Model Checking Techniques
for Behavioral UML Models

Yael Meller






Model Checking Techniques
for Behavioral UML Models

Research Thesis

Submitted in partial fulfillment of the requirements

for the degree of Doctor of Philosophy

Yael Meller

Submitted to the Senate of
the Technion — Israel Institute of Technology
Shvat 5776 Haifa January 2016






The research thesis was done under the supervision of Prof. Orna Grumberg
and Dr. Karen Yorav in the Computer Science Department.

First and foremost I would like to thank my supervisor Orna Grumberg for

her incredible guidance and support throughout my studies. Thank you for
guiding me how to be a researcher, and for showing me the beauty and fun of
research. You have always provided me with inspiration and encouragement,
and knew how to always do it with a smile. More importantly, I thank you
for your friendship: for the coffee breaks, for the talks, and for the parties
and dancing. These all have made my studies so enjoyable. I feel lucky to
have had you as my advisor.

I would also like to thank my other supervisor, Karen Yorav. Thank
you for introducing me to the world of UML. For always finding the time
to guide and help me, and to share your ideas with me. I feel privileged to
have had the opportunity to work and learn from you.

I would like to thank my parents Kobi and Tami Kalka, for your love
and support in every aspect of my life and studies, from elementary school
to graduate school. I thank my parents in law, Daniella and Isaac Meller,
who went out of their way to help me during my studies.

Last but not least I thank my husband, Nimrod and my daughters, Adi,
Maya and Noga, for your love, for making me so happy, and for showing me
each and every day what are the most important things in my life. Nimrod,
thank you for your friendship and endless support throughout my studies.
I could not have made it without you.

The generous financial support of the Technion is gratefully acknowledged.






Contents

Abstract 1

Abbreviations and Notations 3

1 Introduction 5

2 Preliminaries 9

2.1 UML Behavioral Systems . . . ... .. ... .. ....... 9

2.1.1 UML State Machines . . . . . ... ... ... ..... 9

2.1.2 Systems . . . ... 13

2.2 Linear-time Temporal Logic (LTL) . . . . ... ... ... .. 17

3 Semantics of System Computations 19
4 Applying Software Model Checking Techniques For Behav-

ioral UML Systems 23
4.1 Preliminaries . . . . . ... ... oo oL 25
4.1.1 Bounded Model Checking . . . . ... ... ... ... 25
4.1.2 Restrictions, Notations and Abbreviations . . . . . . . 26
4.2 Translation to Verifiable Bounded C . . . . . . . ... .. .. 29
4.3 System Verification . . . . . .. ... 31
4.3.1 Verifying LTL Safety Properties . . .. .. .. .. .. 31
4.3.2  Verify Mutually-Dependent Livelocks . . . . . . . . .. 32
4.4 Experimental Results. . . . . . ... ... ..., 37
4.5 Conclusions . . . . . . ... o 40
Verifying Behavioral UML Systems via CEGAR 42

5.1 Abstract State Machines . . . . . . . . ... ... ... . ... 44



5.1.1 Abstracting a State Machine . . .. ... . ... ... 44

5.1.2 Abstracting a System . . . . ... ... L. 50
5.2  Correctness of The Abstraction . . . . ... .. ... ... .. 51
5.2.1 Proving Correctness of the Abstraction . . ... . .. 56
5.3 Using Abstraction . . . . ... .. ... ... ... .. 7
5.4 Refinement . . .. .. .. ... oL 78
5.4.1 Constructing # From 74 . . . . . ... ... ... ... 80
5.5 Conclusion . . .. .. .. 89

6 Learning-Based Compositional Verification of Behavioral UML

Systems 90

6.1 Preliminaries . . . . ... . ... .o oo 92
6.1.1 Assume Guarantee Reasoning and Compositional Ver-

ification . . . . ... 92

6.1.2 The L* Algorithm . . . . ... ... ... ... .... 93

6.2 Representing Executions as Words . . . . . ... .. ... .. 93

6.3 AG for State Machines . . . . .. ... ... .. ....... 98
6.3.1 A Framework For Employing Rule AG-UML and

Its Correctness . . . . . . . ... ... 99

6.3.2 Membership Queries . . . . . ... ... 104

6.3.3 Conjecture Queries . . . . . . . ... ... 106

6.3.4 Correctness . . . . . . ... 114

6.3.5 Performance Analysis . . . ... ... .. ... ... .. 115

6.4 AG for Systems with Multiple State Machines . . . . .. .. 116

6.4.1 Membership Queries . . . . ... ... ... L. 120

6.4.2 Conjecture Queries . . . . . . .. ... 123

6.5 Applying Assume-Guarantee Reasoning Recursively . . . . . 127

6.5.1 Membership Queries . . . . . . ... ... .. 131

6.5.2 Conjecture Queries . . . . . . . ... ... 133

6.6 Conclusion . . ... ... ... o 135

7 Conclusions 136

ii



List of Figures

2.1

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8

5.1
5.2
5.3
5.4

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9

Example State Machine . . . . ... ... ... ... .. ...

State Machine for Class DB . . . . . . .. . ... ... ....
State Machine for Class Agent . . . . ... ... ... ....
RunRTCStep; Method . . . . . . ... ... .. .......
main Method . . . . . . . . . ...
FindM D Livelock Method . . . . . . . ... ... .......
Soft-UMC vs. HWMC . . . . . ... ... ... ... .. ...
Scalability Comparison . . . . . . .. ... ... ... ...,
Optimizations on Ticket Ordering . . . . .. .. .. .. ...

The Abstraction Construct A(A) . . . . ... ... ... ...
DB State Machine . . . . .. ... ... ... .. ... ...
Abstract DB State Machine . . . . . . ... ...,
Stuttering Computation Inclusion . . . . . . . ... ... ...

Example State Machine for Class server . . . . . . .. .. ..
Example State Machine for Class client . . . . ... .. ...
State Machine M(w) . . . . . ... .. .. ... ...
Conjecture DFA C and Resulting State Machine A(C) . . . .
General Scheme for M(M2, A(C)) . . .. ... ... ... ..
Non Star-Type System Example . . . ... ... ... ....
M;(w) Representing w s, . . . ... ... ... ... .. ...
Example State Machine for Class client; . . . . . . . .. ...
Example for Mj(w) and May(w) . . . . . .. ... ... ..

6.10 Conjecture DFA C for Multiple Clients . . . . . . .. ... ..
6.11 State Machines A;(C) and A3(C) . . . . . . . . ... ..
6.12 The conjecture DFA C' . . . . . .. ... .. ... ... ....

iii



6.13 General Scheme for M(A;(w), A;)

iv



Abstract

The Unified Modeling Language (UML) is a widely accepted modeling lan-
guage for embedded and safety critical systems. As such the correct behav-
ior of systems represented as UML models is crucial. Model checking is a
successful automated verification technique for checking whether a system
satisfies a desired property. In this thesis, we present several approaches to
enhancing model checking to behavioral UML systems.

The applicability of model checking is often impeded by its high time and
memory requirements. The first approach we propose aims at avoiding this
limitation by adopting software model checking techniques for verification of
UML models. We translate UML to werifiable C code which preserves the
high level structure of the models, and abstracts details that are not needed
for verification. We combine static analysis and bounded model checking for
verifying LTL safety properties and absence of livelocks. We implemented
our approach on top of the bounded software model checker CBMC. We
compared it to an IBM research tool that verifies UML models via a trans-
lation to IBM’s hardware model checker RuleBasePE. Our experiments show
that our approach is more scalable and more robust for finding long coun-
terexamples. We also demonstrate the usefulness of several optimizations
that we introduced into our tool.

A successful approach to avoiding the high time and memory require-
ments of model checking is CounterFExample-Guided Abstraction-Refinement
(CEGAR). In the second approach we propose a CEGAR-like method for
UML systems. We present a model-to-model transformation that generates
an abstract UML system from a given concrete one, and formally prove that
our transformation creates an over-approximation. The abstract system is
often much smaller, thus model checking is easier. Because the abstrac-
tion creates an over-approximation we are guaranteed that if the abstract



model satisfies the property then so does the concrete one. If not, we check
whether the resulting abstract counterexample is spurious. In case it is, we
automatically refine the abstract system, in order to obtain a more precise
abstraction.

Another successful approach to tackle the limitations of model checking
is compositional verification. Recently, great advances have been made in
this direction via automatic learning-based Assume-Guarantee reasoning. In
the last approach we present a framework for automatic Assume-Guarantee
reasoning for behavioral UML systems. We apply an off-the-shelf learning al-
gorithm for incrementally generating assumptions on the environment, that
guarantee satisfaction of the property. A unique feature of our approach
is that the generated assumptions are UML state machines. Moreover, our
Teacher works at the UML level: All queries from the learning algorithm
are answered by generating and verifying behavioral UML systems.
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Chapter 1

Introduction

Computerized systems dominate almost every aspect of our lives and their
correct behavior is crucial. Model checking [11] is a successful automated
verification technique for checking whether a given system satisfies a desired
property. The system is usually described as a finite-state model and the
specification is given as a formula in temporal logic. The process of model
checking considers all of the system behaviors, and either confirms that the
system is correct w.r.t. the checked property, or provides a countererample
that demonstrates an erroneous behavior.

Model checking is widely recognized as an important approach to in-
creasing reliability of hardware and software systems and is widely used in
industry. Unfortunately, the applicability of model checking is often impeded
by its high time and memory requirements, referred to as the state explosion
problem. Much of the research in this area is dedicated to increasing model
checking applicability and scalability.

The Unified Modeling Language (UML) [6] is a widely accepted modeling
language that is used to visualize, specify, and construct systems. It pro-
vides means to represent a system as a collection of objects and to describe
the system’s internal structure and behavior. UML has been accepted as
a standard object-oriented modeling language by the Object Management
Group (OMG) [25]. It is becoming the dominant modeling language for
embedded systems. As such, the correct behavior of systems represented
as UML systems is crucial and verification techniques for such models are
required.

In this work we present new techniques for improving model checking



of behavioral UML systems. Our main goal is to keep the model checking
process at the UML level. That is, instead of translating the behavioral
UML system to some low level representation (e.g., Kripke structure) and
applying optimizations on the low level representation, our goal is to ap-
ply optimizations on the UML system directly. This approach enables us
to exploit high level information, which results from the unique structure
and behavior of such models, in our optimizations, information which is
otherwise lost. It is important to note that remaining at the UML level is
also highly beneficial to the user, since the property, the optimizations and
the counterexamples are all given at the UML level and are therefore more
meaningful.

There are two orthogonal challenges to tackle when addressing model
checking of behavioral UML systems. The first is how to apply existing
model checking tools for verification of UML systems. The second challenge
is, given a model checker for behavioral UML systems, how to fight the
state explosion problem in the context of behavioral UML systems. Two
of the most promising approaches for fighting the state explosion problem
are abstraction and compositional verification. We propose applying these
approaches for behavioral UML systems.

Following, we describe these challenges and our techniques for fighting
them.

Model Checking Behavioral UML Systems

Model checking tools expect the checked system to be presented in an ap-
propriate description language. Previous works on UML model checking
translate UML systems to SMV [8, 12] or VIS! [52], both particularly suit-
able for hardware; to PROMELA (the input language of SPIN) [38, 34, 42,
17, 1, 31, 19]), which is mainly suitable for communication protocols; or to
IF3 [40], which is oriented to real-time systems.

We believe that behavioral UML systems most resemble high-level soft-
ware systems. We therefore choose to translate UML systems to C and
adopt software model checking techniques for their verification. Our trans-
lation preserves the high-level structure of the UML system: event-driven
objects communicate with each other via an event queue. An execution con-

!These works were developed as part of the European research project OMEGA [41].



sists of a sequence of Run To Completion (RTC) steps. Each RTC step is
initiated by the event queue by sending an event to its target object, which
in turn executes a maximal series of enabled transitions. In Chapter 4 we
present our approach for verifying behavioral UML systems by applying
software model checking techniques. This work was published in [27].

Abstraction and Refinement for Behavioral UML Systems

Abstractions hide some of the system details in order to result in an over-
approzimated system that has more behaviors and fewer states than the
concrete (original) system. The abstract system has the feature that if a
property holds on the abstract system, then it also holds on the concrete
system. However, if the property does not hold, then nothing can be con-
cluded of the concrete system. The CounterExample-Guided Abstraction
Refinement (CEGAR) approach [10] provides an automatic and iterative
framework for abstraction and refinement, where the refinement is based
on a spurious counterexample. When model checking returns an abstract
counterexample, a search is make for a matching concrete counterexample.
If one exists, then a real bug on the concrete system is found. Otherwise, the
counterexample is spurious and a refinement is needed. In the refinement
stage, more details are added to the abstract system, in order to eliminate
the spurious counterexample.

In Chapter 5 we propose a CEGAR-like framework for verifying be-
havioral UML systems. We present a model-to-model transformation that
generates an abstract model from a given concrete one. Our transformation
is done on the UML level, thus resulting in a new behavioral UML system
which is an over-approzimation of the original model. We adapt the CE-
GAR approach to our UML framework, and apply refinement if needed.
Our refinement is also performed as a model-to-model transformation. This
work was published in [36].

Compositional Verification for Behavioral UML Systems

Another promising solution to the state explosion problem is compositional
model checking, where parts of the system are verified separately in order
to avoid the construction of the entire system and to reduce the model
checking cost. Due to dependencies among components’ behaviors, it is



usually impossible to verify one component in complete isolation from the
rest of the system. To take such dependencies into account the Assume-
Guarantee (AG) paradigm [30, 44, 26] suggests how to verify a component
based on an assumption on the behavior of its environment, which consists
of the other system components. The environment is then verified in order
to guarantee that the assumption is actually correct.

Learning [2] has been a major technique to construct assumptions for the
AG paradigm automatically. An automated learning-based AG framework
was first introduced in [15]. It uses iterative AG reasoning, where in each
iteration an assumption is constructed and checked for suitability, based on
learning and on model checking. Many works suggest optimizations of the
basic framework and apply it in the context of different AG rules ([7, 23,
57, 20, 39, 28, 5, 14, 43, 9]).

In Chapter 6 we propose a framework for automated learning-based AG
reasoning for behavioral UML systems. Our framework is similar to the
one presented in [15], with the main difference being that our framework
remains at the state machine level. That is, the system’s components are
state machines, and the learned assumptions are state machines as well.
This is in contrast to [15], where the system’s components and the learned
assumptions are all presented as Labeled Transition Systems (LTSs). This
work was published in [37].



Chapter 2

Preliminaries

2.1 UML Behavioral Systems

Behavioral UML systems include objects (instances of classes) that process
events. Event processing is defined by state machines, which include complex
features such as hierarchy, concurrency and communication. UML objects
communicate by sending each other events (asynchronous messages) that
are kept in event queues (EQs). Every object is associated with a single
EQ, and several objects can be associated with the same EQ. In a single-
threaded system there is one EQ, while in a multi-threaded system there are
several EQs, one for each thread. Each thread executes a never-ending loop,
taking an event from its EQ, and dispatching it to the target object. The
target object makes a run-to-completion (RTC) step, where it processes the
event and continues execution until it cannot continue anymore. Only when
the target object finishes its RT'C step, the thread dispatches the next event
available in its EQ. Next we formally define state machines, UML systems,
and the set of behaviors associated with them. The following definitions
closely follow the UML2 standard.

2.1.1 UML State Machines

Definition 2.1 (States and Regions) Let S denote a set of states parti-
tioned into disjoint subsets according to two types: simple states Ssipm and
compound states Scom. Let R be a non-empty set of regions. We assume R
contains the region TOP. Let Q : SUR — SURU {e} be a function that



associates regions to their containing states, and states to their containing
regions. We assume the following constraints on €):

o For every s € S, Q(s) € R (the container of a state is a region).

o For everyr € R if r = TOP then Q(r) = €, otherwise Q(r) € S (the
container of a region is a state and TOP has no container).

o for everyr € R s.t. v # TOP, Q(r) € Seom (only compound states
contain regions)

e For every r € R there exists at least one s € S such that Q(s) =r

o The transitive closure of € is irreflexive

The function € induces a partial order on S U R: u <1u’ denotes that
contains u.

We say that two different regions ri,r7o € R are orthogonal, denoted
ORTH (ry,r2), if they are contained in the same state.

Formally, ORT H (r1,72) = true iff 11 # ro and Q(r1) = Q(r2).

From here on we assume a fixed set V' of variables over finite domains. We
use A to denote the set of all possible valuations for the variables in V', and A
or \; to denote specific assignments. We use B to denote the set of Boolean
expressions over V. We also assume a fixed set of environment events EV,,,
and a fixed set of system events EV,s, and we denote EV = EVy,, U EVy,.
An event e is a pair (type(e), trgt(e)), where type(e) denotes the event name
(or type), and trgt(e) denotes the state machine to which the event was sent
(formally defined later).

Definition 2.2 (Actions) An action is a sequence of statements in some
programming language. A simple statement is either an assignment “r =e”
over variables in V., or “GEN(e)”, which is the generation of an event
from EVgys. skip represents an empty sequence of statements. A compound
statement is a sequence of statements, “ay;a2” or a branching statement “if
b then aq else as”, for actions a1 and as and b € B .

Given an action act, we denote by modif(act) the set of variables that
may be modified on act. Formally, x € modif(act) if statement “z = €” is
part of act.

10



Note that we restrict the action language and disallow dynamic allocation
of objects and memory, dynamic pointers, unbounded loops, and recursion.
These restrictions enable us to focus on the model checking of UML systems,
while avoiding orthogonal issues such as termination and pointer analysis.

Definition 2.3 (State Machines) A state machine is a tuple
(S, R,Q,init, TR, L,H) such that:

e S, R, and Q) are the sets of states and regions and the Q function, as
defined above.

e nit C S are initial states, such that there is exactly one initial state
in each region.

e TR C S x S is the set of transitions. Fach transition t connects a

single source state src(t) with a single target state trgt(t).

o LL: TR — EV x B x Actions is a function that labels each transition
with a trigger (an event from EV ), a guard, and an action. Since none
of these components are mandatory we assume € € EV representing
no trigger, true € B representing an empty guard, and skip € Actions
representing no action. We use trig(t), grd(t), and act(t) to refer to
the trigger, guard, and action of t respectively.

e H C R is the history marker, marking those regions that have his-
tory (these would have a history pseudostate in them in the graphical
representation).

Transitions ¢ where trig(t) = € and grd(t) = true are referred to as null
transitions. Recall that modif(act) denotes the set of variables that may be
modified on act. By abuse of notation, modi f(t) denotes the set of variables
that may be modified on act(t).

Figure 2.1 describes a state machine. States are denoted as squares.
Regions are graphically represented only if they are orthogonal. Orthogo-
nal regions are denoted by a dashed line. For example, state Work con-
tains two orthogonal regions, where one region contains states s4, s5 and
s¢, and the other region contains states s7, sg, sg and the compound state
process. Assume these regions are r1 and ro, then ORT H (r1,79) = true

11
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Figure 2.1: Example State Machine

(since Q(r1) = Q(ry) = Work). Note that these are the only orthogonal
regions in the state machine.

A transition ¢ is denoted with tr[g|/a where tr = trig(t), g = grd(t)
and a = act(t). If tr = ¢, g = true or a = skip they are omitted from the
representation. For example, in Figure 2.1, for transition ¢ from sg to s1 (i.e.,
sre(t) = so and trgt(t) = s1), trig(t) = er, grd(t) = (b ==0), and act(t) =
skip (thus the action is omitted from the representation). The transition
from sy to process is a null transition whose action is GEN (ey, itsTrgt).

Definition 2.4 (State Machine Configurations) Let SM = (S, R, Q,init
,TR,L,H) be a state machine. An SM-configuration is a tuple (w,p, H)
such that:

o w C S is the set of currently active states. w has the property that
for every s € w and for every r € R such that Q(r) = s there exists a
single s’ € S such that Q(s') =r and s’ € w. Also, there exists a state
s € w such that Q(s) =TOP.

e p € type(EV) U {e} holds an event currently dispatched (formally
defined later) to the state machine and not yet consumed (and € if
there is no event to be consumed).

e H: R — S isthe history information. It records the last active state in
each region marked with history (r € H), or the initial state if either
the region has not yet been wvisited or the region is not marked with
history.

12



The requirements on w ensure that for every compound state s in w,
and for every region r contained in s (i.e., Q(r) = s), there exists a single
state s’ contained in r (Q(s’) = r) such that s is in w as well. For example,
{Vacation} and {Work, s, process, so} are both possible sets of currently
active states of the state machine in Figure 2.1

From here on, we assume that state machines do not include complex
UML syntactic features: cross-hierarchy transitions, fork, join, entry and
exit actions. It is straightforward to eliminate these features, at the expense
of additional states, transitions and variables. Note that the hierarchical
structure of the state machines is maintained, thus avoiding the exponential
blow-up incurred by flatenning.

2.1.2 Systems

Next we define UML systems and their behavior. UML2 places no restric-
tions on the implementation of the event queue and neither do we. We use
a finite sequence ¢ = (eq, ..., ¢;) of events e¢; € EV to represent the contents
of an event queue at a particular point in time (thus the set of all possible
values for an event queue is EV*). We assume the functions pop(q), top(q),
and push(q,e) are correctly defined with respect to the semantics of the
event queue.

Definition 2.5 (System) A system is a tuple (SMy, ..., SMy,Q1, ..., Qm,
thread,V') s.t. SMy,...,SM, are state machines, Q1,...,Qm (m < n) are
event queues (one for each thread), thread : {1,...,n} — {1,...,m} assigns
each state machine to a thread, and V is a collection of variables over finite
domains.

Note that in the original UML system variables are partitioned into
private attributes, public attributes, and global variables. These definitions
govern the constraints on which variables each state machine may read or
write to. For the semantic model we bundle all variables together into a
single vector V and assume that all accesses are legal.

Definition 2.6 (System Configuration) LetI’ = (SMy, ..., SM,,Q1,...,Qm,
thread, V') be a system. A system-configuration is a tuple (¢1,...,Cn, q1, s Gms
idy, ...y idy, A) such that:

13



e ¢; is an SM-configuration of SM;
e g; is the contents of Q;

e id; € {0,...,n} is the id of the state machine associated with thread j
that is currently executing a run-to-completion step. id; = 0 means
that all the state machines of thread j are inactive.

e )\ is an assignment giving each variable in V' a wvalue from its legal
domain.

From now on we fix a given system I' = (SM, ..., SM,,, Q1, ..., Qm, thrd, V).
We use lower case ¢ for SM-configurations and capital C for system-configurations.
We use k as a superscript to range over steps in time, making cf the SM-
configuration of SM; at time k. For every e € EV, we define trgt(e) €
{0,...,n} to give the index of the state machine that is the target of e.
trgt(e) = 0 means the event is sent to the environment of T'.

Next we define computations of a system. In principle, a computation
is a series of transitions fired according to certain constraints and following
the run-to-completion semantics per-thread. The main difference between
our definition and the majority of formal semantic theories suggested for
UML state machines is that we differentiate between the extraction of an
event from the event queue and the state machine transition that is fired as
a result of this event being dispatched.

In order to define computations we require a few more definitions.

Definition 2.7 (Enabled Transition) A transition t of a state machine
SM; is enabled in a configuration C = (C1,...sCpy @1y oery Gy 01, ovy i, A)
(where ¢; = (wy, pi, H;)), denoted enabled(t,C), if the following conditions
hold:

o src(t) € w; (the source state of t is active)

o trig(t) = p; (the trigger is the currently dispatched event, or no trigger
on the transition if p; =€)

o \ = grd(t) (the guard of the transition is satisfied under the current
assignment to variables)

14



e For everyt' € TR; such that src(t') € w; and src(t’)<sre(t): trig(t') #
pi or A= grd(t') (a transition is enabled if all transitions from states
contained in src(t) are not enabled)

By abuse of notation we say that a state machine SM; is enabled in
configuration C, denoted enabled(i,C'), if SM; has an enabled transition
in C. That is, enabled(i,C) is true iff there exists t € TR; such that
enabled(t,C).

We say that a state machine configuration c¢; is stable in a configuration

C = (C1y.sCnyq1yery G, idi, ..y idyy, A) if there are no enabled transitions in
SM;.

Example 2.8 Assume the state machine in Figure 2.1, denoted SMy, is
part of a system I'. Assume a system-configuration C of I', where the SM-
configuration of SM is ¢1 = (w1, p1, H1), w1 = {Work, sg, process, so}, and
p1 = er. Assume also that for the variable assignment X\ in C, \(b) = 0. Let
t € TRy be the transition from sy to s1, then enabled(t,C) = true. More-
over, for every other transition t' € TRy such that t' # t, enabled(t',C) =
false, since either src(t') & wy or trig(t') # p1.

Definition 2.9 (Transition Execution on state machine) When a tran-
sition t of a state machine SM; in state machine configuration ¢; = (w;, pi, H;)
is executed, SM; moves to a new state machine configuration ¢, = (w,, p, H}),
denoted dest(c;,t), which is defined as follows:

o W = (w;i\{s €wils =src(t)Vs<asrc(t)}) U{s e Sls =trgt(t) V(s <
trgt(t) Ns = Hi(Qs)) AVs' € S:s<s <trgt(t) — s = Hi(Qs)))}
(w} is obtained by removing from w; states contained in src(t) and then
adding states contained in trgt(t), based on the history).

e p, =€ (an event is consumed once)

e For every region r € R; where r € H;: If there exists s € S; s.t. s € w]
and Q(s) = r then H/(r) = s (if region r is an active region that has
history marker, then we update the history according to the current
state). Otherwise, H/(r) = H;(r).

Example 2.10 Let SM; be the state machine in Figure 2.1. Let c; =
(w1, p1, H1) be a SM-configuration of SMy where wy = {Work, s¢, process, so},
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and pp = er. Lett € TRy be the transition from sg to s1, then execu-
tion of t results in a new SM-configuration dest(cy1,t) = (wi, py, Hy), where
Wy = {Work, s¢,process, s1}, py = €, and H; = Hy (since no region with
history marker in SMj ).

Let C be a system-configuration, SM; be a state machine in I'; and let
51,82 € S; and t,tq,...,t, € TR;. We will further use the following notations:

o Qpush(t,(q1,...,qm)) = (¢}, ---, q},) denotes the effect of executing tran-
sition ¢ on the different queues of the system; if for some event e,
GEN (e) € act(t), then executing ¢ pushes e to the relevant event queue
(to Qihrd(trgt(e)))- The rest of the event queues remain unchanged.

e act(t)(A,C) = X represents the effect of executing the assignments in
act(t) on the valuation A of C', which results in a new assignment, \'.

e ORTH (s1,s2) is true if the states are contained in orthogonal regions,
and false otherwise. Formally, ORT H (s1,s2) = true iff Irq,ry €
R; st. ORTH(ry,r2) and for k € {1,2}: sx <. For example, in
Figure 2.1, ORT H(sq, s4) = true since sp and s4 are each contained
in a region of state Work.

e ORTH (t1,...,ty) is true iff t1,...,t, are pairwise orthogonal. I.e., for
every k,l € {1,...,y} s.t. k#1: ORTH (src(ty), src(tr)).

o maxORTH ((t1,...,ty),C) is true iff (t1,...,t,) is a mazimal set of en-
abled orthogonal transitions. Formally maxORTH ((t1,...,tq),C) =
trueiff (1) for every i € {1, ..., ¢}, enabled(t;, C), and (2) ORT H (t1, ..., ty),
and (3) there isno ¢t € T'R; such that enabled(t,C') and ORT H (t,t1, ..., t,).
Note that for some configuration C' and state machine SM; there can
be several different sets transitions for which maxORT H is true.

Example 2.11 Assume the state machine in Figure 2.1, denoted SM, is
part of a system I'. Assume a system-configuration C of I, where the SM-
configuration of SMy is ¢ = (w1, p1, H1), w1 = {Work,sy4,s7}, and p1 =
€. Let t1 € TRy be the transition from st to process, and let to be the
transition from s4 to sg. Then orth(t,ta) = true, and enabled(t;,C) =
enabled(ta, C') = true. Therefore maxORTH ((t1),C) = false and
marORTH((t1,t2),C) = true.
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Definition 2.12 (Transition Execution on System) LetC = (cq, ..., cp,
Qs ey Gm, 01, ..., idm, A) be a configuration onT', and letty, ...ty € TR; (pos-
sibly ¢ = 1) be a set of transitions. apply((ti,...,tq),C) = C’ represents the
effect of executing t1 of C followed by to on the result etc. until executing t,,
which results in configuration C" = (€1, ..., Chyey Cry Qs ooy @y 11y ooy i, N)

defined as follows:
o ¢, = dest(...dest(dest(dest(c;, t1),t2),13)..., tq)
o N =act(ty)(...act(ts)(act(tz)(act(t1) (N, C), C),C)...,C)

® q1, s Gy = Qpush(ty, (...Qpush(ts, (Qpush(ta, (Qpush(ti, (q1, ..., qm))))))--))

2.2 Linear-time Temporal Logic (LTL)

Let AP be a set of atomic propositions. A Kripke structure is a tuple
M = (S8,1p,R, L), where S is a set of K-states, Iy C S is a set of initial
K-states, R C S x S is a total K-transition relation, and £ : § — AP g
a labeling function that maps each K-state to a set of atomic propositions.
A path of M is an infinite set of K-states sg,si,... s.t. for every i > 0,
(Si, 8i+1) € R.

The Linear-time Temporal Logic (LTL) [45] is suitable for expressing
properties of a system along a path. Formulas of LTL are constructed from
a set AP of atomic propositions using the usual Boolean operators and the
temporal operators X (“next time”), and U (“until”). Formally, an LTL
formula over AP is defined as follows:

o true|falselp for p € AP
L] _\¢1|1/11 N 1/12|X1/}1|1/}1 U¢2 for @Dl, 1/}2 LTL formulas.

Let ™ = sg, 51, .... be a path in a Kripke structure M. 7* = s;, s;41, ... de-
notes the suffix of 7 starting at state s;. The semantics of LTL is inductively
defined as follows:

o 7 = true, m = false.
e Forpe AP: w = p iff p € L(s).

OW':ﬂlpliffﬂl#lpl
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. ﬂ':wl/\inffﬂ)ZQ/)l and7r|:w2
o T X1 iffﬂ'l':1/11

o 7 |= 91Uty iff there exists k > 0 s.t. 7% |= 1) and for all 0 < i < F,
7Ti 'Zwl

We use the following abbreviations in writing formulas:
e V,— <> are interpreted in the usual way.

o [ = trueU) (“eventually”).

o Gy = ~F— (“always”).

A Kripke structure M satisfies an LTL formula v, denoted M = v, if
every path of M starting at an initial K-state satisfies ¢. A general method
for on-the-fly verification of LTL safety properties is based on a construction
of a regular automaton A, which accepts exactly all the executions that
violate 1. Given M and 1), we construct M x A_, to be the product of M
and A-y;. A path in M x A, from an initial K-state (s,q) to a K-state
(s',q") where ¢ is an accepting state in A_, represents an execution of M,
and a word accepted by A-,. It therefore represents an execution showing
why M does not satisfy 1. Such executions are called counterezamples for
. Clearly, if M x A, is unsatisfiable, then M satisfies 1.
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Chapter 3

Semantics of System
Computations

In this chapter we formalize the notion of system computation, and present
formal semantics for behavioral UML systems that rely on state machines.
Works such as [18, 22, 35] also give formal semantics to state machines,
however they all differ from our semantics: [18] defines the semantics on flat
state machines and present a translation from hierarchical to flat state ma-
chines, whereas we maintain the hierarchical structure of the state machines.
[22] define the semantics of a single state machine. Thus it neither addresses
the semantics of the full system, nor the communication between state ma-
chines. [35] addresses the communication of state machines, however their
notion of run-to-completion step does not enable context switches during
a run-to-completion step. Our formal semantics is defined for a system,
possibly multi-threaded, where the atomicity level is a transition execution.

Definition 3.1 (System Computations) A computation of a system I'
is a mazimal sequence CO, step®, O, step', ... such that: (1) each C* is a

system-configuration, (2) each step C* % C*t1 can be generated by one
of the inference rules detailed below, and (3) each step® is a pair (thid®,t*)
where thid® € {1,...,m} represents the id of the thread executing the step
(t* is described in the inference rules).

We now define the set of inference rules describing C' Py o We specify
only the parts of C’ that change w.r.t. C' due to step.
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Initialization In the initial configuration all event queues are empty, and
the state machines are in their initial state and are inactive. Formally:
C? is the initial system configuration, such that for every j: q;] = ¢
and id‘; = 0. ¢ is the initial configuration of SM; (p? = € and w? =
{s € S;|s € init; \Vs' € S;.s <8’ — § € init;}),

Dispatch An event can be dispatched from thread j’s event queue only if
the processing of the previous event on thread j has terminated (i.e.
the run-to-completion step ended) and the queue is not empty. A
dispatch step pops the event out of the thread’s queue and places it in
the target object’s p element. It also updates the corresponding id?+1
with the index of the state machine that is the target of the event.

Formally:

idj =0 q;#¢ top(g;) =e trgt(e)=1
id; =1 q; =pop(q;) ¢ = (wi, type(e), Hy)

DISP(j,e) :

Transition A transition can be fired if it is enabled and the state ma-
chine containing it is currently executing a RTC step. If the state
machine’s p element is not empty then the fired transition has p
as its trigger. After firing the transition p is set to € (so that an
event cannot be consumed twice). There is a single case where more
than one transition can be fired together. It is the case where tran-
sitions are in orthogonal regions and several transitions simultane-
ously consume the event (the state machine’s p element is not empty).
UML2 defines a simultaneous execution of the transitions in this case.
Since it is not clear how to define simultaneous execution of actions,
we define an interleaved execution of these transitions. Only after
all transitions have executed, the next step is enabled. Note that
the transitions are executed according to their order in the TRANS
step (t; executed first, followed by to etc.). However, since the step
itself can be defined with any order of transitions, then if from a
given configuration step = TRANS(j, (t1, ..., t4)) is possible, then also
step = TRANS(j, (1, ..., t;)) is possible for any permutation (¢}, ..., ;)
of (t1,...,t4). Formally:
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idj:l>0 tl,...,tyETRl
pr # € = (maxORTH((t1, ..., t,),C) = true)
o =¢€— (y=1Aenabled(ty,C))

C" = apply((t1, ..., ty),C)

TRANS(j, (t1, .. t,)) :

EndRTC If the currently running state machine on thread j is stable, then
the RTC step is complete, id; is set to zero, and the p element of the
state machine that finished the RTC is cleared. Formally:

idj =1>0  stable(c;,C)

EndRTC(j,¢€) :
id; =0 ¢ = (w6 Hy)

ENYV The behavior of the environment is not precisely described in the
UML standard. We assume the most general definition, where the
evnironment may insert events into the event queues at any step. For-
mally:

ec EV,,, thrd(trgt(e)) = j

ENV(j,e): T
q; = push(q;,e)

Let m be a computation. A run-to-completion (RTC) step w.r.t. =«
on thread j is a maximal sequence of TRANS steps of state machine ¢
where thread(i) = j, s.t. the TRANS steps appear between a DISP step
(initiating the RTC step) and a EndRT'C step (terminating the RTC step).
Note that between each DISP step and its following EndRTC step on
thread j, the currently active state machine remains the same (the value of
id; does not change).

Definition 3.2 (Run-to-Completion Steps) Given a computation © =
CY, step”, C*, stept, ..., a run-to-completion (RTC) step is a mazimal series
of steps x = step™®, step'l, ..., step'd where for everyr € {1,....d}: ip_1 < iy,
and for some thread j the following holds:

e step® = DISP(j,e)

e For everyr € {1,....,d — 1}: step’r = TRANS(j, (t1,...,t;))
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o step'd = EndRTC(j,€)
o For every r € {ig,iop + 1,...,9q} S.t. r # Gg,i1,...,0q: if step” is on

thread j, then step” == ENV (j,e') (for some event €'). This item
ensures the mazximality of x.
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Chapter 4

Applying Software Model

Checking Techniques For
Behavioral UML Systems

In this chapter we present a novel approach for the verification of Behavioral
UML systems by means of software model checking.

We translate UML systems to C and adopt software model checking
techniques for their verification. Our translation preserves the high-level
structure of the UML system: event-driven objects communicate with each
other via an event queue. The hierarchical structure of the objects is main-
tained. An execution consists of a sequence of RTC steps. Each RTC step
is initiated by the event queue by sending an event to its target object,
which in turn executes a maximal series of enabled transitions. Therefore,
we maintain the granularity of transitions as well as the RT'C step semantics.

Model checking assumes a finite-state representation of the system in
order to guarantee termination with a definite result. One approach for
obtaining finiteness is to bound the length of the traversed executions by
an iteratively increased bound. This is called Bounded Model Checking
(BMC) [4]. BMC is highly scalable, and widely used, and is particularly
suitable for bug hunting. We find this approach most suitable for UML
systems, which are inherently infinite due to the unbound size of the event

queue’.

Variables are treated as finite width bit vectors and therefore do not hurt the model
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We emphasize that our goal is to translate the UML system into ver-
ifiable C code that suits model checking, rather than produce executable
code. Also, we only wish to verify user-created artifacts. When translating
to C, we therefore simplify implementation details that are irrelevant for
verification. For instance, the event queue is described at a high level of
abstraction, and code is sometimes duplicated to avoid pointers and sim-
plify the verification. The resulting code is significantly easier for model
checking than automatically generated code produced by UML tools such
as Rhapsody [49]. It is important to note that the automatically gener-
ated code produced by tools such as Rhapsody are very complex to analyze,
and the relevant parts for verification are tightly tangled along with parts
not relevant for verification. Thus, trying to slice relevant parts from the
automatically generated code is a task that cannot be done automatically.

Recall that the verifiable C code will be checked by BMC with some
bound k. We choose k to count the number of RTC steps. This implies that
along an execution of size k only the first k£ events in the event queue are
consumed, even if more were produced. It is therefore sufficient to hold an
event queue of size k. We thus obtain a finite-state model without losing any
precision. Counterexamples are also returned as a sequence of RTC steps,
but zooming in to intermediate states is available upon request.

We verify two types of properties: LTL safety properties and livelocks.
Safety properties require that the system never arrives at bad states, such as
deadlock states, or states violating mutual exclusion. LTL safety properties
can further require that no undesired finite execution occurs. Checking
(LTL) safety properties can be reduced to traversing the reachable states of
the system while searching for bad states. We apply Bounded reachability
with increasing bounds for finding bad states. Our method can also be
extended to proving the absence of bad states, using k-induction [55].

Another interesting type of properties is the absence of livelocks. Live-
locks are a generalization of deadlocks. While in deadlock states the full
system cannot progress, in livelock states part of the system is “stuck” for-
ever while other parts continue to run. Livelocks can be hazardous in safety
critical systems and often indicate a faulty design.

Scalable bounded model checking tools mostly handle safety or linear-
time properties. However, absence of livelocks is neither safety nor linear-

finiteness.

24



time property and is therefore not amenable to bounded model checking. We
identify an important subclass of livelocks, which we refer to as mutually-
dependent livelocks, and show that they can be found by combining static
analysis and bounded reachability.

The property of deadlock has been the subject of many works. In the
context of UML, [32] presents model checking for deadlocks via process
algebra. The SPIN model checker itself supports checking for deadlocks. To
the best of our knowledge, the property of livelocks has never been studied
in the context of behavioral UML systems.

We implemented our approach to verifying behavioral UML systems with
respect to LTL safety properties and mutually-dependent livelocks in a tool
called soft-UMC (software-based UML Model Checking). Our tool is built
on top of the software model checker CBMC [13] which applies BMC to C
programs and safety properties. We ran it on several UML examples and
interesting properties, and found erroneous behaviors and livelocks. For
safety properties, we also compared soft-UMC with an IBM research tool
that verifies behavioral UML systems via a translation to IBM’s hardware
model checker RuleBasePE [51]. Our experiments show that soft-UMC is
more scalable and more robust for finding long counterexamples. Our exper-
imental results also demonstrate the usefulness of the optimizations applied
in the creation of the verifiable C code.

The rest of the chapter is organized as follows. In Section 4.1 we present
some background. Our translation to verifiable C code is presented in Sec-
tion 4.2, and our method for verification of (LTL) safety properties and
mutually-dependent livelocks is presented in Section 4.3. We show our ex-
perimental results in Section 4.4, and conclude in Section 4.5.

4.1 Preliminaries

4.1.1 Bounded Model Checking

Bounded Model Checking (BMC) [4] is an iterative process for checking
models against LTL formulas. The transition relations for a Kripke structure
M and its specification are jointly unwound for k steps and are represented
by a boolean formula that is satisfiable iff there exists an execution of M of
length k that violates the specification. The formula is then checked by a
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SAT solver. If the formula is satisfiable, a counterexample is extracted from
the output of the SAT procedure. Otherwise, k is increased.

BMC is widely used for finding bugs in large systems, including soft-
ware systems ([13, 3, 16]). BMC for software is performed by unwinding
the loops in the program k times, and verifying the required property. The
property is often described by an assertion added to the program text. The
model checker then searches for a program execution that violates the as-
sertion. Our method for verifying UML models relies on invoking a software
BMC tool. We require that the tool supports assumptions on the program,
given as assume(b) commands, where b is some boolean condition. Having
assume(b) at location ¢ of the program means that only executions 7 that
satisfy b when passing at £ are considered. If b is violated then  is ignored.

4.1.2 Restrictions, Notations and Abbreviations

In the rest of the chapter we focus on systems that run on a single thread.
Thus, a system (Definition 2.5) is I' = (SMy,...,SM,,Q,V) and a sys-
tem configuration (Definition 2.6) is C' = (¢, ..., ¢n,q,id, \), where ¢; =
(wq, pis Hi). As described in Section 2.1.2, UML2 places no restrictions on
the implementation of the event queue. In this work we choose to follow the
Rhapsody semantics, and implement event processing as a FIFO.

We use a flight ticket ordering system as a running example throughout
the rest of the chapter. The system includes two DB objects and two Agent
objects. The system is therefore represented as (al, a2, dbl, db2,Q, V), where
al and a2 are state machines of type Agent, presented in Figure 4.2, and
dbl and db2 are state machines of type DB, presented in Figure 4.1. Each
DB object communicates with a single Agent object, and with the other
DB object. These are denoted as itsA and itsDB respectively in the state
machine. Each Agent object communicates with a single DB object, de-
noted as itsDB in the state machine. Formally, for i,j € {1,2}, itsDB of
ai is dbi, and itsA of dbi is ai. Also, itsDB of dbi is dbj, where ¢ # j.

The definition of enabled transitions (Definition 2.7) requires that the
trigger of the transition matches the dispatched event, or no trigger on
the transition if the value of the dispatched event is € (i.e., this is not the
first transition executed in the RTC step). In this chapter we follow the
Rhapsody semantics and require that either the transition has no trigger or
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[isMyFlt && space==0]/

GEN(evFltDenied,itsA);
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isMyFlt=1;
FlightDenied WaitARemDB | LisMyFit==0]/
" GEN({{evReqOwnership,itsDB));
- )
A
evReqOwnership/ Granting /isMyFIt=0;

GEN({evGrantOwnership,itsDB)); >

Figure 4.1: State Machine for Class DB

the trigger matches the dispatched event (i.e., the first transition in the RTC
step might not be marked with a trigger). Note that if the first transition
in the RTC step of state machine SM is not marked with a trigger, then
the transition is marked with a guard whose value was false in the previous
RTC step of SM (if such RTC step exists). That is, the value of some
variable was modified by a state machine different from SM.

The following terminology will be needed later. State machines that
can send some event (ev, ) are called producers of (ev,i). In our example,
the (only) producer of event (evReqOwnership,dbl) is db2. State machines
that can modify some variable x of state machine SM are called modifiers
of (x,SM). In our example, the (only) modifier of variable isMyF't of dbl
is dbl. Let b be a guard in a state machine SM, where b includes variables
{z1,...,xm }. The set of modifiers of all variables in b are called the modifiers
of (b, SM).

Throughout the rest of the chapter we will use the following notations
and abbreviations. Given a state machine SM; = (S;, R;, Q;, init;, TR;, L;, H;)
and a state s € S;:

e trans(s) C T; is the set of transitions whose source is s.
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Figure 4.2: State Machine for Class Agent

o eonts(s) = Ueprans(s) {(trig(t),9)} \ {(€,4)} is the set of triggers on
trans(s).

o grds(s) = Userrans(s){(97d(t), )} is the set of guards on trans(s).

e prod(s) C {1,...n} denotes indexes of producers of all events in
evnts(s). For example, if evnts(s’) = {(ev,j)}, and the producers
of (ev, SM;) are {SM;,,...,SM;, }, then prod(s") = {i1, ..., i }.

e modifier(s) C {1,...,n} denotes indexes of modifiers of all guards in
grds(s).

These abbreviations are generalized to denote the transitions, events,
guards, producers, and modifiers of a subset of states.

Given a system I' = (SMy, ..., SM,,, @, V') and a system configuration C,
we say that enabled(i,C) is true if there exists a transition ¢t € T R; such
that enabled(t,C') is true, and false otherwise.
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method RunRTC Step;()
while (7 < maxzRTClen) do
if (lenabled(i, currC)) return
choose Transition t
assume(t € trans(w;))
assume(enabled(t, currC))
execute act(t)
pi =€
mncer j

Figure 4.3: RunRTC Step; method of state machine SM;

4.2 Translation to Verifiable Bounded C

We translate behavioral UML systems to C. Our goal is to create code that
is most suitable for verification, rather then an efficient implementation of
the system. Moreover, we verify our code using a BMC verifier, therefore
our code describes bounded runs of the system. In order to create code
suitable for verification we avoid as much as possible the use of pointers
or of methods called with different parameters. This results in code which
is longer in lines-of-code. However, the model created by the verification
tool is smaller, and the model checker can then perform optimizations more
efficiently.

Every object is translated into a method, representing the behavior of
its associated state machine. When an event ev is dispatched to object o;,
the method associated with o; executes a single RTC step of o;.

Figure 4.3 presents RunRT'CStep;, the pseudo-code for a single RTC
step of 0;. currC' is the current system configuration. The method termi-
nates when there are no enabled transitions to execute. The while loop
iterates up to maxRT Clen iterations. maxRTClen represents the maxi-
mum number of transitions of any RTC step of o;. If this value cannot be
extracted by static analysis, then the condition is replaced by true, and the
length of the RTC step is bounded by the BMC bound, k.

Lines 4-6 amount to a non-deterministic choice of a transition ¢, which
is enabled in currC. When choosing a transition (line 4), no constraints
are assumed on it. Line 5 restricts the program executions to those where
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method main

while (true) do
(ev, i) = pop(q)
pPi = €U
RunRTC Step;()

Figure 4.4: main method

t is a transition from w; (the active states). Line 6 restricts the remaining
program executions to those where ¢ is enabled. In line 7 the action of the
transition is executed. Executing the action updates w; according to the
destination state of t. Note line 8, where we set p; to €. This is done since
the event is consumed once, and only in the first transition of the RTC step.
The rest of the transitions of the RTC step can be executed only if their
trigger is e.

The EQ is represented as a bounded array. The main method of the
program executes the never-ending loop of taking an event from the EQ,
and dispatching it to the relevant target object. Figure 4.4 presents the
pseudo-code for the main method. In line 3 an event ev whose target is o;
is taken from the EQ. Line 4 updates p; according to ev, and in line 5 an
RTC step of o; is initiated.

When applying BMC on the main method in Figure 4.4, the while loop
is unrolled k times, which means that the model is verified for £ RTC steps.
Generally, placing a bound on the EQ can make the model inaccurate due to
overflows. However, k is the exact bound for a k-bounded verification over
k RTC steps, since only the first k events that are sent will be dispatched
during k RTC steps.

Another verification oriented optimization we introduce is in the imple-
mentation of the environment. The array is initialized with k environment
events, but with head = tail = 1. When a system event evS is sent, the tail
is incremented non-deterministically, after which evS is added to the EQ),
overriding the environment event there. This models inserting to the EQ
a non-deterministic number of environment events that arrive prior to the
addition of evS to the EQ.

C code can be automatically generated by UML tools such as Rhap-
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sody, but this code would not be suitable for verification. Automatically
generated code includes generic code, and means for communicating with
different libraries and with the operating system. We, on the other hand,
are interested in verifying only the user-created behavior of the system, and
therefore we can abstract the event queue and the operating system. We
exploit features of the model-checker, such as the assume construct, to make
the verification more efficient. Assuming a static model allows us to apply
direct calls and direct variable manipulation rather than use pointers.

4.3 System Verification

We now describe our method for verification of a given behavioral UML
system. We assume a system I' = (SMj, ..., SM,,Q, V). Verification is done
using assertions on the code describing the system. We support verification
in a granularity of transition level or RTC level.

A behavioral UML system I' can be viewed as a Kripke structure M =
(S,1p,R), where S is the set of all possible system configurations of I'. R
can be defined either at the RTC level (denoted Rprrc) or at the transition
level (denoted R;). (C,C") € Rrrc iff C' is reachable from C in a single
RTC step. (C,C") € Ry iff C’ is reachable from C in an execution of a single
transition. Executions (of M) are defined at RTC or transition level.

Definition 4.1 7, = Cy,C4,... is an execution at the RTC level (RTC-
execution) iff for every n >0, (Cp—1,Cy) € Rrre-

Definition 4.2 7, = Cj,C1,... is an execution at the transition level (t-
execution) iff for every n >0, (Cp—1,Ch) € Ry.

For the rest of the chapter, when an execution is either a t-execution
or an RTC-execution, we refer to it as an execution. In the following we
first present how model checking of an LTL safety property over a given
behavioral UML system is done. We then continue to present our algorithm
for verifying mutually-dependent livelocks.

4.3.1 Verifying LTL Safety Properties

We now show how to check safety LTL properties over behavioral UML
systems using an automata based approach. We assume the atomic propo-
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sitions of the property are predicates over the configurations of the model.
We extend the C' program created from I' with a method representing the
automaton A-,;. The method runs in lock step with the system, and iden-
tifies property violations.

A safety property can be verified either at the RTC level or at the tran-
sition level, by placing the call to the automaton method either at the end
of each RTC step (within the method main) or at the end of each transition
(within the method RunRT'C Step;). The choice of the level for verification
depends on the property to be verified. For example, in our running ex-
ample we might want to guarantee that, at the end of RTC steps isMyFlt
cannot be true for both dbl and db2 at the same time. This property
must not necessarily hold during an RTC step. We would therefore verify
AG(dbl.isMyFlt = 0V db2.isMyFlt = 0) at the RTC level. If we want to
check for dead states (unreachable states) we need to work at the transition
level in order to recognize as reachable also those states that are passed
through during the RTC step.

Note that our method for BMC can be extended to proof by k-induction
[55] in a straightforward manner. The base case is a BMC of k steps, which
is done in the way we described above. The step is a BMC run of k + 1
steps with the initial state completely non-deterministic, looking for a run
in which a property violation occurs at the k 4 1 step after k steps with no
violation. In the initial state of the step case we assume there may already
be any number of events in the queue, of any type. We can still bound
the event queue to k + 1 entries because no more than k£ + 1 events will be
dispatched in k+1 steps, making it sound to ignore the content of the queue
beyond k + 1 entries.

4.3.2 Verify Mutually-Dependent Livelocks

A Livelock describes the case where part of the system cannot progress, even
though the other parts of the system do. In this section we focus on finding
livelocks in behavioral UML systems. As mentioned before, absence of live-
locks is neither safety nor an LTL property and therefore cannot be handled
by scalable bounded model checking tools. For that reason, we identify a
subclass of livelocks, and present a method for finding such livelocks within
our framework. This is done by a reduction to a safety property, which
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requires a preceding syntactic analysis of the UML system.
We first define the notion of a livelock-configuration in behavioral UML
systems.

Definition 4.3 Let C = (c1,...,¢pn,q,id, \) be a system configuration of T'.
We say that SM; is disabled under C' if for every t € TR;, enabled(t,C) =
false. That is, no transition t € TR; is enabled.

Definition 4.4 Let C = (c1,...,¢pn,q,id, \) be a system configuration of T.
State machine SM; is stuck at C if for every RTC-execution m = Cy, C1, ...
s.t. Cy = C the following holds: for every C; = (c{,...,c%,qj,idj,)\j) s.t.
j >0, if top(¢?) = (ev,i) then SM; is disabled under C;.

Thus, SM; is stuck if whenever the event at the top of the queue is targeted
at SM;, meaning it is SM;’s turn to execute, SM; is disabled and cannot
make any progress. Intuitively, whenever it is SM;’s turn to execute, SM;
is either waiting for a different event, or the guard on its transitions is false
under the current system-configuration.

Definition 4.5 A system configuration C' is a livelock-configuration if at
least one state machine is stuck at C.

Following, we present a characterization for a subclass of livelock con-
figurations, which we call mutually-dependent livelocks (MD-livelocks). In-
tuitively, a system configuration C' is an MD-livelock if there is a subset of
state machines that are stuck at C', and for every state machine SM in the
subset all of the producers of events that SM is stuck on, and all of the
modifiers of the guards that SM is stuck on, are in the subset as well.

Definition 4.6 Let C = (cy,...,¢n,q,id, \) be a system configuration of T'.

/

A wvector w = (Wi, ...,w),

) is a partial state of C' if for every 1 < i < n,

I I — s
w; = nil or w; = w;.

Intuitively, a partial state of C' represents the current state of some of
the state machines in I". These are the state machines for which w] # nil.

Definition 4.7 Let C be a livelock-configuration, and let © = (wi,...,w},)

be a partial state of C. @ is a livelock state of C if for every i € {1,...,n},
if w # nil then SM; is stuck at C.
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Definition 4.8 Configuration C is an MD-livelock if there exists a livelock
state of C', 0 = (W}, ...,wy,) s.t. for all j € prod(w)Umodifier(w), wj # nil.

Intuitively, the partial state describes a set of state machines that are
stuck and will stay stuck forever. This is because all state machines that
may “release” a stuck state machine by producing an event or changing a
guard are in the same set. That is, they are stuck as well.

Our goal is to find reachable MD-livelock configurations. To achieve
scalability, we use SAT-based BMC and only find livelock-configurations
that are reachable within & RTC steps. Our method for finding reachable
MD-livelocks consists of two stages. We first identify system states that are
mutually-dependent states (to be defined later). This is a syntactic iden-
tification and can thus be checked independently of a configuration. This
stage is performed by an analysis of the UML system. We then search for
a reachable MD-livelock configuration. This is done by adding an assertion
describing the fact that the current configuration is an MD-livelock. We
then apply BMC to search for a violation of the assertion. Next we define
the syntactic notion of mutually-dependent state.

Finding Mutually-Dependent States:

A state machine SM; cannot be stuck at C = (¢q,...,¢pn,q,1d, \), where
¢i = (wi, pi, H;), if w;, the set of currently active states of SM;, has a null-
transition, or if w; has a transition that can be enabled by an environment
event.

We first define the set of possible-active-states. Intuitively, this set over-
approximates the possible currently active states of a state machine SM.

Definition 4.9 Let SM = (S, R, ), init, TR, L, H) be a state machine. v C
S is a possible-active-state if the following hold.

o For every s € v and for everyr € R s.t. Q(r) = s there exists a single
s’ € S such that Q(s') =r and s’ € v.

o There exists s € v such that Q(s) = TOP.

Note that this definition follows exactly the definition of active states as
part of state machine configuration (Definition 2.4).
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Definition 4.10 A possible-active-state v is potentially stuck if for every
t € trans(v), t is not a null-transition, and if ev(t) is an environment event,
then grd(t) # true.

Following, we define mutually-dependent states. Intuitively, a mutually-
dependent state represents a subset of state machines that are all potentially
stuck and the state machines depend on each other, i.e. all the necessary
producers are inside this subset.

Definition 4.11 A mutually-dependent state is a vector v = (v1,...,Vy)
s.t. for every i € {1,...,n}, v; = nil or v; is a possible-active-state of SM;,
and the following holds for every v; # nil:

1. v; is a potentially stuck possible-active-state, and
2. There is no j € prod(v;) Umodifier(v;) such that v; = nil, and

3. v is minimal. That is, let ' = (V],...,v)) such that for every i €
{1,...,n}, either v] = nil or v, =v,;. If V' # U then requirement 2 does

not hold for v/'.

The requirement of minimality (requirement (3)) is introduced for the
sake of efficiency. It reduces the number of states to be considered and also
simplifies the encoding in BMC. Further, it reduces the number of similar
counterexamples returned to the user.

Note that this definition is syntactic. That is, it depends only on the
possible-active-states of the system. It does not depend on the variable
assignment, the history or the event queue, which can be determined along
a computation. As a result, the set of all mutually-dependent states can
be identified independently of any configuration. We generate this set from
the syntactic structure of the system, as part of the analysis of the UML
System.

Lemma 4.12 The set of mutually-dependent states is complete. Meaning
for every MD-livelock configuration C' there exists a partial state of C, D,
that is a mutually-dependent state.

The set of system configurations is infinite, because the size of the EQ
is not limited. However, the set of mutually-dependent states is finite.
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for each mutually-dependent state v’ do
assert(!(partSt(v', currC)A
for all ¢t € trans(v') :
notInQ(trig(t),q)V
grdFalse(grd(t),\)))

1: method FindM D Livelock()
2:  while (true) do

32 (ev,i) := pop(q)

4: pi = ev

5: RunRTC Step;()

6:

T

Figure 4.5: FindM D Livelock method

Bounded Search for Mutually-Dependent Livelocks:

We observe that if a given system configuration includes a mutually-dependent
state s.t. for every transition in the mutually-dependent state either the
guard is false or the trigger is a system event which is not in the EQ, then
this system configuration is a MD-livelock.

We adapt the translation of UML systems to C (Section 4.2) to allow
checking whether a MD-livelock configuration is reachable by adding asser-
tions at the RTC level. When the model checker finds an execution violating
the assertion, the last system configuration in the execution is a MD-livelock
configuration. Figure 4.5 presents the pseudo-code of the modified method.
Line 6 and 7 show the added code.

currC represents the current system configuration of the system. At
every iteration of the while loop currC changes (due to the RTC step).
The method partSt(v,C') receives a mutually-dependent state 7 and a con-
figuration C, and returns true iff v is a partial state of C' (i.e., partSt(v,C)
returns true iff for every v; € v, if v; # nil then v; = w;). The method
grdFalse(grd, \) returns true iff grd is false w.r.t. the variable assignment
A. The method notIn@(ev, q) returns true iff ev is a system event which is
not in the EQ ¢. The assertion is violated on C' if C is a MD-livelock.

There is one subtle point that still needs to be solved: We need a finite
representation of the queue. Recall that for verifying safety properties, for
k-bounded executions we bound the queue to k. However, when searching
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for MD-livelocks this is incorrect because a configuration is a MD-livelock
if there are no future executions that can release the stuck states. Thus, we
must keep track of all events inserted into the queue (within & RTC steps).
However, only the first k£ events are dispatched, and therefore their relative
order is important. For the rest of the events, we only need to know whether
they were sent or not, indicating whether or not an instance of that event
exists in the “actual” queue. The method notInQ(ev,q) returns true iff the
flag of event ev is false, indicating that no such event is in the “actual”
queue.

We exemplify our method on our running example. The events evV acati
onStart and evV acation End, which are consumed by class Agent, are both
environment events. Note that none of the possible-active-states associated
with the state machine of Agent are potentially stuck possible-active-states.
Thus, al and a2 can never be stuck. The vector ({Wait4dRemDB, dbMain},
{WaitdRemDB, dbMain},nil,nil) is a mutually-dependent state because
the producer of the possible-active-state {WaitdRem DB, dbMain} of dbl is
db2, and vice-versa. For this mutually-dependent state, we add the following
assertion:

assert(!({InEQ(evGrantOwnership, 1)\l InEQ(evGrantOwnership, 2) A\

InEQ(evReqOwnership, 1)\ InEQ(evReqOwnership, 2)\
partSt({WaitdRemDB, dbMain}, {W ait4dRemDB, dbMain},
nil, nil), currC)))

Note that it is possible to skip the first stage of our algorithm, that finds
the set of mutually-dependent states, and incorporate it within the second
stage. However, this would be inefficient due to the number of checks that
would need to be done during the model checking stage. Further, since the
first stage is applied to the UML system, it is quite “light weight”. Model
checking, on the other hand, is applied to a low-level description and is a
heavy task. Thus, the first stage is essential for the scalability of our method.

4.4 Experimental Results

We have implemented the algorithm described above in a tool called Soft-
UMC (software-based UML Model Checking). The implementation reads
a UML (version 2.0) system, and translates it to verifiable C code. Static
analysis is applied at this stage, according to the type of property to be
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Soft-UMC HWMC
prop. [time [#RTCs [time |# trans
RC1 | 155 10 44 34
RC2 | 198 11 145 39
RC3 | 868 17 |2315| 57
TO1 | 17 6 14 8
TO2 | 23 7 14 13
TO3 | 51 10 28 31
T04 | 514 22 |1425| 67
DW1 | 263 12 58 37
DW2 | 304 18 40 95
DW3 | 986 30 |1345| 155
LM1 | 18 7 12 19
LM3 | 101 16 79 86
LM2 | 158 14 |1320| 37
LM4 | 555 34 645 176

Figure 4.6: Soft-UMC vs. HWMC. time in secs. fRTC and ftrans is
number of RTC steps and transitions in counterexamples

checked: (LTL) safety or livelock. We then apply CBMCJ[13] (version 4.1)
as our C verifier.

First, we compared our implementation to the one translating the system
to the input language of RuleBasePE[51], IBM’s hardware model checker (we
call this solution HWMC). HWMC represents the EQ as a bounded FIFO,
where the size of the FIFO is relative to the maximum number of events
generated in a single RTC step. It also preserves the hierarchical structure
of the state machines.

To compare the performance of Soft-UMC and HWMC we used the fol-
lowing four examples. (1) A variant of the railroad crossing system from
[46], including a gate object and three track objects that communicate with
the gate, (2) The ticket ordering system (Figures 4.1 and 4.2), (3) A dish-
washer machine (inspired by the example provided with Rhapsody), (4) A
locking system, including a manager and three lock clients. We have checked
several safety properties on the systems. In Figure 4.6 we present a compar-
ison of the runtime for finding a counterexample in Soft-UMC and HWMC.
It can be seen that HWMC is better on short counterexamples. However,
on long ones Soft-UMC achieves results in shorter times. This can be ex-
plained by the initialization time of CBMC which is significant for short
counterexamples but becomes negligible on long ones.

To check the scalability of our tool compared to HMWC, we considered
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Soft-UMC| HWMC | Soft-UMC | HWMC | Soft-UMC [HWMC
param TO TO DW DW LM LM
5 49 21 82 23 34 30
8 113 92 242 34 101 71
11 202 380 475 66 192 180
14 364 1830 825 254 328 187
17 693 3470 1326 810 555 613
20 1740 T.0 1964 T.0 766 789
23 T.0 T.0 2900 T.0 1153 889
26 T.0 T.0 T.0 T.0 1657 1876
29 T.0 T.0 T.0 T.0 1859 2142
32 T.0 T.0 T.0 T.0 3049 T.0

Figure 4.7: Compare scalability. time in secs.

three parameterized examples: The ticket ordering system, and variations
of the dishwasher machine and the locking system. E.g., for the ticket or-
dering system, the attribute account of Agent is used as the parameter,
and the checked property is non-determinism. For increasing initial values
of account, the counterexample leading to a non-deterministic state is of
increasing length. This allows us to experiment on the same system with
different lengths of counterexamples. In all examples, a counterexample for
a system with parameter 7 is of length ~ 2 x ¢ RTC steps. Each RTC step
is composed of 3-5 transitions. We used a timeout of 1 hour. Results are
presented in Fig 4.7. From the comparison it is clear that HWMC is better
for shallow examples, however our tool is more scalable.

We also evaluated the performance impact of two of our optimizations,
the EQ (Sec. 4.2) and the hierarchical system. We compared a naive imple-
mentation of the EQ against our optimized implementation. To analyze the
impact of maintaining the hierarchy of the state machines we created a flat
system from the ticket ordering system. The flat system has 24 states and 54
transitions, whereas the hierarchical system has 26 states and 36 transitions.
The flat system is missing the hierarchical states. However, it has an addi-
tional attribute for maintaining the history. Figure 4.8 shows the results of
the comparison. We compared the runtime of 4 different implementations:
Hierarchical system with optimized EQ (H-OP-EQ), flat system with opti-
mized EQ (F-OP-EQ), hierarchical system with naive EQ (H-NV-EQ) and
flat system with naive EQ (F-NV-EQ).

We verified three different properties, and modified the system s.t. coun-
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#RTC [H-OP-EQ |F-OP-EQ [H-NV-EQ |F-NV-EQ
#1( 6 21 31 369 396
10 63 94 3362 T.0
18 224 420 T.0 T.0
26 524 1235 T.0 T.0
#2| 10 88 133 T.0 T.0
20 818 3157 T.0 T.0
#3| 6 21 32 371 420
10 72 103 T.0 T.0
14 275 550 T.0 T.0

Figure 4.8: Optimizations on ticket ordering. Bound in RTC steps; time in
secs.

terexample is reached at different bounds. 1,3 are safety properties. 2 is a
livelock check, checked on a slightly modified system: the guard of transi-
tion from Processing to Flight Approved of DB (Figure 4.1) is modified to
[isMyFlt && (space > 1)]. This introduces a reachable livelock state, when
dbl and db2 are in state Processing, space = 1 and isMyFlt = true for
both objects. Each row in Fig 4.8 represents a different setting defined by
the property and the initial values of the attributes, which determine the
length of the counterexample (in RTC steps). Time limit is set to 1 hour.
It is clear that the optimized implementation of the EQ scales much better
w.r.t. the naive EQ implementation. This is because the naive implementa-
tion includes a loop representing the addition of a non-deterministic num-
ber of environment events to the EQ. In the optimized implementation this
amounts to a non-deterministic increment of the tail. The comparison also
shows that the hierarchical implementation scales better than the flat one.
Our conjecture is that flattening increases the number of transitions in the
system, and therefore increases the search space. [19] presents similar results
when comparing verification of hierarchical UML systems to flat systems.
The above shows the significance of optimizations. We expect to be able to
further improve performance of our solution with other optimizations.

4.5 Conclusions

This work is a first step in exploiting software model checking techniques for
the verification of behavioral UML systems. By translating UML systems
to C we could preserve the high-level structure of the system.
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Our translation to verifiable C code rather than executable one signifi-
cantly eased the workload of the model checker. This is demonstrated, for
instance, by the comparison of our optimized representation of the event
queue with a naive one. In our translation we also took advantage of the
fact that bounded model checking is applied, and obtained a finite represen-
tation in spite of the unbounded size of the queue. Nevertheless, our method
can be extended to unbounded model checking by means of k-induction.

The comparison with IBM’s hardware oriented tool for UML verification
demonstrates that our approach is superior for long counterexamples.

Our approach to finding MD-livelocks in UML models is novel. Static
analysis identifies syntactically mutually-dependent states. During the model
checking phase, we check whether these mutually-dependent states are reach-
able and represent a real MD-livelock. A suitable finite representation of
the event queue then enables to apply BMC for finding such states that are
reachable. We expect similar approaches to be useful for proving additional
non-safety properties.
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Chapter 5

Verifying Behavioral UML
Systems via CEGAR

In this chapter we present a novel approach for applying abstraction and
refinement for the verification of behavioral UML systems.

The CounterEzample-Guided Abstraction Refinement (CEGAR) approach
[10] provides an automatic and iterative framework for abstraction and re-
finement, where the refinement is based on a spurious counterexample. The
concrete system is initially abstracted, which results in an abstract, over-
approzimated system. When model checking returns an abstract counterex-
ample, a search is made for a matching concrete counterexample. If one
exists, then a real bug on the concrete system is found. Otherwise, the
counterexample is spurious and a refinement is needed. In the refinement
stage, more details are added to the abstract system, in order to eliminate
the spurious counterexample.

In this chapter we propose a CEGAR-like framework for verifying be-
havioral systems that rely on UML state machines. We present a model-
to-model transformation that generates an abstract system from a given
concrete one. Our transformation is done on the UML level, thus resulting
in a new UML behavioral system which is an over-approzimation of the orig-
inal system. We adapt the CEGAR approach to our UML framework, and
apply refinement if needed. Our refinement is also performed as a model-to-
model transformation. It is important to note that by defining abstraction
and refinement in terms of model-to-model transformations, we avoid the
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translation to lower level representation (such as Kripke structures). This
is highly beneficial to the user, since the property, the abstraction, and the
abstract counterexample are all given at the UML level and are therefore
more meaningful.

Our abstraction is obtained by abstracting some (or all) of the state
machines in the concrete system. When abstracting a state machine, we
over-approximate its interface behavior w.r.t. the rest of the system. In the
context of behavioral UML systems, an interface includes the events gener-
ated/consumed and the (non-private) variables. We thus abstract part of
the system’s variables, and maintain an abstract view of the events generated
by the abstracted state machines. In particular, the abstract state machines
may change the number and order of the generated events. Further, ab-
stracted variables are assigned the “don’t-know” value. Our abstraction
does not necessarily replace an entire state machine. Rather, it enables ab-
stracting different parts of a state machine whose behavior is irrelevant to the
checked property. Our abstraction construction is presented in Section 5.1.
We show that the abstract system is an over-approximation by proving that
for every computation of the concrete system there exists a computation of
the abstract system that “behaves similarly”. This is formally defined and
proved in Section 5.2.

Our CEGAR framework is suitable for verifying LT L,, which is LTL
without the next-time operator. Also, we assume the existence of a model
checker for behavioral UML systems. As mentioned before, we add the
special value “don’t-know” to the domain of the variables. This results in
a 3-valued semantics for UML systems, as shown in Section 5.1. To model
check abstract systems we need a 3-valued model checker. Extending a
model checker to support the 3-valued semantics (e.g., [54, 29]) is straight-
forward.

Many works such as [53, 56, 48, 21, 47] address semantic refinement of
state machines. Semantic refinement is a method for top-down design, where
details are added to a partially defined state machine, while behavior of the
original (abstracted) model is preserved. We, on the other hand, remove
details from a given model during the abstraction stage, in order to obtain
a smaller model. Though we also address an abstraction-refinement relation
between state machines, these works are very different from ours. These
works look at manual refinement as part of the modeling process, whereas
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we are suggesting an automatic abstraction to improve scalability of the
verification tool. Moreover, these works handle a single state machine level,
where we consider a system which includes possibly many state machines
that interact with each other.

From here on, we assume the following restriction on the actions of state
machines: An action includes at most one “GEN(e)” statement. In ad-
dition, an action that includes “GEN(e)” is a non-branching sequence of
statements. If either one of these restrictions does not hold, then the state
machine can be preprocessed such that the transition is replaced with a
series of states and transitions, each executing part of the original action.

We also assume that state machines do not include history. Therefore,
a state machine SM is a tuple (S, R, ), init, TR, L), and a state machine
configuration is a tuple ¢ = (w, p). That is, we exclude the H element in
SM and the H element in c¢. Note that it is straightforward to eliminate
history at the expense of additional states, transitions and variables.

5.1 Abstract State Machines

We now present the construction of abstract UML systems.

5.1.1 Abstracting a State Machine

The abstraction of a state machine SM = (S, R,Q,init, TR, L) is defined
w.r.t. a disjoint abstraction collection ABS = {Al,..., A9} C 25. Every
AP is referred to as an abstraction set. Every abstraction set A? is a set of
states (simple or composite) for which the following holds.

1. For every s,s" € AP: Q(s) = Q(s'), and
2. For every s € A% and ' € A7, if f # ~ then s 4 s’ and s’ 4 s.

The first requirement states that an abstraction set A? includes states from
a single region. The second requirement states that the abstraction sets are
disjoint: there are no two states in different abstraction sets s.t. one state
contains the other state. Intuitively, our abstraction replaces every A® (and
all states contained in A®) with a different construct that ignores the details
of A? and maintains an over-approximated behavior of the events generated

by AP.
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We add the value don't — know, denoted L, to the domain of all variables
in V', where | represents any value in the domain. The semantics of boolean
operations is extended to 3-valued logic as follows: 1 A false = false,
1L Atrue = L and =L = 1. An expression is evaluated to L if one of its
arguments is L. For simplicity of presentation, we enable trig(t) to be a
set of triggers. Le. trig(t) = {e1,...,eq} Ue, and enabled(t,C) = true if
one of the events from trig(t) matches p (the event dispatched to the state
machine).

Next, we define several notions that are concrete and are defined w.r.t.
an abstraction set A € ABS:

o S(A)={se€ S| € A.(s <)} are the abstracted states.
e R(A)={r € R|3s € A.(r <s)} are the abstracted regions.

o TR(A) = {t € TR|src(t) and trgt(t) € S(A)} are the abstracted
transitions.

o EV(A) = {e € EV|3t € TR(A).(GEN(e) € act(t))}.
o Trig(A) = {tr|3t € TR(A).(trig(t) = tr)} \ {e}.

o V(A)={ve V3t eTR(A).(v € modif(t))}.

e GRDV(A) = {v € V[3t € TR(A).(trig(t) = e Av € grd(t))}.

Let I' = (SMy, ..., SM,,,Q1, ..., Qm, thread, V') be a system, let ABS be an
abstraction collection of SM;, and let A € ABS be an abstraction set. We
require the following restrictions of A:

1. For every v € V(A), if v can be modified by several state machines in
T", then all these state machines are assigned to the same thread. For-
mally: if v € modif(TR;) N modif(TR;) then thread(i) = thread(j).
This is needed for correctness of the construction (details in the proof
of theorem 5.11). Intuitively, this ensures that the value of v cannot
be changed by a different state machine during the execution of the
abstract state machine.

2. For every t € TR(A), if trig(t) # € then for every e € EV, GEN(e) ¢
act(t).
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T3: /GEN({EV(A)H;L Teago' /GEN({EV(A)});

a a, beoeeo

Ty: {Trig(AMLY/ [,
strt chzo; V(A)=J_, » 1

a
Tofats

end

Figure 5.1: A(A): The abstraction construct created for abstraction set A

3. There are no loops without triggers within S(.A). Further, there are no
self loops without a trigger on states containing S(.A). This is needed
to enable the static analysis described next.

In order to explain our abstraction we introduce the notion of an Abs-
round on abstraction set A, which is a maximal, possibly non-consecutive,
sequence of steps from a computation 7, s.t. all the steps are part of a single
RTC, every step executes an abstracted transition, and the state machine
remains in an abstracted state throughout the Abs-round. Formally,

Definition 5.1 (Abs-Round) Let A be an abstraction set of state ma-
chine SM; from system T', and let T = step™, ..., step® be a RTC step
of T' on SM;. An Abs-round on A is a mazimal sub-sequence of 7, T =
stepi , ..., stepic s.t. the following holds:

1. For every j € {j1,jos .., jr}: step’s = TRANS(j, (t1,....,t,)) (possibly
y = 1), and there exists a transition t € {t1,....ty} s.t. t € TR(A)
(the step executes an abstracted transition), and

2. For every v € {ij,, (i5,) +1,...,%5, }, w: N S(A) # ¢ (the state machine
remains in the abstracted states throughout 7.

Since there are no loops without triggers that include abstracted states,
we can easily apply static analysis in order to determine the maximal number
of events that can be generated by any single Abs-round of abstraction set
A. We denote this number by f4.

Given an abstraction set A € ABS, our abstraction replaces S(A),R(A)
and TR(A) with a new construct, referred to as A(A), demonstrated in Fig-
ure 5.1. A(A) includes an initial state ag, and a final state aenq. Every
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Abs-round over states from S(A) is represented by a computation that in-
cludes a single loop on A(A) from agst t0 asere. A(A) includes computations
that can generate any sequence of size 0 to f4 events from EV (A). also, all
the variables that can be modified in the Abs-round are given the value L.

An Abs-round whose first transition consumes an event, is represented
by a computation that starts with transition 71 from ags+ to ay, which
can consume any single event from Trig(A). The guard L on 7; and 7
represents a non-deterministic choice between “true” or “false”. If the first
transition on an Abs-round does not consume an event, it will be represented
by transition 75, which is not marked with a trigger. Since A(A) contains a
loop of transitions without triggers we must ensure that all RT'Cs through
A(A) are finite. We introduce a new Boolean variable cg4. A trace on A(A)
can be initiated without a trigger only if cg4 is 1. A(A) then sets cg4 to 0
on both transitions exiting agg¢.

When cg 4 is set to 1 it signals that it is possible to execute an Abs-round
that does not consume an event. Such a situation abstracts a concrete
execution in which the RTC step that includes the Abs-round starts at
a state that is not abstracted and continues within the abstraction. ILe.,
execution of a transition ¢ whose source is outside of S(A) and whose target
is a state s that either contains A or s € A. The situation can also occur
if an abstracted transition becomes enabled due to some variable change.
L.e., execution of some transition t, which is either orthogonal to A or is in
a different state machine, and ¢ modifies a variable v and v € GRDV (A).

If by static analysis we can conclude that the first transition of every
Abs-round consumes an event, then cg4 is redundant (and 75 can be re-
moved). All the Abs-rounds are then represented by computations that
start by traversing 7.

We now formally define our abstract state machines. Given SM =
(S, R,Q, init, TR, L) and an abstraction set A € ABS, SM(A) = (S4, R4, Q4,
initd, T RA,LA) is the abstraction of SM w.r.t. A. We denote functions
over the abstraction (sre, trgt, trig, grd, and act) with a superscript A.

L] SA = (S \ S(A)) U {astrtyaly ceey afA—i—lyaend}
e R4 = (R\ R(A))

e For every s € (S4NS)URA: Q4(s) = Q(s).



For every s € {Gstrt, A1, .., G f 441, Gend}: QA(s) = Q(s') for some s’ € A
(recall that all states in A are contained in the same region).

e If there exists s € A s.t. s € init then init? = (init N S4) U {asi}-
Otherwise, init? = init N SA.

o TR = (TR\TR(A)U{T1, ..., Taf 15}

The src?, trgtd, trigh, grd® and act” functions are redefined as follows:
Transitions 71, ..., Toy44 are defined according to Figure 5.1. Every transition
t € TR\TR(A) has a representation (matching transition) in SM (A). Note
that for every such transition, either sre(t) or trgt(t) are not abstracted
(are in SN S4). In SM(A), the connection to theA(A) is only through
astre. Thus, if sre(t) or trgt(t) are abstracted, then src?(t) or trgt(t)
respectively is ag¢ € A(A). The handling of cg 4 is added to the relevant
actions, as discussed above. In the following we present only the values of
srcd, trgtd, trigh grd® and act? that change in SM(A) w.r.t. SM. For
every t € TR\ TR(A):

1. trgt(t) € S(A) (the target of t is abstracted): we define trgtt(t) =
asyr. 1f there exists an abstracted transition from trgt(t) whose trigger
is € then act?(t) is act(t);cga = 1 (otherwise, act?(t) is act(t)). This
describes the case that the RT'C can start outside the abstraction and
continue within the abstraction.

2. src(t) € S(A) (the source of t is abstracted): we define sre(t) = agpy,
actd(t) is cga = 0;act(t) and grd?(t) = grd(t)&L. We add L to the
guard in order to ensure that executions of possibly enabled transitions
from states containing the abstraction remain (possibly) enabled.

3. Otherwise (neither src(t) nor trgt(t) are abstracted):

Case a: A<trgt(t): An execution of ¢ may result in a new w (current
active state) that includes an abstracted state s € S(A). If there
exists an abstracted transition from s whose trigger is €, then
actd(t) is act(t); cga = 1 (otherwise act?(t) = act(t)).

Case b: sre(t) and ag,¢ are contained in orthogonal regions (¢ can be
executed orthogonally to the abstraction): Then act(t) = act(t)
with the following modifications:
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Figure 5.2: DB State Machine

e If there exists v € GRDV(A) such that v € modif(t) then

cga = 1 is added to act?(t), and

If the current state of SM includes an abstracted state, then
variables that can be modified by abstracted transitions are
given the value L on the first transition executed on A(A)).
The value on these variables should remain 1 as long as the
current state of SM includes an abstracted state. In order to
ensure that the value remains 1 even if ¢ is executed orthog-
onally to the abstraction, every assignment x = e in act(t), if
x € V(A) then z = e is replaced with: “if (isIn({ast, a1, .-
Qfat1,0end})) T = L; else z = ;" in act?(¢). The current
state is checked using the macro isIn(U) where U is a set of
states, that checks whether a certain state from U is active.

°9

Example 5.2 Consider the DB state machine presented in Figure 5.2. Ab-
stracting the state machine with A = {Working, Vacation} results in the
state machine in Figure 5.3. Note that in this state machine, by static anal-
ysis we can conclude that every Abs-round first consumes an event, and
therefore we do not need the cga flag and transition 5. Also, on every
Abs-round no more than one event can be generated, therefore fq = 1.
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Figure 5.3: Abstract DB State Machine

The above definitions enable us to define several different abstractions
over a concrete state machine, by defining them one after the other. Given
an abstraction collection ABS = {A!, ..., A9}, the abstraction of SM w.r.t.
ABS is defined as SM4 = (((SM(AY))(A?))....)(A9).

5.1.2 Abstracting a System

Next we define an abstract system. This is a system in which some of
the state machines are abstract. For SM; and an abstraction collection
ABS; = {A', ..., A%}, SM# denotes the abstraction of SM; w.r.t. ABS,.
We denote the cg variable in SMZ-A that was added when abstracting SM;
w.r.t. abstraction set A? as cgl.ﬁ .

Definition 5.3 LetT' and IV be two systems, each with n state machines and
m event queues. We say that T is an abstraction of T w.r.t. {ABS;,...,ABS,},
denoted T4, if the following holds:

1. Forie{l,..,n}, SM! = SM; or SM! = SM#
2. thrd = thrd
3. V' =V U{cg’|SM] = SM? and A° € ABS;}

4. For every i,j € {1,...,n} s.t. i # j, and for every t € TR;-: if there
exists a variable v € GRDV (AP) where A® € ABS;, andv € modif(t)
then cgf =1 is added to act'(t) (in SM;}).

Recall that setting cg;-B to1lon SM JA signals that it is possible to execute
an Abs-round on SM; that does not consume an event. Requirement (4) in

Definition 5.3 handles the case where a guard of an abstracted transition of

50



SM; changes by a transition ¢ of SM;, by ensuring that cgl-ﬁ is set to 1 on
such transitions of TR’

Adding the value L to the domain of all variables in V' affects the cases
when a transition is enabled, and when a state machine is stable, since
now grd(t)(\) € {true, false, L}. Intuitively, if grd(t)(\) = L then we
assume it can be either true or false. We thus consider both cases in
the analysis. Therefore, enabled(t,C) = true iff ¢t can be enabled w.r.t. C
(grd(t)(N) € {true, L}) and all transitions from states contained in src(t)
can be not enabled (grd(t')(\) € {false, L}). Similarly, stable(c;, C) if ¢; can
be stable in C. lLe., for every t € TR;, s.t. src(t) € w;, either trig(t) # p;
or grd(t)(\) € {false, L}.

Note that when enabling 3-valued semantics, a transition may be en-
abled, even though lower level transitions may be enabled as well. Note
also that in the 3-valued context it still holds that for a SM-configuration
ci, if there exists a transition ¢t € TR; s.t. src(t) € w;, trig(t) = € and
grd(t) = true, then ¢; is not stable. Thus, when a state machine SM; fin-
ishes an RTC step, if SM; is in an abstract state, then that state can only
be afm (i.e., the start state of the abstraction construct replacing .A”%). Sim-
ilarly, when an event is dispatched on some thread j, then for every state
machine SM; associated with thread j: if SM; is in an abstract state, then
that state can only be aftrt.

5.2 Correctness of The Abstraction

In this section we prove that I'4 is an over-approximation of I' by showing
that every computation of I" has a “matching” computation in T'4.

Definition 5.4 (Abstraction relation of SM-configuration) Let ¢ =
(w,p) and c* = (w?, p?) be SM-configurations of a state machine SM and
its abstraction SM* respectively. ¢ abstracts ¢, denoted ¢ < ¢, if the
following holds:

o p=p"

o c and ¢ agree on the joint states: w # w iff w\ w?d C S(A) and
wA\w C A(A).
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Definition 5.5 (Abstraction relation of \) Let A\ and N be variable as-
signments over V of I' and V' of T4 respectively. We say that X' abstracts
A, denoted X X XN if for every v € V either A\(v) = XN (v) or N(v) = L.

Definition 5.6 (Abstraction relation of system-configuration) LetC
and C' be two system configurations of T' and T'* respectively. We say that
C' abstracts C, denoted C < C’, if C and C" agree on the event queues
and id elements, and the state machine configurations and N of T4 are
abstraction of the matching elements in I':

o Forje{l,...,m}: ¢ = q;. and id; = id;»
o Forie{l,..,n}: ¢; X¢

e A=

We will further need the following lemma, stating that when executing
two matching transitions ¢ and ¢, from two computations C and C’, where
(' is an abstraction of C, then the resulting variable assignments are related.

Lemma 5.7 Let C and C' be system-configurations of ' and T4 respec-
tively, such that C < C'. For every l € {1,...,n}, for every t € TR; and
ta € TR{: if t, matches t then act(t)(\,C) =< act(t,)(N,C").

Proof. We show that for every v € V: either act(t)(\, C)(v) = act(tqa)(N,C")(v)
or act(ty)(N,C")(v) = L.

Since C' < ', then for every variable v € V, either A\(v) = X(v) or
N (v) = L. Note that by the definition of matching transitions, modif(t) =
modif(t,) N V. For every v € V:

o If v & modif(t) then v € modif(t,). Therefore act(t)(\,C)(v) = A(v)
and act(ty,)(N,C")(v) = N (v), and clearly the requirement holds.

o If v € modif(t): If act(ty)(N,C")(v) # L then the value of v is
determined by an evaluation of an expression over V for variables
whose value is not L. These variables have the same value in A, and
the evaluating expression is the same. Therefore, act(t)(),C)(v) =
act(ty)(N,C")(v). Otherwise, act(ty,)(N,C")(v) = L, and clearly the

requirement holds.
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Figure 5.4: Stuttering Computation Inclusion

O

We now define stuttering computation inclusion, which is an extension

of stuttering-trace inclusion ([11]) to system computations. For simplic-

ity of presentation, we assume from now on that computations are infinite.

however, all the results presented hold for finite computations as well. In-

tuitively, there exists stuttering inclusion between 7 and 7’ if they can be

partitioned into infinitely many finite intervals, s.t. every configurations in

the kth interval of «’ abstracts every configuration in the kth interval of ,
and vice versa.

Definition 5.8 (Stuttering Computation Inclusion) Letm = C?, step?,
Cl stept, ... and ' = C", step’®, C", step’?, ... be two computations over T’

and TA respectively. There exists a stuttering computation inclusion be-

tween w and 7', denoted m <y 7', if there are two infinite sequences of
integers 0 = ip < i1 < iz < ... and 0 = i) < i} <4 < ... such that for every

k > 0 the following holds. For every j € {ig,...,(ix+1) — 1} and for every

3" € i, (ihyy) — 1} CF 2 CY

Note that corresponding intervals in 7w and 7’ may have different lengths.
Figure 5.4 illustrates two computations where m <; 7/. Definition 5.6 im-
plies that steps of type DISP, ENV and EndRI'C cannot be steps within
an interval, due to the effect of these steps on system-configuration. For
example, in Figure 5.4, C% < C"®. Assume step® = EndRTC(j,¢), then by
the definition of EndRTC step, the value of id; changes from C% to C7.
Since system-configuration abstraction requires equality of the id elements,
then clearly C” £ C’®. Thus C% and C7 cannot be in the same interval. For
a similar reason, a step of type DISP, ENV or EndRTC on 7 implies a
step of the same type on 7/, and vice versa. Steps of type TRAN S that are
either the first step in a RTC or a step that generates events are also steps
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that cannot be part of an interval, due to the effect of these steps on the p
elements and the event queues.
The above is captured in the following lemma.

Lemma 5.9 Letm = C°, step?, C1, step!, ... and ' = C", step’®, C", step™, ...
be two computations over ' and T4 respectively, s.t. m <4 n'. Let 0 = ip <
i1 <o < ... and 0 =if < iy <ih < .. betwo infinite sequences of positive
integers describing the intervals of the stuttering inclusion. Then for every

k> 0:
o step's = DISP(j,e) iff step’s = DISP(j,e)
o steps = ENV (j,€) iff step's = ENV (j,€)
o step’t = EndRTC(j,€) iff step/’s = EndRTC\(j, €)

¢ Stepik = TRANS(]? (tla 7ty)) where ’Ld;k =1 and p;k 7§ € Zﬁ Step’igc _

o step’ = TRANS(j, (t1,...,t,)) where zd;’“ =1 and GEN(e) € act(t)
for some t € {t1,....ty} iff step’™ = TRANS(j, (t/l,...,t’y,)) where

id;.;c =1 and GEN (e) € act(t') for some t' € {t}, ...t/ }

An immediate result of the above is that an interval can be of size greater
than one only if the steps in the interval are TRANS steps that are nei-
ther a first step in a RTC nor a step generating an event. Recall that
Definition 5.6 requires a correlation between the current states of the state
machines. It can therefore be shown (for a similar reason as above) that if
step’ = TRANS(j, (t)) is a step inside an interval, i.e. between two configu-
rations in the same interval, then one of the following holds: (1) If step® €
then ¢ is an abstracted transition, (2) If step’ € 7’ then t € A(A).

We extend the notion of stuttering inclusion to systems, and say that
there exists a stuttering inclusion between I' and T'4, denoted T' <, T4, if
for each computation 7 of I" from an initial configuration Cj,;:, there exists

a computation 7’ of T4 from an initial configuration C/ ., s.t. m < 7.

ing

Every system I' can be viewed as a Kripke structure K, where the K-
states are the set of system-configurations, and there exists a K-transition
(C,C") iff C" is reachable from C within a single step. Thus, every com-

putation of I' corresponds to a path in K. Let I be a system, and let A
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be an LT L formula, where the atomic propositions are predicates over I'.
Then I" = A9 iff for every computation 7 of I' from an initial configuration,
7 = 1. By preservation of LT L, over stuttering traces we conclude:

Corollary 5.10 Let T' and T'4 be two systems, s.t. T' <, T'4, and let Av
be an LTL, formula over joint elements of T' and T'A. If T'A = Ay then

I Ay.

Due to the stuttering-inclusion, I' preserves LT L, and not LTL. It is
important to note that since I' itself is a multi-threaded system, properties
of interest are most often defined without the next-time operator.

The following theorem captures the relation between I" and T4, stating
that there exists stuttering inclusion between I’ and I'4.

Theorem 5.11 IfT'4 is an abstraction of T’ then T <, I'4.

The proof of the above theorem is presented in Section 5.2.1. We give
here an intuitive explanation to why for every 7 of I' from Cj,,;¢, there exists
7' of T4 from C!, ., such that m <, 7’. For every step executed on I' that does
not include execution of an abstracted transition it is possible to execute the
same step on I'4. More specifically, for every transition ¢ executed on T, if ¢
has a matching transition ¢, in I" A, then ¢, can be executed on 7’. For every
step of type ENV, DISP and EndRTC on 7 it is possible to execute the
same step on 7’. This holds since matching configurations C" and C'? of 7
and 7’ respectively agree on their joint elements, and A’? might assign L to
variables. Thus, if a transition ¢ is enabled, then its matching transition ¢,
can be enabled.

For execution of an abstracted transition on I', every Abs-round x of
abstraction set A? on some concrete state machine SM; can be matched to a
trace from afm to afn gonsS M7, The matching is as follows: every transition

t that is traversed on y and where ¢ generated an event (GEN (e) € act(t))
B B

i i+1
traversed on x and where ¢ does not generate or consume an event, matches

matches a transition from a; to a , (for some i). Every transition ¢ that is
an interval of length one on 7/ (I'! does not execute a matching step). Since
x can generate at most f4 events, then indeed we can match the transitions
as described. All variables that can be modified on x are given the value L
upon execution of the first transition in A(A) (transitions from a”,, to a’f ).

This value is maintained in the variables throughout the traversal on A(A).
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5.2.1 Proving Correctness of the Abstraction

This section includes the full proof of Theorem 5.11, which states that if
I'4 is an abstraction of T then T' < s 'Y, We will further use the following
lemma, which captures the fact that when an event is dispatched on some
thread j, then for all of the state machines associated with thread j: if the
state machine is in an abstract state, then that state can only be afm.

Lemma 5.12 Let m = CV, step?, C!, step!, ... be some computation. For
every 1 < j < m, for every r s.t. step” = DISP(j,e), and for everyl s.t.
thread(l) = j: If AP € ABS; then {a’f, ...,a?ﬁﬂ,afnd} Nw] = ¢.

For simplicity of the proof, we assume the following on I': For every i €
{1,...,n} and for every t € T'R;, if trig(t) # € then act(t) = skip.

Proof. Assume a computation 7 = C?, step?, C*, step®, ... on I" such that
C° is an initial configuration. We prove by induction on the number of
steps in 7 that there exists a computation 7/ = C°, step’®, C'!, step’®, ... on
I'4 such that 7 <, 7.

Base: Given CY = (c1,...,¢n, q1, s @m, id1, ..., idmp, A), the initial configu-
ration of 7. We define the following initial configuration for 7’: C° =
(s eees Gy @iy ooy @y idy .y id),, N) and show that it is an initial configura-
tion on T'4.

e For every i € {1,...,n} ¢, is defined as follows. For every s € ¢;:

— If s € S then s € ¢, (if state s from SM; exists also in SMA,
then it is part of ¢})

— If s ¢ S and s € AP (i.e, s is part of abstraction set A” of SM;)

then a?,, € ¢,

e For every 1 < j < m q;- =q; = ¢ (¢ = ¢ since C? is an initial
configuration)

e For every 1 < j < m id; = id; = 0 (id; = 0 since CY is an initial
configuration)

e For every v € V, X (v) = A\(v)

e For every cg;-B e V4
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— If there exists s € ¢; s.t. s € S(AP) and there exists t € TR(AP)
s.t. sre(t) = s, trig(t) = € and grd(t)(AY) = true then cg; =

— Otherwise, cg; = 0.

The above captures the case that an abstracted transition on SM; can
be executed without consumption of an event, and without a modifi-
cation of some variable effecting its guard. This situation can occur
if the guard is true under the initial configuration. In this case we
5 to 1.

initialize the matching cg;

Clearly, C" is an initial configuration and also that C° < C"°
Step: We assume that for the first  steps of m: C?, step?, C*, step?, ...,C™ 1,
step”1,C" (r > 0) there exists a partial computation 7’ = C", step’®, C"!,
step’!,...,CP over T'A s.t. there are two sequences of positive integers 0 =
ig <1 <ig <..<i@=rand 0=ij<i] <iy<..<i;=pand for every
0< k<, Ck,C+L  Clics)=1 < ori, o/@)+L ') =1 and also
cr=<C.

We define the matching extension of 7’ based on step”:

o step” = DISP(j,ev)
By definition, id; = 0, ¢j # ¢ and top(qj) = ev. Since C" = cP,
then id! = id! and ¢! = ¢} for every i. Therefore, id;-p =0, q;-p # ¢
and top(q;-p ) = ev as well, and it is possible to make a step where
step’ = DISP(j,ev) from C'P.
By definition of DISP step, C™ = (¢}, ..., ¢, qF, ...,q;-“, ey qryidy,
...,id;“,...idrm,)\’”), q§+1 = pop(q}), z'clf'1 = trgt(ev) and p';ﬂ;(w) =
type(ev).
By definition of DISP step, C'P*! = (cF, ..., ¢, ...,q;.pﬂ, ooy Gy id Y
. id;PH, Ladh NP, q;-pH = pop(q;-p), id;-pH = trgt(ev) and pgi;'tl(ev) =
type(ev).
Since C™ < C'P, it is clear that C™T1 < C"P*+! as well.

o step” = EndRTC(j,¢€)
Assume id; = id;-p = [ > 0. Since stable(c],C"), then for every t € TR,
s.t. src(t) € wy either trig(t) # p; or grd(t)(\") = false.
For every s € w:
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1. If s € {af,...,a?ﬁﬂ,afnd}: If p;p # €, then by definition of
the semantics there exists step? is 7' such that p’ < p and
step’” = DISP(j,ev) where id;-p/ = [ (an EndRTC step must
appear after a matching DISP step). Also, for every p’ < p” < p,
if step™ = TRANS(J, (t1,...,t,)) then id;p" # | (otherwise, the
TRANS step would have set the p element to €). This means
that s € wl'p / (since only TRANS steps can change the current
state of a state machine). However, it is not possible that s € wl/p ,,
since there exists a null transition from s. We therefore conclude
that p’ =e.

For s € {af, ey a’?ﬁﬂ} (s = afnd): There exists an enabled tran-
sition ¢’ s.t. trgt(t') = a’fnd (afm) (this is a null transition). We
define step” = TRANS(j, (t')). Clearly, if CJ < C/?, then also

Ccy =< Cl/pH. Note that we match C’PT1 to C™ and not to C"H1.

We prove stuttering simulation, and this step of 7’ is part of the

matching interval, continuing in the handling of afn d (afm).

2. If s = afm then for every t' s.t. sre(t') = aftm by construction of

SMA, grd(t')(\) = L (for any \), since L is included in grd(t').

3. Otherwise, since ¢ < ¢, then s € w]. By definition of SM,
for every tramsition t € TR; s.t. src(t) = s there exists a
transition t, € TR s.t. src(ty) = s, trig(t) = trig(t,) and
grd(t) = grd(t,). Thus, if trig(t) # pl, then trig(t,) # p}’, and
if grd(t)(A\") = false then grd(t,)(\?) € {false, L}.

The above means that for cases (2) and (3), for every t, € TR s.t.
sre(ty) € w)b either trig(t,) # p or grd(t,)(N?) € {false, L}. There-
fore, an EndRTC step is possible s.t. step” = EndRTC(j,¢), and
clearly CT+1 < C'P+1,

step” = ENV (j, ev).
Since the environment is always enabled, then an ENV step s.t. step” =
ENV (j,ev) is possible from C'P, and clearly C™+1 < C'P*+1,

step” = TRANS(j, {t1,....t4})-
Assume id;? = id;p = (. By deﬁnition of the semantics, p] /: pgp # €.
Thus, there exists 7' < r s.t. step” = DISP(j,ev) and id; =1 (only
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DISP steps can set p to a value not €) and there are no TRANS or
EndRTC steps on thread j between step’”/ and step” (since these steps
set the value of p to €). From lemma 5.9 we know that there exists a
matching step step”” = DISP(j,ev) where id;»p/ =[. From lemma 5.9
we also know that there are no TRANS or EndRTC steps on thread
j between step and step’ (if there was such a TRANS step, then
it had to be the first step in the RTC, in which case it had to have a
matching step on 7 between step” and step”).

From lemma 5.12 we know that none of af, ...a?ﬁ“, a’fnd are in wl/p,.

Since only TRAN S steps on thread j can change the current state of

B

state machine S M, ZA, then we can conclude that none of a’f , ...a?ﬁ 410 %end

. !
are in w;’.

For every i € {1,...,q} we match transition ¢; with a transition t¢ €
TR{*. Assume s = src(t;).

L. If sre(t;) € w and for every A° € ABS,, afm A s: For every
s’ € wP s.t. s’ s, and for every t, € TR s.t. sre(tl,) = s, since
s does not contain any abstracted state then s’ € wj. Consider
the transition ¢ € TR, that matches t: trig(t') = trig(t,) and
grd(t') = grd(t,). Since enabled(t;,C") = true and src(t') <
sre(t;) then enabled(t’,C™) = false. Thus either trig(t') # p]
or grd(t')(\/) = false. Since p! = pj then trig(t,) # pf as
well. Since A" < NP then grd(t,)(\?) € {false, L}. Therefore,
we conclude that enabled(t),, C'?) € {false, L}.

By definition of the abstraction, there exists t¢ € TR;4 that
matches t;. Thus, src(tl) = s, trig(t?) = trig(t;) and grd(t$) =
grd(t;). For similar reasons, since trig(t;) = p; and grd(t;) =
true then trig(t?) = p! and grd(t?) € {L,true}.

Therefore, since enabled(t;, C") = true then enabled(tl,C'?) €
{L,true}.

Since trig(t;) # €, then act(t;) = skip. By definition of the
abstraction act(t$) = skip as well. Therefore, since A" < \'P then
act(t;)(N",C") =< act(t?)(NP,C'P)

2. If s € w)” and for some A? € ABS, a’ , <s: By definition of the

str
abstraction, there exists a transition t{ € TR;4 that matches ¢;.
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Thus, src(tl) = sre(t;), trig(td) = trig(t;) and grd(td) = grd(t;).

For every transition /¢ € TR s.t. sre(t?) = s' € w and s’ < s:

(a) If ' = a’ftrt then by definition of the abstraction structure
grd(t*) = Lor grd(t*) = grd&L. Therefore enabled(t)*, C'?) =
1.

(b) If s’ # a?,,, then by definition of the simulation, s’ € w/', and
by the definition of the abstraction there exists t; € T'R; that
matches t/*. Thus, src(t)) = sre(t?), trig(t;) = trig(t)*) and
grd(t;) = grd(t*). Since enabled(t;,C") = false (otherwise
t; is not enabled), and since C" < C'P then enabled(t*, CP) €
{false, L} as well.

From the above we conclude that enabled(t?, C'P) € {L,true}.

Since trig(t;) # €, then act(t;) = skip. By definition of the
abstraction modif(t{)NV = ¢ (since t{ may only modify cg vari-
ables). Therefore, if A < X then act(t;)(\,C") =< act(t?)(N,C'P)

s wzp : Notice that if s & wl'p , and since ¢; = c;p , then s & SZA.
This means that the transition ¢; taken is from an abstracted
state s.

(a) If for some AP € ABS), s € S;(A?) and trgt(t;) € S{*: This

means that the transition taken is from an abstracted state
s € S)(AP) and the target is not an abstracted state.
Since enabled(t;, C") = true and p] # e, then trig(t;) # e.
By definition of the abstraction there exists a matching tran-
sition t¢ € TR{'. Thus, src(ty) = afm, trig(t) = trig(t;),
grd(t}) = grd(t;)&L, and trgt(t}) = trgt(t;). Since C" =<
C'P, then if enabled(t;, C") = true then enabled(t,C'P) = L.
Since trig(t;) # €, then act(t;) = skip. By definition of the
abstraction modif (t?) = {cgf }. Therefore, if A < X then
act(t;) (A, C") < act(t®)(N,C'P)

(b) If there exist A%, AY € ABS; (B # v) where s € S;(A®) and
trgt(t;) € S;(AY): This means that the transition taken is
from an abstracted state s € S;(A?) and the target is an
abstracted state s € Sj(A7).

Since enabled(t;, C") = true and p] # €, then trig(t;) #
€. By definition of the abstraction there exists a transition
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t¢ € TRM st. sre(td) = aftrt, trig(t?) = trig(t;), grd(t?) =
grd(t;)&L, and trgt(t?) = aly,. Since C" < C'P, then if
enabled(t;,C") = true then enabled(t?,C'?) = L.

Since trig(t;) # €, then act(t;) = skip. By definition of the
abstraction modif(t) = {cglﬁ ,cg]}. Therefore, if A < X
then act(t;)(A,C") < act(td)(N,C'P)

(c) Otherwise (for some A° € ABS) s,trgt(t;) € S;(A?)): This

means that the the transition ¢; taken is a transition within
the abstraction of A®. Since enabled(t;,C") = true and
p; # € then trig(t;) # e. By definition of the abstrac-
tion, this means that p] € Trig(A”). By the definition of
the abstraction, modif(t;) € V(A?). Consider transition
€ A(AP). Tt holds that enabled(],C"?) = L. We define
7 = 7'18.
Since trig(t;) # €, then act(t;) = skip. By definition of the
abstraction, for every v € V(A#), act(tf)(X,C/p)(v) = 1.
Therefore, we can conclude that if A < X then act(t;)(\,C") <
act(t)(N,C").

Note that there can be several transitions from (ti,...,t,) that are

B B

abstracted by a single 7;. A single occurrence of 7; replaces all of

these transitions.

We define step” = TRANS(j, (t{, ..., t;,)): If there are several transi-

tions ¢;,, ..., t;, executed in the current TRAN S step for which t?j = Tlﬂ

(for a specific A® € ABS)), then 7'16 replaces the first occurrence of
abstracted transition in (¢1,....,t,). Since the first execution of 7'18 sets
all variables in V(A%) to L, then the effect of executing only the first
occurrence of 7'1ﬁ AP is the same as executing several occurrences of 7'1ﬁ .
Since for every t € {t1,....t5}, trig(t’) # € then act(t) = skip, then
this step does not change the event queues. We can conclude that
CrJrl ~< C/erl.

step” = TRANS(j, (t)).

Assume id} = id;p =1, and src(t) = s. By definition of the semantics,
p; = p = e. We want to show that if enabled(t, C"), then there exists
t' € TRy s.t. enabled(t',C"?). We then define step” = TRANS(j, (t'))
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and show that C"T1 < CP*1. We separate the proof to the different
cases described below.

1.

For every A® € ABS;, A(A°)Nw! = ¢

Otherwise (for some A? € ABS), A(A%) Nw # ¢), and:

2.
3.

10.

11.

12.

s € w) and for every A® € ABS, a’ftrt 4 s)

s € w, for some A® € ABS), and for some i € {1,..., f3 + 1}:
a’ Ew;p, andaiﬁ<ls

7

/ /
s € wlp, and for some A® € ABS;, afnd € wlp and afnd <s

. s € wl, for every A% € ABS), if A(AP) Nw # ¢ and al, ., s

B
then ay,,

s ¢ w, for some A% € ABS), s € S(AP), for some i € {1,..., f3+
1}, a’f € w’, and trgt(t) € Si(A?)

s & wl/p, for some A € ABS;, s € S)(AP), a’fnd € wl/p, and
trgt(t) ¢ Si(A”)

, € w}’ (possibly more than one such j3)

.8 & w;p, for some A? € ABS;, s € S;(A%), afm S wl,p, and

trgt(t) ¢ Si(A?)

s & WP, for some A® € ABS), s € S)(A”), al,, € wP, and

trgt(t) € S;(AP)

s ¢ wz/p, for some A” € ABS), s € Si(AP), for some i € {1,..., f3}:
af € w, and trgt(t) € S, (AP)

s & wl, for some A% € ABS), s € Sj(AP), a?BJFl € w’, and
trat(t) € S)(AP)

s & w, for some A® € ABS), s € S(A?), afnd € w’, and
trat(t) € S)(AP)

. For every A% € ABS), A(A%)N wl'p = ¢: This means that the

current state of SMlA does not include any abstraction.

Since ¢ < ¢/ then w” = w]. enabled(t,C") = true, therefore for
every s’ € w] s.t. s’ <'s, and for every t' € TR; s.t. src(t') = ¢,
either trig(t') # pj or grd(t')(\) = false.

For every s’ € w}” where s’ <s, it holds that s’ € w] as well (since

wl/p = w). By definition of the abstraction, for every t], € TR;4
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s.t. sre(t]) = s’ there exists a matching ¢’ € TR; where sre(t') =
s’. Also, by definition of the abstraction trig(t,) = trig(t') and
grd(t,) = grd(t’). Since p/ = p and A" < NP, then either
trig(t,) # p or grd(t,)(X?) € {false, L}.

By definition of the abstraction, there exists a matching ¢, €
TR st. src(ty) = s, trig(ty) = trig(t) and grd(t,) = grd(t).
For similar reasons, since trig(t) = p; and grd(t) = true then
trig(t,) = p’ and grd(t,) € {L, true}.

Therefore, since enabled(t, C") then also enabled(ty, C'P).

Thus, step? = TRANS(j, (t,)) is possible from C'P.

By definition of the abstraction, act(t,) either equals to act(t),
or equals to act(t) with addition of manipulation of cg vari-
ables. Thus, by lemma 5.7, and since \" < X\ act(t)(\",C") <
act(ty)(NP,C'P). We can then conclude that C™+! < C'P+1,

For some A” € ABS;, A(A%)N w;p # ¢, and:

2. s € w? and for every A® € ABS), a’,,, # s): This means that the

current state of SM, lA includes the abstraction, and the transition
taken is from a state s which is in an orthogonal region to each of
the abstractions. For the same reasoning as in the previous item,
there exists t, € TR;4 s.t. sre(ty) = s and enabled(t,, C'P) €
{L,true}.
By definition of the abstraction, act(t,) either equals to act(t),
or equals to act(t) with addition of manipulation of cg vari-
ables. Thus, by lemma 5.7, and since \" < X\ act(t)(\",C") <
act(ty)(NP,C'P). We can then conclude that C™+! < C'P+1,

3. For some A® € ABS), and for some i € {1, o fa+ 1} af € w;p,
s € wl'p and af <1 s: This means that the current state of SMZA
includes the abstraction, and the transition taken is from a state
s which includes the abstraction (possibly more than one abstrac-
tion). By definition of the abstraction, there exists a transition
ta € TR st. sre(ty) = af, trig(ty) = €, grd(ty) = true, and

trgt(ty) = a’fnd. This means that enabled(t,, C'P).

We define step’” = TRANS(j, (t,)) and clearly C" < C'P+L.

Note that we match CP*! to C” and not to C"*'. We prove
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stuttering simulation, and this step of 7’ is part of the matching
interval, continuing in the handling of afn a

. For some A% € ABS;, afnd € wl, s € wp and afnd < s: This
means that the current state of SMZA includes the abstraction,
and the transition taken is from a state s which includes the
abstraction. By definition of the abstraction, there exists a tran-
sition ¢, € TR s.t. sre(t,) = afnd, trig(ty) = €, grd(ty) = true,
and trgt(t,) = afm. This means that enabled(t,, C'P).

We define step” = TRANS(j, (t,)) and clearly C™ < C'PF1,
Note that we match CP*! to C" and not to C™*'. We prove
stuttering simulation, and this step of 7’ is part of the matching

. o . B
interval, continuing in the handling of a,.,.

. s € wp, for every AP € ABS), if A(AP)Nw # ¢ and al,, <s
then a’,, € w’ (there can possibly be more than one such j):
This means that the current state of SM ZA includes the abstrac-
tion, and the transition taken is from a state s which includes
the abstraction. By definition of the abstraction, there exists
a transition ¢, € TR s.t. src(ty) = s, trig(ty) = trig(t) and
grd(ta) = grd(t).

For every transition t, € TR s.t. src(t,) = ' € v}’ and ' < s:

(a) If &' = afm then by definition of the abstraction structure,
grd(tl) = L or grd(t)) = grd& L. Therefore enabled(t,, C'P) =
L.

(b) If &' # afm then s’ € w]. By definition of the abstraction
there exists t' € TRy s.t. sre(t') = ¢, trig(t') = trig(t)) and
grd(t') = grd(t)). Since enabled(t',C") = false (otherwise t
is not enabled), and since C" < C'P then enabled(t,, C?) €
{false, L} as well.

From the above we conclude that enabled(t,,C'P) € {L,true}.
We define step” = TRANS(j, (t,)) and C"*1 < C'P*! (reason-
ing regarding the correctness w.r.t. the value of the variables is
similar to the previous case).

.s5¢ wl/p, for some A? € ABS;, s € S;(AP), for some i € {1, v fpt
1}, af € w, and trgt(t) ¢ S;(A%): Notice that if s ¢ w)’, and
since ¢f =< ¢, then s ¢ SA and thus for some A° € ABS,
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s € Sy(AP). This means that the current state of SM;! includes
the abstraction, the transition taken is from a state s which is
abstracted by A(A”), and the target is not a state abstracted by
A(AP). By definition of the abstraction, there exists a transition
ta € TR s.t. sre(ty) = af, trig(te) = €, grd(ty) = true, and
trgt(ty) = a’fnd. This means that enabled(t,, C™).

We define step’t = TRANS(j, (t,)) and clearly C" < C'P+L,
Note that we match CP*! to C” and not to C"*'. We prove

stuttering simulation, and this step of 7’ is part of the matching
B

end’

. s ¢ wzp, for some A° € ABS;, s € S;(A%), afnd € w;p, and
trgt(t) & Si(AP): Notice that if s & w)”, and since ¢ < ¢, then
s & SA, and thus for some A® € ABS;, s € S;(A”). This means
that the current state of SMZA includes the abstraction, the tran-
sition taken is from a state s which is abstracted by A(A?), and
the target is not a state abstracted by A(AP).

By definition of the abstraction, there exists a transition t, €
TR} st. sre(ty) = afnd, trig(ts) = €, grd(t,) = true, and
trgt(ty) = afm. This means that enabled(t,, C'P).

We define step” = TRANS(j, (t,)) and clearly C™ < C'PF1,
Note that we match CP*! to C” and not to C"*'. We prove
stuttering simulation, and this step of 7’ is part of the matching

interval, continuing in the handling of a

interval, continuing in the handling of a’ftrt.

. s & wp, for some A? € ABS, s € S(AP), afm € w/, and
trgt(t) ¢ Si(AP): Notice that if s ¢ w), and since ¢ < ¢,
then s ¢ SlA, and thus for some A° € ABS), s € S;(A®). This
means that the current state of SM, lA includes the abstraction, the
transition taken is from a state s which is abstracted by A(A?),
and the target is not a state abstracted by A(A%).

By definition of the abstraction there exists a matching transition
te € TRA st sre(ty) = aftrt? trig(ty) = trig(t), grd(ty) =
grd(t)& L. Since C" < C'P, then if enabled(t,C") = true then
enabled(t,, C'?) = L. We define step? = TRANS(J, (ta))-

By definition of the abstraction, act(t,) equals to act(t) with ad-
dition of manipulation of cg variables. Thus, based on lemma 5.7,
and since X" <X XP act(t)(A\",C") < act(tq)(AP,C'P).
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By definition of the abstraction either trgt(t,) = trgt(t) (if trgt(t) €
SAY or trgt(ty) = al,, for A7 € ABS, and v # B (if trgt(t) €
Si(A7)).

We conclude that C™t1 < C'P+1,

The following lemma is a result of the above items. The lemma states
that if a transition ¢t was taken in I' during some computation T,
and that transition is not abstracted by a single abstraction construct
A(AP), then the matching transition t, is also taken in the matching
interval in the matching computation 7/ of I'4.

Lemma 5.13 Let C" € 7 be a configuration s.t. step” = TRANS(j, (t1,...,tq))
(possibly ¢ = 1) and id; = 1. For every transition t € {t1,....tq} s.t.

there is no A% € ABS; for which src(t), trgt(t) € Sj(A®):

Assume C™ < C'? and C™1 < C'P*1. Then step” = TRANS(j, (t4, s )
and there exists t* € {t{,...,tg } s.t. to is the matching transition of t.

Thus the following properties hold:

— If src(t) € St then sre(ty) = sre(t). Otherwise (sre(t) € Sj(AP)
for some [3) then src(ty) = aftrt.

— If trgt(t) € S then trgt(t,) = trgt(t). Otherwise (trgt(t) €
Si(AB) for some B) then trgt(ty) = aftrt‘

— trig(ty,) = trig(t)
either grd(t,) = grd(t) or grd(t,) = grd(t)&L

act(ty) includes act(t) with possible additional manipulation of cg
variables.

We will further need the following definition: Given some active state
s in a state machine SM;, we define the previous step in a computation
which caused reaching to state s.

Definition 5.14 Assume some computation T = C°, step?, C1, step", ...
over a system I', a configuration C" € 7, and a state s € w;. We de-
fine the previous configuration leading to s as prev(m,r,l,s) = cr
where v’ < r if the following hold:
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"
1. For everyr <r" <r:sew]

2. step” = TRANS(J, (t1,...,tq)) where id;-, =1, and there exists
ie{l,..,q} s.t. s <trgt(t;)

3. For every r' < r" < r: if step” = TRANS(, (t1,....t;)) and
id;»” =1, then for every i € {1,...,q}: s £ src(t;)

If no such C"' egists then prev(m,r,l,s) = €

/.
" is not €, then we assure that ev-

Notice that when prev(w,r,l,s) = C
ery transition of state machine SM; that was executed between step”
and step” was either in an orthogonal region to s or in a state inside
s. The execution of step” caused the current state of SM; to move to
state s, since the target of one of the transitions executed in step” is

either s or a state containing s.

9. s & wp, for some A? € ABS, s € S(AP), afm € w/, and
trgt(t) € Si(AP): Notice that if s & w)”, and since ¢} =< ¢, then
s ¢ SlA7 and thus for some A® € ABS;, s € S;(A”). This means
that the current state of SM, ZA includes the abstraction, the tran-
sition taken is from a state s which is abstracted by A(A?), and
the target is a state abstracted by A(A?%) as well. By definition
of the current TRANS step, p; = e.

The definition of the matching interval for this step includes a
small induction proof which states the following: For every con-
figuration C" € w s.t. step” = TRANS(j, (t1,....tq)), and a
matching abstract configuration C’? s.t. C" < C'P: If for some
t € {ti,....,tq} and for some 5 € {1,...,g}, afm € wl,p, and
src(t), trgt(t) € Sj(AP), then step” = TRANS(j,( T ta)),
and there exists t* € {tf,...,t%} s.t. O™ < CPH sre(t*) =
a’, ., and trgt(t®) = af.

For the case where ¢ > 1 the property holds by the definition
of matching interval for TRANS step with multiple transitions.
The case where ¢ = 1 is handled in this item.

This property can be added to the entire induction proof, but it
is relevant only in this item, where we define the interval match-
ing such a step. In the following we define the matching interval
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for step”, and show that the matching interval terminates at ab-

stracted state a’f .

Assume we can determine that \'? (cglﬁ ) # 0. We can then define
the matching interval as follows. It holds that enabled(v‘f ,C'P) =
1. We define step” = TRANS(j, 7'26 ), and differentiate according
to act(t):

(a) If GEN(..) € act(t) then clearly C™! < C'P+L,

(b) If GEN(ev') € act(t) then C" < C'PT1. We define stutter-

ing inclusion, and this step is part of the matching interval,
continuing in the handling of aiﬁ .

The correctness of C™+t1 < P or O < C'P+! w.r.t. the value of
variables holds since by definition of the abstraction, all variables
whose value might modify on act(t) are set to L on act(7'26 ).
For any other variable, since C" < C'P then the correct relation

remains after step” and step'?.

It now remains to be shown that indeed A7 (cgf ) # 0. We mark
the the step representing the beginning of the current RTC step
on thread j as step” = DISP(j,ev). We denote the matching
DISP step on 7’ as step’™ = DISP(j,ev). Consider prev(rm,r,1, s).
If prev(m,r,1,s) = € then for every o € {0,...,r}, s € wj*. Thus
s € init;. By our requirement from abstraction sets, and since
trig(t) = €, we know that grd(t) # true. Since enabled(t,C"),
we know that grd(t)(A\") = true. We denote by r” s.t. " < r the
maximal index for which grd(t)(\™") = false and grd(t)(X\""+1) =
true.

— If v = 0: this means that grd(t)(A*) = true for every a €
{0, ...,r}. Assume there exists ¢ € A(A?) that was executed
in some step r”” prior to the current step. By the property
resented at the beginning of this item, this step did not occur
in the current RTC step (otherwise, the interval matching
that execution should traverse from afm to af ). Consider

the EndRT'C step on thread j that followed steme, denoted

step” = EndRTC(j,¢). Since a transition executed on that

RTC step, then pI” = e. Also, grd(t)(\"") = true. Since

s € w!", then clearly enabled(t,C""). This is in contradiction
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to the fact that an EndRTC step occurred. We can then
conclude that no transition t' € A(A®) has been executed
prior to the current step.

The above means that for every o/ € {0,...,p}, a2, € w®".
Since grd(t)(\°) = true, trig(t) = eand s € ¢, then A’O(cglﬂ) =
1 (by the base definition). The only transition that can
change the value of cglﬁ to 0 is a transition from afm to
a’f , and we know such transition was not taken. Thus we can

conclude that )\’p(cgf) # 0.

If 7 > 0. Assume step” is executed on state machine SMy
(possibly I’ = 1). We first notice if grd(t)(\"") = false and
grd(t)(A"" 1) = true, then step”™ = TRANS(j, (t,, e ty)
and for some ¢’ € {t},...,t} }, v € modif(t'). Assume z'd;:/ =0
(SMy executes step” ). By the definition of abstraction of
systems, this means that thread(l') = thread(l), thus j' =
7. We separate between two cases, based on the relation
between r” and r':

(a) If " < 7’: We show that for every a € {r",....;7"}, SM
did not execute any transition in step®. Assume, by con-
tradiction, that such a transition did execute. Consider
the EndRTC step on thread j that followed step® (de-
noted stepT"/). Since a TRANS step occurred in this
RTC step, then ple = e. We also know that grd(t)(\"") =
true. Since s € w{m, then clearly enabled(t,C""). This
is in contradiction to the fact that an EndRTC step oc-
curred in step” . We can then conclude that I’ # [. Since
SM; and SMj are on the same thread, then they cannot
both execute a RTC step simultaneously.

Denote the beginning of the RTC step that ended on
step”” with step” = DISP(j,e). Denote the step on 7’
that matches step” as step’” = DISP(j,e). From the
above, we can conclude that for every o € {p*,....p'},
afm € wl’al. Moreover, from the property presented in
the beginning of the item we can conclude that for every
o € {p*v qu}, aftrt € w;a’.

Since for some v € GRDV (AP), v € modif(t'), then we
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know that for some S € {p*,....,p'}, cglﬁ was set to 1 on
step’® (If t' has a matching transition ¢/, then during the
execution of t/ (by lemma 5.13). If ¢’ is abstracted by
A(A7), then during execution of transition from a,,, to
a] that occurred due to the property in the beginning of

this item).
The only transition that can set cglﬁ to 0 is a transition
from a”,, to a?. Since we know that for every o €

{p*,...,p} afm € wl’a/, then no such transition executed.
We can then conclude that AP (cgf ) # 0.

(b) If ¥ > 7’: This means that I’ = [ (no other SM on thread
j can execute between step” and step”). We know that
aftrt € wl/p . By lemma 5.16 and by the property from
the beginning of this item we can conclude that for every
o e{p,...,p}, afm € wl/a'.

Since for some v € GRDV(AP), v € modif(t'), then we
know that for some £ € {p/,...,p}, cglﬁ was set to 1 on
step’s (If t' has a matching transition #/, then during the
execution of ¢, (by lemma 5.13). If ¢’ is abstracted by
A(A7), then during execution of transition from al,,, to
a] that occurred due to the property in the beginning of

this item).
The only transition that can set cgf to 0 is a transition
from afm to a’f . Since we know that for every o/ €

{p*,...,p}, afm € wl/al, then no such transition executed.
We can then conclude that AP (cglﬂ ) # 0.
If prev(m,r,l,s) = C"" # e. By definition of prev, step” =
TRANS(j, (t1,...,tq)) s.t. for some t' € {t1,...,t5}, s <trgt(t).
We separate between two cases, and show that under both cases
NP(cg®) # 0:
(a) r” > r’: This means that the execution of the transition
leading to s occurred after the beginning of the RTC step.
We first show that it is not possible that ¢’ € A(A?%). Assume
it is (i.e., both src(t') and trgt(t') are in Sj(AP)). Consider
the first transition in A(A”) that was executed in the current
RTC step. By the property presented in the beginning of this
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item, that transition caused a traversal from a¥,, to a}. By
lemma 5.16 and since afm € wl'p we can conclude that no
such abstracted transition was executed.

If trgt(t') ¢ S(.AB) (i.e., trgt(t') contains s and is not ab-
stracted): By definition of the abstraction, ¢’ has a matching
transition #, € TR, and by lemma 5.13, #/, was executed
at step”’ that matches step” . Since we have no history
and s € W/ T, then af,, € wl/p/url. By lemma 5.16 we can
conclude that for every o € {p”,...,p}, aftrt € w®. Since
only transitions exiting ay,, can set cgf to 0, then we can
conclude that )\p(cglﬁ ) # 0.

If trgt(t') € S;(AP) then src(t') & S;(AP). Since t' is not an
abstracted transition, then there exists a matching transition
t! € TR{. By lemma 5.13, there exists step’”” that matches
step” and t, is executed on step””. By definition of the
abstraction, cglﬁ =1 € act(t},). Since src(t') ¢ S(A°) then
src(t!) & A(AP). Since there are no cross hierarchy transi-
tions, then afm & wzp " The only transitions that can set cgf
to 0 are transitions exiting a’ftr
NP (cg') # 0.

We now show that if Xp”“(cglﬁ) # 0 then )\’p(cglﬁ) # 0 as
well. The only transitions that can set cglﬁ to 0 are transitions
from afm to af . We know that a” ¢ € wzp " ¢ € wzp .
If we show that for every o/ € {p+1,...,p}, a’,, € w®’ then

. We can then conclude that

and a®

str str

clearly no such transition is taken and \'? (cgf ) # 0. Assume
this is not the case, and that for some o/ € {p” +1,...,p—1},
afm 4 wl/a/. By the definition of the abstraction, in order
to return to afm the transition from afnd to afm had to
be executed at some step® s.t. o < & < p. However, by
lemma 5.16, the interval that includes step’s either leaves the
abstraction or is part of an EndRTC step. It is not possible
that step’® is part of an EndRTC step, since by lemma 5.9
there had to be a matching EndRT'C step in 7, and we know
that the last FndRTC step on thread j occurred at step”
which is prior to step’”ﬁ that matches stepp”. Also, we know
that prev(m,r,l,s) = C™", thus for every ’ < r* < r, s €
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w{*. Therefore, since we assume stuttering simulation on the
prefix of the computations, then abstraction A(A%) must be
part of the configuration for every wzp *, for p! +1<p*<p
and it is not possible that step’® leaves the abstraction. Thus,
for every p +1 <o/ <p, a’,, € W

We conclude that )\’p(cgf) # 0.

r’ > r”: This means that the execution of the transition
leading to s occurred before the beginning of the RT'C' step.
By definition of prev, this means that for every r” < r* <r,
5 € w}"*. Since the transition execution (step” ) occurred
before the DISP step (step” ), then by the semantics there
exists 7 < 1" < 1’ st. step” = EndRTC(j,e) where
id;m = [. Consider the last such EndRTC step on state
machine SM; (meaning: for every r” < r* < ¢/, if step” =
EndRTC(j,€) then id;?* # 1). By the semantics of EndRTC
step and since s € w]", we know that enabled(t,C"") =
false. We also know that enabled(t, C") = true. This means
that there exists some variable v € GRDV (A?) s.t. the value
of v was modified between steps r’” and r. Formally, there
exists 7" < 7 < rs.t. step” = TRANS(j, (t1, ..., 1)), and for
some t € {t1,....t;}, v € modif(t) and A" (v) # X" T1(v).

Consider the configuration that matches C™' 1 on 7', de-
noted C'P"*1. By definition of prev, for every r* e {r” +
L,..,r}, s € W . Thus A(AP) NwW?" # ¢ for every p* €
{p" +1,..,p}. Assume step”’ = EndRTC(j,¢) matches
step””. Thus, a,, € w? " (this is the only state in by A(A)

without a null transition).

1 . B Ip*
s D} Qg € Wi

Assume this is not the case. Since for every p* € {p”, ..., p},
A(AP) N WP # ¢, and afm € w;p , then this means that a

transition from afm to a’f was executed at some step’? , for

p" < p* < p. Since a”

str

We want to show that for every p* € {p

¢+ € wl'p then the transition from afn d
to afm had to be executed on some step’” for p* < p** < p.
By lemma 5.16, this means that step” is either part of an
EndRTC step or a step leaving the abstraction. It is not

part of an EndRTC step, since the last EndRTC step on
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the current state machine is in step” (and p” < p*™). Tt
is not possible that step’?”” leaves the abstraction, since we
know A(AP) is part of the configuration for all the steps until

step?. We can then conclude that for every p* € {p"”,...,p}:

aftrt € wl,p*'

Recall that " < 7 < r, step” = TRANS(j, (t1,...,t4)) and
for some t € {t1,...,t,}, v € modif(t) and A\"(v) # N'T1(v).
Consider the last such 7 (meaning, for every r* € {741, ...,r}:
N (v) = XL (v)

We separate between two cases, whether or not ¢ is an ab-
stracted transition.

i. If (¢) is not an abstracted transition. Assume (t) € TRy
(possibly I’ = 1). Then by definition of the abstrac-
tion, there exists a matching transition Et)a € TRf,l.
By lemma 5.13 there exists a step’” on 7’ that matches

step” and (t), is executed on step’. By the definition
of the abstraction, cgf is set to 1 on act((t),. Thus,
)\’ﬁﬂ(cgf ) # €. The only transitions that can set cgig to 0
are transitions exiting afm. However, we know that such
"D}

< p < p. We can therefore conclude

transition was not taken, since for every p* € {p
afm IS w;p , and p"”’
that Xp(cgf) # 0.

ii. If is an abstracted transition. First of all, note that ¢ &
A(AP). This holds as a result of the property presented
at the beginning of this item. Otherwise, by the prop-
erty, the matching interval should traverse from a’ftr
af, which did not occur, since for every p* € {p"”,...,p}:

*

; to

0y € W]
Since we assume variables can be modified only by state
machines under the same thread, then we know that ¢ €
TRy s.t. thread(l') = j. Under a single thread j RTC
steps are executed one after the other. Assume that the
DISP step initiating the RTC step that includes step”
is step”™ = DISP(j,€) and id?m =1". Since " < T <1,
then r"”" < 7" < 7.

Assume t € A(AY) (A7 € ABSy), and consider the
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10.

first transition # executed in the RTC step initiated by
step”™ that is abstracted by A(AY). This means that
' € TR(A"), and for some # € {#" .. 7}, step” =
TRANS(j, (t1, ..., ty)), and ¥ € {t1,...,t4}. Also, for ev-
ery r* € {#"",...,7 =1}, if step” = TRANS(j, (t], ..., 1))
then for every t € {t},...,1;}, t € TR(A").

Consider the step matching step” on 7/, step’” . Since #/
is the first executed transition in the RTC step that is
abstracted by A” then al,, € w/ " Therefore a] € w? T+
(this is a result of the property presented at the beginning
of this item, stating that if we execute an abstracted
transition and the matching abstract configuration is at
afm, then the matching step executes a transition from
Agtry LO af).

Since v € modif(t) and v € GRDV (A®), then by the
definition of the abstraction, cglﬂ =1 € act(t*) for every
transition t* where src(t*) = aly,, and trgt(t*) = a]. The
only transitions that can set cglﬂ to 0 are transitions from
aftrt. We know that such transitions were not taken, since
for every p* € {p/,...,p}: afm € wl/p*, and p' < p < p.
We can therefore conclude that A7 (cglﬂ ) # 0.

From the above we conclude that indeed AP (cglﬁ ) # 0.

We formalize the property presented in the previous item in the
following lemma:

Lemma 5.15 For every configuration C" € m s.t. step” = TRANS(j,
(t1,....,tq)), and a matching abstract configuration C'P s.t. C" <
C'P: If for some t € {t1,...,tq} and for some g € {1,..., g}, a’ftrt €

w, and src(t), trgt(t) € S(AP), then step = TRANS(j, (14, s tgr),
and there exists t* € {t{,..,t4} s.t. O™ < CPHL sre(t?) =
afm, and trgt(t*) = a’f.

s & wl,p, for some A% € ABS), s € S;(AP), for some i € {1, . falk:
a’ e w, and trgt(t) € S(AP): Notice that if s ¢ w’, and
since ¢] < ¢, then s ¢ S/, and thus for some A® € ABS,,
s € Sy(AP). This means that the current state of SM; includes

the abstraction, the transition taken is from a state s which is
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abstracted by A(A?), and the target is a state abstracted by
A(AP) as well. By definition of the current TRANS step, p} = .

The difference between C” and C"*! is in the value of variables
and/or in the value of some event queue (if GEN(e) € act(t)).
We first consider the variables and show that \™1 < \'P:

For every variable v & modif(t), A"(v) = XN*1(v), and thus
clearly either N'P(v) = L or AP(v) = A"t (v).

For every variable v € modif(t), we show that A'P(v) = L: Since
v € modif(t) then by definition v € V(AP). By the definition
of the abstract model, if af € wzp . then there exists C"?" € =/
st al,, € wl'p, and step” = TRANS(j, (t], ... ty)) s.t. there
exists t;, € {t],...,ty} where src(t,) = a’, , and trgt(t)) = af.
This means that for every v € V(AP), X?*1(v) = L. Since
A(AP) can be entered only through afm, we can conclude that
step’ occurred in the current RTC step (meaning, there is no
P e{p,..,p} st. step” = EndRTC(j,¢)). We also know that
for every p” € {p/,...,p}, w;p" NA(AP) # ¢.

Since variables can be modified only by state machines on the
same thread, then if v is modified in some step p” where p” €
{p',...,p}, then step” = TRANS(j, (t1,...,tq)) and id;»p// =1
By the definition of the abstraction, if for some t, € {t1,...,%4},
t' modifies v € V4 then one of the following holds:

— t] is an abstracted transition, in this case v = L € act(t}),
or

— !, is not an abstracted transition, in this case consider ¢’ the
matching transition of ¢,. By definition of the abstraction,
v = e € act(t') and “if (isIn(AP)) v = L; else v = e;"€
act(t!). Since isIn(AP) = true, then act(t,)(\?",C"") = L.

We can then conclude that AP (v) = L.
We define the matching step based on act(t):

(a) If GEN(e) ¢ act(t) (for some event e) - this means that
the difference between C” and C"*! is only in the value of

variables. We do not define a matching step in 7/, and clearly
Cr—l—l < C,p.
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11.

12.

(b) If GEN(e) € act(t) (for some event e) then by definition of
the abstraction e € EV(A?). By definition of the abstrac-
tion there exists a transition ¢, € TR s.t. src(ty) = aiﬁ ,
trgt(ty) = aiﬂ_H, trig(t,) = € and grd(t,) = true. Since
pl = €, then enabled(t,,C'?) = true. We define step’? =
TRANS(j,t,). By definition of the abstraction it is possible

that the action on t, is GEN(e), therefore O™ ! < C'PF1,

s ¢ w;p, for some A? € ABS), s € S;(A?), a?ﬁﬂ S w;p, and
trgt(t) € S;(A%): Notice that if s ¢ w’, and since ¢] < ¢,
then s & SZA, and thus for some A° € ABS), s € S;(A?). This
means that the current state of SM, lA includes the abstraction, the
transition taken is from a state s which is abstracted by A(A?),
and the target is a state abstracted by A(A?) as well.

Every computation on I'4 can enter one of A(A?) states only by
entering afm. Recall that there can be at most fg events gener-
ated in a single RTC step within the states abstracted by A(A”)
in I'. If we reach ay,11 then by the definition of the abstraction,
fs events were generated in the current RTC step within the
states abstracted by A(A®) in I'. Therefore, GEN (e) & act(t).
For the same reasoning as in the previous item, we do not define
a matching step in 7/, and C"+! < C'P.

s & wp, for some A® € ABS), s € S;(AP), a’fnd € w/, and
trgt(t) € S;(A%): Notice that if s ¢ w, and since ¢] < ¢,
then s ¢ S, and thus for some A? € ABS), s € S;(A”). This
means that the current state of SM, lA includes the abstraction, the
transition taken is from a state s which is abstracted by A(A?),
and the target is a state abstracted by A(A%) as well.

This situation is not possible. Every computation on I'4 can enter
the one of A(AP) states only by entering afm. Recall that there
can be at most fg events generated in a single RTC step within
the abstracted states in I'. The simulation is defined s.t. an
execution of an abstracted transition ¢ in I" matches an execution
of a transition in T'4 only if GEN(e) € act(t). If GEN(e) &
act(t) then there is no execution of a matching transition in I'4.
Therefore, it is not possible that ¢ is an abstracted transition and
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/p
a,, €W .
The following lemma is based on the definition of the simulation

relation:

Lemma 5.16 The interval that includes a move from state al’-B
for 1 < i < fg+1 to a’fnd matches a concrete transition that

either leaves the abstraction or an EndRTC step.

5.3 Using Abstraction

We now present the applicability of our abstraction framework through an
example. We consider a system I" describing a travel agent (of class Agent)
that books flights and communicates with both airline databases (of class
DB) and clients. We assume I' includes n different DB objects, where the
behavior of each DB is defined in Fig. 5.2. The single Agent object in I'
communicates with clients (modeled as the environment) and with all of the
DBs. The Agent behavior is as follows: upon receiving a flight request from
a client, it requests a price offer from all D Bs by sending event evGet Prc to
them. After getting an answer from the DBs (via evRet Prc), it chooses an
offer, reserves the flight from the relevant DB (via evAprvFlt) and rejects
the offers from the rest of the DB (via evDenyF'lt).

Assume now we create an abstract system I'*, where the DBs are ab-
stracted as in Fig. 5.3 (the Agent remains concrete). If Agent state machine
includes x states, then I has (12 % n + 2) states, whereas T'4 has (4 * n + )
states. Moreover, I'4 does not include the pieces of code in the actions of the
transitions of DBs, which may be complicated. E.g., the method calcPre()
is not part of the abstract state machine of DB, and this method might
include complex computations.

Assume we want to verify the property describing that on all computa-
tions of I, if Agent orders a flight from some DB, then all the D Bs returned
an answer to the Agent before the Agent chooses an offer. For this property
it is enough to consider only the interface of the DBs. The property is
not affected, for example, by the calculation of a price by the DBs. It is
an outcome only of the information that every DB can consume an event
evGetPrc, and can send an event evRetPrc. We can therefore verify the
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property on I'4. If the property holds, then we can conclude that T' also
satisfies the property.

Consider another property: we want to verify that due to a single request
from the client, space decreases by at most 1. Clearly, when verifying the
property on I'4, the result is L, since I'4 abstracts the variable space. This
means that we cannot conclude whether or not the property holds on I"
by model checking I'4. However, it might be possible to refine I'4, and
create a different abstraction I'"4 for which this property can be verified.
Following, in section 5.4 we present how to refine an abstract system when
the verification does not succeed.

5.4 Refinement

Once we have an abstract system I'Y, we model check our LT L, property
Ay over the abstract system. Since variables in I'4 can have the value L,
then (T4 | AY) € {true, false, L}. If (I'4 = As)) = true, then from
Theorem 5.11 the property holds on T' as well. If (T4 = Av) € {false, L}
then due to I'* being an over-approximation we cannot determine whether
or not the property holds on I'. Typical model checkers provide the user with
a counterexample in case verification does not succeed. A counterexample

74 on T4 is either a finite computation or a lasso computation s.t. either

(74 =) = false or (74 =) = L.

Next we present a CEGAR-like algorithm for refining I'4 based on 74.
The refinement step shows how to create a new abstract system I''4, where
one or more of the abstracted states of I are removed from the abstracted
states. Since the concrete system I' is finite, the CEGAR algorithm ulti-
mately terminates and returns a correct result.

If (14 = ¢) = L then we cannot determine the value of the property.
If (7 = +) = false, then this counterexample might be spurious. In both
cases we search for a computation 7 on I' s.t. 7 =<, 4. Given 7TA, we
inductively construct = w.r.t. 7. Note that if the concrete model enables
non-determinism, then there might be more than one matching concrete
counterexample. In this case, all the matching concrete counterexamples
are simultaneously constructed. Intuitively, the construction of 7 follows the
steps of 74, maintaining the stuttering inclusion. During the construction, if
for some prefix of 74: C"0 step/®, ..., step”~1, C'P it is not possible to extend
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any of the matching concrete computations based on step, then 74 is a
spurious counterexample and we should refine the system. We present a
formal construction of 7 based on the counterexample 74 in Section 5.4.1.
There are three cases where we cannot extend a concrete computation m =

CY, step,...,C" (C" = C'P) based on step'P:

1. step? is an EndRTC step on SM] but there exists an enabled transi-
tion in TR; w.r.t. C".

2. step is a TRANS step on SM] that executes a transition ¢, & A(AP)
(for some A? € ABS)), and the concrete transition ¢ that matches t,
is not enabled.

3. step’ is a TRANS step on SM] that executes a transition t, € A(A7)
(for some A® € ABS)) that generates an event e, and there is no
enabled concrete transition t € TR(A?) where GEN (e) € act(t).

We call the configuration C? € 74 from which we cannot extend a
matching concrete computation a failure-configuration. Following, we dis-
tinguish between two reasons that can cause a failure-configuration, and
show how to refine the system in each case.

Case 1: step’? executes a transition that does not have a matching behavior
in T'. For example, when step” = TRANS(j, (ta)), z'd;P = [, and the concrete
transition ¢t € T'R; that matches ¢, is not enabled, since src(t) ¢ w;. This is
possible only if src(t) € S;(A?) and trgt(t) & S;(A®) (for some A® € ABS)).
Another example for such failure is where I'* generates an event e as part
of the action of ¢,, but e cannot be generated from C" on any possible step.
This can happen only if ¢, € A® (for some A% € ABS);). In both cases we
refine by removing a state s € S;(A?) such that s € w] from the abstraction.
Case 2: There exists v € V for which AP(v) = L and the value of \"(v)
causes the failure-configuration. For example, when step’” = TRANS(J, (t,))
and the concrete ¢ that matches ¢, is not enabled w.r.t. C”, since grd(t)(\") =
false. Since C" <1 C'P and grd(t,) = grd(t), then clearly grd(t,)(\?) = L,
and for some v, \N’? = | and v affects the value of grd(t,). We refine I'* to
obtain a concrete value of v:

We trace 74 back to find the assignment that gave v the value L. The only
place where a variable is initially assigned the value L is a transition from
afm to af in some A” (for some A® € ABS)). Thus, the tracing back of
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74 terminates as C'P" such that aftr
configuration C"" in 7 s.t. " <9C", and refine the model by removing from
the abstraction a state s € S;(A”) such that s € w['.

If we are able to construct 7 s.t. <174, then one of the following holds:

. € wi*. We find the matching system-

1. If (%) = ¢) = false then no need to check 7. By construction,
7 = 1, and we can conclude that I' = Aq.

2. If (74) = ¢) = L then we check 7 w.r.t. 1. If 7 [~ 1) then again 7 is
a concrete counterexample and we conclude that T' = Av. Otherwise
(m = 1), the abstraction is too coarse and we need to refine. Notice
that in the latter case, since (74 |= 9) = L then there exists v € V
which affects the value of v, and v has the value L. We then refine I'4
in order to have a concrete value on v, as described above (Case 2).

Consider the example system presented in Section 5.3, and consider a
property that addresses the variable space. Recall that under the abstraction
presented for this example, such a property is evaluated to 1, since the
variable space is abstracted. During the refinement, state WaitForDB is
suggested for refinement, and is removed from the abstraction. We can then
create a refined system I'4, where DB objects are abstracted w.r.t. a new
abstraction collection ABS = {{Idle, PriceProcessor,UpdateDB}}. The
property can then be verified on I4, and we can conclude that it holds on
the concrete system.

5.4.1 Constructing = From 74

Following we present the inductive construction of m w.r.t. the given coun-
terexample 74

Base: Given O = (¢, ...,c%, ¢, ....,¢9,id?, ...,id> , \'?), the initial con-
figuration of m4. We define the following initial configuration for m: C° =

0 0 0 0 ;70 30 0
(€1, ey Oy @1y ooy Qs 87y <y i, A7),

For every i € {1,...,n}: w? = {s|s € init; AVs' : s 1§ — s € init;}

For every i € {1,...,n}: p) =e.

For every j € {1,...,m}: q? = q;.O =¢

For every j € {1,...,m}: idg-) = id;-o =0
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e For every v € V: \(v) = XO(v)

It is immediate to see that C’° is an initial configuration and also that
CO < C/O
Step: Assume that for the first p steps of 74: C0, step®, C'Y, step'!, ..., C"P~ 1,
step?~1, C'P there exists a partial computation 7 = C?, step?, C1, step!, ..., C"
over I' s.t. there are two sequences of integers 0 = ig < i1 < g < ... < ij =
r+1land 0 =) <) <iy<..<i,=p+1and for every 0 < k <
For every j € {ik,..., (ir41 — 1)} and for every j' € {i},...,(i),) — 1}:
ci =<

Note that the requirement on interval (I — 1) induces C" < C'P.

The matching extension of 7 is defined based on step?:

e step? = DISP(j,ev)
By definition, id;-p =0, q;-p # ¢ and top(q;-p) = ev. Since C" < C'P,
then id] = id} and ¢/ = ¢ for every i. Therefore, id; = 0, ¢} # ¢
and top(q;) = ev as well, and step” = DISP(j,ev) is a possible step
from C".
By definition of DISP step, C'P*! differs from C’? in the following:
/p+1

. ptl 1
qj = pop(q;-p), zd;-p+ = trgt(ev) and pg;rt(ev) = type(ev).

By definition of DISP step, C™*! differs from C” in the following:
q§+1 = pop(q}), z'clgJrl = trgt(ev) and p::;(ev) = type(ev).

Since C™ < C'P, it is clear that C"T1 < C"P*+! as well.

o step” = ENV(j,ev).
Since the environment is always enabled, then an ENV step s.t. step” =
ENV (j,ev) is possible from C”, and clearly C"+! < C"P*1,

o step’” = EndRTC(j,¢)
Assume id; = id;-p = 1> 0. If stable(c],C") then we define step” =
EndRTC(j,€) and clearly C™! < C"P*1. Otherwise, stable(c],C") =
false, in which case we might need to refine.
If stable(c;,C") = false then there exists s € w; and t. € T R; where
sre(te) = s s.t. trig(t.) = p; and grd(t.)(\") = true. Assume SM;! is
an abstraction of SM; w.rt. ABS; = {A!, ..., A9}.

1. If for every B € {1,...,g}, s & S;(AP) then by definition of SM?,
s € SlA and there exists a matching transition t, € TR;4 s.t.
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sre(ty) = s, trig(t.) = trig(t,) and grd(t.) = grd(t,). By def-
inition of the simulation, s € w;. Since trig(t.) = trig(t,) and
stable(c,C"?) € {L,true} then this means that grd(t,)(\?) €
{false, L }. However, we know that for every v € V, either
NP(v) = L or NP(v) = AN'(v). Since grd(t.) = grd(t,) ,then it
is not possible that grd(t.)(\") = true and grd(t,)(\P) = false.
We conclude that grd(t,)(AN?) = L. We choose some variable
v € Vst. MP(v) = L and v effects the evaluation of grd(t,)
and refine I'* w.r.t. v. We present how to refine I'4 w.r.t. some
variable v (as described above, in Case 2).

. If for some B € {1,...,g}, s € S;(AP) (s is an abstracted state).
Since ¢ < ¢ then A(A%)Nw)? # ¢. We conclude that = w)?
(this is the only state in A(A”) without a null transition). We
separate between different cases.

— If p} = € and for every abstracted variable v € V(A?),
MNP(v) = 1: this means that the abstraction has been tra-
versed. It is possible that the concrete model might reach
a stable state after traversing abstracted transitions without
GEN. Recall that these transitions do not have a matching
transition in the abstraction. Continue from C” the RTC
step on abstracted transitions (transitions ¢ € TR(A®)), as
long as it is on transitions without GEN. Since the by def-
inition of the abstraction, these transitions can only modify
variables from V(A?), which have the value L in AP, then
on all such reachable configurations C” < C’?. When can-
not progress anymore, check stable(c}”l, C"™). If for one of the
reachable configurations stable(c}"/,C’”l) = true then we de-
fine step” = EndRTC(j,¢) and clearly C™'*+1 < C"P*1. Oth-
erwise, there exists s’ € w] and t, € TR, where src(t,) = s/
s.t. trig(tl) = e and grd(t.)(\") = true.

x If ' € S then s’ € wl'p , and there exists a transition
th € TR st. src(t,) = &, trig(t,) = trig(t.) = € and
grd(t.) = grd(t,). Since stable(c;’,C'P) € {L,true} and
since for every v € V, either NP(v) = L or AP(v) =
M (v), then grd(t!)(\P) = L. We choose some variable
v €V st. MP(v) = L and v effects the evaluation of
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grd(t,) and refine T4 w.r.t. v.

x If ' ¢ S then for some v € {1,...,g}, s’ € Sj(AY). We
refine the abstraction by removing s’ from S;(.A7).

— Otherwise: we refine the abstraction by removing s from

Sy(AP).

o step” = TRANS(j, (t{, ..., t5))

For every i € {1,...,q} we match transition ¢t with (possibly more
than one) transition ¢; € TR;.

L. If sre(ty) € S;: Then src(ty) € w]. By definition of the ab-
straction, there exists a matching transition ¢t € TRy s.t. src(t) =
sre(ty), trig(t) = trig(ty), grd(i) = grd(t}), and act(t) = act(t}) =
skip (since trig(t?) = p’ # €). If enabled(t,C") = true then we
define t; = t.

Otherwise, if enabled(t,C") = false, then we need to refine. We
separate between the different cases that can cause enabled(t,C") =
false and enabled(ty, C'P) € {L, true}:

— For every t' € TRy st. src(t') < src(t) and src(t’) € w]
it holds that enabled(t,C") = false: Since pI = p/, this
means that grd(t¢)(A\P) € {L,true} and grd(t)(\") = false.
Since X" < AP we conclude that grd(t$)(A\'P) = L. We choose
some variable v € V s.t. AP(v) = L and v effects the evalu-
ation of grd(t¢) and refine I'* w.r.t. v.

— There exists t' € TRy s.t. src(t’) < src(t), sre(t’) € w] and
enabled(t',C") = true.

(a) If src(¥’) € w), then by definition of the abstraction,
there exists t, € TR{* s.t. src(t,) = src(t'), trig(t') =
trig(t,), grd(t') = grd(tl,). Since p; = p/, this means
that grd(t,)(AP) € {false, L} and grd(t')(\") = true.
Since A" < AP we conclude that grd(t,)(A?) = L. We
choose some variable v € V s.t. AP(v) = L and v effects
the evaluation of grd(t’) and refine T4 w.r.t. v.

(b) If sre(t') & w, then by definition of the abstraction,
src(t’) € S(AP) for some B € {1,...,g}. Also, by defini-
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tion of the simulation, A(A”) Nw” # e. We refine the
abstraction by removing src(t') from Sj(A%).
2. If sre(t?) & Sp: Then sre(t) & wi. Since trig(t?) = p! # €, then
sre(td) = afm for some 5 € {1,...,g}.

— If trgt(t?) = af . If there exists a mazimal set of orthogo-
nal and enabled transitions t1,...,t;, € TR;(AP), then t; is
defined by ], ..., t;,.

If no such set of transitions exist, then we need to refine.
Refine by removing a state s’ € S;(A%) Nw! from S;(A7).

— Otherwise, this means that either (1) trgt(t%) = al,,, for v €
{1,...,9} and v # B, or (2) for every v € {1, ..., g}, trgt(t?) ¢
Si(AY) (trgt(t) € Sp): By definition of the abstraction, there
exists a matching transition t' € TRy s.t. src(t') € Sj(A?),
trig(t') = trig(t?), and

x if trgt(t?) = aly,, then trgt(t') € S;(A7)
« if trgt(t?) € S; then trgt(t) = trgt(ty)
Also, by definition of the abstraction, grd(t{) = grd(t')&L.
(a) If sre(t’) € w] and enabled(t’,C") = true: then define
=1,
(b) If sre(t’) € w] and enabled(t’,C") = false: then need to
refine.
We separate between the different cases that can cause
enabled(t’,C") = false and enabled(t?,C'P) € {L,true}:
x For every t” € TRy s.t. src(t”) < src(t') it holds that
enabled(t”,C") = false: Since p] = pgp, this means
that grd(t')(\?) € {L,true} and grd(t')(\") = false.
Since A" < NP we conclude that grd(t')(\P) = L. We
choose some variable v € V s.t. AP(v) = L and v
effects the evaluation of grd(t') and refine T4 w.r.t. v.
« There exists t” € TRy s.t. src(t”) < sre(t), sre(t”) €
w; and enabled(t”,C") = true. By definition of the ab-
straction, src(t”) € S,(A¥). We refine the abstraction
by removing src(t”) from the abstracted states.
(c) If sre(t’) € wy, then need to refine. Remove sre(t') from

S AP).
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We define step” = TRANS(j, (t1,...,tq)). For every such transi-
tion, since p; # €, then for every i € {1,...,q}, either act(t;) =
skip or act(t;) changes the value of cg variables. By definition
of the abstraction, for every i € {1,...,q}, act(t}) possibly sets
the value of variables from V to L and changes the value of cg
variables. Since C™ < C'P, then clearly C™t1 < C'P+1,

o step = TRANS(j,tq)
Assume id] = id;P = land src(t,) = s. We know that enabled(t,, C'?) €
{true, L}. We separate to the following different cases:

1. If sre(ty) € wy

2. If sre(ty) € wy and for some § € {1,..., g}, src(ta) = afnd
3. If src(ty) € wy and for some § € {1,..., g}, src(ta) = af
4. If src(tq) € wj and for some B € {1,...,g}, src(ty) = afm

1. If sre(ty) € w): By definition of the abstraction, there exists
a matching transition t € TRy s.t. src(t) = sre(ty), trig(t) =
trig(ty), and grd(t) = grd(t,). If enabled(t,C") = true then we
define step” = TRANS(j,t). By definition of the abstraction
construction, act(t,) differs from act(t) in the following:

— act(t,) might include manipulation of cg variables

— assignments of type v = e in act(t) might be replaced with
“f (isIn(A)) v = L; else v =e;” in act(t,).
Since C" < C'P and specifically A" < \'P, then clearly act(t)(A\",C") <
act(t,) (NP, C'P). By definition of the matching transition, either
trgt(ty) = trgt(t) or trgt(t,) = afm and trgt(t) € A®. Thus, we
can conclude that C™t1 < C/P+1,
Otherwise, if enabled(t,C") = false, then we need to refine. We

separate between the different cases that can cause enabled(t,C") =
false and enabled(t,, C'?) € { L, true}:

— For every t' € TRy st. src(t') < src(t) and src(t’) € wf
it holds that enabled(t',C") = false: Since pI = p/, this
means that grd(t,)(A?) € {L,true} and grd(t)(\") = false.
Since A" < AP we conclude that grd(t,)(A?) = L. We choose
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some variable v € V s.t. AP(v) = L and v effects the evalu-

ation of grd(t,) and refine I'* w.r.t. v.
— There exists t' € TRy s.t. src(t’) < sre(t), sre(t’) € w] and
enabled(t',C") = true.

(a)

If sre(t') € wP, then by definition of the abstraction,

there exists a matching transition t, € TR s.t. sre(t,) =

sre(t), trig(t') = trig(t)), grd(t’) = grd(t,). Since

p; = p, this means that grd(t,)(\?) € {false, L} and

grd(t")(\") = true. Since A" < NP we conclude that

grd(t,)(\?) = L. We choose some variable v € V s.t.

NP(v) = L and v effects the evaluation of grd(t,) and

refine T4 w.r.t. v.

If sre(t') ¢ w, then by definition of the abstraction,

sre(t’) € S(AP) for B € {1,..,g}. Since ¢ < ¢/, this

means that afm € wl'p (it is not possible that one of

A(AP)\ {a’ftrt} is in w;? since these states have null out-

going transitions, and thus enabled(t,, C'P) = false). We

separate between two cases, whether or not the abstrac-
tion has been traversed.

* If there exists an abstracted variable v € V(A?) s.t.
NP(v) # L: this means that the abstraction has just
been entered. We refine the abstraction by removing
src(t') from the abstracted states.

x If for every abstracted variable v € V (A%), MP(v) = L:
this means that the abstraction has been traversed.
It is possible that the concrete model might reach a
state where enabled(t,C") = true after traversing ab-
stracted transitions without GEN. Continue from C”
the RTC step on abstracted transitions (transitions
t' € TR(AP)), as long as it is on transitions with-
out GEN. Since by the definition of the abstrac-
tion, these transitions can only modify variables from
V (AP), which have the value | from the abstraction,
then on all such reachable configurations C™ =< C'P.
For every such reachable C"', if enabled(t,C"") then
we define step” = TRANS(j,t).
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Otherwise, if on all possible reachable configurations
C" it holds that enabled(t,C"™") = false, then we need
to refine.

- If for some reachable configuration C”', and for every
" € TRy s.t. src(t”) < src(t) and sre(t”) € wf it
holds that enabled(t”,C"") = false, then this means
that grd(t)(\") = false. Since enabled(t,, C"?) =
true, then grd(ty)(N'P) € {L,true}. Since \" < \'P
we conclude that grd(t,)(A\?) = L. We choose some
variable v € V s.t. AP(v) = L and v effects the
evaluation of grd(t,) and refine I'* w.r.t. v.

- Otherwise, refine the abstraction by removing src(t’)
from the abstracted states.

2. If sre(ty) € w and for some 3 € {1,...,g}, src(ty) = afnd. By
definition of the abstraction, trgt(t,) = a’ftrt. Continue on step’”

without matching a step on 7. It holds that C™ < C'P*+1,

3. If sre(ta) € wj and for some B € {1,...,g}, src(ty) = a’f: By
definition of the abstraction, trgt(t,) is either afn 4 Or af -

— If trgt(t,) = a’fnd: Continue on step” without matching a

step on 7. It holds that C" < C'P*1,

— Iftrgt(ty) = a’f +1: By definition of the abstraction, act(t,) =
GEN(EV(A?)). Assume the event generated on step is
ev € EV(AP). Continue from C” the RTC step on abstracted
transitions (transitions t € TR(A?)), as long as it is on tran-
sitions without GEN. Since by the definition of the abstrac-
tion, these transitions can only modify variables from V' (A?),
which have the value L from the abstraction, then on all of
them C™ < C'". On every such reachable C" | if there ex-
ists a transition ¢, € TR(A?) where GEN (ev) € act(t,) and
enabled(t,,C™) = true then step” = TRANS(j,t.). For
same reasoning as before, C"' 11 < O/P+1,

Otherwise, if on all possible reachable configurations C”" no
such #/, then need to refine. For some s € w! s.t. s € S;(A?),
remove s from Sj(A%).

4. If sre(t,) € w; and for some 8 € {1,...,9}, src(ta) = afmz We
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separate between the different cases for trgt(t,)

— trgt(ty) = af: Since p’ = €, then t, = 2. For every

abstracted transition ¢ € TR(A®) s.t. enabled(t,C") de-
fine step” = TRANS(j,t). By definition of the abstraction,
modif(t) C V(AP). Since for every v € V(A?), NP+1(v) =
1, and since C" < C'P, then C" < C"P*1,

Otherwise, if no such ¢ exists, then need to refine. For some
s € wl s.t. s € S)(AP), remove s from Sj(A%).

— Otherwise: This means that either (1) trgt(t,) € S; or (2)
trgt(ty) = al,, for v € {1,...,g} and vy # B: By definition
of the abstraction, there exists a matching transition ¢ €
TRy s.t. src(t) € Sj(AP), trig(t) = trig(ty), and grd(t,) =
grd(t)&L.

(a) If sre(t) € w] and enabled(t,C") = true: then define
step” = TRANS(j,t).
By definition of the abstraction construction, act(t,) dif-
fers from act(t) in the following:

% act(t,) might include manipulation of cg variables

* assignments of type v = e in act(t) might be replaced
with “if (isIn(A)) v = L1; else v =€;” in act(ty).

Since C" =< C'P and specifically A" < MNP, then clearly

act(t)(A\",C") = act(ty)(NP,C'P). By definition of the

matching transition, either trgt(t,) = trgt(t) or trgt(t,) =
al,, and trgt(t) € AY. Thus, we can conclude that

Ol < o+l

(b) If sre(t) € w] and enabled(t.C") = false: then need
to refine. We separate between the different cases that
can cause enabled(t,C") = false and enabled(t,, C'P) €

{L,true}:

x For every t' € TRy s.t. src(t’) <t sre(t) it holds that
enabled(t',C") = false: Since p = p’, this means
that grd(t)(\P) € {L,true} and grd(t)(\") = false.
Since A" < AP we conclude that grd(t)(\?) = L. We
choose some variable v € V s.t. ANP(v) = L and v
effects the evaluation of grd(t,) and refine I'* w.r.t. v.
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* There exists t' € TRy s.t. src(t’) < sre(t), sre(t’) €
wj and enabled(t',C") = true. By definition of the
abstraction src(t') € S;(AP). We refine the abstraction
by removing src(t’) from S;(A?).

(c) If sre(t) & wy, then we need to refine. For some s € w]

s.t. s € Sj(A?), remove s from Sj(A%).

5.5 Conclusion

In this work we presented a CEGAR-like method for abstraction and refine-
ment of behavioral UML systems.

It is important to note that our framework is completely automatic. An
initial abstraction can be one that abstracts entire state machines, based on
the given property. We presented a basic and automatic refinement method.
Heuristics can be applied during the refinement stage in order to converge
in less iterations. For example, when refining due to a variable v whose
value is |, we can refine by adding all abstracted transitions that modify v
(or v’s cone-of-influence). Note, however, that there always exists a tradeoff
between quick convergence and the growth in size of the abstract system.
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Chapter 6

Learning-Based

Compositional Verification of
Behavioral UML Systems

In this chapter we present a novel approach for learning-based compositional
verification of behavioral UML systems.

One of the most appealing approaches to fighting the high time and mem-
ory requirements of model checking is compositional model checking, where
parts of the system are verified separately in order to avoid the construction
of the entire system and to reduce the model checking cost. The Assume-
Guarantee (AG) paradigm [30, 44, 26] suggests how to verify a component
based on an assumption on the behavior of its environment, which consists
of the other system components. The environment is then verified in order
to guarantee that the assumption is actually correct.

Learning [2] has been a major technique to construct assumptions for the
AG paradigm automatically. An automated learning-based AG framework
was first introduced in [15]. It uses iterative AG reasoning, where in each
iteration an assumption is constructed and checked for suitability, based on
learning and on model checking. Many works suggest optimizations of the
basic framework and apply it in the context of different AG rules ([7, 23,
57, 20, 39, 28, 5, 14, 43, 9]).

In this chapter we propose a framework for automated learning-based
AG reasoning for behavioral UML systems. Our framework is similar to
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the one presented in [15], with the main difference being that our framework
remains at the state machine level. That is, the system’s components are
state machines, and the learned assumptions are state machines as well.
This is in contrast to [15], where the system’s components and the learned
assumptions are all presented as Labeled Transition Systems (LTSs).

A naive implementation of our framework might translate a given be-
havioral UML system into LTSs and apply the algorithm from [15] on the
result. However, due to the hierarchical and orthogonal structure of state
machines such translation would result in L'T'Ss that are exponentially larger
than the original UML system. Moreover, state machines communicate via
event queues. Such translation must also include the event queues, which
would also increase the size of the LT'Ss by an order of magnitude. We
therefore choose to define a framework for automated learning-based AG
reasoning directly on the state machine level. Another important advantage
of working with state machines is that it enables us to exploit high level
information to make the learning much more efficient. It also enables us
to apply model checkers designed for behavioral UML systems. Such model
checkers take into account the specific structure and semantics of UML,
and are therefore more efficient than model checkers designed for low-level
representations (such as Kripke structures or LTSs).

We use the standard AG rule below, where M7 and My are UML state
machines. We replace (A) with [A], to emphasize that A is a state machine
playing the role of an assumption on the environment of M;. The first
premise (Step 1) holds iff A||M; satisfies ¢, and the second one (Step 2)
holds iff every execution of M, has a representative in A. Together they
guarantee that M;|| My satisfies .

Rule AG-UML

(Step 1) [A] My (p)
(Step 2)  (true) My [A]
(true) Mi[|[My ()

We assume ¢ is a safety property, and use the learning algorithm L* [2,
50] to iteratively construct assumptions A; until both premises of the rule
hold for A;, implying M;||Ms = ¢, or until a real counterexample is found,
demonstrating that M||Ms £~ .

We exploit the notion of RTC steps for defining the alphabet X of the
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learned assumptions. We define an alphabet over sequences of events, where
a letter (i.e., a sequence of events) represents a single RTC step of the
assumption. A word w over these letters corresponds to an execution of
the assumption. It also represents the equivalence class of all executions of
the checked system, which are interleaved with w. Our alphabet is defined
based on statically analyzing the behavior of Ms.

Learning words over sequences of events makes L* highly efficient, as it
avoids learning sequences that can never occur in Ms and therefore should
not be considered in an assumption. Moreover, our learning is executed
w.r.t. equivalence classes of executions. Even though our learning process is
over equivalence classes, we show that our framework is sound and complete.
That is, we do not lose information from grouping executions according to
their representative word.

The remainder of the chapter is organized as follows. Some background
on AG reasoning is given in Section 6.1. Representing UML computa-
tions and execution as words is defined in Section 6.2. In Section 6.3 we
present our basic framework, implementing Rule AG-UML for UML sys-
tems. Sections 6.4 and 6.5 extend the framework to a more general setting.
We conclude in Section 6.6.

6.1 Preliminaries

6.1.1 Assume Guarantee Reasoning and Compositional Ver-
ification

[15] presents a framework for automatically constructing assumption A in
an iterative fashion for applying the standard AG rule, where M; and My
are LT'Ss and ¢ is a safety property. At each iteration i, an assumption A;
is constructed. Afterwards, Step 1 ((A4;)M;(p)) is applied in order to check
whether M; guarantees ¢ in an environment that satisfies 4;. A false
result means that this assumption is too weak, i.e., A; does not restrict the
environment enough for ¢ to be satisfied. Thus, the assumption needs to
be strengthened (which corresponds to removing behaviors from it) with the
help of the counterexample produced by Step 1. If Step 1 returns true then
A; is strong enough for the property to be satisfied. To complete the proof,
Step 2 ({true)Ms(A;)) must be applied to discharge A; on M. If Step 2
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returns true, then the compositional rule guarantees (true) M ||Ma(p). That
is, ¢ holds in M;||Msy. If it returns false, further analysis is required to
identify whether M;||M; violates ¢ or whether A; is stronger than necessary.
Such analysis is based on the counterexample returned by Step 2. If A; is
too strong it must be weakened (i.e., behaviors must be added) in iteration
i+ 1. The new assumption may be too weak, and thus the entire process
must be repeated.

The framework in [15] uses a learning algorithm for generating assump-
tions A; and a model checker for verifying the two steps in the rule.

6.1.2 The L* Algorithm

The learning algorithm used in [15] was developed by [2], and later improved
by [50]. The algorithm, named L*, learns an unknown regular language and
produces a minimal deterministic finite automaton (DFA) that accepts it.
Let U be an unknown regular language over some alphabet 3. In order to
learn U, L* needs to interact with a Minimally Adequate Teacher, called
Teacher. A Teacher must be able to correctly answer two types of questions
from L*. A membership query, consists of a string w € ¥*. The answer is
true if w € U, and false otherwise. A conjecture offers a candidate DFA
C and the Teacher responds with true if L(C) = U (where L(C) denotes
the language of C') or returns a counterexample, which is a string w s.t.
w € L(C)\U orw e U\ L(C).

6.2 Representing Executions as Words

A behavioral UML system with n state machines is denoted I' = M; ||...|| M.
We assume state machines communicate only through events (all variables
are local), and assume also that every RTC step is finite. These assumptions
enable us to define sequences of events representing a single RT'C step, which
will be the letters of our alphabet (formally defined later).

Recall that according to the semantics of RTC steps, only the first tran-
sition may consume an event. An exception is the case of orthogonal regions
that share the same trigger. As mentioned in Chapter 3, these transitions
are executed simultaneously. Since the semantics of simultaneous execution
is unclear, we assume that the actions of transitions in orthogonal regions
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labeled with the same trigger do not affect other transitions. That is, firing
them in any order yields the same effect on the system.

For simplicity of presentation, we assume the following restrictions: (a)
EQs are implemented as FIFOs, (b) Transitions with triggers do not gen-
erate events, and each transition may generate at most one event, (c) A
state machine does not generate events to itself, (d) An event e cannot be
generated by more than one state machine, and (e) Each state machine runs
in a separate thread!.

Given a state machine M, Con(M) and Gen(M) denote the events that
M can consume and generate, respectively. An over-approximation of these
sets can be found by static analysis. Recall that the events of a system
include events sent by a state machine in the system denoted EVj,,, and
events sent by the “environment” of the system denoted EV,,,,. For a system
I, EVyys(I') = Gen(My) U ... U Gen(M,,), and EVep,(I') = {Con(M;)U...U
Con(My,)} \ {Gen(My) U ...U Gen(M,)}. We denote EV(I') = EVyy,(I') U
EVe(T'). We assume the most general environment, that can send any
environment event at any time. Note that the environment of a system
might send events that will always be discarded by the target state machine.
Since we are handling safety properties, such behaviors do not affect the
satisfaction of the property, and we can therefore ignore them.

Let m = C°, step?, C1, ... be a computation of I'. Based on the above
assumptions on I', each step’ in 7 can be labeled by at most one of tr(e)
and gen(e), where tr(e) denotes that when moving from C? to C**! event e
was dispatched to the target state machine (i.e., step’ = DISP(j,e)), and
gen(e) denotes that event e was either generated by a state machine in I' if
e € EVyys(D) (i.e., step' = TRANS(j,t) and GEN (e) € act(t)) or sent by
the environment of T if e € EV,,, (') (i.e, step’ = ENV(j,e)). Note that it
is possible that a step is denoted with neither (labeled with €).

Note that events are always generated before they are dispatched. Also,
since the EQs are FIFOs, then if e was generated before ¢ and the target of
both events is M, then e will be dispatched before €¢/. Given a set of events
EV . a sequence of labels over {tr(e),gen(e)le € EV} is an execution over
EV if it adheres to the above ordering requirements. For an execution ez,
we define a mapping function that guarantees the ordering requirements.

!The case where several state machines run on the same thread is simpler, however
presentation of both is cumbersome. We present only the more complex case.
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Definition 6.1 Let EV be a set of events, and let ex be an execution over
EV. There exists a one-to-one function v : {i|f; = tr(e)} — N that maps
each tr(e) occurrence in ex to its matching gen(e):

1. ~(i) <i
2. If fi = tr(e) then f,u) = gen(e).

3. If there exist i < 1 s.t. f; =tr(e), fi =tr(e’), and e, e’ are dispatched
to the same M;, then v(i) < (7).

v is the matching function of ex.

A computation matches an execution ex if ex is the sequence of non-e
labels of the computation. We denote the set of executions of I' by Leg(I).
Note that every computation matches a single execution. However, different
computations may match the same execution.

Example 6.2 Consider the system I' = server||client where server and
client are presented in Figures 6.1 and 6.2, respectively.

Then gen(ey),tr(er),gen(reqr),tr(req1), gen(grant;) € Ley(I'). Howewver,
gen(ey),tr(er), gen(cancely) & Lei(T), since client, when in initial state,
cannot generate cancely after consuming e .

From here on we do not address computations of a system, and consider
only executions. We say that “execution ex satisfies a property ¢’ iff all
computations that match ex satisfy ¢. Let EV' C EV be a set of events,
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Figure 6.2: Example State Machine for Class client

and ex be an execution over EV. The projection of ex w.r.t. EV', denoted
ex | gy, is the projection of ex on {tr(e), gen(e)|le € EV'}.

A system can include a single state machine M. This is a system where
all events consumed by M are generated by the environment. By abuse
of notation, we denote by L., (M) the set of executions of a system that
includes the single state machine M. The following lemma is a result of the
fact that state machines communicate only through events.

Lemma 6.3 Let I' = M||...||M,, let ex be an execution over EV (I'), and
let v be the matching function of ex. Then, ex € Ley(T) iff for every i €

{17 "'an}y ex LEV(MZ-)e Le:B(MZ)

Proof: — Since state machines do not send events to themselves, then
for every i € {1,...,n}, EVeny(M;) = Con(M;). Consider ex | gy (ps,). Since
state machines communicate only through events, and the events consumed
are all generated by the environment, then ex |y ()€ Lex(M;).

<= The behavior of each state machine is possible by the assumption.
The fact that ex is an execution ensures ordering requirements, since there
exists a correct mapping function ~y(ex). O

The following lemma is a direct result of Lemma 6.3
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Lemma 6.4 Let Sys be a system that includes state machine M. Then,
Lex(Sys) lev ) C Lex(M).

In order to later apply the L* algorithm for learning assumptions on
state machines, we first need to define an alphabet.

Definition 6.5 Let M be a state machine. o = (t,(e1,..,e,)) is in the
alphabet of M, denoted (M), ift € Con(M) and there exists an RTC step
of M that starts by consuming or discarding t, and continues by generating
a sequence of events eq, ..., en.

Letters in (M) where n is 0 are denoted (¢,€). The idea behind our
definition is that since the state machines in our systems communicate only
through events, the alphabet maintains only the event information of the
state machines. Since every RTC is finite, then an over-approximation of
(M) can be found by static analysis (by traversing the graph of M), and
the over-approximation is finite.

Example 6.6 Let M = client (Figure 6.2). Then (M) = {(e1, (req1)),
(e1, (clry, cancely)), (e1, (cancely)), (e1,€), (denyy, €), (denys, (clry)), (granty,
€), (evy, (clry)), (evi,(conty)), (evi,€). For example, (e, (clry,cancely)) €
Y(M), resulting from a possible RTC step that starts when M is in state
Req. Also (evi,e) € X(M), since client can discard evy (e.g., when in ini-
tial state).

For a letter o = (t, (e1,...,en)), trig(c) = t and evnts(o) = {e1,..,en}.
We extend these notations to the alphabet 3 in the obvious way. Also,
EV(X) = trig(X) U evnts(X).

Following, we define the relation between executions and words. Intu-
itively, an execution ex matches a word w if the behavior of M in ex matches
w.

Definition 6.7 Let I' be a system that includes state machine M, let ex =
f1, fayeeee € Leg(T), and let w = o01,09,... € (E(M))*. Let & = f1, f5, ...
be the projection of ex on {tr(e)le € Con(M))} U {gen(e)le € Gen(M))}.
Assume also & = f1, f4, ... is the sequence created from w by replacing o =
(t,(e1,-..,en)) with tr(t),gen(ey),...,gen(e,). Then ex matches w, denoted

ex>w, iff &1 = &
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Note that an immediate result of the above definition is that if ex > w
where w € ¥*, then adding or removing from ex occurrences of events not in
EV(X) results in a sequence ex’ s.t. ex’ >w still holds. Another important
thing to note is that different executions can match the same word w. Thus
w represents all the different executions under which the behavior of M
matches w.

Example 6.8 Consider execution ex = gen(ey), tr(er),gen(req ), tr(req),
gen(granty), gen(evy),tr(evy )€ Ley(server||client). We denote with bold
the parts of the execution that represent behavior of the client. For the word
w = (e1,req1), (evy,€) € (X(client))*, ex > w.

It also holds that for the execution ex’ = gen(ey), gen(evy),tr(e1), gen(reqi)
,tr(reqq),tr(evy ), gen(granty), ex’ > w.

We consider safety properties over events, based on predicates such as
InQ(e), denoting that e is in the EQ, BeforeQ(e,e’) indicating that e is
before ¢’ in the EQ, and gen(e) (or tr(e)), indicating that e is generated (or
dispatched). We handle safety properties over LT L,, which is the Linear-
time Temporal Logic (LTL) [45] without the next-time operator. Model
checking safety properties can be reduced to handling properties of the form
AGp for a state formula p ([33]), which means that along every execution
path, p globally holds. That is, every reachable configuration satisfies p.
We therefore assume ¢ = AGp. The following theorem states that if an
execution ex satisfies Gp, then adding or removing occurrences that do not
influence p, results in an execution that satisfies Gp.

Theorem 6.9 Let ex be an execution over EV and let p be a property over
events EV' C EV. Then ex = Gp iff ex | gy = Gp.

Proof: Every occurrence of ex that does not exist in ex |gys does not
address an event in p. p considers properties that describe the contents of
the event queues only w.r.t. the events in p. Thus, the property can only
be affected by occurrences tr(e) and gen(e) where e is in p. O

6.3 AG for State Machines

Our goal is to efficiently adapt the AG framework for UML state machines.
Following, we first show that Rule AG-UML (presented in Section ?7?)
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holds for UML state machines, and present a framework for applying Rule
AG-UML for UML state machines (Section 6.3.1). We give a detailed de-
scription of the framework in sections 6.3.2 and 6.3.3, discuss its correctness
in Section 6.3.4, and present a performance analysis in Section 6.3.5.

6.3.1 A Framework For Employing Rule AG-UML and Its
Correctness

First, we formally define the meaning of the two premises in Rule AG-
UML: [A]M (AGp) holds iff for every ex € Lo, (A||M), ex = Gp. (true)M[A]
holds iff EV(A) C EV(M) and for every ex € Ley (M), ex | gy (a)€ Lex(A).

Theorem 6.10 Let My, Ms and A be state machines s.t. EV(A) C EV (M),
let p be a property over events EV' C (EV(A)UEV (My)), and let ¢ = AGp.
Then Rule AG-UML is sound.

Proof: Assume by means of negation that Step 1 and Step 2 hold, however
(true) M ||M2(AGp) does not hold.

This means that there exists an execution ex € Ley(M;||M2) s.t. ex = Gp.
By Lemma 6.3, ex | gy (as,)€ Lex(Mz). Thus, since Step 2 holds, ex | gy (a)€
Lex(A). Tt also holds (by Lemma 6.3) that ex | gy (ar,)€ Lea(M1).

Since ez |py ()€ Lex(M1) and ex |py(4)€ Lez(A), then by Lemma 6.3
ex |py(ayurv ()€ Lex(A|[M1), and since Step 1 holds, we can conclude
that ex |pyaupv(vn)FE Gp. Based on Theorem 6.9, ex = Gp as well.
A contradiction. We then conclude that (true)M;||M2(AGp) holds, which
means that Rule AG-UML is sound. g

We use L* to iteratively construct assumptions A, until either both
premises of Rule AG-UML hold, or until a real counterexample is found.
L* learns a language over words, where each word represents an equivalence
class of executions.

In order to apply the L* algorithm we define X, the alphabet of the lan-
guage learned by L*. Intuitively, ¥ includes details of Ms that are relevant
for proving ¢ with M;. The alphabet 3 (M5) (Definition 6.5) may include
events of My which are irrelevant. We therefore restrict X(Ms) to X by
keeping only elements of EV (M) that are relevant for the interaction with
M and for ¢.
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Definition 6.11 Let M;||Ma be a system and ¢ be a safety property. X,
the assumption alphabet of My w.r.t. Mj and ¢, is the maximal set, s.t.
for every o = (t,(€i,,...,€;,)) € X there exists o’ = (t,(e1,...,em)) € X(Ma)
s.t. both requirements hold:

1. (€iy,...,€i,) s the mazimal sub-vector of (e1,...,em) (ie., 1 < i3 <
iz < ... <ip, < m) where each e;; is consumed by My or part of the
property e.

2. Ift € EVepyo(M1]|Msz) and n = 0: (t,€) is included in ¥ iff either t is
part of @ or there exists o1 = (t, (€], ...,€})) € ¥ s.t. k> 0.

Example 6.12 Let I' = server||client where server is My and client is
My, and let ¢ = AG(—(InQ(granti) A InQ(deny,)). The events of ¢ are
granty and denyy. %, the assumption alphabet of Ms w.r.t. My and o,
is {(e1, (reqq)), (e1,€), (granty,€), (denyi,e), (e1, (cancely))}. Note that al-
though (denyy, (clry)) € X(client), since clry is not consumed by the server
and is not part of p, then it is not included in 3.

Similarly, (e1,(clry,cancely)) € X(client), but only (e1,(cancely)) € X.
Note also that ¥ includes all the interface information between client and
server. Thus, (e1,(req1)) € X, although neither ey nor req; are part of ¢.

We define the notion of weakest assumption in the context of state machines.

Definition 6.13 A language A, C X* is the weakest assumption w.r.t.
My and ¢ if the following holds: w € Ay iff for every execution ex over
EV(X)UEV(My), if ex>w and ex | gy (a)€ Lex(M1), then ex = Gp.

Assume we could construct a state machine M4, that represents A,.
That is, for every execution ex over EV(X), ex € Ley(Ma,,) iff there exists
w € Ay s.t. ex>w. Then, My, describes exactly those executions over
Y that when executed with M; do not violate Gp. The following theorem
states that (true)Mi||Ma(p) holds iff every execution of My matches a word
in A,.

Theorem 6.14 (true)M;||Ma(p) holds iff for every execution ex € Ley(Ma),
there exists w € Ay, s.t. ex > w, where Ay, is the weakest assumption w.r.t.
M and .
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Proof: <: We assume that for every execution ex € L., (Ms), there exists
w € Ay s.t. ex>w and show that (true) My ||Ma(p).

Let ex be an execution in Le,(M;i||M2). We show that ex = Gp (¢ =
AGDp).

Since we know that Le;(Mi||M2) |gy(a)S Lex(M2) (Lemma 6.4), then
er |py(my)€ Lex(Mz). From the assumption, there exists w € A, s.t.
ex | py (i) Pw. Therefore it holds that ex>w, and also ex | gy (syupv (ary) Pw-
We denote ex’ = ex | gy (syurv (i), and thus

(1) ex’ is an execution over EV (X) U EV (M)

(2) ex! > w for w € Ay,

(3) Since ex € Ley(Mi||Mz), then ex | gy (a,)€ Lex(My). Clearly, ex’ | gy ar)=
ex | gy (i) and thus: ex’ | gy (an)€ Lex(My).

We can then conclude, from the definition of A,,, that ez’ = Gp, and based
on Theorem 6.9, ex = Gp as well.

=—: Assume by way of contradiction there exists an execution ex €
L¢r(Ms) and no word w € Ay s.t. ex>w. Thus, there exists w € X*\ Ay,
st. ex>w (ie., w & Ay,). We show that this means that there exists an
execution ex’ € Le,(M||Ms) s.t. ex’ violates Gp.

If w & Ay, then there exists an execution ex; over EV (X)U EV (M) s.t.
er1 L gy, € Lex(Mi), ex >w and exy [= Gp.

Recall, ex € Le,(Ms) and ex > w. We construct the execution ez’ as
the joint execution of ex; and ex. Note that the construction of ex’ is
not straightforward; ex; and exr both match w, however the other parts
of the executions might not match, i.e., the interleaving of Ms and the
environment in ex may be different from the interleaving of M; and ¥ in
ex1. Our construction of ez’ actually shows that there exists an interleaving
that is possible by both M; and M>, and that still violates Gp.

We first construct the sequence of events generated for My on ex. We
denote the v function that associates the index of the dispatching of event
with the index of its generation on execution ez as y(ex).

Let 0 < i1 < iy < ... < 1y, be the indices in ex where an event was dispatched
to Mz (i.e., for j € {1,...,n}: f;; =tr(e)). Then for every j € {1,...,n — 1},
y(ex)(ij) < v(ex)(i(j4+1)) (by the definition of y(ex)).

Similarly, we construct a sequence from ex; that includes the events that
are not dispatched to M. l.e., the events which are triggers of >:

Let 0 < k1 < ko < ... < k, be the indices in ex; where an event was dis-
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patched not to M; (i.e., for j € {1,...m}: fi, = tr(e) and e € trig(¥)).
Then for every j € {1,...,m — 1}, y(ex1)(k;) < v(ex1)(k(j41)) (by the defi-
nition of y(ex1)).

It is important to note that the sequence seq(exr1) = fy(ewy)(kr)s s
Jr(exr) (k) 18 @ sub-sequence of seq(ex) = fy(ca)(i1)s -+ fy(ex)(in)s SINCE €T > W
and ez >w. We define a one-to-one function 4 : {'y(eml)(kl) ,’y(ea:l)(k:m)} —
{v(ex)(i1),...,v(ex)(in)} that matches each element in seq(ex;) with its
matching element in seq(ex).

Note also that elements in seq(ex) that are not in seq(ex;) are events

that are not generated by M (if they were generated by M; then they would
have been in ). Thus, these events are generated by the environment of
M;||Ma, and we can therefore assume that they can be generated at any
time on an execution of M;||Ma.
Construction of ex’: First, we want to have a projection of ex that in-
cludes only the behaviors of My (i.e., without the events generated by the
environment of My). We denote this as ex. ez is the projection of ex on
{tr(e)le € trig(X(Mz))} U {gen(e)le € evnts(X(Mz))}. Note that ex > w
(since ex includes all elements in w).

Intuitively, ex’ follows ex;. When ex; executes a behavior of ¥, then
we replace that behavior with the behavior of M, based on ex (taken from
ex). We initiate a counter i to 0 that points to the place in ex; we are at.
We initiate a counter cnt to 0 that points to the place in ex we are at. We
denote the elements in ez as f].

For every element f; from ex; execute one of the following:

1. If f; = tr(e) or f; = gen(e) and e € trig(3(My)) (that is, e is dis-
patched to M; or generated for Mi): then add f; to ex’.

2. If fi = gen(e) and e € trig(X): Let ¢ = ~y(ex1)(k;) and let ¢/ =

v(ex1)(k(j—1)). Also, let g = (i) and g = 4(i'). By the definition

of seq(ex), the events on seq(ex) between element f, and element f,

are environment events of Mi||Ms. Add to ez’ all these elements: for
every j € {g’ +1,...,g}, if f; € seq(ex) then f; is added to ez’

3. If fi =tr(e) and e € trig(X) or f; = gen(e) and e € evnts(X): Need
to add relevant elements from ex. while (f.,, # fi) { add f,; to ex’;
ent + + }. When done, add f; to ex’.
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ex’ | gy v = ex1 Lpyv ) (by construction). Since exy | py ()€ Lea (M)
then also ex’ | p(ag,)€ Lex(M1).

Note that since a state machine cannot generate events to itself, then if

for some execution ex € L, (Ms) the following holds: Let w’ € X(Ms)* s.t.
ex>w'. Then every execution €x over EV (Ma), if ex>w’ then €x € Ley(Mo).
This is since ex and ex differ in the interleaving of the environment events
sent to M.
We can therefore conclude the following: Let w' € X(My)* s.t. ex > w'.
By definition of ez, ex > w’. By construction (since we copy exactly ex to
ex’), then ex’ | gy pw'. Also, due to the construction of ex’, the order
of generated events dispatched to My follows that an event was generated
before it was dispatched (item 2 in the construction). Thus ez’ lE(M2) €
Ley(Ms).

By construction of ex’, ez’ is an execution over EV (M) U EV (Ms).
Thus, by Lemma 6.3, ex’ € Le,y(M;||Ma). Now, recall that exy = Gp. ex’
adds to ex; only behaviors that do not effect Gp. Thus, we can conclude
that ex’ f= Gp as well. O

From the definition of A, and from the above theorem we conclude the
following corollary, which states that Rule AG-UML holds if we replace
A with My,

Corollary 6.15 Let A, be the weakest assumption w.r.t. My and p. As-
sume there exists a state machine Ma, that represents A,. Then Rule

AG-UML holds when replacing A with My, .

The goal of L* is therefore to learn A,,. To automate L* in our set-
ting we now show how to construct a Teacher that answers membership
and conjecture queries. The Teacher answers queries by “translating” the
queries into state machines, and verifying properties on state machines via
a model checker for behavioral UML systems. The model checker must be
able to always return a definite answer (true or false) for properties of type
AGp. Also, when answering false it should give a counterexample. Model
checkers for behavioral UML systems verify the behavior w.r.t. system con-
figurations. Thus, a counterexample is a computation of the system. It is
straightforward to translate the counterexample into a counterexample exe-
cution or word. Although our goal is to learn A,,, our automatic framework
may stop with a definite true or false answer before A,, is constructed.
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Figure 6.3: M (w) constructed for w

For a membership query on w, the Teacher constructs a state machine
for w, and checks if, when executed with M, ¢ is violated. For conjecture
queries, the Teacher constructs a state machine A(C) from conjecture C,
and verifies Step 1 and Step 2 of Rule AG-UML w.r.t. A(C).

From now on, in our following constructions, we sometimes include an
err state in state machines. For simplicity of presentation, for a given a sys-
tem I" where some of its state machines include err state, L, (I") represents
only the executions that do not reach err state on any of its state machines.

6.3.2 Membership Queries

To answer a membership query for w € ¥*, the Teacher must return true
iff w € A,. The Teacher creates a state machine M (w) s.t. (M (w)) C
Y. M(w) is constructed s.t. for every ex over EV(X) U EV(M;): ex €
Lex(M(w)||My) iff ex |gy(ar)€ Lex(M1) and ex > w. If this holds, then
(by the definition of A,, in Definition 6.13) w € A,, iff for every execution
ex € Loy (M (w)||My), ex = Gp.

Let w = 01,09, ...,00, and let o; = (t;, (e}, €b, ...,eii)), for i € {1,...,m}.
The state machine M (w) is presented in Figure 6.3. A transition labeled
with a set of triggers T' (e.g., the transition from s; to err) is a short-
hand for a set of transitions, each labeled with a single trigger ¢t € T'. For
o = (t,(e', ...,e")), a compound transition, denoted as a double arrow =,
labeled with trig[grd]/GEN (o) is a shorthand for a sequence of states and
transitions, where the first transition is labeled with trig[grd], the second
is labeled with action GEN (e!), the third with action GEN (e?), etc. The
idea behind splitting the compound transition into intermediate states is to
enable all possible interleaving between M (w) and Mj, thus ensuring that
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every execution over EV (X) U EV (M) that represents an execution of M
and matches w is indeed a possible execution of M (w)||M;.

We explicitly define at each state s; the behavior of M (w) in response
to any possible event t € trig(X). Not specifying such a behavior implies
that if ¢ is dispatched to M (w) then M (w) discards t and remains in the
same state. This is an undesired behavior of M (w), which is supposed to
execute w with no additional intermediate letters. Thus, transitions that
do not match w are sent to state err. The following theorem describes the
executions of M (w).

Theorem 6.16 Let M (w) be the state machine constructed for word w €
¥*. For every execution ex over EV(X): ex € Ler(M(w)) iff there exists a
prefic w' of w s.t. ex>w'.

Proof: = Recall that by the definition of Le,, if ex € Le, (M (w)) then ex
does not reach state err. Thus, for every execution ex € Le,(M(w)), the
corresponding behavior of M (w), ex |jr(w), is a prefix of w. Therefore, for
every execution ex over EV (X)), if ex € Loy (M (w)) then ex>w’ and w' is a
prefix of w.

<= Let ex be an execution over EV(X). Assume ez >w’ and w' is a
prefix of w. Note that by the definition of ex > w’, ex includes exactly the
occurrences that match w’ and gen(e) occurrences for tr(e) € ex. Also,
since ex is an execution over EV (X)), then there exists a mapping function
~ on ex.

Clearly, M (w) has an execution ez’ s.t. ex' >w'. M(w) is constructed
s.t. every transition either consumes a single event or generates a single
event. Since the environment can sent events at any time, we conclude that
every execution over EV(X) that matches w' is available on M (w). Thus,
ex € Leg(M(w)). O

Once M(w) is constructed, the Teacher model checks M (w)||M1 E
AG(p V IsIn(err)), where IsIn(s) denotes that s is a part of the current
state of the system. The model checker returns true iff for every execution
one of the following holds: (1) the execution does not reach state err, i.e.
the execution matches a prefix of w, and p is satisfied along the entire ex-
ecution, or (2) the execution reaches state err, meaning that the execution
does not match w and therefore we do not need to require p. Note that it

105



is ok to require p on a prefix leading to state err, since A,, is prefix closed
for safety properties. The Teacher returns true, indicating w € A,, iff the
model checker returns true. The following theorem defines the correctness
of the Teacher.

Theorem 6.17 M (w)||M; = AG(pV IsIn(err)) iff w € Ay.

Proof: Notice that M (w)||M; = AG(pV IsIn(err)) iff for every execution
ex € Ley(M(w)||My1), ex = Gp. This is an immediate result of the definition
of L., (Sys) that includes only executions that do not reach state err.

If we show that for every ex over EV(X) U EV(Mi): ex |gyu)€
Ley (M) and ex > w iff ex € Ley(M(w)||My). Then from Definition 6.13
we can conclude that w € A, iff for every execution ex € Ley (M (w)|| M),
ex = Gp, and this is what we need to prove.

Let ex be an execution over EV(X) U EV (My). ex > w iff ex |py(x) bw
iff (Theorem 6.16) ex |py ()€ Lex(M(w)). Thus, ex |py )€ Lex(Mi)
and ex > w iff ex |py(ar)€ Lex(M1) and ex |gy ()€ Lex(M(w)). From
Lemma 6.3 we can conclude that ex | gy (a,)€ Lex(M1) and ex > w iff ex €
Lo (M (w) | M), O

6.3.3 Conjecture Queries

A conjecture of the L* algorithm is a DFA over . Our framework first
transforms this DFA, C, into a state machine A(C). Then, Step 1 and
Step 2 are applied in order to verify the correctness of A(C).

Constructing a State Machine From a DFA:

A DFA is a five tuple C' = (Q, «, 0, qo, F'), where @ is a finite non-empty set of
states, « is the alphabet, 6 C @Q X ax @ is a deterministic transition relation,
qo € Q is the initial state, and F' C @ is a set of accepting states. For a
string w, 0(¢q, w) denotes the state that C arrives at after reading w, starting
from state g. A string w is accepted by C' iff §(qo,w) € F. The language of
C, denoted L(C), is the set {w|d(qo,w) € F'}. The DFAs returned by the
L* algorithm are complete, minimal, and prefix-closed. Thus they contain
a single non-accepting state, gerr, and for every o € a and ¢q € @, 6(q,0) is
defined.
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Figure 6.4: Conjecture DFA C (left) and state machine A(C') (right)

The alphabet a of the DFA in our framework is exactly . Given a
DFA C = (Q,%,6,q90,Q \ {¢err }), we construct a state machine A(C') where
EV(A(C)) = EV(X). We then show that A(C) represents L(C), i.e., for
every execution ex over EV(X), ex € L¢,(A(C)) iff there exists w € L(C)
s.t. ex>w.

Definition 6.18 [A(C) Construction] Let C = (Q,%,9,q0,Q \ {¢err})-
A(C) includes 3 states: init, end and err, where init is the initial state.
A(C) includes a single variable qs whose domain is Q, initialized to qo.
A(C) has the following transitions:

1. For every q € Q\ {qerr} and o = (t,(e1,..,€n)) € ¥ where 6(q,0) = ¢
and ¢ # qerr, add a compound transition labeled with t|qs = q]/qs =
q¢'; GEN (o) from init to end

2. For every q € Q \ {qerr} and o = (¢, (e1,..,en)) € X where §(q,0) =
Qerr, add a compound transition labeled with tqgs = q]/qs == ¢'; GEN (o)
from init to err

3. Add a transition with no trigger, guard or action from end to init.

Example 6.19 For I' = server||client and ¢ = AG(—-(InQ(granty) N
InQ(denyy)), the conjecture DFA C returned from the L* algorithm, and
state machine A(C') representing L(C'), are presented in Figure 6.4.

The construction ensures that for every ¢ € trig(¥) and for every ¢ €
@\ {gerr } there exists a transition from init with trigger ¢ and guard ¢s = q.

107



That is, as long as A(C) is at state init in the beginning of an RTC step, it
does not discard events. Also, according to the semantics of state machines,
every RTC step that starts at state init, either moves to state err, which is
a sink state, or moves to state end and returns to state init. The following
theorem states that A(C') is indeed a state machine representing L(C').

Theorem 6.20 Let A(C) be the state machine constructed for DFA C. For
every execution ex over EV (X): ex € Ley(A(C)) iff there exists w € L(C)
s.t. ex>w.

Proof: The proof of this theorem is similar to the proof of theorem 6.16:

<= Let ex be an execution over EV (X). Assume ex>w and w € L(C).
Clearly, by construction of A(C), A(C) has an execution ez’ s.t. ex’ > w.
A(C) is constructed s.t. every transition either consumes a single event or
generates a single event. Since the environment can send events at any time,
we conclude that every execution over EV (X)) that matches w is available
on A(C). Thus, ex € L (A(C)).

= Let ex be an execution in L¢,(A(C)). By definition, it does not
pass through state err. Assume by way of contradiction that there exists
w € X st. exbw and w & L(C). L(C) is prefix closed. We then look at the
longest prefix w’ of w s.t. w’ € L(C). Based on the construction of A(C),
the RTC step executed after w’ matches a transition in C' to a non-error
state, and thus w’ can be extended to a longer prefix of w included in L(C).
A contradiction. We conclude that w € L(C). O

After creating A(C'), the Teacher uses two oracles and a counterexample

analysis to answer conjecture queries.

Check [A(C)|Mi{p):

Oracle 1 performs Step 1 in the compositional rule by model checking
A(C)||M1 = AG(p V IsIn(err)). If the model checker returns false with a
counterexample execution cex, the Teacher informs L* that the conjecture
is incorrect, and gives it the word w € ¥* s.t. cex > w to witness this fact
(we L(C) and w ¢ Ay). If the model checker returns true, indicating that
[A(C)]M;(p) holds, then the Teacher forwards A(C') to Oracle 2.
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7

| topM, | [rte=1]/
N . rtc:=0;

M, (M, with modifications) : i 1Q.clean

1. rtc:=3 on event consumption [rte=3]/

2. push “relevant” eventsto 1Q o= oy »>
[rtc=2]

A(C) (A(C) with
modifications):
When rtc=2,
check RTC inclusion

RTCErr

A

Figure 6.5: General scheme for M (Ma, A(C')) created from A(C') and Mo

Check (true) May[A(C)):

Oracle 2 preforms Step 2 in the compositional rule. That is, it checks that
for every execution ex € Lei(Ma), ex |pyv(ac)€ Lex(A(C)). Note that
this is a language containment check. In state machines there is no known
algorithm for checking language containment. We present here a method for
this check in the special case where the abstract state machine is the state
machine A(C') previously defined. Step 2 is done by constructing a single
state machine, and applying model checking on the resulting state machine.

Given the state machines Ms and A(C'), Oracle 2 constructs a new state
machine, M (Ma, A(C')), that is composed from modifications of Ms and
A(C) as two orthogonal regions. M (Msy, A(C')) is constructed so that the
behavior of My is monitored by A(C) after every RTC step. M (M, A(C))
includes a synchronization mechanism, so that when an event is dispatched,
first the region that includes Ms executes the RTC step. When it finishes,
the region that includes A(C) executes its step only if A(C) has a behav-
ior that matches My. If A(C') does not have a matching behavior, then
M(Ms, A(C)) moves to an error state, indicating that (true)M>[A(C)] does
not hold. The general structure of M(Ms, A(C)) is presented in Figure 6.5.

From here on, we denote the variation of M and A(C) that are regions in
M(M,y, A(C)) as M; and A(C), respectively. We add a local queue, 1Q, and
two local variables, rtc and tr, to M(Ma, A(C)). tr “records” the event e
dispatched to M(Ma, A(C)), if e € trig(X). IQ “records” events generated
by My which are from evnts(3). Whenever My generates an event from
evnts(X), it also pushes the event to Q. A/(C\’) will, in turn, check if it has
a matching behavior by observing IQ). rtc is used for fixing the order of
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execution along an RTC step of M(Ma, A(C)). It is initialized to 0, and
as long as the monitoring is successful, the value of rtc at the end of the
RTC step of M(Ms, A(C)) is 0. rtc = 3 indicates that M, is executing an
RTC step that should be monitored. rtc = 2 indicates that J\/J\g finished
its execution, and A/(E') can monitor the behavior. rtc = 1 indicates that
the monitoring step of A/(E’) was successful, i.e., A/(E’) has a behavior that
matches ]\/4\2 If the monitoring of /1/(5) failed, then rtc at the end of the
RTC step is 2, indicating an error.

The following modifications are applied to My for constructing ]\/4\2: Set
rtc to 3 on transitions that consume event e € trig(X), and add IQ.push(e’)
on transitions that generate event e’ € gen(X).

The following modifications are applied to A(C) (Definition 6.18) for con-
structing A(C):

1. Add a new state called step to A(C'), and for every t € trig(¥), add a
transition from init to step labeled t/tr := t.

2. Every compound transition from init to end labeled with:
tlgs = q]/qs := ¢'; GEN(e1);..;GEN(e,) s.t. n >0
is replaced with a transition from step to end labeled with:
[tr=tANgs=qArtc=2N1Q = (e1,...,en)]/qs :=¢';rtc:=1

3. Every compound transition from init to end labeled with: t[gs =
q]/qs := ¢ (no event generation), is replaced with a transition from
step to end labeled with: [tr =tAgs = gA((rtc=2N1Q = ()) Vrtc =
0)]/ gs :=¢;rtc:=1

4. Every compound transition from init to err labeled with:
tlgs = q]/qs := ¢'; GEN(e1);..;GEN(ey,) s.t. n >0
is replaced with a transition from step to err labeled with:
[tr=tANgs=qArtc=2N1Q = (e1,...,e,)]/qs = ¢;rtc :=2

5. Every compound transition from init to err labeled with: t[gs =
q]/qs := ¢’ (no event generation), is replaced with a transition from
step to err labeled with: [tr =t Ags = gA((rtc=2A1Q = ()) Vrtc =
0)]/ qs :=¢';rtc:=2

If A/(E') is at state step/aril rtc = 0 holds, then ]\/4\2 discarded the event ¢
in the current RTC step. A(C) has a matching behavior if it has a behavior
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that consumes ¢ and does not generate events. The transitions described
in (3) and (5) monitor RTC steps of M; that consume event ¢ and do not
generate any events, and also RT'C steps that discard ¢. Note that items (2)
and (4) (respectively, (3) and (5)) are distinct in the target state (end or
err) and in the assignment to rtc on the action. The transitions in (2) and
(3) monitor RTC steps that are legal in A/(E')7 and transitions in (4) and (5)
monitor RTC steps that are not legal in A/(E')

The correctness of our construction is captured in the following theorem.

Theorem 6.21 Let ex be an execution in Ley(M(Ma, A(C))), and let ex’ be
the maximal prefiz of ex that does not include the suffix where IsIn(RTCErr)
holds (if there exists such a suffiz). Then the following holds: ex reaches
state RTCErr iff ex’ | gy (am,)€ Lex(Ma2) and ex’ |pyac)) € Lea(A(C)).

Note that since RTCErr is a sink state, then if an execution ex on
M(Mas, A(C)) reaches state RT'C' Err, then every event sent to M(Ma, A(C))
will be discarded.

Proof: We first prove by induction on the number of RTC steps that for
every execution of M(Mz, A(C)), at the end of every RTC step the following
holds: Variable rtc is 0 iff the execution is not at state RT'C Err and A(C)
is at state init.

Base: For k = 0, by construction rtc is 0, and also the initial state of
M(Ms, A(C)) does not include RT'CErr. Moreover, the initial state of
A(C) is init.

Step: For any execution ex € M(Msy, A(C)), assume the property holds
on ex after k RTC steps. If ric # 0 after k& RTC steps, then based on the
induction assumption, ex is at state RT'C'Err. Since RTCErr is a sink
state, then ex remains at this state. Also, by construction, the value of rtc
cannot change, and thus remains not 0.

If rtc = 0 after k RTC steps: assume the event dispatched to M (M, A(C'))
is e. By construction, the current state of M(Ma, A(C)) includes a state
from ]\/4\2 Also, based on the assumption A/(C\’) is at state init. One of the
following behaviors are possible (based on the semantics of state machines):

o If ¢ & trig(¥): By construction of ]\/4\2, rtc does not change during
the RTC step of Ms. Also, there is no transition in A(C) with trig-
ger e, and thus A(C) discards e and remains at state init. Thus,
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after the RTC step terminates on J\/J\g no other transition is enabled in
M(Ms, A(C)). The RTC then terminates and rtc remains with value

—

0, M(Ms, A(C)) does not reach state RTC Err, and A(C) is at init.
o If e € trig(¥):

- If ]/\4\2 consumes e, then by construction of ]\//.72, the transition of
My that consumes the event sets rtc to 3. Since e € trig(%),
then by construction /if\A/(C\’), there exists an enabled transition
from init to step in A(C). Since all transitions from step have a
guard requiringe\ither that rtc = 0 or rtc = 2, then no transition
is enabled in A(C'). Thus the RTC step continues on Mo until it
terminates. Transition 7; then becomes enabled, setting rtc to 2,

after which one of the following holds:

% A(C) has no enabled transition. Then transition 73 becomes
enabled, which causes M (M, A(C')) to move to state RT'C' Err,
and the RTC step terminates with rtc = 2.

* A/(C\’) has an enabled transition ¢: /1/(5) executes ¢t. This
transition is either a transition from step to err, which (by
construction) sets rtc to 2, or from step to end, which (by
construction) sets rtc to 1, and the RTC step on A/(E’) then
executes the null transition from end to init.

If A/(E) reached state err, then rtcis 2, and transition 73 be-
comes enabled, which causes M (Mas, A(C)) to move to state
RTQ_ETT, and the RTC step terminates with rtc = 2.

If A(C) reaches state init with rtc = 1, then transition
becomes enabled, setting rtc to 0, and the RTC step termi-

nates.

- If/]\;fg discards e, then by construction of X, (e,e) € X. Thus,
A(C) consumes e and moves from state init to state step. Let
qs = q. Since C' is complete, then there exists a transition from
q (in C) denoted with (e, €). Based on the construction of A(C)
and A(C), there exists a transition from step that is now enabled
(to either err or end). Similarly to the cases above, the property
holds when the RTC step terminates.

We conclude that at the end of the RTC step of M(Ms, A(C)), the
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—

variable rtc is 0 iff the execution is not at state RTCErr and A(C) is at
state init. We return to the main theorem: ex reaches state RT'CFErr iff
e’ | gv (i) € Lex(Ma2) and ex’ | gy (a(0)) & Lex(A(C)).

<=: Assume ex does not reach state RTCErr (that is, ex’ = ex).
Then since only M, generates events in M(Ma, A(C)), clearly ex | gy (ar,)€

—

Ley(Ms). By the construction of A(C) it is clear that if A/(C\’) reaches
state err, then rtc is set to 2, which causes M(Maz, A(C)) to move to
state RT'C' Err. We can therefore conclude that if ex does not reach state
RTCErr then /1/(5) does not reach err state. By the construction of /1/(5),
it also holds that ex | gy (a(cy)€ Lex(A(C)).

—: Assume ex reaches state RT'C' Err. Consider the prefix on ex’ with-
out the last RTC step (that reaches state RT'C Err, denoted ex”. Since ex”
does not reach RT'CErr, from the proof of <= we know that ex” | gy (ps,)€

Lew(Ma) and ex” |pyac))€ Lex(A(C)), and the RTC step of ex” termi-

nated when A(C) at state init. This means that during the last RTC of ea’,
rtc started with value 0 and was set to 2. Similarly to the induction proof, we
can show that this means that during the last RT'C step A/(C\’) traversed from
init to err. Thus ex’ | gy (ac)) & Lee(A(C)). Clearly, ex’ | py (a,)€ Lew(Ma).

0

After constructing M(Ma, A(C')), Oracle 2 model checks M (M, A(C)) =
AG(—IsIn (RTCErr)). If the model checker returns true, then the Teacher
returns true and our framework terminates the verification, because accord-
ing to Rule AG-UML, ¢ has been proved on M;||Ms. Otherwise, if the
model checker returns false with a counterexample execution cex, then cex
is analyzed as follows.

Counterexample Analysis:

Note that only J\/4\2 generates events. Thus, by projecting the execution
cex on {tr(e)le € trig(X)} U {gen(e)le € evnts(X)} we can obtain w € ¥*
s.t. cex >w. The Teacher executes a membership query on w, for checking
whether w is in A,, (as presented in Section 6.3.2). If the membership query
succeeds (i.e, w € Ay), the Teacher informs L* that the conjecture is incor-
rect, and gives it w to witness this fact (since w € A, but w ¢ L(C)). If the
membership query fails then the Teacher concludes that (true)M;||Ma(p)
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does not hold, since cex | gy (a,)€ Lex(Ma), cex |py (i) bw and w € Ay
(Theorem 6.14). The Teacher then returns false.

Example 6.22 Consider the system I' = server||client and the assump-
tion A(C) from Figure 6.4. When checking (true)client[A(C)], the model
checker may return a counterexample cex, represented by the word w =
(e1,(reqr)), (e1, (cancely)), (e1,(req1)) (cex>w). cex |py(ay)€ Lex(client),
cex | gy (i) bw and w & L(C).

During counterexample analysis, the Teacher performs a membership
query onw. This check fails, since there exists an execution of M (w)||server
that violates the property AG(—(InQ(grant;) A InQ(deny1))). Note that the
property is violated even though server receives the event cancely before
it receives the second req;. Howewver, there exists a behavior of the envi-
ronment of M (w)||server that causes violation of the property: if server
receives event reqo after cancely, then when it receives the second reqy it
will send denyy. Note that since every state machine runs on a different
thread, it is possible that the event granty, previously sent to client, was
not yet dispatched. Thus, when deny; is added to the EQ of client, the
property s violated. Since the membership query fails, we conclude that
server||client = ¢.

6.3.4 Correctness

We first show soundnessof our approach, and then show that it terminates.

Theorem 6.23 Given state machines My and Ms, and a property AGp,
our framework returns true if Mi||My = AGp and false otherwise.

Proof: The Teacher in our framework uses the two steps of the Rule AG-
UML to answer conjecture queries. Our framework returns false if it de-
tects an execution on M, whose projection on ¥ is not in A,. By Theo-
rem 6.14 this implies that M;||My = AGp.

Our framework returns true only when both steps of the Rule AG-
UML return true. That is, it learned L(C') s.t. the state machine A(C) sat-
isfies both steps of the rule. By the construction of ¥, and since X(A(C)) =
¥ then it holds that EV (A(C)) C EV(Ms). Thus, based on Theorem 6.10,
it holds that M;||My = AGp. O
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Termination: Assuming the number of configurations of M ||Ma is finite,
the weakest assumption w.r.t. M; and ¢, Ay, is a regular language. To
prove this, we construct an accepting automaton for A, similarly to the
construction in [24]. Since A, is a regular language, then by correctness of
the L* algorithm, we are guaranteed that if it keeps receiving counterexam-
ples, it will eventually produce A,. The Teacher will then apply Step 2,
which will return, based on Theorem 6.14, either true or a counterexample.

6.3.5 Performance Analysis

Our framework for automated learning-based AG reasoning is applied di-
rectly at the state machine level. That is, the system’s components and the
learned assumptions are state machines. However, the learning is done by
applying an off-the-shelf L* algorithm, whose conjectures are DFAs and its
membership queries are words. Thus we need to translate DFAs and words
into state machines. On the other hand we never need to translate from
state machines back to low level representation (such as LTSs or DFAs). It
is important to emphasize that, as shown above, the translation from DFAs
and words to UML state machines is simple and straightforward, since the
state machines created do not include complex features (such as hierarchy or
orthogonality). On the other hand, a translation from UML state machines
to DFAs may result in an exponential blowup, since the hierarchy and or-
thogonal structure should be flattened. Moreover, the event queues need to
be represented explicitly, causing another blowup. Note that applying such
a translation to LT'Ss does not influence the number of the membership or
conjecture queries, as the learned assumption remains the same. However,
it complicates the model checking used to answer these queries, since the
system is much larger.

Our framework learns assumptions over an alphabet consisting of se-
quences of events representing RTC steps of Ms. We refer to this alphabet
as RTC alphabet. Note that it is also possible to apply the framework (with
minor modifications) over an alphabet consisting of single event occurrences
(called event alphabet) rather then over the RTC alphabet, while still keep-
ing the learning at the UML level. However, learning over the RT'C alphabet
is often better, as discussed below.

The complexity of the L* algorithm can be represented by the number
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of membership and conjecture queries it needs in order to learn an unknown
language U. As shown in [50, 15], the number of membership queries of L*
is O(n?-k+n-log(m)) and the number of conjecture queries is at most n—1,
where n represents the number of states in the learned DFA, k is the size of
the alphabet, and m is the size of the longest counterexample returned by
the Teacher. This results from the characteristics of L*, which learns the
minimal automaton for U, and from the fact that each conjecture is smaller
than the next one.

In theory, the size of the RTC alphabet might be much larger than the
size of the event alphabet. This happens when every possible sequence of
events is a possible RTC step of Ms. However, in practice typical state ma-
chines exhibit only a much smaller number of different RTC steps. Moreover,
the number of states in the DFA Qgrpc learned over the RTC alphabet may
be much smaller than the number of states in the DFA Q¢yn: over the event
alphabet. This is because a single transition in Q) rrc might be replaced by
a sequence of transitions in Qeynt, one for each of the events in the RTC.
The above observations are demonstrated in the following example.

Example 6.24 We re-visit the example presented throughout section 6.3.
I' = server||client where server is My, client is Ma, and ¢ = VG (=(InQ(
granty) A InQ(denyi1))). The final DFA learned when using sequences over
RTC alphabet is presented in Figure 6.4 (a). The total number of membership
queries is O(3% -5+ 3 -log2) and there are 2 conjecture queries.

If we apply learning of sequences over single event occurrences, then there
are O(4%-544-1og3) membership queries and 3 conjecture queries, since the
resulting DFA has 4 states and the alphabet is {tr(ey), tr(granty),tr(deny;),

gen(reqi), gen(cancely)}.

6.4 AG for Systems with Multiple State Machines

In the previous section we introduced a framework for applying AG reason-
ing on UML systems of type M;||Ma, where M; and M are state machines.
In this section we present extension of the framework for systems with mul-
tiple state machines.

The correctness of the framework presented in Section 6.3, which is based
on learning the weakest assumption A4,, (Corollary 6.15), assumes that A,, is
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defined over the assumption alphabet of a single state machine Ms. More-
over, the meaning of words and the relation between executions and words
are defined under the assumption that words represent the behavior of a sin-
gle state machine. When matching an execution to a word (Definition 6.7),
for system I' that includes a state machine M: An execution ex € L, (I)
matches a word w € X(M)* if the behavior of M on ex matches w. Assume
now that we replace M with M'||M" (M',M" are two state machines),
where M' and M" are executed on two different threads. This means that
executions of M’ and M"” might be interleaved. Thus, there might be exe-
cutions ez € L, (T') that do not match any word w € (X (M) U X (M"))*.

It is important to note that M; in the framework presented in Section 6.3
can be a system that includes several state machines. Moreover, My can also
include several state machines, as long as the state machines of Ms run on a
single thread. If My includes multiple state machines M?||...||[M? that run
on a single thread, then we can construct a single state machine M, where
each M? is an orthogonal region in M. Since every RTC step starts with a
consumption of an event, and the events sent to each M7 are unique, then an
RTC step on M, executes the RT'C step in a single region. The executions
of M, are equivalent to those of Ms, and we can then apply our framework
on M1HM2.

In this section we propose a framework for applying AG reasoning where
Ms includes several state machines each on a different thread, for the case
of star-type systems. These are systems that include a server, M.S, and
multiple clients, M C;, s.t. the clients communicate only with the server (and
not with each other). We rely on the unique structure of star-type systems
for proposing an implementation for Rule AG-UML, where M; = M S and
My = MCh||...|]|MC,,. We also show why the framework is not correct in
the general case where the second component includes several state machines
that possibly communicate with each other. Note that as in the previous
section, M S can include several state machines.

We start with defining the alphabet of a system, and define the relation
between executions and words in such alphabet. We extend Definition 6.5
and define the alphabet of a system I' = M;||...|| My, as ¥(I") = ¥(M;)U...U
Y(M,). Let w be a word in ¥(I")*, the projection of w on ¥(M;) is denoted
as w |y, We extend Definition 6.7 and match an execution to a word
over system alphabet.
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Definition 6.25 Let T' = M||..||M,, and let ex € Ley(T). Let ¥ =
(M) U...UX(My) for m < n, and let w = 01, ...,0; be a word in 3
ex matches w, denoted ex >w if the following holds.

1. For every i € {1,...,m}: ex>w |5y, and

2. Let o; = (t;, (e, ...,eii)), and let & = tr(ty), ..., tr(t;). Also, let & =
tr(ey), tr(eh), ... be the projection of ex on {tr(e)le € trig(X)}. Then
&1 = &

Intuitively, a word w represents a collection of executions where the
behavior of each state machine matches the relevant projection on w (re-
quirement 1), and the executions agree with w on the order of the dispatched
events (requirement 2). Note that the order of generation of events (gen(e))
on different threads does not have to match w. Thus, every word w matches
a collection of executions that represent different interleavings of the state
machines in T', and every execution ex € L¢,(I') matches a single word
w e X*.

In order to apply the L* algorithm, we define the assumption alphabet >
as follows. Let I' = M S||MC4]|...||MC,, and for every i € {1,...,n}, let &;
be the assumption alphabet of M C; w.r.t. MS and . Then ¥ = Y U...U3,.
The definition of weakest assumption (Definition 6.13) is directly extended
to the case of multiple state machines.

The correctness of our framework is based on Theorem 6.14, which can
be extended for star-type systems. However, it cannot be extended for the
general case of multiple state machines in M. The main challenge in the
proof of Theorem 6.14 is constructing an execution ex by combining ex; over
EV(X)U EV(My) st. ex1 |pym)€ Lex(M1) and exy € Ley(Mz), where
both ex1 > w and exo >w. This construction exploits the fact that if there
exists an execution exy € Lg,(Ms) that matches w, then every execution
ea:’Q, where Ms behaves as exs with a different interleaving of My and the
environment, ez, is a possible execution of My as well. We exploit the fact
that in star-type systems the clients do not communicate with each other,
and make the following observation:

Corollary 6.26 Let I' = MS||MC,||...||MCy, be a star-type system, ¢ be
a safety property, let ¥ be the assumption alphabet of MChl|...||MCy, w.r.t.
MS and ¢, and let w € X*.
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Figure 6.6: Non star-type system example

If there exists an execution ex € Ley(MChl|...||MCy) s.t. ex>w then the
following holds. For every execution ex over EV(X) s.t. ex>w, there exists
an execution ex’ € Ley(MC1||...|[MCy) s.t. ex’ |py )= €x.

The above corollary states that if there exists an execution of MC||...||[MC,,
that matches a word w € ¥*, then there exists an execution of M C||...||MC,,
for every possible interleaving that matches w. This holds for systems where
the state machines do not communicate with each other. However, clearly,
this observation does not hold for systems where the state machines com-
municate with each other, as exemplified in the following.

Example 6.27 Let ' = M||MZ||M2 be the system presented in Figure 6.6,
and assume we want to check that I' does not reach BAD state by applying
the AG reasoning. Note that M reaches BAD state only if it receives
events ey, followed by e, followed by es. Note also that since MJ generates
event €sync, which is consumed by M22, then in I', e3 is always generated
after ey and eq were generated. Therefore, I' does not violate .

Assume now My = M?||M2. The interface alphabet, 3, is {(e, (e1,€2)),
(€', (e3))}. According to the definition of weakest assumption, the word w =
(e,(e1,€2)), (€, (e3)) & Ay. Since for the execution: ex; = gen(e), gen(e’),
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tr(e), gen(ey),tr(e’), gen(es), gen(es),tr(e1),tr(es), tr(es) € EV(X)UEV (M)
the following holds: ex1>w, ex1 | gy(an)€ Lex(M1), and exy = .

When considering My = M?||M2, there exists an execution exs = gen(e),
tr(e), gen(e1), gen(ez), gen(esync), gen(e’), tr(esync), tr(€’), gen(es) s.t. exa>
w. Thus, there exists an execution exg € Ley(Ma) and a word w € ¥* \ Ay,
s.t. exsg >w. Therefore, the above example shows that Theorem 6.1/ does
not hold.

Theorem 6.14 does not hold since the interleaving of My where es is
generated by M2 before ey is generated by MJ, although it is a possible
interleaving represented by w, it is not a possible behavior of Msy (due to
internal dependencies). Thus, we cannot construct an execution that follows
an execution of My and the environment, violates ¢, and also describes a
legal behavior of M.

Note that it is possible to include as part of the interface alphabet the
events that joined by M12 and ]\422 (i.e., esync). However, this will result in
an alphabet X that might be very large.

Since Theorem 6.14 holds for star-type systems, then in order to apply
the AG framework on such systems, we need to provide a Teacher that
answers membership and conjecture queries for star-type systems.

6.4.1 Membership Queries

It is important to notice that in order to answer a membership query for
w € ¥*, it is not enough for the Teacher to construct a single state ma-
chine whose behavior matches w. Executions over ¥ are interleaving ex-
ecutions of several threads, and thus cannot be represented in a single
state machine. The Teacher therefore creates a collection of state machines,
Mi(w), ..., My, (w) s.t. it guarantees that for every ex over EV (X)UEV (M S):
ex € Leg(My(w)|]...[|Mp(w)|[MS) iff ex | gy (ars)€ Lex(MS) and ex > w.

M;(w) is constructed based on w |y, similarly to the construction of
M (w) (Section 6.3.2). We add a global variable cnt, initialized to 1, that
synchronizes the consumption of the events dispatched to M (w), ..., My, (w).
Let w = 01,...,0k, and let w |x,= 0i,,0iy, ..., 04,,, Mi(w) is presented in
Figure 6.7.

During execution, the variable cnt keeps track of the number of trig-
gers consumed from w, and ensures that M;(w)]|...|| M, (w) conforms with
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s, |[triglay)lent=i)/ s, |triglon)ent=i)/ [ s, trigloy)ent=i, /[ s

m+1

cnt++; GEN(oy) cnt++; GEN(a,,) R, cnt++; GEN(gy,)
trig(Z\[triglay)} / trig(Zi)\{triJ(U‘is)} /
trig(ay,)[ent=i,] trig(a;s)[ent=is] /
trig(X;)\{trig(a,,)} / | X trig(Z;)/

trig(a,,)[ent=i,] / S

Figure 6.7: M;(w) representing w |x,

requirement 2 of Definition 6.25. The synchronization is done only on the
consumption of the events, and therefore all possible executions over EV (X))
that match w are executions of Mj(w)||...|| M, (w). Theorems 6.16 and 6.17
then hold for star-type systems, where M (w) = M (w)||...|| My, (w).

Example 6.28 Let I' = server||client||clients, where the state machine
of server is presented in Figure 6.1, and the state machine of both client,
and clienty is presented in Figure 6.8 (i is 1 for client; and 2 for clients ).

Let ¢ = AG(—~(InQ(grant;) NInQ(grants))). That is, ¢ states that it is
not possible for both grant, and grants to be in the event queues. %, the al-
phabet of the assumption of clienty||clienty w.r.t. server is {(e;,€), (e;, (req;)),
(e;, (cancely)), (grant;, ), (deny;, €)} fori € {1,2}.

For checking the word w = (e, (cancels)), (e1, (reqr)) € X*, the Teacher
creates the two state machines My(w) and Ms(w) presented in Figure 6.9.
Notice that by construction of My(w) and Ms(w), for every execution ex €
Ley(server||My(w)||[Mz(w)), ex |scient;) matches a prefiz of (e1,(req1)),
e |5y (clienty) Matches a prefiz of (ea, (cancelz)), and es is consumed before
e1. Thus, ex>w' for w' € ¥* a prefiz of w.
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Figure 6.8: Example State Machine for Class client;

5 /GEN(req,) N

M (w):: o e fcnt=2]/
. >

cnt++;

{grant,,deny.}/ | T {es.grant;,deny,}/
e, [cnt=2]/ i
My(w):: e z elent=1]/ s—1 /GEN(cancel,) =
54 cnt++ > S5 » 3
{grant,,deny,}/ T e {e,.grant,,deny,}/

e,[cnt=1]/

Figure 6.9: Example for M;(w) and Ma(w)
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(ey,(req,))

(eye)
(eyreqy)
@ @’ (ey,(cancel,))
O e
e, re
Z\{(ey,(reqy))} Ei:aanr;l,g) (e;(c:rzlcelz))
(grant,,&)
(deny,,e)

Figure 6.10: Conjecture DFA C' for multiple clients

6.4.2 Conjecture Queries
Constructing State Machines From a DFA:

Let C = (Q,%,0,q0,Q \ {gerr}) be the conjecture of the L* algorithm. The
Teacher constructs a collection of state machines A1(C), ..., A (C) from C,
where each A;(C) is constructed from the projection of C' on ¥;. Let C; =
(Q,%i,0i,q0,Q \ {qerr}) be a DFA where §; = d N (Q x 3; x Q). A;(C) =
A(C;), where A(C;) is the state machine created for C; as described in
Section 6.3.3 (Definition 6.18). Notice that the variable ¢s is a joint variable
of A1(C), ..., An(C). Theorem 6.20 then holds for star-type systems, where
A(C) = Ay(C) |-/ A (C).

From now on we denote A(C) = A;(C)|]...]|An(C) and M = M C4||...|| M C,,.

Check [A(C)|MS{AGp):

Oracle 1 performs Step 1 in the compositional rule by model checking
A(C)||MS = AG(pV IsIn(err)). If the model checker returns false with a
counterexample execution cex, the Teacher informs L* that the conjecture
is incorrect, and gives it the word w € X* s.t. cex > w to witness this fact
(we L(C) and w ¢ Ay). If the model checker returns ¢rue, indicating that
[A(C)]|M S{AGp) holds, then the Teacher forwards A(C') to Oracle 2.

Example 6.29 Let I' = server||clienty||clients, as presented in the previ-
ous example, and let ¢ = AG(—~(InQ(grant;) A InQ(grants))). Figure 6.10
presents a possible conjecture DFA returned by the L* algorithm. Figure 6.11
presents the state machines A1 (C) and A3(C) constructed from C. Note that
there is no qerr state in C and thus there is no err state in A;(C) as well.
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A(C):: {e,.grant,,deny, }{as=q,l/as:=d,
e,[as=q,)/qs:=q0;GEN(cancel,)
init! | e,[qs=q,]/qs:=q;;GEN(req;) end!

'y {grant,,deny,}las=q,]/qs:=q,
ey[qs=q,]/gs:=q,

e,[lgs=q,]/as:=q,;GEN(cancel,)
e,[qs=q,]/qs:=q,;GEN(req;)

Az(c):: {e,,grant,,deny,}[as=q,]/qs:=q,
e,[gs=0,)/gs:=q4;GEN(cancel,)
init2_| e,las=qo)/as:=q,,GEN(req,) end?

'y {grant,,deny,}[qs=q,]/qs:=q,
e,las=q,)/qs:=q,
e,[gs=0q,)/gs:=q;GEN(cancel,)
e,[qs=09,)/gs:=q;GEN(req;,)

Figure 6.11: State machines A;(C') and A3 (C)

When verifying A(C)||MS = AG(p V IsIn(err)), the model checker re-
turns false with a counterexample. A possible counterexample might be
cex = gen(ey), gen(e1), gen(es2),tr(e1), gen(reqr), tr(ey), gen(cancely ), tr(es),
gen(reqq),tr(reqi), gen(granty), tr(cancely), tr(reqqs), gen(granty). This ex-
ecution matches the word w = (e1, (req1)), (e1, (cancely)), (e2, (cancely)) over
3. Since cex > w, then w & Ay, and the Teacher informs L* that the con-

jecture 1s incorrect.

Check (true) M[A(C)]:

Oracle 2 preforms Step 2 in the compositional rule. That is, it checks that
for every execution ex € Ley (M), ex | gy ac)) € Lez(A(C)). In section 6.3.3
this check was done by constructing a single state machine, M (M, A(C)).
However, executions of both M and A(C) are interleaving executions of
several threads, and thus cannot be represented by a single state machine.
Let ex be an execution of a system I', ex is referred to as an atomic RTC
ezecution if the RTC steps of the state machines in I' do not interleave. We
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exploit the fact that the clients do not communicate with each other, and
make the following observation: For every execution er € L.,(M) and
w € B(M)* s.t. ex > w, there exists an atomic RTC execution ex’ over
EV(M) s.t. ex! € Lep(M) and ez’ > w. The result of this observation is
that in order to check execution inclusion on star-type systems, it is enough
to check atomic RTC executions. This is captured in the following theorem.

Theorem 6.30 L..(M) |gyac) S Lex(A(C)) iff for every atomic RTC
execution ex € Legx (M), ex |py(ac)) € Lex(A(C)).

Oracle 2 checks execution inclusion by considering only atomic RTC
executions of both M and A(C). Notice that if we consider only atomic
executions of a system I' = Mj||...||M,,, then we can construct a single state
machine with n orthogonal regions, each including a single M;. Oracle 2
constructs two state machines M C and A(C'), representing only atomic RTC
executions of M and A(C) respectively. Step 2 is then done based on MC
and A(C), as defined in Section 6.3.3.

Following, we formally define how to create a single state machine with
orthogonal regions from a system with state machines that do not commu-
nicate.

Definition 6.31 Let I' = M||...||M,, s.t. for every i # j, M; and M; do
not communicate. The orthogonal joint state machine of I', denoted A(T'),
is a state machine that includes n orthogonal regions, where each region
i € {1,...,n} includes M; with the following modifications. Each variable v
of M; is replaced with variable v;: for every transition of M;, if v is part of
the guard or the action (or both), replace v with v;.

For every transition of M; labeled with trigger t, replace t with t;.

The renaming of the variables ensures that in A(T"), variables are local to
their region. The renaming of the triggers ensures uniqueness of the triggers
between the different regions. Note that since for every i # j, M; and M;
do not communicate, then the target of events generated on actions of A(T")
is not a state machine in I'; and thus no need to modify the generation of
the events in A(T).

We define the operator ex as follows.
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Definition 6.32 Let I' = M;||...||M,, be a system, and let ex = fi, fa,... be
an ezecution in Le,(T). ex = f1, f5, ... where for every i > 1 the following
holds:

o If fi =tr((e,M;)) where j € {1,...,n} then f] =tr((e;, A(T))).
o If fi = gen((e, M;)) where j € {1,...,n} then f! = gen((ej, A(T))).
o Otherwise, f| = fi,

The following theorem captures the relation between the executions of
I and A(T).

Theorem 6.33 Let I' = M;||...||M,, s.t. for everyi # j, M; and M; do not
communicate. Let ex be an atomic RTC execution. Then ex is in Ley(I") iff

ex € Lee(A(T)).

Following, we define how to construct a single state machine from A(C).

Definition 6.34 Let A(C) = Ai(C)||...||An(C) be the state machines con-
structed from DFA C. Assume that for every i € {1,..,n}, the states of
A;(C) are init;, end; and err;. The joint state machine of A(C), denoted
Q(A(C)), includes states init, end and err, where init is the initial state.
Q(A(C)) has a single variable, qs initialized to qo (the same joint variable
that exists in the different A;(C) state machines). Fori € {1,...,n}, and for
every transition in A;(C) from init; to end; (or to err;) labeled with t[g]/a,
add a transition in Q(A(C)) from init to end (or to err) labeled with t;[g]/a.
Also add a null transition from end to init (as in A;(C)).

The following theorem captures the relation between the executions of

A(C) and Q(A(C)).

Theorem 6.35 An atomic RTC execution ex is in Leg A(C) iff
€z € Lea(QA(C))).

Oracle 2 Checks execution inclusion on atomic RTC executions by con-
structing A(M) and Q(A(C)), and checking Step 2 as defined in Sec-
tion 6.3.3.
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Example 6.36 Let I' = server||clienty]||clients, as presented in the previ-
ous example, and let p = AG(=(InQ(granty) A InQ(grants))).

The conjecture DFA C' returned from the L* algorithm, for which Step 1
holds, is presented in Figure 6.12. qerr state and transitions to qerr are de-
noted with dashed lines. The multiple qe. states are for readability. Note
that L(C) # Ay. For example, the word w = (es, (reqs)), (grants,€), (e1,
(cancely)) € L(C), although w € Ay. Note that ¢ is violated, for exam-
ple, in the following scenario. client; sends a req followed by a cancely.
Following, clienty sends a reqs. The server will, in turn, send granti to
clienty followed by grants to clients. If client, sent cancely before it re-
ceived granti, then it is possible that both grant; and grants are in the
event queues, thus violating the property.

For checking Step 2, oracle 2 constructs a single state machine MC
from clienty and clients in two orthogonal regions, and constructs A(C')
from A(C). The check of Step 2 returns true, stating that every atomic
RTC execution of clienty||clienty has a representative execution in A(C).
We can then conclude that T' = ¢.

Let T7 = server||client!||clientl,, where the state machine of server is
presented in Figure 6.1, the state machine of client) is presented in Fig-
ure 6.2, and the state machine of clientl, is presented in Figure 6.8 (where
i = 2). Note that ¥ is the same as in the previous case, and thus the con-
jecture DFA C' returned from the L* algorithm, for which Step 1 holds, is
the same as before (Figure 6.12).

When checking Step 2, Oracle 2 returns false, with a counterexample. A
possible counterexample is the word w = (e1, (req1)), (e1, (clry, cancely)), (e,
(rega)). For this word, w € Ley(client!||client),), however w |s¢ L(A).

During the counterexample analysis, the Teacher executes a membership
query on w |x= (e1, (req1)), (e1, (cancely)), (ea, (reqs)). This query returns
false, indicating that w |n& A,. We can then conclude that T |~ .

6.5 Applying Assume-Guarantee Reasoning Recur-
sively

In the previous section we introduced a framework for applying AG reason-
ing for star-type systems. In this section we extend the framework presented
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Figure 6.12: The conjecture DFA C
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previously, and present a framework for applying recursive reasoning. That
is, we present how to apply the following compositional rule for star-type

systems:
Rule AG-UML-Mult

(Step 1) [AL]M S ()
(Step 2) [A2] M C1[Aq]
(Step n) '[An]MCn_l[An_l]

(Step n+1) (true)MC,[A,]
(true) MS||IMCy||...[[MCr(p)

We start by formally defining the meaning of [A']|M[A]. Intuitively,
[A']M[A] holds iff every execution of A’||M has a representative in A. That
is, [A']M[A] holds iff EV(A) C EV(A") U EV(M) and for every ex €
Le$(A/HM)> exr LEV(A)e Lea:(A)'

Theorem 6.37 Let MS be a state machine, and for i € {1,..,n} let
MC; and A; be state machines s.t. for every j € {2,...,n}: EV(A;_1) C
EV(A;) UEV(MCj_y). Let p be a property over events EV' C (EV (A1) U
EV(MS)), and let ¢ = AGp. Then Rule AG-UML-Mult is sound.

Proof: Assume by means of negation that Step 1 to Step n+ 1 hold, how-
ever (true)MS||MCill...||MC,{AGp) does not hold.

This means that there exists an execution ex € L., (MS||MCh||...||[MCy,)
st. er [ Gp. By Lemma 6.3, ex |pyac,)€ Lex(MCy). Thus, since
Step n + 1 holds, ex | gy (a,)€ Lex(An)-

It also holds (by Lemma 6.3) that ex | gy (amc,_ )€ Lex(MCp1).

Since ex |gy e, )€ Lexa(MCpr_1) and ex |py(a,)€ Lez(Arn), then by
Lemma 6.3 ex |gyv(a,)uEv (MG, )€ Lex(An||MCp_1), and since Step n
holds, we can conclude that ex | gy (4, .)€ Ley(A,—1). Similarly, it can
be shown that ex |gy(a,)€ Lex(A1). Since ex |py )€ Lex(MS) and
er | gyv(a,)€ Lex(A1), then by Lemma 6.3 ex | py (4, )upv(ms)€ Lex(A1|[MS).
Since Step 1 holds, we can conclude that ex |y (4, uev(ms)FE Gp. Based
on Theorem 6.9, ex = Gp as well. A contradiction. We then conclude
that (true)MS||MCh]|...||MC,(AGp) holds, which means that Rule AG-
UML-Mult is sound. g
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At each Step i, we use L* to iteratively construct assumption A;, until
either all premises of Rule AG-UML-Mult hold, or until a real counterex-
ample is found. For i € {1,...,n}, let ¥; be the assumption alphabet of M C;
w.r.t. MS and . Then X%, the alphabet of A;, is defined as X' = 3,;U...U%,,.

The notion of weakest assumption is extended for state machines.

Definition 6.38 Let M and A be two state machines, and let ¥, be an
alphabet such that EV(A) C EV(3,) U EV(M). A language A, C X% is
the weakest assumption w.r.t. M and A if the following holds: w € Ay, iff for
every execution ex over EV (X, )UEV (M), if exbw and ex | gy (a)€ Lex(M)
then ex | gy (4)€ Lex(A).

Assume we could construct a set of state machines Mf‘“’, e Mn“}bw that
represent A,,. That is, for every execution ex over EV (3,,), ex € Le,(M {4” [l
|| M) iff there exists w € Ay, s.t. ex>w. Then M ||...|[M describes
exactly those executions over ¥, that when executed with M have a repre-
sentative in A.

For ¢ € {1,...,n — 1}, and for state machines M C;,MCj;1,...,MC,, it is
possible to extend Theorem 6.14 and prove the following.

Theorem 6.39 Let A; be a state machine over X, and let ALt C Ni+! pe
the weakest assumption w.r.t. MC; and A;. Then (true)MC;||...||M Cy[A;]
iff for every execution ex € Ley(MCit1]l...||MCy), there exists w € A%
s.t. ex>w.

The proof of the above theorem exploits the fact that the state machines
MC;,MCiyq,..., MC,, do not communicate with each other. From the above
theorem we can conclude that in order to prove Rule AG-UML-Mult, the
goal of L* is to learn A?, (for i € {1,...,n}).

Step 1 is done as described in Section 6.4. Following, we present how to
recursively verify M C4||...||[MC,, w.r.t. A;. We define when a system is fully
interleaved. Intuitively, a system if fully interleaved if for every execution ex
of the system, every possible interleaving of ex is also an execution of the
system.

Definition 6.40 Let I' = M;||...||M,, be a system, let ex € Le¢y(I') be an
execution and let w € X(I')* be a word s.t ex>w. We say that I' is fully
interleaved if for every ex’ over (') where ex' >w, ex’ € Ly (T).
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The correctness of our framework is based on the following observation,
which exploits the characteristics of fully interleaved systems. Let I' and T”
be two systems where I" is fully interleaved and EV (I') C EV(T'). In order
to check execution inclusion (i.e., check that Le. (') | gy C Lex(T7)), it is
enough to check that every word w over 3(I), if there exists some ezecution
in L, (T") that matches w, then this execution has a representative in L., (I").
This is captured in the following theorem.

Theorem 6.41 Let I' and IV be two systems where I is fully interleaved,
and EV(T') € EV(T). Lew(T) lpvenC Leo(I") iff for every word w €
X(T)*, if there exists ex € Ley(T) s.1. ex>w then ex | gy € Lea ().

Note that A; is fully interleaved, based on the correctness of Theo-
rem 6.20 for star-type systems. For i € {2,...,n}, when proving Step i,
we assume A; 1 is fully interleaved, and provide a Teacher that uses the
L* algorithm for learning assumption A;. Our construction ensures that A;
is fully interleaved, and that A; does not communicate with MC;_;. We
can therefore conclude that for every execution ex € Le,(A;||MC;_1) there
exists an atomic RTC execution ex’ € L, (A;||MC;_1) that is represented
by the same word. We say that ex’ is the atomic RTC representative of
ex. Thus, based on Theorem 6.41, in order to check Step i, it is enough to
ensure that every atomic RTC execution of A;||MC;_1 has a representative
in Aifl.

6.5.1 Membership Queries

Let A; be a fully interleaved system over ¥ = ¥; U...UY,. To answer a
membership query for w € (XT1)*, the Teacher must return true iff w €
AtFL. The Teacher creates a collection of state machines M; 1 (w), ..., M, (w)
such that for every j € {i + 1,...,n}, ¥(M;(w)) C ¥;. Assume we con-
struct M1 (w), ..., M, (w) as presented in Section 6.4.1. By construction,
M1 (w)|]...]|Mp (w) is fully interleaved. Moreover, M;i(w)l|...||M, (w) do
not communicate with M C;, thus every execution ex of M;i1(w)||...|| M, (w)
||MC; has an atomic RTC representative. We conclude that based on The-
orem 6.41, [M;t1(w)]|...|| My (w)|MC;[A;] holds iff for every atomic RTC
execution ex € Ley (M1 (w)]|...|[ My (w)||MC;), ex | gy a, € Lex(Ai). This
is captured in the following theorem.
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Theorem 6.42 Loy (M1 (w)|]...|| My (w)|[MC;) | gy a,) S Lex(As) iff for ev-
ery atomic RTC execution ex € Ley(Miy1(w)||...||Mp(w)||MC;), ex | gy a,)€
Lez(A;).

We construct a single state machine M'™!(w) whose executions are ex-
actly the atomic RTC executions of M;y1(w)||...|| My (w). M1 (w) is there-
fore constructed as described in section 6.3.2. Once M**!(w) is obtained,
Oracle 1 constructs a single state machine whose executions ar exactly the
atomic RTC executions of M**1(w)||MC;. This is done by constructing
A(M Y (w)||[MC;) (from Definition 6.31). We denote A(M!(w)||MC;) as
A;(w). Similarly, in order to consider only atomic RTC executions of A;,
Oracle 1 constructs (4;) (from Definition 6.34).

Execution inclusion between atomic RTC executions of M,y (w)l|...]|
M, (w)||MC; and A; is then done by checking execution inclusion between
A;(w) and Q(A;). This check is similar to the check of Step 2 in Section 6.3.3.
Le., construct a new state machine, M(A;(w),Q2(A4;)), and model check
M(A;(w),QA;)) E AG(—IsIn(RTCErr)). Recall that in the construction
of M(A;(w),Q(A;)), every behavior of A;(w) is monitored. However, in this
case we want to monitor only behaviors of A;(w) that follow w. That is,
executions of A;(w) that do not reach err state (on M1 (w)). We therefore
modify M(A;(w),2(A;)) in order to ensure that only behaviors that do not
reach err state on A;(w) are monitored. We denote the modified state
machine as M(A;(w), Q(4;))

Recall that the variable rtc is used for fixing the order of execution along
an RTC step of M(A;(w), Q(A4;)). On M(Ai(w), Q(4;)), rte = 4 indicates
that the execution of A;(w) does not match w, and thus there is no need
to ensure execution inclusion on the rest of this execution. The general
structure of the modified M(A;(w), Q(4;)) is presented in Figure 6.13. We
modify A;(w) as follows. For every transition in the region of M**!(w) to
state err, replace rtc := 3 on the action with rtc := 4.

The correctness of our construction is captured in the following theorem:

~

Theorem 6.43 For every ex € Ley(M(A;(w),Q(A;))) there exists w' €
(2D st ex>w' and the following holds:

e cx reaches state RTCOk iff w' is not a prefix of w, and
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| top | *

[ AM*(w)[IMC) ]| [rtc=1]/
rtc:=0;
M (w) with modifications: :|[rtc=3] / 1Q.clean

A, with
modifications:

1. rtc:=3 on event consumption rtc:=2; RTCErT
2. push “relevant” eventsto IQ
3. rtc:=4 on transitions to err

[rec=2] |

When rtc=2,
check RTC inclusion

MC; with modifications:
1. rtc:=3 on event consumption [rtc=4]'
2. push “relevant” eventsto IQ

RTCOk

J

Figure 6.13: General scheme for M(A;(w), Q(4;))

e cx reaches state RTC Err iff w' is a prefiv of w, ex | gy (A, (w) € Lex(Ai(w)),
and ex | py(a(a,) € Lex(2(Ai)))-

Once M(A;(w), Q(A;)) is constructed, the Teacher model checks
M(Ai(w), QAy)) = AG(~IsIn(RTCErr)). The Teacher returns true, in-
dicating that w € A4F! iff the model checker returns true.

6.5.2 Conjecture Queries
Constructing A State Machine From a DFA:

Let C = (Q,%"1,8,90,Q \ {gerr}) be the conjecture of the L* algorithm.
Assume we construct A;11(C), ..., A,(C) as presented in Section 6.4.2. By
construction, A™(C) = A;11(0)|]...||4,(C) is fully interleaved. More-
over, AY(C) do not communicate with MC;, thus every execution ex of
ATHO)||MC; has an atomic RTC representative. We conclude that based
on Theorem 6.41, [A“™(C)|MC;[A;] holds iff for every atomic RTC execu-
tion ex € Lex (A (O)||MC5), ex | gy (a;)€ Lex(A). This is captured in the
following theorem.

Theorem 6.44 L, (A" (C)||MCy) | pv(a;)C Lex(As) iff for every atomic
RTC execution ex € Leg(A™H(C)||[MCy), ex | gy (a)€ Lea(As).
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We construct a single state machine from C' whose executions are ez-
actly the atomic RTC executions of A“*1(C). The construction is done

as described in Definition 6.34. We denote the resulting state machine as
QA™HO)).

Check [A"H(C)MC;[A;]:

Oracle 2 constructs a single state machine whose executions are exactly
the atomic RTC executions of A*"1(C)||MC;. This is done by constructing
A(Q(ATHC))||MC;) (from Definition 6.31). We denote A(Q(A™H(C))||MC;)
as A;. In order to consider only atomic RTC executions of A;, Oracle 2 con-
structs 2(A4;) (from Definition 6.34). Similar to the case of membership
query in Section 6.5.1, execution inclusion is done by constructing a new
state machine, M(A;,Q(A4;)). Since we want to monitor only behaviors
of A; that match a legal execution of A™*1(C), we modify M(A;, Q(4;))
accordingly. We denote the modified state machine as M(A;, Q(4;))

Again, on M(A;,Q(A;)), rte = 4 indicates that the execution of A;
does not match a legal execution of Q(A*+!(C)), and thus no need to ensure
execution inclusion on the rest of this execution. We modify A; as follows.
For every transition in the region of Q(A4;11(C)) to state err, replace rtc := 3
on the action with rtc := 4.

The correctness of our construction is captured in the following theorem:

Theorem 6.45 For every ex € Loy (M(A;, Q(A;))) there exists w' € (2H1)*
s.t. ex>w' and the following holds:

e cx reaches state RTCOk iff ex | gy (ai+1y(0) & Ler(AHO))

e cx reaches state RTCErr iff ex |py(a,)€ Lex(Ai), and ex |py(a,) &
Ler (QAY)).

Once M(A;, Q(A4;)) is constructed, the Teacher model checks
M(A;, Q4)) | AG(=IsIn(RTCErr)). If the model checker returns false
with a counterexample execution cex, the Teacher informs L* that the con-
jecture is incorrect, and gives it the word w € (X1)* s.t. cex>w to witness
this fact (w € L(C) and w &€ A%). If the model checker returns true, then
the Teacher returns true, indicating that [A**1(C)|MC;[A;] holds, then the
Teacher forwards A“™*(C) to Step i+ 1.
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6.6 Conclusion

We presented a framework for applying learning-based compositional verifi-
cation of behavioral UML systems. Note that our framework is completely
automatic; we use an off-the-shelf L* algorithm. However, our Teacher works
at the UML level. In particular, the assumptions generated throughout the
learning process are state machines. From the regular automaton learned by
the L* algorithm, we construct a state machine (or several state machines)
which is a conjecture on Ms. Also, the Teacher answers membership and
conjecture queries by “translating” them to model checking queries on state
machines.

We have extended the basic framework for AG reasoning to apply for
recursive AG reasoning on star-type systems. In the future we plan to in-
vestigate other assume-guarantee rules in the context of behavioral UML
systems. Another interesting extension of this work is developing a frame-
work for applying the AG rule, where My includes several state machines
in systems which are not star-type. One straightforward way to handle sys-
tems which are not star-type is by learning words over single occurrences
of generation or consumption of events. That is, do not define words as se-
quences of events representing RTC steps. However, such a definition loses
the advantage of learning equivalence classes of executions.
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Chapter 7

Conclusions

We presented three methods that aim at improving model checking of be-
havioral UML systems. The first method exploits software model checking
for the verification of behavioral UML systems. Our translation to verifiable
C preserves the high-level structure of the system and significantly eases
the workload of the model checker. The second method provides an auto-
matic CEGAR-like framework for abstraction and refinement of behavioral
UML systems. Our abstraction and refinement are both at the UML level:
the abstract model is a behavioral UML system that includes abstract state
machines. The last method applies automatic learning-based compositional
verification of behavioral UML systems. We use an off-the-shelf L* algo-
rithm. However, our Teacher works at the UML level. In particular, the
assumptions generated throughout the learning process are state machines.

We believe there is more to be done in order to make model checking
of behavioral UML systems more efficient. Our different methods provide a
first step at different directions, and each of them can be further extended.
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