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Abstract

Model checking is an efficient procedure to check whether or not a given model
fulfills a desired specification. Symbolic Trajectory Evaluation (STE) is a pow-
erful technique for model checking of hardware circuits. It is based on 3-valued
symbolic simulation, using 0,1 andl ("unknown”). The X value is used to ab-
stract away parts of the circuit. The abstraction is derived from the user’s specifi-
cation. Currently the process of abstraction and refinement in STE is performed
manually. Our work presents an automatic refinement technique for STE. The
techniqgue is based on a clever selection of constraints that are added to the speci-
fication so that on the one hand the semantics of the original specification is pre-
served, and on the other hand, the part of the state space in which the "unknown”
result is received is significantly decreased or totally eliminated. Our experimen-
tal results show success in automatically identifying a set of constraints that are
crucial for reaching a definite result. In addition, our work raises the problem of
vacuity of passed and failed specifications. This problem was never discussed in
the framework of STE. We describe when an STE specification may vacuously
pass or fail, and propose a method for vacuity detection in STE.






Notations and Abbreviations

STE — Symbolic Trajectory Evaluation

M — A circuit

N —The set of nodes a¥/

(n,t) — A node of M attimet

X — The unknown value

| — The over-constrained value

GSTE — Generalized Symbolic Trajectory Evaluation

BCOI — Bounded Cone of Influence

TEL — Trajectory Evaluation Language

A — An antecedent of an STE assertion

C — A consequent of an STE assertion

N — The next time operator

N* — The application of next time operators

o/ — The defining sequence of a TEL formyla

7/ — The defining trajectory of a circuit/ and a TEL formulaf
 ofe, —The dual rail of(n, t) in 74

gn.0:95 . — The dual rail of(n, t) in o

nbot — The set of assignments for which novalues exist int*

ce — The symbolic counterexample

A,y — The original antecedent written by the user

A, — The refined antecedent

v,+ — A fresh symbolic variable for a node, ¢)






Chapter 1

Introduction

Symbolic Trajectory Evaluation (STE) [20] is a powerful technique for hardware
model checking. STE is based on combining three-valued simulation with sym-
bolic simulation. It is applied to a circuit/, described as a graph oveodes
(gates and latches). The specification consists of assertions in a restricted tem-
poral language. The assertions are of the form=- C, where theantecedent

A expresses constraints on nodest different timest, and theconsequent”
expresses requirements that should hold on such npdés STE computes a
symbolic representation for each noget). The size of this representation de-
pends on the size afl, rather than on the circuit sizeAbstractionin STE is
derived from the specification by initializing all inputs not appearinglito the

X (“unknown”) value. A fourth value,L, represents a contradiction between the
constraint ofA on some nodén, t) and its actual behavior. fefinemenamounts

to changing the assertion in order to present node values more accurately.

STE assertions may either pass or fail bh In [12], a four-valued truth
domain{0, 1, X, 1 } is defined for the temporal language of STE, corresponding
to the four-valued domain of the values of the circuit nodes. The motivation for
a four-valued semantics is to distinguish between different causes for the pass
or fail of an STE assertion. Th& truth value distinguishes the case in which
the STE assertion fails due to partial information about the state space from the
case in which it is actually violated by/. In the latter case aounterexample
is produced, representing an executionMéfthat satisfiesA but contradicts”'.

The X truth value stems from a too coarse antecedent which underspecifies the
circuit. The L truth value indicates that the STE assertion passes vacuously due
to a contradiction betweed and M .

Generalized STE (GSTE8] is a significant extension of STE that can verify
all w-regular properties. (G)STE has been in active use in industry, and has been
very successful in verifying huge circuits containing large data paths [21, 19, 26].
Its main drawback, however, is the need for manual abstraction and refinement,



which can be very labor-intensive.

In this thesis we propose a technique for automatic refinement of assertions
in STE. In our technique, the initial abstraction is derived, as usual in STE, from
the given specification. The refinement is an iterative process, which stops when
a truth value other thaX is achieved. Our automatic refinement is applied when
the STE specification results witki. We compute a set of input nodes, whose
refinement is sufficient for eliminating th& truth value. We further suggest
heuristics for choosing a small subset of this set.

Selecting a "right” set of inputs has a crucial role in the success of the abstrac-
tion and refinement process: selecting too many inputs will add many variables
to the computation of the symbolic representation, and may result in memory and
time explosion. On the other hand, selecting too few inputs or selecting inputs
that do not affect the result of the verification will lead to many iterations with an
X truth value.

We point out that, as in any automated verification framework, we are lim-
ited by the following observations. First, there is no automatic way to determine
whether the provided specification is correct. Therefore, we assume it is, and we
make sure that our refined assertion passes on the concrete circuit if and only if
the original assertion does. Second, bugs cannot automatically be fixed. Thus,
counterexamples are analyzed by the user.

Another important contribution of our work is identifying that STE results may
hide vacuity. This possibility was never raised before. Hidden vacuity may occur
since an abstract execution &f on which the truth value of the specificationlis
or 0, might not correspond to any concrete executiof/fofln such a case, a pass
is vacuouswhile a counterexample spurious We propose several methods for
detecting these cases.

We implemented our automatic refinement technique within Intel’s Forte en-
vironment [21]. We ran it on two nontrivial circuits with several assertions. Our
experimental results show success in automatically identifying a set of inputs that
are crucial for reaching a definite truth value. Thus, a small number of iterations
were needed.

1.1 Related Work

Abstraction is a well known methodology in model checking for fighting the state
explosion problem, in which certain details of the system are hidden in order to
result in a smaller model. Two types of semantics exist for interpreting temporal
logic formulas over an abstract model. In the two-valued semantics, a formula is
either true or false in an abstract model. True is guaranteed to hold for the concrete
model as well, whereas false may be spurious, meaning it does not guarantee that



the result in the concrete model is false as well. In the three-valued semantics [6,
22], a third truth value is introduced: the unknown truth value. The true and
false truth values in the abstract model are guaranteed to hold also in the concrete
model, whereas the unknown truth value gives no information about the truth
value of the formula in the concrete model.

In both semantics, when the model checking result on the abstract model is
inconclusive, the abstract model is refined by adding more details to it, making it
more similar to the concrete model. This iterative process is called Abstraction-
Refinement, and has been investigated thoroughly [9, 7, 15, 11, 1, 10].

In [8], it is shown that the abstraction in STE is an abstract interpretation via a
Galois connection. However, automatic refinement has never been suggested be-
fore for STE. The work that is closest to ours is [24], which suggests an automatic
abstraction-refinement for symbolic simulation. The main differences between
our work and [24] is that we compute a set of sufficient inputs for refinement
and that our suggested heuristics are significantly different from those proposed
in [24]. Our work is the first attempt to perform automatic refinement in the
framework of STE.

Two manual refinement methods for GSTE are presented in [27]. In the first
method, refinement is performed by changing the specification. In the second
method, refinement is performed by choosing a set of nodes in the circuit, whose
values and the relationship among them are always represented accurately. In [25],
SAT-based STE is used to get quick feedback when debugging and refining a
GSTE assertion graph. However, the debugging and refinement process itself is
manual.

An additional source of abstraction in STE is the fact that the constraints of
A on internal nodes are propagated only forwards through the circuit and through
time. We do not deal with this source of abstraction. In [28], they handle this
problem by the Bidirectional (G)STE algorithm, in which backward symbolic
simulation is performed, and new constraints implied by the existing constraints
are added tod. STE is then applied on the enhanced antecedent. Our automatic
refinement can be activated at this stage.

Vacuity refers to the problem of trivially valid formulas. It was first noted
by Beatty and Bryant [2]. Automatic detection of vacuous pass under symbolic
model checking was first proposed in [4] for a subset of the temporal logic ACTL
called w-ACTL. In [4], vacuity is defined as the case in which given a madel
and a formulap, there exists a sub formufeof ¢ which does not affect the validity
of ¢. Thus, replacing with any other formula will not change the truth value of
¢ in M. Kuperman and Vardi [13, 14] extend the work of [4] by presenting a
general method for detecting vacuity for specifications in CTL*.

In the framework of STE, vacuity, sometimes referred tamtecedent failure
is discussed in [12, 20]. Roughly speaking, it refers to the situation in which a
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node is assigned with & value, implying that there are no concrete executions
of the circuit that satisfy all the constraintsih As a result,A — C'is trivially
satisfied. This is in fact a special case of vacuity as defined in [4]. Our work is
the first to raise the problem of hidden vacuity, in which the formula is trivially
satisfied despite the fact that no nodes are assigned with tiadue.

1.2 Outline of the Thesis

In Chapter 2 we give some background and basic definitions and notations. Chap-
ter 3 describes the inherent limitations of automatic refinement of specifications
versus manual refinement, and characterizes our proposed refinement technique.
Chapter 4 presents heuristics for choosing a subset of inputs to be refined. Chap-
ter 5 defines the STE vacuity problem and suggests several vacuity detection
methods. An additional vacuity problem is described in Appendix A. Chap-
ter 6 presents experimental results of our refinement technique. Finally, Chapter 7
presents conclusions and future research directions.



Chapter 2

Background

2.1 Circuits

There are different levels in which hardware circuits can be modelled. We con-
centrate on a synchronous gate-level view of the circuit, in which the circuit is
modelled by logical gates such as AND and OR and by delay elements (latches).
Aspects such as timing, asynchronous clock domains, power consumption and
physical layout are ignored, making the gate-level model an abstraction of the
real circuit.

More formally, a circuit)/ consists of a set of node€. The nodes consist
of inputsandinternal nodes Internal nodes consist ¢dtchesandcombinational
nodes Each combinational node is associated with a Boolean function. The nodes
are connected by directed edges, according to the wiring of the electric circuit. We
say that a node; enters a node, if there exists a directed edge fram to n..
The set of nodes entering a certain node arsatgce nodesand the set of nodes
to which a node enters are gtk nodes The value of a combinational node at
time ¢ can be expressed as a Boolean expression over its source nodesiat time
The value of a latch at timecan be expressed as a Boolean expression over its
source nodes at timeésandt — 1, and over the latch value at time- 1. The value
of a latch at time O is determined by a given initial value. The source nodes of a
latch can be classified as control and data. A latch has one data source node and at
least one control source node - its clock. It may have other control source nodes
such as set and reset. Thatputsof the circuit are designated internal nodes
whose values are of interest. We restrict the set of circuits so that the directed
graph induced by// may contain loops but no combinational loops.
Throughout this work we refer to a nodeat a specific time as a nodén, t).

An example of a circuit is shown in Figure 2.1. It contains three inputs In1,
In2 and In3, two OR nodes N1 and N2, two AND nodes N3 and N6, and two



latches N4 and N5. For simplicity, the clocks of the latches were omitted and we
assume that at each timehe latches sample their data source node from time
t — 1. Note the negation on the source node In2 of N2.

Inl-
In2-

In3

Figure 2.1: A Circuit

The bounded cone of influenc¢éBCOI) of a node(n,t) contains all nodes
(n',t") with ¢ < ¢ that may influence the value ¢f,¢). The BCOI is defined
recursively as follows: the BCOI of a combinational node at tinie the union
of the BCOI of its source nodes at timeand the BCOI of a latch at timeis the
union of the BCOI of its source nodes at timesnd¢ — 1 according to the latch

type.

2.2 Simulation Based Verification

The most common way to verify that a circuit implementation obeys its specifi-
cation is by simulation. Aoolean simulation tess an assignment of Boolean
values to the circuit inputs along time and to the latches at time 0. A simulator is
a software or hardware tool that receives a circuit and a simulation test and per-
forms a Boolean simulation of the circulit, i.e., calculates the value of eachrnode
along time by computing the Boolean expression @t timet over the values of
its source nodes at tinteand possibly — 1 (in case of a latch). Since the simula-
tor works on a logical gate-level model of the circuit and ignores aspects such as
timing and asynchronous clock domains, this calculation is an approximation of
the real values of the circuit. The simulator may also receive expected results, i.e,
expected values of the circuit outputs at specific times, and compare them to the
actual values it calculated. Note that the verification is valid only with respect to
the simulation tests provided to the simulator.

Table 2.1 describes a Boolean simulation of the circuit described in Figure 2.1.
It contains the value of each node at time O and 1. The values given by the simu-
lation test are marked in bold, and include the input values and the initial values
of the latches.

Given a circuit withn inputs andn latches, if we want to verify that the circuit
obeys its specification for all possible input values up to tiraed for all possible
initial values of latches, thep (“+)+m simulation tests are required. Even for
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Time | In1 | In2 | In3 | N1|N2|N3|N4|N5| N6
0 0 1, 01]0]0]O0
1 1 1 1/1}1|1, 0|00

[ERN
o

Table 2.1: Boolean Simulation

AND | X |0 1 OR| X | 0|1 NOT
X | X|0]X X | XX |1 X | X
0 0/0|O0 0O X|0|1 0 1
1 ([ X|0]1 1 1|11 1 0

Table 2.2: Ternary operations

medium sized circuits, this number is infeasible. Thus, simulation is performed
for only a subset of possible tests. Usually, the tests are directed by a user to
certain scenarios which are of interest.

2.3 Three-valued Simulation

In three-valued simulation, the simulation test may assign Boolean values to only
part of the inputs at different times and latches at time 0, in which case the sim-
ulator assigns the valu¥ to all inputs and latches that were not assigned by the
simulation test. TheX value represents the "unknown” value, and is used to ab-
stract away parts of the circuit. Attaching to a certain node represents lack of
information regarding the truth value of that node. A three-valued simulator is a
simulator that can calculate the values of the nodes over the ddifaginX } by
extending the Boolean operations to this domain as shown in Table 2.2.

Table 2.3 describes a three-valued simulation of the circuit from Figure 2.1
up to time 1. A subset of the inputs at times 0 and 1 and the initial values of the
latches are not assigned by the simulation test.

Time | In1 | In2 | In3 | N1 | N2 | N3 | N4|N5| N6
0 0| X0 | X | X |X | X |X|X
1 XX |/1|]X|]1 X|X|O0]O

Table 2.3: Three-valued Simulation

A motivation for using three-valued simulation is to reduce the number of
simulation tests. For example, let us assume that in the simulation described in 2.3,
our goal is to verify that the value of the node N6 at time 1 is 0. For the given
simulation test this is indeed the case. Thus, we can conclude that the value of N6
at time 1 is 0 also for the> Boolean simulation tests implied from the given test
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by replacing the unknown input values and unknown initial latches values by any
combination of Boolean values. The drawback of three-valued simulation is that
if too few inputs have specified values, then the circuit outputs may receive the
X value, in which case it could not be determined whether or not the verification
succeeded.

2.4 Symbolic Simulation

Another way to reduce the number of performed simulation tests is to use sym-
bolic simulation. Letl” be a set of symbolic Boolean variables over the domain
{0,1}. A Boolean symbolic simulation teit an assignment of either Boolean
values (0 or 1) or of symbolic Boolean variables out©ofo the inputs of the cir-

cuit and to the latches at time 0. A symbolic simulator is a simulator that receives
a circuit and a symbolic simulation test, and performs symbolic simulation [3]
of the circuit, i.e, the symbolic expression of each n¢dg) is computed as a
function of the expressions of its source nodes. Table 2.4 describes a symbolic
simulation of the circuit from Figure 2.1 up to time 1.

Time | In1 | In2 | In3 N1 N2 N3 N4 | N5 | N6
0 Vi1 1 Vo 1 (%) (%) 0 1 0
1 va | Va | O | vsVug | —wg | v3A—0g | vy | Uy | Uy

Table 2.4: Symbolic Simulation

Note that a single Boolean symbolic simulation test represents multiple Boolean
simulation tests, one for each assignment to the variabl&s #Ror example, the
symbolic simulation test in Table 2.4 represett8oolean simulation tests, since
it contains 4 different symbolic Boolean variables. The downside of symbolic
simulation is that the size of the Boolean expressions of the circuit nodes is ex-
ponential in the number of symbolic variables which increases as the simulation
progresses in time, since the value of each nodetimet may depend on inputs
at all times0 < ¢/ < t.

The difference between assigning an input with a symbolic variable and as-
signing it with X is that a symbolic variable is used to obtain an accurate repre-
sentation of the value of the input. For example, the negation of a vatiablev
whereas the negation of is X. In addition, if two different inputs are assigned
with the same variable in a Boolean symbolic simulation test, then it implies
that they have the same value in every Boolean simulation test derived from the
symbolic simulation test. However, if the inputs are assigned Witkhen it does
not imply that they have the same value.

12



2.5 Three-valued Symbolic Simulation

Three-valued symbolic simulation combines three-valued simulation with sym-
bolic simulation. The motivation for this combination is that the use of Xhe
value decreases the size of the Boolean expressions of the circuit nodes, at the ex-
pense of the possibility to receive unknown values for the circuit outputs. Given a
set of symbolic Boolean variablés a three-valued symbolic expression is an ex-
pression consisting of ternary operations, applied to{0, 1, X }. A three-valued
symbolic test assigns three-valued symbolic expressions to the circuit inputs along
time and to the latches at time 0. A three-valued symbolic simulator receives a
circuit and a three-valued symbolic test, and performs simulation of the circuit
by calculating the three-valued symbolic expression of each node along time ac-
cording to the symbolic expressions of its source nodes. Table 2.5 describes a
three-valued symbolic simulation of the circuit from Figure 2.1 up to time 1. The
notationv;?1 : X stands for "ifvs holds then 1 els&™.

Time | In1 | In2 | In3 N1 N2 | N3 | N4 | N5 | N6
0 vi| 1 | v 1 vy | ve | X | 1 | X
1 V3 X 0 Ug?l - X X X (%) (%) (%)

Table 2.5: Three-valued Symbolic Simulation

2.6 Circuits Values in STE

Recall that a circuit is modelled as a set of nadésconnected by directed edges.
X
1 N |
\L e
Figure 2.2: TheZ partial order

In STE, the circuit nodes receive values out of the@et {0,1, X, L}. The
fourth value, L, is added to represent the over-constrained value, in which a node
is forced both to 0 and to 1. This value indicates that a contradiction exists between
external assumptions on the circuit and its actual behawoforms a complete
lattice with the partial orded C X, 1 C X, L T 0and Ll C 1. This order
corresponds to set inclusion, whekeis interpreted as the s¢0, 1}, and L is
interpreted as the empty set. As a result,gheatest lower boundi corresponds

13



AND | X (0| 1| L OR| X |O0|1|L NOT
X | X|0]|X | L X | X|X |11 X | X
0 0/0[0|L Ol X, 01,|L 0 1
1 X0 1]L 1 /1)1]|1]L 1 0
L L)L) L]L S I (A A L | L

Table 2.6: Quaternary operations

to set intersection and tHeast upper boundJ corresponds to set union. The
Boolean operations AND, OR and NOT are extended to the do@as shown
in Table 2.6.

2.7 States, Sequences and Trajectories

A states of the circuitM is an assignment of values out @fto all nodes of the
circuit, s : N/ — Q. Given two states; ands,, we saythat; C s, < ((In €
N :s1(n) = L)V (Yn € N s1(n) C s2(n))). A state in which all nodes are
assigned with values out gf), 1} is aconcrete state A states is an abstraction
of a concrete state. if s, C s.

A sequencer is any infinite series of states. The notatigi), i € N, denotes
the state at time in 0. The notatiorv(i)(n),: € N,n € N, denotes the value
of the noden in the states(i). The notations?,i € N, denotes the suffix of
starting at timei. We say that; C 0y <= ((3i > 0,n € N : 01(i)(n) =
1)yv(Vi>0:0.(i) C o2(i))). Note that we refer to states and sequences that
contain_L values as least elements with respedtto

Let V' be a set of symbolic Boolean variables over the dorjéiri }. A sym-
bolic expressioroverV is an expression consisting of quaternary operations, ap-
plied toV U Q. The notions of states and sequences can be extended to the
symbolic domain. Asymbolic statever V' is a mapping which maps each node
of M to a symbolic expression. Each symbolic state represents a set of states, one
for each assignment to the variabledinGiven a symbolic stateand an assign-
mento to V, ¢(s) denotes the state that is obtained by applyirtg all symbolic
expressions ims.

A symbolic sequenceverV is a series of symbolic states that represents a
set of sequences, one for each assignment to the varialdlesGiven a symbolic
sequence and an assignmenitto V, ¢(o) denotes the sequence that is obtained
by applyinge to all symbolic expressions in. Given two symbolic sequences
ando, overV, we say that; C o, if for all assignment$ to the variables i/,
¢(01) E ¢(02).

Sequences may be incompatible with the behaviok/of A (symbolic) tra-

14



jectoryr is a (symbolic) sequence that is compatible with the behavidr ofet
val(n, t, ) be the value of a noder, t) as computed according to its source nodes
values inz. It is required that for all node§:, t), 7(t)(n) C val(n,t, ) (strict
equality is not required in order to allow external assumptions on nodes values
to be embedded int@). A trajectory isconcreteif all its states are concrete. A
trajectoryr is an abstraction of a concrete trajectayyif 7. C .

2.8 Symbolic Trajectory Evaluation

We now describe the Trajectory Evaluation Language (TEL) used to specify prop-
erties for STE.

A Trajectory Evaluation Logic(TEL) formula is defined recursively ovér as
follows:

1. Simple Predicates:(n is p), wheren € A andp is a Boolean expression
overV.

2. Conjunction: (f; A f2), wheref, and f, are TEL formulas.

3. Domain Restriction: (p — f), where f is a TEL formula andp is a
Boolean expression oveéf.

4. Next Time: (N f), wheref is a TEL formula andN is the next time opera-
tor.

Note that TEL formulas can be expressed as a finite set of constraints on values
of specific nodes at specific timesdN® denotes the application @fnext time
operators. The constraints ¢n,¢) are those appearing in the scopeMdf. A
TEL formula f has amaximal depth denoted depthf), which is the maximal
time ¢ for which there exists a constraint jnon some nodén, ), plus one.

Usually, the satisfaction of a TEL formulon a symbolic sequenceis de-
fined in the two-valued truth domain [20], i.¢.js either satisfied or not satisfied.
In[12], Q is used also as a four-valued truth domain for an extension of TEL. We
also use a four-valued semantics. However, our semantic definition is different
from [12] with respect to thel value. In [12], a sequence containing L val-
ues could satisfyf with a truth value different fromL. In our definition this is
not allowed. We believe that our definition captures better the intent behind the
specification with respect to contradictory information about the state space. The
intuition behind our definition is that a sequence that contaihsvalue does not
represent any concrete sequence, and thus vacuously satisfies all properties.

15



Given a TEL formulaf overV, a symbolic sequenceeoverV’, and an assign-

ment¢ to V', we define the satisfaction gfas follows:

(o= fl=L < J3i>0,ne N :¢(o)()(n) = L. Otherwise:

(0,0 Enispl =1 < ¢(0)(0)(n) = ¢(p)

(0,0 = nisp] =0 < ¢(0)(0)(n) # ¢(p) ande(o)(0)(n) € {0, 1}

(b0 Enispl =X < ¢(0)(0)(n) = X

(6.0 F=p— f)=(=6(p) V.0 f)

(0,0 = finfo) =(d0E find, o= fo)

(6,0 = Nf) = 6,0 |- f

Note that given an assignmento V, ¢(p) is a constant (O or 1). In addition, the
L truth value is determined only accordingd@ndo, regardless of. We define
the truth value ot |= f as follows:

cEfl=0 < 3¢:[p,0=f]=0

cEfl=X < Vo:[p o fl#0and3¢: [¢,0 = f]=X

o Efl=1 < Vo:[pok=f]¢{0,X}and3¢: [¢,0 |= f]=1

cEfl=L < Vo:[pol=fl=1

Note that sequencego) for which the truth value of is L are ignored, since

they do not correspond to real executions of the circuit. Only if the truth value of
f is L for all possible sequencego ), then the truth value db = f]is L.

Theorem 1 Given a set of variable¥’, a TEL formulaf overV, symbolic se-
quencew, o, overV, and an assignmentto V, if ¢(o2) C ¢(01) then[o, o2 =

f1E [¢,01 = f].

Proof:

We distinguish between two casesplir,) contains al value, then by defini-
tion ¢(o2) C ¢(01) and|¢, o9 = f] = L and thereforép, oo = f| C [6, 01 = f].
Otherwise, the proof is by induction on the structurefofNote that since)(o)
does not containL and ¢(o,) = ¢(o1), theno(o;) also does not contain 4
value.

e Induction Basis:f = (nisp).

Since¢(o,) does not contain_, then[p, oy = (nisp)] € {1,0, X}. Since
we assume that(cs) T ¢(01) and¢(o2) does not contain_, we get that
¢(02)(0)(n) & ¢(01)(0)(n). If ¢(01)(0)(n) € {0,1} theng(a,)(0)(n) =
®(01)(0)(n) and thereforde, oo = (nisp)] = [¢,01 | (nisp)]. Oth-
erwise,¢(o1)(0)(n) = X, and thereforég, o, = (nisp)] = X, and we

conclude thaig, o5 = (nisp)| C [¢, 01 = (nisp)].

¢ Induction Step:
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1. f = fi A fo. By the induction hypothesi$p, o2 = fi] C [¢, 01 | fi]
and[¢, 09 = fo] C [¢,01 | f2]. Since theA operator is monotonic,

we get thafp, oo = f1 A fo] C [0, 01 | fi A fa).

2. f =p — fi. If o(p) = 0, then by definition¢,o, = p — fi] =
0,00 = p — fi] = 1. Otherwise¢(p) = 1, and by the induction
hypothesis[¢, o2 |= fi] T [¢,01 = fi]. Thus,[¢,00 = p — fi]
(6,01 =p— fi]

3. f = Nfi. Sinceg(az) C ¢(a1), theng(oy') C ¢(oi'). By the
induction hypothesiggp, o»' = fi] C [¢,01' = fi]. Thus,[¢, 05 =
Nfi] C [¢, 01 = Nfi]. O

Corollary 1 Given a TEL formulaf and two symbolic sequences and o, if
oo Loy then[02 ): f] C [0'1 ): f]

Itis proven in [12] that every TEL formuld has adefining sequencewhich
is a symbolic sequence’ so that[o/ |= f] = 1 and for allo, [0 |= f] € {1, 1}
if and only if ¢ C o/. For exampleg?~1SP) is the sequence,, ;—.p) S-S5,
wheres, .., is the state in which equals(¢ — p) A (—¢ — X)), and all other
nodes equak’, ands, is the state in which all nodes equsl

Thedefining trajectoryr/ of M andf is a symbolic trajectory so that/ =
f1 € {1, L} and for all trajectoriesr of M, [ = f] € {1, L} if and only if
7 Cn/. If [v/ |= f] = L then there is no trajectory of M and assignment to
V' so thatlp, 7 = f] = 1.

Similar definitions foro/ and =/ exist in [20] with respect to a two-valued
truth domain{T’, F'}. T stands for eithet or L, andF" stands for eithed or X .

Giveno/, 7/ is computed iteratively as follows: For allr/ (i) is initialized to
o/ (i), and then the value of each no@e 1) is calculated according to the values
of its source nodes, and incorporated intg(i)(n) using ther operator. The
computation ofr/ (i) continues until no new values are derived at timéNote
that since there are no combinational loopgin it is guaranteed that eventually
no new nodes values at timewill be derived. An example of a computation of
7/ is given in Example 1.

STE assertions are of the forth — C, where A (the antecedent) and
(the consequent) are TEL formulasl. expresses constraints on circuit nodes at
specific times, and’ expresses requirements that should hold on circuit nodes at
specific timesM |= (A = C) if and only if for all concrete trajectories of M
and for all assignmentsto V, [¢, 7 = A] = 1 implies that[¢, 7 = C] = 1.

A natural verification algorithm for an STE assertidn—- C'is to compute
the defining trajectoryt4 of A/ and A and then compute the truth valuenof |=
C.If [7* = C] € {1, L} thenitholds that\/ = (A = O). If 74 = C] =0
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In2 | IN3 | N1 | N2 | N3 | N4 | N5 | N6
0 O X |vy | X | X |1 | X |X|X
X[ XXX | X | X|X|X

Table 2.7: The Defining Sequencé
In2 | In3 | N1 N2 N3 | N4 | N5 | N6
0 Ol X | vy | X |l X|1|X | X | X
X | X | X X X | 1| v | v

Table 2.8: The Defining Trajectony?

then it holds thatV [ (A = C). If [z & C] = X, then it cannot be
determined whethel/ = (A —= O).

The case in which there ig so thatg(r*) contains.L is known as aran-
tecedent failure The default behavior of most STE implementations is to con-
sider antecedent failures as illegal, and the user is required to chamgerder
to eliminate anyl values. In this thesis we take the approach that supports the
full semantics of STE as defined above, i.e., including the case in which there
are occurrences of in 7. Note that althoughr* is infinite, it is sufficient to
examine only a bounded prefix of length depthin order to detectl values
in 7. The first L value in7* is the result of then operation on some node
(n,t), where the two operands have contradicting assignments 0 and 1. Since
Vi > depti{A) : (i) = s,, it must hold that < depth{A).

The truth value ofr! |= C is determined as follows:

1. If for all ¢, there exists, n so thatp(7)(i)(n) = L, then[zd = C] =

2. Otherwise, if there exist,i > 0,n € N so thath( M) (n) Z ¢(a€) (i) (n),

$(n)(i)(n) 2 ¢(aC)(i)(n) and for alli’ > 0,0’ € N, (x4 (I')(n') £ L,
then[r4 = C] = 0.

3. Otherwise, if there exist, i > 0,n € N so thaizb( N (@) (n) 2 ¢(a®)(i)(n),

o(4)(i) (n) # 6(c°)(5)(n) and for alli' > 0,n' € A", (x4 () (w') # L,
then[r* = C] = X.

4. Otherwise[r? = C] = 1.

Note that althoughr and ¢ are infinite, it is sufficient to examine only a
bounded prefix of length deptfi), sinceVi > depti{C) : 0¢ (i) = s,.

Example 1 Consider the circuitV/ in Figure 2.1. Also consider the STE assertion

A = C, whereA = (Inlis 0)A (In3isv;) A (N3is 1), andC = N(N6is 1).
Table 2.7 describes the defining sequemtef M and A, up to time 1. Table 2.8
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describes the defining trajectory! of M/ and A, up to time 1. Both tables contain
the symbolic expression of each node at time 0 and 1. The statésand 7 (i)
are represented by row The notation; 71 : X stands for "ifv; holds then 1 else
X". % is the sequence in which all nodes are assigieat all times, except for
node N6 at time 1, which is assigned[t? = C] = 0 due to the assignments to
V in whichv; = 0. We will return to this example in Section 5.

STE implementations use a specific encoding calleal rail in order to rep-
resent the node@:, t) in sequences. The dual rail of a no@det) in 7# consists
of two functions defined fronV' to {0,1}: f}, and f;,, whereV is the set of
variables appearing id. For each assignmentto V, if fﬁi A ﬁffj’t holds under
¢, then(n,t) equals 1 undep. Similarly,~f), A f,) ., =fr, A—fp andf), A f),
stand for 0,X and_L under¢, respectively. Likewisey,, , andg, , is the dual rail
representation of the node, ) in . Note thatg, , A ¢ , never holds, since we
always assume that is not self-contradicting.
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Chapter 3

Choosing Our Automatic
Refinement Methodology

Intuitively, the defining trajectory of a circuit )/ and an antecedert is an ab-
straction of all concrete trajectories df on which the consequent is expected

to hold. This abstraction is directly derived fram If [74 |= O] = X, thenA is

too coarse, that is, contains too few constraints on the values of circuit nodes. Our
goal is to automatically refind (and subsequently) in order to eliminate the

X truth value.

In this chapter we examine the requirements that should be imposed on au-
tomatic refinement in STE. We then describe our automatic refinement method-
ology, and formally state the relationship between the two abstractions, derived
from the original and refined antecedent.

We first describe the handling df values which is required for the descrip-
tion of the general abstraction and refinement process in STE. In the dual-rail
notation given earlier, the Boolean expressiefy,, vV —fy, represents all as-
signmentsp to V for which ¢(74)(t)(n) # L. Thus, the Boolean expression
nbot = /\(n,t)eA(_'fnl,t vV~ f7,) represents all assignmentso V' for which ()
does not contairl.. Itis sufficient to examine only nod¢s, ) on which there ex-
ists a constraint iM. This is because there exists a ngdet) and an assignment
¢ to V such thatp(7*)(t)(n) = L only if there exists a nodé»,t') on which
there exists a constraint i andé(74)(¢')(n') = L. Thus,[7* = C] = Lifand
only if nbot = 0.

We now describe how the abstraction and refinement process in STE is done
traditionally, with the addition of supporting in 7##. The user writes an STE
assertiond = C for M, and receives a result from STE.[f* = C] = 0,
then the set of alb so that[¢, 7 = C] = 0 is provided to the user. This set,
called thesymbolic counterexamplds given by the Boolean expression over

(\/(n,t)GC((grlz,t A _‘fﬁb,t A f'r(z),t) v (gg,t A f;t A _‘fg,t))) Anbot. Each assignmentin
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this set represents a counterexamfile!). It stems from either an illegal behav-

ior of the circuit, or an erroneous specification. The user decides which of these
possibilities the counterexample displays/4ft = C] = X, then the set of all

¢ so that[¢, 74 |= C] = X is provided to the user. This set, called gyembolic
incomplete traceis given by:(V,, o (9, V gn.)) A= fay A= fR 1)) Anbot. The

user decides how to refine the specification in order to eliminate the partial infor-
mation that causes th€ truth value. If[7* = C] = L, then the assertion passes
vacuously. Otherwisér* = C] = 1 and the verification completes successfully.

We point out that, as in any automated verification framework, we are lim-
ited by the following observations. First, there is no automatic way to determine
whether the provided specification is correct. Therefore, we assume it is, and we
make sure that our refined assertion passes on the concrete circuit if and only if
the original assertion does. Second, bugs cannot automatically be fixed. Thus,
counterexamples are analyzed by the user.

We emphasize that automatic refinement is valuable even when it eventually
results in a fail. This is because counterexamples present specific behavidrs of
and are significantly easier to analyze than incomplete traces.

In order to preserve the semanticsbf=- C, we require thal/ = A,.., =
Cifandonlyif M = A= C.

In order to achieve the above preservation, we chose our automatic refinement
as follows. Whenevefr? = C] = X, we add constraints td that force the
value of inputs at certain times and initial values of latches to the valdesth
symbolic variablesthat is, symbolic variables that do not already appeadr.in
By initializing an input(in, t) with a fresh symbolic variable instead &f, we
represent the value din,t) accurately and add knowledge about its effect on
M. However, we do not constrain input behavior that was allowedpyor
do we allow input behavior that was forbidden By Thus, the semantics of
A'is preserved. In Section 4.2, a small but significant addition is made to our
refinement technique.

3.1 The Relationship Between the Abstract and Re-
fined Assertions

We now formally state the relationship between the abstractions derived from the
original and the refined antecedents. l4ebe the antecedent we want to refine.
Let A,,, be the original antecedent written by the user. Lgt, be a set of
symbolic variables so that N V,,.,, = 0. Let PI,.; be the set of inputs at specific
times, selected for refinement. We defidg.,, to be a refinement aft overV U

View, WhereA,,.,, is obtained fromA by attaching to each inpyin,t) € Pl s
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a unique variabley;,,, € V,., and adding conditions td as follows: A,.,, =

AN /\(W)Ephef N'(p — (in iS vi.)), Wherep = —q if (in,t) has a constraint
N’(¢ — (inise)) in A,,, for some Boolean expressiopsande over V, and

p = 1 otherwise (in, t) has no constraint ial,,,). The reason we considet,,,

is to avoid a contradiction between the added constraints and the original ones,
due to constraints im,,, of the formg¢ — f. For example, if4,,, contains

a constraintv; — nis1) and(n,0) is chosen for refinement, then the added
constraint iS—v; — niS v,)

Let 74nev be the defining trajectory of/ and A,,.,,, overV U V... Let ¢
be an assignment to. Thenruns(A,.., M, ¢) denotes the set of all concrete
trajectoriesr for which there is an assignmeitto V.., so that(¢ U ¢ ) (mAnew)
is an abstraction of. Since for all concrete trajectories [(¢U¢'), 7 = Apew] =
1 < 7 C (¢pU¢)(rer), we get thatuns(A,.., M, ¢) are exactly those
for which there isp’ so that[(¢ U ¢'), 7 = A,ew] = 1. Note that althoughr is
concrete, an assignment ¥oU V,,.,, is still required, sinced,,.., is defined over
VU Vierw-

The reason the trajectoriesinns(A,.., M, ¢) are defined with respect to a
single extension to the assignmentather than all extensions tpis that we are
interested in the set of all concrete trajectories that sati6fy,..,) with the truth
valuel. Since every trajectory € runs(A,.., M, ¢) is concrete, it can satisfy
o(Anew) With the truth valuel only with respect to a single assignmentifg,,.
The fact that there are other assignmentd/tg, for which 7 does not satisfy
d(Anew) With the truth valuel is not a concern, since the truth valueAy.,, —
C'is determined only according to the concrete trajectariend assignments
to V U Ve SO thatlp, 7 = Ajew] = 1.

Theorem 2 For all assignment® to V, runs(A, M, ¢) = runs(Anew, M, ¢).

Theorem 2 implies that the set of all concrete trajectorieg/obn which A,,..,
holds for some assignmeant to V' U V,,.,, and the set of all concrete trajectories
of M on which A holds for some assignmet to I are identical.

Proof: Let7 be a concrete trajectory so thate runs(A, M, ¢). Thus,[¢, 7 =
A] = 1. Letn(t)(in) be the value that each inp(itz,t) € P1,.; receives in the
trajectoryr. Let ¢’ be an assignment that gives for each variable € V,,.,, that
is attached to the inpuin,t) € PI,.; the valuer(t)(in). Since each variable
Vint € Vnew IS attached to a single inpuin,t) € PI,.; and appears only in
the new conditiolN(p — (in iS vi,.)), then[p U ¢/, 7 = Anew] = 1. Thus,
7 € runs(Anew, M, @).

Let 7 be a concrete trajectory so thate runs(A,ew, M, ¢). Thus, there
exists an assignmet to V,,.,, so thatj¢p U ¢, 7 = A,e] = 1. Since the set of
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conditions on nodes il is included in the set of conditions on nodesAn..,,,
this means thaly U ¢', m = A] = 1. SinceA is over the variables iy only, we
getthatlp, 7 = A] = 1. Thus,r € runs(A4, M, ¢). O

Theorem 3 If [ |= C] = 1 then for all¢ it holds thatvr € runs(A, M, ¢) :
[0, = C] = 1.

Theorem 3 implies that i#4,,., = C' holds on all concrete trajectories 6f,
then so doest —- C.

Proof: [r4rew = C] = 1 implies thatvp(V U V,.e,) : [¢, 7w = C) € {1, L}.
Since C' is over the variables i/ only, this means thato(V') Vo' (View) -
[(p U @), m4nw |= O] € {1, L}. Due to monotonicity of the satisfaction re-
lation, we get thatvo(V )Vr € runs(Apew, M, 9) : [¢o,7 = C] € {1, L1}
Since all trajectories imuns(A,.., M, ¢) are concrete, we get thsit)(V)vVr €
runs(Apew, M, @) : (¢, 7 | C| = 1. Sinceruns(A, M, ¢) = runs(Anew, M, ¢),
we conclude thato(V )Vr € runs(A, M, ¢) : [¢, 7 = C| = 1. O

Theorem 4 If there existsy’ t0 V., @and n € runs(Apew, M, ¢ U ¢') so that
(U@, |E Apew] = 1 but[(¢pU ¢'), 7 = C| = 0thenr € runs(A, M, ¢) and
[¢,7 = A] =1and[¢, 7 |= C] = 0.

Theorem 4 implies that il,,., = C yields a concrete trajectory which con-

stitutes a counterexample, theris also a concrete counterexample with respect
to A= C.

Proof: By definition, 7 € runs(A,.., M,¢). According to Theorem 25 €
runs(A, M, ¢). Thus,[p,m = A] = 1. SinceC is defined ovel/ only and
[pU ¢, 7= C]=0,wegetthatp, 7 = C] = 0. O

We would also like to define the connection between abstract (non concrete)
trajectories before and after refinement:
Theorem 5 Vo (V) (View) : (¢ U ¢')(m4mew) £ ().

Proof: We will prove thatvtvn € N Vo (V)Ve (View) 1 (¢UG) () (2)(n)
#(m4)(t)(n) by induction on the structure of the defining trajectory:

1M

¢ Induction basis: The defining trajectory at time 0.

We will prove the induction basis by induction on the structurédbf We
denote byi(n,0) the maximal distance in backward edges of a nod®)
from an input or a latch. Since combinational loops are not allowed,0)
is well-defined. We will prove the induction basis for all nodes0) for
whichd(n,0) = k.
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— Induction basisd(n,0) = 0.
The nodes for whicld(n,0) = 0 are exactly the inputs and latches at
time 0. Due to the construction of,,.,, from A, it holds that for all
inputs and latche§, 0), Yo (V )V (View) : (¢ U ¢') (7<) (0)(n) T
#(7)(0)(n). This is due to the fact that for afl(V'), if A constrains
(n,0) to 0 or 1 thenA,,.,, constrains it to the same value, andlifioes
not constrain it, thew(74)(0)(n) = X.

— Induction step: We assume that for all nodes0) with d(n,0) < k it
holds that/é(V)Ve' (Vaew) : (¢ U &) (7)(0)(n) T o()(0)(n).
Let (n,0) be a node withi(n,0) = k. For all source nodegn, 0) of
(n,0) it holds thatd(m, 0) < k, otherwise it would hold that(n, 0) >
k in contradiction to our assumption. Thus, the induction hypothe-
sis holds for the source nodes @f,0). Given a nodgn,t) and a
trajectory m, let val(n,t, ) be the value ofin,t) as computed ac-
cording to its source nodes values7in Due to the construction of
Anew from A, A and A,,.,, contain exactly the same constraints on
combinational nodes. For each combinational n¢dg)) and as-
signmentsp(V),¢' (View ), if A (and A,,.,,) does not constrai(r, 0),
then ¢(7*)(0)(n) = wval(n,0,é(7*)) and (¢ U ¢/)(mk,)(0)(n) =
val(n, 0, (¢ U @) (72 ). Since all Boolean operators are monotonic
with respect tay, it holds thatal(n, 0, (¢ U ¢')(7A,)) E val(n, 0,
o(74)), and thus(¢ U ¢ ) (7= )(0)(n) T ¢(74)(0)(n). Otherwise,
A and A,,.,, constrain(n,0) to the same valué € {0,1}. It holds
that(r*)(0)(n) = val(n, 0,6(x*)) Mband (¢ U ¢') (m74,,)(0) (n) =
val(n, 0, (pU@") (A ))Mb. Sinceval(n, 0, (¢Ud') (72 ,)) E val(n, 0,

#(m*)) andr is monotonic with respect t@, we get that

(U @) () (0)(n) E o(x)(0)(n).

e Induction step: We assume thdt < ¢ < tVn € NVo(V )V (Voew) :
(pU ) () (t)(n) E d(x?) (') ().
We again prove the induction step by induction on the structure ofor

all ¢ > 0, we denote byi(n, t) the maximal distance in backward edges of
a node(n, t) from an input at time or from a node at time — 1.

— Induction basisid(n,t) = 0.
The induction basis is proven in the same way as the previous induc-
tion basis, using/(n, t) instead ofd(n, 0). The only difference is that
the set of nodeén, t),t > 0 for which d(n,t) = 0 includes only the
inputs at timer.
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— Induction stepd(n,t) = k. The induction step is proven in the same
way as the previous induction step, usii@,t) instead ofd(n,0).
The only difference is that the source nodes of a nedeé), ¢ > 0 may
also include nodes from time— 1. The external induction hypothesis
holds on these nodes, and thus the induction hypothesis holds on all
source nodes dfr, t), and the proof of the previous induction step can
be applied here as well. O
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Chapter 4

Selecting Inputs for Refinement

After choosing our refinement methodology, we need to describe how exactly the
refinement process is performed. In this section we assumérthat C| = X.

Thus, automatic refinement is activated. Our goal is to add a small number of
constraints toA forcing inputs to the value of fresh symbolic variables, while
eliminating as many assignmentsas possible so thap, 74 = C] = X. The
automatic refinement process is incremental - inpiatst) that are switched from

X to a fresh symbolic variable will not be reducedXoin subsequent iterations.

4.1 Choosing our refinement goal

Assume thatr* |= C] = X, and the symbolic incomplete trace is generated. This
trace contains all assignment$or which [¢, 74 |= C] = X. Each such trajectory
¢(m*) is called anincomplete trajectory This trace may contain multiple nodes
that are required bg' to have a definite value (either O or 1) but eq¥alWe refer

to such nodes agndecided nodesIn automatic refinement we need to decide
whether to eliminate all incomplete trajectories at once or one at each refinement
iteration, and whether to eliminate all undecided nodes at once or one at each
refinement iteration. We want to keep the number of added constraints small.
Therefore, we choose to eliminate one undecided rfedg in each refinement
iteration, since different nodes may depend on different inputs. A motivation
for eliminating only part of the undecided nodes is that an undesiredilue

that is eliminated may be replaced in the next iteration with a definite value that
contradicts the required value (a counterexample). In such a case, the current
abstraction and refinement loop is terminated without all undecided nodes being
eliminated. We suggest to choose an undecided fredé¢ with a minimal number

of inputs in its BCOI, since it is likely that such an undecided node will require the
addition of less constraints than an undecided node that depends on more inputs.
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Algorithm 1 EliminatelrrelevantPIg(, ¢)
sinksrelevant— \/ . 1 coui(n.) relevant,
relevant; — sinksrelevant\ —~f>, A —f, ,

Out of those, we choose an undecided node with a minimal number of nodes in its
BCOlI, with the motivation to minimize the additional computation effort that will
be required after the addition of the new constraints. Our experimental results
support this choice. The chosen undecided node igefurement goaland is
denotedroot, tt).

We also decide to eliminate at once all incomplete trajectories in whief, tt)
is undecided. These trajectories are likely to be eliminated by similar sets of in-
puts. Thus, by considering them all at once we can considerably reduce the num-
ber of refinement iterations, without adding too many symbolic variables.

The Boolean expressidr rloomt A _‘frooot,tt A (g}oot,tt Vv .g?(")oot,tt)) Anbot repre-
sents the set of assignment$or which (root, tt) is undecided in the incomplete
trajectory¢(r). Our goal is to add a small number of constraintsitso that
(root, tt) will not be X whenever(g, ., . V 90uor.s) holds.

4.2 Eliminating irrelevant inputs

Once we have a refinement g@abot, tt), we need to choose input nodes, t)
for which constraints will be added td. Naturally, only inputs in the BCOI of
(root, tt) should be considered. However, out of these inputs, some can be safely
eliminated.

Consider an inputin, t), an assignment to V' and the defining trajectory.
We say thatin, t) is relevantto (root, tt) undere, if there is a path of node8
from (in,t) to (root,tt) in the execution of\/ over time, so that for all nodes
(n,t') in P, ¢(m4(#')(n)) = X. (in,t) is relevantto (root, tt) if there existsp
so that(in, t) is relevant to(root, tt) undere¢. If no suchg exists, then(in,t) is
irrelevantto (root, tt).

For each(in, t), we compute the set of assignmentsltdor which (in, t)
is relevant to(root, tt). The computation is performed recursively starting from
(root,tt). (root,tt) is relevant when it isX and is required to have a definite
value: (f oot A oottt N (Grootst V Groott)) A\ nbot. A source noden, t)
of (root,tt) is relevant whenevefroot, tt) is relevant andn,t) equalsX. Let
out(n,t) return the sink nodes df:, ¢) that are in the BCOI ofroot, tt). Pro-
ceeding recursively as described in Algorithm 1, we compute for éach) the
set of assignments in which it is relevant(i@ot, tt).

For all ¢ that do not satisfy relevant,, changing(in,?) from X to a definite
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value ing(7*) cannot change the value @foot, tt) in ¢(7*) from X to 0 or to 1.
Thus, if (in, t) is chosen for refinement, a possible optimization is to constrain it
to a fresh symbolic variable only whewlevant,;, ; holds. This is done using the
domain restriction operation: relevant — N*®(in is v, ;). If (in,t) is chosen in
a subsequent iteration for refinement of another refinement(goaf , ¢t'), then
the previous domain restriction is extended by disjunction to include the condition
under which(in, t) is relevant tqroot’, tt'). Theorems 2, 3 and 4 from Chapter 3
hold also for the optimized refinement. LB be the set of inputs of the circuit.
Then the set of all inputs that are relevant(toot, tt) is Plyooy = {(in,t) |
in € PI Arelevant,, # 0}. Adding constraints toA for all relevant inputs
(in,t) will result in a refined antecedent,.,,. In the defining trajectory a#/ and
Ayew, it is guaranteed thatroot, tt) will not be undecided. Note tha® /o, u)
is sufficient but not minimal for the elimination of all undesir&dvalues from
(root,tt). Namely, adding constraints for all inputs IV, ) Will guarantee
elimination of all cases in whickroot, tt) is undecided. However, it is possible
that adding constraints for only a subsetrof,.... ) will still eliminate all such
cases.

The setPI,...++) may be valuable to the user even if automatic refinement
does not take place, since it excludes inputs that are in the BC@baf, ¢t) but
will not change the verification results with respectitoot, tt).

4.3 Heuristics for Selection of Important Inputs

If we add constraints td for all inputs(in, t) € Pl .04, then we are guaranteed

to eliminate all cases in whictroot, tt) was equal taX while it was required

to have a definite value. However, such a refinement may add many symbolic
variables toA, thus significantly increasing the complexity of the computation of
the defining trajectory. We can reduce the number of added variables at the cost
of not guaranteeing the elimination of all undesit€dvalues from(root, tt), by
choosing only a subset @t/(,,.: + for refinement. A motivation for this is that a

1 or 0 truth value may be reached even without adding constraints for all relevant
inputs.

A subset of P14 IS heuristically selected for refinement as described in
Algorithm 2. Each nodén,t) selects a subset aP/(,,..) as candidates for
refinement, held in candidatgs The final set of inputs for refinement is selected
out of candidates,.; ;. PI denotes the set of inputsn,t) of M. Each input
in Plo0) Selects itself as a candidate. Other inputs have no candidates for
refinement. Let ok, t) return the sink nodes df, ¢) that are in the BCOI of
(root, tt), and let degifn, t) return the number of source nodes(oft) that are
in the BCOI of (root, tt). Given a nod€gn,t), sourceCang; denotes the sets
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of candidates of the source nodes(oft), excluding the source nodes that do
not have candidates. The candidateqft) are determined according to the
following conditions:

1. If there exist candidate inputs that appear in all sets of sourceGatn
they are the candidates @1, t).

2. Otherwise, if(n,t) has source nodes that can be classified as control and
data source nodes, then the candidate@:.of) are the union of the candi-
dates of its control source nodes, if this union is not empty. For example,

a latch has one data source node and at least one control source node - its
clock. It may have other control source nodes such as set and reset. The
identity of control source nodes is automatically extracted from the netlist
representation of the circuit.

3. If none of the above holds, then the candidate§ot) are the inputs with
the largest number of occurrences in sourceGand

Algorithm 2 SelectBestPlg(oot, tt), Pl oot 1))

forall (in,t) € PI do
if (in, t) S P](root,tt) then
candidates ; < {(in,t)}
else
candidateg ; < 0
end if
forall (n,t") € out(in,t) do
count, y + +
if deginn,t') = count, » then
SelectBestPIsRep(, t'))
end if
end for
end for

We prefer to refine inputs that are candidates of most source nodes along paths
from the inputs to the refinement goal, i.e., influence the refinement goal over
several paths. The logic behind this heuristic is that an input that has many paths
to the refinement goal is more likely to be essential to determine the value of the
refinement goal than an input that has less paths to the refinement goal.

We prefer to refine inputs that affect control before those that affect data since
the value of control inputs has usually more effect on the verification result. More-
over, the control inputs determine when data is sampled. Therefore, if the value
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Algorithm 3 SelectBestPIsRep(, t))
if iIsSEmpty(sourceCangd) then
candidates, < 0
else ifexistMutualCanidates(sourceCanythen
candidates, < mutualCanidates(sourceCanil
else ifhasControlSourceCandidates(t)) then
candidates; < controlSourcesCandidatés(t))
else
candidates; < majorityCandidates(, t))
end if
for all (m,t') € out(n,t) do
count,, » + +
if degin(m, t') = count, » then
SelectBestPIsRe@(:, t'))
end if
end for

of a data input is required for verification, it can be constrained according to the
value of previously refined control inputs. In the final set of candidates, sets of
nodes that are entries of the same vector are treated as one candidate. Since the
heuristics did not prefer one entry of the vector over the other, then probably only
their joint value can change the verification result. We restrict the number of in-
puts (in, t) in the final set of candidates to a strict numbedf the number of
candidates ofroot, tt) exceedd, we select the ones with a minimal number of
nodes in their output cone, in order to minimize the additional computation effort
that will be required after the addition of the new constraints. Out of them, we
randomly choose the inputs for refinement.
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Chapter 5

Detecting Vacuity and Spurious
Counterexamples

In this chapter we raise the problem of hidden vacuity and spurious counterex-
amples that may occur due to the abstraction in STE. This problem was never
addressed before in the context of STE.

In STE, A functions both as determining the level of the abstractioWoand
as determining the trajectories &f on whichC'is expected to hold. An important
point is that the constraints imposed Hyare applied (using thel operator) to
abstracttrajectories ofd/. If for some nodgn,t) and assignment to V, there
is a contradiction between(o*)(t)(n) and the value propagated through to
(n,t), theng(r4)(t)(n) = L, indicating that there is no concrete trajectargo
that[p, 7 = A] = 1.

In this chapter we point out that due to the abstraction in STE, it is possible that
for some assignment to V, there are no concrete trajectorieso that[¢, = =
A] = 1, but still p(7*) does not containl. values. This is due to the fact that
an abstract trajectory may represent more concrete trajectories than the ones that
actually exist inM. Consequently, it may be thap, 74 = C] € {1,0}, and
there is no indication that this result is vacuous, i.e., for all concrete trajectqries
[0, ™ = A] = 0. Note that this problem may only happemiftontains constraints
on internal nodes of/. Given a constrainé on an input (or an initial value of
a latch), there always exists a concrete trajectory that satisfjeslessa itself
is a contradiction, which can be easily detected). This problem exists also in
STE implementations that do not computé, such as [18]. This is because the
constraints imposed byl are also incorporated by applying theoperator on
trajectories that may be abstract, only that they are not necessarily the defining
trajectory of A.
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Example 2 We return to Example 1 from Chapter 2. Note that the defining tra-
jectory 7# does not containL values. In addition[7* = C] = 0 due to all
assignments td” in whichv; = 0. However,A never holds on concrete trajec-
tories of M whenv; = 0, since N3 at time O will not be equal to Thus, the
counterexample is spurious, but we have no indication of this fact. The problem
occurs when calculating the value of (N3,0) by computihgi 1 = 1. If A had
contained a constraint on the value of In2 at time 0, say (In2 jsthen the value

of (N3,0) in7* would have beefw; A vy) M1 = (v; A vy?1 : L), indicating that

for all assignments in which, = 0 or v, = 0, 74 does not correspond to any
concrete trajectory of\/.

Vacuity may also occur if for some assignmento V', C' under¢ may impose
no requirements. This is due to the Domain Restriction operation, where the con-
straint is of the fornp — f and¢(p) is 0.

An STE assertiodd —> (' is vacuousin M if for all concrete trajectories
of M and assignments to V, either[¢, 7 = A] = 0, or C' under¢ imposes no
requirements. This definition is compatible with the definition in [4] for ACTL.

We say thatd = C passes vacuouslgn M if A = C'is vacuous in\/
and[r? = C] € {L,1}. Note that if[* = C] = L, then surelyd = C passes
vacuously, and thus vacuity detection is not required in this case.

A counterexampler is spuriousif there is no concrete trajectory. of M so
that7, C 7. Given the defining trajectory?, we say that the symbolic coun-
terexamplece is spuriousif for all assignments) to V' that satisfyce, ¢(7*) is
spurious. We believe that this definition is more appropriate than a definition in
which ce is spurious if there existg that satisfiese and¢(7*) is spurious. The
reason is that the existence of at least one non-spurious counterexample repre-
sented byce is more interesting than the question whether each counterexample
represented bye is spurious or not.

We say thatd = C fails vacuouslyon M if [r4 = C] = 0 and the symbolic
counterexamplee is spurious.

For implementations that do not computé such as [18], we say that —>
C fails vacuously onV/ if the result of STE is fail and the produced counterexam-
ple is spurious.

As explained before, vacuity detection is required only wheronstrains
internal nodes. In order to detect non-vacuous results in STE, we need to check
whether there exists an assignmeno V' and a concrete trajectory of M so
that C' under¢ imposes some requirement afilm = A] = 1. In case the
original STE result is fail;r should also constitute a counterexampledo=- C.

We propose two different algorithms for vacuity detection. The first algorithm
uses Bounded Model Checking (BMC) [5] and runs on the concrete model. The
second algorithm uses STE and requires automatic refinement. The algorithm
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that uses STE takes advantage of the abstraction in STE, as opposed to the first
algorithm which runs on the concrete model. In case non-vacuity is detected, the
trajectory produced by the second algorithm (which constitutes either a witness
or a counterexample) may not be concrete. However, it is guaranteed that there
exists a concrete trajectory of which the produced trajectory is an abstraction. The
drawback of the algorithm that uses STE, however, is that it requires automatic
refinement.

An additional vacuity problem that arises in constraint-based STE [18] is de-
scribed in Appendix A.

5.1 Vacuity Detection using Bounded Model Check-
INg

Since A can be expressed as an LTL formula, we can translasad M into a

BMC problem. The bound of the BMC problem is determined by the depth of

Note that in this BMC problem we search for a satisfying assignment farot

for its negation. Additional constraints should be added to the BMC formula in

order to fulfill the additional requirements on the concrete trajectory.

For detection of vacuous pass, the BMC formula is constrained in the fol-
lowing way: Recall that(g, ,, g, ,) denotes the dual rail representation of the
requirement on the node, t) in C. The Boolean expressiaj},, V g, repre-
sents all assignments to V' under whichC' imposes a requirement dm, t).
Thus, V, yec 9ne V 90, TEPresents all assignmentsto V' under whichC' im-
poses some requirement. This expression is added as an additional constraint to
the BMC formula. If BMC finds a satisfying assignment to the resulting formula,
then the assignment of BMC to the nodeslihconstitutes a witness indicating
that A = C passed non-vacuously. Otherwise, we conclude that= C
passed vacuously.

For detection of vacuous fail, the BMC formula is constrained by conjunction
with the (symbolic) counterexample. For STE implementations that compute
T, ce = \/(n,t)GC((.g'rlL,t A _'f%,t A fq%t) Vv (gg,t A lebt A _‘fr?,t))' There is no need to
add thenbot constraint that guarantees that none of the nodes eduaisice the
BMC formula runs on the concrete model, and thus the domain of the nodes in the
BMC formula is Boolean. For other implementations such as [25,&Jpnsists
of an assignment of values tdand to the circuit nodes at different times. If BMC
finds a satisfying assignment to the resulting formula, the assignment of BMC to
the nodes inV/ constitutes a concrete counterexampleAor—=- C'. Otherwise,
we conclude thatl — (C failed vacuously.

Vacuity detection using BMC is an easier problem than solving the original
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STE assertiodd = C using BMC. The BMC formula fod = C contains the
following constraints on the values of nodes:

e The constraints ofl.
e The constraints of// on nodes appearing ia.
e The constraints o/ on nodes appearing 0.

¢ A constraint on the values of the nodes appearing that guarantees that
at least one of the requirements@indoes not hold.

On the other hand, the BMC formula for vacuity detection contains only the
first two types of constraints on the values of nodes. It also contains an additional
constraint in the form of a Boolean expression which by itself does not constrain
values of nodes. Therefore, for vacuity detection using BMC, only the BCOI of
the nodes il is required, whereas for solving the original STE assertior=-

C' using BMC, both the BCOI of the nodes appearingliand the BCOI of the
nodes appearing i’ are required.

5.2 Vacuity Detection using Symbolic Trajectory Eval-
uation

For vacuity detection using STE, the first step is to splihto two different TEL
formulas: A™ is a TEL formula that contains exactly the constraints4obn
inputs, andA°* is a TEL formula that contains exactly the constraintsiofn
internal nodes. If there exists an assignmgta V' so that|¢, 74" | A°] = 1,
then we can conclude that there exists a concrete trajectayy thfat satisfiesA.
Note that sincel”” does not contain constraints on internal nodes, it is guaranteed
that no hidden vacuity occurs. However, it is also necessary to guarantee that in
case[r* |= C| = 1, C under¢ imposes some requirement, and in casé =
C] = 0, theng(74™) should constitute a counterexample. Namely, ce # 0,
wherece is the symbolic counterexample.

If we cannot find such an assignmemtthis does not necessarily mean that
the result ofA = C' is vacuous: if there are assignmentso 1 for which
[, 74" = A°] = X, then the trajectory(74™) is potentially an abstraction of
a witness or a concrete counterexampledor=- C. However, it is too abstract
in order to determine whether or ndt“* holds on it. If we refineA™ to a new
antecedent as described in Chapter 3, then it is possible that the new antecedent
will yield more refined trajectories that contain enough information to determine
whether they indeed represent a witness or concrete counterexample.
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Algorithm 4 describes vacuity detection using STE. It received the original
antecedentd and consequent. In case[r” = C] = 0, it also receives the
symbolic counterexamplee. inputConstraints is a function that receives a TEL
formula A and returns a new TEL formula that consists of the constraint$ of
on inputs. Similarly, internalConstraints returns a new TEL formula that consists
of the constraints ofi on internal nodes. Note that singé” does not contain
constraints on internal nodes, theA™ does not contain_ values, and thus we
can assume tha, , A f;), never holds. By abuse of notatiofy,, and /., are here
the dual rail representation of a node ¢) in 7. Similarly, we usey,, , andg; ,
for the dual rail representation of a no@e ¢) in the defining sequence of either
C or A°“t, according to the context.

Algorithm 4 STEVacuityDetectiond, C', ce)
1: A™ « inputConstraintsA)
2: A" — internalConstraintsA)
3 D — /\(n,t)GAUUt((grll,t A f?it) \ (gg,t A fgt)) ’
{® represents all assignmentsitdfor which [¢, 74" = A% = 1}
it 14 = O] = 1A (Vupec(9hy V 92,)) A ®) # O then
return non-vacuous
elseif[7d = C] =0 A ((® A ce) # 0) then
return non-vacuous
end if v
if 3¢ : [¢, 74" | A°"] = X then
10: A" « refing A™)
11: goto 3
12: else
13:  return vacuous
14: end if

© N g

The algorithm computes the set which is the set of all assignmentsitofor
which [¢, 74" | A°“] = 1. Lines 4 and 6 check whether there exists a suitable
assignmend in ® that corresponds to a witness or to a counterexample. If such
a ¢ exists, then the result is non-vacuous. If no sgaixists, then if there exist
assignments for which the truth value 4f* on 74" is X, then A™ is refined
and® is recomputed. Otherwise, the result is vacuous.

Note that in casér” |= C] = 0, we check whethe® contains an assignment
that constitutes a counterexample by checking that the intersection bebvwaagh
the symbolic counterexampte produced fofr# = C] is not empty. However, as
a result of refinementd may contain new variables that represent new constraints
of the antecedent that were not taken into account when computifigne reason
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that checking whethe® A ce) # 0 still returns a valid result is as follows. By
construction, we know that for all assignmentss @, [¢, 74" = A% = 1.
Since[¢p, 74" = A™] = 1 by definition of the defining trajectory, we get that
[, 74" = AU A°] = 1, whereA™ U A2 is the TEL formula that contains
exactly the constraints idl”* and A°**. According to Theorem 5, we get that
d(74") C ¢(14). Since[p, 74" = A°*] = 1, we get thatp(74™) does not con-
tain L values. Therefore, for all nod¢s, t) so thatg(m*)(t)(n) = b,b € {0,1}

it holds thatp (7™ )(¢)(n) = b. Thus, for all¢’ € ce, ¢’ is a counterexample also
with respect to the antecedeat® U A°“t.

Besides the need for refinement, an additional drawback of Algorithm 4 in
comparison with vacuity detection using BMC, is that it attempts to solve a much
harder problem - it computes a set of trajectories that constitute witnesses or con-
crete counterexamples, whereas in vacuity detection using BMC only one such
trajectory is produced - the satisfying assignment to the SAT formula. This is in
analogy to using STE versus using BMC for model checking - STE finds the set
of all counterexamples fad —- C', while BMC finds only one counterexample.
However, the advantage of Algorithm 4 is that it exploits the abstraction in STE,
whereas vacuity detection using BMC runs on the concrete model.

5.2.1 Vacuity Detection using satGSTE

As an alternative to Algorithm 4, we present a vacuity detection algorithm that
uses SAT-based STE. The motivation for using SAT-based STE is that only one
witness or counterexample is produced. satGSTE [25] is a SAT-based STE im-
plementation in which the first stage is to compute the defining trajectory using
semi-canonical data structures named bexpr that represent Boolean expressions.
This stage guarantees that the size of the problem depends only on the4ida of
the second stage, the expressions of the nodes appeatihgrantranslated into a
SAT formula, and a constraint is added that for at least one of the nodes appearing
in C, its value in the defining trajectory does not correspond to the value imposed
by its requirement irC. If there is no satisfying assignment to the SAT formula,
thenA — C holds onM. Otherwise, the satisfying assignment is analyzed to
determine whether it constitutes a counterexample or an incomplete trace. In the
latter case, refinement of — C' is required.

satGSTE can also be used for vacuity detection using STE in the following
way: satGSTE is run on the STE assertidtt —> A°“!, After computing the
defining trajectory ofA™ using bexpr, a SAT formula is produced in which the val-
ues of the nodes in the defining trajectory are constrained égjbalto the values
imposed by the requirements if“*. Additional constraints are added to the SAT
formula as done in vacuity detection using BMC in order to guarantee that the
satisfying assignment imposes some requiremeétimcase[74 = C] = 1, and
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that the satisfying assignment constitutes a counterexample ifr¢age C] = 0.

If a satisfying assignment is found, then we conclude that the result of STE on
A = C'is non-vacuous. Otherwise, we need to check whether there exists an
assignment) to V' so that[¢, 74" = A°%] = X. This is done by changing the
SAT formula so that the values of the nodes that appeat’ith are now con-
strained to begreater than or equato the values imposed by the requirements

in A°“*, with respect to the partial ordé€r. If a satisfying assignment is found,
then refinement oft™ is required in order to detect (non)-vacuity. Otherwise, we
conclude that the result of STE eh—- C'is vacuous.

5.3 Preliminary Stage in Vacuity Detection

There are some cases in which even if there exist constraintsan internal
nodes, vacuity detection can be avoided by a preliminary analysis based on the
following observation: hidden vacuity may only occur if for some assignment
to V, an internal nodén, t) is constrained by to either 0 or 1, but its value as
calculated according to the values of its source nodes.i¥Ve call such a node
(n,t) aproblematic nodeFor example, in Example 1 from Chapter 2, the value
of (N3,0) as calculated according to its source nodes,iand it is constrained by
Ato 1.

In order to avoid unnecessary vacuity detection, we suggest to detect all prob-
lematic nodes as follows. Létt(A) denote all internal node@:,t) on which
there exists a constraint i. Let ! , andh? , denote the dual rail representation
of the node(n, t) in 0. Letm}! andmO denote the dual rail representation of
the value of(n, t) as calculated accordlng to the values of |ts source nodes.in
Then the Boolean expressiofy,, . cini(a) ((hp v hy ) A=), A —m) ) repre-
sents all assignments to for which there exists a problematlc noge t). If this
Boolean expression is identical to 0, then no problematic nodes exist and vacuity
detection is unnecessary.
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Chapter 6

Experimental Results

We implemented our automatic refinement algorithm on top of STE in the Intel
FORTE environment [21]. OuAutoSTE algorithm receives a circuit/ and an

STE assertiod = (. When|[r? | C] = X, it chooses a refinement goal
(root, tt) out of the undecided nodes . The chosen node has minimal time
and minimal number of inputs and nodes in its BCOI. Next, Algorithm 1 from
Section 4.2 computes the set of relevant inplts ¢). Heuristics are applied

in order to choose a subset of those inputs, as described in Section 4.3. In our
experimental results we restrict the number of refined candidates in each iteration
to 1. We changed as described in Section 4.2 and STE is rerun on the new
assertion.

We ran our algorithm on two different circuits. All runs were performed on a
3.2 GHz Pentium 4 computer with 4 GB memory. The first circuit is the Content
Addressable Memory (CAM) from Intel's GSTE tutorial. The second circuit is
IBM’s Calculator 2 design [23]. It has a complex specification and is challenging
for Model Checking. Therefore, it constitutes a good example for the benefit the
user can gain from automatic refinement in STE.

We ran Forte in default mode which considers antecedent failures as illegal.
However, since all of our assertions do not contain constraints on internal nodes,
no antecedent failures can occur.

6.1 Content Addressable Memory

The CAM shown in Figure 6.1 contains 16 entries, has a data size of 64 bits and
a tag size of 8 bits. It contains 1152 latches, 83 inputs and 5064 combinational

gates. CAMs use bit fields called tags to identify particular data entries stored in

an array. The associative read operation (aread) of CAMs consists of searching in
parallel all tags in the CAM tag memory to find a match to an input tag (tagin).
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twrite

taddr[log(n)-1..0]
tagin[t—1..0] TAG MEMORY n hit
aread -t —
dwrite
daddr{log(n)—1..0] DATA MEMORY n| dout
datain[d—1..0]
d

Figure 6.1: Content Addressable Memory. Tag size=t, Number of entries=n, Data
size=d

Assertion| result| Total Iter.| Time | BDD Nodes
1 pass 2 3 4768
2 fail 7 20 57424
3 fail 3 17 29006

Table 6.1: Automatic Refinement Performance on CAM Assertions

If a match is found, the CAM outputs the associated data entry to dout. The
verification of the aread operation using STE is described in [17]. The assertions
in [17] contain assumptions on the internal state of the tag memory. The user may
want to check the aread operation after a write operation to the tag memory. In
STE such cases can be checked when bounding the time that passed between the
time the tag is written and the time it is read. We present the resukatoSTE
on 3 such assertions. Figure 6.1 reports the final result, number of refinement
iterations, run-time in seconds and peak BDD nodes for each assertion. Table 6.2
reports the refinement goal and added constraint in each refinement iteration.
denotes a fresh symbolic variable for noget). Similarly, v',,; is a vector of
fresh symbolic variables for the vector of nodeat timet.
Assertion 1 checks that if a tag valTAG is written to an address! in the tag
memory at time 0 (wheréTG’ and A are vectors of symbolic variables over
{0,1}), and at time TTAG is read, then it should be found in the tag memory and
hit should be 1. Assertion 1 is: (tagin'KG)) A (taddr isZ) A (twrite is 1) A
N ((aread is 1)\ (tagin iSTAG)) = N (hitis 1)

Assertion 1 should pass. The reason is that if at time 1 there is no write opera-
tion to the tag memory (twrite is 0), théAG should be found in address 1. If

there is a write operation to the tag memory attime 1 (twrite is 1), TA€h should
be found since it is written again to the tag memory. Howelet, = C] = X.

lusually it is assumed that the same tag cannot appear in more than one tag memory entry.
However, even if we do not make this assumption, assertion 1 should still pass.
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The reason is that since twrite and taddr at time 1 eguahe CAM cannot deter-
mine whether to write the value of tagin at time 1 to the tag memory. Moreover,
it cannot decide to which tag entry to write it. As a result, the value of the entire
tag memory at time 1 iX, and thus the value of hit at time 1.s.

Assertion| lter. Goal Added Constraint

1 1 hit, 1 N(TAG # 0 — twrite iS vyyrize.1)

1 2 hit, 1 N((TAG # 0 A Ugprites = 1) —
taddr iV sqddr.1)

2 1 hit,1 N(TAG # 0 — twrite IS vyypite.1)

2 2 hit,1 N((TAG # 0 A vpriten = 1) —
taddr iS?mddr,l)

2 3 | dout[0],1 N(TAG = 0 — twrite IS vyyrite.1)

2 4 | dout[0],1 N((TAG = 0 A Vgrizes = 1) —
—
taddr iS?mder)

2 5 | dout[0],1 N (dwrite iSvguwrite,1)

2 6 | dout[0],1| N(vgriteq = 1 — daddr iS?daddr,l)

2 7 | dout[0],1 | N(((vawrites = 1) A (T dadars = A)) —
dm[O] is Udm[o]J)

3 1 | dout[0],2 DI[0] # 0 — dwrite iSvgypite,0

3 2 | dout[0],2 (D[0] # 0 A vawpiteo = 1) —
daddr ISV daddr.0

3 3 | dout[0],2 (D[0] £0A A £0) —

tagmemO iSU’ 14 gmemo.0

Table 6.2: Automatic Refinement of CAM Assertions

After two refinementsAutoSTE terminates with a pass result. Note that con-
straints were added only in the subset of trajectories in which they were necessary
for verification. TAG # 0 appears in the domain restriction since in this specific
CAM implementation, the default value of the data source nodes of the tag mem-
ory is 0. Thus, in the special case WhawG — 0, even without knowing if and
to which tag entry a tag is written at time 1, the CAM can determine that an entry
holding a tag that equals 0 exists in the tag memory.

Assertion 2 is an extension of Assertion 1. We add a constraint to the an-
tecedent that at time O, datame#iis D. We also add a requirement to the

consequent that at time 1, doutlis. AutoSTE produces a counterexample for
assertion 2. In the first two iterations the refinement goal wias1(), since it
depends on less inputs than each entry of dout. Once the requiremgnit o)
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holds, the next refinement goal is dout[0]. In the following two iterations, twrite
and taddr at time 1 are addedAavhenTAG — 0, since in order to determine the
value of dout[0] at time 1, it should be known which tag entry actually holds the
tag that is written at time 1 (if written at all). The set of relevant Pls for refinement
in iterations 5-7 included dwrite, daddr and din[0], all at times 0 and 1, the initial
values of all tag memory entries, and the initial values of bit number 0O of all data
memory entries.

The final refined assertion yields a symbolic counterexample in which dwrite
at time 1 equals 1, daddr at time 1 equals taddr at time 0, and din[0] at time 1 is
different from D[0]. This counterexample stems from the fact that the assertion
is erroneous. If new data is written at time 1 to the data entry associated with
'WG, then dout at time 1 will be equal to the new data. Note that only constraints
relevant to this counterexample were added to the assertion.

jssertion 3 state_s}hat if at timeM@G is written to address! and datamerrﬁ> ]
is D, and at time ZAG is read, and in addition no write was performed to the tag
and data memory since time 0, then at time 2 hitis 1 and doDt.id\ssertion 3
is as follows: (tagin iéﬁ%ﬁ) A (taddr isZ) A (twrite is 1)A (datamer{\Z] is 1_5)
AN((twrite is O)A (dwrite is 0) AN?((aread is 1)\ (tagin ism)/\(twrite is O A
(dwrite is 0) = N?((hit is 1)A (dout isB)). This assertion should fail since the
tag memory may already hold at time 0 a tag that eq‘ﬂﬁ. Though usually it
is assumed that the CAM environment will not write the same tag to two differ-
ent entries, most CAM implementations do not assumefstoSTE generates
a counterexample after 3 refinement iterations. In the counterexample, tag entry
0 equalsTAG, and the address! to which TAG is written is different from O.
The data associated with tag entry O appears in dout, rather than the one written
to addressA. This assertion demonstrates the case in which there is a need for
refinement of initial values of latches (tagmemO at time 0). Since our heuristics
prefer inputs that influence control, the constraint on tagmemO was added after
constraints were added on dwrite aetidr at time 0.

6.2 Calculator Design

The Calculator 2 design [23] shown in Figure 6.2 is used as a case study design
in simulation based verification. It contains 2781 latches, 157 inputs and 56960
combinational gates. The calculator supports 4 types of commands: add,sub,shift
right (shiftr) and shift left (shiftl).nonestands for no command. Any other com-
mand is invalid. It has two internal arithmetic pipelines: one for add/sub and one
for shifts. The first argument of the command is sent at the same cycle as the com-
mand. The second argument is sent in the following cycle. Up to 4 commands can
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c_clk
reset
out_respl[0:1]
Teql daainoay | | ADD/SUB out_tagl[0:1]
Teql_tag in[011] | PIPELINE -
req2_cmd_in[0:3] %
reg2_tag_in[0:1] L}
reg3_cmd_in[0:3] out_resp3[0:1]
“re a 03| | et pipeLiNg| | outcmasionn
_req3 tag in[0:] | Fouttaga0
reqd_cmd_in[0:3] -
_reg4 tag inf0:1] | | out datad[0:31]
out_tag4[0:1]

Figure 6.2: Calculator

be sent into the calculator from each of the 4 ports. The tag is a unique identifer
for each of the commands from each port. It is sent at the same cycle as the com-
mand. The commands may be executed out of order. However, commands from
the same port that use the same pipeline (add/sub and shift) must return in order.
The response is 1 for good, 2 for underflow, overflow or invalid command, 3 for
an internal error and O for no response. Reset is 1 for the first 3 cycles.

We present the results 8utoSTE on 4 assertions, all resulting in ah truth
value ofC' in the initial STE run. One assertion passed and the others failed. Two
assertions failed due to an erroneous specification, and one due to a bug that was
planted into the design and is documented in [23]. Figure 6.3 reports the final
result, number of refinement iterations, run-time in seconds and peak BDD nodes
for each assertion. Table 6.4 reports the refinement goal and added constraint in
each refinement iteration.

Assertion 1 checks whether after reset, if a port sends either an add or sub com-
mand, and the other ports send either no command or a command different than
add and sub, then the port that sent the add/sub command receives a response with
the appropriate tag at the first available time (4 cycles after the commands were
sent). A vectorP of symbolic variables is used to determine which port is send-
ing the add or sub command. The constraints in whiappears are duplicated

Assertion| result| Total Iter. | Time | BDD Nodes
1 fail 2 87 6241
2 fail 2 100 20134
3 fail 1 220 530733
4 pass 11 494 17323

Table 6.3: Automatic Refinement Performance on Calculator Assertions
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for each constant. We used parametric representation to produce the Boolean ex-
pressiongadd V sub) and(—add A —sub) overV2:

(P =1i) — (N*((red_cmdin is (add V sub)) A (req_tagin is TAG)

AYj # i : (reg_cmdin is (—add A —sub))) A N*(reg_cmd.in is none)) =

((/?_3> = i) — ((N"(outresp is 1) A (outtag is 'IWB))))

The symbolic counterexample presents a case in which there is an overflow
for an add command in the data sent by port 1, which triggers an invalid response
at cycle 7. Though the cone of influence of maspl[0] contains all command,
tag and data inputs from all ports at different times, the set of relevant inputs con-
tained only all entries of reqdlatain at cycles 3 and 4. Out of them, the values of
reqldatain[31] at cycles 3 and 4 are the minimal set that should suffice for gen-
erating a counterexample, and they are indeed the ones chosen by our heuristics
and added as constraints.

In assertion 2 we constrained the command sent byigoradd. The msb bits
of the sent data were constrained to O to avoid a possibility for overflow. We added
a requirement for the output data for potb match the expected data. However,
we removed the constraint on the commands sent by other ports. Assertion 2 is as
follows:

— —
(P =1) — (N*((red_cmd.in is add)A (reqg_tag.in is TAG)A
(reg_datain[0:30] is Z) A (reg _datain[31] is 0)) A N*((reg_cmd.in is nong A
(reg _datain[0:30] is ﬁ) A (reg_datain[31]is 0)))) —

— —_— _
(P =1i) — N7((outresp is 1) A (outtag is TAG) A (outdatd is A + B)))

The counterexample displays a case in which both ports 1 and 2 send an add
command, and port 3 sends a shift command. In this case port 1 is answered
before port 2. The assertion fails due to an erroneous specification: since port 1
has priority over port 2, it is not guaranteed that port 2 will receive a response at
the first possible cycle. Due to the implementation of the priority queue, the value
of an additional port had to be definite. The BCOI of (oesp2[0],7) contains
cmd, data and tag inputs of all ports at cycles 3 and 4. Out of them, only the cmd
and data inputs are relevant inputs.

Assertion 3 presents the following constraints: after reset, a port sends an
add or sub command. After 2 cycles, it sends an add command with a certain
tag and data arguments, while limiting the msb of the sent data to 0 to avoid
a possibility for overflow. Moreover, all other ports do not send an add or sub
command throughout this time. The requirements are: the port that sent the add
command receives the response good with the appropriate tag value and expected
output data. Assertion 3 is as follows:

2Constraints on reset and on the clock that exist in all assertions were omitted. Next time
operator refers to the calculator clock cycles.
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(? = i) — (N*((red_cmd.in is (addVsub))AVj # i : (re_cmd.in is (—addA
—sub))) A N*(reg_cmd.in is none)A Vi # i : (reg_cmd.in is (—add A —sub))) A
N®((reg_cmd.in is add A (red_tag.in is m) A (reg_datain[0:30] is Z)/\

(req_datain[31] is 0)) A V5 # i : (reg_cmd.in is (—add A —sub))A

NC((reg_cmdLin is non@ A(red_datain[0:30] is §)A(req’ _datain[31] is O)A
Vi # i : (reg_cmdin is (—add A —sub))) =

— — e ——

(P =1i) — N°((outresp is good)A(out tag is TAG)A(out.datd is A + B))

Note the variables used for the parametric representation of the commands for
ports; are different in each cycle.

There was one refinement iteration. The BCOI of respl[0] includes all
data and tag inputs of all ports. However, the set of relevant inputs includes only
the tags of all ports at cycles 3-5. Our heuristics chose the tag of port 1 at cycle
3. Choosing any other input would require additional iterations in order to pro-
duce a counterexample. In the counterexample, the tag values of port 1 at cycles 3
and 4 are not consecutive. This counterexample stems from a planted design bug
documented in [23]. There is supposed to be no restriction on tag ordering. How-
ever, commands whose tags are out of order are classified as an invalid command.
When fixing this bug, the assertion passes in the first STE run.

Assertion 4 checks whether after reset, if any port sends an invalid command,
then it receives an invalid command response at the first possible cycle. Again
we used parametric representation for all combinations of illegal command values
(denotednvalid):

(P =) — N*((reg_cmd.in is invalid) A (req_taginis TAG)) = (P =
i) — N7((outresp is 2) A (outtag is TAG))

This assertion should pass. However, due to the implementation of the priority
queue, the values of 2 other port commands (and in some cases 3) should be defi-
nite in order for the assertion to pass. The set of relevant inputs contained all cmd
and data inputs at cycles 3 and 4. The tag inputs were not relevant, although they
are allin the BCOI of all output responses. For this assertion, as opposed to others,
not using the domain restriction operation reduces the number of refinements.
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Assert.| lter. Goal Added Constraint
1 1 | outrespl[0],7 N3P =1 — reqldatain[31] S vyeq1_data.in[31],3
1 2 | outrespl[0],7 N‘P =1 — reqldatain[31]iS vyeq1_data.in[31],4
2 1 | outresp2[0],7] N*P =2 — reqlemdinis v eg1 cmd.in.3
2 2 | outresp2[0],7 N3(P = 2A
7req170mdm73 = (add V sub)) —
req3emdin is v g3 cmd.in.3
3 1 \ outrespl[O],Q\ N3P =1 — reqltagin is v eq1 tag.in3
4 1 | outresp1[0],7] N3P =1 — req2cmdin is V req2cmd.in.3
4 2 | outrespl[0],7 N3P =1 — req3cmd.in is v yegs.cmd.in.3
4 3 | outrespl[0],7 N3(1_5 = 1A
(7req2,cmd,m,3 =2V 7req:'),crmi,m,3 =2)) —
reqdcmdin is v egs cmd.in3
4 4 | outresp2[0],7 N3P =2 — reqLlemdin is v eg1emd.in.3
4 5 | outresp2[0],7 N3P =2 — req3cmdin is v eg3_cmd.in 3
4 6 | outresp2[0],7 N3(P = 2A
(U reqiemding = 2V U regg.emdins = 2)) —
req4cmdin is v g cmd.in.3
4 7 |outresp3[0],7| N*P =3 — reqlemdinis ¥ eq1 cmd.in3
4 8 | outresp3[0],7] NP =3 — req2cmdin is V req2cmd.in.3
4 9 | outresp3[0],7 N3(P = 3A
(77“eq1,cmd,in,3 =2V 7req2,cmd,z'n,3 =2)) —
req4dcmdin is v ega cmd.in 3
4 10 | outresp4[0],7 N3P =4 — reqLlemdin is v eg1emd.in3
4 11 | outresp4[0],7 N3P —4— req2.emdin is v eg2_cmd.in 3

Table 6.4: Automatic Refinement of Calculator Assertions
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Chapter 7

Conclusions and Future Work

This work is a first attempt at automatic refinement of STE assertions. We have
developed an automatic refinement technique which is based on heuristics. We
proved that the refined assertion preserves the semantics of the original assertion.
We have implemented our automatic refinement in the framework of Forte, and ran
it on two nontrivial circuits of dissimilar functionality. The experimental results
show success in automatic verification of several nontrivial assertions.

Another important contribution of our work is identifying that STE results
may hide vacuity. This possibility was never raised before. We formally defined
STE vacuity, and explored different aspects of vacuity in STE, including general
STE vacuity and vacuity in constrained-based STE, and proposed several methods
for vacuity detection.

Future research directions include extending automatic refinement to GSTE [28].
GSTE supports allb-regular properties and thus requires a more expressive spec-
ification language and a reparameterization algorithm. Vacuity definition and de-
tection should also be extended to GSTE.

We would like to implement our suggested vacuity detection algorithms and
compare their performance. In addition, we would like to adapt our automatic
refinement techniques to SAT based STE [25, 18], and integrate SAT based re-
finement techniques [16, 7].
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Appendix A

Additional Vacuity In
Constraint-based STE

In addition to the vacuity problem discussed in Chapter 5, to which we refer as
general STE vacuitya special vacuity problem exists in a SAT-based STE imple-
mentation namedonstraint-based STthat is suggested in [18]. We refer to this
special vacuity problem asonstraint-based STE vacuityAlthough constraint-
based STE vacuity is related to general STE vacuity, it does not exist in other
STE implementations. In order to understand the causes for constraint-based STE
vacuity, we first describe how the constraint-based STE problem is formulated
in [18].

A SAT formula that describes the constraint-based STE problem is built as
follows. The variables of the SAT formula include all the symbolic variables in
V. In addition, each nodén,t) is represented by two Boolean variables,
andvgi. Similarly to the dual rail representation in the defining trajectory, the
assignments to these two variables represent the four possible valueg)aiver
the quaternary domai) = {1,0, X, L}. The constraints of the SAT formula are
as follows:

e Each constraint i on the value of a nodg:, t) is translated to a matching
constraint in the SAT formula. We denote this set of constrainis(A).

e An additional constraint is added to the SAT formula to guarantee that at
least one of the requirements @ on the value of a nodén, t) does not
hold. We denote this constraiains(C).

e The value of each node, t) is constrained to be different from by adding
the following constraint:-v,, , vV -, ,. We refer to this set of constraints as
consistency constraints.
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e Letwal, ,, val; , denote the dual rail of the value of the nadet) as calcu-
lated according to the values of its source nodes. The value of each node is
constrained to be at least as accurated$, , val; ,, i.e., it is required that

n,t?
(vp4svp ) E (val},,,valy, ). We refer to this set of constraints asus(M).

For example, if(n, t) is an AND-node with two source nodés:;, t) and
(mag, t), then the following constraints are added:

1. If (mq,t) and(mo,t) equal 1 ther(n,t¢) equals 1. This is guaranteed
by adding the constrairtv,, ,V v Vv, ,.

2. If (mq,t) equals O therin, t) equals 0. This is guaranteed by adding
the constraintw), , Vv ,.

3. If (my,t) equals O thenin, t) equals 0. This is guaranteed by adding
the constraintw),, , Vv ,.

Note that the constraints itons( M) already take into account the existence
of the consistency constraints.

The final SAT formula is combined of the conjunction of the four sets of con-
straints. A satisfying assignmeantto the SAT formula represents a trajectary
that satisfiesA but does not satisfy at least one of the requirements,iand in
addition none of the nodes in equalsL. More formally, let¢(V') be the as-
signment of¢ to the variables ifi/. Then it holds thafp(V'), 7 = A] = 1 and
[o(V), 7 = C] € {0, X}.

The special vacuity problem arises due to the constraintsnn(M). For
each internal nodén, t), the SAT formula allows the situation in which its value
IS more accurate than the value inferred from its source nodes. This causes a
special vacuity problem that is demonstrated by Example 3.

Example 3 We return to Example 1 from Chapter 2 with the following change: we
omit the constraint iMd on the internal node N3. The resulting STE assertion is as
follows: (Inlis O)A (In3isv;) = N(N6 is 1). A possible satisfying assignment
to the SAT formula may contain the assignméiiisl,0) = 0, (/n2,0) = X,
(In3,0) = v; = 0and(N3,0) = 1. However, for all concrete trajectories of

M so thato(0)(Inl) = 0 ando(0)(In3) = 0 it holds thate(0)(N3) = 0. Thus,

the counterexample is spurious.

The similarity between the constraint-based STE vacuity problem and the gen-
eral STE vacuity problem is that they both stem from a "hidden” assumption that
when the value of a node i§ in some trajectoryr, then it stands both for 0 and
for 1, i.e., there exists a concrete trajectaty C « in which the value of this
node is 1 and there exists a concrete trajectgry— = in which the value of
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this node is 0. This assumption of course is not always true, as demonstrated by
Examples 2 and 3. We emphasize that the general vacuity problem also exists in
constraint-based STE.

Note that constraint-based STE vacuity may occur even when the user does
not impose constraints on internal nodes, as demonstrated by Example 3. In other
words, the general STE vacuity problem can be viewed as stemming from an in-
consistent STE assertion and the fact that the STE algorithm cannot detect this
inconsistency, whereas the constraint-based STE vacuity problem is an inherent
problem in the representation of the STE problem. Thus, it may occur even when
the STE assertion is consistent. Note also that constraint-based STE vacuity can
occur only when a satisfying assignment is found, whereas the general STE vacu-
ity problem may occur both for passed and failed assertions. The reason is that as
opposed to constraints i on internal nodes, a definite value for other internal
nodes is not imposed by the SAT formula. If the formula is unsatisfiable, it is in
particular unsatisfiable also for all assignments in which the value of an internal
node (that is not constrained bY) is exactly as inferred from the values of its
source nodes.

A possible solution is to change constraint-based STE by adding constraints
to cons(M) forcing the value of each node to be exactly as inferred by the values
of its source nodes. In the case of an AND-nddet) with two source nodes,
this means doubling the number of constraintsdns(M ) on the value ofn, t),
since we need to add constraints for the cases in which one of the source nodes
equalsX and the other equals 1, and for the case in which both source nodes equal
X. This formulation is referred to in [18] as simulation-based STE. It is used in
the SAT-based STE implementation of [25] (though as can be inferred from Sec-
tion 5.2 there are additional differences in the formulation of the STE problem as
a SAT formula between [25] and [18]). The significant reduction in the number
of constraints produced in constraint-based STE compared to simulation-based
STE was one of the main motivations for its development. It is mentioned in
the analysis of the experimental results of [18] that constraint-based STE out-
performs simulation-based STE due to the reduction in the number of generated
clauses. Thus the proposed solution to the constraint-based STE vacuity problem
will transform constraint-based STE into simulation-based STE and cancel the
performance enhancement of constraint-based STE.

An alternative solution is to perform vacuity detection for constraint-based
STE in a similar way to vacuity detection for STE. As explained before, if the
SAT formula is unsatisfiable, then only general STE vacuity detection is required.
If the SAT formula is satisfiable, then both general STE vacuity and constraint-
based STE vacuity can be detected at the same time as follows.

Given a satisfying assignmestt to the SAT formula, we denote the value
assigned to each node,t) by sat(n,t). We denote the value df:, ¢) that is
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inferred by the values of its source nodesi by val(n, t, sat). We can build an
antecedent,,.,, which reflects all constraints imposed byt. A,,.., contains the
following constraints:

e Eachinternal nodé, t) for whichsat(n,t) C val(n,t, sat) andsat(n, t) #
val(n, t, sat) is constrained teat(n, t).

e Each input(in, t) for which sat(n,t) # X is constrained teat(n, t).

The internal nodes constrained HBy,.,, may contain both nodes constrained
by the user and nodes constrained by constraint-based STE. Thus, applying either
of the general STE vacuity detection algorithms from Chapter Hfr, — C'
will detect both general STE vacuity and constrained based STE vacuity.
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