
Automatic Refinement
and Vacuity Detection

for Symbolic Trajectory Evaluation

Rachel Tzoref

Automatic Refinement
and Vacuity Detection

for Symbolic Trajectory Evaluation

Research Thesis

Submitted in Partial Fulfillment of the Requirements for the Degree
of Master of Science in Computer Science

Rachel Tzoref

Submitted to the Senate of the
Technion - Israel Institute of Technology

Sivan 5766 Haifa June 2006

The research thesis was done under the supervision of Prof. Orna Grumberg
in the Department of Computer Science.

I would like to deeply thank Prof. Orna Grumberg for her devoted guidance,
help and support.

The generous financial help of the Technion is gratefully acknowledged.

Contents

Abstract 1

Notations and Abbreviations 3

1 Introduction 5
1.1 Related Work . 6
1.2 Outline of the Thesis . 8

2 Background 9
2.1 Circuits . 9
2.2 Simulation Based Verification 10
2.3 Three-valued Simulation . 11
2.4 Symbolic Simulation . 12
2.5 Three-valued Symbolic Simulation 13
2.6 Circuits Values in STE . 13
2.7 States, Sequences and Trajectories 14
2.8 Symbolic Trajectory Evaluation 15

3 Choosing Our Automatic Refinement Methodology 20
3.1 The Relationship Between the Abstract and Refined Assertions . . 21

4 Selecting Inputs for Refinement 26
4.1 Choosing our refinement goal . 26
4.2 Eliminating irrelevant inputs . 27
4.3 Heuristics for Selection of Important Inputs 28

5 Detecting Vacuity and Spurious Counterexamples 31
5.1 Vacuity Detection using Bounded Model Checking 33
5.2 Vacuity Detection using Symbolic Trajectory Evaluation 34

5.2.1 Vacuity Detection using satGSTE 36
5.3 Preliminary Stage in Vacuity Detection 37

i

6 Experimental Results 38
6.1 Content Addressable Memory 38
6.2 Calculator Design . 41

7 Conclusions and Future Work 46

A Additional Vacuity in Constraint-based STE 47

Bibliography 53

List of Figures

2.1 A Circuit . 10
2.2 Thev partial order . 13

6.1 Content Addressable Memory. Tag size=t, Number of entries=n,
Data size=d . 39

6.2 Calculator . 42

iii

Abstract

Model checking is an efficient procedure to check whether or not a given model
fulfills a desired specification. Symbolic Trajectory Evaluation (STE) is a pow-
erful technique for model checking of hardware circuits. It is based on 3-valued
symbolic simulation, using 0,1 andX (”unknown”). TheX value is used to ab-
stract away parts of the circuit. The abstraction is derived from the user’s specifi-
cation. Currently the process of abstraction and refinement in STE is performed
manually. Our work presents an automatic refinement technique for STE. The
technique is based on a clever selection of constraints that are added to the speci-
fication so that on the one hand the semantics of the original specification is pre-
served, and on the other hand, the part of the state space in which the ”unknown”
result is received is significantly decreased or totally eliminated. Our experimen-
tal results show success in automatically identifying a set of constraints that are
crucial for reaching a definite result. In addition, our work raises the problem of
vacuity of passed and failed specifications. This problem was never discussed in
the framework of STE. We describe when an STE specification may vacuously
pass or fail, and propose a method for vacuity detection in STE.

1

2

Notations and Abbreviations

STE – Symbolic Trajectory Evaluation
M – A circuit
N – The set of nodes ofM
(n, t) – A node ofM at timet
X – The unknown value
⊥ – The over-constrained value
GSTE – Generalized Symbolic Trajectory Evaluation
BCOI – Bounded Cone of Influence
TEL – Trajectory Evaluation Language
A – An antecedent of an STE assertion
C – A consequent of an STE assertion
N – The next time operator
Nt – The application oft next time operators
σf – The defining sequence of a TEL formulaf
πf – The defining trajectory of a circuitM and a TEL formulaf
f 1

n,t,f
0
n,t – The dual rail of(n, t) in πA

g1
n,t,g

0
n,t – The dual rail of(n, t) in σC

nbot – The set of assignments for which no⊥ values exist inπA

ce – The symbolic counterexample
Aorg – The original antecedent written by the user
Anew – The refined antecedent
vn,t – A fresh symbolic variable for a node(n, t)

3

4

Chapter 1

Introduction

Symbolic Trajectory Evaluation (STE) [20] is a powerful technique for hardware
model checking. STE is based on combining three-valued simulation with sym-
bolic simulation. It is applied to a circuitM , described as a graph overnodes
(gates and latches). The specification consists of assertions in a restricted tem-
poral language. The assertions are of the formA =⇒ C, where theantecedent
A expresses constraints on nodesn at different timest, and theconsequentC
expresses requirements that should hold on such nodes(n, t). STE computes a
symbolic representation for each node(n, t). The size of this representation de-
pends on the size ofA, rather than on the circuit size.Abstractionin STE is
derived from the specification by initializing all inputs not appearing inA to the
X (“unknown”) value. A fourth value,⊥, represents a contradiction between the
constraint ofA on some node(n, t) and its actual behavior. Arefinementamounts
to changing the assertion in order to present node values more accurately.

STE assertions may either pass or fail onM . In [12], a four-valued truth
domain{0, 1, X, ⊥} is defined for the temporal language of STE, corresponding
to the four-valued domain of the values of the circuit nodes. The motivation for
a four-valued semantics is to distinguish between different causes for the pass
or fail of an STE assertion. TheX truth value distinguishes the case in which
the STE assertion fails due to partial information about the state space from the
case in which it is actually violated byM . In the latter case acounterexample
is produced, representing an execution ofM that satisfiesA but contradictsC.
The X truth value stems from a too coarse antecedent which underspecifies the
circuit. The⊥ truth value indicates that the STE assertion passes vacuously due
to a contradiction betweenA andM .

Generalized STE (GSTE)[28] is a significant extension of STE that can verify
all ω-regular properties. (G)STE has been in active use in industry, and has been
very successful in verifying huge circuits containing large data paths [21, 19, 26].
Its main drawback, however, is the need for manual abstraction and refinement,

5

which can be very labor-intensive.
In this thesis we propose a technique for automatic refinement of assertions

in STE. In our technique, the initial abstraction is derived, as usual in STE, from
the given specification. The refinement is an iterative process, which stops when
a truth value other thanX is achieved. Our automatic refinement is applied when
the STE specification results withX. We compute a set of input nodes, whose
refinement is sufficient for eliminating theX truth value. We further suggest
heuristics for choosing a small subset of this set.

Selecting a ”right” set of inputs has a crucial role in the success of the abstrac-
tion and refinement process: selecting too many inputs will add many variables
to the computation of the symbolic representation, and may result in memory and
time explosion. On the other hand, selecting too few inputs or selecting inputs
that do not affect the result of the verification will lead to many iterations with an
X truth value.

We point out that, as in any automated verification framework, we are lim-
ited by the following observations. First, there is no automatic way to determine
whether the provided specification is correct. Therefore, we assume it is, and we
make sure that our refined assertion passes on the concrete circuit if and only if
the original assertion does. Second, bugs cannot automatically be fixed. Thus,
counterexamples are analyzed by the user.

Another important contribution of our work is identifying that STE results may
hide vacuity. This possibility was never raised before. Hidden vacuity may occur
since an abstract execution ofM on which the truth value of the specification is1
or 0, might not correspond to any concrete execution ofM . In such a case, a pass
is vacuous, while a counterexample isspurious. We propose several methods for
detecting these cases.

We implemented our automatic refinement technique within Intel’s Forte en-
vironment [21]. We ran it on two nontrivial circuits with several assertions. Our
experimental results show success in automatically identifying a set of inputs that
are crucial for reaching a definite truth value. Thus, a small number of iterations
were needed.

1.1 Related Work

Abstraction is a well known methodology in model checking for fighting the state
explosion problem, in which certain details of the system are hidden in order to
result in a smaller model. Two types of semantics exist for interpreting temporal
logic formulas over an abstract model. In the two-valued semantics, a formula is
either true or false in an abstract model. True is guaranteed to hold for the concrete
model as well, whereas false may be spurious, meaning it does not guarantee that

6

the result in the concrete model is false as well. In the three-valued semantics [6,
22], a third truth value is introduced: the unknown truth value. The true and
false truth values in the abstract model are guaranteed to hold also in the concrete
model, whereas the unknown truth value gives no information about the truth
value of the formula in the concrete model.

In both semantics, when the model checking result on the abstract model is
inconclusive, the abstract model is refined by adding more details to it, making it
more similar to the concrete model. This iterative process is called Abstraction-
Refinement, and has been investigated thoroughly [9, 7, 15, 11, 1, 10].

In [8], it is shown that the abstraction in STE is an abstract interpretation via a
Galois connection. However, automatic refinement has never been suggested be-
fore for STE. The work that is closest to ours is [24], which suggests an automatic
abstraction-refinement for symbolic simulation. The main differences between
our work and [24] is that we compute a set of sufficient inputs for refinement
and that our suggested heuristics are significantly different from those proposed
in [24]. Our work is the first attempt to perform automatic refinement in the
framework of STE.

Two manual refinement methods for GSTE are presented in [27]. In the first
method, refinement is performed by changing the specification. In the second
method, refinement is performed by choosing a set of nodes in the circuit, whose
values and the relationship among them are always represented accurately. In [25],
SAT-based STE is used to get quick feedback when debugging and refining a
GSTE assertion graph. However, the debugging and refinement process itself is
manual.

An additional source of abstraction in STE is the fact that the constraints of
A on internal nodes are propagated only forwards through the circuit and through
time. We do not deal with this source of abstraction. In [28], they handle this
problem by the Bidirectional (G)STE algorithm, in which backward symbolic
simulation is performed, and new constraints implied by the existing constraints
are added toA. STE is then applied on the enhanced antecedent. Our automatic
refinement can be activated at this stage.

Vacuity refers to the problem of trivially valid formulas. It was first noted
by Beatty and Bryant [2]. Automatic detection of vacuous pass under symbolic
model checking was first proposed in [4] for a subset of the temporal logic ACTL
called w-ACTL. In [4], vacuity is defined as the case in which given a modelM
and a formulaφ, there exists a sub formulaξ of φ which does not affect the validity
of φ. Thus, replacingξ with any other formula will not change the truth value of
φ in M . Kuperman and Vardi [13, 14] extend the work of [4] by presenting a
general method for detecting vacuity for specifications in CTL*.

In the framework of STE, vacuity, sometimes referred to asantecedent failure,
is discussed in [12, 20]. Roughly speaking, it refers to the situation in which a

7

node is assigned with a⊥ value, implying that there are no concrete executions
of the circuit that satisfy all the constraints inA. As a result,A =⇒ C is trivially
satisfied. This is in fact a special case of vacuity as defined in [4]. Our work is
the first to raise the problem of hidden vacuity, in which the formula is trivially
satisfied despite the fact that no nodes are assigned with the⊥ value.

1.2 Outline of the Thesis

In Chapter 2 we give some background and basic definitions and notations. Chap-
ter 3 describes the inherent limitations of automatic refinement of specifications
versus manual refinement, and characterizes our proposed refinement technique.
Chapter 4 presents heuristics for choosing a subset of inputs to be refined. Chap-
ter 5 defines the STE vacuity problem and suggests several vacuity detection
methods. An additional vacuity problem is described in Appendix A. Chap-
ter 6 presents experimental results of our refinement technique. Finally, Chapter 7
presents conclusions and future research directions.

8

Chapter 2

Background

2.1 Circuits

There are different levels in which hardware circuits can be modelled. We con-
centrate on a synchronous gate-level view of the circuit, in which the circuit is
modelled by logical gates such as AND and OR and by delay elements (latches).
Aspects such as timing, asynchronous clock domains, power consumption and
physical layout are ignored, making the gate-level model an abstraction of the
real circuit.

More formally, a circuitM consists of a set of nodesN . The nodes consist
of inputsandinternal nodes. Internal nodes consist oflatchesandcombinational
nodes. Each combinational node is associated with a Boolean function. The nodes
are connected by directed edges, according to the wiring of the electric circuit. We
say that a noden1 enters a noden2 if there exists a directed edge fromn1 to n2.
The set of nodes entering a certain node are itssource nodes, and the set of nodes
to which a node enters are itssink nodes. The value of a combinational node at
time t can be expressed as a Boolean expression over its source nodes at timet.
The value of a latch at timet can be expressed as a Boolean expression over its
source nodes at timest andt− 1, and over the latch value at timet− 1. The value
of a latch at time 0 is determined by a given initial value. The source nodes of a
latch can be classified as control and data. A latch has one data source node and at
least one control source node - its clock. It may have other control source nodes
such as set and reset. Theoutputsof the circuit are designated internal nodes
whose values are of interest. We restrict the set of circuits so that the directed
graph induced byM may contain loops but no combinational loops.
Throughout this work we refer to a noden at a specific timet as a node(n, t).

An example of a circuit is shown in Figure 2.1. It contains three inputs In1,
In2 and In3, two OR nodes N1 and N2, two AND nodes N3 and N6, and two

9

latches N4 and N5. For simplicity, the clocks of the latches were omitted and we
assume that at each timet the latches sample their data source node from time
t− 1. Note the negation on the source node In2 of N2.

N4

N5

N3

N6

In1

In2

In3
N2

N1

Figure 2.1: A Circuit

The bounded cone of influence(BCOI) of a node(n, t) contains all nodes
(n′, t′) with t′ ≤ t that may influence the value of(n, t). The BCOI is defined
recursively as follows: the BCOI of a combinational node at timet is the union
of the BCOI of its source nodes at timet, and the BCOI of a latch at timet is the
union of the BCOI of its source nodes at timest andt − 1 according to the latch
type.

2.2 Simulation Based Verification

The most common way to verify that a circuit implementation obeys its specifi-
cation is by simulation. ABoolean simulation testis an assignment of Boolean
values to the circuit inputs along time and to the latches at time 0. A simulator is
a software or hardware tool that receives a circuit and a simulation test and per-
forms a Boolean simulation of the circuit, i.e., calculates the value of each noden
along time by computing the Boolean expression ofn at timet over the values of
its source nodes at timet and possiblyt− 1 (in case of a latch). Since the simula-
tor works on a logical gate-level model of the circuit and ignores aspects such as
timing and asynchronous clock domains, this calculation is an approximation of
the real values of the circuit. The simulator may also receive expected results, i.e,
expected values of the circuit outputs at specific times, and compare them to the
actual values it calculated. Note that the verification is valid only with respect to
the simulation tests provided to the simulator.

Table 2.1 describes a Boolean simulation of the circuit described in Figure 2.1.
It contains the value of each node at time 0 and 1. The values given by the simu-
lation test are marked in bold, and include the input values and the initial values
of the latches.

Given a circuit withn inputs andm latches, if we want to verify that the circuit
obeys its specification for all possible input values up to timet and for all possible
initial values of latches, then2n·(t+1)+m simulation tests are required. Even for

10

Time In1 In2 In3 N1 N2 N3 N4 N5 N6
0 0 1 0 1 0 0 0 1 0
1 1 1 1 1 1 1 0 0 0

Table 2.1: Boolean Simulation

AND X 0 1
X X 0 X
0 0 0 0
1 X 0 1

OR X 0 1
X X X 1
0 X 0 1
1 1 1 1

NOT
X X
0 1
1 0

Table 2.2: Ternary operations

medium sized circuits, this number is infeasible. Thus, simulation is performed
for only a subset of possible tests. Usually, the tests are directed by a user to
certain scenarios which are of interest.

2.3 Three-valued Simulation

In three-valued simulation, the simulation test may assign Boolean values to only
part of the inputs at different times and latches at time 0, in which case the sim-
ulator assigns the valueX to all inputs and latches that were not assigned by the
simulation test. TheX value represents the ”unknown” value, and is used to ab-
stract away parts of the circuit. AttachingX to a certain node represents lack of
information regarding the truth value of that node. A three-valued simulator is a
simulator that can calculate the values of the nodes over the domain{0, 1, X} by
extending the Boolean operations to this domain as shown in Table 2.2.

Table 2.3 describes a three-valued simulation of the circuit from Figure 2.1
up to time 1. A subset of the inputs at times 0 and 1 and the initial values of the
latches are not assigned by the simulation test.

Time In1 In2 In3 N1 N2 N3 N4 N5 N6
0 0 X 0 X X X X X X
1 X X 1 X 1 X X 0 0

Table 2.3: Three-valued Simulation

A motivation for using three-valued simulation is to reduce the number of
simulation tests. For example, let us assume that in the simulation described in 2.3,
our goal is to verify that the value of the node N6 at time 1 is 0. For the given
simulation test this is indeed the case. Thus, we can conclude that the value of N6
at time 1 is 0 also for the25 Boolean simulation tests implied from the given test

11

by replacing the unknown input values and unknown initial latches values by any
combination of Boolean values. The drawback of three-valued simulation is that
if too few inputs have specified values, then the circuit outputs may receive the
X value, in which case it could not be determined whether or not the verification
succeeded.

2.4 Symbolic Simulation

Another way to reduce the number of performed simulation tests is to use sym-
bolic simulation. LetV be a set of symbolic Boolean variables over the domain
{0, 1}. A Boolean symbolic simulation testis an assignment of either Boolean
values (0 or 1) or of symbolic Boolean variables out ofV to the inputs of the cir-
cuit and to the latches at time 0. A symbolic simulator is a simulator that receives
a circuit and a symbolic simulation test, and performs symbolic simulation [3]
of the circuit, i.e, the symbolic expression of each node(n, t) is computed as a
function of the expressions of its source nodes. Table 2.4 describes a symbolic
simulation of the circuit from Figure 2.1 up to time 1.

Time In1 In2 In3 N1 N2 N3 N4 N5 N6
0 v1 1 v2 1 v2 v2 0 1 0
1 v3 v4 0 v3 ∨ v4 ¬v4 v3 ∧ ¬v4 v2 v2 v2

Table 2.4: Symbolic Simulation

Note that a single Boolean symbolic simulation test represents multiple Boolean
simulation tests, one for each assignment to the variables inV . For example, the
symbolic simulation test in Table 2.4 represents24 Boolean simulation tests, since
it contains 4 different symbolic Boolean variables. The downside of symbolic
simulation is that the size of the Boolean expressions of the circuit nodes is ex-
ponential in the number of symbolic variables which increases as the simulation
progresses in time, since the value of each noden at timet may depend on inputs
at all times0 ≤ t′ ≤ t.

The difference between assigning an input with a symbolic variable and as-
signing it withX is that a symbolic variable is used to obtain an accurate repre-
sentation of the value of the input. For example, the negation of a variablev is¬v
whereas the negation ofX is X. In addition, if two different inputs are assigned
with the same variablev in a Boolean symbolic simulation test, then it implies
that they have the same value in every Boolean simulation test derived from the
symbolic simulation test. However, if the inputs are assigned withX, then it does
not imply that they have the same value.

12

2.5 Three-valued Symbolic Simulation

Three-valued symbolic simulation combines three-valued simulation with sym-
bolic simulation. The motivation for this combination is that the use of theX
value decreases the size of the Boolean expressions of the circuit nodes, at the ex-
pense of the possibility to receive unknown values for the circuit outputs. Given a
set of symbolic Boolean variablesV , a three-valued symbolic expression is an ex-
pression consisting of ternary operations, applied toV ∪{0, 1, X}. A three-valued
symbolic test assigns three-valued symbolic expressions to the circuit inputs along
time and to the latches at time 0. A three-valued symbolic simulator receives a
circuit and a three-valued symbolic test, and performs simulation of the circuit
by calculating the three-valued symbolic expression of each node along time ac-
cording to the symbolic expressions of its source nodes. Table 2.5 describes a
three-valued symbolic simulation of the circuit from Figure 2.1 up to time 1. The
notationv3?1 : X stands for ”ifv3 holds then 1 elseX”.

Time In1 In2 In3 N1 N2 N3 N4 N5 N6
0 v1 1 v2 1 v2 v2 X 1 X
1 v3 X 0 v3?1 : X X X v2 v2 v2

Table 2.5: Three-valued Symbolic Simulation

2.6 Circuits Values in STE

Recall that a circuit is modelled as a set of nodesN , connected by directed edges.

1 0

X

Figure 2.2: Thev partial order

In STE, the circuit nodes receive values out of the setQ ≡ {0, 1, X,⊥}. The
fourth value,⊥, is added to represent the over-constrained value, in which a node
is forced both to 0 and to 1. This value indicates that a contradiction exists between
external assumptions on the circuit and its actual behavior.Q forms a complete
lattice with the partial order0 v X, 1 v X, ⊥ v 0 and⊥ v 1. This order
corresponds to set inclusion, whereX is interpreted as the set{0, 1}, and⊥ is
interpreted as the empty set. As a result, thegreatest lower boundu corresponds

13

AND X 0 1 ⊥
X X 0 X ⊥
0 0 0 0 ⊥
1 X 0 1 ⊥
⊥ ⊥ ⊥ ⊥ ⊥

OR X 0 1 ⊥
X X X 1 ⊥
0 X 0 1 ⊥
1 1 1 1 ⊥
⊥ ⊥ ⊥ ⊥ ⊥

NOT
X X
0 1
1 0
⊥ ⊥

Table 2.6: Quaternary operations

to set intersection and theleast upper boundt corresponds to set union. The
Boolean operations AND, OR and NOT are extended to the domainQ as shown
in Table 2.6.

2.7 States, Sequences and Trajectories

A states of the circuitM is an assignment of values out ofQ to all nodes of the
circuit,s : N → Q. Given two statess1 ands2, we say thats1 v s2 ⇐⇒ ((∃n ∈
N : s1(n) = ⊥) ∨ (∀n ∈ N : s1(n) v s2(n))). A state in which all nodes are
assigned with values out of{0, 1} is aconcrete state. A states is an abstraction
of a concrete statesc if sc v s.

A sequenceσ is any infinite series of states. The notationσ(i), i ∈ N, denotes
the state at timei in σ. The notationσ(i)(n), i ∈ N, n ∈ N , denotes the value
of the noden in the stateσ(i). The notationσi, i ∈ N, denotes the suffix ofσ
starting at timei. We say thatσ1 v σ2 ⇐⇒ ((∃i ≥ 0, n ∈ N : σ1(i)(n) =
⊥) ∨ (∀ i ≥ 0 : σ1(i) v σ2(i))). Note that we refer to states and sequences that
contain⊥ values as least elements with respect tov.

Let V be a set of symbolic Boolean variables over the domain{0, 1}. A sym-
bolic expressionoverV is an expression consisting of quaternary operations, ap-
plied to V ∪ Q. The notions of states and sequences can be extended to the
symbolic domain. Asymbolic stateoverV is a mapping which maps each node
of M to a symbolic expression. Each symbolic state represents a set of states, one
for each assignment to the variables inV . Given a symbolic states and an assign-
mentφ to V , φ(s) denotes the state that is obtained by applyingφ to all symbolic
expressions ins.

A symbolic sequenceover V is a series of symbolic states that represents a
set of sequences, one for each assignment to the variables inV . Given a symbolic
sequenceσ and an assignmentφ to V , φ(σ) denotes the sequence that is obtained
by applyingφ to all symbolic expressions inσ. Given two symbolic sequencesσ1

andσ2 overV , we say thatσ1 v σ2 if for all assignmentsφ to the variables inV ,
φ(σ1) v φ(σ2).

Sequences may be incompatible with the behavior ofM . A (symbolic) tra-

14

jectoryπ is a (symbolic) sequence that is compatible with the behavior ofM : let
val(n, t, π) be the value of a node(n, t) as computed according to its source nodes
values inπ. It is required that for all nodes(n, t), π(t)(n) v val(n, t, π) (strict
equality is not required in order to allow external assumptions on nodes values
to be embedded intoπ). A trajectory isconcreteif all its states are concrete. A
trajectoryπ is an abstraction of a concrete trajectoryπc if πc v π.

2.8 Symbolic Trajectory Evaluation

We now describe the Trajectory Evaluation Language (TEL) used to specify prop-
erties for STE.
A Trajectory Evaluation Logic(TEL) formula is defined recursively overV as
follows:

1. Simple Predicates:(n is p), wheren ∈ N andp is a Boolean expression
overV .

2. Conjunction: (f1 ∧ f2), wheref1 andf2 are TEL formulas.

3. Domain Restriction: (p → f), wheref is a TEL formula andp is a
Boolean expression overV .

4. Next Time: (Nf), wheref is a TEL formula andN is the next time opera-
tor.

Note that TEL formulas can be expressed as a finite set of constraints on values
of specific nodes at specific times.Nt denotes the application oft next time
operators. The constraints on(n, t) are those appearing in the scope ofNt. A
TEL formula f has amaximal depth, denoted depth(f), which is the maximal
time t for which there exists a constraint inf on some node(n, t), plus one.

Usually, the satisfaction of a TEL formulaf on a symbolic sequenceσ is de-
fined in the two-valued truth domain [20], i.e.,f is either satisfied or not satisfied.
In [12],Q is used also as a four-valued truth domain for an extension of TEL. We
also use a four-valued semantics. However, our semantic definition is different
from [12] with respect to the⊥ value. In [12], a sequenceσ containing⊥ val-
ues could satisfyf with a truth value different from⊥. In our definition this is
not allowed. We believe that our definition captures better the intent behind the
specification with respect to contradictory information about the state space. The
intuition behind our definition is that a sequence that contains a⊥ value does not
represent any concrete sequence, and thus vacuously satisfies all properties.

15

Given a TEL formulaf overV , a symbolic sequenceσ overV , and an assign-
mentφ to V , we define the satisfaction off as follows:
[φ, σ |= f] = ⊥ ↔ ∃i ≥ 0, n ∈ N : φ(σ)(i)(n) = ⊥. Otherwise:
[φ, σ |= n is p] = 1 ↔ φ(σ)(0)(n) = φ(p)
[φ, σ |= n is p] = 0 ↔ φ(σ)(0)(n) 6= φ(p) andφ(σ)(0)(n) ∈ {0, 1}
[φ, σ |= n is p] = X ↔ φ(σ)(0)(n) = X
(φ, σ |= p → f) = (¬φ(p) ∨ φ, σ |= f)
(φ, σ |= f1 ∧ f2) = (φ, σ |= f1 ∧ φ, σ |= f2)
(φ, σ |= Nf) = φ, σ1 |= f

Note that given an assignmentφ to V , φ(p) is a constant (0 or 1). In addition, the
⊥ truth value is determined only according toφ andσ, regardless off . We define
the truth value ofσ |= f as follows:
[σ |= f] = 0 ↔ ∃φ : [φ, σ |= f] = 0
[σ |= f] = X ↔ ∀φ : [φ, σ |= f] 6= 0 and∃φ : [φ, σ |= f] = X
[σ |= f] = 1 ↔ ∀φ : [φ, σ |= f] 6∈ {0, X} and∃φ : [φ, σ |= f] = 1
[σ |= f] = ⊥ ↔ ∀φ : [φ, σ |= f] = ⊥

Note that sequencesφ(σ) for which the truth value off is⊥ are ignored, since
they do not correspond to real executions of the circuit. Only if the truth value of
f is⊥ for all possible sequencesφ(σ), then the truth value of[σ |= f] is⊥.

Theorem 1 Given a set of variablesV , a TEL formulaf over V , symbolic se-
quencesσ1, σ2 overV , and an assignmentφ to V , if φ(σ2) v φ(σ1) then[φ, σ2 |=
f] v [φ, σ1 |= f].

Proof:
We distinguish between two cases: Ifφ(σ2) contains a⊥ value, then by defini-

tionφ(σ2) v φ(σ1) and[φ, σ2 |= f] = ⊥ and therefore[φ, σ2 |= f] v [φ, σ1 |= f].
Otherwise, the proof is by induction on the structure off . Note that sinceφ(σ2)
does not contain⊥ andφ(σ2) v φ(σ1), thenφ(σ1) also does not contain a⊥
value.

• Induction Basis:f = (n is p).

Sinceφ(σ1) does not contain⊥, then[φ, σ1 |= (n is p)] ∈ {1, 0, X}. Since
we assume thatφ(σ2) v φ(σ1) andφ(σ2) does not contain⊥, we get that
φ(σ2)(0)(n) v φ(σ1)(0)(n). If φ(σ1)(0)(n) ∈ {0, 1} thenφ(σ2)(0)(n) =
φ(σ1)(0)(n) and therefore[φ, σ2 |= (n is p)] = [φ, σ1 |= (n is p)]. Oth-
erwise,φ(σ1)(0)(n) = X, and therefore[φ, σ1 |= (n is p)] = X, and we
conclude that[φ, σ2 |= (n is p)] v [φ, σ1 |= (n is p)].

• Induction Step:

16

1. f = f1 ∧ f2. By the induction hypothesis,[φ, σ2 |= f1] v [φ, σ1 |= f1]
and[φ, σ2 |= f2] v [φ, σ1 |= f2]. Since the∧ operator is monotonic,
we get that[φ, σ2 |= f1 ∧ f2] v [φ, σ1 |= f1 ∧ f2].

2. f = p → f1. If φ(p) = 0, then by definition[φ, σ1 |= p → f1] =
[φ, σ2 |= p → f1] = 1. Otherwise,φ(p) = 1, and by the induction
hypothesis,[φ, σ2 |= f1] v [φ, σ1 |= f1]. Thus,[φ, σ2 |= p → f1] v
[φ, σ1 |= p → f1]

3. f = Nf1. Sinceφ(σ2) v φ(σ1), thenφ(σ2
1) v φ(σ1

1). By the
induction hypothesis,[φ, σ2

1 |= f1] v [φ, σ1
1 |= f1]. Thus,[φ, σ2 |=

Nf1] v [φ, σ1 |= Nf1]. ¤

Corollary 1 Given a TEL formulaf and two symbolic sequencesσ1 and σ2, if
σ2 v σ1 then[σ2 |= f] v [σ1 |= f].

It is proven in [12] that every TEL formulaf has adefining sequence, which
is a symbolic sequenceσf so that[σf |= f] = 1 and for allσ, [σ |= f] ∈ {1,⊥}
if and only if σ v σf . For example,σq→(n is p) is the sequences(n,q→p)sxsxsx...,
wheres(n,q→p) is the state in whichn equals(q → p) ∧ (¬q → X), and all other
nodes equalX, andsx is the state in which all nodes equalX.

Thedefining trajectoryπf of M andf is a symbolic trajectory so that[πf |=
f] ∈ {1,⊥} and for all trajectoriesπ of M , [π |= f] ∈ {1,⊥} if and only if
π v πf . If [πf |= f] = ⊥ then there is no trajectoryπ of M and assignmentφ to
V so that[φ, π |= f] = 1.

Similar definitions forσf andπf exist in [20] with respect to a two-valued
truth domain{T, F}. T stands for either1 or⊥, andF stands for either0 or X.

Givenσf , πf is computed iteratively as follows: For alli, πf (i) is initialized to
σf (i), and then the value of each node(n, i) is calculated according to the values
of its source nodes, and incorporated intoπf (i)(n) using theu operator. The
computation ofπf (i) continues until no new values are derived at timei. Note
that since there are no combinational loops inM , it is guaranteed that eventually
no new nodes values at timei will be derived. An example of a computation of
πf is given in Example 1.

STE assertions are of the formA =⇒ C, whereA (the antecedent) andC
(the consequent) are TEL formulas.A expresses constraints on circuit nodes at
specific times, andC expresses requirements that should hold on circuit nodes at
specific times.M |= (A =⇒ C) if and only if for all concrete trajectoriesπ of M
and for all assignmentsφ to V , [φ, π |= A] = 1 implies that[φ, π |= C] = 1.

A natural verification algorithm for an STE assertionA =⇒ C is to compute
the defining trajectoryπA of M andA and then compute the truth value ofπA |=
C. If [πA |= C] ∈ {1,⊥} then it holds thatM |= (A =⇒ C). If [πA |= C] = 0

17

Time In1 In2 In3 N1 N2 N3 N4 N5 N6
0 0 X v1 X X 1 X X X
1 X X X X X X X X X

Table 2.7: The Defining SequenceσA

Time In1 In2 In3 N1 N2 N3 N4 N5 N6
0 0 X v1 X v1?1 : X 1 X X X
1 X X X X X X 1 v1 v1

Table 2.8: The Defining TrajectoryπA

then it holds thatM 6|= (A =⇒ C). If [πA |= C] = X, then it cannot be
determined whetherM |= (A =⇒ C).

The case in which there isφ so thatφ(πA) contains⊥ is known as anan-
tecedent failure. The default behavior of most STE implementations is to con-
sider antecedent failures as illegal, and the user is required to changeA in order
to eliminate any⊥ values. In this thesis we take the approach that supports the
full semantics of STE as defined above, i.e., including the case in which there
are occurrences of⊥ in πA. Note that althoughπA is infinite, it is sufficient to
examine only a bounded prefix of length depth(A) in order to detect⊥ values
in πA. The first⊥ value inπA is the result of theu operation on some node
(n, t), where the two operands have contradicting assignments 0 and 1. Since
∀i > depth(A) : σA(i) = sx, it must hold thatt ≤ depth(A).

The truth value ofπA |= C is determined as follows:

1. If for all φ, there existsi, n so thatφ(πA)(i)(n) = ⊥, then[πA |= C] = ⊥.

2. Otherwise, if there existφ, i ≥ 0, n ∈ N so thatφ(πA)(i)(n) 6v φ(σC)(i)(n),
φ(πA)(i)(n) 6w φ(σC)(i)(n) and for alli′ ≥ 0, n′ ∈ N , φ(πA)(i′)(n′) 6= ⊥,
then[πA |= C] = 0.

3. Otherwise, if there existφ, i ≥ 0, n ∈ N so thatφ(πA)(i)(n) w φ(σC)(i)(n),
φ(πA)(i)(n) 6= φ(σC)(i)(n) and for alli′ ≥ 0, n′ ∈ N , φ(πA)(i′)(n′) 6= ⊥,
then[πA |= C] = X.

4. Otherwise,[πA |= C] = 1.

Note that althoughπA andσC are infinite, it is sufficient to examine only a
bounded prefix of length depth(C), since∀i > depth(C) : σC(i) = sx.

Example 1 Consider the circuitM in Figure 2.1. Also consider the STE assertion
A =⇒ C, whereA = (In1 is 0)∧ (In3 isv1) ∧ (N3 is 1), andC = N(N6 is 1).
Table 2.7 describes the defining sequenceσA of M andA, up to time 1. Table 2.8

18

describes the defining trajectoryπA of M andA, up to time 1. Both tables contain
the symbolic expression of each node at time 0 and 1. The statesσA(i) andπA(i)
are represented by rowi. The notationv1?1 : X stands for ”ifv1 holds then 1 else
X”. σC is the sequence in which all nodes are assignedX at all times, except for
node N6 at time 1, which is assigned 1.[πA |= C] = 0 due to the assignments to
V in whichv1 = 0. We will return to this example in Section 5.

STE implementations use a specific encoding calleddual rail in order to rep-
resent the nodes(n, t) in sequences. The dual rail of a node(n, t) in πA consists
of two functions defined fromV to {0, 1}: f 1

n,t andf 0
n,t, whereV is the set of

variables appearing inA. For each assignmentφ to V , if f 1
n,t ∧ ¬f 0

n,t holds under
φ, then(n, t) equals 1 underφ. Similarly,¬f 1

n,t ∧ f 0
n,t, ¬f 1

n,t ∧¬f 0
n,t andf 1

n,t ∧ f 0
n,t

stand for 0,X and⊥ underφ, respectively. Likewise,g1
n,t andg0

n,t is the dual rail
representation of the node(n, t) in σC . Note thatg1

n,t ∧ g0
n,t never holds, since we

always assume thatC is not self-contradicting.

19

Chapter 3

Choosing Our Automatic
Refinement Methodology

Intuitively, the defining trajectoryπA of a circuitM and an antecedentA is an ab-
straction of all concrete trajectories ofM on which the consequentC is expected
to hold. This abstraction is directly derived fromA. If [πA |= C] = X, thenA is
too coarse, that is, contains too few constraints on the values of circuit nodes. Our
goal is to automatically refineA (and subsequentlyπA) in order to eliminate the
X truth value.

In this chapter we examine the requirements that should be imposed on au-
tomatic refinement in STE. We then describe our automatic refinement method-
ology, and formally state the relationship between the two abstractions, derived
from the original and refined antecedent.

We first describe the handling of⊥ values which is required for the descrip-
tion of the general abstraction and refinement process in STE. In the dual-rail
notation given earlier, the Boolean expression¬f 1

n,t ∨ ¬f 0
n,t represents all as-

signmentsφ to V for which φ(πA)(t)(n) 6= ⊥. Thus, the Boolean expression
nbot ≡ ∧

(n,t)∈A(¬f 1
n,t∨¬f 0

n,t) represents all assignmentsφ to V for whichφ(πA)

does not contain⊥. It is sufficient to examine only nodes(n, t) on which there ex-
ists a constraint inA. This is because there exists a node(n, t) and an assignment
φ to V such thatφ(πA)(t)(n) = ⊥ only if there exists a node(n′, t′) on which
there exists a constraint inA andφ(πA)(t′)(n′) = ⊥. Thus,[πA |= C] = ⊥ if and
only if nbot ≡ 0.

We now describe how the abstraction and refinement process in STE is done
traditionally, with the addition of supporting⊥ in πA. The user writes an STE
assertionA =⇒ C for M , and receives a result from STE. If[πA |= C] = 0,
then the set of allφ so that[φ, πA |= C] = 0 is provided to the user. This set,
called thesymbolic counterexample, is given by the Boolean expression overV :
(
∨

(n,t)∈C((g1
n,t∧¬f 1

n,t∧f 0
n,t)∨ (g0

n,t∧f 1
n,t∧¬f 0

n,t)))∧nbot. Each assignmentφ in

20

this set represents a counterexampleφ(πA). It stems from either an illegal behav-
ior of the circuit, or an erroneous specification. The user decides which of these
possibilities the counterexample displays. If[πA |= C] = X, then the set of all
φ so that[φ, πA |= C] = X is provided to the user. This set, called thesymbolic
incomplete trace, is given by:(

∨
(n,t)∈C((g1

n,t∨ g0
n,t)∧¬f 1

n,t∧¬f 0
n,t))∧nbot. The

user decides how to refine the specification in order to eliminate the partial infor-
mation that causes theX truth value. If[πA |= C] = ⊥, then the assertion passes
vacuously. Otherwise,[πA |= C] = 1 and the verification completes successfully.

We point out that, as in any automated verification framework, we are lim-
ited by the following observations. First, there is no automatic way to determine
whether the provided specification is correct. Therefore, we assume it is, and we
make sure that our refined assertion passes on the concrete circuit if and only if
the original assertion does. Second, bugs cannot automatically be fixed. Thus,
counterexamples are analyzed by the user.

We emphasize that automatic refinement is valuable even when it eventually
results in a fail. This is because counterexamples present specific behaviors ofM
and are significantly easier to analyze than incomplete traces.

In order to preserve the semantics ofA =⇒ C, we require thatM |= Anew =⇒
C if and only if M |= A =⇒ C.

In order to achieve the above preservation, we chose our automatic refinement
as follows. Whenever[πA |= C] = X, we add constraints toA that force the
value of inputs at certain times and initial values of latches to the value offresh
symbolic variables, that is, symbolic variables that do not already appear inV .
By initializing an input(in, t) with a fresh symbolic variable instead ofX, we
represent the value of(in, t) accurately and add knowledge about its effect on
M . However, we do not constrain input behavior that was allowed byA, nor
do we allow input behavior that was forbidden byA. Thus, the semantics of
A is preserved. In Section 4.2, a small but significant addition is made to our
refinement technique.

3.1 The Relationship Between the Abstract and Re-
fined Assertions

We now formally state the relationship between the abstractions derived from the
original and the refined antecedents. LetA be the antecedent we want to refine.
Let Aorg be the original antecedent written by the user. LetVnew be a set of
symbolic variables so thatV ∩Vnew = ∅. LetPIref be the set of inputs at specific
times, selected for refinement. We defineAnew to be a refinement ofA overV ∪
Vnew, whereAnew is obtained fromA by attaching to each input(in, t) ∈ PIref

21

a unique variablevin,t ∈ Vnew and adding conditions toA as follows: Anew =
A ∧ ∧

(in,t)∈PIref
Nt(p → (in is vin,t)), wherep = ¬q if (in, t) has a constraint

Nt(q → (in is e)) in Aorg for some Boolean expressionsq and e over V , and
p = 1 otherwise ((in, t) has no constraint inAorg). The reason we considerAorg

is to avoid a contradiction between the added constraints and the original ones,
due to constraints inAorg of the form q → f . For example, ifAorg contains
a constraint(v1 → n is 1) and (n, 0) is chosen for refinement, then the added
constraint is(¬v1 → n is vn,0)

Let πAnew be the defining trajectory ofM andAnew, overV ∪ Vnew. Let φ
be an assignment toV . Thenruns(Anew,M, φ) denotes the set of all concrete
trajectoriesπ for which there is an assignmentφ′ to Vnew so that(φ ∪ φ′)(πAnew)
is an abstraction ofπ. Since for all concrete trajectoriesπ, [(φ∪φ′), π |= Anew] =
1 ⇐⇒ π v (φ ∪ φ′)(πAnew), we get thatruns(Anew,M, φ) are exactly thoseπ
for which there isφ′ so that[(φ ∪ φ′), π |= Anew] = 1. Note that althoughπ is
concrete, an assignment toV ∪ Vnew is still required, sinceAnew is defined over
V ∪ Vnew.

The reason the trajectories inruns(Anew, M, φ) are defined with respect to a
single extension to the assignmentφ rather than all extensions toφ is that we are
interested in the set of all concrete trajectories that satisfyφ(Anew) with the truth
value1. Since every trajectoryπ ∈ runs(Anew,M, φ) is concrete, it can satisfy
φ(Anew) with the truth value1 only with respect to a single assignment toVnew.
The fact that there are other assignments toVnew for which π does not satisfy
φ(Anew) with the truth value1 is not a concern, since the truth value ofAnew =⇒
C is determined only according to the concrete trajectoriesπ and assignmentsφ
to V ∪ Vnew so that[φ, π |= Anew] = 1.

Theorem 2 For all assignmentsφ to V , runs(A,M, φ) = runs(Anew,M, φ).

Theorem 2 implies that the set of all concrete trajectories ofM on whichAnew

holds for some assignmentφ1 to V ∪ Vnew and the set of all concrete trajectories
of M on whichA holds for some assignmentφ2 to V are identical.

Proof: Let π be a concrete trajectory so thatπ ∈ runs(A,M, φ). Thus,[φ, π |=
A] = 1. Let π(t)(in) be the value that each input(in, t) ∈ PIref receives in the
trajectoryπ. Let φ′ be an assignment that gives for each variablevin,t ∈ Vnew that
is attached to the input(in, t) ∈ PIref the valueπ(t)(in). Since each variable
vin,t ∈ Vnew is attached to a single input(in, t) ∈ PIref and appears only in
the new conditionNt(p → (in is vin,t)), then [φ ∪ φ′, π |= Anew] = 1. Thus,
π ∈ runs(Anew,M, φ).

Let π be a concrete trajectory so thatπ ∈ runs(Anew,M, φ). Thus, there
exists an assignmentφ′ to Vnew so that[φ ∪ φ′, π |= Anew] = 1. Since the set of

22

conditions on nodes inA is included in the set of conditions on nodes inAnew,
this means that[φ ∪ φ′, π |= A] = 1. SinceA is over the variables inV only, we
get that[φ, π |= A] = 1. Thus,π ∈ runs(A, M, φ). ¤

Theorem 3 If [πAnew |= C] = 1 then for allφ it holds that∀π ∈ runs(A, M, φ) :
[φ, π |= C] = 1.

Theorem 3 implies that ifAnew =⇒ C holds on all concrete trajectories ofM ,
then so doesA =⇒ C.

Proof: [πAnew |= C] = 1 implies that∀φ(V ∪ Vnew) : [φ, πAnew |= C] ∈ {1,⊥}.
SinceC is over the variables inV only, this means that∀φ(V) ∀φ′(Vnew) :
[(φ ∪ φ′), πAnew |= C] ∈ {1,⊥}. Due to monotonicity of the satisfaction re-
lation, we get that∀φ(V)∀π ∈ runs(Anew,M, φ) : [φ, π |= C] ∈ {1,⊥}.
Since all trajectories inruns(Anew, M, φ) are concrete, we get that∀φ(V)∀π ∈
runs(Anew,M, φ) : [φ, π |= C] = 1. Sinceruns(A,M, φ) = runs(Anew,M, φ),
we conclude that∀φ(V)∀π ∈ runs(A,M, φ) : [φ, π |= C] = 1. ¤
Theorem 4 If there existsφ′ to Vnew and π ∈ runs(Anew,M, φ ∪ φ′) so that
[(φ ∪ φ′), π |= Anew] = 1 but [(φ ∪ φ′), π |= C] = 0 thenπ ∈ runs(A,M, φ) and
[φ, π |= A] = 1 and[φ, π |= C] = 0.

Theorem 4 implies that ifAnew =⇒ C yields a concrete trajectoryπ which con-
stitutes a counterexample, thenπ is also a concrete counterexample with respect
to A =⇒ C.

Proof: By definition, π ∈ runs(Anew,M, φ). According to Theorem 2,π ∈
runs(A, M, φ). Thus, [φ, π |= A] = 1. SinceC is defined overV only and
[φ ∪ φ′, π |= C] = 0, we get that[φ, π |= C] = 0. ¤

We would also like to define the connection between abstract (non concrete)
trajectories before and after refinement:

Theorem 5 ∀φ(V)∀φ′(Vnew) : (φ ∪ φ′)(πAnew) v φ(πA).

Proof: We will prove that∀t∀n ∈ N ∀φ(V)∀φ′(Vnew) : (φ∪φ′)(πAnew)(t)(n) v
φ(πA)(t)(n) by induction on the structure of the defining trajectory:

• Induction basis: The defining trajectory at time 0.

We will prove the induction basis by induction on the structure ofM . We
denote byd(n, 0) the maximal distance in backward edges of a node(n, 0)
from an input or a latch. Since combinational loops are not allowed,d(n, 0)
is well-defined. We will prove the induction basis for all nodes(n, 0) for
whichd(n, 0) = k.

23

– Induction basis:d(n, 0) = 0.

The nodes for whichd(n, 0) = 0 are exactly the inputs and latches at
time 0. Due to the construction ofAnew from A, it holds that for all
inputs and latches(n, 0), ∀φ(V)∀φ′(Vnew) : (φ ∪ φ′)(πAnew)(0)(n) v
φ(πA)(0)(n). This is due to the fact that for allφ(V), if A constrains
(n, 0) to 0 or 1 thenAnew constrains it to the same value, and ifA does
not constrain it, thenφ(πA)(0)(n) = X.

– Induction step: We assume that for all nodes(n, 0) with d(n, 0) < k it
holds that∀φ(V)∀φ′(Vnew) : (φ ∪ φ′)(πAnew)(0)(n) v φ(πA)(0)(n).

Let (n, 0) be a node withd(n, 0) = k. For all source nodes(m, 0) of
(n, 0) it holds thatd(m, 0) < k, otherwise it would hold thatd(n, 0) >
k in contradiction to our assumption. Thus, the induction hypothe-
sis holds for the source nodes of(n, 0). Given a node(n, t) and a
trajectoryπ, let val(n, t, π) be the value of(n, t) as computed ac-
cording to its source nodes values inπ. Due to the construction of
Anew from A, A and Anew contain exactly the same constraints on
combinational nodes. For each combinational node(n, 0) and as-
signmentsφ(V),φ′(Vnew), if A (andAnew) does not constrain(n, 0),
then φ(πA)(0)(n) = val(n, 0, φ(πA)) and (φ ∪ φ′)(πA

new)(0)(n) =
val(n, 0, (φ ∪ φ′)(πA

new)). Since all Boolean operators are monotonic
with respect toQ, it holds thatval(n, 0, (φ ∪ φ′)(πA

new)) v val(n, 0,
φ(πA)), and thus(φ ∪ φ′)(πAnew)(0)(n) v φ(πA)(0)(n). Otherwise,
A andAnew constrain(n, 0) to the same valueb ∈ {0, 1}. It holds
thatφ(πA)(0)(n) = val(n, 0, φ(πA)) u b and(φ ∪ φ′)(πA

new)(0)(n) =
val(n, 0, (φ∪φ′)(πA

new))ub. Sinceval(n, 0, (φ∪φ′)(πA
new)) v val(n, 0,

φ(πA)) andu is monotonic with respect toQ, we get that
(φ ∪ φ′)(πAnew)(0)(n) v φ(πA)(0)(n).

• Induction step: We assume that∀0 ≤ t′ < t∀n ∈ N∀φ(V)∀φ′(Vnew) :
(φ ∪ φ′)(πAnew)(t′)(n) v φ(πA)(t′)(n).

We again prove the induction step by induction on the structure ofM . For
all t > 0, we denote byd(n, t) the maximal distance in backward edges of
a node(n, t) from an input at timet or from a node at timet− 1.

– Induction basis:d(n, t) = 0.

The induction basis is proven in the same way as the previous induc-
tion basis, usingd(n, t) instead ofd(n, 0). The only difference is that
the set of nodes(n, t), t > 0 for which d(n, t) = 0 includes only the
inputs at timet.

24

– Induction step:d(n, t) = k. The induction step is proven in the same
way as the previous induction step, usingd(n, t) instead ofd(n, 0).
The only difference is that the source nodes of a node(n, t), t > 0 may
also include nodes from timet− 1. The external induction hypothesis
holds on these nodes, and thus the induction hypothesis holds on all
source nodes of(n, t), and the proof of the previous induction step can
be applied here as well. ¤

25

Chapter 4

Selecting Inputs for Refinement

After choosing our refinement methodology, we need to describe how exactly the
refinement process is performed. In this section we assume that[πA |= C] = X.
Thus, automatic refinement is activated. Our goal is to add a small number of
constraints toA forcing inputs to the value of fresh symbolic variables, while
eliminating as many assignmentsφ as possible so that[φ, πA |= C] = X. The
automatic refinement process is incremental - inputs(in, t) that are switched from
X to a fresh symbolic variable will not be reduced toX in subsequent iterations.

4.1 Choosing our refinement goal

Assume that[πA |= C] = X, and the symbolic incomplete trace is generated. This
trace contains all assignmentsφ for which [φ, πA |= C] = X. Each such trajectory
φ(πA) is called anincomplete trajectory. This trace may contain multiple nodes
that are required byC to have a definite value (either 0 or 1) but equalX. We refer
to such nodes asundecided nodes. In automatic refinement we need to decide
whether to eliminate all incomplete trajectories at once or one at each refinement
iteration, and whether to eliminate all undecided nodes at once or one at each
refinement iteration. We want to keep the number of added constraints small.
Therefore, we choose to eliminate one undecided node(n, t) in each refinement
iteration, since different nodes may depend on different inputs. A motivation
for eliminating only part of the undecided nodes is that an undesiredX value
that is eliminated may be replaced in the next iteration with a definite value that
contradicts the required value (a counterexample). In such a case, the current
abstraction and refinement loop is terminated without all undecided nodes being
eliminated. We suggest to choose an undecided node(n, t) with a minimal number
of inputs in its BCOI, since it is likely that such an undecided node will require the
addition of less constraints than an undecided node that depends on more inputs.

26

Algorithm 1 EliminateIrrelevantPIs((n, t)

sinks relevant← ∨
(m,t′)∈out(n,t) relevantm,t′

relevantn,t ← sinks relevant∧ ¬f 0
n,t ∧ ¬f 1

n,t

Out of those, we choose an undecided node with a minimal number of nodes in its
BCOI, with the motivation to minimize the additional computation effort that will
be required after the addition of the new constraints. Our experimental results
support this choice. The chosen undecided node is ourrefinement goaland is
denoted(root, tt).

We also decide to eliminate at once all incomplete trajectories in which(root, tt)
is undecided. These trajectories are likely to be eliminated by similar sets of in-
puts. Thus, by considering them all at once we can considerably reduce the num-
ber of refinement iterations, without adding too many symbolic variables.

The Boolean expression(¬f 1
root,tt∧¬f 0

root,tt∧ (g1
root,tt∨ g0

root,tt))∧nbot repre-
sents the set of assignmentsφ for which (root, tt) is undecided in the incomplete
trajectoryφ(πA). Our goal is to add a small number of constraints toA so that
(root, tt) will not beX whenever(g1

root,tt ∨ g0
root,tt) holds.

4.2 Eliminating irrelevant inputs

Once we have a refinement goal(root, tt), we need to choose input nodes(in, t)
for which constraints will be added toA. Naturally, only inputs in the BCOI of
(root, tt) should be considered. However, out of these inputs, some can be safely
eliminated.

Consider an input(in, t), an assignmentφ to V and the defining trajectoryπA.
We say that(in, t) is relevantto (root, tt) underφ, if there is a path of nodesP
from (in, t) to (root, tt) in the execution ofM over time, so that for all nodes
(n, t′) in P , φ(πA(t′)(n)) = X. (in, t) is relevant to (root, tt) if there existsφ
so that(in, t) is relevant to(root, tt) underφ. If no suchφ exists, then(in, t) is
irrelevant to (root, tt).

For each(in, t), we compute the set of assignments toV for which (in, t)
is relevant to(root, tt). The computation is performed recursively starting from
(root, tt). (root, tt) is relevant when it isX and is required to have a definite
value: (¬f 1

root,tt ∧ ¬f 0
root,tt ∧ (g1

root,tt ∨ g0
root,tt)) ∧ nbot. A source node(n, t)

of (root, tt) is relevant whenever(root, tt) is relevant and(n, t) equalsX. Let
out(n, t) return the sink nodes of(n, t) that are in the BCOI of(root, tt). Pro-
ceeding recursively as described in Algorithm 1, we compute for each(in, t) the
set of assignments in which it is relevant to(root, tt).

For all φ that do not satisfy relevantin,t, changing(in, t) from X to a definite

27

value inφ(πA) cannot change the value of(root, tt) in φ(πA) from X to 0 or to 1.
Thus, if (in, t) is chosen for refinement, a possible optimization is to constrain it
to a fresh symbolic variable only whenrelevantin,t holds. This is done using the
domain restriction operation: relevantin,t → Nt(in is vin,t). If (in, t) is chosen in
a subsequent iteration for refinement of another refinement goal(root′, tt′), then
the previous domain restriction is extended by disjunction to include the condition
under which(in, t) is relevant to(root′, tt′). Theorems 2, 3 and 4 from Chapter 3
hold also for the optimized refinement. LetPI be the set of inputs of the circuit.
Then the set of all inputs that are relevant to(root, tt) is PI(root,tt) ≡ {(in, t) |
in ∈ PI ∧ relevantin,t 6≡ 0}. Adding constraints toA for all relevant inputs
(in, t) will result in a refined antecedentAnew. In the defining trajectory ofM and
Anew, it is guaranteed that(root, tt) will not be undecided. Note thatPI(root,tt)

is sufficient but not minimal for the elimination of all undesiredX values from
(root, tt). Namely, adding constraints for all inputs inPI(root,tt) will guarantee
elimination of all cases in which(root, tt) is undecided. However, it is possible
that adding constraints for only a subset ofPI(root,tt) will still eliminate all such
cases.

The setPI(root,tt) may be valuable to the user even if automatic refinement
does not take place, since it excludes inputs that are in the BCOI of(root, tt) but
will not change the verification results with respect to(root, tt).

4.3 Heuristics for Selection of Important Inputs

If we add constraints toA for all inputs(in, t) ∈ PI(root,tt), then we are guaranteed
to eliminate all cases in which(root, tt) was equal toX while it was required
to have a definite value. However, such a refinement may add many symbolic
variables toA, thus significantly increasing the complexity of the computation of
the defining trajectory. We can reduce the number of added variables at the cost
of not guaranteeing the elimination of all undesiredX values from(root, tt), by
choosing only a subset ofPI(root,tt) for refinement. A motivation for this is that a
1 or 0 truth value may be reached even without adding constraints for all relevant
inputs.

A subset ofPI(root,tt) is heuristically selected for refinement as described in
Algorithm 2. Each node(n, t) selects a subset ofPI(root,tt) as candidates for
refinement, held in candidatesn,t. The final set of inputs for refinement is selected
out of candidatesroot,tt. PI denotes the set of inputs(in, t) of M . Each input
in PI(root,tt) selects itself as a candidate. Other inputs have no candidates for
refinement. Let out(n, t) return the sink nodes of(n, t) that are in the BCOI of
(root, tt), and let degin(n, t) return the number of source nodes of(n, t) that are
in the BCOI of (root, tt). Given a node(n, t), sourceCandn,t denotes the sets

28

of candidates of the source nodes of(n, t), excluding the source nodes that do
not have candidates. The candidates of(n, t) are determined according to the
following conditions:

1. If there exist candidate inputs that appear in all sets of sourceCandn,t, then
they are the candidates of(n, t).

2. Otherwise, if(n, t) has source nodes that can be classified as control and
data source nodes, then the candidates of(n, t) are the union of the candi-
dates of its control source nodes, if this union is not empty. For example,
a latch has one data source node and at least one control source node - its
clock. It may have other control source nodes such as set and reset. The
identity of control source nodes is automatically extracted from the netlist
representation of the circuit.

3. If none of the above holds, then the candidates of(n, t) are the inputs with
the largest number of occurrences in sourceCandn,t.

Algorithm 2 SelectBestPIs((root, tt), P I(root,tt))

for all (in, t) ∈ PI do
if (in, t) ∈ PI(root,tt) then

candidatesin,t ← {(in, t)}
else

candidatesin,t ← ∅
end if
for all (n, t′) ∈ out(in, t) do

countn,t′ + +
if degin(n, t′) = countn,t′ then

SelectBestPIsRec((n, t′))
end if

end for
end for

We prefer to refine inputs that are candidates of most source nodes along paths
from the inputs to the refinement goal, i.e., influence the refinement goal over
several paths. The logic behind this heuristic is that an input that has many paths
to the refinement goal is more likely to be essential to determine the value of the
refinement goal than an input that has less paths to the refinement goal.

We prefer to refine inputs that affect control before those that affect data since
the value of control inputs has usually more effect on the verification result. More-
over, the control inputs determine when data is sampled. Therefore, if the value

29

Algorithm 3 SelectBestPIsRec((n, t))
if isEmpty(sourceCandn,t) then

candidatesn,t ← ∅
else ifexistMutualCanidates(sourceCandn,t) then

candidatesn,t ← mutualCanidates(sourceCandn,t)
else ifhasControlSourceCandidates((n, t)) then

candidatesn,t ← controlSourcesCandidates((n, t))
else

candidatesn,t ← majorityCandidates((n, t))
end if
for all (m, t′) ∈ out(n, t) do

countm,t′ + +
if degin(m, t′) = countm,t′ then

SelectBestPIsRec((m, t′))
end if

end for

of a data input is required for verification, it can be constrained according to the
value of previously refined control inputs. In the final set of candidates, sets of
nodes that are entries of the same vector are treated as one candidate. Since the
heuristics did not prefer one entry of the vector over the other, then probably only
their joint value can change the verification result. We restrict the number of in-
puts (in, t) in the final set of candidates to a strict numberl. If the number of
candidates of(root, tt) exceedsl, we select the ones with a minimal number of
nodes in their output cone, in order to minimize the additional computation effort
that will be required after the addition of the new constraints. Out of them, we
randomly choose the inputs for refinement.

30

Chapter 5

Detecting Vacuity and Spurious
Counterexamples

In this chapter we raise the problem of hidden vacuity and spurious counterex-
amples that may occur due to the abstraction in STE. This problem was never
addressed before in the context of STE.

In STE,A functions both as determining the level of the abstraction ofM , and
as determining the trajectories ofM on whichC is expected to hold. An important
point is that the constraints imposed byA are applied (using theu operator) to
abstracttrajectories ofM . If for some node(n, t) and assignmentφ to V , there
is a contradiction betweenφ(σA)(t)(n) and the value propagated throughM to
(n, t), thenφ(πA)(t)(n) = ⊥, indicating that there is no concrete trajectoryπ so
that [φ, π |= A] = 1.

In this chapter we point out that due to the abstraction in STE, it is possible that
for some assignmentφ to V , there are no concrete trajectoriesπ so that[φ, π |=
A] = 1, but still φ(πA) does not contain⊥ values. This is due to the fact that
an abstract trajectory may represent more concrete trajectories than the ones that
actually exist inM . Consequently, it may be that[φ, πA |= C] ∈ {1, 0}, and
there is no indication that this result is vacuous, i.e., for all concrete trajectoriesπ,
[φ, π |= A] = 0. Note that this problem may only happen ifA contains constraints
on internal nodes ofM . Given a constrainta on an input (or an initial value of
a latch), there always exists a concrete trajectory that satisfiesa (unlessa itself
is a contradiction, which can be easily detected). This problem exists also in
STE implementations that do not computeπA, such as [18]. This is because the
constraints imposed byA are also incorporated by applying theu operator on
trajectories that may be abstract, only that they are not necessarily the defining
trajectory ofA.

31

Example 2 We return to Example 1 from Chapter 2. Note that the defining tra-
jectory πA does not contain⊥ values. In addition,[πA |= C] = 0 due to all
assignments toV in whichv1 = 0. However,A never holds on concrete trajec-
tories ofM whenv1 = 0, since N3 at time 0 will not be equal to1. Thus, the
counterexample is spurious, but we have no indication of this fact. The problem
occurs when calculating the value of (N3,0) by computingX u 1 = 1. If A had
contained a constraint on the value of In2 at time 0, say (In2 isv2), then the value
of (N3,0) inπA would have been(v1 ∧ v2) u 1 = (v1 ∧ v2?1 : ⊥), indicating that
for all assignments in whichv1 = 0 or v2 = 0, πA does not correspond to any
concrete trajectory ofM .

Vacuity may also occur if for some assignmentφ to V , C underφ may impose
no requirements. This is due to the Domain Restriction operation, where the con-
straint is of the formp → f andφ(p) is 0.

An STE assertionA =⇒ C is vacuousin M if for all concrete trajectoriesπ
of M and assignmentsφ to V , either[φ, π |= A] = 0, or C underφ imposes no
requirements. This definition is compatible with the definition in [4] for ACTL.

We say thatA =⇒ C passes vacuouslyon M if A =⇒ C is vacuous inM
and[πA |= C] ∈ {⊥, 1}. Note that if[πA |= C] = ⊥, then surelyA =⇒ C passes
vacuously, and thus vacuity detection is not required in this case.

A counterexampleπ is spuriousif there is no concrete trajectoryπc of M so
that πc v π. Given the defining trajectoryπA, we say that the symbolic coun-
terexamplece is spurious if for all assignmentsφ to V that satisfyce, φ(πA) is
spurious. We believe that this definition is more appropriate than a definition in
which ce is spurious if there existsφ that satisfiesce andφ(πA) is spurious. The
reason is that the existence of at least one non-spurious counterexample repre-
sented byce is more interesting than the question whether each counterexample
represented byce is spurious or not.

We say thatA =⇒ C fails vacuouslyonM if [πA |= C] = 0 and the symbolic
counterexamplece is spurious.

For implementations that do not computeπA such as [18], we say thatA =⇒
C fails vacuously onM if the result of STE is fail and the produced counterexam-
ple is spurious.

As explained before, vacuity detection is required only whenA constrains
internal nodes. In order to detect non-vacuous results in STE, we need to check
whether there exists an assignmentφ to V and a concrete trajectoryπ of M so
that C underφ imposes some requirement and[φ, π |= A] = 1. In case the
original STE result is fail,π should also constitute a counterexample forA =⇒ C.
We propose two different algorithms for vacuity detection. The first algorithm
uses Bounded Model Checking (BMC) [5] and runs on the concrete model. The
second algorithm uses STE and requires automatic refinement. The algorithm

32

that uses STE takes advantage of the abstraction in STE, as opposed to the first
algorithm which runs on the concrete model. In case non-vacuity is detected, the
trajectory produced by the second algorithm (which constitutes either a witness
or a counterexample) may not be concrete. However, it is guaranteed that there
exists a concrete trajectory of which the produced trajectory is an abstraction. The
drawback of the algorithm that uses STE, however, is that it requires automatic
refinement.

An additional vacuity problem that arises in constraint-based STE [18] is de-
scribed in Appendix A.

5.1 Vacuity Detection using Bounded Model Check-
ing

SinceA can be expressed as an LTL formula, we can translateA andM into a
BMC problem. The bound of the BMC problem is determined by the depth ofA.
Note that in this BMC problem we search for a satisfying assignment forA, not
for its negation. Additional constraints should be added to the BMC formula in
order to fulfill the additional requirements on the concrete trajectory.

For detection of vacuous pass, the BMC formula is constrained in the fol-
lowing way: Recall that(g1

n,t, g
0
n,t) denotes the dual rail representation of the

requirement on the node(n, t) in C. The Boolean expressiong1
n,t ∨ g0

n,t repre-
sents all assignmentsφ to V under whichC imposes a requirement on(n, t).
Thus,

∨
(n,t)∈C g1

n,t ∨ g0
n,t represents all assignmentsφ to V under whichC im-

poses some requirement. This expression is added as an additional constraint to
the BMC formula. If BMC finds a satisfying assignment to the resulting formula,
then the assignment of BMC to the nodes inM constitutes a witness indicating
that A =⇒ C passed non-vacuously. Otherwise, we conclude thatA =⇒ C
passed vacuously.

For detection of vacuous fail, the BMC formula is constrained by conjunction
with the (symbolic) counterexamplece. For STE implementations that compute
πA, ce =

∨
(n,t)∈C((g1

n,t ∧¬f 1
n,t ∧ f 0

n,t)∨ (g0
n,t ∧ f 1

n,t ∧¬f 0
n,t)). There is no need to

add thenbot constraint that guarantees that none of the nodes equals⊥, since the
BMC formula runs on the concrete model, and thus the domain of the nodes in the
BMC formula is Boolean. For other implementations such as [25, 18],ce consists
of an assignment of values toV and to the circuit nodes at different times. If BMC
finds a satisfying assignment to the resulting formula, the assignment of BMC to
the nodes inM constitutes a concrete counterexample forA =⇒ C. Otherwise,
we conclude thatA =⇒ C failed vacuously.

Vacuity detection using BMC is an easier problem than solving the original

33

STE assertionA =⇒ C using BMC. The BMC formula forA =⇒ C contains the
following constraints on the values of nodes:

• The constraints ofA.

• The constraints ofM on nodes appearing inA.

• The constraints ofM on nodes appearing inC.

• A constraint on the values of the nodes appearing inC that guarantees that
at least one of the requirements inC does not hold.

On the other hand, the BMC formula for vacuity detection contains only the
first two types of constraints on the values of nodes. It also contains an additional
constraint in the form of a Boolean expression which by itself does not constrain
values of nodes. Therefore, for vacuity detection using BMC, only the BCOI of
the nodes inA is required, whereas for solving the original STE assertionA =⇒
C using BMC, both the BCOI of the nodes appearing inA and the BCOI of the
nodes appearing inC are required.

5.2 Vacuity Detection using Symbolic Trajectory Eval-
uation

For vacuity detection using STE, the first step is to splitA into two different TEL
formulas: Ain is a TEL formula that contains exactly the constraints ofA on
inputs, andAout is a TEL formula that contains exactly the constraints ofA on
internal nodes. If there exists an assignmentφ to V so that[φ, πAin |= Aout] = 1,
then we can conclude that there exists a concrete trajectory ofM that satisfiesA.
Note that sinceAin does not contain constraints on internal nodes, it is guaranteed
that no hidden vacuity occurs. However, it is also necessary to guarantee that in
case[πA |= C] = 1, C underφ imposes some requirement, and in case[πA |=
C] = 0, thenφ(πAin

) should constitute a counterexample. Namely,φ ∧ ce 6≡ 0,
wherece is the symbolic counterexample.

If we cannot find such an assignmentφ, this does not necessarily mean that
the result ofA =⇒ C is vacuous: if there are assignmentsφ to V for which
[φ, πAin |= Aout] = X, then the trajectoryφ(πAin

) is potentially an abstraction of
a witness or a concrete counterexample forA =⇒ C. However, it is too abstract
in order to determine whether or notAout holds on it. If we refineAin to a new
antecedent as described in Chapter 3, then it is possible that the new antecedent
will yield more refined trajectories that contain enough information to determine
whether they indeed represent a witness or concrete counterexample.

34

Algorithm 4 describes vacuity detection using STE. It received the original
antecedentA and consequentC. In case[πA |= C] = 0, it also receives the
symbolic counterexamplece. inputConstraints is a function that receives a TEL
formula A and returns a new TEL formula that consists of the constraints ofA
on inputs. Similarly, internalConstraints returns a new TEL formula that consists
of the constraints ofA on internal nodes. Note that sinceAin does not contain
constraints on internal nodes, thenπAin

does not contain⊥ values, and thus we
can assume thatf 1

n,t∧ f 0
n,t never holds. By abuse of notation,f 1

n,t andf 0
n,t are here

the dual rail representation of a node(n, t) in πAin
. Similarly, we useg1

n,t andg0
n,t

for the dual rail representation of a node(n, t) in the defining sequence of either
C or Aout, according to the context.

Algorithm 4 STEVacuityDetection(A,C, ce)
1: Ain ← inputConstraints(A)
2: Aout ← internalConstraints(A)
3: Φ ← ∧

(n,t)∈Aout((g1
n,t ∧ f 1

n,t) ∨ (g0
n,t ∧ f 0

n,t))

{Φ represents all assignments toV for which [φ, πAin |= Aout] = 1}
4: if [πA |= C] = 1 ∧ ((

∨
(n,t)∈C(g1

n,t ∨ g0
n,t)) ∧ Φ) 6≡ 0 then

5: return non-vacuous
6: else if [πA |= C] = 0 ∧ ((Φ ∧ ce) 6≡ 0) then
7: return non-vacuous
8: end if
9: if ∃φ : [φ, πAin |= Aout] = X then

10: Ain ← refine(Ain)
11: goto 3
12: else
13: return vacuous
14: end if

The algorithm computes the setΦ, which is the set of all assignments toV for
which [φ, πAin |= Aout] = 1. Lines 4 and 6 check whether there exists a suitable
assignmentφ in Φ that corresponds to a witness or to a counterexample. If such
a φ exists, then the result is non-vacuous. If no suchφ exists, then if there exist
assignments for which the truth value ofAout on πAin

is X, thenAin is refined
andΦ is recomputed. Otherwise, the result is vacuous.

Note that in case[πA |= C] = 0, we check whetherΦ contains an assignment
that constitutes a counterexample by checking that the intersection betweenΦ and
the symbolic counterexamplece produced for[πA |= C] is not empty. However, as
a result of refinement,Φ may contain new variables that represent new constraints
of the antecedent that were not taken into account when computingce. The reason

35

that checking whether(Φ ∧ ce) 6≡ 0 still returns a valid result is as follows. By
construction, we know that for all assignmentsφ ∈ Φ, [φ, πAin |= Aout] = 1.
Since[φ, πAin |= Ain] = 1 by definition of the defining trajectory, we get that
[φ, πAin |= Ain ∪ Aout] = 1, whereAin ∪ Aout is the TEL formula that contains
exactly the constraints inAin andAout. According to Theorem 5, we get that
φ(πAin

) v φ(πA). Since[φ, πAin |= Aout] = 1, we get thatφ(πAin
) does not con-

tain⊥ values. Therefore, for all nodes(n, t) so thatφ(πA)(t)(n) = b, b ∈ {0, 1}
it holds thatφ(πAin

)(t)(n) = b. Thus, for allφ′ ∈ ce, φ′ is a counterexample also
with respect to the antecedentAin ∪ Aout.

Besides the need for refinement, an additional drawback of Algorithm 4 in
comparison with vacuity detection using BMC, is that it attempts to solve a much
harder problem - it computes a set of trajectories that constitute witnesses or con-
crete counterexamples, whereas in vacuity detection using BMC only one such
trajectory is produced - the satisfying assignment to the SAT formula. This is in
analogy to using STE versus using BMC for model checking - STE finds the set
of all counterexamples forA =⇒ C, while BMC finds only one counterexample.
However, the advantage of Algorithm 4 is that it exploits the abstraction in STE,
whereas vacuity detection using BMC runs on the concrete model.

5.2.1 Vacuity Detection using satGSTE

As an alternative to Algorithm 4, we present a vacuity detection algorithm that
uses SAT-based STE. The motivation for using SAT-based STE is that only one
witness or counterexample is produced. satGSTE [25] is a SAT-based STE im-
plementation in which the first stage is to compute the defining trajectory using
semi-canonical data structures named bexpr that represent Boolean expressions.
This stage guarantees that the size of the problem depends only on the size ofA. In
the second stage, the expressions of the nodes appearing inC are translated into a
SAT formula, and a constraint is added that for at least one of the nodes appearing
in C, its value in the defining trajectory does not correspond to the value imposed
by its requirement inC. If there is no satisfying assignment to the SAT formula,
thenA =⇒ C holds onM . Otherwise, the satisfying assignment is analyzed to
determine whether it constitutes a counterexample or an incomplete trace. In the
latter case, refinement ofA =⇒ C is required.

satGSTE can also be used for vacuity detection using STE in the following
way: satGSTE is run on the STE assertionAin =⇒ Aout. After computing the
defining trajectory ofAin using bexpr, a SAT formula is produced in which the val-
ues of the nodes in the defining trajectory are constrained to beequalto the values
imposed by the requirements inAout. Additional constraints are added to the SAT
formula as done in vacuity detection using BMC in order to guarantee that the
satisfying assignment imposes some requirement inC in case[πA |= C] = 1, and

36

that the satisfying assignment constitutes a counterexample in case[πA |= C] = 0.
If a satisfying assignment is found, then we conclude that the result of STE on
A =⇒ C is non-vacuous. Otherwise, we need to check whether there exists an
assignmentφ to V so that[φ, πAin |= Aout] = X. This is done by changing the
SAT formula so that the values of the nodes that appear inAout are now con-
strained to begreater than or equalto the values imposed by the requirements
in Aout, with respect to the partial orderv. If a satisfying assignment is found,
then refinement ofAin is required in order to detect (non)-vacuity. Otherwise, we
conclude that the result of STE onA =⇒ C is vacuous.

5.3 Preliminary Stage in Vacuity Detection

There are some cases in which even if there exist constraints inA on internal
nodes, vacuity detection can be avoided by a preliminary analysis based on the
following observation: hidden vacuity may only occur if for some assignmentφ
to V , an internal node(n, t) is constrained byA to either 0 or 1, but its value as
calculated according to the values of its source nodes isX. We call such a node
(n, t) a problematic node. For example, in Example 1 from Chapter 2, the value
of (N3,0) as calculated according to its source nodes isX, and it is constrained by
A to 1.

In order to avoid unnecessary vacuity detection, we suggest to detect all prob-
lematic nodes as follows. Letint(A) denote all internal nodes(n, t) on which
there exists a constraint inA. Let h1

n,t andh0
n,t denote the dual rail representation

of the node(n, t) in σA. Let m1
n,t andm0

n,t denote the dual rail representation of
the value of(n, t) as calculated according to the values of its source nodes inπA.
Then the Boolean expression

∨
(n,t)∈int(A)((h

0
n,t ∨ h1

n,t) ∧ ¬m1
n,t ∧ ¬m0

n,t) repre-
sents all assignments toV for which there exists a problematic node(n, t). If this
Boolean expression is identical to 0, then no problematic nodes exist and vacuity
detection is unnecessary.

37

Chapter 6

Experimental Results

We implemented our automatic refinement algorithm on top of STE in the Intel
FORTE environment [21]. OurAutoSTE algorithm receives a circuitM and an
STE assertionA =⇒ C. When [πA |= C] = X, it chooses a refinement goal
(root, tt) out of the undecided nodes inC. The chosen node has minimal time
and minimal number of inputs and nodes in its BCOI. Next, Algorithm 1 from
Section 4.2 computes the set of relevant inputs(in, t). Heuristics are applied
in order to choose a subset of those inputs, as described in Section 4.3. In our
experimental results we restrict the number of refined candidates in each iteration
to 1. We changeA as described in Section 4.2 and STE is rerun on the new
assertion.

We ran our algorithm on two different circuits. All runs were performed on a
3.2 GHz Pentium 4 computer with 4 GB memory. The first circuit is the Content
Addressable Memory (CAM) from Intel’s GSTE tutorial. The second circuit is
IBM’s Calculator 2 design [23]. It has a complex specification and is challenging
for Model Checking. Therefore, it constitutes a good example for the benefit the
user can gain from automatic refinement in STE.

We ran Forte in default mode which considers antecedent failures as illegal.
However, since all of our assertions do not contain constraints on internal nodes,
no antecedent failures can occur.

6.1 Content Addressable Memory

The CAM shown in Figure 6.1 contains 16 entries, has a data size of 64 bits and
a tag size of 8 bits. It contains 1152 latches, 83 inputs and 5064 combinational
gates. CAMs use bit fields called tags to identify particular data entries stored in
an array. The associative read operation (aread) of CAMs consists of searching in
parallel all tags in the CAM tag memory to find a match to an input tag (tagin).

38

hit
TAG MEMORY

DATA MEMORY

n

n

d

aread

dwrite

dout
daddr[log(n)−1..0]

datain[d−1..0]

t

tagin[t−1..0]

taddr[log(n)−1..0]

twrite

Figure 6.1: Content Addressable Memory. Tag size=t, Number of entries=n, Data
size=d

Assertion result Total Iter. Time BDD Nodes
1 pass 2 3 4768
2 fail 7 20 57424
3 fail 3 17 29006

Table 6.1: Automatic Refinement Performance on CAM Assertions

If a match is found, the CAM outputs the associated data entry to dout. The
verification of the aread operation using STE is described in [17]. The assertions
in [17] contain assumptions on the internal state of the tag memory. The user may
want to check the aread operation after a write operation to the tag memory. In
STE such cases can be checked when bounding the time that passed between the
time the tag is written and the time it is read. We present the results ofAutoSTE
on 3 such assertions. Figure 6.1 reports the final result, number of refinement
iterations, run-time in seconds and peak BDD nodes for each assertion. Table 6.2
reports the refinement goal and added constraint in each refinement iteration.vn,t

denotes a fresh symbolic variable for node(n, t). Similarly,−→v n,t is a vector of
fresh symbolic variables for the vector of nodesn at timet.
Assertion 1 checks that if a tag value

−−→
TAG is written to an address

−→
A in the tag

memory at time 0 (where
−−→
TAG and

−→
A are vectors of symbolic variables over

{0, 1}), and at time 1
−−→
TAG is read, then it should be found in the tag memory and

hit should be 1. Assertion 1 is: (tagin is
−−→
TAG) ∧ (taddr is

−→
A) ∧ (twrite is 1)∧

N ((aread is 1)∧ (tagin is
−−→
TAG)) =⇒ N (hit is 1)

Assertion 1 should pass. The reason is that if at time 1 there is no write opera-
tion to the tag memory (twrite is 0), then

−−→
TAG should be found in address

−→
A 1. If

there is a write operation to the tag memory at time 1 (twrite is 1), then
−−→
TAG should

be found since it is written again to the tag memory. However,[πA |= C] = X.

1usually it is assumed that the same tag cannot appear in more than one tag memory entry.
However, even if we do not make this assumption, assertion 1 should still pass.

39

The reason is that since twrite and taddr at time 1 equalX, the CAM cannot deter-
mine whether to write the value of tagin at time 1 to the tag memory. Moreover,
it cannot decide to which tag entry to write it. As a result, the value of the entire
tag memory at time 1 isX, and thus the value of hit at time 1 isX.

Assertion Iter. Goal Added Constraint

1 1 hit,1 N(
−−→
TAG 6= 0 → twrite isvtwrite,1)

1 2 hit,1 N((
−−→
TAG 6= 0 ∧ vtwrite,1 = 1) →

taddr is−→v taddr,1)

2 1 hit,1 N(
−−→
TAG 6= 0 → twrite isvtwrite,1)

2 2 hit,1 N((
−−→
TAG 6= 0 ∧ vtwrite,1 = 1) →

taddr is−→v taddr,1)

2 3 dout[0],1 N(
−−→
TAG = 0 → twrite isvtwrite,1)

2 4 dout[0],1 N((
−−→
TAG = 0 ∧ vtwrite,1 = 1) →−−→

taddr is−→v taddr,1)
2 5 dout[0],1 N(dwrite isvdwrite,1)

2 6 dout[0],1 N(vdwrite,1 = 1 → −−−→
daddr is−→v daddr,1)

2 7 dout[0],1 N(((vdwrite,1 = 1) ∧ (−→v daddr,1 =
−→
A)) →

din[0] is vdin[0],1)

3 1 dout[0],2 D[0] 6= 0 → dwrite isvdwrite,0

3 2 dout[0],2 (D[0] 6= 0 ∧ vdwrite,0 = 1) →−−−→
daddr is−→v daddr,0

3 3 dout[0],2 (D[0] 6= 0 ∧ −→A 6= 0) →
tagmem0 is−→v tagmem0,0

Table 6.2: Automatic Refinement of CAM Assertions

After two refinements,AutoSTE terminates with a pass result. Note that con-
straints were added only in the subset of trajectories in which they were necessary
for verification.

−−→
TAG 6= 0 appears in the domain restriction since in this specific

CAM implementation, the default value of the data source nodes of the tag mem-
ory is 0. Thus, in the special case where

−−→
TAG = 0, even without knowing if and

to which tag entry a tag is written at time 1, the CAM can determine that an entry
holding a tag that equals 0 exists in the tag memory.

Assertion 2 is an extension of Assertion 1. We add a constraint to the an-
tecedent that at time 0, datamem[

−→
A] is

−→
D . We also add a requirement to the

consequent that at time 1, dout is
−→
D . AutoSTE produces a counterexample for

assertion 2. In the first two iterations the refinement goal was (hit,1), since it
depends on less inputs than each entry of dout. Once the requirement on(hit, 1)

40

holds, the next refinement goal is dout[0]. In the following two iterations, twrite
and taddr at time 1 are added toA when

−−→
TAG = 0, since in order to determine the

value of dout[0] at time 1, it should be known which tag entry actually holds the
tag that is written at time 1 (if written at all). The set of relevant PIs for refinement
in iterations 5-7 included dwrite, daddr and din[0], all at times 0 and 1, the initial
values of all tag memory entries, and the initial values of bit number 0 of all data
memory entries.

The final refined assertion yields a symbolic counterexample in which dwrite
at time 1 equals 1, daddr at time 1 equals taddr at time 0, and din[0] at time 1 is
different from D[0]. This counterexample stems from the fact that the assertion
is erroneous. If new data is written at time 1 to the data entry associated with−−→
TAG, then dout at time 1 will be equal to the new data. Note that only constraints
relevant to this counterexample were added to the assertion.

Assertion 3 states that if at time 0
−−→
TAG is written to address

−→
A and datamem[

−→
A]

is
−→
D , and at time 2

−−→
TAG is read, and in addition no write was performed to the tag

and data memory since time 0, then at time 2 hit is 1 and dout is
−→
D . Assertion 3

is as follows: (tagin is
−−−→
TAG)∧ (taddr is

−→
A)∧ (twrite is 1)∧ (datamem[

−→
A] is

−→
D)

∧N((twrite is 0)∧(dwrite is 0))∧N2((aread is 1)∧(tagin is
−−−→
TAG)∧(twrite is 0)∧

(dwrite is 0)) =⇒ N2((hit is 1)∧ (dout is
−→
D)). This assertion should fail since the

tag memory may already hold at time 0 a tag that equals
−−→
TAG. Though usually it

is assumed that the CAM environment will not write the same tag to two differ-
ent entries, most CAM implementations do not assume so.AutoSTE generates
a counterexample after 3 refinement iterations. In the counterexample, tag entry
0 equals

−−→
TAG, and the address

−→
A to which

−−→
TAG is written is different from 0.

The data associated with tag entry 0 appears in dout, rather than the one written
to address

−→
A . This assertion demonstrates the case in which there is a need for

refinement of initial values of latches (tagmem0 at time 0). Since our heuristics
prefer inputs that influence control, the constraint on tagmem0 was added after
constraints were added on dwrite and

−−−→
daddr at time 0.

6.2 Calculator Design

The Calculator 2 design [23] shown in Figure 6.2 is used as a case study design
in simulation based verification. It contains 2781 latches, 157 inputs and 56960
combinational gates. The calculator supports 4 types of commands: add,sub,shift
right (shiftr) and shift left (shiftl).nonestands for no command. Any other com-
mand is invalid. It has two internal arithmetic pipelines: one for add/sub and one
for shifts. The first argument of the command is sent at the same cycle as the com-
mand. The second argument is sent in the following cycle. Up to 4 commands can

41

SHIFT PIPELINE

PIPELINE

ADD/SUB

reset

c_clk

req1_cmd_in[0:3]
req1_data_in[0:31]
req1_tag_in[0:1]

req2_cmd_in[0:3]
req2_data_in[0:31]
req2_tag_in[0:1]

req3_cmd_in[0:3]
req3_data_in[0:31]
req3_tag_in[0:1]

req4_cmd_in[0:3]
req4_data_in[0:31]
req4_tag_in[0:1]

out_resp1[0:1]

out_data1[0:31]
out_tag1[0:1]

out_resp2[0:1]
out_data2[0:31]
out_tag2[0:1]

out_resp3[0:1]
out_data3[0:31]

out_resp4[0:1]
out_data4[0:31]
out_tag4[0:1]

out_tag3[0:1]

Figure 6.2: Calculator

be sent into the calculator from each of the 4 ports. The tag is a unique identifer
for each of the commands from each port. It is sent at the same cycle as the com-
mand. The commands may be executed out of order. However, commands from
the same port that use the same pipeline (add/sub and shift) must return in order.
The response is 1 for good, 2 for underflow, overflow or invalid command, 3 for
an internal error and 0 for no response. Reset is 1 for the first 3 cycles.

We present the results ofAutoSTE on 4 assertions, all resulting in anX truth
value ofC in the initial STE run. One assertion passed and the others failed. Two
assertions failed due to an erroneous specification, and one due to a bug that was
planted into the design and is documented in [23]. Figure 6.3 reports the final
result, number of refinement iterations, run-time in seconds and peak BDD nodes
for each assertion. Table 6.4 reports the refinement goal and added constraint in
each refinement iteration.

Assertion 1 checks whether after reset, if a port sends either an add or sub com-
mand, and the other ports send either no command or a command different than
add and sub, then the port that sent the add/sub command receives a response with
the appropriate tag at the first available time (4 cycles after the commands were
sent). A vector

−→
P of symbolic variables is used to determine which port is send-

ing the add or sub command. The constraints in whichi appears are duplicated

Assertion result Total Iter. Time BDD Nodes
1 fail 2 87 6241
2 fail 2 100 20134
3 fail 1 220 530733
4 pass 11 494 17323

Table 6.3: Automatic Refinement Performance on Calculator Assertions

42

for each constant. We used parametric representation to produce the Boolean ex-
pressions(add ∨ sub) and(¬add ∧ ¬sub) overV 2:
((
−→
P = i) → (N3((reqi cmd in is (add ∨ sub)) ∧ (reqi tag in is

−−→
TAG)

∧∀j 6= i : (reqj cmd in is (¬add ∧ ¬sub))) ∧ N4(reqi cmd in is none))) =⇒
((
−→
P = i) → ((N7(out respi is 1) ∧ (out tagi is

−−→
TAG))))

The symbolic counterexample presents a case in which there is an overflow
for an add command in the data sent by port 1, which triggers an invalid response
at cycle 7. Though the cone of influence of outresp1[0] contains all command,
tag and data inputs from all ports at different times, the set of relevant inputs con-
tained only all entries of req1datain at cycles 3 and 4. Out of them, the values of
req1datain[31] at cycles 3 and 4 are the minimal set that should suffice for gen-
erating a counterexample, and they are indeed the ones chosen by our heuristics
and added as constraints.

In assertion 2 we constrained the command sent by porti to add. The msb bits
of the sent data were constrained to 0 to avoid a possibility for overflow. We added
a requirement for the output data for porti to match the expected data. However,
we removed the constraint on the commands sent by other ports. Assertion 2 is as
follows:
((
−→
P = i) → (N3((reqi cmd in is add)∧ (reqi tag in is

−−→
TAG)∧

(reqi datain[0:30] is
−→
A) ∧ (reqi datain[31] is 0)) ∧ N4((reqi cmd in is none) ∧

(reqi datain[0:30] is
−→
B) ∧ (reqi datain[31] is 0)))) =⇒

((
−→
P = i) → N7((out respi is 1) ∧ (out tagi is

−−→
TAG) ∧ (out datai is

−−−−→
A + B)))

The counterexample displays a case in which both ports 1 and 2 send an add
command, and port 3 sends a shift command. In this case port 1 is answered
before port 2. The assertion fails due to an erroneous specification: since port 1
has priority over port 2, it is not guaranteed that port 2 will receive a response at
the first possible cycle. Due to the implementation of the priority queue, the value
of an additional port had to be definite. The BCOI of (outresp2[0],7) contains
cmd, data and tag inputs of all ports at cycles 3 and 4. Out of them, only the cmd
and data inputs are relevant inputs.

Assertion 3 presents the following constraints: after reset, a port sends an
add or sub command. After 2 cycles, it sends an add command with a certain
tag and data arguments, while limiting the msb of the sent data to 0 to avoid
a possibility for overflow. Moreover, all other ports do not send an add or sub
command throughout this time. The requirements are: the port that sent the add
command receives the response good with the appropriate tag value and expected
output data. Assertion 3 is as follows:

2Constraints on reset and on the clock that exist in all assertions were omitted. Next time
operator refers to the calculator clock cycles.

43

(
−→
P = i) → (N3((reqi cmd in is (add∨sub))∧∀j 6= i : (reqj cmd in is (¬add∧

¬sub)))∧N4(reqj cmd in is none)∧ ∀j 6= i : (reqj cmd in is (¬add∧¬sub)))∧
N5((reqi cmd in is add) ∧ (reqi tag in is

−−−→
TAG) ∧ (reqi datain[0:30] is

−→
A)∧

(reqi datain[31] is 0)) ∧ ∀j 6= i : (reqj cmd in is (¬add ∧ ¬sub))∧
N6((reqi cmd in is none)∧(reqi datain[0:30] is

−→
B)∧(reqi datain[31] is 0)∧

∀j 6= i : (reqj cmd in is (¬add ∧ ¬sub))) =⇒
(
−→
P = i) → N9((out respi is good)∧(out tagi is

−−−→
TAG)∧(out datai is

−−−−→
A + B))

Note the variables used for the parametric representation of the commands for
portsj are different in each cycle.

There was one refinement iteration. The BCOI of respout1[0] includes all
data and tag inputs of all ports. However, the set of relevant inputs includes only
the tags of all ports at cycles 3-5. Our heuristics chose the tag of port 1 at cycle
3. Choosing any other input would require additional iterations in order to pro-
duce a counterexample. In the counterexample, the tag values of port 1 at cycles 3
and 4 are not consecutive. This counterexample stems from a planted design bug
documented in [23]. There is supposed to be no restriction on tag ordering. How-
ever, commands whose tags are out of order are classified as an invalid command.
When fixing this bug, the assertion passes in the first STE run.

Assertion 4 checks whether after reset, if any port sends an invalid command,
then it receives an invalid command response at the first possible cycle. Again
we used parametric representation for all combinations of illegal command values
(denotedinvalid):

(
−→
P = i) → N3((reqi cmd in is invalid)∧ (reqi tag in is

−−−→
TAG)) =⇒ (

−→
P =

i) → N7((out respi is 2) ∧ (out tagi is
−−−→
TAG))

This assertion should pass. However, due to the implementation of the priority
queue, the values of 2 other port commands (and in some cases 3) should be defi-
nite in order for the assertion to pass. The set of relevant inputs contained all cmd
and data inputs at cycles 3 and 4. The tag inputs were not relevant, although they
are all in the BCOI of all output responses. For this assertion, as opposed to others,
not using the domain restriction operation reduces the number of refinements.

44

Assert. Iter. Goal Added Constraint

1 1 out resp1[0],7 N3−→P = 1 → req1datain[31] is vreq1 data in[31],3

1 2 out resp1[0],7 N4−→P = 1 → req1datain[31] is vreq1 data in[31],4

2 1 out resp2[0],7 N3−→P = 2 → req1cmd in is−→v req1 cmd in,3

2 2 out resp2[0],7 N3(
−→
P = 2∧−→v req1 cmd in,3 = (add ∨ sub)) →

req3cmd in is−→v req3 cmd in,3

3 1 out resp1[0],9 N3−→P = 1 → req1 tag in is−→v req1 tag in,3

4 1 out resp1[0],7 N3−→P = 1 → req2cmd in is−→v req2 cmd in,3

4 2 out resp1[0],7 N3−→P = 1 → req3cmd in is−→v req3 cmd in,3

4 3 out resp1[0],7 N3(
−→
P = 1∧

(−→v req2 cmd in,3 = 2 ∨ −→v req3 cmd in,3 = 2)) →
req4cmd in is−→v req4 cmd in,3

4 4 out resp2[0],7 N3−→P = 2 → req1cmd in is−→v req1 cmd in,3

4 5 out resp2[0],7 N3−→P = 2 → req3cmd in is−→v req3 cmd in,3

4 6 out resp2[0],7 N3(
−→
P = 2∧

(−→v req1 cmd in,3 = 2 ∨ −→v req3 cmd in,3 = 2)) →
req4cmd in is−→v req4 cmd in,3

4 7 out resp3[0],7 N3−→P = 3 → req1cmd in is−→v req1 cmd in,3

4 8 out resp3[0],7 N3−→P = 3 → req2cmd in is−→v req2 cmd in,3

4 9 out resp3[0],7 N3(
−→
P = 3∧

(−→v req1 cmd in,3 = 2 ∨ −→v req2 cmd in,3 = 2)) →
req4cmd in is−→v req4 cmd in,3

4 10 out resp4[0],7 N3−→P = 4 → req1cmd in is−→v req1 cmd in,3

4 11 out resp4[0],7 N3−→P = 4 → req2cmd in is−→v req2 cmd in,3

Table 6.4: Automatic Refinement of Calculator Assertions

45

Chapter 7

Conclusions and Future Work

This work is a first attempt at automatic refinement of STE assertions. We have
developed an automatic refinement technique which is based on heuristics. We
proved that the refined assertion preserves the semantics of the original assertion.
We have implemented our automatic refinement in the framework of Forte, and ran
it on two nontrivial circuits of dissimilar functionality. The experimental results
show success in automatic verification of several nontrivial assertions.

Another important contribution of our work is identifying that STE results
may hide vacuity. This possibility was never raised before. We formally defined
STE vacuity, and explored different aspects of vacuity in STE, including general
STE vacuity and vacuity in constrained-based STE, and proposed several methods
for vacuity detection.

Future research directions include extending automatic refinement to GSTE [28].
GSTE supports allω-regular properties and thus requires a more expressive spec-
ification language and a reparameterization algorithm. Vacuity definition and de-
tection should also be extended to GSTE.

We would like to implement our suggested vacuity detection algorithms and
compare their performance. In addition, we would like to adapt our automatic
refinement techniques to SAT based STE [25, 18], and integrate SAT based re-
finement techniques [16, 7].

46

Appendix A

Additional Vacuity in
Constraint-based STE

In addition to the vacuity problem discussed in Chapter 5, to which we refer as
general STE vacuity, a special vacuity problem exists in a SAT-based STE imple-
mentation namedconstraint-based STEthat is suggested in [18]. We refer to this
special vacuity problem asconstraint-based STE vacuity. Although constraint-
based STE vacuity is related to general STE vacuity, it does not exist in other
STE implementations. In order to understand the causes for constraint-based STE
vacuity, we first describe how the constraint-based STE problem is formulated
in [18].

A SAT formula that describes the constraint-based STE problem is built as
follows. The variables of the SAT formula include all the symbolic variables in
V . In addition, each node(n, t) is represented by two Boolean variables,v1

n,t

andv0
n,t. Similarly to the dual rail representation in the defining trajectory, the

assignments to these two variables represent the four possible values of(n, t) over
the quaternary domainQ ≡ {1, 0, X,⊥}. The constraints of the SAT formula are
as follows:

• Each constraint inA on the value of a node(n, t) is translated to a matching
constraint in the SAT formula. We denote this set of constraintscons(A).

• An additional constraint is added to the SAT formula to guarantee that at
least one of the requirements inC on the value of a node(n, t) does not
hold. We denote this constraintcons(C).

• The value of each node(n, t) is constrained to be different from⊥ by adding
the following constraint:¬v1

n,t ∨¬v0
n,t. We refer to this set of constraints as

consistency constraints.

47

• Let val1n,t, val0n,t denote the dual rail of the value of the node(n, t) as calcu-
lated according to the values of its source nodes. The value of each node is
constrained to be at least as accurate asval1n,t, val0n,t, i.e., it is required that
(v1

n,t, v
0
n,t) v (val1n,t, val0n,t). We refer to this set of constraints ascons(M).

For example, if(n, t) is an AND-node with two source nodes(m1, t) and
(m2, t), then the following constraints are added:

1. If (m1, t) and(m2, t) equal 1 then(n, t) equals 1. This is guaranteed
by adding the constraint¬v1

m1,t ∨ ¬v1
m2,t ∨ v1

n,t.

2. If (m1, t) equals 0 then(n, t) equals 0. This is guaranteed by adding
the constraint¬v0

m1,t ∨ v0
n,t.

3. If (m2, t) equals 0 then(n, t) equals 0. This is guaranteed by adding
the constraint¬v0

m2,t ∨ v0
n,t.

Note that the constraints incons(M) already take into account the existence
of the consistency constraints.

The final SAT formula is combined of the conjunction of the four sets of con-
straints. A satisfying assignmentφ to the SAT formula represents a trajectoryπ
that satisfiesA but does not satisfy at least one of the requirements inC, and in
addition none of the nodes inπ equals⊥. More formally, letφ(V) be the as-
signment ofφ to the variables inV . Then it holds that[φ(V), π |= A] = 1 and
[φ(V), π |= C] ∈ {0, X}.

The special vacuity problem arises due to the constraints incons(M). For
each internal node(n, t), the SAT formula allows the situation in which its value
is more accurate than the value inferred from its source nodes. This causes a
special vacuity problem that is demonstrated by Example 3.

Example 3 We return to Example 1 from Chapter 2 with the following change: we
omit the constraint inA on the internal node N3. The resulting STE assertion is as
follows: (In1 is 0)∧ (In3 isv1) =⇒ N(N6 is 1). A possible satisfying assignment
to the SAT formula may contain the assignments(In1, 0) = 0, (In2, 0) = X,
(In3, 0) = v1 = 0 and (N3, 0) = 1. However, for all concrete trajectoriesσ of
M so thatσ(0)(In1) = 0 andσ(0)(In3) = 0 it holds thatσ(0)(N3) = 0. Thus,
the counterexample is spurious.

The similarity between the constraint-based STE vacuity problem and the gen-
eral STE vacuity problem is that they both stem from a ”hidden” assumption that
when the value of a node isX in some trajectoryπ, then it stands both for 0 and
for 1, i.e., there exists a concrete trajectoryπ1

c v π in which the value of this
node is 1 and there exists a concrete trajectoryπ2

c v π in which the value of

48

this node is 0. This assumption of course is not always true, as demonstrated by
Examples 2 and 3. We emphasize that the general vacuity problem also exists in
constraint-based STE.

Note that constraint-based STE vacuity may occur even when the user does
not impose constraints on internal nodes, as demonstrated by Example 3. In other
words, the general STE vacuity problem can be viewed as stemming from an in-
consistent STE assertion and the fact that the STE algorithm cannot detect this
inconsistency, whereas the constraint-based STE vacuity problem is an inherent
problem in the representation of the STE problem. Thus, it may occur even when
the STE assertion is consistent. Note also that constraint-based STE vacuity can
occur only when a satisfying assignment is found, whereas the general STE vacu-
ity problem may occur both for passed and failed assertions. The reason is that as
opposed to constraints inA on internal nodes, a definite value for other internal
nodes is not imposed by the SAT formula. If the formula is unsatisfiable, it is in
particular unsatisfiable also for all assignments in which the value of an internal
node (that is not constrained byA) is exactly as inferred from the values of its
source nodes.

A possible solution is to change constraint-based STE by adding constraints
to cons(M) forcing the value of each node to be exactly as inferred by the values
of its source nodes. In the case of an AND-node(n, t) with two source nodes,
this means doubling the number of constraints incons(M) on the value of(n, t),
since we need to add constraints for the cases in which one of the source nodes
equalsX and the other equals 1, and for the case in which both source nodes equal
X. This formulation is referred to in [18] as simulation-based STE. It is used in
the SAT-based STE implementation of [25] (though as can be inferred from Sec-
tion 5.2 there are additional differences in the formulation of the STE problem as
a SAT formula between [25] and [18]). The significant reduction in the number
of constraints produced in constraint-based STE compared to simulation-based
STE was one of the main motivations for its development. It is mentioned in
the analysis of the experimental results of [18] that constraint-based STE out-
performs simulation-based STE due to the reduction in the number of generated
clauses. Thus the proposed solution to the constraint-based STE vacuity problem
will transform constraint-based STE into simulation-based STE and cancel the
performance enhancement of constraint-based STE.

An alternative solution is to perform vacuity detection for constraint-based
STE in a similar way to vacuity detection for STE. As explained before, if the
SAT formula is unsatisfiable, then only general STE vacuity detection is required.
If the SAT formula is satisfiable, then both general STE vacuity and constraint-
based STE vacuity can be detected at the same time as follows.

Given a satisfying assignmentsat to the SAT formula, we denote the value
assigned to each node(n, t) by sat(n, t). We denote the value of(n, t) that is

49

inferred by the values of its source nodes insat by val(n, t, sat). We can build an
antecedentAnew which reflects all constraints imposed bysat. Anew contains the
following constraints:

• Each internal node(n, t) for whichsat(n, t) v val(n, t, sat) andsat(n, t) 6=
val(n, t, sat) is constrained tosat(n, t).

• Each input(in, t) for whichsat(n, t) 6= X is constrained tosat(n, t).

The internal nodes constrained byAnew may contain both nodes constrained
by the user and nodes constrained by constraint-based STE. Thus, applying either
of the general STE vacuity detection algorithms from Chapter 5 forAnew =⇒ C
will detect both general STE vacuity and constrained based STE vacuity.

50

Bibliography

[1] Sharon Barner, Daniel Geist, and Anna Gringauze. Symbolic localization
reduction with reconstruction layering and backtracking. InCAV’02: Pro-
ceedings of Conference on Computer-Aided Verification, 2002.

[2] Derek L. Beatty and Randal E. Bryant. Formally verifying a microprocessor
using a simulation methodology. InDAC ’94: Proceedings of the 31st an-
nual conference on Design automation, pages 596–602. ACM Press, 1994.

[3] Derek L. Beatty, Randal E. Bryant, and Carl-Johan H. Seger. Synchronous
circuit verification by symbolic simulation: an illustration. InAUSCRYPT.
MIT Press, 1990.

[4] Ilan Beer, Shoham Ben-David, Cindy Eisner, and Yoav Rodeh. Efficient de-
tection of vacuity in ACTL formulas. InCAV’97: Proceedings of Conference
on Computer-Aided Verification, 1997.

[5] Armin Biere, Allesandro Cimatti, Edmond M. Clarke, and Yunshan Zhu.
Symbolic model checking without BDDs. InTACAS’99: Conference on
tools and algorithms for the construction and analysis of systems, 1999.

[6] Glenn Bruns and Patrice Godefroid. Model checking partial state spaces with
3-valued temporal logics. InComputer Aided Verification, pages 274–287,
1999.

[7] Pankaj Chauhan, Edmond M. Clarke, James Kukula, Samir Sapra, Helmut
Veith, and Dong Wang. Automated abstraction refinement for model check-
ing large state spaces using SAT based conflict analysis. InFMCAD’02:
Proceedings of the Forth International Conference on Formal Methods in
Computer-Aided Design, 2002.

[8] Ching-Tsun Chou. The mathematical foundation of symbolic trajectory eval-
uation. InCAV’99: Proceedings of Conference on Computer-Aided Verifica-
tion, 1999.

51

[9] Edmond M. Clarke, Orna Grumberg, S. Jha, Y. Lu, and Helmut Veith.
Counterexample-guided abstraction refinement. InCAV’00: Proceedings
of Conference on Computer-Aided Verification, 2000.

[10] Edmond M. Clarke, Orna Grumberg, Muralidhar Talupur, and Dong Wang.
Making predicate abstraction efficient: How to eliminate redundant predi-
cates. InCAV’03: Proceedings of Conference on Computer-Aided Verifica-
tion, 2003.

[11] Edmond M. Clarke, Anubhav Gupta, James Kukula, and Ofer Strichman.
SAT based abstraction-refinement using ILP and machine learning tech-
niques. InCAV’02: Proceedings of Conference on Computer-Aided Veri-
fication, 2002.

[12] Scott Hazelhurst and Carl-Johan H. Seger. Model checking lattices: Using
and reasoning about information orders for abstraction.Logic journal of
IGPL, 7(3), 1999.

[13] Orna Kupferman and Moshe Y. Vardi. Vacuity detection in temporal model
checking. InCHARME’99: Conference on Correct Hardware Design and
Verification Methods, pages 82–96, 1999.

[14] Orna Kupferman and Moshe Y. Vardi. Vacuity detection in temporal model
checking.Software Tools for Technology Transfer, 4(2), 2003.

[15] Robert P. Kurshan.Computer-Aided Verification of coordinating processes -
the automata theoretic approach. 1994.

[16] Kenneth L. McMillan and Nina Amla. Automatic abstraction without coun-
terexamples. InTACAS’03: Conference on tools and algorithms for the
construction and analysis of systems, 2003.

[17] Manish Pandey, Richard Raimi, Randal E. Bryant, and Magdy S. Abadir.
Formal verification of content addressable memories using symbolic trajec-
tory evaluation. InDAC, 1997.

[18] Jan-Willem Roorda and Koen Claessen. A new SAT-based algorithm for
symbolic trajectory evaluation. InCHARME’05: Proceedings of Correct
Hardware Design and Verification Methods, 2005.

[19] Tom Schubert. High level formal verification of next-generation micropro-
cessors. InDAC’03: Proceedings of the 40th conference on Design automa-
tion.

52

[20] Carl-Johan H. Seger and Randal E. Bryant. Formal verification by symbolic
evaluation of partially-ordered trajectories.Formal Methods in System De-
sign, 6(2), 1995.

[21] Carl-Johan H. Seger, Robert B. Jones, John W. O’Leary, Tom F. Melham,
Mark Aagaard, Clark Barrett, and Don Syme. An industrially effective envi-
ronment for formal hardware verification.IEEE Trans. on Computer-Aided
Design of Integrated Circuits and Systems, 24(9), 2005.

[22] Sharon Shoham and Orna Grumberg. A game-based framework for CTL
counterexamples and 3-valued abstraction-refinement. InCAV’03: Proceed-
ings of Conference on Computer-Aided Verification, 2003.

[23] Bruce Wile, Wolfgang Roesner, and John Goss.Comprehensive Functional
Verification: The Complete Industry Cycle. Morgan-Kaufmann, 2005.

[24] James C. Wilson.Symbolic Simulation Using Automatic Abstraction of In-
ternal Node Values. PhD thesis, Stanford University, Dept. of Electrical
Engineering, 2001.

[25] Jin Yang, Rami Gil, and Eli Singerman. satGSTE: Combining the abstraction
of GSTE with the capacity of a SAT solver. InDCC, 2004.

[26] Jin Yang and Amit Goel. GSTE through a case study. InICCAD, 2002.

[27] Jin Yang and Carl-Johan H. Seger. Generalized symbolic trajectory eval-
uation - abstraction in action. InFMCAD’02: Proceedings of the Forth
International Conference on Formal Methods in Computer-Aided Design,
2002.

[28] Jin Yang and Carl-Johan H. Seger. Introduction to generalized symbolic tra-
jectory evaluation.IEEE Trans. Very Large Scale Integr. Syst., 11(3), 2003.

53

