
BOUNDED MODEL-CHECKING

FOR BRANCHING-TIME LOGIC

Rotem Oshman

BOUNDED MODEL-CHECKING

FOR BRANCHING-TIME LOGIC

Research Thesis

Submitted in partial fulfillment of the requirements for the degree of

Master of Computer Science

Rotem Oshman

Submitted to the Senate of the Technion - Israel Institute of Technology

SIVAN , 5768 Haifa June, 2008

The research thesis was done under the supervision of Prof. Orna Grumberg in the Faculty

of Computer Science.

The generous financial help of the Technion is gratefully acknowledged.

Contents

Abstract 1

List of Symbols and Abbreviations 3

1 Introduction 5

1.1 Related Work . 8

1.1.1 Bounded Model-Checking . 8

1.1.2 Completeness Criteria . 9

1.1.3 The Automata-Theoretic Approach 10

1.1.4 Counter-Examples and Proofs . 11

1.1.5 Bounded Model-Checking for Branching-Time Logic 13

2 Preliminaries 15

2.1 Kripke Structures . 15

2.2 The µ-Calculus . 15

2.2.1 The syntax of µ-calculus . 16

2.2.2 The semantics of µ-calculus . 16

2.2.3 µ-calculus model-checking . 18

2.3 Alternating Parity Tree Automata . 18

2.3.1 Acceptance of automata . 20

2.3.2 Weak automata . 23

2.4 Namjoshi-style Temporal Proofs . 24

2.5 Notation and Terminology . 28

3 Graph-Based BMC Encodings for Universal µ-Calculus 29

3.1 Encoding Namjoshi-style Proof Obligations 29

3.2 Improving the Encoding . 32

3.2.1 Symmetry-breaking . 33

3.2.2 Encoding successor states explicitly 34

3.3 A Specialized Encoding for Weak Automata 37

3.4 Constructing a Counter-Example . 45

4 Completeness Thresholds 47

4.1 A Static Completeness Threshold . 47

4.2 A Dynamic Completeness Criterion . 50

5 A Comparison of the Three Approaches to BMC for Branching-Time

Logic 63

5.1 The path-based encoding . 63

5.2 The tree-based encoding . 65

5.3 An example . 68

5.4 Discussion . 70

6 Experimental Results 73

6.1 The Setup . 73

6.2 The Results . 74

6.3 Analysis . 74

6.3.1 Counter-examples . 77

7 Conclusions 79

7.1 Future Work . 79

7.1.1 Implementation issues . 80

7.1.2 Improved encodings and applications 80

Bibliography 82

List of Figures

2.1 The automaton Aϕ from Example 2.3.1 . 22

2.2 The model from Example 2.4.1 . 27

3.1 The model for Example 3.4.1 . 45

3.2 The automaton A¬ϕ from Example 3.4.1 . 46

4.1 The model from Example 4.2.1 . 51

4.2 The automaton for E[p U q] from Example 4.2.1 51

4.3 The model from Example 4.2.2 . 53

4.4 The automaton A¬ϕ from Example 3.4.1 and Example 4.2.2 54

5.1 The path-based encoding for ϕ with k = 3, using f3(ϕ) = 5 paths 69

5.2 The tree-based encoding for ϕ′ with k = 3 70

5.3 The model from Example 5.3.1 . 70

5.4 The model Mk-cycle from Example 5.4.1 . 72

List of Tables

2.1 The transitions and priorities of Aϕ and the correspondence to sub(ϕ) 22

2.2 The proof Π from Example 2.4.1 . 27

3.1 The transitions of A¬ϕ and the invariants of Π from Example 3.4.1 46

4.1 The transitions of the automaton for E[p U q] from Example 4.2.1 51

4.2 The transitions of A¬ϕ and the invariants of Π1,Π2 and Π3 from Example 3.4.1 54

6.1 Success rates in disproving mixed safety/liveness properties 75

6.2 Success rates in disproving liveness properties 75

6.3 Success rates in disproving safety properties 76

Abstract

The model-checking problem asks, given a model of a design and a specification in temporal

logic, whether the model satisfies the specification. Model-checking industrial designs is a

computationally difficult problem, because the state-space that must be explored during

model-checking grows exponentially with the number of variables. One way to handle large

designs is bounded model-checking (BMC), in which we search for a bug or counter-example

of bounded size k with regard to the specification. The existence of such a bug is encoded

as a Boolean formula, which is satisfiable if and only if there is a bug in the model; a SAT

solver is then used to check if the formula is satisfiable or not. If the formula is satisfiable,

there is a bug in the design, and a satisfying assignment is returned to the user as a trace.

If the formula is unsatisfiable, we cannot in general conclude that there is no bug; we must

increase the bound, and search for “larger bugs”.

Bounded model-checking is usually applied only to linear-time properties, which are

formulas that can only talk about each computation path separately. In contrast, branching-

time properties refer to the computation tree of the program. BMC for branching-time

properties is more difficult than BMC for linear-time properties, because it is not known in

advance what shape a counter-example to the property will have. Previous works on BMC

for branching-time logic have based their BMC encodings on worst-case syntactic analysis of

the formula. This approach leads to inefficient encodings, which use a number of variables

that grows exponentially as the formula becomes more complex. It also leads to formulas

which have satisfying assignments that do not provide enough information to construct a

meaningful trace to return to the user.

In this dissertation we suggest a new way to perform BMC for branching-time specifica-

tions. In our approach, we do not constrain the shape of the counter-example in advance:

we let the SAT solver choose both the states and the edges of the counter-example. The re-

sulting encoding is compact, grows polynomially with both the bound and the complexity of

the formula, and returns minimal counter-examples. A satisfying assignment to the formula

encoded also includes annotation, which allows us to explain to the user why it represents a

counter-example to the specification. We present an encoding for the universal fragment of

µ-calculus, and then derive a specialized encoding for the alternation-free fragment.

In addition to finding bugs, BMC can sometimes be used to prove properties. A com-

1

pleteness threshold is an upper bound, such that if we have not found a bug when the

bound reaches the completeness threshold, then there is no bug. We develop a completeness

threshold for ACTL properties. We also develop a dynamic completeness criterion, which is a

Boolean formula that tells us whether there is any hope for finding a counter-example with a

larger bound than the current bound. If the dynamic completeness criterion is unsatisfiable,

we know that no counter-example will be found with a larger bound, and we can conclude

that the specification is satisfied. If the dynamic completeness criterion is unsatisfiable, we

must increase the bound and continue searching.

2

List of Symbols and Abbreviations

Abbreviations

BMC bounded model-checking

SAT the satisfiability problem

ACTL, ECTL the universal and existential fragments of CTL (respectively)

Symbols and Operators

|= satisfaction relation between Kripke structures and formulas or automata

Cq, <q progress relations on rank vectors

2A the powerset of the set A

Lµ the modal µ-calculus

@Lµ, ♦Lµ the universal and existential fragments of the modal µ-calculus (respectively)

JϕKeM denotation of ϕ in M w.r.t. environment e

domain(Π) the states that participate in the proof Π

Variables

Kripke Structures, Formulas and Automata

M Kripke structure or model

S model states

s0 initial state

R transition relation

L labeling function

AP atomic propositions

ϕ, ψ temporal formulas

p atomic proposition

A automaton

Q automaton states

δ automaton transition function

3

F Büchi automaton acceptance condition

Ω parity automaton priority function

<Q partial order on accepting and rejecting sets in a weak automaton

Temporal Proofs

Π Namjoshi-style temporal proof

Υ partial proof

Iq proof invariant for automaton state q

ρq(s) rank vector assigned by automaton state q to model state s

σq(s) integer rank assigned by automaton state q to model state s

PS proof-successor assignment

PSq(s) proof-successor assigned by automaton state q to model state s in PS

Boolean Variables, Predicates and Formulas

ui i-th state in the counter-example

x
q
i , x

q,t
i indicator bit for whether ui belongs to Iq

ρ
q
i rank assigned by q to ui

R Boolean representation of the transition relation

I Boolean representation of the initial state predicate

Pq Boolean representation of the progress relation for q

PRFM,A,k Boolean formula searching for a counter-example of size k

PRF
sym

M,A,k same as PRFM,A,k but with symmetry-breaking

PRF
exp

M,A,k same as PRFM,A,k but with successors encoded explicitly

CMPM,A,k Boolean formula for the dynamic completeness criterion

4

Chapter 1

Introduction

The model-checking problem deals with verifying whether a given model conforms to a

specification. Model-checking has found many practical uses in the industry, particularly in

the verification of hardware designs. Model-checking large designs can be computationally

difficult because of the state explosion problem: as the number of variables or gates in the

design increases, the number of states that need to be explored during model-checking grows

exponentially.

One way to alleviate the problem is through use of OBDD-based algorithms. OBDDs

are a generally compact way to represent sets of states, and Boolean operations such as

disjunction (set union) and conjunction (set intersection) can be implemented efficiently

on OBDDs. Model-checkers that use OBDDs are called symbolic model-checkers, as they

manipulate sets of states rather than individual states during their execution. However, even

symbolic model-checkers are often unable to deal with the size and complexity of modern

industrial designs.

Bounded model-checking (BMC) is another approach to combatting the state-explosion

problem. In BMC, instead of computing the set of states in the design that satisfy the

specification, one uses a SAT solver to try to find a bug — a trace or behavior of the

program that does not satisfy the specification. The Boolean formula passed to the SAT

solver in BMC is generally composed of two components: first, constraints that encode the

existence of a trace or behavior of some bounded size in the model; and second, constraints

that force the behavior to satisfy the negation of the specification. A satisfying assignment

to the formula then represents a bug in the design.

In bounded model-checking we only search for bugs of bounded size. A typical BMC

algorithm starts with some small bound, and increases it in each iteration until a bug is

found, or until the bound reaches some threshold which allows us to conclude that no bug

exists. Such a threshold is called a completeness threshold.

BMC has gained popularity in the industry, because it allows one to find bugs in very

large designs. However, attention has mostly been focused on BMC for linear-time speci-

5

fications, which are specifications that refer to all computation paths of the program, but

only consider each path separately. In constrast, branching-time specifications refer to the

computation tree of the program. Branching-time specifications can express conditions such

as the existence of a “good way to continue” from some point in the computation tree, or

talk about “all possible futures” from some point in the execution.

All linear-time specifications admit counter-examples in the form of a finite or infinite

path (a trace). Therefore, in BMC for linear-time logic, one encodes a path of bounded

length, and constrains it to represent a counter-example. BMC for branching-time logic is

a somewhat thornier problem, because it is not known in advance what shape the counter-

example will take; the counter-example can be a path, a tree, or in general any kind of

graph. In fact, for some branching-time specifications there is no natural notion of a counter-

example: for example, to disprove a specification such as “there exists a path that reaches

some good state”, one needs to show that all paths in the model do not reach a good

state — in other words, the counter-example needs to include all paths of the model. Here

we restrict attention to universal branching-time properties, which can only talk about all

possible futures, not the existence of a future. Universal properties have tractable counter-

examples. However, even with this restriction, it is still not clear in advance what shape the

counter-example to a given property will take.

Previous works on BMC for branching-time logic have taken a “worst-case analysis”

approach: based on syntactic analysis of the formula, one essentially encodes the largest and

most complicated counter-example that may be required to disprove the formula, limited

by the bound, which corresponds to the depth of the counter-example. This pessimistic

approach leads to large counter-examples. In the worst-case, the number of variables needed

to represent the counter-example is exponential in the bound. In addition, if a bug is found,

the assignment returned by the SAT solver is not very informative: as a result of the worst-

case analysis performed on the formula, the assignment may describe parts of the model

that are not needed to disprove the formula, and it provides no way to distinguish between

useful and useless parts.

In this work we suggest a new approach to BMC for branching-time logic. Instead of

constraining the shape of the counter-example in advance as was done in previous work,

we let the SAT solver choose both states and edges of the counter-example. We add local

constraints, to ensure that the counter-example satisfies the negation of the formula. Each

local constraint on a model state can either constrain the state itself, or it can require the

existence of an edge to another state that satisfies certain criteria; local constraints do not

make any requirements beyond the immediate successors of a state.

Our encoding is compact in the sense that no model state is encoded more than once, and

each state can be “re-used” to justify many different subgoals as part of disproving the entire

formula. As a result, the counter-example returned in our approach contains the minimal

6

number of states a counter-example can have. We also return an annotation explaining

which state was used to justify which subgoals.

We show a static completeness threshold for the universal branching-time logic ACTL,

based on syntactic analysis of the formula and the recurrence diameter of the model. In

addition, following the work of Wang in [42], we suggest a dynamic completeness criterion,

which can be used to halt the BMC when it becomes clear that increasing the bound further

will not lead to the discovery of a counter-example. The dynamic completeness criterion

is a Boolean formula whose unsatisfiability indicates that there is no structure that may

be extended into a counter-example when the bound is increased. We point out a mistake

in [42] which leads to unsoundness of the completeness criterion presented there.

Finally, we present experimental results, which show that for complicated branching-time

specifications, our approach performs better than the recent encoding of [42]. Our encoding

is able to falsify more formulas, and also returns counter-examples that are smaller by orders

of magnitude.

7

1.1 Related Work

1.1.1 Bounded Model-Checking

In bounded model-checking (BMC) [4], the problem of finding a counter-example of some

bounded size for a given formula is reduced to satisfiability of Boolean formulas. The mo-

tivation behind the reduction is to leverage recent advances in SAT solver technology in

order to solve large and complex verification problems. The main idea is to encode the

existence of a bounded counter-example in the form of a Boolean formula, such that any

satisfying assignment to the formula represents a counter-example. A SAT solver is then

used to determine whether or not there exists a satisfying assignment.

The specification language used in [4] is LTL, and many subsequent works dealt with LTL

or various other linear-time specification mechanisms; e.g., [17], [28] and [21] for LTL, [19]

for weak alternating Büchi automata, [23] for linear-time µ-calculus, [18] for LTL with past

(PLTL) and [37] for timed automata, to name but a few.

When dealing with linear-time properties, which characterize the desired behavior of all

computation paths of the program, a counter-example to the property is always a finite or

infinite path that does not comform to the characterization. If the path is finite, the bound

k in bounded model-checking corresponds to the length of the path; a path of length k

is referred to as a k-path. Among infinite paths we are only interested in “lasso-shaped”

paths, which enter an infinite loop after some point. It can be shown that any LTL formula

which has a counter-example in the form of an infinite path also has a lasso-shaped counter-

example. A lasso-shaped path with a prefix of length k before it starts repeating is called a

k-loop.

In [4], the translation to a Boolean formula relies on bounded semantics for LTL. The

standard (unbounded) semantics for LTL define when a formula is satisfied by an infinite

path; the bounded semantics define satisfaction over k-paths and k-loops. The bounded

semantics is sound with regard to the unbounded semantics: if a formula is satisfied with

regard to the bounded semantics by a finite prefix of a path, then the formula is satisfied

with regard to the unbounded semantics by the entire (infinite) path; for a loop, satisfaction

in the bounded semantics is equivalent to satisfaction in the unbounded semantics. The

bounded semantics is also complete, in the sense that if a formula is satisfied with regard to

the unbounded semantics by some infinite path π in a model, then there exists a (possibly

different) path π′ and a bound k, such that the formula is either satisfied by the finite prefix

of length k of π′, or π′ is a k-loop that satisfies the formula.

The existence of a k-path or k-loop that represents a counter-example to a given formula

with regard to the bounded semantics can be formulated as a Boolean formula over k states.

The k states are constrained to represent either a k-path or a k-loop by unfolding the

transition relation of the model k − 1 times and constraining the first state to be an initial

8

state. (For a k-loop, additional constraints are necessary to require a back-edge.) In addition,

constraints are added to ensure that the k-path or k-loop satisfies the negation of the original

formula with regard to the bounded semantics. A SAT solver is used to check for the existence

of a satisfying assignment, which represents a counter-example to the original formula. If a

satisfying assignment exists, it is concluded that the model does not satisfy the formula, and

the assignment is returned to the user as a bug trace. If, however, the formula is unsatisfiable,

it cannot usually be concluded that the model satisfies the formula. Instead, one must either

increase the bound k and try again, or try to determine that the formula is satisfied by using

a completeness criterion.

1.1.2 Completeness Criteria

Bounded model-checking is typically used to find counter-examples of some bounded size.

If a counter-example of size k cannot be found, it is generally not possible to conclude that

there is no counter-example. However, there are circumstances when one might safely do so.

A completeness threshold is a predetermined bound, such that if the formula has a

counter-example at all, it must also have a counter-example whose size is smaller than the

completeness threshold. The completeness threshold typically depends on both the formula

and the model. A completeness threshold can be used to verify properties using bounded

model-checking: if the bound has reached the threshold and no counter-example has been

found, it is safe to conclude that no counter-example exists and the model satisfies the

formula.

The original completeness threshold presented in [4] is very pessimistic, although a tighter

bound is presented for the class of lasso-shaped Kripke structures. Tighter completeness

thresholds are developed for various classes of temporal properties in [8], through the use

of automata-theoretic techniques, which will be discussed in Section 1.1.3. Completeness

thresholds in general, and the thresholds of [8] in particular, rely on measures such as the

diameter of the model, which is the longest shortest path between any two reachable states

in the model, and the recurrence diameter of the model, which is the length of the longest

simple (loop-free) path between any two reachable states.

The diameter and recurrence diameter are typically difficult to compute, making it im-

practical to compute a completeness threshold in many cases. In [4] it is shown how to test

if the diameter (resp. recurrence diameter) is larger than a given integer k by constructing

a Boolean formula that is satisfiable iff the diameter (resp. recurrence diameter) is larger

than k, and testing its satisfiability. The diameter and recurrence diameter can be computed

by testing successively greater values of k in this manner until the formula becomes unsat-

isfiable, and then we know that the diameter has been reached. However, if the diameter

or recurrence diameter is large, the Boolean formula may become intractable for the SAT

solver due to its large size. Several methods for simplifying the computation of the recurrence

9

diameter are discussed in [25], but it is still a difficult problem.

Another way to verify safety formulas using SAT is temporal induction, first suggested in

the context of bounded model-checking in [35]. A property p is said to be k-inductive if for

every path of length k + 1, if the first k states satisfy p then the last state satisfies p also.

To prove that a property is k-inductive, one tests the satisfiability of the Boolean formula

that encodes the existence of a path of length k + 1, where the first k states satisfy p but

the last state does not satisfy p. If this formula is unsatisfiable, then p is k-inductive. If,

in addition, every path of length k starting from the initial state contains only states that

satisfy p — which again is easy to check using a SAT-solver — we can conclude that all the

reachable states satisfy p.

If the proof rule outlined above fails, one either increases k or strengthens the property p

(referred to as the inductive invariant). Induction is theoretically complete: if the property

p∧r is used as an invariant, where r expresses reachability, then a 1-induction proof succeeds

in every system where all reachable states satisfy p. However, computing the reachability

condition r is usually not practical, so better ways are needed to ensure termination. One way

is suggested in [2], where every time the proof fails, the inductive invariant is strengthened

to rule out the unreachable states that prevented the proof from succeeding.

1.1.3 The Automata-Theoretic Approach

The automata-theoretic approach to model-checking, championed by Vardi, Wolper and

Kupferman, advocates the use of automata to express specifications. The main ideas are

summarized in [5].

Many of the results in the automata-theoretic approach to linear-time logic are presented

in [41]. Linear-time logic specifications correspond to automata on finite or infinite words;

in particular, LTL specifications can be translated to nondeterministic Büchi automata on

infinite words. Questions such as validity and model-checking can be translated to automata-

theoretic problems such as automata emptiness, which asks whether a given automaton

accepts any word, and language inclusion, which asks whether all the words accepted by one

automaton are also accepted by a second automaton.

The automata-theoretic approach to model-checking has proven useful in bounded model-

checking. In [8], the automata-theoretic approach is used to derive an efficient translation

into SAT of the bounded model-checking problem. The idea is that, given a model M

and an LTL property ϕ = Af , one constructs the automaton A¬ϕ corresponding to the

negation of f . If this automaton accepts any computation path of M , then M 6|= ϕ. To test

whether any computation path is accepted, the cross-product M × A¬ϕ is constructed, and

bounded model-checking is used to find an accepting run of M ×A¬ϕ. If such a run exists, it

represents a computation path of M that is accepted by A¬ϕ, and therefore M 6|= ϕ. In [8]

this is referred to as the semantic translation; it yields smaller formulas, with fewer variables,

10

than the formulas produced by the translation of [4], which is referred to as the syntactic

translation. In addition, techniques such as automata minimization can be employed, and

the resulting encoding is also simpler and more uniform with regard to the specification

language. The automata-theoretic approach also yields completeness thresholds for all LTL

properties [8].

Another automata-theoretic translation for linear-time logic BMC is presented in [19]. In

this work the specification mechanism used is weak alternating Büchi automata on infinite

words. Alternating automata are automata whose transition relation can combine existen-

tial transitions, which specify the set of states to which it is possible to transition, and

universal transitions, which specify a set of states to which the automaton must transition.

Such automata are exactly as expressive as nondeterministic automata, but they can be

exponentially smaller. Weak automata have a particular structure that can be exploited to

simplify model-checking [26]. In [19], the authors borrow ideas from the world of symbolic

model-checking to derive an efficient encoding for weak alternating Büchi automata. Our

work, although developed independently for the most part, is similar to theirs in many re-

spects. The notion of simulating the run of a symbolic model-checker in the Boolean formula

(Section 3.3) came from [19].

For branching-time logic, the corresponding automata-theoretic formalism is automata

on trees. The automata-theoretic approach to model-checking for branching-time logic is

described in [27]. CTL formulas can be translated into alternating automata on infinite

trees with a Büchi acceptance condition. However, to express general µ-calculus properties,

a more expressive acceptance condition is necessary. The parity acceptance condition for

tree automata was suggested by Mostowsky in [31]. In [13], Emerson and Jutla showed that

µ-calculus formulas can be expressed as alternating tree automata with a parity acceptance

condition. Alternating parity tree automata are presented in [43] in a form that is the closest

to the form we will use in this work, and the translation from µ-calculus to automata and

vice-versa is also described in [43] in a very natural way.

1.1.4 Counter-Examples and Proofs

One of the chief concepts around which bounded model-checking revolves is the notion

of a counter-example, which is generally a sub-structure of the model that is sufficient to

demonstrate that the model does not satisfy a temporal property. As already discussed in

Section 1.1.1, a counter-example for a linear-time property is a path in the model. However,

for branching-time properties it is less clear what form a counter-example should take. For

example, the CTL property EFp says that there exists a path along which we eventually

reach a state labeled with p. To convince a user that the property does not hold in a model,

we must be able to show that along all paths we never reach a state labeled with p. To do so,

the counter-example must contain the entire reachable fragment of the model. Even when

11

dealing only with universal path quantifiers in the property — which means the negation

contains only existential path quantifiers — it is still not clear just what a counter-example

should be. In [10] it is shown that universal CTL (ACTL) formulas always admit tree-like

counter-examples, which are structures in which the strongly-connected components (SCCs)

form a finite tree, and each SCC is a cycle.

Counter-examples are generally restricted to the case where the property being checked

does not hold in the model, and they are also restricted in the most part to logics that

only allow universal path quantifiers (e.g., LTL and ACTL). To witness that a model does

satisfy a property we can use a proof or certificate. Many different proof systems for various

temporal logics have been suggested; the one that will be used in this work is Namjoshi’s

proof system for µ-calculus [32], which will be explained in detail in Section 2.4. The feature

that makes it useful for our purposes is that its conditions are local: to verify that a proof

is valid, one need only check a series of local conditions, which refer at most to a state’s

immediate successors in the model. Other proof systems, such as Stirling’s proof rules [38],

keep track of states visited along the current proof branch; in Namjoshi’s system such “book-

keeping” is not required, and ranks are used instead. Relying on the proof rules from [38]

yields a fundamentally different bounded model-checking algorithm from the one we present

here: this is the encoding presented in [42]. The differences will be discussed at length in

Chapter 5.

Namjoshi’s proof system is based on the close connections between the µ-calculus, parity

automata and parity games ([14], [15]). A Namjoshi-style proof for M |= A, where M is a

model and A is an automaton, can be thought of as representing a winning strategy in the

parity game corresponding to M and A. The proof system is described in Section 2.4.

Proofs and counter-examples are closely related concepts. A counter-example witnesses

that the model does not satisfy the formula, so it can be seen as a proof for the negation of

the formula. A proof can also be used as a counter-example when it is not possible to present

the offending behavior as a simple sub-structure of the model, as in the case of EFp. Another

advantage to using proofs over counter-examples in this case is that a proof can summarize

many bad behaviors [32], whereas a counter-example typically represents only one behavior.

This can be useful for applications such as counter-example guided abstraction-refinement

(CEGAR), where information about spurious bad behaviors is used to refine the abstraction.

Proofs are also useful as annotation for counter-examples ([36], [6]): they can help explain

why the counter-example causes the formula to fail. And finally, as discussed in [32], a proof

can be exponentially more succint than a counter-example.

The main idea of our work, as in [42], is to use a SAT solver to find a counter-example

in the form of a proof. The domain of the proof is the set of model states that participate

in the proof; this is used as an actual counter-example, because it represents a sub-structure

of the model that is sufficient to exhibit the bad behavior that causes the formula to fail. In

12

addition, we obtain an annotation, which tells us which states of the counter-example satisfy

which subformulas in the negation of the original formula.

1.1.5 Bounded Model-Checking for Branching-Time Logic

The bounded model-checking problem for branching-time logic has received less attention

than bounded model-checking for linear-time logic. To the best of our knowledge, three

different approaches have emerged. They are discussed in detail in Chapter 5. Here we give

a brief overview.

In [33], bounded model-checking for ACTL is achieved by encoding the counter-example

as a collection of bounded paths. This work uses similar ideas to [4]. The authors develop a

bounded semantics for ACTL, similar to the way bounded semantics for LTL are developed

in [4], and based on the bounded semantics they constrain the paths encoded to represent

a counter-example to the property. The number of paths that need to be encoded in order

to falsify a given formula is exponential in the number of temporal operators, in the worst

case. The number of variables in the resulting encoding is exponential in the formula but

polynomial in the bound. The counter-example obtained is also not very informative — it is

a collection of paths of the same length, with no annotation to indicate which parts of which

paths contributed to the offending behavior. The approach of [33] is extended to ACTL*,

the universal fragment of CTL*, in [45], using the same ideas.

An approach more similar to our own is taken in [42], where a counter-example in the

form of a proof is sought. The proof system used in [42] is Stirling’s proof system from [38].

A Stirling-style proof is a tree, with constraints on the successors to each node in the tree. In

branches corresponding to greatest-fixpoint subformulas, the leaves are required to contain

a model state that has previously appeared in the branch; in a branch corresponding to a

least-fixpoint subformula the model states that appear along the branch are required to be

distinct from each other. Consequently, the proof obligations are not entirely local; e.g.,

to ensure that a state does not appear in a branch, one has to refer to all the states that

appear in the branch. In [38] this non-locality is hidden away by having the tree nodes

“remember” which states appear in their branch, but the essence is still the same. The

encoding that is developed in [42] is exponential in the bound in the worst case, although for

ACTL properties it is polynomial in the bound and exponential in the formula. In addition,

the counter-example is not informative.

The third approach is our own approach, which uses Namjoshi’s proof system from [32]

as a basis. We are able to obtain a very compact encoding, which is polynomial in both the

bound and the formula, and yields informative counter-examples.

All three approaches offer accompanying completeness criteria, and all are based on the

same idea: to dynamically test whether or not the bound should be increased, we construct

a relaxed Boolean formula, which allows some “open ends”. For example, in a witness for

13

the formula EGp, which must typically be a lasso-shaped path, we will allow the loop not

to close, and accept a finite non-looping path whose states all satisfy p. In a formula like

E[p U q] we might accept in the relaxed version a path whose states all satisfy p, and not

require that one of the states satisfy q. The idea is that the relaxed formula represents

a beginning for a counter-example, which might be extended into a full counter-example

by adding more states. If the relaxed version is unsatisfiable, then there is no hope for

finding a counter-example, and we can terminate at the current bound and conclude that

the model satisfies the formula. The completeness criterion for [33] is presented in [46], and

the completeness criterion for [42] is presented in the original paper. However, we discovered

that the completeness criterion of [42] is unsound: it is too strict, and may cause the model-

checker to terminate and conclude that the formula is satisfied when in fact increasing the

bound will lead to the discovery of a counter-example. The unsoundness is easily remedied

by removing some constraints from the completeness criterion.

14

Chapter 2

Preliminaries

2.1 Kripke Structures

To represent finite-state programs, we use Kripke structures. A Kripke structure is a tuple

M = (S, s0, R, L), where S is the set of states, s0 is the initial state, R ⊆ S×S is a transition

relation and L : S → 2AP is a labeling function.

For the purpose of reducing the model-checking problem to Boolean satisfiability, we will

assume the following Boolean representation for Kripke structures.

• The state-space S is represented as the set of binary vectors of length n, S = {0, 1}n,

where n is the number of Boolean variables or gates in the program or circuit;

• The initial state s0 is identified by a Boolean predicate I : S → {0, 1}, such that for all

s ∈ S, I(s) = 1 iff s = s0;

• The transition relation R is represented by a Boolean predicate R : S × S → {0, 1},

such that for all s, t ∈ S, R(s, t) = 1 iff (s, t) ∈ R;

• The labeling function L is represented by a set {Lp | p ∈ AP} of Boolean predicates,

such that for all p ∈ AP and s ∈ S, Lp(s) = 1 iff p ∈ L(s).

We say that a model N = (S ′, s′0, R
′, L′) is a submodel of M = (S, s0, R, L) if S ′ ⊆ S,

s′0 ∈ S
′ (we do not require that s′0 = s0), R

′ = R|S′ = R ∩ (S ′ × S ′), and L′(s) = L(s) for all

s ∈ S ′.

2.2 The µ-Calculus

The modal µ-calculus Lµ [24] is an expressive branching-time logic. Many widely-used

temporal logics, including LTL, CTL and CTL*, can be translated into µ-calculus, rendering

it a convenient low-level property specification language.

15

2.2.1 The syntax of µ-calculus

Assume a set AP of atomic propositions and a set V ar of fixpoint variables. The formulas

of µ-calculus, in negation normal form (NNF), are given by the following grammar:

ϕ ::= p | ¬p |X | ♦ψ | @ ψ | ψ1 ∨ ψ2 | ψ1 ∧ ψ2 | µX.ψ | νX.ψ

where p ∈ AP and X ∈ V ar. We will let sub(ϕ) denote the set of subformulas of ϕ. The

universal fragment of µ-calculus, denoted @Lµ, contains only formulas that do not contain

the existential branching operator ♦; similarly, the existential fragment ♦Lµ contains only

formulas that do not use the universal branching operator @.

The least and greatest fixpoint operators, µX and νX respectively, bind occurrences of

the variable X in formulas of the form µX.ϕ and νX.ϕ (respectively). An occurrence of a

variable X which is not bound by any fixpoint operator is said to be free, and the variable

X itself is said to be free in a formula ϕ if it has at least one free occurrence in ϕ. We will

say that a formula is closed if it contains no free variables. In addition, a closed formula

is said to be well-named if each variable in the formula is only bound once. Since variable

renaming does not change the semantics of a formula, we will only concern ourselves with

well-named formulas.

Let fpϕ : V ar → sub(ϕ) be the function that maps each fixpoint variable X of ϕ to the

body of the fixpoint formula σX.ψ that binds X, where σ = µ, ν. (fpϕ is well-defined under

our assumtion that ϕ is well-named.) We will say that X is a greatest fixpoint variable in ϕ

if fpϕ(X) = νX.ψ, and we will say that X is a least fixpoint variable in ϕ if fpϕ(X) = µX.ψ.

A measure of the complexity of an Lµ formula is its alternation depth, which corresponds

to the number of alternations of least and greatest fixpoint operators in the nesting hierarchy

of the formula. We use the definition from [43]. Let < denote the relation “is a proper

subformula of”, that is, ϕ < ψ iff ϕ ∈ sub(ψ) and ϕ 6= ψ. Given an Lµ formula ϕ, an

alternating µ-chain of length ` in ϕ is a sequence

ϕ ≥ µX0.ψ0 ≥ νX1.ψ1 ≥ µX2.ψ2 ≥ . . . ≥ σX`−1ψ`−1

where σ = µ or ν, and for all i < ` − 1, the variable Xi occurs free in every subformula ψ

such that ψi ≥ ψ ≥ ψi−1. A ν-chain is defined symmetrically. The alternation depth d(ϕ)

of a formula ϕ is the maximal length of an alternating µ- or ν-chain in ϕ.

2.2.2 The semantics of µ-calculus

Lµ formulas are interpreted over Kripke structures: the denotation of a formula ϕ in a

Kripke structure is the set of states in the structure that satisfy the formula. To interpret

free variables in a formula, we use an environment, a mapping e : V ar → 2S which assigns

16

a set of model states to each variable. For an environment e, let e[X ← Q] denote the

environment obtained from e by replacing the value e assigns to X by Q.

Given a structure M and an environment e, the denotational semantics of an Lµ formula

ϕ is defined recursively:

JpKeM = {s | p ∈ L(s)}

J¬pKeM = {s | p 6∈ L(s)}

JXKeM = e(X)

J♦ψKeM = {s | ∃t : (s, t) ∈ R ∧ t ∈ JψKeM}

J@ψKeM = {s | ∀t : (s, t) ∈ R→ t ∈ JψKeM}

Jψ1 ∨ ψ2K
e
M = Jψ1K

e
M ∪ Jψ2K

e
M

Jψ1 ∧ ψ2K
e
M = Jψ1K

e
M ∩ Jψ2K

e
M

JµX.ψKeM is the least fixpoint of the function τψ : 2S → 2S defined by

τψ(Z) = JψK
e[X←Z]
M

JνX.ψKeM is the greatest fixpoint of the function τψ : 2S → 2S defined above

We will omit the structure M and the environment e in J·KeM when they are clear from the

context.

For a closed Lµ formula ϕ, we will say that a state s ∈ S satisfies ϕ and denote M, s |= ϕ

(or simply s |= ϕ) if s ∈ JϕK⊥M , where ⊥ is the environment that maps every variable to

the empty set. We will say that a Kripke structure M satisfies ϕ and denote M |= ϕ if

M, s0 |= ϕ.

An alternative and equivalent characterization of fixpoints is given by

JµX.ψKeM =
⋃

i

τ iψ(∅)

JνX.ψKeM =
⋂

i

τ iψ(S)

where τψ is defined as before, and τ iψ(Q) is defined by τ 0
ψ(Q) = Q and τ i+1

ψ (Q) = τψ(τ iψ(Q)).

For a least fixpoint µX.ψ, we will call τ iψ(∅) the i-th approximant of the least fixpoint; for a

greatest fixpoint νX.ψ the i-th approximant is τ iψ(S).

Since all the logical connectives except negation are monotonic, and negation can only

be applied to atomic propositions, the function τψ defined above is monotonic; that is, for all

A,B ⊆ S, if A ⊆ B then τψ(A) ⊆ τψ(B). The fixpoints are therefore guaranteed to exist by

the Knaster-Tarski Theorem. In addition, if we have a set A such that A ⊆
⋃

i τ
i
ψ(∅) (that

is, A is an under-approximation for the least fixpoint), then
⋃

i τ
i
ψ(A) =

⋃

i τ
i
ψ(∅); in other

words, we can start the computation from any under-approximation of the least fixpoint,

17

instead of starting with the empty set, and still arrive at the correct result. Similarly, if we

have
⋂

i τ
i
ψ(S) ⊆ A, then

⋂

i τ
i
ψ(S) =

⋂

i τ
i
ψ(A): the computation of greatest fixpoints can be

initialized with any over-approximation of the greatest fixpoint. These properties give rise

to the Emerson-Lei model-checking algorithm presented in the next section.

2.2.3 µ-calculus model-checking

The model-checking problem for µ-calculus asks, given a Kripke structure M and an Lµ

formula ϕ, whether or not M |= ϕ. A symbolic model-checking algorithm decides the model-

checking problem by manipulating sets of model states (instead of individual states, as an

explicit model-checking algorithm would do) to compute JϕKM , and then checks if s0 ∈ JϕKM

to determine whether M |= ϕ.

The symbolic model-checking algorithm of Emerson and Lei [16] is given in Alg.1. The

algorithm maintains an array A[1..m] of approximants to the fixpoints, where m is the

number of fixpoint subformulas in ϕ and A[i] is the current approximant to the i-th fixpoint.

A[i] is initialized to the empty set for least fixpoint subformulas and to the set S of all states

for greatest fixpoint subformulas. The algorithm computes the denotation of each subformula

recursively, according the main operator: for example, the denotation of ψ1∧ψ2 is computed

by taking the intersection of the denotation of ψ1 and the denotation of ψ2, requiring two

recursive calls. When the main operator is a fixpoint operator, the algorithm computes a

new approximant for the fixpoint by applying the function τψ defined in the previous section

iteratively, until no changes occur; however, instead of computing the values of the nested

fixpoints from scratch, the algorithm re-uses previous approximants for nested fixpoints of

the same type as the main operator. In particular, for alternation-free formulas — formulas

in which fixpoints of different types are not inter-nested — the algorithm of [16] is linear, and

each fixpoint is computed using at most n approximants, where n is the number of states in

the model. For detailed discussion, see [9].

2.3 Alternating Parity Tree Automata

A normal-form alternating parity tree automaton [43] (referred to henceforth as ’an automa-

ton’) is a tuple A = (AP,Q, q0, δ,Ω), where:

• AP is a set of atomic propositions;

• Q is the set of automaton states;

• q0 is the initial state;

• δ is an alternating transition relation, assigning to each state q ∈ Q a transition of the

form q1 ∨ q2, q1 ∧ q2, ♦q1, @q1, p or ¬p, where q1, q2 ∈ Q and p ∈ AP ;

18

Algorithm 1 The Emerson-Lei Symbolic Model-Checking Algorithm

function eval(ϕ, e):
if ϕ = p then

return {s | p ∈ L(s)}
else if ϕ = X then

return e[X]
else if ϕ = ψ1 ∧ ψ2 then

return eval(ψ1, e) ∩ eval(ψ2, e)
else if ϕ = ψ1 ∨ ψ2 then

return eval(ψ1, e) ∪ eval(ψ2, e)
else if ϕ = ♦ψ then

return {s | ∃t ∈ S : (s, t) ∈ R ∧ t ∈ eval(ψ, e)}
else if ϕ = @ψ then

return {s | ∀t ∈ S : (s, t) ∈ R⇒ t ∈ eval(ψ, e)}
else if ϕ = µXi.ψ then

for all top-level greatest fixpoint subformulas νXj.ψ
′ in ψ do

A[j]← S

end for
repeat
Qold ← A[i]
A[i]← eval(ψ, e[Xi ← A[i]])

until A[i] = Qold

return A[i]
else if ϕ = νXi.ψ then

for all top-level least fixpoint subformulas µXj.ψ
′ in ψ do

A[j]← ∅
end for
repeat
Qold ← A[i]
A[i]← eval(ψ, e[Xi ← A[i]])

until A[i] = Qold

return A[i]
end if

19

• Ω : Q→ N is a partial priority function which represents a parity acceptance condition.

For an automaton state q ∈ Q, Ω(q) will be called the priority of q.

The automata we deal with are assumed to contain no cycles of priorityless states. We will

say that an infinite sequence π = q0q1 . . . ∈ Q
ω satisfies Ω if the lowest priority Ω(q) of a

state q that has a priority and appears infinitely often in π is even.

Universal µ-calculus properties [24] can be expressed by automata that do not have ♦-

transitions. We will refer to such automata as @-automata. Similarly, existential µ-calculus

properties can be expressed by ♦-automata, which have no @-transitions.

2.3.1 Acceptance of automata

Tree automata run over labeled trees. A labeled tree is a pair T = (N,L) where N ⊆ N∗ is

a prefix-closed set of tree nodes and L : N → 2AP is a labeling function. The node ε (the

empty word) is the tree root, and there is an edge from node n1 to node n2 iff n2 = n1 · i

for some i ∈ N. We will use Succ(n) to denote the targets of edges outgoing from n; that is,

Succ(n) = {n · i | i ∈ N} ∩N .

The acceptance of a tree by an automaton is defined in terms of a two-player infinite

game. The game positions are N × Q, where N is the set of tree nodes and Q is the set

of automaton states, and the initial position is (ε, q0). The player who owns the position

(n, q) and the moves available to that player are determined according to δ: player I owns

positions (n, q) such that δ(q) = q1 ∨ q2 or δ(q) = ♦q1; player II owns positions (n, q) such

that δ(q) = q1 ∧ q2 or δ(q) = @q1. If δ(q) = q1 ∨ q2 or δ(q) = q1 ∧ q2, the available moves

are (n, q1) and (n, q2); if δ(q) = ♦q1 or δ(q) = @q1, the available moves are (m, q1) for all

m ∈ Succ(n). A position (n, q) is winning for player I if δ(q) = p and p ∈ L(n) or δ(q) = ¬p

and p 6∈ L(n), and winning for player II if δ(q) = p and p 6∈ L(n) or δ(q) = ¬p and p ∈ L(n).

A play is winning for player I if it is finite and ends in a position that is winning for player

I, or if it is infinite and satisfies Ω; otherwise, the play is winning for player II. Strategies

are defined as usual: a strategy for player x is a partial function mapping finite sequences of

configurations to a choice of the next configuration at every position owned by player x. A

play is said to be according to a strategy for player x if every choice made by player x in the

play conforms to the strategy. A strategy is winning for player x if player x wins any play

she plays according to the strategy.

We will say that an automaton A accepts a tree T iff player I has a winning strategy for

the game thus described. We say that a Kripke structure M satisfies A, and denote M |= A,

if the computation tree of M is accepted by A. We will also informally say that a model

state s ∈ S satisfies an automaton state q ∈ Q if the model M ′, which is identical to M

except that its initial state is s, is accepted by the automaton A′, which is again identical to

A except that its initial state is q.

20

Theorem 2.3.1 ([22], [43]). For every µ-calculus formula ϕ there exists an alternating parity

tree automaton Aϕ such that for every Kripke structure M , M satisfies Aϕ iff M |= ϕ.

Proof sketch ([43]). The automaton Aϕ = (2AP , {〈ψ〉 | ψ ∈ sub(ϕ)} , 〈ϕ〉, δ,Ω) is constructed

from the parse graph of the formula. Its states are the subformulas of ϕ, and the initial state

is 〈ϕ〉 itself.

The transitions are defined according to the main connective of the formula:

• δ(〈ψ1 ◦ ψ2〉) = 〈ψ1〉 ◦ 〈ψ2〉 for ◦ ∈ {∧,∨},

• δ(〈σX.ψ〉) = 〈ψ〉 for σ ∈ {µ, ν},

• δ(〈X〉) = 〈fpϕ(X)〉,

• δ(〈◦ψ〉) = ◦〈ψ〉 for ◦ ∈ {♦,@},

• δ(〈p〉) = p and δ(〈¬p〉) = ¬p.

The priority function Ω is defined such that least fixpoint formulas have an odd priority,

greatest fixpoint formulas have an even priority, and states that represent fixpoints at greater

alternation depths have a lower priority than states that represent fixpoints at lower alter-

nation depths. Thus the priority function requires that if we pass through a least fixpoint an

infinite number of times, that fixpoint must be nested inside a greatest fixpoint. The exact

details of the construction are omitted; for the full construction, see [43].

The standard construction produces an automaton that is not in normal form, but it is

easy to convert it to a normal-form automaton by eliminating unit transitions of the form

δ(q) = q1. (Such transitions are generated for fixpoint formulas and variables.) A unit

transition δ(q) = q1 is eliminated by removing q from the set Q of automaton states, and

replacing it with q1 whenever it appears in transitions from other states. It is easy to see

that the resulting automaton is equivalent to the original one.

Example 2.3.1. Consider the ♦Lµ property ϕ = νX.((µY.p∨♦Y)∧♦X), which is equivalent

to the ECTL property EGEFp. This property is equivalent to the automaton Aϕ shown

in Fig. 2.1, which was obtained from ϕ by the standard translation (up to renaming of

the states). The transitions for the automaton, the priority function, and the subformula

represented by each automaton state are presented in Table 2.1. In the drawing of the

automaton, a Boolean connective next to one or more edges outgoing from the same state

indicates the type of the transition from the state. We use an edge to a solid black circle to

indicate a transition corresponding to an atomic proposition p or ¬p for some p ∈ AP .

Because q2 corresponds to a least fixpoint subformula, its priority is odd; q0 corresponds

to a greatest fixpoint subformula, and has an even priority. The other states correspond to

non-fixpoint subformulas and their priority is undefined. Note that the fixpoint subformula

21

q0 ∧

q1

q2

q3

q4

∨

p

♦

♦

Figure 2.1. The automaton Aϕ from Example 2.3.1

State Transition Priority Subformula(s) represented by the state

q0 q1 ∧ q2 0 ϕ, ((µY.p ∨ ♦Y) ∧ ♦X) and X
q1 ♦q0 undefined ♦X

q2 q3 ∨ q4 1 (µY.p ∨ ♦Y), (p ∨ ♦Y) and Y
q3 ♦q2 undefined ♦Y

q4 p undefined p

Table 2.1. The transitions and priorities of Aϕ and the correspondence to sub(ϕ)

(µY.p∨♦Y) is not nested inside νX. . . . in ϕ, because X does not occur free in (µY.p∨♦Y).

Note that our presentation here differs somewhat from the classical presentation of alter-

nating automata (e.g., in [43]). In particular, the transition relation is usually represented

as a function δ : Q×2AP → TR, where TR is the set of possible transitions, whereas we have

δ : Q → TR. Also, in [43], automata are not assumed to contain no cycles of priorityless

states, and a sequence of states is said to satisfy the priority function only if it contains an

infinite number of states with a defined priority.

The reason for our divergence from the accepted formalism is our particular interest

in automata obtained by using the standard translation from µ-calculus formulas outlined

above. Such automata have several properties which simplify their treatment in the sequel:

1. Every cycle contains a state with a defined priority: a cycle in the automaton, a “back-

edge”, is only created when translating a fixpoint subformula. Such cycles always

contain a state representing the fixpoint itself (in the construction, each state of the

automaton is a subformula), and this state will have a priority defined (even if it is a

greatest fixpoint, odd if it is a least fixpoint).

2. The transition function is independent of the input to the automaton, except for states

that represent atomic subformulas p ∈ AP . Formally, for all q ∈ Q, the transition

function for q satisfies one of the following conditions:

(a) For all P1, P2 ∈ 2AP , δ(q, P1) = δ(q, P2); or

22

(b) There is some p ∈ AP , such that for all P ∈ 2AP , δ(q, P) = true if p ∈ P and

δ(q, p) = false otherwise (corresponding to the atomic formula p); or

(c) There is some p ∈ AP , such that for all P ∈ 2AP , δ(q, P) = false if p ∈ P and

δ(q, p) = true otherwise (corresponding to the atomic formula ¬p).

We can represent the transition function for all states that satisfy the first condition

as a function δ′ : Q→ TR (the input does not play a role). For states that satisfy the

second or third condition, we add special transitions p and ¬p for every p ∈ AP . The

transition from a state q that satisfies the second condition will be δ ′(q) = p, and the

transition from a state that satisfies the third condition will be δ ′(q) = ¬p.

In the standard translation, true and false transitions are only used in the second and

third cases above; the first case corresponds to subformulas where the main connective

is ∧, ∨, ♦ or @, and as can be seen in the sketch of the proof of Theorem 2.3.1, the

main connective is also the transition type. Thus, the new p and ¬p transitions replace

true and false and render them unnecessary. The transition types in our formalism

are {∧,∨,♦,@, p,¬p}. Acceptance for the new p and ¬p transitions is defined in a way

that preserves the semantics of the automaton.

These assumptions are not necessary for the encodings we present: it is easy to generalize

the encodings to automata that do not enjoy the aforementioned properties. However, these

assumptions are reasonable when considering practical model-checking applications, and

they allow us to simplify and improve the encoding.

2.3.2 Weak automata

In Section 3.3, we present an encoding that is specialized for weak automata, which are

alternating automata whose transition graph exhibits a special structure. Weak automata

are equivalent in expressive power to alternation-free µ-calculus properties [26].

Formally, an automaton A = (AP,Q, q0, δ, F) is a weak alternating Büchi tree automaton

if there exists a partition P = {Q1, . . . , Qn} of Q, and a partial order <Q on P , satisfying

the following conditions.

1. For all 1 ≤ i ≤ n, either Qi ⊆ F , in which case we call Qi an accepting set, or

Qi ∩ F = ∅, in which case Qi is called a rejecting set.

2. For all 1 ≤ i ≤ n and q ∈ Qi, if a state q′ occurs in the transition from q, then q′ ∈ Qj

such that Qj ≤Q Qi.

As for alternating parity tree automata, the acceptance of a tree by a weak alternating

Büchi automaton is defined by a two-player game. The game positions and moves are the

same as for alternating parity tree automata (Section 2.3.1), but the winning criterion for

23

infinite plays is different. In a parity automaton, Player I wins an infinite play if the sequence

of states that appear in the play satisfies the parity condition. For Büchi automata, Player

I wins an infinite play if it satisfies a Büchi acceptance condition: at least one state from F

must appear infinitely often in the play.

Since every move in the play either stays in the same set of P or moves to a set that is

smaller in the partial order <Q, infinite plays eventually become trapped in one set Qi and

never leave it. If Qi is an accepting set (Qi ⊆ F), the infinite play is winning for Player I. If

Qi is a rejecting set (Qi ∩ F = ∅), the play will be winning for Player II.

2.4 Namjoshi-style Temporal Proofs

In [32], a proof system is presented for automata where the priority function is full. We will

present the system from [32] and then explain how it can be extended to the case where the

priority function is a partial function.

Let M = (S, s0, R, L) be a Kripke structure, and let A = (AP,Q, q0, δ,Ω) be a normal-

form alternating parity tree automaton with Ω defined for all q ∈ Q. To show that M

satisfies A, one must exhibit: (i) for each automaton state q ∈ Q, a predicate Iq, which,

intuitively, characterises the set of model states which satisfy q; (ii) non-empty, well-founded

sets W1, . . . ,Wm, where m is the number of odd priorities assigned by Ω to states from Q,

and pre-orders ≺1, . . . ,≺m; (iii) for each automaton state q ∈ Q, a partial rank function

ρq : S → (W,≺), where W = W1 × . . . ×Wm and ≺ is the lexicographic order induced by

≺1, . . . ,≺m onW . In this paper, we will assume without loss of generality thatW = Nm, with

≺i the standard order < over N. We will henceforth omit W and simply write Π = (I, ρ),

where I = {Iq | q ∈ Q} is the set of invariants and ρ = {ρq | q ∈ Q} is the set of rank

functions.

We use Invariance and Progress obligations to ensure that player I has a winning strategy

for the game induced by A on the computation tree ofM : the obligation for automaton states

q with ∨- or ♦-transitions represents the move player I must make in positions (s, q) owned

by her. Obligations for states q with ∧- or @-transitions ensure that no matter which move

player II makes from a position (n, q), player I will have a winning strategy from the resulting

position. In the case of an infinite play, we use ranks to ensure that the play satisfies Ω.

Intuitively, the rank ρq(s) represents a commitment regarding the number of times we

may pass through states with each odd priority before passing through a state with lower

priority in a play from position (n, q), where n is a tree node corresponding to model state

s. For example, coordinate 0 of the rank counts the number of times we may pass through

states with priority 1 before passing through a state with priority 0. Each time we pass

through a state with priority 2i+ 1, coordinates 0 through i decrease lexicographically, and

can only increase again when passing through a state q with Ω(q) < 2i+1. A play according

24

to the strategy induced by the invariants can only pass through a state with an odd priority

2i + 1 a finite number of times before coordinates 0, . . . , i of the rank reach zero, and then

we must pass through a state with lower priority. The lowest priority occurring infinitely

often in the play must be even, and player I wins.

This notion is captured by an order Cq over Nm, defined for each q ∈ Q as follows:

(x0, . . . , xm−1) Cq (y0, . . . , ym−1) iff Ω(q) = 0, or Ω(q) = 2i, i > 0 and (x0, . . . , xi, 0, . . . , 0) �

(y0, . . . , yi, 0, . . . , 0), or Ω(q) = 2i + 1 and (x0, . . . , xi, 0, . . . , 0) ≺ (y0, . . . , yi, 0, . . . , 0). Note

that coordinates i, . . . ,m− 1 are unconstrained when passing through a state with priority

Ω(q) < 2i + 1, but when passing through states with Ω(q) ≥ 2i + 1, coordinate i may

not increase. When passing through a state with priority 2i + 1, coordinates 0, . . . , i must

decrease in lexicographic order.

A valid proof must satisfy the following requirements.

• Consistency: for each q ∈ Q and s ∈ Iq, ρq(s) is defined.

• Initiality: s0 ∈ Iq0 .

• Invariance and Progress: for each q ∈ Q and s ∈ Iq:

– If δ(q) = p then p ∈ L(s).

– If δ(q) = ¬p then p 6∈ L(s).

– If δ(q) = q1∨q2, then either s ∈ Iq1 and ρq1(s)Cqρq(s), or s ∈ Iq2 and ρq2(s)Cqρq(s).

– If δ(q) = q1∧q2, then s ∈ Iq1 and ρq1(s)Cqρq(s), and also s ∈ Iq2 and ρq2(s)Cqρq(s).

– If δ(q) = ♦q1, then there exists t ∈ S such that (s, t) ∈ R and t ∈ Iq1 and

ρq1(t) Cq ρq(s).

– If δ(q) = @q1, then for all t ∈ S such that (s, t) ∈ R, t ∈ Iq1 and ρq1(t) Cq ρq(s).

Theorem 2.4.1 ([32]). For every Kripke structure M and automaton A with a full priority

function, M satisfies A iff there exists a Namjoshi-style proof showing that M satisfies A.

Automata resulting from the standard translation for µ-calculus have a partial priority

function, with infinitely many priorities on every infinite path. For such automata, we would

still like the Cq relation to enforce the parity acceptance condition, which now concerns only

states that have a priority. Define an extension <q as follows: x<q y iff Ω(q) is defined and

xCq y, or Ω(q) is undefined and x � y.

Lemma 2.4.1. The proof system obtained by replacing Cq with <q is sound and complete

for all automata with no cycles of priorityless states.

Proof sketch. Let A be an automaton with a partial priority function Ω. We can construct

an automaton with a full priority function Ω′ as follows: let m be the maximal priority

25

assigned by Ω to any automaton state; for all priorityless states q (with Ω(q) undefined),

we set Ω′(q) = 2m + 2. (We need to use an even priority that is greater or equal to all the

priorities assigned by Ω.) For a state q that has a priority, that is Ω(q) is defined, we set

Ω′(q) = Ω(q).

Any proof that is valid w.r.t. the <q relation and Ω is also a valid proof w.r.t. the Cq

relation and Ω′, because if q is a state for which Ω(q) is undefined, then since Ω′(q) is an

even priority greater or equal to all the other priorities, Cq requires a non-increase in all the

coordinates of the rank. The inverse is also true: any proof that is valid w.r.t. Cq and Ω′ is

also valid w.r.t. <q and Ω.

Let A′ denote the automaton obtained from A by replacing Ω with Ω′. We argue that A

and A′ are equivalent.

Every play in A is also a legal play in A′, and vice-versa. Therefore a legal strategy for

Player I in A is also a legal strategy for Player I in A′ and vice-versa. For finite plays, the

winning criterion involves only the transition δ(q) and the label L(n) in the last position

(n, q). Since A and A′ have the same transitions, every finite play is winning for Player I in

A iff it is winning for Player I in A′.

Now consider an infinite play π = (n0, q0)(n1, q1) Let Ω(π) denote the sequence

Ω0Ω1 . . . of priorities that occur in π w.r.t. Ω, defined by Ωi = Ω(qi) if Ω(qi) is defined and

Ωi = ⊥ if Ω is not defined for qi. Similarly let Ω′(π) = Ω′0Ω
′
1

From the definition of Ω′, one of the following conditions holds for all i ∈ N:

1. Ωi 6= ⊥ and Ω′i = Ωi; or

2. Ωi = ⊥ and Ω′i = 2m+ 2.

Let inf(Ω(π)) denote the set of priorities that appear infinitely often in Ω(π), excluding

⊥, and define inf(Ω′(π)) similarly. From the observation above, inf(Ω(π)) ⊆ inf(Ω′(π)) ⊆

inf(Ω(π))∪ {2m+ 2}. Also, since we assumed that there are no cycles of priorityless states,

there are infinitely many priorities that are not ⊥ in Ω(π), and therefore inf(Ω(π)) 6= ∅ and

min(inf(Ω(π))) is defined.

Because inf(Ω(π)) ⊆ inf(Ω′(π)) ⊆ inf(Ω(π)) ∪ {2m+ 2} we have that min(inf(Ω(π))) ≥

min(inf(Ω′(π))) ≥ min(inf(Ω(π))∪{2m+ 2}). But m is the maximal priority assigned by Ω,

and therefore 2m + 2 > min(inf(Ω(π))) and min(inf(Ω(π))) = min(inf(Ω(π)) ∪ {2m+ 2}).

We obtain that min(inf(Ω(π))) = min(inf(Ω′(π))) = min(inf(Ω(π)) ∪ {2m+ 2}).

In other words, the minimal priority that appears infinitely often in Ω(π) is also the

minimal priority that appears infinitely often in Ω′(π), and it follows that π satisfies the

parity acceptance condition w.r.t. Ω iff it satisfies the parity acceptance condition w.r.t. Ω′.

Hence, an infinite play in A is winning for Player I iff it is winning for Player I in A′.

From the analysis above we conclude that there exists a winning strategy for Player I in

A iff that same strategy is winning for Player I in A′, and thus, A and A′ are equivalent.

26

From the fact that every valid proof w.r.t. <q showing that M |= A is also a valid proof

for M |= A′ w.r.t. Cq, we obtain soundness; from the inverse we obtain completeness.

Example 2.4.1. Consider the automaton Aϕ from Example 2.3.1 and the model M shown in

Fig. 2.2. There exists a Namjoshi-style proof Π witnessing that M is accepted by Aϕ. The

s0

s1

s2

s3

p

s4

Figure 2.2. The model from Example 2.4.1

invariants and ranks of the proof are shown in Table 2.2. Note that because Ω only assigns

one odd priority, each rank in Π is a vector of length one — in other words, a natural number.

The <q relation is interpreted as follows: for q0, which has Ω(q0) = 0, <q0 requires a non-

increase in all the coordinates smaller than 0, of which there are none; therefore, <q0 = N2.

For q2, which has Ω(q2) = 1, <q2 requires a decrease in the first coordinate; because there

is only one coordinate, <q2 = (<). For all other automaton states q 6= q0, q2, <q requires a

non-increase in all coordinates; therefore, <q = (≤). The relation <q is also indicated for

each automaton state in Table 2.2.

State (q) Invariant (Iq) Rank function (ρq) <q

q0 {s0, s1, s2, s3} ρq0(s0) = 4, ρq0(s1) = 3, ρq0(s2) = 2, ρq0(s3) = 5 N2

q1 {s0, s1, s2, s3} ρq1(s0) = 4, ρq1(s1) = 3, ρq1(s2) = 2, ρq1(s3) = 5 ≤
q2 {s0, s1, s2, s3, s4} ρq2(s0) = 4, ρq2(s1) = 3, ρq2(s2) = 2, ρq2(s3) = 5, ρq2(s4) = 1 <

q3 {s0, s1, s2, s3} ρq3(s0) = 3, ρq3(s1) = 2, ρq3(s2) = 1, ρq3(s3) = 4 ≤
q4 {s4} ρq4(s4) = 0 ≤

Table 2.2. The proof Π from Example 2.4.1

Let us verify that Π is valid. First, Initiality is satisfied: s0 ∈ Iq0 . Consistency is also

satisfied, because for all q ∈ Q and s ∈ Iq, ρq(s) is defined. For Invariance and Progress, we

must consider each automaton state q and each model state s ∈ Iq.

• For q0: since δ(q0) = q1 ∧ q2 and <q0 = N2, our requirements for all s ∈ Iq0 are s ∈ Iq1
and s ∈ Iq2 . (There is no requirement on the ranks, because <q0 = N2.) This is

satisfied, because Iq1 = Iq0 and Iq2 ⊇ Iq0 .

27

• For q1: since δ(q1) = ♦q0, our requirement for all s ∈ Iq1 is that there exist t ∈ Iq0

with ρq1(t) ≤ ρq0(s) such that there is a transition from s to t in M . This is satisfied,

because for all 0 ≤ i ≤ 3 we have that s(i+1) mod 4 ∈ Iq0 , ρq0(s(i+1) mod 4) = ρq1(si) and

there is a transition from si to s(i+1) mod 4.

• For q2: since δ(q2) = q3 ∨ q4, our requirement for all s ∈ Iq2 is that either s ∈ Iq3

and ρq3(s) < ρq2(s), or s ∈ Iq4 and ρq4(s) < ρq2(s). This is satisfied: for all s 6= s4

we have s ∈ Iq3 and ρq3(s) = ρq2(s) − 1 < ρq2(s); and for s4 we have s4 ∈ Iq4 and

ρq4(s4) = 0 < ρq2(s4) = 1.

• For q3: since δ(q3) = ♦q2, our requirement for all s ∈ Iq3 is that there exist t ∈ Iq2

with ρq2(t) ≤ ρq3(s) such that there is a transition from s to t in M . This is satisfied:

for s ∈ {s0, s1, s3} we have that s(i+1) mod 4 ∈ Iq2 , ρq2(s(i+1) mod 4) = ρq3(si) and there

is a transition from si to s(i+1) mod 4. For s2, there is a transition from s2 to s4, and

s4 ∈ Iq2 and ρq2(s4) = ρq3(s2) = 0.

• For q4: the only state in Iq4 is s4. Because δ(q4) = p, we require that p ∈ L(s4), and

this is satisfied.

2.5 Notation and Terminology

We will let Q♦ denote the set of automaton states q with a transition δ(q) = ♦q1. For

automaton states q ∈ Q♦ and model states s ∈ Iq, it will sometimes be useful to identify the

model state (or one of the model states) t ∈ S which serves to satisfy the Invariance and

Progress obligation for s and q in a proof Π. We will refer to t as a proof successor for s as

required by q. (There may be more than one proof successor.)

We will let domain(Π) =
⋃

q∈Q Iq. We say that the states in domain(Π) are states that

participate in Π.

Finally, an automaton state q ∈ Q will be called a terminal state if δ(q) = p or δ(q) = ¬p

for some p ∈ AP .

28

Chapter 3

Graph-Based BMC Encodings for

Universal µ-Calculus

In this section we present our approach to reducing the bounded model-checking problem

for @-automata to a SAT problem. First we present a naive translation based directly

on Namjoshi-style proof obligations, and then we derive a specialized encoding for weak

automata. We also discuss several practical improvements to the encodings.

We refer to our encodings as graph-based because of their structure: the counter-example

being sought is encoded as a graph comprising k model states, where k is the bound. We

do not impose restrictions on the structure of the counter-example graph, except those

restrictions that follow from the semantics of the formula we are trying to disprove. Contrast

with the encoding of [42], which imposes a tree-like structure on the counter-example, and

the encoding of [33], which searches for a counter-example in the form of a collection of

paths. See Chapter 5 for a more detailed comparison.

To constrain the k model states to represent a counter-example to the formula, we use

local obligations. These are essentially the proof obligations in a Namjoshi-style proof for

N |= A, where N is the model represented by our k states, and A is the automaton obtained

from the negation of the formula.

3.1 Encoding Namjoshi-style Proof Obligations

The first encoding we present is a direct translation of the proof obligations of a Namjoshi-

style temporal proof to Boolean constraints.

Let M = (S, s0, R, L) be a Kripke structure, represented by Boolean formulas I, R, and

Lp for each p ∈ AP , as outlined in Section 2.1. Let A = (AP,Q, q0, δ,Ω) be a ♦-automaton

representing the negation of the formula we want to model-check. To encode the requirements

on ranks, we use a set of propositional formulas Pq for all q ∈ Q (’P’ stands for ’Progress’),

such that Pq(σ1, σ2) holds iff σ1 <q σ2.

29

The encoding uses the following variables.

• u0, . . . , uk−1: vectors representing model states. Each vector comprises n bits.

• xqi for each i = 0, . . . , k− 1 and q ∈ Q: an indicator variable for the fact that the state

assigned to ui satisfies q.

• ρqi for each i = 0, . . . , k − 1: a vector representing the rank assigned to ui by q. That

is, if ui is assigned the model state s, then ρqi represents ρq(s).

Each rank vector ρqi has m coordinates, where m is the number of odd priorities assigned

by Ω to automaton states, and each coordinate j comprises log |Q|k bits. Intuitively, this

number of bits is sufficient to represent the values each coordinate may take, because if

there exists an infinite winning play for player I, then there exists a play that does not pass

through any odd-priority state twice before passing through a state with a lower priority.

This is argued more formally in the proof of Theorem 3.1.1.

The obligations for a state ui and an automaton state q are encoded as a Boolean formula

of the form x
q
i → 〈〈δ(q)〉〉i, where 〈〈δ(q)〉〉i is defined as follows.

〈〈p〉〉i = Lp(ui)

〈〈¬p〉〉i = ¬Lp(ui)

〈〈q1 ∧ q2〉〉i = x
q1
i ∧ Pq(ρ

q1
i , ρ

q
i) ∧ x

q2
i ∧ Pq(ρ

q2
i , ρ

q
i)

〈〈q1 ∨ q2〉〉i = (xq1i ∧ Pq(ρ
q1
i , ρ

q
i)) ∨ (xq2i ∧ Pq(ρ

q2
i , ρ

q
i))

〈〈♦q1〉〉i =
k−1
∨

j=0

(

R(ui, uj) ∧ x
q1
j ∧ Pq(ρ

q1
j , ρ

q
i)
)

The total number of variables used in the encoding is O(nk + k|Q| + |Q|mk log |Q|k),

where n is the number of bits needed to encode one model state, k is the bound, and |Q|

is the number of states in the automaton. It is possible to eliminate the indicators xqi when

δ(q) = q1 ∧ q2 or δ(q) = q1 ∨ q2 by substituting the constraints generated for these formulas

anywhere that the indicator appears; in our prototype implementation we have done so,

obtaining a SAT formula with less variables. For the sake of simplicity we will retain these

indicators in this presentation.

To represent the Initiality requirement, we add the constraint I(u0) ∧ x
q0
0 . The resulting

formula is given by

PRFM,A,k = I(u0) ∧ x
q0
0 ∧

k−1
∧

i=0

∧

q∈Q

x
q
i → 〈〈δ(q)〉〉i

The scheme for using this formula is presented in Alg. 2. The BMC procedure takes a Kripke

structure M , assumed to contain |S| states, and a @Lµ formula ϕ. It returns false if it has

30

found a counter-example witnessing that M 6|= ϕ, and true otherwise. The procedure calls a

SAT solver, which is assumed to return sat if the formula is satisfiable and unsat otherwise.

In addition, the function to-automaton(ψ) is assumed to return an alternating parity tree

automaton equivalent to the Lµ formula ψ, using the translation outlined in Proof 2.3.1.

The termination criterion used in Alg. 2 is extremely naive — the algorithm only halts

when it has failed to find a counter-example the size of the entire model. In Section 4 we

discuss alternative termination criteria, which may halt the bounded model-checking well

before this coarse bound is reached. Note that in traditional linear-time BMC encodings,

the size of the model is not a sound completeness threshold; in our encoding it is a sound

threshold, and this is one distinguishing feature of our encoding. This is discussed further

in Section 5.4. The soundness of the algorithm is proven in Theorem 3.1.1.

Algorithm 2 Bounded Model-Checking Using the Graph-Based Encoding

function bmc(M , ϕ)
A← to-automaton(¬ϕ)
for k = 1 to |S| do
res← SAT-solve(PRFM,A,k)
if res = sat then

return false
end if

end for
return true

Theorem 3.1.1 (Correctness). For all Kripke structures M and @Lµ formulas ϕ, Alg. 2

returns true iff M |= ϕ.

Proof. To prove that Alg. 2 is correct, we must establish that PRFM,A,k is satisfiable iff M

admits a counter-example of size k to ϕ.

Suppose N is a counter-example of size k to M |= ϕ, and let {s0, . . . , sk−1} be the states

of N . (N must include the initial state s0 of M .)

From Theorem 2.4.1, there exists a Namjoshi-style proof Π = (I, ρ) showing that N

satisfies A, where A is the automaton returned by to-automaton(¬ϕ).

Suppose A has |Q| states. Π contains |Q| ranking functions — one ranking function

ρq : {s0, . . . , sk−1} → Nm for each q ∈ Q. Each ranking function ρq may be a partial function

or a full function, but in the worst case it can assign k different vectors from Nm, one value

for each model state si. In particular, each ranking function ρq assigns no more than k

different values to each coordinate in the rank vector, and thus, Π uses a total of no more

than |Q|k values for each coordinate of the rank vector. We can assume w.l.o.g. that the

range of each ranking function is {0, . . . , |Q|k}m (instead of Nm). Under this assumption,

log |Q|k bits are sufficient to encode each coordinate of the rank vector.

Construct an assignment v as follows: for all i ∈ {0, . . . , k − 1} and q ∈ Q,

31

• v(ui) = si,

• v(xqi) = 1 if si ∈ Iq and v(xqi) = 0 otherwise,

• v(ρqi) = ρq(si), encoded as a binary number.

The assignment v thus defined satisfies PRFM,A,k, because PRFM,A,k is merely a Boolean

encoding of the Initiality and Invariance and Progress proof obligations. Π satisfies these

obligations because it is a valid proof; therefore v satisfies PRFM,A,k.

For the other direction, suppose there exists an assignment v satisfying PRFM,A,k. To

show that M admits a counter-example of size k, we simply perform the reverse construction,

obtaining a Namjoshi-style proof Π = (I, ρ) from v as follows: for all i ∈ {0, . . . , k − 1} and

q ∈ Q,

• v(ui) ∈ Iq iff v(xqi) = 1;

• ρq(v(ui)) = v(ρqi).

The proof Π thus defined satisfies Initiality and Invariance and Progress, because PRFM,A,k

encodes these obligations; in addition, Π satisfies Consistency, because the ranking functions

ρq are defined for all the states that participate in the proof (regardless of whether or not

they actually belong to the corresponding invariant Iq).

Let N be the substructure induced by {v(s0), . . . , v(sk−1)} on M . (The transition relation

of N comprises all those transitions of M that involve two states from N .) N is a counter-

example of size k for M |= ϕ: it is a submodel of M , and it does not satisfy ϕ, because Π is

a valid Namjoshi-style proof showing that N satisfies A.

Finally, for the correctness of the algorithm, observe that if a counter-example for M |= ϕ

exists, it contains no more than |S| states, where |S| is the number of states in M . If we

have not found a counter-example in the last iteration, when k = |S|, we can conclude that a

counter-example does not exist and M |= ϕ. The correctness of the algorithm follows: Alg 2

returns true iff it does not return false, which occurs iff for all k ∈ {1, . . . , |S|} the formula

PRFM,A,k is unsatisfiable; this, in turn, happens iff there is no counter-example of size k for

all k ∈ {1, . . . , |S|}, which by our previous argument is true iff there is no counter-example

of any size, meaning M |= ϕ.

3.2 Improving the Encoding

The encoding presented above is a naive translation of Namjoshi-style proof obligations to

SAT. It can be improved in several ways.

32

3.2.1 Symmetry-breaking

The formula PRFM,A,k suffers from symmetry, which has an adverse effect on the performance

of SAT solvers (see, e.g., [1]). The model states u1, . . . , uk−1 are interchangeable: intuitively,

given a satisfying assignment, it is possible to permute the values of u1, . . . , uk−1 and the

accompanying ranks and indicator variables and obtain a different satisfying assignment.

The SAT solver thus has to consider many equivalent permutations that represent the same

counter-example before eliminating it.

We have found that performance is greatly improved when we break the symmetry by

ordering the states u1, . . . , uk−1, obtaining the formula

PRF
sym

M,A,k = PRFM,A,k ∧
k−2
∧

i=1

ui < ui+1

where “<” is implemented as the lexicographic order on binary vectors.

The state u0 is excluded from the ordering, because it serves a “special” role: it must

be the initial state of the model. We therefore cannot require that it be lexicographically

smaller than all the other states in the counter-example. The rest of the states, u1, . . . , uk−1,

are interchangeable, as shown by the following lemma.

Lemma 3.2.1. The formula PRFM,A,k is satisfiable if and only if PRF
sym

M,A,k is satisfiable.

Proof. The main idea of the proof is to support our claim that the states u1, . . . , uk−1 are

’interchangeable’ by showing how they can be interchanged without affecting the satisfaction

of the formula.

Since PRF
sym

M,A,k is the conjunction of PRFM,A,k with another formula, if PRF
sym

M,A,k is sat-

isfiable then PRFM,A,k is clearly satisfiable as well.

For the other direction, suppose there exists an assignment v for PRFM,A,k, in which

each state vector ui is assigned a model state v(ui) = si. From the Initiality requirement in

PRFM,A,k, v(u0) = s0 is the initial state of M . Let ` : {1, . . . , k − 1} → {1, . . . , k − 1} be the

permutation that orders the model states s1, . . . , sk−1 lexicographically: s`(1) < s`(2) < . . . <

s`(k−1). Define `(0) = 0. Let `−1 be the inverse of `. ` and `−1 are both permutations over

{0, . . . , k − 1}.

Construct a new assignment v′ as follows: for all i ∈ {0, . . . , k − 1}, set v′(ui) = v(u`(i)),

and set all the auxiliary variables associated with ui in v′ to the values of the corresponding

variables associated with u`(i) in v: for all q ∈ Q, v′(xqi) = v(xq
`(i)) and v′(ρqi) = v′(ρq

`(i)).

For a formula α, let us denote by `(α) the formula obtained by substituting u`(i), x
q

`(i)

and ρq
`(i) for all occurrences of ui, x

q
i and ρqi in α, respectively, for all i ∈ {0, . . . , k − 1} and

q ∈ Q. It is easy to see from the construction of v′ that for all α, v |= α iff v′ |= `(α).

We will show that v′ |= PRF
sym

M,A,k by showing that v′ satisfies each conjunct in PRF
sym

M,A,k.

33

• α = (I(u0) ∧ x
q0
0) (Initiality): this conjunct also appears in PRFM,A,k, and therefore v

satisfies it. Since v′ assigns the same values as v to u0 and xq00 , v′ satisfies this conjunct

as well.

• α = (xqi → 〈〈δ(q)〉〉i) (Invariance and Progress for ui and q):

Let β =
(

x
q

`−1(i) → 〈〈δ(q)〉〉`−1(i)

)

. β appears in PRFM,A,k as a conjunct, and therefore

v |= β.

If δ(q) is not of the form δ(q) = ♦q1, then from the definition of 〈〈δ(q)〉〉`−1(i), `(β) = α.

From our observation about the relationship between v and v ′ we have that v′ |= α.

However, if δ(q) = ♦q1 for some q1 ∈ Q, then `(β) 6= α: recall that

〈〈♦q1〉〉`−1(i) =
k−1
∨

j=0

(

R(u`−1(i), uj) ∧ x
q1
j ∧ Pq(ρ

q1
j , ρ

q

`−1(i))
)

and therefore

`(β) = `(xq
`−1(i) → 〈〈♦q1〉〉`−1(i)) = x

q
i →

k−1
∨

j=0

(

R(ui, u`(j)) ∧ x
q1
`(j) ∧ Pq(ρ

q1
`(j), ρ

q
i)
)

In other words, the order in which the state vectors appear in the disjunction is different

from their order in α. However, although α and `(β) are not syntactically equal in this

case, they are clearly semantically equivalent: since ` is a permutation of {0, . . . , k − 1},

all the indices appear in the disjunction, and since disjunction is commutative the order

does not matter. As before, PRFM,A,k contains β as a conjunct, which v must satisfy;

hence, v′ |= `(β), and therefore v′ |= α as well.

•
(

∧k−2
i=1 ui < ui+1

)

(orderedness): v′ satisfies this conjunct because for all i ∈ {0, . . . , k − 1},

v′(ui) = s`(i), and s`(1) < . . . < s`(k−1).

Note that except for the last conjunct, which expresses the orderedness constraint intended

to break the symmetry, our proof that v′ |= PRF
sym

M,A,k is independent of the choice of the

permutation `; hence our claim that u1, . . . , uk−1 are interchangeable.

3.2.2 Encoding successor states explicitly

The formula PRFM,A,k contains a constraint expressing the Invariance and Progress obligation

for each model state si and each automaton state q ∈ Q. For states q ∈ Q♦ with a transition

δ(q) = ♦q1, each such constraint contains k copies of the model’s transition relation R:

〈〈♦q1〉〉i =
k−1
∨

j=0

(

R(ui, uj) ∧ x
q1
j ∧ Pq(ρ

q1
j , ρ

q
i)
)

34

Thus, the transition relation appears a total of k2|Q♦| times in PRFM,A,k and its variants.

The transition relation is usually the most complicated aspect of the model; it is generally

a very large formula. It is desirable to decrease the number of times it appears in PRFM,A,k.

We can do so, at the cost of adding more variables. As a side-effect, we will also gain valuable

information about the counter-example.

Recall that in the original formula PRFM,A,k, the following variables are used:

• u0, . . . , uk−1: vectors representing model states.

• xqi for each i = 0, . . . , k− 1 and q ∈ Q: an indicator variable for the fact that the state

assigned to ui satisfies q.

• ρqi for each i = 0, . . . , k − 1: a vector representing the rank assigned to ui by q.

We will now add one model-state vector tqi for every q ∈ Q♦ and i ∈ {0, . . . , k − 1}, increasing

the total number of variables to O(nk + k|Q| + |Q|mk log |Q|k + nk|Q♦|) (a linear increase

which does not change the overall complexity). The state tqi will be interpreted to represent

the proof-successor for ui required by q if xqi = 1. Since we are searching for a counter-

example of bounded size k, tqi must be assigned one of the counter-example states uj. In

addition, if δ(q) = ♦q1, then uj must be in the appropriate invariant Iq1 , and its rank must

behave appropriately. All these requirements will reflect in the Invariance and Progress

requirement for ui and q.

Define new constraints 〈〈δ(q)〉〉expi as follows:

• If q 6∈ Q♦, then 〈〈δ(q)〉〉expi = 〈〈δ(q)〉〉i.

• If q ∈ Q♦ and δ(q) = ♦q1, then

〈〈δ(q)〉〉expi = 〈〈♦q1〉〉
exp
i = R(ui, t

q
i) ∧

k−1
∨

j=0

(

t
q
i = uj ∧ x

q1
j ∧ Pq(ρ

q1
j , ρ

q
i)
)

Now define a formula PRF
exp

M,A,k which uses the new constraints:

PRF
exp

M,A,k = I(u0) ∧ x
q0
0 ∧

k−1
∧

i=0

∧

q∈Q

x
q
i → 〈〈δ(q)〉〉

exp
i

In the new formula, the transition relation appears k·|Q♦| times instead of k2·|Q♦| times as

before. We will also have further use for the information we gain by explicitly encoding proof

successors in constructing a counter-example (Section 3.4) and in constructing a dynamic

completeness criterion (Section 4.2).

Lemma 3.2.2. PRFM,A,k is satisfiable iff PRF
exp

M,A,k is satisfiable.

35

Proof. Suppose PRFM,A,k is satisfiable, and let v be a satisfying assignment. In particular,

for all q ∈ Q♦ and i ∈ {0, . . . , k − 1}, v must satisfy

x
q
i →

k−1
∨

j=0

(

R(ui, uj) ∧ x
q1
j ∧ Pq(ρ

q1
j , ρ

q
i)
)

Define a mapping γ : {0, . . . , k − 1} → {0, . . . , k − 1} as follows: for i ∈ {0, . . . , k − 1}, if

v(xqi) = 0 set γ(u) = 0. Otherwise, because v satisfies the constraint above there exists some

j ∈ {0, . . . , k − 1} such that v |=
(

R(ui, uj) ∧ x
q1
j ∧ Pq(ρ

q1
j , ρ

q
i

)

. In this case define γ(i) = j.

(If there is more than one choice for j, choose arbitrarily among the viable options.)

Construct an assignment v′ for PRF
exp

M,A,k as follows: for all i ∈ {0, . . . , k − 1} and q ∈ Q,

• v′(ui) = v(ui),

• v′(xqi) = v(xqi),

• v′(ρqi) = v(ρqi),

• v′(tqi) = v(uγ(i)).

In PRF
exp

M,A,k, all constraints except constraints of the form x
q
i → 〈〈δ〉〉

exp
i for some q ∈ Q

are identical to the constraints that appear in PRFM,A,k, and involve only variables that get

the same value under v′ as they do under v. These constraints are satisfied under v′ as they

are under v.

The constraints that remain are of the form

x
q
i → R(ui, t

q
i) ∧

k−1
∨

j=0

(

t
q
i = uj ∧ x

q1
j ∧ Pq(ρ

q1
j , ρ

q
i)
)

and they are also satisfied: if v(xqi) = 0 then v′(xqi) = 0 as well, and the implication

is satisfied; otherwise, from the definition of γ(i), v |=
(

R(ui, uγ(i)) ∧ x
q1
γ(i) ∧ Pq(ρ

q1
γ(i), ρ

q
i

)

.

Therefore, since v′(tqi) = v(uγ(i)), v
′ |= R(ui, t

q
i), and there exists j = γ(i) such that v′ |=

(

t
q
i = uj ∧ x

q1
j ∧ Pq(ρ

q1
j , ρ

q
i)
)

. Together we have that v′ satisfies the entire constraint.

Now suppose that PRF
exp

M,A,k is satisfiable and v is a satisfying assignment. We argue that

v |= PRFM,A,k as well. The only constraints that appear in PRFM,A,k but not in PRF
exp

M,A,k

are of the form

α = x
q
i →

k−1
∨

j=0

(

R(ui, uj) ∧ x
q1
j ∧ Pq(ρ

q1
j , ρ

q
i)
)

However, for each such constraint, PRF
exp

M,A,k contains the constraint

β = x
q
i → R(ui, t

q
i) ∧

k−1
∨

j=0

(

t
q
i = uj ∧ x

q1
j ∧ Pq(ρ

q1
j , ρ

q
i)
)

36

which v satisfies. Hence, either v(xqi) = 0, in which case v |= α too, or there exists some

j ∈ {0, . . . , k − 1} such that v(tqi) = v(uj), and also v(xq1j) = 1 and v |= Pq(ρ
q1
j , ρ

q
i). It

follows that v |= R(ui, uj). We have shown that there exists j ∈ {0, . . . , k − 1} such that

v |=
(

R(ui, uj) ∧ x
q1
j ∧ Pq(ρ

q1
j , ρ

q
i)
)

; hence, v satisfies the disjunction over j in α, and v |=

α.

3.3 A Specialized Encoding for Weak Automata

Our experiments, presented in Chapter 6, showed that the ranks and progress relation used

in the encoding are difficult for SAT solvers to handle.

In our implementation we rather naively encoded the integer ranks in binary represen-

tation, and implemented the Pq relation as binary < or ≤ (depending on the priority of

q). Performance can probably be improved by finding better encodings for the Pq progress

relation, and this is discussed in Chaper 7.1. In this section we suggest a variation on the

encoding that eliminates the explicit use of ranks and progress relations. The encoding is

tailored for weak automata; it can be extended to handle general automata, but then it

becomes very inefficient.

Let A = (AP,Q, q0, δ, F) be a weak automaton with partition P = (Q1, . . . , QN) and

order <Q on P , as described in Section 2.3.2. Let D be the size of the largest rejecting set

in P .

Let M be a Kripke structure. If A accepts the computation tree of M , then there is a

memoryless winning strategy for Player I in the game induced by A and M . When Player

I plays according to this strategy, every infinite play eventually becomes trapped in an

accepting set.

In a Namjoshi-style proof for M |= A, we do not need the complicated <q progress

relation, which is intended to ensure that the parity acceptance condition is satisfied in every

infinite play. Instead, we only need to ensure that every time the play enters a rejecting set,

it exits it after a finite number of moves. To do this it is sufficient to attach to each game

position (s, q) with q ∈ Qi, where Qi is a rejecting set, a counter σq(s), which limits the

number of steps until the play exits Qi. Every time we move to another state within Qi, the

counter must decrease, until it reaches zero and then we must exit Qi. For positions (s, q)

where q is in an accepting set, there is no need for a counter.

Based on this observation, we define a Namjoshi-style proof system for weak automata.

Given a weak automaton A and a Kripke structure M , a weak Namjoshi-style proof that

M satisfies A is a pair Π = (I, σ), where I = {Iq | q ∈ Q} is a set of invariants and σ =

{σq : S → N | q ∈ Q \ F} is a set of partial rank functions for rejecting states.

Given two states q, q′ ∈ Q, we define a relation <q→q′⊆ N2 as follows:

• If q′ ∈ F , then for all q ∈ Q, <q→q′= N2. (Intuitively, we do not care what happens to

37

the rank when we move between two accepting states, because the play is allowed to

stay in an accepting set forever.)

• If q and q′ are not in the same set, then again <q→q′= N2. (Intuitively, we do not

care what happens to the rank when we move between sets; we only need to count the

number of steps inside a set.)

• If q, q′ are in the same set and it is rejecting, then <q→q′= {(x, y) ∈ N2 | x < y}, where

< is the natural order on integers.

A valid weak proof must satisfy the following obligations.

• Consistency: for each q ∈ Q \ F and s ∈ Iq, σq(s) is defined.

• Initiality: s0 ∈ Iq0 .

• Invariance and Progress: for each q ∈ Q and s ∈ Iq:

– If δ(q) = p then p ∈ L(s).

– If δ(q) = ¬p then p 6∈ L(s).

– If δ(q) = q1 ∨ q2, then either s ∈ Iq1 and σq1(s) <q→q1 σq(s), or s ∈ Iq2 and

σq2(s) <q→q2 σq(s).

– If δ(q) = q1 ∧ q2, then s ∈ Iq1 and σq1(s) <q→q1 σq(s), and also s ∈ Iq2 and

σq2(s) <q→q2 σq(s).

– If δ(q) = ♦q1, then there exists t ∈ S such that (s, t) ∈ R and t ∈ Iq1 and

σq1(t) <q→q1 σq(s).

– If δ(q) = @q1, then for all t ∈ S such that (s, t) ∈ R, t ∈ Iq1 and σq1(t) <q→q1 σq(s).

Lemma 3.3.1 (Soundness and completeness). If A is a weak automaton, there exists a valid

weak proof for M |= A iff M |= A.

Proof sketch. The proof is very similar to the one used in [32] to show the soundness and

completeness of the original proof system. We sketch the outline of the proof, without

entering into the technical details from [32].

In the first direction (soundness), if there exists a weak proof Π for M |= A, the original

soundness proof in [32] constructs a winning strategy for Player I based on the proof. The

construction works in our case as well. The Invariance and Progress obligations ensure that

Player I always has a legal move to a position (s, q) with s ∈ Iq; if Player I moves from

position (s, q) to position (s′, q′), where q and q′ are in the same rejecting set, then σq(s) and

σq′(s
′) are both defined (Consistency) and σq′(s

′) < σq(s) (Progress). Thus, after a finite

number of steps within the same rejecting set, the play must exit the set and move to a

38

different set. Since there are no cycles in the partial order <Q on the partition P , we cannot

return to a rejecting set once we have left it, and eventually the play must become trapped

in an accepting set. Hence, every infinite play is winning for Player I. Every finite play is

also winning for Player I: if the play reaches a terminal state, the Invariance obligations

ensure that it is winning for Player I. Thus, the strategy is a winning strategy for Player I,

and therefore M |= A.

To show relative completeness, we again rely on the proof from [32]. The main idea in

the proof is to convert the question of whether Player I has a winning strategy from a given

position into a model-checking problem, and use information obtained from a model-checker’s

run to construct the proof.

We can use the construction from [32] to show the existence of a weak proof. To convince

the reader that this is the case, we sketch the construction from [32], show that the resulting

Namjoshi-style proof has the form we need, and show that it satisfies the obligations of a

weak proof. The sketch of the proof from [32] is not necessary; we present it in the interest

of self-containment.

The proof in [32] uses µ-calculus signatures. We do not enter into a technical discussion

of µ-calculus signatures here, because the technical details are not necessary for our proof.

Informally, a µ-calculus signature sig(ϕ, s) for a formula ϕ and a model state s records how

many unfoldings of each least fixpoint in ϕ are necessary to show that s |= ϕ. The µ-calculus

signature is a vector (x0, . . . , xm), where m is the number of least fixpoints in ϕ. For our

purposes it is sufficient to note that if ϕ contains only one least fixpoint, the µ-calculus

signature sig(ϕ, s) is a vector with only one coordinate — in other words, sig(ϕ, s) is a

natural number.

Suppose M satisfies an automaton A. The construction from [32] proceeds by first noting

that Player I has a winning strategy from position (s, q) iff M×A, (s, q) |=WI , where M×A

and WI are defined as follows.

• M × A is the cross product of the model M and the automaton A, defined by M ×

A = (S ×Q, (s0, q0), R
′, L′) over the atomic propositions AP ′ = {I, II, winI , winII} ×

{Ω0, . . . ,Ωm}, where m is the maximal priority assigned by Ω to any automaton state.

The transition relation R′ expresses the moves in the game: for s ∈ S and q ∈ Q, if

δ(q) = p or δ(q) = ¬p, then (s, q) has no transitions in M × A; if δ(q) = q1 ∨ q2 or

δ(q) = q1 ∧ q2, then ((s, q), (s, q1)) ∈ R
′ and ((s, q), (s, q2)) ∈ R

′; and if δ(q) = ♦q1 or

δ(q) = @q1, then ((s, q), (t, q1)) ∈ R
′ for all t ∈ S such that (s, t) ∈ R.

The first component of the labeling L′((s, q)) expresses which player owns position

(s, q) in the game: if (s, q) is a Player I position, then the first component of L′((s, q))

is I; if (s, q) is a Player II position then the first component is II. If (s, q) is a terminal

position, the first component of L′ indicates which player wins the play: if δ(q) = p

39

and p ∈ L(s), or δ(q) = ¬p and p 6∈ L(s), then the first component of L′((s, q) is winI ,

and if δ(q) = p and p 6∈ L(s), or δ(q) = ¬p and p ∈ L(s), then the first component of

L′((s, q)) is winII .

The second component of the labeling L′((s, q)) indicates the priority of q, and it is Ωi

iff Ω(q) = i.

• WI = σ0Z0 . . . σmZm.winI ∨ (I ∧
∧

i Ωi → ♦Zi) ∨ (II ∧
∧

i Ωi → @Zi), where σi is ν if

i is even and µ if i is odd.

Intuitively, WI expresses the existence of a winning strategy for Player I: a position must

either be terminal and winning for Player I (winI), or it can be a Player I position, in which

case Player I chooses her next move to another winning position (♦Zi), or it can be a Player

II position, in which case Player II chooses the move, so all possible successors must be

winning for Player I (@Zi). The fixpoints express the parity condition: the play may not

pass through an odd-priority position (labeled with Ωi where i is odd, and corresponding to

the least fixpoint Zi) unless it also passes through a lower even-priority position infinitely

often (a greatest fixpoint Zj with j < i).

Thus, [32] translates the question of whether or not Player I has a winning strategy into

a model-checking problem. Next, a valid proof for M |= A is formed by taking the invariant

Iq to be Iq = {s ∈ S |M × A, (s, q) |=WI} for all q ∈ Q, and ρq(s) to be the µ-calculus

signature of WI at (s, q). Essentially, each invariant is the set of model states s such that

Player I has a winning strategy from position (s, q), and the rank ρq(s) expresses how many

unfoldings of each fixpoint in WI are needed to show that M × A, (s, q) |=WI .

All of the above explains how to form a proof for a parity automaton. A Büchi accep-

tance condition with a set F of accepting states is nothing more than the parity acceptance

condition ΩF , where ΩF (q) = 1 if q 6∈ F and ΩF (q) = 0 if q ∈ F . To satisfy ΩF , an infinite

computation has to pass infinitely often through a state with priority 0, which means it must

pass infinitely often through F .

When we use this parity condition in the proof outlined above, the formulaWI we obtain

has only two fixpoints: it is of the form νZ0.µZ1.ψI . The µ-calculus signature of WI in this

case is a single-coordinate vector, in other words, a number; the µ-calculus signature of WI

at (s, q) simply says how many times we need to unfold the least fixpoint µZ1 to show that

WI is satisfied by (s, q). Therefore the valid proof Π = (I, ρ) constructed in the relative

completeness proof from [32] already has the form we need. It is also easy to see that

the proof obligations are satisfied: the proof Π satisfies the obligations for general parity

automata, and our obligations are very similar. The Initiality and Consistency obligations

are the same, and so is the Invariance part of Invariance and Progress. As for Progress, it is

sufficient to note that the Cq progress relation is actually stronger than the <q→q′ relation,

which only requires a decrease in rank when we move to an automaton state in the same

40

rejecting set. Rejecting automaton states have odd priority in ΩF , so Cq also requires a

decrease in rank in the Invariance and Progress obligations involving such states. (The Cq

relation also requires a decrease in rank when passing through any rejecting state, but <q→q′

does not.) Since Π satisfies Invariance and Progress w.r.t. the stronger relation Cq, it also

satisfies them w.r.t. <q→q′ .

Using a single-coordinate counter with a simple progress relation is a clear improvement

over the encoding for non-weak automata. However, it still uses ranks, albeit simpler ones.

To eliminate the use of explicit ranks, we use ideas from [19].

Recall that in the original encoding we used a bit xqi to indicate whether or not ui satisfies

q. If q is in a rejecting set, instead of encoding the rank assigned by q to ui explicitly as a

binary vector ρqi , we will have one copy of xqi for each possible value of σq(s). An assignment

of 1 to the t-th copy, xq,ti , will be interpreted to mean that ui satisfies q and we leave q’s

rejecting set within at most t steps in the play. For states q that belong to an accepting set

(q ∈ F), we will not require more than one copy. We will denote this single copy by xq,N−1
i .

Suppose we are using N copies xq,0i , . . . , x
q,N−1
i of each bit xqi where q is in a rejecting set.

(The value of N will be specified in the next paragraph.) Define a Boolean formula STEP
q,t
i

as follows:

STEP
q→q′,t
i =

x
q′,N−1
i q′ ∈ F

x
q′,N−1
i q′ 6∈ F, q ∈ Qi, q

′ ∈ Qj, i 6= j

x
q′,t−1
i q, q′ ∈ Qi for some i, Qi ∩ F = ∅, t > 0

false q, q′ ∈ Qi for some i, Qi ∩ F = ∅, t = 0

STEP
q,t
i returns the value we need to use on the right-hand side of the implication in Invari-

ance and Progress obligations, wherever xqi is used in the original encoding. If q belongs to

an accepting set, we use the single copy as before, except that now it is called xq,N−1
i instead

of xqi . If q and q′ belong to the same rejecting set and t > 0, then by “moving to” q ′ we have

used up one step, and therefore we will use xq,t−1
i . If t = 0 then we may not move from q to

q′ if they are in the same rejecting set. And finally, if q ′ belongs to a rejecting set but not

the one that q belongs to (whether q’s set is accepting or rejecting), when we move to q ′ and

enter the new rejecting set we “reset” the counter to N − 1, to allow N steps in the new set.

The constraints imposed by the transition from q will be denoted 〈〈δ(q)〉〉q,ti . If q ∈ F ,

then t will only take the value N − 1; if q 6∈ F , t will take the values 0, . . . , N − 1, where

N = D · k. (Recall that D is the size of the largest rejecting set in A.)

The constraint depends on δ(q):

〈〈p〉〉q,ti = Lp(ui)

〈〈¬p〉〉q,ti = ¬Lp(ui)

41

〈〈q1 ∧ q2〉〉
q,t
i = STEP

q→q1,t
i ∧ STEP

q→q2,t
i

〈〈q1 ∨ q2〉〉
q,t
i = STEP

q→q1,t
i ∨ STEP

q→q2,t
i

〈〈♦q1〉〉
q,t
i =

k−1
∨

j=0

(

R(ui, uj) ∧ STEP
q→q1,t
j

)

The new constraints are used in the new formula as follows.

PRF
weak
M,A,k = I(u0)∧x

q0,N−1
0 ∧

k−1
∧

i=0

∧

q∈F

(

x
q,N−1
i → 〈〈δ(q)〉〉q,N−1

i

)

∧
k−1
∧

i=0

∧

q∈Q\F

N−1
∧

t=0

(

x
q,t
i → 〈〈δ(q)〉〉

q,t
i

)

Theorem 3.3.1. For all weak automata A, models M and bounds k, PRF
weak
M,A,k is satisfiable

iff there exists a Namjoshi-style proof Π = (I, σ) with | domain(Π)| = k showing that M

satisfies A.

Proof. If there exists a satisfying assignment v for PRF
weak
M,A,k, then we can construct a weak

proof Π = (I, σ) as follows.

• For all q ∈ Q, set Iq =
{

v(ui) | v(x
q,t
i) = 1 for some 0 ≤ t < N

}

.

• For all q ∈ Q and s ∈ Iq, set σq(s) = min
{

t | v(xq,ti) = 1
}

.

The proof thus defined is valid:

• Initiality: since v |= PRF
weak
M,A,k, in particular v |= I(u0) ∧ x

q0,N−1
0 . Therefore v(u0) = s0.

There exists t = N − 1 for which v(xq0,t0) = 1, so v(u0) = s0 ∈ Iq0 .

• Consistency: if s ∈ Iq, then there exists an i ∈ {0, . . . , k − 1} such that s = v(ui) and

a t ∈ {0, . . . , N − 1} such that v(xq,ti) = 1. The minimum is well-defined because it is

not over an empty set, and hence σq(s) is defined.

• Invariance and Progress: suppose s ∈ Iq and σq(s) = m. Then there is an i ∈

{0, . . . , k − 1} and a minimal t ∈ {0, . . . , N − 1} such that s = v(ui) and v(xq,ti) = 1.

Since v |= PRF
weak
M,A,k, v must satisfy the constraint xq,ti → 〈〈δ(q)〉〉

q,t
i , and therefore

v |= 〈〈δ(q)〉〉q,ti .

Also, σq(s) = t, because we chose t to be the minimal value for which v(xq,ti) = 1,

– If δ(q) = p, then v |= Lp(ui), and therefore p ∈ L(s) and the requirement is

satisfied. Similarly if δ(q) = ¬p.

– If δ(q) = q1 ∨ q2, then v |= STEP
q→q1,t
i ∨ STEP

q→q2,t
i and therefore either v |=

STEP
q→q1,t
i or v |= STEP

q→q2,t
i . Suppose v |= STEP

q→q1,t
i .

It cannot be that q, q′ belong to the same rejecting set and t = 0, because in

that case STEP
q→q1,t
i = false. Therefore either q, q1 are in the same rejecting set

42

but t > 0, or q, q1 are not in the same set, or they are in the same set but it is

accepting. In all three cases, since v |= STEP
q→q1,t
i , there must be some t′ such

that v(xq1,t
′

i) = 1: if q and q1 belong to the same set and it is a rejecting set,

then t′ = t − 1; if q and q1 belong to the same set and it is an accepting set,

then t = t′ = N − 1; and if q and q′ do not belong to the same set, then again,

t′ = N − 1.

From the definition of Iq1 we have that s ∈ Iq1 . Also, if q and q′ belong to the same

rejecting set, then t′ = t−1, and from the definition, σq1(s) = min {r | v(xq,ri) = 1} ≤

t′ = t − 1 < t = σq(s). If q and q′ do not belong to the same set, or they

both belong to the same set but it is accepting, then <q→q1= N2. In all cases

σq1(s) <q→q1 σq(s), and the Invariance and Progress obligation is satisfied.

The case where δ(q) = q1 ∧ q2 is similar.

– If δ(q) = ♦q1, then v |=
∨k−1
j=0

(

R(ui, uj) ∧ STEP
q→q1,t
j

)

. Therefore for some j ∈

{0, . . . , k − 1}, (v(ui), v(uj)) ∈ R and v |= STEP
q→q1,t
j . As in the previous case we

obtain that v(uj) ∈ Iq1 and σq1(v(uj)) <q→q1 σq(s), so the Invariance and Progress

obligation is satisfied.

This concludes the proof that the encoding is sound: if PRF
weak
M,A,k is satisfiable, then M |= A.

For the other direction, suppose M |= A, and let Π = (I, σ) be a valid proof showing

this, with | domain(Π)| ≤ k. Unfortunately, we cannot use Π as-is to construct a satisfying

assignment for PRF
weak
M,A,k: first we must “fix” the rank functions so that they only use values

between 0 and N − 1, where N = D · k. We construct a modified proof Π′ = (I, σ′) as

follows.

Consider each set Qi ∈ P separately. If Qi is an accepting set, then for all q ∈ Qi and

s ∈ Iq, set σ′q(s) = N−1. If Qi is a rejecting set, let (s0, q0), . . . , (s`, q`) be an ordering of the

set {(s, q) | q ∈ Qi and s ∈ Iq}, such that for all 0 ≤ j < ` − 1, σqj(sj) ≤ σqj+1(sj+1). Since

there are no more than k model states that participate in the proof, and |Qi| ≤ D, we have

that ` ≤ N = D · k. Now assign ranks as follows: for all q ∈ Q and s ∈ Iq, let σq(s) = j,

where j is the index such that (s, q) = (sj, qj).

The new proof assigns only ranks that are no greater than N−1. We argue that it is also

a valid proof: Initiality and Consistency were not violated by our modification, since we did

not change the invariants and we defined a ranks for all q ∈ Q and s ∈ Iq. Invariance and

Progress obligations were also not affected. Take for example q ∈ Q with δ(q) = q1 ∨ q2 (the

other cases are similar). If s ∈ Iq, then either s ∈ Iq1 and σq1(s) <q→q1 σq(s) or s ∈ Iq2 and

σq2(s) <q→q2 σq(s). Suppose it is the first case. If q and q1 do not belong to the same rejecting

set, then regardless of the values assigned to σ′q1(s) and σ′q(s), σ
′
q1

(s) <q→q1 σ
′
q(s). If q and q′

do belong to the same rejecting set, then in the ordered list of pairs we constructed for that

set, the pair (s, q1) must appear before (s, q), because σq1(s) < σq(s). Hence, σ′q1(s) < σ′q(s),

43

and therefore σ′q1(s) <q→q1 σ
′
q(s), and the Invariance and Progress requirement is satisfied.

Using Π′ we can construct a satisfying assignment v for PRF
weak
M,A,k: assign to each ui

one state from domain(Π′) arbitrarily, except for u0, which must be assigned s0. For all

i ∈ {0, . . . , k − 1}, q ∈ Q and t ∈ {0, . . . , N − 1}, set v(xq,ti) = 1 iff v(ui) ∈ Iq and σq(s) ≤ t.

To show that v |= PRF
weak
M,A,k, consider the constraints that appear in PRF

weak
M,A,k:

• I(u0) ∧ x
q0,N−1
0 : since Π′ satisfies Initiality, s0 ∈ Iq0 . Also, σ′q0(s0) ≤ N − 1, because σ′

does not assign ranks greater than N − 1. Therefore v satisfies this constraint.

• Constraints of the form x
q,t
i → 〈〈δ(q)〉〉q,ti : let us take for example the case where

δ(q) = q1∨q2. (Again, the other cases are similar.) If v |= x
q,t
i , then v(ui) ∈ Iq, and since

Π′ satisfies Invariance and Progress, either v(ui) ∈ Iq1 and σq1(v(ui)) <q→q1 σq(v(ui))

or v(ui) ∈ Iq2 and σq2(v(ui)) <q→q2 σq(v(ui)). Suppose it is the first.

The constraint is of the form

〈〈q1 ∨ q2〉〉
q,t
i = STEP

q→q1,t
i ∨ STEP

q→q2,t
i

If q and q1 do not belong to the same set, or if q is accepting, then STEP
q→q1,t
i = x

q1,N−1
i .

Since σq1(v(ui)) ≤ N − 1, v |= x
q1,N−1
i , and the constraint is satisfied.

Suppose q and q1 belong to the same rejecting set. In that case, t > 0, otherwise we

would have STEP
q→q1,t
i = false, and this cannot be because v |= STEP

q→q1,t
i . So t > 0,

and STEP
q→q1,t
i = x

q1,t−1
i . Since v |= x

q,t
i we know that σ′q(v(ui)) ≤ t. Also, from the

definition of <q→q1 , in this case σ′q1(v(ui)) < σ′q(v(ui)). Hence, σ′q1(v(ui)) ≤ t−1, which

means that v |= x
q1,t−1
i (by the definition of v). The constraint is therefore satisfied.

As noted in [19], one way to view this encoding is to think of it as summarizing the run of

a symbolic model-checker, in particular the Emerson-Lei symbolic model-checking algorithm

(Section 2.2.3). In [19], ideas from the world of symbolic model-checking are borrowed and

used for linear-time model-checking; here we use them in their original context. Given an

automaton obtained by the standard translation from a µ-calculus formula ϕ, each “row”

x
〈ψ〉,t
0 , . . . x

〈ψ〉,t
k−1 can be thought of as a characteristic vector for the t-th approximant for ψ, if ψ

is a least fixpoint subformula. As in the Emerson-Lei algorith, each approximant is computed

by applying the fixpoint body to the previous approximant: in our case this is reflected in the

Invariance and Progress constraints, which refer to the (t− 1)-th “row” x
〈ψ〉,t−1
0 , . . . , x

〈ψ〉,t−1
k−1 .

The analogy breaks down when it comes to greatest fixpoints, because we only use one “row”

x
ψ,N−1
0 , . . . , x

ψ,N−1
k−1 and always refer to it in the Invariance and Progress obligations. This

is more similar to “guessing” an under-approximation A of the greatest fixpoint, and only

verifying that it really is an under-approximation by applying the fixpoint body τψ to it and

checking that A ⊆ τψ(A).

44

3.4 Constructing a Counter-Example

When using bounded model-checking to find bugs, it is useful to be able to present the user

with a small counter-example showing the faulty part of the design (if the design does not

satisfy the property under testing). Our encoding enables us to do so very easily: given

a satisfying assignment v for PRFM,A,k or one of its variations, the counter-example is the

submodel of the design induced by the states {v(u0), . . . , v(uk−1)}.

If Alg. 2 is followed, the counter-example is minimal in the number of states it contains;

it may, however, contain extraneous edges — transitions that do not actively contribute to

the “bad” behavior of the design. If PRF
exp

M,A,k, the formula with proof-successors encoded

explicitly, is used in the bounded model-checking, we can also eliminate unnecessary edges,

and present the user with a counter-example which contains only edges that were used in

the proof which shows that it is indeed a counter-example. A transition (v(ui), v(uj)) ∈ R

is only necessary in the proof represented by the assignment v if for some q ∈ Q♦, v(xqi) = 1

and v(tqi) = v(uj). This signifies that v(uj) is the proof-successor for v(ui) required by q. If

we remove all edges that are not necessary from the counter-example, the proof represented

by v is still valid over the submodel we obtain.

In addition to the counter-example itself, we can also return an annotation detailing which

counter-example states were found to satisfy which automaton states (or which subformulas,

since each automaton state represents a subformula). The annotation for state v(ui) is simply

the collection {v(xqi) | q ∈ Q}. If v(xqi) = 1, then v(ui) satisfies q. (However, if v(xqi) = 0, it

cannot be concluded that v(ui) does not satisfy q; all we know in this case is that we did not

need to show that v(ui) satisfies q to prove that the counter-example satisfies the negation

of the formula.)

Remark. Although the counter-example we generate is minimal in the number of states, it is

not minimal in the number of edges, even if we remove unnecessary edges. The assignment

returned by the SAT solver may not assign proof-successors in an optimal way, as in the

following example.

Example 3.4.1. Consider the model M = ({s0, s1} , s0, δ, L) over AP = {a, b} shown in

Fig. 3.1, with L(s0) = {a} and L(s1) = ∅, and with transitions as shown in the figure.

a
s0 s1

Figure 3.1. The model for Example 3.4.1

The model does not satisfy the µ-calculus property ϕ = @a ∨ @b; in other words, it

45

satisfies ¬ϕ = ♦¬a ∧ ♦¬b. The automaton for ¬ϕ is depicted in Fig. 3.2. It is given by

A¬ϕ = (AP, {q0, q1, q2, q3, q4} , q0, δ,Ω), where Ω is undefined for all the states, and δ is given

in Table 3.1.

q0

q1

q2

∧

q3

q4

♦

♦

¬a

¬b

Figure 3.2. The automaton A¬ϕ from Example 3.4.1

State Transition Invariant

q0 q1 ∧ q2 {s0}
q1 ♦q3 {s0}
q2 ♦q4 {s0}
q3 ¬a {s1}
q4 ¬b {s0, s1}

Table 3.1. The transitions of A¬ϕ and the invariants of Π from Example 3.4.1

A possible proof for M |= ¬ϕ is Π = (I, ρ), where ρq(s) = 0 for all automaton states q

and model states s (since there are no fixpoints, ranks are not needed), and the invariants

are given in Table 3.1. The proof is minimal in the number of model states it contains —

s0 is needed because it is the initial state, and s1 is needed as witness that s0 |= ♦¬a. The

edge (s0, s1) must appear in the counter-example. However, the edge (s0, s0) may or may not

appear, depending on the assignment returned by the SAT solver: one possibility is to regard

s1 as the proof-successor for s0 required by q2, in which case the edge is not necessary; but

another possibility is to regard s0 as its own proof-successor, in which case the edge (s0, s0)

becomes necessary. The counter-example resulting from the first possibility is minimal in

the number of edges; the counter-example obtained from the second possibility is not, but

it is an equally valid possibility.

46

Chapter 4

Completeness Thresholds

The encodings presented in the previous section provide a way to determine when a Kripke

structure does not satisfy a @-automaton A or @Lµ formula ϕ: construct the complement

A¬ of A or ϕ, choose a bound k, and if a SAT solver returns a satisfying assignment for

PRFM,A¬,k then M does not satisfy A or ϕ. However, Alg. 2 can only conclude that M does

satisfy A if PRFM,A¬,k is not satisfiable when k is the number of states in M . This is a very

pessimistic bound; in practice, it is likely that the formula PRFM,A¬,k will become intractable

for the SAT solver long before k reaches |S|. We are interested in developing better ways to

determine when, upon finding that PRFM,A¬,k is unsatisfiable for some k ≤ |S|, it is safe to

conclude that M satisfies A or ϕ.

4.1 A Static Completeness Threshold

A static completeness threshold is a conservative bound CT(M,ϕ) such that when bounded

model-checking with a bound of k = CT(M,ϕ) fails to find a counter-example, it can soundly

be concluded that M |= ϕ. In this section we present a static completeness threshold for

ECTL.

Given a model M = (S, s0, R, L), the recurrence diameter of M , denoted rM , is the

smallest natural number such that for every (not necessarily initialized) path π = t0 . . . trM+1

there exist i, j ≤ rM + 1 for which ti = tj. In words, rM is the length of the longest simple

path in M (where the length of a path is considered to be the number of states on the path,

not edges). In particular, if π is an infinite path, then among the first rM + 1 states of π

there must be a state that appears twice.

We define a static completeness threshold for an ECTL formula ϕ by induction on the

structure of ϕ:

• CT(M, true) = 1.

• For p ∈ AP , CT(M, p) = CT(M,¬p) = 1.

47

• CT(M,ϕ1 ∨ ϕ2) = max(CT(M,ϕ1),CT(M,ϕ2)).

• CT(M,ϕ1 ∧ ϕ2) = CT(M,ϕ1) + CT(M,ϕ2)− 1.

• CT(M,EXϕ1) = 1 + CT(M,ϕ1).

• CT(M,E[ϕ1 U ϕ2]) = (rM − 1) · CT(M,ϕ1) + CT(M,ϕ2).

• CT(M,EGϕ1) = rM · CT(M,ϕ1).

For ϕ = EFϕ1, we derive from the equivalence EFϕ1 ≡ E[true U ϕ1] a completeness

threshold of CT(M,ϕ) = (rM − 1) · CT(M, true) + CT(M,ϕ1) = rM + CT(ϕ1)− 1.

Theorem 4.1.1. For any model M , state s of M and ECTL property ϕ, if M, s |= ϕ then

there exists a submodel N of M with at most CT(M,ϕ) states, such that s is the initial state

of N and N, s |= ϕ.

Proof. The proof is by induction on ϕ. Let M = (S, s0, R, L) be a model.

For the base case, if ϕ = p for some p ∈ AP and M, s |= ϕ, then p ∈ L(s); a submodel

N of size CT(p) = 1 is simply given by N = ({s} , s, ∅, L|{s}). For ¬p the proof is similar.

Suppose the claim holds for ϕ1 and for ϕ2. That is, for all states s, if M, s |= ϕ1 then

there exists a submodel N of M with at most CT(M,ϕ1) states and with s as its initial

state, such that N, s |= ϕ1, and similarly for ϕ2.

For ϕ = ϕ1∨ϕ2: if M, s |= ϕ1∨ϕ2, then either M, s |= ϕ1 or M, s |= ϕ2. In the first case,

from the induction hypothesis there exists a submodel N1 of M with CT(M,ϕ1) states, with

s as its initial state, such that N1, s |= ϕ1. In the second case, there exists a submodel N2

of M with CT(M,ϕ2) states, with s as its initial state, such that N2, s |= ϕ2. Either way,

there exists a submodel of at most max(CT(M,ϕ1),CT(M,ϕ2)) with s as its initial state,

and which satisfies ϕ1 ∨ ϕ2.

For ϕ = ϕ1 ∧ ϕ2: If M, s |= ϕ1 ∧ ϕ2, then M, s |= ϕ1 and M, s |= ϕ2. From the

induction hypothesis, there exist submodels N1 = (S1, s, R1, L|S1
) and N2 = (S2, s, R2, L|S2

)

comprising at most CT(M,ϕ1) and CT(M,ϕ2) states, respectively, such that N1, s |= ϕ1

and N2, s |= ϕ2. Construct a submodel N = (S1 ∪ S2, s, R1 ∪ R2, L|S1∪S2
). Since N1 and N2

share the state s, |S1 ∪ S2| ≤ |S1| + |S2| − 1 ≤ CT(M,ϕ1) + CT(M,ϕ2) − 1. In addition,

N1 and N2 are both submodels of N with the same initial state s, and therefore s satisfies

in N all the ECTL properties that s satisfies in N1 or in N2. In particular, N, s |= ϕ1 and

N, s |= ϕ2, and therefore N, s |= ϕ1 ∧ ϕ2.

For ϕ = EXϕ1: if M, s |= EXϕ1 then there exists s′ ∈ S such that (s, s′) ∈ R and

M, s′ |= ϕ1. From the induction hypothesis, there exists a submodel N = (S ′, s′, R′, L|S′)

with at most CT(M,ϕ1) states such that N, s′ |= ϕ1. Construct a submodel NX = (S ′ ∪

{s} , s, R′ ∪ {(s, s′)} , L|S′∪{s}). NX has at most 1 + CT(M,ϕ1) states, its initial state is s,

and it satisfies N, s |= EXϕ1.

48

For ϕ = EGϕ1: if M, s |= EGϕ1 then there exists a path π = t0t1 . . . in M such that

t0 = s and for all i ∈ N, M, ti |= ϕ1. π is an infinite path, and therefore there exist

i, j ≤ rM + 1 such that ti = tj. Consider the path π′ = t0 . . . ti−1(ti . . . tj−1)
ω. π′ is a path

of M , because ti = tj; since π is a path of M , (tj−1, tj) = (tj−1, ti) ∈ R, and also for all

` 6= j − 1, (t`, t`+1) ∈ R. The number of distinct states that appear in π′ is no greater than

j − 1, which is at most rM . From the induction hypothesis, for all ` ≤ j − 1 there exists a

submodel N` = (S`, t`, R`, L|S`
), containing at most CT(M,ϕ1) states, such that N`, t` |= ϕ1.

Let S ′ =
⋃j−1
`=0 S`, and construct a submodel N = (S ′, t0, R|S′ , LS′). Since each submodel

N` contains t` as its initial state, the resulting submodel N contains the path π ′; and since

each N` is a submodel of N , N, t` |= ϕ1 for all ` ∈ {0, . . . , j − 1}. Therefore N, t0 |= EGϕ1.

The initial state is t0 = s, and the number of states in N is at most rM · CT(M,ϕ1).

For ϕ = E[ϕ1Uϕ2] the proof is similar to the case of EG. If M, s |= E[ϕ1Uϕ2], then

there exists a path π = t0t1 . . . in M , such that for some i ≥ 0, M, ti |= ϕ2, and for all j < i,

M, tj |= ϕ1. If i > rM , then there is a loop in the prefix t0 . . . ti, and we can remove it and

obtain a shorter path that still satisfies ϕ1Uϕ2. We can continue to remove loops in the

prefix until we have obtained a path π′ = t′0t
′
1 . . . such that there exists i′ ≤ rM for which

M, ti′ |= ϕ2 and for all j < i′, M, tj |= ϕ1. From the induction hypothesis, for all j < i′

there exists a submodel N 1
j = (S1

j , tj, R|S1
j
, L|S1

j
) with at most CT(M,ϕ1) states, such that

N1
j , tj |= ϕ1. There also exists a submodel N 2 = (S2, ti′ , R|S2 , L|S2) with at most CT(M,ϕ2)

states, such that N 2, ti′ |= ϕ2.

Let S ′ = S2 ∪
⋃i′−1
j=0 S

1
j , and construct a submodel N = (S ′, t0, R|S′ , LS′). Since i′ ≤ rM ,

the number of states in N is at most (rM − 1) · CT(M,ϕ1) + CT(M,ϕ2). The path π′ is a

path of N , and N 2 and each N 1
j are submodels of N . Therefore, similar to the case of EG,

N, t0 |= E[ϕ1Uϕ2].

As a consequence of Theorem 4.1.1, Alg. 2 can now be re-written as follows.

Algorithm 3 Bounded Model-Checking Using the Static Completeness Threshold

function bmc(M , ϕ)
A← to-automaton(¬ϕ)
for k = 1 to CT(M,ϕ) do
res← SAT-solve(PRFM,A,k)
if res = sat then

return false
end if

end for
return true

49

4.2 A Dynamic Completeness Criterion

The static completeness criterion presented in the previous section, although a better bound

than |S|, is still not of much practical use. Computing the recurrence diameter rM is difficult

in practice. It is possible to compute the recurrence diameter dynamically [4], by testing the

satisfiability of the following formula at each value of k:

∧

0≤i<k−1

R(ui, ui+1) ∧
∧

0≤i6=j≤k−1

(ui 6= uj)

When the formula becomes unsatisfiable for the first time, we know that k has reached the

recurrence diameter: there exists no path of length k all of whose states are distinct — in

other words, every path of length k contains a state that appears twice on the path. However,

even if we compute the recurrence diameter dynamically and use the bound computed in the

previous section, we would still have a rather pessimistic bound, which does not take into

account the finer details of the formula and model.

Following [42], we are interested in a dynamic completeness criterion: a formula CMPM,A,k

that is satisfiable while there is still hope of finding a counter-example, and that becomes

unsatisfiable when there is none. In the bounded model-checking algorithm, after failing

to find a counter-example of size k (that is, when PRFM,A,k is unsatisfiable), we will check

whether CMPM,A,k is satisfiable; if it is not we will conclude that M 6|= A. If it is satisfiable,

we will increase the bound k and go to the next iteration.

In [42], a dynamic completeness criterion is developed for the tree-based encoding. (The

construction is presented in Section 5.2.) Here we develop a dynamic completeness criterion

for our graph-based encoding. The two constructions are very different from each other,

because of the differences between the two encodings. The underlying idea in both cases

is to identify situations where a sufficiently large fragment of the model has already been

explored, and exploring a larger fragment (that is, using a larger bound) will not lead to the

discovery of a counter-example. However, in the encoding of [42] the shape of the counter-

example is known in advance, which makes it easier to construct a dynamic completeness

criterion. In developing a completeness criterion for our encoding, we must contend with the

fact that we do not know in advance how the k counter-example states will be arranged.

Essentially, CMPM,A,k should encode the fact that it is possible to arrange k states so that

they form a “beginning” of a proof, which might be extended into a valid proof by adding

more states. In the remainder of this section we will formally define what a “beginning” of

a proof is, and show how to construct a Boolean formula which is satisfiable iff there exists

a beginning of a proof containing k states.

Example 4.2.1. As an example for the inadequacy of the static completeness criterion, con-

sider the formula ϕ = E[p U q], and the model M shown in Fig. 4.1. The model has a

50

recurrence diameter of 4 — the longest simple path in M is s0s1s3s2, comprising four states.

The automaton that corresponds to ϕ is shown in Fig. 4.2; the priority of all the states is

undefined, except for q0, which has a priority of 1, reflecting the fact that Until is a liveness

property and after a finite number of steps q has to be satisfied. The transitions of the

automaton, and the subformulas to which each state corresponds, are shown in Table 4.1.

(The subformulas are written in ECTL to simplify the presentation; the automaton itself is

constructed from the µ-calculus equivalent of phi.)

p
s0

p
s1

s2

s3

Figure 4.1. The model from Example 4.2.1

q0 ∨

q1 ∧

q2

q3

q4

q

p

♦

Figure 4.2. The automaton for E[p U q] from Example 4.2.1

State Transition Subformula(s) Priority

q0 q1 ∨ q2 E[p U q] ≡ p ∨ (q ∧ EXE[p U q]) 1
q1 q3 ∧ q4 q ∧ EXE[p U q] undefined
q2 q q undefined
q3 p p undefined
q4 ♦q0 EXE[p U q] undefined

Table 4.1. The transitions of the automaton for E[p U q] from Example 4.2.1

The static completeness threshold for ϕ is rM = 4. A witness for E[p U q] is a finite

path that contains only states labeled with p, except possibly the last state, which should

satisfy q. In M , the length of the longest path that contains only states labeled with p is 2.

Therefore, with a bound of 3, we cannot find a beginning of a counter-example — a structure

that might be extended into a counter-example by adding more states. When k reaches 3,

we would like to be able to determine that M 6|= E[p U q].

51

Formally, we say that Υ = (I, ρ) is a partial proof if it satisfies the following conditions.

1. Initiality: s0 ∈ Iq0 .

2. Partial Invariance and Progress: For all q ∈ Q \ Q♦, Strong Invariance and Progress

obligations are imposed. These are the usual Invariance and Progress obligations: for

all s ∈ Iq,

• If δ(q) = p then p ∈ L(s).

• If δ(q) = ¬p then p 6∈ L(s).

• If δ(q) = q1∨q2, then either s ∈ Iq1 and ρq1(s)<qρq(s), or s ∈ Iq2 and ρq2(s)<qρq(s).

• If δ(q) = q1∧q2, then s ∈ Iq1 and ρq1(s)<qρq(s), and also s ∈ Iq2 and ρq2(s)<qρq(s).

For all q ∈ Q♦, Weak Invariance and Progress is required. If δ(q) = ♦q1, for all s ∈ Iq,

at least one of the following must hold:

• Regular Invariance and Progress: there exists t ∈ S such that (s, t) ∈ R and

t ∈ Iq1 and ρq1(t) <q ρq(s); or,

• “Escape clause”: there exists a fresh state t 6∈ domain(Υ) such that (s, t) ∈ R.

(Recall that domain(Υ) =
⋃

q∈Q Iq is the set of states that participate in Υ.)

If the first condition holds, we say that the Invariance and Progress obligation for q and

s is satisfied. If the first condition does not hold, and the “escape clause” is satisfied,

we say that the obligation is violated. (It is possible for both conditions to hold at the

same time, in which case we say that the obligation is satisfied.)

This definition formalizes what it means for a structure to be a “beginning” of a proof,

but it is not sufficient for our purposes. We would like to be able to terminate the BMC

procedure at the smallest possible bound. We are hindered by the fact that we can often

add states to a partial proof without invalidating it. Thus, we may think that there exists

a “beginning” of a proof comprising k states, when more careful analysis would reveal that

the “beginning” we found contains unnecessary states.

For instance, in Example 4.2.1, one partial proof for M |= ϕ is given by Υ = (I, ρ) where

Iq0 = Iq1 = Iq3 = {s0, s1}, Iq4 = {s0, s1, s2} and Iq2 = ∅. The rank assignment is immaterial.

Υ is a partial proof: s0 satisfies all its obligations; s1, s2 violate the Invariance and Progress

obligation for q4, but both have a transition to s3, which does not participate in Υ. It may

therefore seem like there is hope for extending Υ into a valid proof by adding s3. But we

have already seen that there is no “beginning of a proof” with 3 states, so Υ must somehow

not comply with our intention.

Indeed, we can see that s2 has been added to Υ spuriously. It does not serve any useful

function in the partial proof, since removing it would not affect the satisfaction of any

52

obligations, and it inflates the number of states that participate in Υ. We would like to

avoid having “useless” states like s2 in the partial proof in order to be able to halt the

bounded model-checking with a smaller bound. We will now refine the definition to prevent

the participation of useless states.

Given a proof Π = (I, ρ), we define a proof-successor assignment PS as a collection

PS = {PSq | q ∈ Q♦}, where PSq : Iq → domain(Π) assigns to each s ∈ Iq a proof-successor

of s for q; that is, if δ(q) = ♦q1, then PSq(s) satisfies PSq(s) ∈ Iq1 and ρq1(PSq(s)) <q ρq(s).

There may exist more than one possible proof-successor assignment for a given proof, as can

be seen in Example 3.4.1, where different proof-successor assignments yield counter-examples

with different numbers of edges.

With regard to a proof-successor assignment PS, define a graph GΠ,PS = (domain(Π), E)

where E = {(s, PSq(s))|q ∈ Q♦ and s ∈ Iq}. Each edge in E will be called a dependency.

Define the set NECΠ,PS of necessary states w.r.t. PS in Π to be the states reachable

from s0 in GΠ,PS. In addition, define a relation REQΠ,PS ⊆ E by: (s, t) ∈ REQΠ,PS iff s

immediately precedes t on a shortest path from s0 to t; that is, there exists a shortest path

π = s0 . . . s`−1s` in GΠ,PS such that s`−1 = s and s` = t. The edges in REQΠ,PS are the

edges that would be explored in a BFS traversal of GΠ,PS starting from s0. The relation

REQΠ,PS will be used in our proof of the soundness of the dynamic completeness criterion.

We say that a proof is PS-concise if all its states are necessary with regard to PS, and

we say that a proof is concise if it is PS-concise for all possible choices of PS. If there is

no proof-successor assignment PS such that the proof is PS-concise, we say that the proof

is wasteful.

Example 4.2.2. Consider the automaton A¬ϕ from Example 3.4.1, and the model M shown

in Fig. 4.3. The automaton A¬ϕ is shown in Fig. 4.4. In Table 4.2 we show the transitions

of the automaton, and the invariants for three possible proofs showing that M |= A¬ϕ. The

ranks are immaterial, since the priority of all automaton states is undefined.

a, b

s0

s1

s2

s3

Figure 4.3. The model from Example 4.2.2

The only state that requires a proof-successor in Π1,Π2 is s0, because q1, q2 ∈ Q♦ and

s0 belongs to the invariants Iq1 and Iq2 . For Π1 there are four possible proof-successor

53

q0

q1

q2

∧

q3

q4

♦

♦

¬a

¬b

Figure 4.4. The automaton A¬ϕ from Example 3.4.1 and Example 4.2.2

State Subformula Transition Π1 Invariant Π2 Invariant Π3 Invariant

q0 EX¬a ∧ EX¬b q1 ∧ q2 {s0} {s0} {s0}
q1 EX¬a ♦q3 {s0} {s0} {s0}
q2 EX¬b ♦q4 {s0} {s0} {s0}
q3 ¬a ¬a {s1, s2} {s1} {s1}
q4 ¬b ¬b {s1, s2} {s1} {s1, s3}

Table 4.2. The transitions of A¬ϕ and the invariants of Π1,Π2 and Π3 from Ex-
ample 3.4.1

assignments: as the proof-successor required by q1, we can choose either s1 or s2, and

similarly for the proof-successor required by q2. For Π2 and Π3 there is only one possible

proof-successor assignment PS, with PSq1(s0) = PSq2(s0) = {s1}. (s2 and s3 cannot be

chosen, because they are not in Iq3 and Iq4 .)

Let us denote by PS1 the proof-successor assignment for Π1 that has PS1
q1

(s0) = s1

and PS1
q2

(s0) = s2, and denote by PS2 the proof-successor assignment for Π1 that has

PS2
q1

(s0) = PS2
q2

(s0) = s1.

Π1 is PS1-concise: s0 is always necessary, being the initial state; s1 is necessary because

PS1
q1

(s0) = s1, and s2 is necessary because PS1
q2

(s0) = s2. However, Π1 is not PS2-concise:

w.r.t. PS2, the state s2 is not necessary, because it has no incoming dependency edges. Since

there exists a proof-successor assignment PS2 such that Π1 is not PS2-concise, Π1 is not

concise.

Now consider Π2. It is concise with regard to the only proof-successor assignment it

has: in PS (defined above), s0 is necessary because it is initial, and s1 is necessary because

PSq1(s0) = s1. Therefore, Π2 is concise.

In contrast, Π3 is not PS-concise: s3 is not necessary. Since PS is the only proof-successor

assignment for Π3, and Π3 is not PS-concise, Π3 is wasteful.

From the example we can see that there is a “hierarchy of conciseness” among proofs: at

the highest level of the hierarchy we have concise proofs (like Π2). Then we have non-concise

proofs which are PS-concise w.r.t. some proof-successor assignment PS (like Π1, which is

PS1-concise but not PS2-concise). Finally, at the lowest level, we have wasteful proofs (like

54

Π3), proofs that are not PS-concise w.r.t. all proof-successor assignments PS.

Concise proofs are better than non-concise proofs, because all the states that participate

in a concise proof are strictly necessary. A non-concise-proof, in contrast, contains at least

one state that can be eliminated without invalidating the proof. (In our example, s2 can

be removed from Π1.) However, a non-concise but non-wasteful proof like Π1 is still better

in our eyes than a wasteful proof like Π3. This is because when we take a full proof and

“chop off” parts of it to form a partial proof, we obtain a partial proof that is not necessarily

concise, but certainly not wasteful. We phrase this more formally in Theorem 4.2.1.

Next, we show that there always exists a concise proof if there exists a proof at all. Given

a proof Π = (I, ρ) and a set A ⊆ domain(Π), we define the proof Π restricted to A, denoted

Π|A, by Π|A = (I ′, ρ′), where for all q ∈ Q, I ′q = Iq ∩ A and ρ′q = ρq|A.

Lemma 4.2.1. If Π is a valid proof and PS is a proof-successor assignment, then Π|NECΠ,PS

is also a valid proof.

Proof. The new proof Π|NECΠ,PS
satisfies all the proof obligations: suppose Π = (I, ρ) and

Π|NECΠ,PS
= (I ′, ρ′).

1. Initiality: s0 is always reachable from itself, and so s0 ∈ NECΠ,PS for all proof-successor

assignments PS. Since Π itself is valid, s0 ∈ Iq0 , and hence, s0 ∈ Iq0 ∩ NECΠ,PS.

2. Consistency: if s ∈ I ′q, then s ∈ Iq and s ∈ NECΠ,PS. Since Π satisfies Consistency,

ρq(s) is defined, and therefore ρq|NECΠ,PS
(s) is also defined.

3. Invariance and Progress: for all states q ∈ Q\Q♦, Invariance and Progress requirements

are satisfied because each model state s is either removed from all invariants, or it

remains in all the invariants to which it belongs in Π and also maintains its ranks.

Since Π satisfies Invariance and Progress, and Invariance and Progress obligations

for q ∈ Q \ Q♦ involve only a single state, Π|NECΠ,PS
satisfies these obligations for

q ∈ Q \Q♦.

For q ∈ Q♦ and s ∈ I ′q, s ∈ Iq as well (because I ′q ⊆ Iq). Hence, PSq(s) is defined, and

it assigns to s one of its proof-successors t. t is a necessary state: s itself is necessary,

otherwise it would not be in I ′q; hence it is reachable from s0 via dependencies of the

form (s′, PSq′(s
′)). t is reached from s by the edge (s, PSq(s)), and it is therefore also

reachable from s0 via dependency edges, which means it is necessary w.r.t. PS. And

since t ∈ NECΠ,PS, t belongs to the same invariants in Π|NECΠ,PS
as it does in Π and

also has the same ranks as it did in Π, as does s. Thus, t serves as a proof-successor

for s in Π|NECΠ,PS
, and the Invariance and Progress obligation is satisfied.

55

Lemma 4.2.2. Given a model M and automaton A, M satisfies A iff there is a concise and

valid proof Π showing that M satisfies A.

Proof. Since a concise valid proof is in particular a valid proof, the soundess of Namjoshi’s

proof system guarantees that the existence of a concise valid proof implies M |= A.

In the other direction, suppose M |= A, and let Π be a valid proof showing this. If Π is

concise, we are done. Otherwise, there exists a proof-successor assignment PS with regard

to which NECΠ,PS (domain(Π). Construct a series of proofs Π0,Π1, . . . ,Π` inductively by

Π0 = Π and Πi+1 = Πi|NECΠi,PSi
while there remains a proof-successor assignment PSi such

that Πi is not PSi-concise. (If there is more than one possible proof-successor assignment

PSi, choose one arbitrarily.) The series is finite, because at each step we remove at least one

(unnecessary) state from domain(Πi); eventually we will run out of states to remove. The

final proof Π` is concise, because there exist no proof-successor assignments PS with regard

to which it is not PS-concise. Also, it is a valid proof: by Lemma 4.2.1, the validity of the

proof is preserved at each step, and since we started with a valid proof Π, we will end up

with a valid proof Π`. We have therefore shown a concise and valid proof Π` showing that

M satisfies A.

We extend the definition of proof-successor assignments to partial proofs as follows. If

Υ = (I, ρ) is a partial proof, then a proof-successor assignment PS = {PSq | q ∈ Q} for Υ

is defined as for a full proof, with the exception that PSq(s) may not be defined even if

s ∈ Iq. (That is, PSq is a partial function from Iq instead of a full function.) We define

PS-conciseness, conciseness and wastefulness for partial proofs the same way as for full

proofs.

Before we turn to the construction of the formula CMPM,A,k, we need one more technical

lemma.

Lemma 4.2.3. The graph G = G(NECΠ,PS,REQΠ,PS) is a directed acyclic graph (DAG).

Proof. Suppose by way of contradiction that G contains a cycle π = t0t1 . . . t` where ` > 0,

t0 = t` and for all i ∈ {0, . . . , `− 1}, (ti, ti+1) ∈ REQΠ,PS. Let d be the shortest-path

distance of t0 from s0. (d is defined, because t0 is necessary and hence it is reachable from

s0 in G.) From the definition of REQΠ,PS, each edge (ti, ti+1) lies on a shortest path from s0

to ti+1. It is easy to show by induction that the shortest-path distance of ti from s0 is d+ i.

Consequently, we have that the shortest-path distance from s0 to t0 = t` is both d and d+ `,

which is a contradiction since ` > 0.

Now we are ready to construct CMPM,A,k. Recall that CMPM,A,k is intended to encode

the existence of a “beginning” of a proof for M |= A, with k states. We can now phrase our

intention more formally: CMPM,A,k should be satisfiable iff there exists a partial proof Π with

56

| domain(Π)| = k, which non-wasteful (that is, it is PS-concise w.r.t. some proof-successor

assignment PS).

Recall that in the explicit-successor encoding (defined in Section 3.2.2), a satisfying

assignment also tells us which states serve as proof-successors for which other states. We

need this information now, and therefore the formula CMPM,A,k will be based on PRF
exp

M,A,k.

To express the weakened Invariance and Obligation requirements of a partial proof, we define

weakened constraints 〈〈δ(q)〉〉partial
i as follows:

• For all q ∈ Q \Q♦, 〈〈δ(q)〉〉partial
i = 〈〈δ(q)〉〉expi .

• For q ∈ Q♦ with δ(q) = ♦q1,

〈〈♦q1〉〉
partial
i = R(ui, t

q
i) ∧

k−1
∧

j=0

(

(tqi = uj)→
(

x
q1
j ∧ Pq(ρ

q1
j , ρ

q
i)
))

The new constraints allow for violated Invariance and Progress obligations for Q♦-states,

but only if the proof successor is not one of the proof states u0, . . . , uk−1.

The formula CMPM,A,k is composed of the following constraints.

• Partial proof:

PPRFM,A,k = I(u0) ∧ x
q0
0 ∧

k−1
∧

i=0

∧

q∈Q

x
q
i → 〈〈δ(q)〉〉

partial
i

• Conciseness:

CONA,k =
k−1
∧

i=1

i−1
∨

j=0

∨

q∈Q♦

(ui = t
q
j) ∧ x

q
j

This constraint enforces the non-wastefulness of the partial proof, by requiring that

each participating state except s0 have an incoming dependency from a preceding proof

state.

• Distinctness:

Dk =
∧

0≤i≤k−1

(

∧

i<j≤k−1

ui 6= uj

)

To obtain CMPM,A,k, we take the conjunction of all the constraints defined above:

CMPM,A,k = PPRFM,A,k ∧ CONA,k ∧ Dk

Remark. The distinctness constraint is added to prevent situations where the SAT solver

assigns the same model state to different state vectors, inflating the number of states that

appear to have been used and preventing termination when it may otherwise be possible.

57

Theorem 4.2.1 (Soundness). If PRFM,A,k is unsatisfiable and M satisfies A, then CMPM,A,k

is satisfiable.

Proof. If M satisfies A then from Lemma 4.2.2 there exists a valid and concise proof Π

witnessing this fact. Π cannot have k states or less, otherwise PRFM,A,k would be satisfiable.

Let PS be a proof-successor assignment for Π. As shown in Lemma 4.2.3, the graph

G(NECΠ,PS,REQΠ,PS) is a DAG, and therefore there exists a topological sort of its vertices.

In our case, since Π is concise, NECΠ,PS = domain(Π), and we can sort all the states that

participate in Π topologically with regard to the REQΠ,PS relation. Let s0, s1, . . . , sk′ , where

k′ > k − 1, be a topological sort of domain(Π). The initial state s0 has no incoming edges,

and therefore we can assume w.l.o.g. that it is the first state in the topological sort (if it is

not first, we can move it to the front without invalidating the topological sort.)

Construct a satisfying assignment v for CMPM,A,k as follows: for all i ∈ {0, . . . , k − 1},

set

• v(ui) = si,

• v(xqi) = 1 if si ∈ Iq, and otherwise v(xqi) = 0,

• v(ρqi) = ρq(si),

• For q ∈ Q♦, set v(tqi) = PSq(si) if si ∈ Iq, and v(tqi) = s0 otherwise. (The choice of s0

if si 6∈ Iq is arbitrary; any model state will serve.)

To show that v |= CMPM,A,k, consider the constraints that appear in CMPM,A,k.

• Partial proof:

PPRFM,A,k = I(u0) ∧ x
q0
0 ∧

k−1
∧

i=0

∧

q∈Q

x
q
i → 〈〈δ(q)〉〉

partial
i

As in the proof of Theorem 3.1.1, the satisfaction of the Initiality constraint and the

Invariance and Progress constraints, for all q ∈ Q \Q♦, follows from the fact that Π is

a valid proof.

For q ∈ Q♦ and i such that v(xqi) = 1, si ∈ Iq, and thus PSq(si) is defined. Suppose

PSq(si) = sj. By the construction of v, v(tqi) = sj. There are two possibilities:

1. j ≤ k− 1, in which case v(uj) = sj, and the Invariance and Progress constraint is

satisfied: there is a transition from si to sj and therefore v |= R(ui, t
q
i), and also

since sj is a proof successor for si and q, v |= x
q1
j and v |= Pq(ρ

q1
j , ρ

q
i).

2. j ≥ k, in which case for all ` ∈ {0, . . . , k − 1}, v(u`) = s` 6= sj. (A state does not

appear twice in a topological sort, and therefore all the states that precede sj are

58

different from it.) In this case the weakened Invariance and Progress constraint is

also satisfied, this time weakly: for all ` ∈ {0, . . . , k − 1}, v(tqi) = sj 6= s` = v(u`),

and the implication is satisfied.

• Conciseness:

CONA,k =
k−1
∧

i=1

i−1
∨

j=0

∨

q∈Q♦

(ui = t
q
j) ∧ x

q
j

Let i ∈ {1, . . . , k − 1}. We know that si is necessary in Π, and hence it is reachable

from s0 by dependency edges of the form (s, PSq(s)). In particular, there exists a

shortest parth from s0 to si. Let (sj, si) be the last edge on such a path. From the

definition of REQΠ,PS, (sj, si) ∈ REQΠ,PS. Hence, j < i (in the topological sort)

and this implies that j < k − 1. Thus, there is a j < i and q ∈ Q♦ such that

v(ui) = si = PSq(sj) = v(tqj). Also, v(xqj) = 1, because sj ∈ Iq (otherwise PSq(sj)

would not be defined). The disjunction is therefore satisfied.

• Distinctness:

Dk =
∧

0≤i≤k−1

(

∧

i<j≤k−1

ui 6= uj

)

This constraint is satisfied because no state appears twice in a topological sort.

In the theorem, we require only one direction in the implication: if there exists a proof

with more than k states, then our dynamic completeness criterion must not falsely indicate

that it is safe to halt at k and conclude that M does not satisfy A. This is a soundness

result. We cannot require the other direction, because if we had a formula that provided

both directions of the implication, it would immediately be able to tell us whether or not

M satisfies A, even when the bound was 1! Indeed, satisfiability of CMPM,A,k only indicates

that there may be a proof with more than k states. Whether or not such a proof actually

exists can only be determined at greater bounds. However, the following lemma shows that

CMPM,A,k will become unsatisfiable when there does not exist a non-wasteful partial proof

of size k.

Lemma 4.2.4. If CMPM,A,k is satisfiable, then there exists a partial proof Υ = (I, ρ) with

| domain(Υ)| = k which is PS-concise w.r.t. some proof-successor assignment PS.

Proof. Let v be a satisfying assignment for CMPM,A,k. Construct a partial proof Υ as usual,

by setting Iq = {v(ui) | v(x
q
i) = 1} and ρq(v(ui)) = v(ρqi) for all q ∈ Q and i ∈ {0, . . . , k − 1}.

Define a proof-successor assignment PS for Υ by PSq(v(ui)) = v(tqi) if v(ui) ∈ Iq and

v(tqi) = v(uj) for some j ∈ {0, . . . , k − 1}; otherwise, PSq(v(ui)) is undefined.

59

Υ is a partial proof: the Invariance and Progress constraints for all q ∈ Q\Q♦ are the same

in CMPM,A,k as they would be in PRFM,A,k, so the proof of Theorem 3.1.1 applies. For q ∈ Q♦

with δ(q) = ♦q1 and s ∈ Iq, there is some i ∈ {0, . . . , k − 1} such that s = v(ui) and v(xqi) =

1. Therefore v |= 〈〈♦q1〉〉
partial
i , that is, v |= R(ui, t

q
i) ∧

∧k−1
j=0

(

(tqi = uj)→
(

x
q1
j ∧ Pq(ρ

q1
j , ρ

q
i)
))

.

If there is no j ∈ {0, . . . , k − 1} such that v(tqi) = v(uj), then v(tqi) is a fresh successor for

v(ui) which is not one of the regular proof states. If there is some j ∈ {0, . . . , k − 1} such

that v(tqi) = v(uj), then v(uj) is a proof successor for v(ui) and q. Either way, the Weak

Invariance and Progress requirement for s and q is satisfied.

Υ is also PS-concise: we will show by induction on i that v(ui) is necessary w.r.t. PS.

For i = 0, v(ui) = s0 (from Initiality), and s0 is always necessary in any proof. Now suppose

v(uj) is necessary for all j < i, and let us show that v(ui) is also necessary.

Among the other constraints in CMPM,A,k, v satisfies the Conciseness constraint:

CONA,k =
k−1
∧

i=1

i−1
∨

j=0

∨

q∈Q♦

(ui = t
q
j) ∧ x

q
j

Therefore, by the construction of Υ, there exist some j < i and q ∈ Q♦ such that v(uj) ∈ Iq

and v(tqj) = v(ui). Therefore, PSq(v(uj)) is defined, and its value is PSq(v(uj)) = v(ui).

From the induction hypothesis, v(uj) is necessary, and since we have just shown a dependency

from v(uj) to v(ui) we obtain that v(ui) is necessary as well.

The scheme for using the dynamic completeness criterion is shown in Alg. 4, which takes

as input a ♦-automaton A and a structure M , and returns true iff M satisfies A. The

correctness of the algorithm follows from Theorem 4.2.1.

Algorithm 4 BMC using the dynamic completeness criterion

function bmc(M , ϕ)
A← to-automaton(¬ϕ)
for k = 1 to |S| do
res← SAT-solve(PRFM,A,k)
if res = sat then

return false
end if
res← SAT-solve(CMPM,A,k)
if res = unsat then

return true
end if

end for
return true

Remark (On symmetry-breaking). In Section 3.2, we discussed several ways to improve

the encoding of PRFM,A,k. One of the improvements, encoding successors explicitly (Sec-

60

tion 3.2.2), was used directly in the construction of CMPM,A,k. The others can also be

applied to of CMPM,A,k, with one exception: symmetry-breaking (Section 3.2.1). The proof-

successor order REQΠ,PS, used in the proof of Theorem 4.2.1, imposes its own order on

the proof states; it is no longer true that all the states except s0 are interchangeable, be-

cause they must appear in topological sort according to REQΠ,PS. We do get a degree of

symmetry-breaking from using the REQΠ,PS order, but it is not as complete as we had in

Section 3.2.1, since there may be states that are independent of each other w.r.t. REQΠ,PS

and can take any order between themselves.

Remark (Future work). The dynamic completeness criterion we presented can be improved

by strengthening the analysis of which states are really “necessary”. Currently, we say that

a state is “necessary” if there is a chain of proof obligations for Q♦ states that requires it.

However, this does not take into account the fact that we are allowed to spuriously add

states to the invariants of Q♦ states even when the proof does not require it, thus adding

dependencies and making states seem necessary when they might otherwise not be. A better

criterion would take into account not only proof obligations for Q♦, but all proof obligations,

and it would not allow model states to belong to invariants in which they are not necessary

to satisfy some proof obligations. However, it is not obvious how this should be done for

disjunction: if s ∈ Iq where δ(q) = q1 ∨ q2, is s necessary in Iq1 , or in Iq2 , or both? Can we

require that s be in either Iq1 or Iq2 but not both, or would doing so affect the soundness of the

completeness criterion? This question must be addressed before developing a completeness

criterion that takes into account all proof obligations.

We are also interested in developing a static completeness criterion for all weak automata,

not only ECTL.

61

62

Chapter 5

A Comparison of the Three

Approaches to BMC for

Branching-Time Logic

In this section we will discuss, somewhat informally, various aspects of the BMC encodings

of [33], [42] and our own encoding, and their relative merits in terms of efficiency and the

counter-examples they produce. An empirical evaluation of the performance of our approach

as compared to [42] is presented in Chapter 6.

5.1 The path-based encoding

For the sake of simplicity, we will discuss the path-based encoding of [33] for ACTL. The

encoding is extended to ACTL* in [45], but the extension involves more technical details

and does not introduce any new ideas.

In the encoding of [33], the counter-example is represented as a collection of paths of

length k. The number of paths used for a formula ϕ is given by fk(ϕ), where fk(ϕ) is defined

inductively:

fk(p) = fk(¬p) = 0 for all p ∈ AP

fk(ϕ1 ∧ ϕ2) = fk(ϕ1) + fk(ϕ2)

fk(ϕ1 ∨ ϕ2) = max(fk(ϕ1), fk(ϕ2)

fk(EXϕ1) = 1 + fk(ϕ1)

fk(EGϕ1) = (k + 1) · fk(ϕ) + 1

fk(E[ϕ1 U ϕ2]) = k · fk(ϕ1) + max(fk(ϕ1), fk(ϕ2)) + 1

The total number of model states one has to encode for a formula ϕ when the bound is k

63

is O(kd), where d is the nesting depth of temporal operators in ϕ; that is, the encoding is

polynominal in the bound k, but it is exponential in the nesting depth of temporal operators

in ϕ (specifically, EG and EU operators).

The encoding itself is defined as follows. Let ui,j denote the jth state on the ith path

encoded. For each subformula ψ of ϕ, we define a Boolean formula Jψ, uKk, which informally

means “ψ is satisfied by u”. The formula is constructed depending on the main operator in

ψ:

Jp, uKk = Lp(u)

J¬p, uKk = ¬Lp(u)

Jϕ1 ∧ ϕ2, uKk = Jϕ1, uKk ∧ Jϕ2, uKk

Jϕ1 ∨ ϕ2, uKk = Jϕ1, uKk ∨ Jϕ2, uKk

JEXϕ1, uKk =

fk(ϕ)
∨

i=1

((u = ui,0) ∧ Jϕ1, ui,1Kk)

JEGϕ1, uKk =

fk(ϕ)
∨

i=1

(

(u = ui,0) ∧
k
∧

j=0

Jϕ1, ui,jKk ∧
k
∨

`=0

R(ui,k, ui,`)

)

JE[ϕ1 U ϕ2, uKk =

fk(ϕ)
∨

i=1

(

(u = ui,0) ∧
k
∨

j=0

(

Jϕ2, ui,jKk ∧

j−1
∧

`=0

Jϕ1, ui,`Kk

))

Simply put, to show that u satisfies ψ, one stipulates, as a disjunction over all the paths,

the existence of a path indexed i starting at u (u = ui,0) which serves as a witness for ψ.

For example, to show that u satisfies EGψ, we require that one of the paths be lasso-shaped

and contain only states that satisfy ψ.

In addition to these constraints, the paths are all constrained to be paths of the model:

JMKk =

fk(ϕ)
∧

i=1

k−1
∧

j=0

R(ui,j , ui,j+1)

and in addition, the first path must be an initialized path. The resulting encoding is given

by

JM,ϕKk = I(u1,0) ∧ JMKk ∧ Jϕ, u1,0Kk

In Example 5.3.1 we show how the encoding is applied to disprove the formula AFAG¬p.

Counter-examples

It is not possible to tell in advance which path will attach to which point in which other

paths. The disjunction in the translation of formulas with temporal operators allows each

of the fk(ϕ) paths to serve as a witness required at some point in some other path, and in

64

fact one path may serve to satisfy different requirements.

The counter-example obtained by the approach of [33] suffers from several drawbacks.

First, it is not necessarily minimal in size in any sense — neither in the number of states

encoded nor in the number of paths encoded, since fk(ϕ) is only an upper bound on the

number of paths that may be needed. Second, it may contain parts that are irrelevant to

the property, and in fact requiring all the paths to be of the same length makes this outcome

very likely. Third, there is no way to tell which parts of the counter-example are relevant to

which subformulas in the property, or indeed which parts are relevant at all. For example, if

we set out to disprove a conjunction ϕ1 ∧ ϕ2, the resulting counter-example will not enable

us to determine which of the formulas ϕ1 and ϕ2 was falsified, unless we model-check the

counter-example to see whether it satisfies ¬ϕ1 or ¬ϕ2.

One advantage of the path-based encoding over the tree-based encoding which will be

discussed next is that it allows “re-use” of counter-example states. If we have a path

ui,0ui,1 . . . ui,k that serves as a witness to show that ui,0 satisfies ψ, we can “use” this path ev-

ery time we need to show that ui,0 satisfies ψ, which may occur more than once. However, the

encoding does not enforce re-use of paths, so it is entirely possible that two different paths,

from the same model state, will be used to justify the satisfaction of the same subformula.

5.2 The tree-based encoding

The encoding presented in [42] uses as its basis Stirling’s local proof rules from [38]. We will

give a brief and informal overview of the proof system.

To make the proof-rules local, the µ-calculus syntax is enriched with memoryfull fixpoint

operators νX {r0, . . . , rm} .ψ and µX {r0, . . . , rm} .ψ, called tagged fixpoint operators, which

“remember” the states already visited in the fixpoint. Formally, JµX {r0, . . . , rm} .ψKeM is

the least fixpoint of the function τ : 2S → 2S defined by τ(Z) = JψK
e[X←Z]
M \ {r0, . . . , rm};

and JνX.ψKeM is the greatest fixpoint of the function τ : 2S → 2S defined by τ(Z) =

JψK
e[X←Z]
M ∪ {r0, . . . , rm}.

The intuition for the way tagged fixpoint operators are used in Stirling’s proof rules can

be seen from the Reduction Lemma ([24], [44]).

Lemma 5.2.1 (Reduction Lemma). Given a monotonic function τ : 2S → 2S, for all s ∈ S,

(i) s ∈ µX.τ(X) iff s ∈ τ (µX. (τ(X) \ {s})), and

(ii) s ∈ νX.τ(X) iff s ∈ τ (νX. (τ(X) ∪ {s})).

Expressed in terms of the tagged fixpoint operators, the Reduction Lemma says that

s ∈ JµX.ψKeM iff s ∈ JψK
e[X←µX{s}.ψ]
M , and s ∈ JνX.ψKeM iff s ∈ JψK

e[X←νX{s}.ψ]
M . Therefore,

to prove that s satisfies µX.ψ it is sufficient to show that s satisfies ψ[X ← µX {s} .ψ] and

65

similarly for greatest fixpoints. These are two of the proof rules in the proof system of [38],

and they are called “µ-unroll” and “ν-unroll”, respectively. We refer to each application of

one of these rules as an unrolling.

Another proof rule for greatest fixpoints in [38] is actually an axiom: from no premises,

it is possible to conclude that s satisfies νX {r0, . . . , rm, s} .ψ. In addition to this axiom

and the unrolling rules, the proof system contains standard proof rules for all the Boolean

connectives; e.g., to prove ψ1 ∧ ψ2, one must prove ψ1 and ψ2.

The encoding in [42] expresses the proof rules as a Boolean formula. The bound limits

the depth of the proof, which is the number of unrollings the proof uses along each branch.

The encoding uses Boolean variables cj to indicate whether we are looking for a proof, or

whether we are applying the dynamic completeness criterion and looking for a beginning of

a proof. When we are looking for a proof, the cj variables are constrained to zero. In the

dynamic completeness criterion they are constrained to one.

For each subformula ψ of ϕ, state u and integer d, we define a Boolean formula Jϕ, u, dK,

whose satisfaction will correspond to the fact that u satisfies ϕ, and it requires at most d

applications of the µ- and ν-unroll proof rules to show this. The encoding is given below.

JνX {v0, . . . , vm} .ψ, u, dK =

=

∧m

i=0(u 6= vi)↔ cj d = 0
∨m

i=0(u = vi) ∨ Jψ[X ← νX {v0, . . . , vm, u}], u, d− 1K d > 0

where cj is a fresh Boolean variable.

JµX {v0, . . . , vm} .ψ, u, dK =

=

∧m

i=0(u 6= vi) ∧ cj d = 0
∧m

i=0(u 6= vi) ∧ Jψ[X ← µX {v0, . . . , vm, u}], u, d− 1K d > 0

where cj is a fresh Boolean variable.

Jϕ1 ∧ ϕ2, u, dK = Jϕ1, u, dK ∧ Jϕ2, u, dK

Jϕ1 ∨ ϕ2, u, dK = Jϕ1, u, dK ∨ Jϕ2, u, dK

J♦ψ, u, dK = R(u, u′) ∧ Jψ, u′, dK

Jp, u, dK = Lp(u)

J¬p, u, dK = ¬Lp(u)

The encoding as presented in [42] is more complicated than our presentation here, because

it is not assumed that the formula is in negation-normal form.

66

The formula one uses to search for a counter-example is

Θ(M,ϕ, d) = Jϕ, u, dK ∧ (u = s0) ∧
∧

j

¬cj

and the formula one uses for the dynamic completeness criterion is

Γ(M,ϕ, d) = Jϕ, u, dK ∧ (u = s0) ∧
∧

j

cj

Intuitively, to justify that a state u satisfies a fixpoint formula ϕ, the encoding unrolls

the fixpoint until the bound is reached. Then, at the end of the branch, the requirement

depends on the value of cj. If it is zero, indicating that we are looking for a proof, then

each proof branch must succeed in showing that u satisfies ϕ. For a least fixpoint formula,

which typically corresponds to liveness, this means that all states along the branch should

be distinct and the liveness obligation should be discharged before we reach the end of

the branch; therefore, if cj is zero, the end of the branch is always false (cj appears as a

conjunct in the end-branch encoding, JµX {v0, . . . , vm} .ψ, u, 0K). If we have reached the end

of the branch we have not discharged the obligation. For a greatest fixpoint formula, which

typically corresponds to safety or invariance, a value of 0 for cj means that the states we

visited along the branch must close a loop.

If cj takes the value 1, then we are only looking for a beginning of a proof. In this case we

allow branches corresponding to least fixpoints to end without discharging their obligation,

as long as all the states along the branch are distinct, and we allow branches corresponding

to greatest fixpoints to end without closing a loop. Such “open-ended” branches may be

extended into valid branches when the bound on the number of unrollings is increased.

Unsoundness of the encoding from [42]

The encoding as presented above is unsound: the formula created for the completeness

criterion is too strong, and it may be unsatisfiable even when there exists a structure that

can be extended into a proof, as shown in the following example.

Example 5.2.1. Consider the ECTL property EG EF true, expressed in µ-calculus as ϕ =

νX. (µY.true ∨ ♦Y)∧♦X. Let M = ({s0} , s0, {(s0, s0)} , ∅) be a model containing only one

state, with a self-loop.

Clearly, M |= ϕ. To show this in a Stirling-style proof we would need two unrollings: one

unrolling of the outer fixpoint, and one unrolling of the inner fixpoint. Hence we can expect

that when the bound is 1, we will not find a counter-example, and indeed the formula we

obtain with d = 1 is

Jϕ, u0, 1K = false ∨ J(µY.true ∨ ♦Y) ∧ ♦ (νX {u0} . (µY.true ∨ ♦Y) ∧ ♦X) , u0, 0K ≡

67

≡ J(µY.true ∨ ♦Y) , u0, 0K ∧ J♦ (νX {u0} . (µY.true ∨ ♦Y) ∧ ♦X) , u0, 0K ≡

≡
(

true ∧ c0
)

∧
(

R(u0, u1) ∧ J(νX {u0} . (µY.true ∨ ♦Y) ∧ ♦X) , u1, 0K
)

≡

≡ c0 ∧ R(u0, u1) ∧ ((u0 6= u1)↔ c1)

As we expected, Θ(M,ϕ, 1) = Jϕ, u0, 1K∧ (u0 = s0)∧¬c0 is unsatisfiable, because c0 and ¬c0

both appear as a conjuncts. Since we know a proof does exist, we expect that Γ(M,ϕ, 1) =

Jϕ, u0, 1K∧(u0 = s0)∧c0 will be satisfiable. But Γ(M,ϕ, 1) is not satisfiable: since Γ(M,ϕ, 1)

constrains c1 to 1, any satisfying assignment must also satisfy (u0 6= u1); this is impossible,

because the only possible assignment for u0 and for u1 is s0. The completeness criterion is

unsatisfiable, which indicates that no beginning for a proof exists.

Hence, when the encoding from [42] is used to model-check whether M
?

|= ¬ϕ, the model-

checker concludes that M |= ¬ϕ when this is in fact not the case.

The source of the problem is the end-branch behavior for greatest fixpoints:

JνX {v0, . . . , vm} .ψ, u, 0K =
m
∧

i=0

(u 6= vi)↔ cj

When we constrain cj to 1, we are requiring the proof branch to be “open-ended” and not

close a loop. In the general case, as in the example, it may be that the proof branch has

to close a loop in any satisfying assignment, because its length exceeds the diameter of the

model.

A simple solution is to drop the constraint
∧

j cj in Γ(M,ϕ, d), leaving the dynamic

completeness criterion

Γ(M,ϕ, d) = Jϕ, u, dK ∧ (u = s0)

Counter-examples

The counter-examples produced by the tree-based encoding from [42] suffer from the same

disadvantages inherent in the path-based encoding. They are uninformative, in the sense

that they can contain states that are not relevant to the property, and there is no way to tell

which states are relevant and which are not. Further, in the encoding of [42], each subgoal

Jϕ, u, dK is allocated its own separate proof subtree, with separate model states. Unlike [33],

there can be no re-use of model states and information; if we need to justify Jϕ, u, dK in two

different places, the SAT solver will have to do the work twice.

5.3 An example

To illustrate the differences between the three approaches, consider the following example.

68

Example 5.3.1. Let ϕ = EGEFp. ϕ is an ECTL property, and it is equivalent to the ♦Lµ

property ϕ′ = νX. ((µY.p ∨ ♦Y) ∧ ♦X).

Fig. 5.1 shows the shape of the counter-example that would be encoded in the path-based

encoding of [33], with k = 3. Recall that to justify that a state u satisfies a subformula ψ,

the encoding of [33] may require the existence of a path i, with ui,0 = u, which serves

as a “witness” for ψ. For example, to show that M,u |= EFp, we require a path i with

ui,0 = u, such that for some j ≥ 0 we have M,ui,j |= p. These requirements are indicated

by dashed lines in Fig. 5.1: a dashed line between two states u and v, where v is the first in

a path, indicates that u = v and the path from v serves as a witness for the satisfaction of

some formula at u. Note that the dashed lines indicate only one possible way to satisfy the

requirements: the disjunction in the encoding of [33] allows any path to be chosen, and in

Fig. 5.1 we indicate one possible choice.

u1,0

u1,1

u1,2

u1,3

u2,0

u2,1

u2,2

u2,3

u3,0

u3,1

u3,2

u3,3

u4,0

u4,1

u4,2

u4,3

u5,0

u5,1

u5,2

u5,3

Figure 5.1. The path-based encoding for ϕ with k = 3, using f3(ϕ) = 5 paths

Fig. 5.2 shows the shape encoded in the tree-based encoding of [42] with k = 3. The

figure shows only the model states and edges, and does not depict the accompanying Boolean

constraints. For example, the formula EFp ≡ µY.p∨♦Y is translated in [42] into a disjunc-

tion: either p is satisfied at the current state, or there exists a successor which satisfies EFp.

As a result, many of the edges shown in the figure may not exist in the counter-example; e.g.,

the edge between the states labeled u and v in the figure may not exist if M,u |= p. Never-

theless, the encoding includes all the states, and a satisfying assignment does not enable us

to determine which edges exist in the model and which do not.

69

uv

Figure 5.2. The tree-based encoding for ϕ′ with k = 3

Consider the model M depicted in Fig. 5.3, which satisfies ϕ. In our encoding, a counter-

example will be found with a bound of 5; it will be M itself. In the path-based encoding of

[33], a counter-example will be found when the bound is 4, and it will contain f4(ϕ)·(4+1) =

30 state copies. In the tree-based encoding of [42], the counter-example will be found when

the bound is 8, and it will contain 44 state copies. In this example, since the model only

contains states that are relevant to the counter-example, all the states encoded in all cases

will be copies of the same five model states. However, in a more realistic setting, the counter-

example is likely to be much smaller than the model, and states that are not relevant

to the counter-example are likely to be returned by the encodings of [33] and [42]. (Our

experimental results, presented in Chapter 6, show this very clearly.)

p

Figure 5.3. The model from Example 5.3.1

5.4 Discussion

The graph-based encodings presented in Chapter 3 do not suffer from the disadvantages of

the path-based and tree-based encodings. The counter-example is encoded in a very compact

70

way, with every state appearing at most once. A single encoded model state can serve to

justify different requirements; the bits xqi for all q ∈ Q serve as annotation for the counter-

example, and allow the SAT solver to “remember” that it has already shown (or assumed)

that the ith model state satisfies q and re-use this information later.

In the encodings of [33] and [42], a counter-example will only be found when the bound

reaches the length of the longest part of the counter-example (or proof tree, for [42]). If

there exists a counter-example where some of the branches are short but some are long, we

will not find it until the bound is large enough to encompass the longest branches. Since all

branches encoded have the same length, this causes the path-based and tree-based encodings

to encode unnecessary states along some branches. In addition to the wastefulness inherent

in these encodings, it is impossible to distinguish between necessary model states and states

that were added to the counter-example to pad short branches. The graph-based encoding

we presented does not have this drawback: it will find a counter-example as soon as enough

states have been encoded, and no unnecessary states are added.

As for complexity, the number of variables used in the graph-based encoding grows as

O(kn log kn), where n is the number of bits needed to encode a model states and k is the

bound. This complexity in the bound seems better than the other two encodings, but this

is actually not a fair comparison, because the bound does not have the same meaning in all

the encodings. In the other two encodings the bound corresponds roughly to the height of

the tree encoded, and in our encoding it is exactly the number of states. Thus, when the

bound increases by 1, we add only one state to our encoding, but we add a full layer to the

path-based and tree-based encodings. As a result, a counter-example may be found when

the bound is smaller using the other two encodings, especially if the counter-example is a

shallow and dense tree.

As a result of the difference in the meaning of the bound, the static completeness thresh-

olds of the various encodings are incomparable. However, it is worth noting that the graph-

based approach does not suffer from one drawback that is common to both linear-time BMC

and the path-based and tree-based encodings: in the general case, the diameter of the model,

or even the number of states, is not a sound completeness threshold for these encodings [8],

as shown in the following example.

Example 5.4.1. Let k be an odd natural number, and consider a model that consists of k states

lined up in one k-cycle: Mk-cycle = ({0, . . . , k − 1} , 0, {(i, (i+ 1) mod k) | 0 ≤ i ≤ k − 1} , L)

over AP = {p}, where L(0) = {p} and L(s) = ∅ for all s 6= 0. The model is shown in Fig. 5.4

for k = 5.

Let ϕ be the ♦Lµ property “p is reachable from s0 in a finite path of even non-zero

length”: ϕ = ♦♦µX. (p ∨ ♦♦X). (In this context we take the length of a path to be the

number of edges it contains.) Clearly, M |= ϕ, as witnessed by the path π = 0 → 1 →

. . .→ (k − 1)→ 0→ 1→ . . .→ (k − 1)→ 0, which contains 2k edges. This is the shortest

71

p

Figure 5.4. The model Mk-cycle from Example 5.4.1

path that can serve as a witness for ϕ; hence, a BMC method which uses path length (for

linear-time) or depth of the tree (for branching-time) as the bound will only find π when the

bound reaches 2k, exceeding both the diameter of the model and the number of states. The

tree-based encoding from [42] is an exception: it uses number of unrollings as the bound, and

in our example, the number of unrollings necessary to show that M |= ϕ is k. Nevertheless,

the counter-example returned in the tree-based encoding will be a path of length 2k, so the

size of the model is still exceeded. (It is not difficult to construct examples in which the

bound in the tree-based encoding also exceeds the diameter and number of states in the

model.) In contrast, the graph-based encoding will find a witness when the bound reaches

k.

72

Chapter 6

Experimental Results

We implemented a prototype version of our BMC encoding and the encoding of [42] in

the NuSMV2 verification framework [7]. Our prototype implementation handles only ACTL

properties (without fairness). We compared the encodings on random models and properties.

6.1 The Setup

Following the methodology in [19], we tested the encodings on randomly generated models

and random ACTL properties. We used a model-generation algorithm similar to the one

used in [19]. Each generated model has only one variable, an integer x ranging over the

values 1..100; thus, the models have 100 states each. We use x = s to denote a single state

of the model for some s ∈ {1, . . . , 100}.

In generating the models we used a procedure toss(p) which tosses a coin with probability

p of returning 1. The transitions from each state x = s were generated as follows:

1. Randomly choose an integer t ∈ {1, . . . , 100} and add a transition from x = s to x = t

(to ensure at least one transition).

2. While toss(p) = 1, choose another integer t′ ∈ {1, . . . , 100} at random and add a

transition from x = s to x = t′.

In our experiments we used values of p = 0.5 and p = 0.8, resulting in models of different

diameter: using p = 0.5 results in sparse models with large diameter, and using p = 0.8

results in dense models with smaller diameter.

The models thus generated are characterized by a very complex transition relation, ex-

pressed in SMV as a large switch statement over x.

To test the hypothesis that our encoding is more suitable for complex properties, we tested

random properties of varying nesting depths: we consider an ACTL formula to be of nesting

depth d if it contains at most d nestings of AU , AW , AF and AG operators. Nested AX

73

operators and Boolean operators (conjunction and disjunction) do not count in the nesting

depth, because they do not contribute to the exponent in the encoding of [42]. (That is, each

Boolean operator or AX operator in the formula only increases the size of the tree-based

encoding linearly.) The atomic propositions we used were of the form
∨r

i=0(x = si), where r

and s0, . . . , sr are randomly generated integers.

We divided the formulas into liveness formulas, safety formulas, and formulas that are

neither safety nor liveness formulas (which we refer to as “mixed” formulas). The class of

the formula affects the encoding: to disprove a liveness formula — that is, prove a safety

formula — our encoding does not need to use ranks. In contrast, to disprove a safety or

mixed formula the encoding must use ranks, but the counter-example must close loops in

the model, unlike a counter-example to a safety formula.

6.2 The Results

Due to the complex encoding of the transition relation, neither encoding was able to reach

large bounds, though in general the encoding from [42] was able to reach larger bounds than

ours (and also needed larger bounds to disprove the same properties). We used a maximal

bound of 20. Our results are presented in Table 6.2, Table 6.3 and Table 6.1, which show

success rates in disproving mixed, liveness and safety properties (respectively). Each table

includes the following columns.

• Edge prob.: the probability p of adding another transition to the current transition.

• ND: the nesting depth of the temporal formulas.

• TB: the tree-based encoding from [42], with the completeness criterion disabled.

• GB: the specialized graph-based encoding for ACTL presented in Section 3.3, with the

completeness criterion disabled.

• GB+E: the specialized graph-based encoding with successors encoded explicitly (Sec-

tion 3.2.2), with the completeness criterion disabled.

All variants of our encoding included symmetry-breaking (Section 3.2.1).

6.3 Analysis

The main conclusion we draw from the randomized experiments is that, as expected, our

encoding is much less sensitive to the nesting depth of the formula than the tree-based

encoding from [42]. The performance of the tree-based encoding declines sharply as the

nesting depth increases, whereas the graph-based encoding performs not much worse for

74

Edge prob. ND TB GB GB+E

0.2
2 99% 81% 83%
3 86% 75% 74%
4 67% 72% 70%
5 58% 66% 59%

0.5

2 100% 99% 99%
3 97% 95% 94%
4 92% 97% 94%
5 71% 97% 88%

0.8

2 100% 100% 100%
3 100% 100% 100%
4 99% 100% 100%
5 93% 100% 100%

Table 6.1. Success rates in disproving mixed safety/liveness properties

Edge prob. ND TB GB GB+E

0.2
2 99% 72% 75%
3 81% 71% 72%
4 58% 68% 60%
5 44% 67% 51%

0.5

2 99% 96% 99%
3 98% 97% 96%
4 81% 96% 86%
5 82% 99% 89%

0.8

2 100% 100% 100%
3 100% 100% 100%
4 95% 100% 100%
5 90% 100% 99%

Table 6.2. Success rates in disproving liveness properties

larger nesting depths than it does for small nesting depths. This sensitivity can be explained

in several ways:

1. The complexity of the formula encoded in the tree-based encoding is O(kd), where d

is the nesting depth of the formula and k is the bound, whereas in our encoding, the

complexity is O(kd log kd).

2. ACTL formulas with small nesting depth are more “linear-time-like”, and it stands

to reason that the encoding from [42], which is more similar to the linear-time BMC

encodings, does better in these cases. When the formula has a large nesting depth, its

branching structure becomes more prominent.

Our encoding appears to result in Booelean formulas that are small and use a small

number of variables, but are nevertheless difficult for the SAT solver. We conjecture that the

75

Edge prob. ND TB GB GB+E

0.2

2 100% 93% 92%
3 95% 88% 84%
4 88% 88% 81%
5 76% 79% 71%

0.5

2 100% 98% 98%
3 100% 100% 98%
4 98% 97% 95%
5 87% 99% 90%

0.8

2 100% 100% 100%
3 100% 100% 100%
4 97% 100% 100%
5 99% 100% 100%

Table 6.3. Success rates in disproving safety properties

very compactness of the formulas results in most of the work being left to the SAT solver. The

tree-based encoding, which lays out the structure of the counter-example in advance, leads

to easier SAT formulas for simple formulas; however, for more complex formulas (nesting

depth 4 and 5), the penalty from the large size of the formula appears to exceed the benefit.

We also observed a memory/time tradeoff between the two encodings. The formulas

generated in the tree-based encoding are generally very large; for larger nesting depths,

the SAT solver sometimes ran out of memory. However, when memory did not run out, the

formulas were usually quickly solved. In contrast, the formulas generated in our graph-based

encoding are “hard” for the SAT solver, but in all our experiments, the SAT solver never

once ran out of memory while solving a formula resulting from our encoding.

Explicit-successors vs. straightforward encoding

Contrary to our expectations, the explicit-successor encoding presented in Section 3.2.2 did

not improve performance, and instead seemed to worsen it significantly. We conjecture that

adding an explicitly-encoded successor and removing the transition relation from the disjunc-

tion hindered the SAT solver’s conflict-learning mechanism, by making the relationship be-

tween variables less immediate. It is interesting to note, however, that the explicit-successor

encoding was sometimes able to solve instances that the regular encoding was not able to

solve.

Safety vs. liveness

Again confounding our expectations, the classification of the formulas did not appear to

affect the performance of our encoding. The ranks required for disproving safety formulas

apparently balance the need to close loops in the model when disproving liveness formulas.

76

In contrast, it is interesting to note that the tree-based encoding appeared to take a

performance hit when disproving mixed formulas.

6.3.1 Counter-examples

In addition to the success rate and time it took to disprove each formula, we also recorded the

size of the counter-example returned in each encoding. The counter-examples returned by the

tree-based encoding were on average 40 times larger than the counter-examples returned by

the graph-based encoding. This supports our hypothesis that due to the worst-case analysis

performed in the tree-based encoding of [42], the counter-example returned will contain

many unnecessary states, and thus will be much less informative than the counter-examples

returned by our graph-based encoding.

77

78

Chapter 7

Conclusions

In this work, we presented a novel approach to bounded model-checking for branching-time

logic. Our approach is based on translating Namjoshi-style proof obligations to Boolean

constraints; it leads to small, informative counter-examples, and improved performance for

complex properties. We presented a general encoding for universal alternating parity tree

automata, which correspond to universal µ-calculus properties. We then showed how the

encoding can be specialized for weak alternating Büchi tree automata, which correspond to

the alternation-free fragment of universal µ-calculus.

The encoding allows one to find a counter-example of some bounded size, but not to

verify properties. We presented a static completeness threshold for ACTL, and a dynamic

completeness threshold for general universal µ-calculus properties, which can both be used

to verify properties, by determining when it is safe to stop increasing the bound and conclude

that the formula is satisfied.

Our work is closely related to many disciplines in formal verification. The specialized

encoding we presented in Section 3.3 can be seen as a Boolean representation of the run of

the Emerson-Lei symbolic model-checker for µ-calculus [39]. We use alternating parity tree

automata as the specification mechanism, and base our translation to SAT on Namjoshi’s

proof system for µ-calculus [32]. We also used ideas from the world of linear-time BMC,

e.g., [19].

7.1 Future Work

There are several areas where the work presented in this dissertation can be extended and

improved. In this section we discuss directions for future research.

79

7.1.1 Implementation issues

To evaluate our encodings, we created a prototype implementation in the NuSMV2 frame-

work. Our implementation of the encodings from Chapter 3 is naive, and it can probably be

improved in the following aspects.

Using a Sequential Circuit SAT solver

In our experiments we used the zChaff SAT solver, an extension of the Chaff solver ([30]).

zChaff uses the DPLL algorithm [12], and takes as input a Boolean formula in CNF form.

The translation to CNF loses the structure of the original formula, e.g., in our case, the

implications between the xqi bits and the Invariance and Progress constraints. Recently, a

new type of SAT solver has started to gain popularity: Sequential Circuit SAT ([20], [29]).

A Sequential Circuit SAT solver takes as input a circuit, and determines whether there exists

a sequence of assignments to the circuit inputs under which the circuit’s output is 1. If such

an assignment exists, the Sequential Circuit SAT solver returns it. The advantage to this

approach is that it preserves the circuit’s structure and can use it to make informed choices

about the order in which it attepts to assign the variables. We believe that a Sequential

Circuit SAT solver may be better able to handle the formulas generated in our encodings

than traditional DPLL-based solvers.

Ranks and progress

As shown in Chapter 6, the binary encoding of ranks that we used in our encoding is difficult

for the zChaff solver to handle. There has been work on using SAT solvers to solve partial

order constraints in the context of proving termination (e.g., [11], [3]), and some promising

encodings of partial order constraints have emerged. Using these encodings instead of the

binary encoding we used may improve performance.

Another option is to use a Satisfiability Module Theories (SMT) solver, for example Yices

or CVC3 [40]. An SMT solver can solve Boolean combinations of formulas in some first-order

theory; in our case we could use constraints in the theory of partial orders over integers to

handle the ranks and the progress requirements.

7.1.2 Improved encodings and applications

The encoding we presented represents one extreme — it is very compact and conveys a lot

of information about the counter-example, but it is difficult for SAT solvers to handle; the

encoding of [42] represents another extreme, with a lot of “waste” in the encoding of the

counter-example and no annotation, but easier SAT instances. It would be interesting to

attempt to combine the strengths of the two approaches, for example by adding annotation

to the counter-examples generated in [42], or by allowing re-use of proof branches.

80

We are also interested in pursuing an encoding based on an observation from [27]: to check

if a model M satisfies an alternating tree automaton A, one can construct the cross-product

M ×A and check its emptiness. M ×A is an alternating automaton on infinite words ; thus,

by employing this approach we go back to the much-explored realm of linear-time BMC.

It seems that the encoding of [42] can be interpreted in this light. By casting the problem

as a linear-time BMC problem, we avoid the question of how the counter-example should

be represented entirely, and also benefit from extensive improvements and optimizations in

linear-time BMC since its presentation in 1999 in [4].

It seems our encoding could have applications in bounded synthesis. For example, in [34],

bounded synthesis for linear-time specifications is solved through searching for an annotated

structure of bounded size using a SAT solver. The annotation used in [34] is very similar to

Namjoshi-style proof obligations. We believe we can use a similar approach, based on the

work presented here, to achieve bounded synthesis for branching-time specifications.

Finally, we believe the ideas we presented in this dissertation may also have an application

to linear-time BMC. As explained in Chapter 5, in our encodings it is never necessary to

unwind the model more than once, in contrast to most linear-time BMC encodings. It

is possible to use our approach to encode a linear-time counter-example as a simple path,

instead of unwinding a path that may contain multiple loops. It remains to be seen whether

this will lead to performance benefits.

81

82

Bibliography

[1] Fadi A. Aloul, Arathi Ramani, Igor L. Markov, and Karem A. Sakallah. Solving dif-

ficult sat instances in the presence of symmetry. In DAC ’02: Proceedings of the 39th

conference on Design automation, pages 731–736, New York, NY, USA, 2002. ACM.

[2] Mohammad Awedh and Fabio Somenzi. Automatic invariant strengthening to prove

properties in bounded model checking. In DAC ’06: Proceedings of the 43rd annual

conference on Design automation, pages 1073–1076, New York, NY, USA, 2006. ACM.

[3] Amir M. Ben-Amram and Michael Codish. A sat-based approach to size change termi-

nation with global ranking functions. In C. R. Ramakrishnan and Jakob Rehof, editors,

TACAS, volume 4963 of Lecture Notes in Computer Science, pages 218–232. Springer,

2008.

[4] Armin Biere, Alessandro Cimatti, Edmund M. Clarke, and Yunshan Zhu. Symbolic

model checking without bdds. In TACAS ’99: Proceedings of the 5th International

Conference on Tools and Algorithms for Construction and Analysis of Systems, pages

193–207, London, UK, 1999. Springer-Verlag.

[5] Patrick Blackburn, Johan F. A. K. van Benthem, and Frank Wolter. Handbook of Modal

Logic, Volume 3 (Studies in Logic and Practical Reasoning), chapter Automata-theoretic

Techniques for Temporal Reasoning. Elsevier Science Inc., New York, NY, USA, 2006.

[6] Marsha Chechik and Arie Gurfinkel. A framework for counterexample generation and

exploration. Int. J. Softw. Tools Technol. Transf., 9(5):429–445, 2007.

[7] A. Cimatti, E. Clarke, E. Giunchiglia, F. Giunchiglia, M. Pistore, M. Roveri, R. Se-

bastiani, and A. Tacchella. NuSMV Version 2: An OpenSource Tool for Symbolic

Model Checking. In CAV’02, volume 2404 of LNCS, Copenhagen, Denmark, July 2002.

Springer.

[8] Edmund Clarke, Daniel Kroening, Ofer Strichman, and Joel Ouaknine. Completeness

and complexity of bounded model checking. In VMCAI, volume 2937 of LNCS, pages

85–96, 2004.

83

[9] Edmund M. Clarke, Orna Grumberg, and Doron A. Peled. Model Checking. The MIT

Press, Cambridge, Massachusetts, 1999.

[10] Edmund M. Clarke, Somesh Jha, Yuan Lu, and Helmut Veith. Tree-like counterexam-

ples in model checking. In LICS’02, pages 19–29, Washington, DC, USA, 2002. IEEE

Computer Society.

[11] Michael Codish, Vitaly Lagoon, and Peter J. Stuckey. Solving partial order constraints

for LPO termination. In RTA, volume 4098 of LNCS, pages 4–18. Springer, 2006.

[12] Martin Davis, George Logemann, and Donald Loveland. A machine program for

theorem-proving. Commun. ACM, 5(7):394–397, 1962.

[13] E. A. Emerson and C. S. Jutla. Tree automata, mu-calculus and determinacy. In

Proceedings of the 32nd annual symposium on Foundations of computer science, pages

368–377, Los Alamitos, CA, USA, 1991. IEEE Computer Society Press.

[14] E. Allen Emerson and Charanjit S. Jutla. Tree automata, mu-calculus and determinacy

(extended abstract). In FoCS’91, pages 368–377, 1991.

[15] E. Allen Emerson, Charanjit S. Jutla, and A. Prasad Sistla. On model-checking for

fragments of mu-calculus. In CAV, volume 697 of LNCS, pages 385–396. Springer,

1993.

[16] E. Allen Emerson and Chin-Laung Lei. Efficient model checking in fragments of the

propositional mu-calculus (extended abstract).

[17] Alan M. Frisch, Daniel Sheridan, and Toby Walsh. A fixpoint based encoding for

bounded model checking. In FMCAD ’02: Proceedings of the 4th International Confer-

ence on Formal Methods in Computer-Aided Design, pages 238–255, London, UK, 2002.

Springer-Verlag.

[18] Keijo Heljanko, Tommi Junttila, and Timo Latvala. Incremental and complete bounded

model checking for full PLTL. In Kousha Etessami and Sriram K. Rajamani, edi-

tors, Proceedings of the 17th International Conference on Computer Aided Verification

(CAV’2005), volume 3576 of LNCS, pages 98–111, Edinburgh, Scotland, United King-

dom, July 2005. Springer.

[19] Keijo Heljanko, Tommi A. Junttila, Misa Keinänen, Martin Lange, and Timo Latvala.

Bounded model checking for weak alternating büchi automata. In CAV, volume 4144

of LNCS, pages 95–108. Springer, 2006.

84

[20] M. K. Iyer, G. Parthasarathy, and K.-T. Cheng. Satori - a fast sequential sat engine for

circuits. In ICCAD ’03: Proceedings of the 2003 IEEE/ACM international conference

on Computer-aided design, page 320, Washington, DC, USA, 2003. IEEE Computer

Society.

[21] Paul B. Jackson and Daniel Sheridan. A compact linear translation for bounded model

checking. Electron. Notes Theor. Comput. Sci., 174(3):17–30, 2007.

[22] David Janin and I. Walukiewicz. Automata for the mu-calculus and related results. In

MFCS (Mathematical Foundations of Comuter Science), volume 969 of LNCS, pages

552–562. Springer, 1995.

[23] M. Jehle, J. Johannsen, M. Lange, and N. Rachinsky. Bounded model checking for all

regular properties. In A. Biere and O. Strichman, editors, Proc. 3rd Int. Workshop on

Bounded Model Checking, BMC’05, volume 144 of Electr. Notes in Theor. Comp. Sc.,

pages 3–18. Elsevier, 2005.

[24] Dexter Kozen. Results on the propositional mu-calculus. Theor. Comput. Sci., 27:333–

354, 1983.

[25] Daniel Kroening and Ofer Strichman. Efficient computation of recurrence diameters.

In VMCAI, pages 298–309, 2003.

[26] O. Kupferman and M. Y. Vardi. Freedom, weakness, and determinism: From linear-

time to branching-time. In LICS ’98: Proceedings of the 13th Annual IEEE Symposium

on Logic in Computer Science, page 81, Washington, DC, USA, 1998. IEEE Computer

Society.

[27] Orna Kupferman, Moshe Y. Vardi, and Pierre Wolper. An automata-theoretic approach

to branching-time model checking. J. ACM, 47(2):312–360, 2000.

[28] Timo Latvala, Armin Biere, Keijo Heljanko, and Tommi A. Junttila. Simple bounded

ltl model checking. In Alan J. Hu and Andrew K. Martin, editors, FMCAD, volume

3312 of Lecture Notes in Computer Science, pages 186–200. Springer, 2004.

[29] Feng Lu, Madhu Iyer, ganapathy parthasarathy, and C.-K. Cheng. An efficient sequen-

tial sat solver with improved search strategies. In Design, Automation and Test in

Europe (DATE), March 2005.

[30] Matthew W. Moskewicz, Conor F. Madigan, Ying Zhao, Lintao Zhang, and Sharad

Malik. Chaff: Engineering an efficient sat solver. In DAC, pages 530–535. ACM, 2001.

[31] A.W. Mostowski. Regular expressions for infinite trees and a standard form of automata.

In Computation Theory, volume 208, pages 157–168, 1984.

85

[32] Kedar S. Namjoshi. Certifying model checkers. In CAV’01, volume 2102 of LNCS, pages

2–13, Paris, France, July 2001.

[33] Wojciech Penczek, Bozena Wozna, and Andrzej Zbrzezny. Bounded model checking for

the universal fragment of CTL. Fundam. Inf., 51(1):135–156, 2002.

[34] Sven Schewe and Bernd Finkbeiner. Bounded synthesis. In Proc. ATVA, pages 474–488.

Springer-Verlag, 2007.

[35] Mary Sheeran, Satnam Singh, and Gunnar Stalmarck. Checking safety properties using

induction and a sat-solver. In FMCAD ’00: Proceedings of the Third International

Conference on Formal Methods in Computer-Aided Design, pages 108–125, London,

UK, 2000. Springer-Verlag.

[36] Sharon Shoham and Orna Grumberg. A game-based framework for ctl counterexamples

and 3-valued abstraction-refinement. ACM Trans. Comput. Logic, 9(1):1, 2007.

[37] Maria Sorea. Bounded model checking for timed automata. Electr. Notes Theor. Com-

put. Sci., 68(5), 2002.

[38] Colin Stirling and David Walker. Local model checking in the modal mu-calculus. Theor.

Comput. Sci., 89(1):161–177, 1991.

[39] Robert S. Streett and E. Allen Emerson. The propositional mu-calculus is elementary.

In ICALP’84, pages 465–472, London, UK, 1984. Springer-Verlag.

[40] Aaron Stump, Clark W. Barrett, and David L. Dill. CVC: A cooperating validity

checker. In Ed Brinksma and Kim Guldstrand Larsen, editors, Proceedings of the 14th

International Conference on Computer Aided Verification (CAV ’02), volume 2404 of

Lecture Notes in Computer Science, pages 500–504. Springer-Verlag, July 2002. Copen-

hagen, Denmark.

[41] Moshe Y. Vardi. An automata-theoretic approach to linear temporal logic. In Proceed-

ings of the VIII Banff Higher order workshop conference on Logics for concurrency :

structure versus automata, pages 238–266, Secaucus, NJ, USA, 1996. Springer-Verlag

New York, Inc.

[42] Bow-Yaw Wang. Proving forall-mu-calculus properties with SAT-based model checking.

In FORTE’05, volume 3731 of LNCS, pages 113–127. Springer, 2005.

[43] Thomas Wilke. Alternating tree automata, parity games, and modal µ-calculus. Bull.

Soc. Math. Belg., 8(2), 2001.

86

[44] Glynn Winskel. A note on model checking the modal nu-calculus. Theor. Comput. Sci.,

83(1):157–167, 1991.

[45] B. Woźna. Bounded Model Checking for the universal fragment of CTL*. Fundamenta

Informaticae, 63(1):65–87, 2004.

[46] Wenhui Zhang. Verification of actl properties by bounded model checking. In Roberto

Moreno-Dı́az, Franz Pichler, and Alexis Quesada-Arencibia, editors, EUROCAST, vol-

ume 4739 of Lecture Notes in Computer Science, pages 556–563. Springer, 2007.

87

