0.

A(C) has the following transitions:

1. For every q ∈ Q \ {qerr} and σ = (t, (e1, .., en)) ∈ Σ where δ(q, σ) = q′

and q′ 6= qerr, add a compound transition labeled with t[qs = q]/qs :=

q′;GEN(σ) from init to end

2. For every q ∈ Q \ {qerr} and σ = (t, (e1, .., en)) ∈ Σ where δ(q, σ) =

qerr, add a compound transition labeled with t[qs = q]/qs := q′;GEN(σ)

from init to err

3. Add a transition with no trigger, guard or action from end to init.

Example 6.19 For Γ = server||client and ϕ = AG(¬(InQ(grant1) ∧

InQ(deny1)), the conjecture DFA C returned from the L∗ algorithm, and

state machine A(C) representing L(C), are presented in Figure 6.4.

The construction ensures that for every t ∈ trig(Σ) and for every q ∈

Q\{qerr} there exists a transition from init with trigger t and guard qs = q.

107

That is, as long as A(C) is at state init in the beginning of an RTC step, it

does not discard events. Also, according to the semantics of state machines,

every RTC step that starts at state init, either moves to state err, which is

a sink state, or moves to state end and returns to state init. The following

theorem states that A(C) is indeed a state machine representing L(C).

Theorem 6.20 Let A(C) be the state machine constructed for DFA C. For

every execution ex over EV (Σ): ex ∈ Lex(A(C)) iff there exists w ∈ L(C)

s.t. ex ⊲ w.

Proof: The proof of this theorem is similar to the proof of theorem 6.16:

⇐= Let ex be an execution over EV (Σ). Assume ex ⊲ w and w ∈ L(C).

Clearly, by construction of A(C), A(C) has an execution ex′ s.t. ex′ ⊲ w.

A(C) is constructed s.t. every transition either consumes a single event or

generates a single event. Since the environment can send events at any time,

we conclude that every execution over EV (Σ) that matches w is available

on A(C). Thus, ex ∈ Lex(A(C)).

=⇒ Let ex be an execution in Lex(A(C)). By definition, it does not

pass through state err. Assume by way of contradiction that there exists

w ∈ Σ∗ s.t. ex⊲w and w 6∈ L(C). L(C) is prefix closed. We then look at the

longest prefix w′ of w s.t. w′ ∈ L(C). Based on the construction of A(C),

the RTC step executed after w′ matches a transition in C to a non-error

state, and thus w′ can be extended to a longer prefix of w included in L(C).

A contradiction. We conclude that w ∈ L(C). �

After creating A(C), the Teacher uses two oracles and a counterexample

analysis to answer conjecture queries.

Check [A(C)]M1〈ϕ〉:

Oracle 1 performs Step 1 in the compositional rule by model checking

A(C)||M1 |= AG(p ∨ IsIn(err)). If the model checker returns false with a

counterexample execution cex, the Teacher informs L∗ that the conjecture

is incorrect, and gives it the word w ∈ Σ∗ s.t. cex ⊲ w to witness this fact

(w ∈ L(C) and w 6∈ Aw). If the model checker returns true, indicating that

[A(C)]M1〈ϕ〉 holds, then the Teacher forwards A(C) to Oracle 2.

108

☛☞✌

☛☞✌✍✎

✏✑✔

✗✘☛✙✚✛✜✢

✘☛✙✔✚✣✤

✏✎✔

✗✘☛✙✚✥✜✢

✘☛✙✔✚✦✤

✧★✩✙✪✫✬✭

✮✯✰✱✘✘
✏✲✔

✗✘☛✙✚✣✜

✳✴✵✶ ✴✳✴✵✶ ✷✸✹✺

✻✼✽✸✾✸✿❀✹✸✼❁❂✶❃

❄❅✫✭ ✘☛✙✚✣❆

✙❅✫✙❇ ✮✯✰ ❈✭✙✪❉❊❈☞✭

❋● ✴❋● ✷✸✹✺ ✻✼✽✸✾✸✿❀✹✸✼❁❂✶ ❃

✥✩ ✘☛✙✔✚✛ ☞✭ ✫❍✫✭☛ ✙☞✭❊❉■✌☛❈☞✭

✣✩ ✌❉❊❅ ❏✘✫✪✫❍✬✭☛❑ ✫❍✫✭☛❊ ☛☞ ✧★

Figure 6.5: General scheme for M(M2, A(C)) created from A(C) and M2

Check 〈true〉M2[A(C)]:

Oracle 2 preforms Step 2 in the compositional rule. That is, it checks that

for every execution ex ∈ Lex(M2), ex ⇂EV (A(C))∈ Lex(A(C)). Note that

this is a language containment check. In state machines there is no known

algorithm for checking language containment. We present here a method for

this check in the special case where the abstract state machine is the state

machine A(C) previously defined. Step 2 is done by constructing a single

state machine, and applying model checking on the resulting state machine.

Given the state machines M2 and A(C), Oracle 2 constructs a new state

machine, M(M2, A(C)), that is composed from modifications of M2 and

A(C) as two orthogonal regions. M(M2, A(C)) is constructed so that the

behavior of M2 is monitored by A(C) after every RTC step. M(M2, A(C))

includes a synchronization mechanism, so that when an event is dispatched,

first the region that includes M2 executes the RTC step. When it finishes,

the region that includes A(C) executes its step only if A(C) has a behav-

ior that matches M2. If A(C) does not have a matching behavior, then

M(M2, A(C)) moves to an error state, indicating that 〈true〉M2[A(C)] does

not hold. The general structure of M(M2, A(C)) is presented in Figure 6.5.

From here on, we denote the variation ofM2 and A(C) that are regions in

M(M2, A(C)) as M̂2 and Â(C), respectively. We add a local queue, IQ, and

two local variables, rtc and tr, to M(M2, A(C)). tr “records” the event e

dispatched to M(M2, A(C)), if e ∈ trig(Σ). IQ “records” events generated

by M̂2 which are from evnts(Σ). Whenever M̂2 generates an event from

evnts(Σ), it also pushes the event to IQ. Â(C) will, in turn, check if it has

a matching behavior by observing IQ. rtc is used for fixing the order of

109

execution along an RTC step of M(M2, A(C)). It is initialized to 0, and

as long as the monitoring is successful, the value of rtc at the end of the

RTC step of M(M2, A(C)) is 0. rtc = 3 indicates that M̂2 is executing an

RTC step that should be monitored. rtc = 2 indicates that M̂2 finished

its execution, and Â(C) can monitor the behavior. rtc = 1 indicates that

the monitoring step of Â(C) was successful, i.e., Â(C) has a behavior that

matches M̂2. If the monitoring of Â(C) failed, then rtc at the end of the

RTC step is 2, indicating an error.

The following modifications are applied to M2 for constructing M̂2: Set

rtc to 3 on transitions that consume event e ∈ trig(Σ), and add IQ.push(e′)

on transitions that generate event e′ ∈ gen(Σ).

The following modifications are applied to A(C) (Definition 6.18) for con-

structing Â(C):

1. Add a new state called step to A(C), and for every t ∈ trig(Σ), add a

transition from init to step labeled t/tr := t.

2. Every compound transition from init to end labeled with:

t[qs = q]/qs := q′;GEN(e1); ...;GEN(en) s.t. n > 0

is replaced with a transition from step to end labeled with:

[tr = t ∧ qs = q ∧ rtc = 2 ∧ IQ = (e1, ..., en)]/qs := q′; rtc := 1

3. Every compound transition from init to end labeled with: t[qs =

q]/qs := q′ (no event generation), is replaced with a transition from

step to end labeled with: [tr = t∧qs = q∧ ((rtc = 2∧IQ = ())∨rtc =

0)]/ qs := q′; rtc := 1

4. Every compound transition from init to err labeled with:

t[qs = q]/qs := q′;GEN(e1); ...;GEN(en) s.t. n > 0

is replaced with a transition from step to err labeled with:

[tr = t ∧ qs = q ∧ rtc = 2 ∧ IQ = (e1, ..., en)]/qs := q′; rtc := 2

5. Every compound transition from init to err labeled with: t[qs =

q]/qs := q′ (no event generation), is replaced with a transition from

step to err labeled with: [tr = t∧ qs = q∧ ((rtc = 2∧ IQ = ())∨ rtc =

0)]/ qs := q′; rtc := 2

If Â(C) is at state step and rtc = 0 holds, then M̂2 discarded the event t

in the current RTC step. Â(C) has a matching behavior if it has a behavior

110

that consumes t and does not generate events. The transitions described

in (3) and (5) monitor RTC steps of M̂2 that consume event t and do not

generate any events, and also RTC steps that discard t. Note that items (2)

and (4) (respectively, (3) and (5)) are distinct in the target state (end or

err) and in the assignment to rtc on the action. The transitions in (2) and

(3) monitor RTC steps that are legal in Â(C), and transitions in (4) and (5)

monitor RTC steps that are not legal in Â(C).

The correctness of our construction is captured in the following theorem.

Theorem 6.21 Let ex be an execution in Lex(M(M2, A(C))), and let ex′ be

the maximal prefix of ex that does not include the suffix where IsIn(RTCErr)

holds (if there exists such a suffix). Then the following holds: ex reaches

state RTCErr iff ex′ ⇂EV (M2)∈ Lex(M2) and ex
′ ⇂EV (A(C)) 6∈ Lex(A(C)).

Note that since RTCErr is a sink state, then if an execution ex on

M(M2, A(C)) reaches stateRTCErr, then every event sent toM(M2, A(C))

will be discarded.

Proof: We first prove by induction on the number of RTC steps that for

every execution of M(M2, A(C)), at the end of every RTC step the following

holds: Variable rtc is 0 iff the execution is not at state RTCErr and Â(C)

is at state init.

Base: For k = 0, by construction rtc is 0, and also the initial state of

M(M2, A(C)) does not include RTCErr. Moreover, the initial state of

Â(C) is init.

Step: For any execution ex ∈ M(M2, A(C)), assume the property holds

on ex after k RTC steps. If rtc 6= 0 after k RTC steps, then based on the

induction assumption, ex is at state RTCErr. Since RTCErr is a sink

state, then ex remains at this state. Also, by construction, the value of rtc

cannot change, and thus remains not 0.

If rtc = 0 after k RTC steps: assume the event dispatched toM(M2, A(C))

is e. By construction, the current state of M(M2, A(C)) includes a state

from M̂2. Also, based on the assumption Â(C) is at state init. One of the

following behaviors are possible (based on the semantics of state machines):

• If e 6∈ trig(Σ): By construction of M̂2, rtc does not change during

the RTC step of M̂2. Also, there is no transition in Â(C) with trig-

ger e, and thus Â(C) discards e and remains at state init. Thus,

111

after the RTC step terminates on M̂2 no other transition is enabled in

M(M2, A(C)). The RTC then terminates and rtc remains with value

0, M(M2, A(C)) does not reach state RTCErr, and Â(C) is at init.

• If e ∈ trig(Σ):

– If M̂2 consumes e, then by construction of M̂2, the transition of

M̂2 that consumes the event sets rtc to 3. Since e ∈ trig(Σ),

then by construction if Â(C), there exists an enabled transition

from init to step in Â(C). Since all transitions from step have a

guard requiring either that rtc = 0 or rtc = 2, then no transition

is enabled in Â(C). Thus the RTC step continues on M̂2 until it

terminates. Transition τ1 then becomes enabled, setting rtc to 2,

after which one of the following holds:

∗ Â(C) has no enabled transition. Then transition τ3 becomes

enabled, which causesM(M2, A(C)) to move to state RTCErr,

and the RTC step terminates with rtc = 2.

∗ Â(C) has an enabled transition t: Â(C) executes t. This

transition is either a transition from step to err, which (by

construction) sets rtc to 2, or from step to end, which (by

construction) sets rtc to 1, and the RTC step on Â(C) then

executes the null transition from end to init.

If Â(C) reached state err, then rtc is 2, and transition τ3 be-

comes enabled, which causes M(M2, A(C)) to move to state

RTCErr, and the RTC step terminates with rtc = 2.

If Â(C) reaches state init with rtc = 1, then transition τ2
becomes enabled, setting rtc to 0, and the RTC step termi-

nates.

– If M̂2 discards e, then by construction of Σ, (e, ǫ) ∈ Σ. Thus,

Â(C) consumes e and moves from state init to state step. Let

qs = q. Since C is complete, then there exists a transition from

q (in C) denoted with (e, ǫ). Based on the construction of A(C)

and Â(C), there exists a transition from step that is now enabled

(to either err or end). Similarly to the cases above, the property

holds when the RTC step terminates.

We conclude that at the end of the RTC step of M(M2, A(C)), the

112

variable rtc is 0 iff the execution is not at state RTCErr and Â(C) is at

state init. We return to the main theorem: ex reaches state RTCErr iff

ex′ ⇂EV (M2)∈ Lex(M2) and ex
′ ⇂EV (A(C)) 6∈ Lex(A(C)).

⇐=: Assume ex does not reach state RTCErr (that is, ex′ = ex).

Then since only M̂2 generates events in M(M2, A(C)), clearly ex⇂EV (M2)∈

Lex(M2). By the construction of Â(C) it is clear that if Â(C) reaches

state err, then rtc is set to 2, which causes M(M2, A(C)) to move to

state RTCErr. We can therefore conclude that if ex does not reach state

RTCErr then Â(C) does not reach err state. By the construction of Â(C),

it also holds that ex⇂EV (A(C))∈ Lex(A(C)).

=⇒: Assume ex reaches state RTCErr. Consider the prefix on ex′ with-

out the last RTC step (that reaches state RTCErr, denoted ex′′. Since ex′′

does not reach RTCErr, from the proof of ⇐= we know that ex′′ ⇂EV (M2)∈

Lex(M2) and ex′′ ⇂EV (A(C))∈ Lex(A(C)), and the RTC step of ex′′ termi-

nated when Â(C) at state init. This means that during the last RTC of ex′,

rtc started with value 0 and was set to 2. Similarly to the induction proof, we

can show that this means that during the last RTC step Â(C) traversed from

init to err. Thus ex′ ⇂EV (A(C)) 6∈ Lex(A(C)). Clearly, ex′ ⇂EV (M2)∈ Lex(M2).

�

After constructingM(M2, A(C)), Oracle 2 model checksM(M2, A(C)) |=

AG(¬IsIn (RTCErr)). If the model checker returns true, then the Teacher

returns true and our framework terminates the verification, because accord-

ing to Rule AG-UML, ϕ has been proved on M1||M2. Otherwise, if the

model checker returns false with a counterexample execution cex, then cex

is analyzed as follows.

Counterexample Analysis:

Note that only M̂2 generates events. Thus, by projecting the execution

cex on {tr(e)|e ∈ trig(Σ)} ∪ {gen(e)|e ∈ evnts(Σ)} we can obtain w ∈ Σ∗

s.t. cex ⊲ w. The Teacher executes a membership query on w, for checking

whether w is in Aw (as presented in Section 6.3.2). If the membership query

succeeds (i.e, w ∈ Aw), the Teacher informs L∗ that the conjecture is incor-

rect, and gives it w to witness this fact (since w ∈ Aw but w 6∈ L(C)). If the

membership query fails then the Teacher concludes that 〈true〉M1||M2〈ϕ〉

113

does not hold, since cex ⇂EV (M2)∈ Lex(M2), cex ⇂EV (M2) ⊲w and w 6∈ Aw
(Theorem 6.14). The Teacher then returns false.

Example 6.22 Consider the system Γ = server||client and the assump-

tion A(C) from Figure 6.4. When checking 〈true〉client[A(C)], the model

checker may return a counterexample cex, represented by the word w =

(e1, (req1)), (e1, (cancel1)), (e1, (req1)) (cex ⊲ w). cex⇂EV (M2)∈ Lex(client),

cex⇂EV (M2) ⊲w and w 6∈ L(C).

During counterexample analysis, the Teacher performs a membership

query on w. This check fails, since there exists an execution ofM(w)||server

that violates the property AG(¬(InQ(grant1)∧InQ(deny1))). Note that the

property is violated even though server receives the event cancel1 before

it receives the second req1. However, there exists a behavior of the envi-

ronment of M(w)||server that causes violation of the property: if server

receives event req2 after cancel1, then when it receives the second req1 it

will send deny1. Note that since every state machine runs on a different

thread, it is possible that the event grant1, previously sent to client, was

not yet dispatched. Thus, when deny1 is added to the EQ of client, the

property is violated. Since the membership query fails, we conclude that

server||client 6|= ϕ.

6.3.4 Correctness

We first show soundnessof our approach, and then show that it terminates.

Theorem 6.23 Given state machines M1 and M2, and a property AGp,

our framework returns true if M1||M2 |= AGp and false otherwise.

Proof: The Teacher in our framework uses the two steps of the Rule AG-

UML to answer conjecture queries. Our framework returns false if it de-

tects an execution on M2 whose projection on Σ is not in Aw. By Theo-

rem 6.14 this implies that M1||M2 6|= AGp.

Our framework returns true only when both steps of the Rule AG-

UML return true. That is, it learned L(C) s.t. the state machine A(C) sat-

isfies both steps of the rule. By the construction of Σ, and since Σ(A(C)) =

Σ then it holds that EV (A(C)) ⊆ EV (M2). Thus, based on Theorem 6.10,

it holds that M1||M2 |= AGp. �

114

Termination: Assuming the number of configurations of M1||M2 is finite,

the weakest assumption w.r.t. M1 and ϕ, Aw, is a regular language. To

prove this, we construct an accepting automaton for Aw similarly to the

construction in [24]. Since Aw is a regular language, then by correctness of

the L∗ algorithm, we are guaranteed that if it keeps receiving counterexam-

ples, it will eventually produce Aw. The Teacher will then apply Step 2,

which will return, based on Theorem 6.14, either true or a counterexample.

6.3.5 Performance Analysis

Our framework for automated learning-based AG reasoning is applied di-

rectly at the state machine level. That is, the system’s components and the

learned assumptions are state machines. However, the learning is done by

applying an off-the-shelf L∗ algorithm, whose conjectures are DFAs and its

membership queries are words. Thus we need to translate DFAs and words

into state machines. On the other hand we never need to translate from

state machines back to low level representation (such as LTSs or DFAs). It

is important to emphasize that, as shown above, the translation from DFAs

and words to UML state machines is simple and straightforward, since the

state machines created do not include complex features (such as hierarchy or

orthogonality). On the other hand, a translation from UML state machines

to DFAs may result in an exponential blowup, since the hierarchy and or-

thogonal structure should be flattened. Moreover, the event queues need to

be represented explicitly, causing another blowup. Note that applying such

a translation to LTSs does not influence the number of the membership or

conjecture queries, as the learned assumption remains the same. However,

it complicates the model checking used to answer these queries, since the

system is much larger.

Our framework learns assumptions over an alphabet consisting of se-

quences of events representing RTC steps of M2. We refer to this alphabet

as RTC alphabet. Note that it is also possible to apply the framework (with

minor modifications) over an alphabet consisting of single event occurrences

(called event alphabet) rather then over the RTC alphabet, while still keep-

ing the learning at the UML level. However, learning over the RTC alphabet

is often better, as discussed below.

The complexity of the L∗ algorithm can be represented by the number

115

of membership and conjecture queries it needs in order to learn an unknown

language U . As shown in [50, 15], the number of membership queries of L∗

is O(n2 ·k+n ·log(m)) and the number of conjecture queries is at most n−1,

where n represents the number of states in the learned DFA, k is the size of

the alphabet, and m is the size of the longest counterexample returned by

the Teacher. This results from the characteristics of L∗, which learns the

minimal automaton for U , and from the fact that each conjecture is smaller

than the next one.

In theory, the size of the RTC alphabet might be much larger than the

size of the event alphabet. This happens when every possible sequence of

events is a possible RTC step of M2. However, in practice typical state ma-

chines exhibit only a much smaller number of different RTC steps. Moreover,

the number of states in the DFA QRTC learned over the RTC alphabet may

be much smaller than the number of states in the DFA Qevnt over the event

alphabet. This is because a single transition in QRTC might be replaced by

a sequence of transitions in Qevnt, one for each of the events in the RTC.

The above observations are demonstrated in the following example.

Example 6.24 We re-visit the example presented throughout section 6.3.

Γ = server||client where server is M1, client is M2, and ϕ = ∀G(¬(InQ(

grant1) ∧ InQ(deny1))). The final DFA learned when using sequences over

RTC alphabet is presented in Figure 6.4(a). The total number of membership

queries is O(32 · 5 + 3 · log2) and there are 2 conjecture queries.

If we apply learning of sequences over single event occurrences, then there

are O(42 ·5+4 · log3) membership queries and 3 conjecture queries, since the

resulting DFA has 4 states and the alphabet is {tr(e1), tr(grant1), tr(deny1),

gen(req1), gen(cancel1)}.

6.4 AG for Systems with Multiple State Machines

In the previous section we introduced a framework for applying AG reason-

ing on UML systems of type M1||M2, whereM1 and M2 are state machines.

In this section we present extension of the framework for systems with mul-

tiple state machines.

The correctness of the framework presented in Section 6.3, which is based

on learning the weakest assumption Aw (Corollary 6.15), assumes that Aw is

116

defined over the assumption alphabet of a single state machine M2. More-

over, the meaning of words and the relation between executions and words

are defined under the assumption that words represent the behavior of a sin-

gle state machine. When matching an execution to a word (Definition 6.7),

for system Γ that includes a state machine M : An execution ex ∈ Lex(Γ)

matches a word w ∈ Σ(M)∗ if the behavior of M on ex matches w. Assume

now that we replace M with M ′||M ′′ (M ′,M ′′ are two state machines),

where M ′ and M ′′ are executed on two different threads. This means that

executions of M ′ and M ′′ might be interleaved. Thus, there might be exe-

cutions ex ∈ Lex(Γ) that do not match any word w ∈ (Σ(M ′) ∪ Σ(M ′′))∗.

It is important to note thatM1 in the framework presented in Section 6.3

can be a system that includes several state machines. Moreover, M2 can also

include several state machines, as long as the state machines of M2 run on a

single thread. If M2 includes multiple state machines M2
1 ||...||M

2
k that run

on a single thread, then we can construct a single state machine M̃2 where

each M2
i is an orthogonal region in M̃2. Since every RTC step starts with a

consumption of an event, and the events sent to eachM2
i are unique, then an

RTC step on M̃2 executes the RTC step in a single region. The executions

of M̃2 are equivalent to those of M2, and we can then apply our framework

on M1||M̃2.

In this section we propose a framework for applying AG reasoning where

M2 includes several state machines each on a different thread, for the case

of star-type systems. These are systems that include a server, MS, and

multiple clients,MCi, s.t. the clients communicate only with the server (and

not with each other). We rely on the unique structure of star-type systems

for proposing an implementation for Rule AG-UML, whereM1 =MS and

M2 = MC1||...||MCn. We also show why the framework is not correct in

the general case where the second component includes several state machines

that possibly communicate with each other. Note that as in the previous

section, MS can include several state machines.

We start with defining the alphabet of a system, and define the relation

between executions and words in such alphabet. We extend Definition 6.5

and define the alphabet of a system Γ =M1||...||Mn as Σ(Γ) = Σ(M1)∪ ...∪

Σ(Mn). Let w be a word in Σ(Γ)∗, the projection of w on Σ(Mi) is denoted

as w ⇂Σ(Mi). We extend Definition 6.7 and match an execution to a word

over system alphabet.

117

Definition 6.25 Let Γ = M1||...||Mn and let ex ∈ Lex(Γ). Let Σ̂ =

Σ(M1) ∪ ... ∪ Σ(Mm) for m ≤ n, and let w = σ1, ..., σj be a word in Σ̂∗.

ex matches w, denoted ex ⊲ w if the following holds.

1. For every i ∈ {1, ...,m}: ex ⊲ w ⇂Σ(Mi), and

2. Let σi = (ti, (e
i
1, ..., e

i
ki
)), and let ξ1 = tr(t1), ..., tr(tj). Also, let ξ2 =

tr(e′1), tr(e
′
2), ... be the projection of ex on {tr(e)|e ∈ trig(Σ̂)}. Then

ξ1 = ξ2.

Intuitively, a word w represents a collection of executions where the

behavior of each state machine matches the relevant projection on w (re-

quirement 1), and the executions agree with w on the order of the dispatched

events (requirement 2). Note that the order of generation of events (gen(e))

on different threads does not have to match w. Thus, every word w matches

a collection of executions that represent different interleavings of the state

machines in Γ, and every execution ex ∈ Lex(Γ) matches a single word

w ∈ Σ̂∗.

In order to apply the L∗ algorithm, we define the assumption alphabet Σ

as follows. Let Γ = MS||MC1||...||MCn, and for every i ∈ {1, ..., n}, let Σi
be the assumption alphabet ofMCi w.r.t. MS and ϕ. Then Σ = Σ1∪...∪Σn.

The definition of weakest assumption (Definition 6.13) is directly extended

to the case of multiple state machines.

The correctness of our framework is based on Theorem 6.14, which can

be extended for star-type systems. However, it cannot be extended for the

general case of multiple state machines in M2. The main challenge in the

proof of Theorem 6.14 is constructing an execution ex by combining ex1 over

EV (Σ) ∪ EV (M1) s.t. ex1 ⇂EV (M1)∈ Lex(M1) and ex2 ∈ Lex(M2), where

both ex1 ⊲ w and ex2 ⊲ w. This construction exploits the fact that if there

exists an execution ex2 ∈ Lex(M2) that matches w, then every execution

ex′2, where M2 behaves as ex2 with a different interleaving of M2 and the

environment, ex′2 is a possible execution of M2 as well. We exploit the fact

that in star-type systems the clients do not communicate with each other,

and make the following observation:

Corollary 6.26 Let Γ = MS||MC1||...||MCn be a star-type system, ϕ be

a safety property, let Σ be the assumption alphabet of MC1||...||MCn w.r.t.

MS and ϕ, and let w ∈ Σ∗.

118

�▲�

�▲
▲

�▼
▲

�◆
▲

���

�❖
▲

�◆�

�▼�

�▼�

��

�▲
▼

�▼
▼

�◆

�❖
▼

����	�▲

����	�▼

����	�P◗❘❙

�❚
▼

�P◗❘❙�

�▲
◆

�▼
◆

�◆
◆

�❖
◆

���

����	�◆

�❯�� �❱
❯�� �❱

❱��

Figure 6.6: Non star-type system example

If there exists an execution ex ∈ Lex(MC1||...||MCn) s.t. ex ⊲ w then the

following holds. For every execution êx over EV (Σ) s.t. êx ⊲w, there exists

an execution ex′ ∈ Lex(MC1||...||MCn) s.t. ex
′ ⇂EV (Σ)= êx.

The above corollary states that if there exists an execution ofMC1||...||MCn
that matches a word w ∈ Σ∗, then there exists an execution ofMC1||...||MCn
for every possible interleaving that matches w. This holds for systems where

the state machines do not communicate with each other. However, clearly,

this observation does not hold for systems where the state machines com-

municate with each other, as exemplified in the following.

Example 6.27 Let Γ =M1||M
2
1 ||M

2
2 be the system presented in Figure 6.6,

and assume we want to check that Γ does not reach BAD state by applying

the AG reasoning. Note that M1 reaches BAD state only if it receives

events e1, followed by e3, followed by e2. Note also that since M1
2 generates

event esync, which is consumed by M2
2 , then in Γ, e3 is always generated

after e1 and e2 were generated. Therefore, Γ does not violate ϕ.

Assume now M2 = M2
1 ||M

2
2 . The interface alphabet, Σ, is {(e, (e1, e2)),

(e′, (e3))}. According to the definition of weakest assumption, the word w =

(e, (e1, e2)), (e
′, (e3)) 6∈ Aw. Since for the execution: ex1 = gen(e), gen(e′),

119

tr(e), gen(e1), tr(e
′), gen(e3), gen(e2), tr(e1), tr(e2), tr(e3) ∈ EV (Σ)∪EV (M1)

the following holds: ex1 ⊲ w, ex1 ⇂EV (M1)∈ Lex(M1), and ex1 6|= ϕ.

When consideringM2 =M2
1 ||M

2
2 , there exists an execution ex2 = gen(e),

tr(e), gen(e1), gen(e2), gen(esync), gen(e
′), tr(esync), tr(e

′), gen(e3) s.t. ex2 ⊲

w. Thus, there exists an execution ex2 ∈ Lex(M2) and a word w ∈ Σ∗ \ Aw
s.t. ex2 ⊲ w. Therefore, the above example shows that Theorem 6.14 does

not hold.

Theorem 6.14 does not hold since the interleaving of M2 where e3 is

generated by M2
2 before e2 is generated by M1

2 , although it is a possible

interleaving represented by w, it is not a possible behavior of M2 (due to

internal dependencies). Thus, we cannot construct an execution that follows

an execution of M1 and the environment, violates ϕ, and also describes a

legal behavior of M2.

Note that it is possible to include as part of the interface alphabet the

events that joined by M2
1 and M2

2 (i.e., esync). However, this will result in

an alphabet Σ that might be very large.

Since Theorem 6.14 holds for star-type systems, then in order to apply

the AG framework on such systems, we need to provide a Teacher that

answers membership and conjecture queries for star-type systems.

6.4.1 Membership Queries

It is important to notice that in order to answer a membership query for

w ∈ Σ∗, it is not enough for the Teacher to construct a single state ma-

chine whose behavior matches w. Executions over Σ are interleaving ex-

ecutions of several threads, and thus cannot be represented in a single

state machine. The Teacher therefore creates a collection of state machines,

M1(w), ...,Mn(w) s.t. it guarantees that for every ex over EV (Σ)∪EV (MS):

ex ∈ Lex(M1(w)||...||Mn(w)||MS) iff ex⇂EV (MS)∈ Lex(MS) and ex ⊲ w.

Mi(w) is constructed based on w ⇂Σi
, similarly to the construction of

M(w) (Section 6.3.2). We add a global variable cnt, initialized to 1, that

synchronizes the consumption of the events dispatched toM1(w), ...,Mn(w).

Let w = σ1, ..., σk, and let w ⇂Σi
= σi1 , σi2 ,, σim , Mi(w) is presented in

Figure 6.7.

During execution, the variable cnt keeps track of the number of trig-

gers consumed from w, and ensures that M1(w)||...||Mn(w) conforms with

120

Figure 6.7: Mi(w) representing w ⇂Σi

requirement 2 of Definition 6.25. The synchronization is done only on the

consumption of the events, and therefore all possible executions over EV (Σ)

that match w are executions of M1(w)||...||Mn(w). Theorems 6.16 and 6.17

then hold for star-type systems, where M(w) =M1(w)||...||Mn(w).

Example 6.28 Let Γ = server||client1||client2, where the state machine

of server is presented in Figure 6.1, and the state machine of both client1
and client2 is presented in Figure 6.8 (i is 1 for client1 and 2 for client2).

Let ϕ = AG(¬(InQ(grant1)∧InQ(grant2))). That is, ϕ states that it is

not possible for both grant1 and grant2 to be in the event queues. Σ, the al-

phabet of the assumption of client1||client2 w.r.t. server is {(ei, ǫ), (ei, (reqi)),

(ei, (canceli)), (granti, ǫ), (denyi, ǫ)} for i ∈ {1, 2}.

For checking the word w = (e2, (cancel2)), (e1, (req1)) ∈ Σ∗, the Teacher

creates the two state machines M1(w) and M2(w) presented in Figure 6.9.

Notice that by construction of M1(w) and M2(w), for every execution ex ∈

Lex(server||M1(w)||M2(w)), ex ⇂Σ(client1) matches a prefix of (e1, (req1)),

ex ⇂Σ(client2) matches a prefix of (e2, (cancel2)), and e2 is consumed before

e1. Thus, ex ⊲ w′ for w′ ∈ Σ∗ a prefix of w.

121

Figure 6.8: Example State Machine for Class clienti

Figure 6.9: Example for M1(w) and M2(w)

122

❲❳❨❩❲❬❳❭❨❪❪

❭❫ ❭❨

❴❵❛❲❳❨❩❲❬❳❭❨❪❪❜ ❲❝❬❞❡❢❨❩❣❪

❲❤❳❡✐❨❩❣❪

❲❝❬❞❡❢❥❩❣❪

❲❤❳❡✐❥❩❣❪

❲❳❨❩❣❪

❲❳❨❩❬❳❭❨❪

❲❳❨❩❲❦❞❡❦❳❧❨❪❪

❲❳❥❩❣❪

❲❳❥❩❬❳❭❥❪

❲❳❥❩❲❦❞❡❦❳❧❥❪❪

Figure 6.10: Conjecture DFA C for multiple clients

6.4.2 Conjecture Queries

Constructing State Machines From a DFA:

Let C = (Q,Σ, δ, q0, Q \ {qerr}) be the conjecture of the L∗ algorithm. The

Teacher constructs a collection of state machines A1(C), ..., An(C) from C,

where each Ai(C) is constructed from the projection of C on Σi. Let Ci =

(Q,Σi, δi, q0, Q \ {qerr}) be a DFA where δi = δ ∩ (Q × Σi × Q). Ai(C) ≡

A(Ci), where A(Ci) is the state machine created for Ci as described in

Section 6.3.3 (Definition 6.18). Notice that the variable qs is a joint variable

of A1(C), ..., An(C). Theorem 6.20 then holds for star-type systems, where

A(C) = A1(C)||...||An(C).

From now on we denoteA(C) = A1(C)||...||An(C) andM =MC1||...||MCn.

Check [A(C)]MS〈AGp〉:

Oracle 1 performs Step 1 in the compositional rule by model checking

A(C)||MS |= AG(p∨ IsIn(err)). If the model checker returns false with a

counterexample execution cex, the Teacher informs L∗ that the conjecture

is incorrect, and gives it the word w ∈ Σ∗ s.t. cex ⊲ w to witness this fact

(w ∈ L(C) and w 6∈ Aw). If the model checker returns true, indicating that

[A(C)]MS〈AGp〉 holds, then the Teacher forwards A(C) to Oracle 2.

Example 6.29 Let Γ = server||client1||client2, as presented in the previ-

ous example, and let ϕ = AG(¬(InQ(grant1)∧ InQ(grant2))). Figure 6.10

presents a possible conjecture DFA returned by the L∗ algorithm. Figure 6.11

presents the state machines A1(C) and A2(C) constructed from C. Note that

there is no qerr state in C and thus there is no err state in Ai(C) as well.

123

♠♥♠♦♣ q♥r♣

sq♣t✉✈✇♥♦♣trq♥①♣②③④⑤⑥④⑦⑧⑨④⑤⑩⑥④⑦
q♣③④⑤⑥④⑦⑧⑨④⑤⑩⑥④⑦❶❷❸❹❺❻✇♥❻q❼♣❽

q♣③④⑤⑥④⑦⑧⑨④⑤⑩⑥④♣❶❷❸❹❺✈q④♣❽

s✉✈✇♥♦♣trq♥①♣②③④⑤⑥④♣⑧⑨④⑤⑩⑥④⑦
q♣③④⑤⑥④♣⑧⑨④⑤⑩⑥④♣
q♣③④⑤⑥④♣⑧⑨④⑤⑩⑥④♣❶❷❸❹❺❻✇♥❻q❼♣❽

q♣③④⑤⑥④♣⑧⑨④⑤⑩⑥④♣❶❷❸❹❺✈q④♣❽

❾❿➀➁➂➃➃

♠♥♠♦➄ q♥r➄

sq➄t✉✈✇♥♦➄trq♥①➄②③④⑤⑥④⑦⑧⑨④⑤⑩⑥④⑦
q➄③④⑤⑥④⑦⑧⑨④⑤⑩⑥④⑦❶❷❸❹❺❻✇♥❻q❼➄❽

q➄③④⑤⑥④⑦⑧⑨④⑤⑩⑥④⑦❶❷❸❹❺✈q④➄❽

s✉✈✇♥♦➄trq♥①➄②③④⑤⑥④♣⑧⑨④⑤⑩⑥④⑦
q➄③④⑤⑥④♣⑧⑨④⑤⑩⑥④♣
q➄③④⑤⑥④♣⑧⑨④⑤⑩⑥④♣❶❷❸❹❺❻✇♥❻q❼➄❽

q➄③④⑤⑥④♣⑧⑨④⑤⑩⑥④♣❶❷❸❹❺✈q④➄❽

❾➅➀➁➂➃➃

Figure 6.11: State machines A1(C) and A2(C)

When verifying A(C)||MS |= AG(p ∨ IsIn(err)), the model checker re-

turns false with a counterexample. A possible counterexample might be

cex = gen(e1), gen(e1), gen(e2), tr(e1), gen(req1), tr(e1), gen(cancel1), tr(e2),

gen(req2), tr(req1), gen(grant1), tr(cancel1), tr(req2), gen(grant2). This ex-

ecution matches the word w = (e1, (req1)), (e1, (cancel1)), (e2, (cancel2)) over

Σ. Since cex ⊲ w, then w 6∈ Aw, and the Teacher informs L∗ that the con-

jecture is incorrect.

Check 〈true〉M[A(C)]:

Oracle 2 preforms Step 2 in the compositional rule. That is, it checks that

for every execution ex ∈ Lex(M), ex⇂EV (A(C))∈ Lex(A(C)). In section 6.3.3

this check was done by constructing a single state machine, M(M2, A(C)).

However, executions of both M and A(C) are interleaving executions of

several threads, and thus cannot be represented by a single state machine.

Let ex be an execution of a system Γ, ex is referred to as an atomic RTC

execution if the RTC steps of the state machines in Γ do not interleave. We

124

exploit the fact that the clients do not communicate with each other, and

make the following observation: For every execution ex ∈ Lex(M) and

w ∈ Σ(M)∗ s.t. ex ⊲ w, there exists an atomic RTC execution ex′ over

EV (M) s.t. ex′ ∈ Lex(M) and ex′ ⊲ w. The result of this observation is

that in order to check execution inclusion on star-type systems, it is enough

to check atomic RTC executions. This is captured in the following theorem.

Theorem 6.30 Lex(M) ⇂EV (A(C))⊆ Lex(A(C)) iff for every atomic RTC

execution ex ∈ Lex(M), ex⇂EV (A(C))∈ Lex(A(C)).

Oracle 2 checks execution inclusion by considering only atomic RTC

executions of both M and A(C). Notice that if we consider only atomic

executions of a system Γ =M1||...||Mn, then we can construct a single state

machine with n orthogonal regions, each including a single Mi. Oracle 2

constructs two state machines MC and A(C), representing only atomic RTC

executions of M and A(C) respectively. Step 2 is then done based on MC

and A(C), as defined in Section 6.3.3.

Following, we formally define how to create a single state machine with

orthogonal regions from a system with state machines that do not commu-

nicate.

Definition 6.31 Let Γ = M1||...||Mn s.t. for every i 6= j, Mi and Mj do

not communicate. The orthogonal joint state machine of Γ, denoted ∆(Γ),

is a state machine that includes n orthogonal regions, where each region

i ∈ {1, ..., n} includes Mi with the following modifications. Each variable v

of Mi is replaced with variable vi: for every transition of Mi, if v is part of

the guard or the action (or both), replace v with vi.

For every transition of Mi labeled with trigger t, replace t with ti.

The renaming of the variables ensures that in ∆(Γ), variables are local to

their region. The renaming of the triggers ensures uniqueness of the triggers

between the different regions. Note that since for every i 6= j, Mi and Mj

do not communicate, then the target of events generated on actions of ∆(Γ)

is not a state machine in Γ, and thus no need to modify the generation of

the events in ∆(Γ).

We define the operator ẽx as follows.

125

Definition 6.32 Let Γ =M1||...||Mn be a system, and let ex = f1, f2, ... be

an execution in Lex(Γ). ẽx = f ′1, f
′
2, ... where for every i ≥ 1 the following

holds:

• If fi = tr((e,Mj)) where j ∈ {1, ..., n} then f ′i = tr((ej ,∆(Γ))).

• If fi = gen((e,Mj)) where j ∈ {1, ..., n} then f ′i = gen((ej ,∆(Γ))).

• Otherwise, f ′i = fi,

The following theorem captures the relation between the executions of

Γ and ∆(Γ).

Theorem 6.33 Let Γ =M1||...||Mn s.t. for every i 6= j, Mi and Mj do not

communicate. Let ex be an atomic RTC execution. Then ex is in Lex(Γ) iff

ẽx ∈ Lex(∆(Γ)).

Following, we define how to construct a single state machine from A(C).

Definition 6.34 Let A(C) = A1(C)||...||An(C) be the state machines con-

structed from DFA C. Assume that for every i ∈ {1, .., n}, the states of

Ai(C) are initi, endi and erri. The joint state machine of A(C), denoted

Ω(A(C)), includes states init, end and err, where init is the initial state.

Ω(A(C)) has a single variable, qs initialized to q0 (the same joint variable

that exists in the different Ai(C) state machines). For i ∈ {1, ..., n}, and for

every transition in Ai(C) from initi to endi (or to erri) labeled with t[g]/a,

add a transition in Ω(A(C)) from init to end (or to err) labeled with ti[g]/a.

Also add a null transition from end to init (as in Ai(C)).

The following theorem captures the relation between the executions of

A(C) and Ω(A(C)).

Theorem 6.35 An atomic RTC execution ex is in LexA(C) iff

ẽx ∈ Lex(Ω(A(C))).

Oracle 2 Checks execution inclusion on atomic RTC executions by con-

structing ∆(M) and Ω(A(C)), and checking Step 2 as defined in Sec-

tion 6.3.3.

126

Example 6.36 Let Γ = server||client1||client2, as presented in the previ-

ous example, and let ϕ = AG(¬(InQ(grant1) ∧ InQ(grant2))).

The conjecture DFA C returned from the L∗ algorithm, for which Step 1

holds, is presented in Figure 6.12. qerr state and transitions to qerr are de-

noted with dashed lines. The multiple qerr states are for readability. Note

that L(C) 6= Aw. For example, the word w = (e2, (req2)), (grant2, ǫ), (e1,

(cancel1)) 6∈ L(C), although w ∈ Aw. Note that ϕ is violated, for exam-

ple, in the following scenario. client1 sends a req1 followed by a cancel1.

Following, client2 sends a req2. The server will, in turn, send grant1 to

client1 followed by grant2 to client2. If client1 sent cancel1 before it re-

ceived grant1, then it is possible that both grant1 and grant2 are in the

event queues, thus violating the property.

For checking Step 2, oracle 2 constructs a single state machine MC

from client1 and client2 in two orthogonal regions, and constructs A(C)

from A(C). The check of Step 2 returns true, stating that every atomic

RTC execution of client1||client2 has a representative execution in A(C).

We can then conclude that Γ |= ϕ.

Let Γ′ = server||client′1||client
′
2, where the state machine of server is

presented in Figure 6.1, the state machine of client′1 is presented in Fig-

ure 6.2, and the state machine of client′2 is presented in Figure 6.8 (where

i = 2). Note that Σ is the same as in the previous case, and thus the con-

jecture DFA C returned from the L∗ algorithm, for which Step 1 holds, is

the same as before (Figure 6.12).

When checking Step 2, Oracle 2 returns false, with a counterexample. A

possible counterexample is the word w = (e1, (req1)), (e1, (clr1, cancel1)), (e2,

(req2)). For this word, w ∈ Lex(client
′
1||client

′
2), however w ⇂Σ 6∈ L(A).

During the counterexample analysis, the Teacher executes a membership

query on w ⇂Σ= (e1, (req1)), (e1, (cancel1)), (e2, (req2)). This query returns

false, indicating that w ⇂Σ 6∈ Aw. We can then conclude that Γ′ 6|= ϕ.

6.5 Applying Assume-Guarantee Reasoning Recur-

sively

In the previous section we introduced a framework for applying AG reason-

ing for star-type systems. In this section we extend the framework presented

127

➆➇

➆➈

➉➊➋➌➍➎

➉➊➋➌➉➏➐➑➏➊➒➋➎➎

➉➓➔➐➑→➋➌➍➎

➉➣➊➑↔➋➌➍➎

➆↕

➉➊➋➌➍➎

➉➊➈➌➉➔➊➆➈➎➎

➉➊↕➌➉➏➐➑➏➊➒↕➎➎

➉➊➋➌➍➎

➉➊➈➌➉➏➐➑➏➊➒➈➎➎

➉➊↕➌➉➔➊➆↕➎➎

➉➓➔➐➑→➈➌➍➎➌➉➣➊➑↔➈➌➍➎
➉➊➋➌➍➎

➉➊➋➌➉➏➐➑➏➊➒➋➎➎

➉➓➔➐➑→↕➌➍➎

➉➣➊➑↔↕➌➍➎

➉➊↕➌➉➔➊➆↕➎➎

➉➊➋➌➍➎

➉➊➋➌➉➔➊➆➋➎➎

➉➊↕➌➉➔➊➆↕➎➎

➉➊➋➌➍➎

➉➊➋➌➉➏➐➑➏➊➒➋➎➎

➉➓➔➐➑→➈➌➍➎

➉➣➊➑↔➈➌➍➎

➉➊➈➌➉➔➊➆➈➎➎ ➉➓➔➐➑→↕➌➍➎

➉➣➊➑↔↕➌➍➎

➉➓➔➐➑→➈➌➍➎

➉➣➊➑↔➈➌➍➎

➉➓➔➐➑→↕➌➍➎

➉➣➊➑↔↕➌➍➎

➉➊➋➌➍➎

➉➊➋➌➉➔➊➆➋➎➎

➉➓➔➐➑→➈➌➍➎

➉➣➊➑↔➈➌➍➎

➉➊➋➌➍➎

➉➊➋➌➉➔➊➆➋➎➎

➉➓➔➐➑→↕➌➍➎

➉➣➊➑↔↕➌➍➎

➉➊↕➌➉➏➐➑➏➊➒↕➎➎➆➙

➆➛

➆➜

➆➝

➆➞

➆➟➠➠

➉➊↕➌➉➔➊➆↕➎➎

➆➟➠➠

Figure 6.12: The conjecture DFA C

128

previously, and present a framework for applying recursive reasoning. That

is, we present how to apply the following compositional rule for star-type

systems:

Rule AG-UML-Mult

(Step 1) [A1]MS〈ϕ〉

(Step 2) [A2]MC1[A1]

:
:

(Step n) [An]MCn−1[An−1]

(Step n+ 1) 〈true〉MCn[An]

〈true〉MS||MC1||...||MCn〈ϕ〉

We start by formally defining the meaning of [A′]M [A]. Intuitively,

[A′]M [A] holds iff every execution of A′||M has a representative in A. That

is, [A′]M [A] holds iff EV (A) ⊆ EV (A′) ∪ EV (M) and for every ex ∈

Lex(A
′||M), ex⇂EV (A)∈ Lex(A).

Theorem 6.37 Let MS be a state machine, and for i ∈ {1, ..., n} let

MCi and Ai be state machines s.t. for every j ∈ {2, ..., n}: EV (Aj−1) ⊆

EV (Aj) ∪ EV (MCj−1). Let p be a property over events EV ′ ⊆ (EV (A1) ∪

EV (MS)), and let ϕ = AGp. Then Rule AG-UML-Mult is sound.

Proof: Assume by means of negation that Step 1 to Step n+1 hold, how-

ever 〈true〉MS||MC1||...||MCn〈AGp〉 does not hold.

This means that there exists an execution ex ∈ Lex(MS||MC1||...||MCn)

s.t. ex 6|= Gp. By Lemma 6.3, ex ⇂EV (MCn)∈ Lex(MCn). Thus, since

Step n+ 1 holds, ex⇂EV (An)∈ Lex(An).

It also holds (by Lemma 6.3) that ex⇂EV (MCn−1)∈ Lex(MCn−1).

Since ex ⇂EV (MCn−1)∈ Lex(MCn−1) and ex ⇂EV (An)∈ Lex(An), then by

Lemma 6.3 ex ⇂EV (An)∪EV (MCn−1)∈ Lex(An||MCn−1), and since Step n

holds, we can conclude that ex ⇂EV (An−1)∈ Lex(An−1). Similarly, it can

be shown that ex ⇂EV (A1)∈ Lex(A1). Since ex ⇂EV (MS)∈ Lex(MS) and

ex⇂EV (A1)∈ Lex(A1), then by Lemma 6.3 ex⇂EV (A1)∪EV (MS)∈ Lex(A1||MS).

Since Step 1 holds, we can conclude that ex ⇂EV (A1)∪EV (MS)|= Gp. Based

on Theorem 6.9, ex |= Gp as well. A contradiction. We then conclude

that 〈true〉MS||MC1||...||MCn〈AGp〉 holds, which means that Rule AG-

UML-Mult is sound. �

129

At each Step i, we use L∗ to iteratively construct assumption Ai, until

either all premises of Rule AG-UML-Mult hold, or until a real counterex-

ample is found. For i ∈ {1, ..., n}, let Σi be the assumption alphabet of MCi
w.r.t. MS and ϕ. Then Σi, the alphabet of Ai, is defined as Σi = Σi∪...∪Σn.

The notion of weakest assumption is extended for state machines.

Definition 6.38 Let M and A be two state machines, and let Σw be an

alphabet such that EV (A) ⊆ EV (Σw) ∪ EV (M). A language Aw ⊆ Σ∗
w is

the weakest assumption w.r.t. M and A if the following holds: w ∈ Aw iff for

every execution ex over EV (Σw)∪EV (M), if ex⊲w and ex⇂EV (M)∈ Lex(M)

then ex⇂EV (A)∈ Lex(A).

Assume we could construct a set of state machines MAw

1 , ...,MAw
m that

represent Aw. That is, for every execution ex over EV (Σw), ex ∈ Lex(M
Aw

1 ||

...||MAw
m) iff there exists w ∈ Aw s.t. ex ⊲w. Then MAw

1 ||...||MAw
m describes

exactly those executions over Σw that when executed with M have a repre-

sentative in A.

For i ∈ {1, ..., n − 1}, and for state machines MCi,MCi+1,...,MCn, it is

possible to extend Theorem 6.14 and prove the following.

Theorem 6.39 Let Ai be a state machine over Σi, and let Ai+1
w ⊆ Σi+1 be

the weakest assumption w.r.t. MCi and Ai. Then 〈true〉MCi||...||MCn[Ai]

iff for every execution ex ∈ Lex(MCi+1||...||MCn), there exists w ∈ Ai+1
w

s.t. ex ⊲ w.

The proof of the above theorem exploits the fact that the state machines

MCi,MCi+1,..., MCn do not communicate with each other. From the above

theorem we can conclude that in order to prove Rule AG-UML-Mult, the

goal of L∗ is to learn Aiw (for i ∈ {1, ..., n}).

Step 1 is done as described in Section 6.4. Following, we present how to

recursively verifyMC1||...||MCn w.r.t. A1. We define when a system is fully

interleaved. Intuitively, a system if fully interleaved if for every execution ex

of the system, every possible interleaving of ex is also an execution of the

system.

Definition 6.40 Let Γ = M1||...||Mn be a system, let ex ∈ Lex(Γ) be an

execution and let w ∈ Σ(Γ)∗ be a word s.t ex ⊲ w. We say that Γ is fully

interleaved if for every ex′ over Σ(Γ) where ex′ ⊲ w, ex′ ∈ Lex(Γ).

130

The correctness of our framework is based on the following observation,

which exploits the characteristics of fully interleaved systems. Let Γ and Γ′

be two systems where Γ′ is fully interleaved and EV (Γ′) ⊆ EV (Γ). In order

to check execution inclusion (i.e., check that Lex(Γ) ⇂EV (Γ′)⊆ Lex(Γ
′)), it is

enough to check that every word w over Σ(Γ), if there exists some execution

in Lex(Γ) that matches w, then this execution has a representative in Lex(Γ
′).

This is captured in the following theorem.

Theorem 6.41 Let Γ and Γ′ be two systems where Γ′ is fully interleaved,

and EV (Γ′) ⊆ EV (Γ). Lex(Γ) ⇂EV (Γ′)⊆ Lex(Γ
′) iff for every word w ∈

Σ(Γ)∗, if there exists ex ∈ Lex(Γ) s.t. ex ⊲ w then ex⇂EV (Γ′)∈ Lex(Γ
′).

Note that A1 is fully interleaved, based on the correctness of Theo-

rem 6.20 for star-type systems. For i ∈ {2, ..., n}, when proving Step i,

we assume Ai−1 is fully interleaved, and provide a Teacher that uses the

L∗ algorithm for learning assumption Ai. Our construction ensures that Ai
is fully interleaved, and that Ai does not communicate with MCi−1. We

can therefore conclude that for every execution ex ∈ Lex(Ai||MCi−1) there

exists an atomic RTC execution ex′ ∈ Lex(Ai||MCi−1) that is represented

by the same word. We say that ex′ is the atomic RTC representative of

ex. Thus, based on Theorem 6.41, in order to check Step i, it is enough to

ensure that every atomic RTC execution of Ai||MCi−1 has a representative

in Ai−1.

6.5.1 Membership Queries

Let Ai be a fully interleaved system over Σi = Σi ∪ ... ∪ Σn. To answer a

membership query for w ∈ (Σi+1)∗, the Teacher must return true iff w ∈

Ai+1
w . The Teacher creates a collection of state machinesMi+1(w), ...,Mn(w)

such that for every j ∈ {i + 1, ..., n}, Σ(Mj(w)) ⊆ Σj . Assume we con-

struct Mi+1(w), ...,Mn(w) as presented in Section 6.4.1. By construction,

Mi+1(w)||...||Mn(w) is fully interleaved. Moreover, Mi+1(w)||...||Mn(w) do

not communicate withMCi, thus every execution ex ofMi+1(w)||...||Mn(w)

||MCi has an atomic RTC representative. We conclude that based on The-

orem 6.41, [Mi+1(w)||...||Mn(w)]MCi[Ai] holds iff for every atomic RTC

execution ex ∈ Lex(Mi+1(w)||...||Mn(w)||MCi), ex ⇂EV (Ai)∈ Lex(Ai). This

is captured in the following theorem.

131

Theorem 6.42 Lex(Mi+1(w)||...||Mn(w)||MCi)⇂EV (Ai)⊆ Lex(Ai) iff for ev-

ery atomic RTC execution ex ∈ Lex(Mi+1(w)||...||Mn(w)||MCi), ex⇂EV (Ai)∈

Lex(Ai).

We construct a single state machine M i+1(w) whose executions are ex-

actly the atomic RTC executions of Mi+1(w)||...||Mn(w). M
i+1(w) is there-

fore constructed as described in section 6.3.2. Once M i+1(w) is obtained,

Oracle 1 constructs a single state machine whose executions ar exactly the

atomic RTC executions of M i+1(w)||MCi. This is done by constructing

∆(M i+1(w)||MCi) (from Definition 6.31). We denote ∆(M i+1(w)||MCi) as

∆i(w). Similarly, in order to consider only atomic RTC executions of Ai,

Oracle 1 constructs Ω(Ai) (from Definition 6.34).

Execution inclusion between atomic RTC executions of Mi+1(w)||...||

Mn(w)||MCi and Ai is then done by checking execution inclusion between

∆i(w) and Ω(Ai). This check is similar to the check of Step 2 in Section 6.3.3.

I.e., construct a new state machine, M(∆i(w),Ω(Ai)), and model check

M(∆i(w),Ω(Ai)) |= AG(¬IsIn(RTCErr)). Recall that in the construction

of M(∆i(w),Ω(Ai)), every behavior of ∆i(w) is monitored. However, in this

case we want to monitor only behaviors of ∆i(w) that follow w. That is,

executions of ∆i(w) that do not reach err state (on M i+1(w)). We therefore

modify M(∆i(w),Ω(Ai)) in order to ensure that only behaviors that do not

reach err state on ∆i(w) are monitored. We denote the modified state

machine as M̂(∆i(w),Ω(Ai))

Recall that the variable rtc is used for fixing the order of execution along

an RTC step of M(∆i(w),Ω(Ai)). On M̂(∆i(w),Ω(Ai)), rtc = 4 indicates

that the execution of ∆i(w) does not match w, and thus there is no need

to ensure execution inclusion on the rest of this execution. The general

structure of the modified M̂(∆i(w),Ω(Ai)) is presented in Figure 6.13. We

modify ∆i(w) as follows. For every transition in the region of M i+1(w) to

state err, replace rtc := 3 on the action with rtc := 4.

The correctness of our construction is captured in the following theorem:

Theorem 6.43 For every ex ∈ Lex(M̂(∆i(w),Ω(Ai))) there exists w′ ∈

(Σi+1)∗ s.t. ex ⊲ w′ and the following holds:

• ex reaches state RTCOk iff w′ is not a prefix of w, and

132

➡➢➤

➥➦➧➨➩➫➦➭➯➲➲➧➳➨➯

➵➸➡➺➻➼➽➾

➸➡➺➚➻➪➶

➵➸➡➺➻➹➽➾

➸➡➺➚➻➘➶

➴➷➬➺➮➱✃❐

❒❮❰Ï➸➸
➵➸➡➺➻➪➽

Ð➨ ➭ÑÒÓ

ÔÕÖÑ×ÑØÙÒÑÕÚÛÜ

ÝÞ➱❐ ➸➡➺➻➪ß

➺Þ➱➺à ❒❮❰ á❐➺➮âãá➢❐

➧➨➩➫➦➭➯ ➭ÑÒÓ ÔÕÖÑ×ÑØÙÒÑÕÚÛÜ

➹➬ ➸➡➺➚➻➼ ➢❐ ➱ä➱❐➡ ➺➢❐ãâå➤➡á➢❐

➪➬ ➤âãÞ æ➸➱➮➱ä✃❐➡ç ➱ä➱❐➡ã ➡➢ ➴➷

➼➬ ➸➡➺➚➻è ➢❐ ➡➸✃❐ãá➡á➢❐ã ➡➢ éêê

➧➳➨ ➭ÑÒÓ ÔÕÖÑ×ÑØÙÒÑÕÚÛÜ

➹➬ ➸➡➺➚➻➼ ➢❐ ➱ä➱❐➡ ➺➢❐ãâå➤➡á➢❐

➪➬ ➤âãÞ æ➸➱➮➱ä✃❐➡ç ➱ä➱❐➡ã ➡➢ ➴➷

❒❮❰ëà
➵➸➡➺➻è➽

Figure 6.13: General scheme for M̂(∆i(w),Ω(Ai))

• ex reaches state RTCErr iff w′ is a prefix of w, ex⇂EV (∆i(w))∈ Lex(∆i(w)),

and ex⇂EV (Ω(Ai)) 6∈ Lex(Ω(Ai))).

Once M̂(∆i(w),Ω(Ai)) is constructed, the Teacher model checks

M̂(∆i(w),Ω(Ai)) |= AG(¬IsIn(RTCErr)). The Teacher returns true, in-

dicating that w ∈ Ai+1
w iff the model checker returns true.

6.5.2 Conjecture Queries

Constructing A State Machine From a DFA:

Let C = (Q,Σi+1, δ, q0, Q \ {qerr}) be the conjecture of the L∗ algorithm.

Assume we construct Ai+1(C), ..., An(C) as presented in Section 6.4.2. By

construction, Ai+1(C) = Ai+1(C)||...||An(C) is fully interleaved. More-

over, Ai+1(C) do not communicate with MCi, thus every execution ex of

Ai+1(C)||MCi has an atomic RTC representative. We conclude that based

on Theorem 6.41, [Ai+1(C)]MCi[Ai] holds iff for every atomic RTC execu-

tion ex ∈ Lex(A
i+1(C)||MCi), ex⇂EV (Ai)∈ Lex(Ai). This is captured in the

following theorem.

Theorem 6.44 Lex(A
i+1(C)||MCi) ⇂EV (Ai)⊆ Lex(Ai) iff for every atomic

RTC execution ex ∈ Lex(A
i+1(C)||MCi), ex⇂EV (Ai)∈ Lex(Ai).

133

We construct a single state machine from C whose executions are ex-

actly the atomic RTC executions of Ai+1(C). The construction is done

as described in Definition 6.34. We denote the resulting state machine as

Ω(Ai+1(C)).

Check [Ai+1(C)]MCi[Ai]:

Oracle 2 constructs a single state machine whose executions are exactly

the atomic RTC executions of Ai+1(C)||MCi. This is done by constructing

∆(Ω(Ai+1(C))||MCi) (from Definition 6.31). We denote ∆(Ω(Ai+1(C))||MCi)

as ∆i. In order to consider only atomic RTC executions of Ai, Oracle 2 con-

structs Ω(Ai) (from Definition 6.34). Similar to the case of membership

query in Section 6.5.1, execution inclusion is done by constructing a new

state machine, M(∆i,Ω(Ai)). Since we want to monitor only behaviors

of ∆i that match a legal execution of Ai+1(C), we modify M(∆i,Ω(Ai))

accordingly. We denote the modified state machine as M̂(∆i,Ω(Ai))

Again, on M̂(∆i,Ω(Ai)), rtc = 4 indicates that the execution of ∆i

does not match a legal execution of Ω(Ai+1(C)), and thus no need to ensure

execution inclusion on the rest of this execution. We modify ∆i as follows.

For every transition in the region of Ω(Ai+1(C)) to state err, replace rtc := 3

on the action with rtc := 4.

The correctness of our construction is captured in the following theorem:

Theorem 6.45 For every ex ∈ Lex(M̂(∆i,Ω(Ai))) there exists w
′ ∈ (Σi+1)∗

s.t. ex ⊲ w′ and the following holds:

• ex reaches state RTCOk iff ex⇂EV (Ai+1)(C) 6∈ Lex(A
i+1(C))

• ex reaches state RTCErr iff ex⇂EV (∆i)∈ Lex(∆i), and ex⇂EV (Ω(Ai)) 6∈

Lex(Ω(Ai)).

Once M̂(∆i,Ω(Ai)) is constructed, the Teacher model checks

M̂(∆i,Ω(Ai)) |= AG(¬IsIn(RTCErr)). If the model checker returns false

with a counterexample execution cex, the Teacher informs L∗ that the con-

jecture is incorrect, and gives it the word w ∈ (Σi+1)∗ s.t. cex⊲w to witness

this fact (w ∈ L(C) and w 6∈ Ai+1
w). If the model checker returns true, then

the Teacher returns true, indicating that [Ai+1(C)]MCi[Ai] holds, then the

Teacher forwards Ai+1(C) to Step i+ 1.

134

6.6 Conclusion

We presented a framework for applying learning-based compositional verifi-

cation of behavioral UML systems. Note that our framework is completely

automatic; we use an off-the-shelf L∗ algorithm. However, our Teacher works

at the UML level. In particular, the assumptions generated throughout the

learning process are state machines. From the regular automaton learned by

the L∗ algorithm, we construct a state machine (or several state machines)

which is a conjecture on M2. Also, the Teacher answers membership and

conjecture queries by “translating” them to model checking queries on state

machines.

We have extended the basic framework for AG reasoning to apply for

recursive AG reasoning on star-type systems. In the future we plan to in-

vestigate other assume-guarantee rules in the context of behavioral UML

systems. Another interesting extension of this work is developing a frame-

work for applying the AG rule, where M2 includes several state machines

in systems which are not star-type. One straightforward way to handle sys-

tems which are not star-type is by learning words over single occurrences

of generation or consumption of events. That is, do not define words as se-

quences of events representing RTC steps. However, such a definition loses

the advantage of learning equivalence classes of executions.

135

Chapter 7

Conclusions

We presented three methods that aim at improving model checking of be-

havioral UML systems. The first method exploits software model checking

for the verification of behavioral UML systems. Our translation to verifiable

C preserves the high-level structure of the system and significantly eases

the workload of the model checker. The second method provides an auto-

matic CEGAR-like framework for abstraction and refinement of behavioral

UML systems. Our abstraction and refinement are both at the UML level:

the abstract model is a behavioral UML system that includes abstract state

machines.The last method applies automatic learning-based compositional

verification of behavioral UML systems. We use an off-the-shelf L∗ algo-

rithm. However, our Teacher works at the UML level. In particular, the

assumptions generated throughout the learning process are state machines.

We believe there is more to be done in order to make model checking

of behavioral UML systems more efficient. Our different methods provide a

first step at different directions, and each of them can be further extended.

136

Bibliography

[1] István Majzik Adám Darvas and Balzs Beny. Verification of UML

statechart models of embedded systems. In In Proc. 5th IEEE

Design and Diagnostics of Electronic Circuits and Systems Work-

shop (DDECS 2002), IEEE Computer Society TTTC, pages 70–

77, 2002.

[2] Dana Angluin. Learning regular sets from queries and counterex-

amples. Information and Computation, 75(2):87–106, 1987.

[3] Alessandro Armando, Jacopo Mantovani, and Lorenzo Platania.

Bounded model checking of software using SMT solvers instead

of SAT solvers. STTT, 11(1):69–83, 2009.

[4] Armin Biere, Alessandro Cimatti, Edmund M. Clarke, and

Yunshan Zhu. Symbolic model checking without bdds. In

Tools and Algorithms for Construction and Analysis of Systems

(TACAS’99), volume 1579 of LNCS, pages 193–207, Amsterdam,

The Netherlands, March 1999. Springer.

[5] Mihaela Gheorghiu Bobaru, Corina S. Pasareanu, and Dimitra

Giannakopoulou. Automated assume-guarantee reasoning by ab-

straction refinement. In Computer Aided Verification (CAV’08),

volume 5123 of LNCS, Princeton, NJ, USA, July 2008. Springer.

[6] Grady Booch, James E. Rumbaugh, and Ivar Jacobson. The uni-

fied modeling language user guide. J. Database Manag., 10(4):51–

52, 1999.

[7] Sagar Chaki and Ofer Strichman. Optimized L*-based assume-

guarantee reasoning. In Tools and Algorithms for the Construc-

137

tion and Analysis of Systems (TACAS’07), volume 4424 of LNCS,

Braga, Portugal, March 2007. Springer.

[8] William Chan, Richard J. Anderson, Paul Beame, Steve Burns,

Francesmary Modugno, David Notkin, and Jon Damon Reese.

Model checking large software specifications. IEEE Trans. Soft-

ware Eng., 24(7):498–520, 1998.

[9] Yu-Fang Chen, Azadeh Farzan, Edmund M. Clarke, Yih-Kuen

Tsay, and Bow-Yaw Wang. Learning minimal separating DFA’s

for compositional verification. In Tools and Algorithms for the

Construction and Analysis of Systems (TACAS’09), volume 5505

of LNCS, York, UK, March 2009.

[10] Edmund M. Clarke, Orna Grumberg, Somesh Jha, Yuan Lu, and

Helmut Veith. Counterexample-guided abstraction refinement.

Journal of the ACM, 50(5):752–794, 2003.

[11] Edmund M. Clarke, Orna Grumberg, and Doron A. Peled. Model

Checking. MIT press, December 1999.

[12] Edmund M. Clarke and W. Heinle. Modular translation of stat-

echarts to SMV. Technical Report CMU-CS-00-XXX, Carnegie-

Mellon University School of Computer Science, 2000.

[13] Edmund M. Clarke, Daniel Kroening, and Flavio Lerda. A tool

for checking ansi-c programs. In Tools and Algorithms for the

Construction and Analysis of Systems (TACAS’04), volume 2988

of LNCS, pages 168–176, Barcelona, Spain, March 2004. Springer.

[14] Jamieson M. Cobleigh, George S. Avrunin, and Lori A. Clarke.

Breaking up is hard to do: An evaluation of automated assume-

guarantee reasoning. ACM Transactions on Software Engineering

and Methodology, 17(2), 2008.

[15] Jamieson M. Cobleigh, Dimitra Giannakopoulou, and Corina S.

Păsăreanu. Learning assumptions for compositional verifica-

tion. In Proceedings of the 9th International Conference on Tools

and Algorithms for the Construction and Analysis of Systems,

138

TACAS’03, pages 331–346, Berlin, Heidelberg, 2003. Springer-

Verlag.

[16] Lucas Cordeiro, Bernd Fischer, and João Marques-Silva. SMT-

based bounded model checking for embedded ANSI-C software. In

Automated Software Engineering (ASE’09), pages 137–148, Auck-

land, New Zealand, November 2009. IEEE Computer Society.

[17] György Csertán, Gábor Huszerl, István Majzik, Zsigmond Pap,

András Pataricza, and Dániel Varró. Viatra - visual automated

transformations for formal verification and validation of UML

models. In Automated Software Engineering (ASE’02), pages

267–270, Edinburgh, Scotland, UK, September 2002. IEEE Com-

puter Society.

[18] Werner Damm, Bernhard Josko, Amir Pnueli, and Angelika Vot-

intseva. Understanding UML: A formal semantics of concur-

rency and communication in real-time UML. In Formal Methods

for Components and Objects (FMCO’02), volume 2852 of LNCS,

pages 71–98, Leiden, The Netherlands, November 2002. Springer.

[19] Jori Dubrovin and Tommi A. Junttila. Symbolic model checking

of hierarchical uml state machines. In Application of Concurrency

to System Design (ACSD’08), pages 108–117, Xi’an, China, June

2008. IEEE.

[20] Azadeh Farzan, Yu-Fang Chen, Edmund M. Clarke, Yih-Kuen

Tsay, and Bow-Yaw Wang. Extending automated compositional

verification to the full class of omega-regular languages. In Tools

and Algorithms for the Construction and Analysis of Systems

(TACAS’08), volume 4963 of LNCS, Budapest, Hungary, March

2008.

[21] Harald Fecher, Michael Huth, Heiko Schmidt, and Jens

Schönborn. Refinement sensitive formal semantics of state ma-

chines with persistent choice. Electron. Notes Theor. Comput.

Sci., 250(1):71–86, September 2009.

[22] Harald Fecher and Jens Schönborn. UML 2.0 state machines:

Complete formal semantics via core state machines. In Formal

139

Methods: Applications and Technology (FMICS’06/PDMC’06),

LNCS, pages 244–260, Berlin, Heidelberg, 2007. Springer.

[23] Mihaela Gheorghiu, Dimitra Giannakopoulou, and Corina S.

Pasareanu. Refining interface alphabets for compositional verifi-

cation. In Tools and Algorithms for the Construction and Analysis

of Systems (TACAS’07), volume 4424 of LNCS, Braga, Portugal,

March 2007.

[24] Dimitra Giannakopoulou, Corina S. Păsăreanu, and Howard Bar-

ringer. Component verification with automatically generated as-

sumptions. Automated Software Engg., 12(3):297–320, July 2005.

[25] Object Management Group. OMG Unified Modeling Language

(UML) Superstructure, version 2.4.1. formal/2011-08-06, 2011.

[26] Orna Grumberg and David E. Long. Model checking and modular

verification. ACM Trans. Program. Lang. Syst., 16(3):843–871,

May 1994.

[27] Orna Grumberg, Yael Meller, and Karen Yorav. Applying soft-

ware model checking techniques for behavioral uml models. In

Formal Methods (FM’12), volume 7436 of LNCS, pages 277–292,

Paris, France, August 2012. Springer.

[28] Anubhav Gupta, Kenneth L. McMillan, and Zhaohui Fu. Auto-

mated assumption generation for compositional verification. For-

mal Methods in System Design, 32(3):285–301, 2008.

[29] Arie Gurfinkel and Marsha Chechik. Why waste a perfectly good

abstraction? In Tools and Algorithms for the Construction and

Analysis of Systems (TACAS’06), pages 212–226, Vienna, Aus-

tria, April 2006.

[30] Cliff B. Jones. Specification and design of (parallel) programs. In

IFIP Congress, pages 321–332, 1983.

[31] Toni Jussila, Jori Dubrovin, Tommi Junttila, Timo Latvala Lat-

vala, and Ivan Porres. Model checking dynamic and hierarchical

UML state machines. In Proceedings of the 3rd Workshop on

Model Design and Validation (MoDeVa 2006), 2006.

140

[32] Nima Kaveh. Using model checking to detect deadlocks in

distributed object systems. In Engineering Distributed Objects

(EDO’00), volume 1999 of LNCS, pages 116–128, Davis, CA,

USA, November 2000. Springer.

[33] Orna Kupferman and Moshe Y. Vardi. Model checking of safety

properties. Form. Methods Syst. Des., 19(3):291–314, October

2001.

[34] Diego Latella, István Majzik, and Mieke Massink. Automatic

verification of a behavioural subset of UML statechart diagrams

using the spin model-checker. Formal Asp. Comput., 11(6):637–

664, 1999.

[35] Shuang Liu, Yang Liu, Etienne Andre, Christine Choppy, Jun

Sun, Bimlesh Wadhwa, and JinSong Dong. A formal semantics for

complete UML state machines with communications. In integrated

Formal Methods (iFM’13), volume 7940 of LNCS, pages 331–346.

Springer, June 2013.

[36] Yael Meller, Orna Grumberg, and Karen Yorav. Verifying be-

havioral UML systems via CEGAR. In Integrated Formal Meth-

ods - 11th International Conference, IFM 2014, Bertinoro, Italy,

September 9-11, 2014, Proceedings, volume 8739 of Lecture Notes

in Computer Science, pages 139–154. Springer, 2014.

[37] Yael Meller, Orna Grumberg, and Karen Yorav. Applying soft-

ware model checking techniques for behavioral UML systems. In

12th International Conference on Formal Aspects of Component

Software (FACS’15), Niteroi, Rio de Janeiro, Brazil, October

2015.

[38] Erich Mikk, Yassine Lakhnech, Michael Siegel, and Gerard J.

Holzmann. Implementing statecharts in promela/spin. In

Workshop on Industrial-Strength Formal Specification Techniques

(WIFT’98), pages 90–101, Boca Raton, FL, USA, October 1998.

IEEE Computer Society.

141

[39] Wonhong Nam, P. Madhusudan, and Rajeev Alur. Automatic

symbolic compositional verification by learning assumptions. For-

mal Methods in System Design, 32(3):207–234, 2008.

[40] Iulian Ober, Susanne Graf, and Ileana Ober. Validating timed

UML models by simulation and verification. STTT, 8(2):128–

145, 2006.

[41] IST-2001-33522 OMEGA. http://www-omega.imag.fr, 2001.

[42] Ivan Paltor and Johan Lilius. Formalising UML state machines

for model checking. In The Unified Modeling Language - Beyond

the Standard (UML’99), volume 1723 of LNCS, pages 430–445,

Fort Collins, CO, USA, October 1999. Springer.

[43] Corina S. Pasareanu, Dimitra Giannakopoulou, Mihaela Gheo-

rghiu Bobaru, Jamieson M. Cobleigh, and Howard Barringer.

Learning to divide and conquer: applying the L* algorithm to

automate assume-guarantee reasoning. Formal Methods in Sys-

tem Design, 32(3), 2008.

[44] A. Pnueli. In transition from global to modular temporal rea-

soning about programs. In Krzysztof R. Apt, editor, Logics and

Models of Concurrent Systems, pages 123–144. Springer-Verlag

New York, Inc., New York, NY, USA, 1985.

[45] Amir Pnueli. The temporal logic of programs. In Proceedings of

the Eighteenth Annual Symposium on Foundations of Computer

Science (FOCS’77), 1977.

[46] C M Prashanth, K Chandrashekhar Shet, and Janees Elamkulam.

An efficient event based approach for verification of UML state-

chart model for reactive systems. International Conference on

Advanced Computing and Communications (ADCOM’08), pages

357–362, 2008.

[47] Christian Prehofer. Behavioral refinement and compatibility

of statechart extensions. Electron. Notes Theor. Comput. Sci.,

295:65–78, May 2013.

142

[48] Greg Reeve and Steve Reeves. Logic and refinement for charts.

In Proceedings of the 29th Australasian Computer Science Con-

ference - Volume 48, ACSC ’06, pages 13–23, Darlinghurst, Aus-

tralia, Australia, 2006. Australian Computer Society, Inc.

[49] Rhapsody. http://www-01.ibm.com/software/awdtools/rhapsody.

[50] Ronald L. Rivest and Robert E. Schapire. Inference of finite au-

tomata using homing sequences. In Proceedings of the Twenty-

first Annual ACM Symposium on Theory of Computing, STOC

’89, pages 411–420, New York, NY, USA, 1989. ACM.

[51] RuleBasePE. http://www.haifa.ibm.com/projects/verification/RB Homepage/.

[52] Ingo Schinz, Tobe Toben, Christian Mrugalla, and Bernd West-

phal. The rhapsody UML verification environment. In Soft-

ware Engineering and Formal Methods (SEFM’04), pages 174–

183, Beijing, China, September 2004. IEEE Computer Society.

[53] Peter Scholz. Incremental design of statechart specifications. Sci.

Comput. Program., 40(1):119–145, May 2001.

[54] Carl-Johan H. Seger and Randal E. Bryant. Formal verification

by symbolic evaluation of partially-ordered trajectories. Formal

Methods in System Design, 6(2):147–189, March 1995.

[55] Mary Sheeran, Satnam Singh, and Gunnar St̊almarck. Check-

ing safety properties using induction and a sat-solver. In Formal

Methods in Computer-Aided Design (FMCAD’00), volume 1954

of LNCS, pages 108–125, Austin, Texas, USA, November 2000.

Springer.

[56] A. J. H. Simons, M. P. Stannett, K. E. Bogdanov, and W. M. L.

Holcombe. Plug and play safely: Rules for behavioural com-

patibility. In International Conference on Software Engineering

and Applications (IASTED’02), pages 263–268, Cambridge, MA,

USA, 2002.

[57] Nishant Sinha and Edmund M. Clarke. SAT-based compositional

verification using lazy learning. In Computer Aided Verification

143

(CAV’07), volume 4590 of LNCS, Berlin, Germany, July 2007.

Springer.

144

 5 CEGAR UML .

 .

 -UML ,

UML . ,CEGAR ,

 . -UML.

 UML

 .

 ,

 .

 (.

 , .)-Assume-Guarantee ,AG .

, , .

 .

 -AG .

 AG AG ,

 . .

 , AG

.

 6 AG

UML .-UML , .

 , UML.

 UML , .

.

 UML

 .

 UML SMV VIS ,

 , -PROMELA (SPIN ,)

 ,-IF. ,

 UML .

 C , .

 UML(:event driven objects)

 .--(Run To Completion ,)

RTC .RTC ,

 .

 4 UML ,

 .

 UML

 ,

(. פ (

 , . ,

. ,

- (CounterExample-Guided Abstraction Refinement ,)

CEGAR , ,

 .

 , . ,

 , .

 , (spurious ,) .

 , ,

.

 .

 .

 . (Temporal Logic .)

 .

 , .

 . ,

פ . .

 , , .

 . .

, UML(, The Unified Modeling Language) פ ,

 . , ,

 . ,UML

 -Object Management Group (OMG .)

(embedded systems , .)

UML , .

 UML .

 -UML. ,

 UML (,)

 -UML .

 , ,

 . -UML ,

 ,-UML .

 UML .

 .

 UML .

 .

 UML.

. ' '

 , ,
 . , .

 , . . ,
 . , . -

.

 . , UML .
 . ,

 .

 , , ,
 , , .

.

, , , , , ,
 , .

. .

 .

 UML

 ס

 " 2016

 UML

