
3-Valued Abstraction: More Precision at Less Cost

Sharon Shoham Orna Grumberg

Computer Science Department, Technion, Haifa, Israel
E-mail: {sharonsh,orna}@cs.technion.ac.il

Abstract

This paper investigates both the precision and the model
checking efficiency of abstract models designed to preserve
branching time logics w.r.t. a 3-valued semantics. Current
abstract models use ordinary transitions to over approxi-
mate the concrete transitions, while they use hyper transi-
tions to under approximate the concrete transitions. In this
work we refer to precision measured w.r.t. the choice of
abstract states, independently of the formalism used to de-
scribe abstract models. We show that current abstract mod-
els do not allow maximal precision. We suggest a new class
of models and a construction of an abstract model which is
most precise w.r.t. any choice of abstract states. As before,
the construction of such models might involve an exponen-
tial blowup, which is inherent by the use of hyper transi-
tions. We therefore suggest an efficient algorithm in which
the abstract model is constructed during model checking, by
need. Our algorithm achieves maximal precision w.r.t. the
given property while remaining quadratic in the number of
abstract states. To complete the picture, we incorporate it
into an abstraction-refinement framework.

1. Introduction

Abstraction is one of the most successful techniques for
fighting the state explosion problem in model checking [3].
Abstractions hide some of the details of the verified system,
thus result in smaller models. Most commonly used are
state abstractions that collapse (possibly non disjoint) sets
of concrete states into abstract states. As such, an abstrac-
tion consists of a set of abstract states SA and a mapping (or
concretization function) γ that defines the relation between
abstract states and the concrete states that they represent.
The rest of the components of the concrete model then also
need to be lifted into the abstract world, in order to result in
an abstract model. This can be done in various ways.

When using a 2-valued semantics, abstract models are
usually designed to be conservative for true, meaning that
truth of a formula is preserved from the abstract model to
the concrete model. A greater advantage is obtained if the

formula is interpreted w.r.t. a 3-valued semantics [1]. This
semantics evaluates a formula to either true, false or indefi-
nite. Abstract models can then be designed to be conserva-
tive for both true and false. Only if the value of a formula
in the abstract model is indefinite, its value in the concrete
model is unknown. We follow this approach.

The logic specifications we consider in this paper are for-
mulas of the modal µ-calculus [15]. The modal µ-calculus
is a powerful formalism for expressing properties of transi-
tion systems using fixpoint operators. In particular, it com-
bines both existential and universal properties. As such, two
transition relations are needed in an abstract model for it to
be conservative w.r.t. the full µ-calculus (be it over a 2-
valued or a 3-valued semantics). Examples of such abstract
models are modal transition systems [18, 16] or mixed tran-
sition systems [7] that contain may transitions which over-
approximate transitions of the concrete model, and must
transitions, which under-approximate the concrete transi-
tions. To ensure logic preservation, truth of universal for-
mulas is then examined over may transitions, whereas truth
of existential formulas is examined over must transitions.
Dually for falsity when a 3-valued semantics is considered.

It was shown in [19, 8, 9] that must transitions are a
source of incompleteness, in the sense that when limited to
the use of must transitions, it is not always possible to con-
struct a finite abstract model in which a property holds, even
if it holds on the concrete model. Must transitions were also
shown to behave badly in refinement in the sense of causing
a loss of precision [23]. It was therefore suggested to model
the must transitions of an abstract model as hyper transi-
tions, which connect a single state to a set of state. Hy-
per transitions, first introduced in [17], were shown in [23]
to prevent the loss of precision during refinement. They
were also shown in [8, 9] to result in a complete abstrac-
tion framework for the fragment of the µ-calculus defined
with greatest fixpoints only ([8] also introduces fairness and
hence achieves completeness for the full µ-calculus). Fol-
lowing [23], we refer to such models, defined with may
transitions and must hyper transitions, as generalized kripke
modal transition systems (GTSs).

In this paper we investigate both the precision of ab-

stract models, and the efficiency of their model checking.
We show that GTSs are not yet satisfactory in terms of pre-
cision. We suggest how to overcome their imprecision by
using may hyper transitions. We then suggest an efficient
abstract model checking algorithm that achieves the newly
obtained maximal precision while avoiding the exponential
blowup inherent by the use of hyper transitions.

Precision of an abstract model is measured by the extent
to which it enables to verify or falsify formulas. Specifi-
cally, given an abstraction (SA, γ), it is desirable to con-
struct an abstract model over the states SA in which as
many formulas as possible have a definite value (true or
false). With this purpose in mind, we address the allegedly
non-problematic may transitions. We show that while being
good enough for completeness purposes [8, 9], they are in
fact a source of imprecision. This might sound surprising,
yet the explanation is simple: when completeness is investi-
gated, the choice of the abstraction (SA, γ) is left open. On
the other hand, when precision is investigated, one is inter-
ested in how precise the model is for a given abstraction.

In order to elaborate further on the imprecision prob-
lem we need a more detailed description of abstract mod-
els. Typically, to ensure logic preservation, may transitions
in an abstract model have to be such that whenever there is
a concrete transition from a concrete state sc to a concrete
state s′c, then every abstract state that represents sc has to
have a may transition to some abstract state that represents
s′c. Now, consider the following example.

Example 1.1 Suppose that we are interested in verifying
the formulas �p (“all the successors satisfy p”) and �q (“all
the successors satisfy q”) in a concrete state sc that has ex-
actly one successor s′c satisfying both p and q. Suppose
further that we are given an abstraction in which sc is rep-
resented by sa, and no other concrete state is represented
by sa. Moreover suppose that s′c is represented by two ab-
stract states: s1a that satisfies p but has an indefinite value
on q, and s2a that satisfies q but has an indefinite value on p.
Fig. 1 illustrates this setting. Then at least one of the tran-
sitions (sa, s1a) or (sa, s2a) has to be included as a may
transition in the abstract model to ensure logic preservation.
However, choosing the first will enable verification of �p,
but not �q, choosing the second will enable the opposite,
and including both transitions will prevent verification of
both properties. In other words, no choice of a may transi-
tion relation will enable verification of both �p and �q. In
particular, none of them will enable to verify �p ∧ �q.

Intuitively, in order to achieve the desired precision in the
above example one has to consider both may transitions, but
each of them has to be considered separately. We therefore
suggest a new class of models, called hyper kripke modal
transition systems (HTSs), in which may transitions are also
replaced by hyper transitions, with the meaning that each

s1a

sc

sa

s2a

p,¬q

¬p, q

s′cp, q

Rectangles depict con-
crete states circled by
the abstract states rep-
resenting them.

Figure 1. Illustration of Example 1.1

outgoing may hyper transition of an abstract state sa over
approximates all the concrete transitions of the states rep-
resented by sa, but several different approximations (may
hyper transitions) can be used. Other possible solutions
involve changing the abstract state space, for example by
some kind of completion that improves the states precision
(e.g. [6]). However, we wish to “make the most” of the
given abstract states.

Using HTSs as abstract models solves the problem
demonstrated by Example 1.1, but one may wonder if there
are other imprecision sources that HTSs do not address. To
answer this question and justify the use of HTSs as abstract
models we show how to construct, given any abstraction, an
HTS which is as precise as the abstraction allows. We for-
malize this by introducing a new notion of precision which
only depends on the abstraction (SA, γ) itself and not on the
class of abstract models. This enables us to claim that the
constructed HTS is as precise as possible, among all possi-
ble abstract models with a standard 3-valued semantics.

HTSs therefore settle the issue of precision, as they allow
maximal precision. Yet, in terms of efficiency, their use
only increases the problem which already exists in GTSs
due to the must hyper transitions: In general, the number
of hyper-transitions might be exponential in the number of
states in the abstract model. Thus, the need to handle hyper
transitions makes both the construction of an abstract model
and its model checking computationally expensive.

This problem was already addressed in [23] with respect
to must hyper transitions. They suggested an automatic con-
struction of abstract GTSs within an abstraction-refinement
framework for CTL. Their algorithm starts with some ini-
tial model which consists of (mostly) ordinary transitions.
Then, during refinement, when the abstract states are split,
instead of computing all must hyper transitions, they “learn”
must hyper transitions from must transitions (and hyper
transitions) that existed in the previous iteration. Thus, in
many cases they avoid the exponential blowup.

This approach suffers from several disadvantages. First,
it only works as part of an abstraction-refinement loop.
More importantly, the produced must hyper transitions are
not necessarily the ones that are needed in practice for a spe-
cific proof. Some of them might be redundant, as they are
irrelevant for proving the desired property, whereas others
which are needed to verify the desired property might not

be produced, making the model not precise enough.
We wish to obtain efficiency without compromising the

precision that an HTS enables to get. We achieve this goal
for the alternation free fragment of the µ-calculus. The abil-
ity to do this results from the fact that the precise HTS is
precise w.r.t. every µ-calculus formula, whereas we are only
interested in one particular (alternation-free) formula. This
can be exploited to save unnecessary efforts.

Suppose, for example, that we wish to check the formula
♦p (“there is a successor that satisfies p”) in an abstract state
sa, for which the number of outgoing must hyper-transitions
in the precise HTS is exponential in the number of states.
If we want the abstract model to be as precise as possible
w.r.t every µ-calculus formula, we might need to consider
all of the hyper transitions (or at least the minimal ones).
However, for the verification of ♦p in sa it suffices to con-
sider a single must hyper transition (under approximation),
in which all the target states satisfy p. In other words, w.r.t.
the particular formula, a HTS that contains only the relevant
must hyper transition is as precise as the precise HTS. Simi-
lar reasoning applies to may hyper transitions. The question
is how to find these designated hyper transitions and avoid
the computation of the rest.

The key idea is to construct the HTS during the model
checking, and thus avoid the (exponential) construction of
the precise HTS. We use the model checking to guide the
computation of hyper transitions, by checking for the exis-
tence of hyper transitions only when needed.

We obtain an automatic construction of an abstract
model which is as precise as the precise HTS w.r.t. the prop-
erty of interest, along with a model checking algorithm with
complexityO(|SA|2×|ϕ|). This is comparable to the model
checking complexity of the alternation free µ-calculus over
models limited to ordinary transitions (recall that the num-
ber of ordinary transitions over |SA| states is O(|SA|2)),
except that our algorithm also ensures maximal precision.
We believe that similar techniques can be used to develop
precise abstract model checking algorithms for the full µ-
calculus, with complexity comparable to model checking
of ordinary transition systems.

We emphasize that while may hyper transitions are not
always necessary for maximal precision, must hyper transi-
tions are in fact mandatory for completeness. This demon-
strates the importance of such an algorithm, which handles
hyper transitions efficiently. Moreover, our approach can
be beneficial even in cases where ordinary transitions suf-
fice for the construction of a precise abstract model for a
formula. This is because such constructions are usually ex-
pensive as they require finding best approximations of the
concrete transitions (e.g. [7]). In our approach, instead of
computing best approximations, the model checking algo-
rithm wisely chooses candidates for which we perform the
simpler task of checking if the given candidate is a correct

approximation – not necessarily the best one.
To complete the discussion, we show how to use our

abstract model checking within an abstraction-refinement
framework, and show that the refinement has the desirable
property of monotonicity, meaning that the precision of an
abstract model never decreases as a result of refinement.

To sum up, the main contributions of this paper are:

• New simple definition of precision of abstract mod-
els, which measures the precision w.r.t. the abstraction
(SA, γ), independently of the class of models used.

• New class of abstract models and a construction of an
abstract model of this class which is precise w.r.t. any
given abstraction.

• New abstract model checking algorithm for the alter-
nation free µ-calculus that achieves maximal precision
for a given formula, while remaining quadratic in the
number of abstract states. This algorithm results in a
more precise abstraction-refinement framework.

Related Work. Precision of modal (or mixed) transition
systems, with ordinary may and must transitions, is studied
in [4, 7, 21]. They suggest constructions of such abstract
models which are most precise among all models from this
specific class. In [23] GTSs are considered. They suggest
a construction of an abstract GTS (with must hyper tran-
sitions) and show that it is most precise among all models
produced by a specific construction method. In contrast to
the above, we define a general notion of precision, which is
independent not only of the construction method, but also
of the class of abstract models.

A similar approach is taken in [13]. They refer to multi-
valued concrete models and use an abstract semantics which
is more general than the 3-valued semantics. They also
define precision w.r.t. the abstraction itself, but then use
(multi-valued) transition systems as abstract models, which
causes a loss of precision. Our work, on the other hand,
suggests a class of models that achieves maximal precision
for the case of 2-valued concrete models. Moreover, [13]
defines precision within the framework of abstract interpre-
tation [5] and assumes that every set of concrete states has
a unique most precise abstract state that describes it. We do
not impose any restrictions on the abstraction and provide a
simple, “stand alone”, definition of precision.

The work of [9] also measures the precision of an ab-
stract model by comparison to the precision of the abstrac-
tion. They define the precision of an abstraction (SA, γ)
in terms of a game over the concrete model. Their defini-
tion considers abstract states as precise in less cases than
our definition. In particular, the abstract state sa from Ex-
ample 1.1 is not considered precise for �p by their defini-
tion (when translating it to logic terms), although as demon-
strated by Example 1.1, it does carry enough information to
verify �p in the (only) concrete state it represents. Using

this stronger definition they show that the construction of
an abstract GTS, which is also suggested in [23], results in
a precise abstract model. This is in contrast to our result
that shows that GTSs do not allow maximal precision, since
we measure the precision of a model compared to a more
general definition of precision of an abstraction. As a con-
sequence, when pursuing precision w.r.t. our definition, we
get abstract models which are strictly more precise.

[10] refers to precision with a different motivation. They
suggest how to define the abstraction (SA, γ) after refine-
ment in order to maintain precision of an abstract model
after refinement. Thus, they measure precision only w.r.t.
the precision before refinement and not independently.

A different approach to precision pursued in [2, 11] uses
a more precise 3-valued semantics, referred to as the thor-
ough semantics. This semantics gives more definite answers
than the standard 3-valued semantics, at the expense of in-
creasing the complexity of model checking. Namely, the
resulting model checking problem has the same complexity
as satisfiability. We are interested in an effective framework,
thus we use the standard 3-valued semantics, which is less
precise, but enjoys a better model checking complexity. We
note that the imprecision problem described in this paper
still exists even if the thorough semantics is used.

May hyper transitions resemble the de-focus operations
of [8]. We give them a new motivation and use.

In terms of model checking in the presence of hyper
transitions, [9] shows that the model checking problem for
GTSs is reducible to concrete model checking in linear time
(and logarithmic space) in the size of the GTS. Yet, the GTS
itself might be of size exponential in the size of the abstract
state space SA (due to the existence of hyper transitions).
Thus the overall complexity is exponential.

Our approach in which we construct the abstract model
during the model checking has some resemblance to the
work of [20]. They perform reachability analysis, where
they execute the concrete transitions, while storing abstract
versions of the concrete states that are visited. Their ap-
proach is limited to falsification of safety properties, as
they consider only an under approximation of the concrete
model. Our work, on the other hand, is suitable for any
property expressed in the alternation free µ-calculus, and is
based on a 3-valued setting which enables both verification
and falsification.

2. Preliminaries

µ-calculus. [15] Let AP be a finite set of atomic proposi-
tions and V a set of propositional variables. We define the
set Lit of literals over AP to be the set AP ∪ {¬p : p ∈
AP}. We identify ¬¬p with p. The logic µ-calculus in
negation normal form is defined as follows:

ϕ ::= l | Z | ϕ∧ϕ | ϕ∨ϕ | �ϕ | ♦ϕ | µZ.ϕ | νZ.ϕ

where l ∈ Lit and Z ∈ V . µ denotes a least fixpoint,
whereas ν denotes greatest fixpoint. Let Lµ denote the set
of closed formulas generated by the above grammar, where
the fixpoint quantifiers µ and ν are variable binders. We
will also write η for either µ or ν. Furthermore we assume
that formulas are well-named, i.e. no variable is bound more
than once in any formula. Thus, every variable Z identifies
a unique subformula fp(Z) = ηZ.ψ of ϕ, where the set
Sub(ϕ) of subformulas of ϕ is defined in the usual way.

We also consider the alternation-free fragment of the µ-
calculus, denoted L0

µ, where no nesting of fixpoints is al-
lowed. Namely, ϕ ∈ L0

µ if for every subformula ηZ.ψ ∈
Sub(ϕ), no variable other than Z occurs freely in ψ.

Concrete Semantics. Concrete systems are typically mod-
elled as Kripke structures. A Kripke structure [3] is a tuple
M = (S,R,L), where S is a (possibly infinite) set of states,
R ⊆ S×S is a transition relation, which must be total, and
L : S → 2Lit is a labeling function, such that for every state
s and every p ∈ AP , exactly one of p and ¬p is in L(s).

The concrete semantics [[ϕ]]M of a formula ϕ ∈ Lµ w.r.t.
a Kripke structure M = (S,R,L) is a mapping from S to
{tt, ff}. [[ϕ]]M (s) = tt (= ff) means that the formula ϕ is
true (false) in the state s of the Kripke structure M . Intu-
itively, in this context � stands for “all successors”, whereas
♦ stands for “exists a successor”.

2.1. Abstraction Framework

Let MC be a concrete Kripke structure with a set of con-
crete states SC . An abstraction (SA, γ) for SC consists of
a finite set of abstract states SA and a total concretization
function γ : SA → 2SC that maps each abstract state to
the (nonempty) set of concrete states it represents. Every
sc ∈ SC is represented by some sa ∈ SA.

The abstract states provide descriptions of the concrete
states. The other components of the model MC then also
need to be lifted into the abstract world. Several classes of
abstract models have been suggested for this purpose.

A class of models consists of some form of a transition
system. It is accompanied with a semantics for the logic of
interest, in our case the µ-calculus, over models from the
class, and some preservation relation � between states that
ensures preservation of the logic. An abstract model for
MC is then a model MA from the class, over SA, in which
(MC , sc) � (MA, sa) whenever sc ∈ γ(sa).

We are particularly interested in classes of abstract mod-
els that use a 3-valued semantics. The 3-valued seman-
tics [1] of a formula in a model M enables preservation
of both satisfaction (tt) and refutation (ff) from an abstract
model to the concrete one. In addition, a new truth value,
⊥, is introduced, meaning that the truth value over the con-
crete model is unknown and can be either tt or ff. Such
a 3-valued semantics was suggested for various classes of

abstract models (e.g. [14, 12, 23]). We define a generic 3-
valued semantics that generalizes these definitions. We re-
fer to classes of models defined with such a 3-valued seman-
tics, where the preservation relation ensures preservation of
both tt and ff, as 3-valued classes.

A 3-valued class defines, for each model M from the
class, sets lM ∈ 2S , for every l ∈ Lit, and operators
�M ,♦M : 2S → 2S . These definitions are given in terms
of the components of M , with the requirements that lM

and (¬l)M are disjoint and the operators �M and ♦M are
monotone w.r.t. set inclusion. The 3-valued semantics for
the class is then defined by the following definition.

Definition 2.1 (Generic 3-Valued Semantics) Let M be a
model from a 3-valued class. The tt-set [[ϕ]]Mtt ⊆ S and ff-
set [[ϕ]]Mff ⊆ S of ϕ ∈ Lµ over M are defined inductively in
the style of [1] (based on Kleene’s 3-valued logic for ∧ and
∨, and with the standard definition for fixpoints 1), except
that the definition for formulas of the form l ∈ Lit, �ψ, or
♦ψ depends on the particular class of M , as follows.

[[l]]Mtt = lM , [[l]]Mff = (¬l)M

[[�ψ]]Mtt = �M ([[ψ]]Mtt), [[�ψ]]Mff = ♦M ([[ψ]]Mff)

and dually for ♦ψ when exchanging � and ♦.
If for every ϕ ∈ Lµ, [[ϕ]]Mtt ∩ [[ϕ]]Mff = ∅, then M is con-

sistent. The 3-valued semantics of ϕ ∈ Lµ overM , denoted

[[ϕ]]M3 , is then defined to be a mapping S → {tt, ff,⊥}:

[[ϕ]]M3 (s) =

tt, if s ∈ [[ϕ]]Mtt
ff, if s ∈ [[ϕ]]Mff
⊥, otherwise

Note that if M is an abstract model, preservation of both
tt and ff of the Lµ fromM to the concrete model guarantees
that M is consistent.

An example of a 3-valued class of models is the class
of Generalized Kripke Modal Transition Systems described
below with generalized mixed simulation as a relation that
ensures logic preservation.

Generalized Kripke Modal Transition Systems.

Definition 2.2 Given a set of states S, a hyper-transition is
a pair (s,A) where s ∈ S and A ⊆ S is a nonempty set.

Definition 2.3 [23] A Generalized Kripke Modal Transi-
tion System (GTS) is a tuple M = (S,R+, R−, L), where
S is defined as before, R−, R+ are may and must transition
relations s.t. R− ⊆ S × S is total and R+ ⊆ S × 2S .
L : S → 2Lit is a labeling function s.t. for every state s
and p ∈ AP , at most one of p and ¬p is in L(s).

3-Valued Semantics for GTSs. For a GTS M =
(S,R+, R−, L), we define lM ,�M ,♦M as follows. For
every l ∈ Lit, lM = {s | l ∈ L(s)}. For every U ⊆
S: �M (U) = {s | ∀t ∈ S, if sR−t then t ∈ U}, and

1We omit the use of an environment for simplicity of the presentation.

♦M (U) = {s | ∃A ⊆ S s.t. sR+A and A ⊆ U}. When
integrated into Definition 2.1 this results in a 3-valued se-
mantics. In particular, for a consistent GTS the definition
for formulas of the form l ∈ Lit, �ψ or ♦ψ results in

[[l]]M3 (s) = tt if l ∈ L(s), ff if ¬l ∈ L(s), and ⊥ otherwise.

[[�ψ]]M3 (s) =

tt, if ∀t ∈ S, if sR−t then [[ψ]]M3 (t) = tt
ff, if ∃A ⊆ S s.t. sR+A and

∀t ∈ A : [[ψ]]M3 (t) = ff
⊥, otherwise

[[♦ψ]]M3 (s) is defined dually when exchanging tt with ff.

Definition 2.4 (Generalized Mixed Simulation) [23] Let
M1 = (S1, R

+
1 , R

−
1 , L1) and M2 = (S2, R

+
2 , R

−
2 , L2) be

two GTSs. We say that H ⊆ S1×S2 is a generalized mixed
simulation from M1 to M2 if (s1, s2) ∈ H implies:

1. L2(s2) ⊆ L1(s1).
2. if s1R

−
1 s

′
1, then there is some s′2 ∈ S2 s.t. s2R

−
2 s

′
2 and

(s′1, s
′
2) ∈ H .

3. if s2R
+
2 A2, then there is some A1 ⊆ S1 s.t. s1R

+
1 A1

and (A1, A2) ∈ H∀∃, where (A1, A2) ∈ H∀∃ ⇔
∀s′1 ∈ A1 ∃s′2 ∈ A2 : (s′1, s

′
2) ∈ H .

If there is a generalized mixed simulation H such that
(s1, s2) ∈ H , we write (M1, s1) � (M2, s2).

In particular, Definition 2.4 can be applied to a (concrete)
Kripke structure MC and an (abstract) GTS MA, by view-
ing the Kripke structure as a GTS where R− = R, R+ =
{(s, {s′}) | (s, s′) ∈ R}. For a Kripke structure the 3-
valued semantics agrees with the concrete semantics. Thus,
preservation of Lµ formulas is guaranteed by the following
theorem, which is adapted from [23] to Lµ.

Theorem 2.5 For GTSs M1 and M2 with states s1 and s2
resp., if (M1, s1) � (M2, s2) then for every ϕ ∈ Lµ: s2 ∈
[[ϕ]]M2

tt ⇒ s1 ∈ [[ϕ]]M1
tt , and s2 ∈ [[ϕ]]M2

ff ⇒ s1 ∈ [[ϕ]]M1
ff .

Construction of an Abstract GTS. Let MC =
(SC , R, LC) be a (concrete) Kripke structure and (SA, γ)
an abstraction for SC . An abstract GTS MA =
(SA, R

+, R−, LA) can be constructed as follows [23].
The labeling of an abstract state is defined in accord with

the labeling of all the concrete states it represents. For l ∈
Lit, l ∈ LA(sa) only if ∀sc if sc ∈ γ(sa) then l ∈ LC(sc).
It is thus possible that neither p nor ¬p are in LA(sa).

The may transitions are computed by an [∃∃] rule such
that every concrete transition is represented by them:

∃sc ∈ γ(sa) ∃s′c ∈ γ(s′a) s.t. scRs
′
c =⇒ saR

−s′a

The must hyper transitions, on the other hand, represent
concrete transitions that are common to all the concrete
states represented by the source abstract state. They are
computed by an [∀∃∃] rule:

∀sc ∈ γ(sa) ∃s′a ∈ Aa ∃s′c ∈ γ(s′a) s.t. scRs
′
c ⇐= saR

+Aa

Exact GTS. If the three implications above are replaced by
“iff”, then the labeling, may transitions and must hyper tran-
sitions are exact, resulting in the exact GTS.

Other constructions of abstract GTSs can also be sug-
gested. For example, the construction of a mixed transition
system from [7] within the framework of abstract interpre-
tation can be extended to GTSs as well.

All the above constructions assure us that whenever sc ∈
γ(sa), then (MC , sc) � (MA, sa). The generalized mixed
simulation H ⊆ SC × SA is induced by γ as follows:
(sc, sa) ∈ H iff sc ∈ γ(sa). Therefore, Theorem 2.5 guar-
antees preservation of Lµ from MA to MC .

3. Increasing Precision

Let MC be a concrete Kripke structure. In this section
we are interested in the precision of the abstract model con-
structed for MC with a given abstraction (SA, γ).

Specifically, in Section 2 we described GTSs as a class of
abstract models, along with constructions of abstract mod-
els from this class. We now ask the following questions: (1)
Do the constructions of GTSs from Section 2 produce the
most precise abstract model that we can hope for, given an
abstraction? and more fundamentally: (2) Does the use of
GTSs enable to express the most precise abstract model?

Of course, to answer these questions we first need to de-
fine what the most precise abstract model that we can hope
for is, given an abstraction. We measure precision with re-
spect to a 3-valued semantics. We therefore restrict the dis-
cussion to abstract models from 3-valued classes.

3.1. Precision of Abstract Models

We wish to capture maximal precision within the bound-
aries of the inductive 3-valued semantics as defined in Def-
inition 2.1. When using this semantics, the verification
or refutation of any Lµ formula over an abstract model
MA boils down to manipulations of lMA , �MA(UA), and
♦MA(UA) for various l ∈ Lit and UA ⊆ SA. We therefore
view a set UA ⊆ SA as a new formula with the following
semantics. Let γ(UA) stand for

⋃
sa∈UA

γ(sa). Then in a

concrete model MC , [[UA]]MC

tt = {sc | sc ∈ γ(UA)}. In an
abstract modelMA (from a 3-valued class), [[UA]]MA

tt = UA.
This makes the tt-sets of formulas of the form l, �UA, and
♦UA over MA the building blocks of any model checking
problem over MA. As such, the precision of MA is deter-
mined by its precision w.r.t. truth of such formulas.

In the spirit of [9] we first define the precision of an ab-
straction w.r.t. such formulas. This is the precision that a
precise abstract model will then be expected to match.

Definition 3.1 (Precision of Abstractions) Given an ab-
straction (SA, γ) for MC and a state sa ∈ SA, we say that

sa fulfills ϕ = l, �UA or ♦UA, for l ∈ Lit and UA ⊆ SA,
if ∀sc ∈ γ(sa) : [[ϕ]]MC (sc) = tt.

Note that this definition is independent of the class of
abstract models, as it is meant to capture the precision of the
abstraction itself, in terms of the information carried within
the abstract states. For example, for the abstraction to reflect
the fact that �UA holds in an abstract state sa (meaning it
holds in all the concrete states it represents), it has to be the
case that all the concrete states in γ(sa) share the property
that all of their outgoing (concrete) transitions are to γ(UA),
which is the “description” of UA in the concrete world.

Definition 3.2 (Precision of Models) An abstract model
MA for MC (from some 3-valued class) is precise w.r.t.
(SA, γ) if for all sa ∈ SA, l ∈ Lit andUA ⊆ SA: whenever
sa fulfills ϕ = l, �UA or ♦UA, then sa ∈ [[ϕ]]MA

tt .

Thus whenever the information about l, �UA, or ♦UA

exists in the abstract states, a precise abstract model enables
to see that. To formalize the generality of Definition 3.2,
we extend Definition 3.1 to more complicated formulas and
to falsification, following the 3-valued semantics. We then
show that whenever an abstract model is precise w.r.t. truth
of l,�UA,♦UA, it is also precise w.r.t. any other formula.

Definition 3.3 Let A = (SA, γ) be an abstraction. We
define an abstract semantics [[ϕ]]A3 by using the generic 3-
valued semantics (see Definition 2.1) with the following
definitions of lA ∈ 2SA , and �A,♦A : 2SA → 2SA .
For l ∈ Lit: lA = {sa | sa fulfills l}. For UA ⊆
SA: �A(UA) = {sa | sa fulfills �UA}, and ♦A(UA) =
{sa | sa fulfills ♦UA}. We say that sa ∈ SA enables verifi-
cation (falsification) of ϕ ∈ Lµ if [[ϕ]]A3 (sa) = tt (ff).

The abstract semantics is well defined since whenever
sa ∈ [[ϕ]]Att (resp. [[ϕ]]Aff), then ∀sc ∈ γ(sa) : [[ϕ]]MC (sc) =
tt (resp. ff). This ensures that [[ϕ]]Att ∩ [[ϕ]]Aff = ∅.

For example, by this definition sa enables verification of
ϕ = �ψ iff sa fulfills �UA for some UA ⊆ SA such that
every s′a ∈ UA enables verification of ψ.

Theorem 3.4 Let MA be an abstract model for MC (from
some 3-valued class) which is precise w.r.t. (SA, γ). Then
whenever sa ∈ SA enables verification (falsification) of
ϕ ∈ Lµ, then [[ϕ]]MA

3 (sa) = tt (ff).

The following theorem ensures that an abstract model
which is precise w.r.t. the abstraction is also most precise
when compared to other abstract models, provided that their
class has the following property. A 3-valued class of models
is structural if its definitions of �M ,♦M : 2SA → 2SA

ensure that for every UA ⊆ SA, whenever sa ∈ �M (UA),
then for every sc ∈ γ(sa) all the concrete successors of sc

are in γ(UA). Similarly, whenever sa ∈ ♦M (UA), then
every sc ∈ γ(sa) has a successor in γ(UA). Intuitively, for
�M and ♦M to maintain such consistency with the concrete
world, they have to be based on some (structural) abstract
description of the concrete transitions in the abstract model.
For example, GTSs and their variants are such classes.

Theorem 3.5 Let MA,M
′
A be two abstract models for MC

(from possibly different 3-valued classes) based on an ab-
straction (SA, γ). If MA is precise w.r.t. (SA, γ) and the
class of M ′

A is structural, then for every sa ∈ SA and every

ϕ ∈ Lµ: [[ϕ]]M
′
A

3 (sa) �=⊥ ⇒ [[ϕ]]MA

3 (sa) = [[ϕ]]M
′
A

3 (sa).

Now, equipped with formal definitions of precision, we
go back to our questions about the precision of GTSs.

Theorem 3.6 If the abstraction (SA, γ) partitions the con-
crete states, i.e. for each sa, s

′
a ∈ SA : γ(sa) ∩ γ(s′a) = ∅,

then the exact GTS from section 2 is precise w.r.t. (SA, γ).

However, in many cases it might be desirable to gather
the concrete states into non-disjoint sets, as this can reduce
the size of the abstract state space that enables verification
or falsification of the desired property. We show that in this
general setting, the answer to both questions is “no”.

3.2. May Transitions as a Source of Imprecision

As demonstrated by Example 1.1, when the given ab-
stract states do not represent disjoint sets of concrete states,
the may transitions can become a source of imprecision. In
this example there is no abstract GTS for MC over SA that
will enable verification of both �p and �q in sa. This is
while the abstraction does enable verification of both �p
and �q in sa (see Definition 3.3). Thus, none of the possi-
ble GTSs is precise w.r.t. the given abstraction.

Theorem 3.7 GTSs do not always suffice for the construc-
tion of a precise abstract model w.r.t. a given abstraction.

We emphasize that this imprecision is not limited to a
certain construction. Indeed, the construction of the ex-
act GTS from Section 2 is simplistic, as it might introduce
redundancy in the may transitions (for example, in Exam-
ple 1.1 both may transitions would be included). Yet, The-
orem 3.7 holds even for optimized constructions that avoid
redundant may transitions (e.g. in the style of [7]).

It can be shown that the imprecision results from the may
transitions and not from the other components of the GTS.
This is because whenever the abstraction enables verifica-
tion of l ∈ Lit or ♦UA, so does the exact GTS, which im-
plies that the labeling and the must hyper transitions (used
for verification of such formulas) are precise enough.

More than that, analyzing Example 1.1 shows that the
imprecision arises when there is no “best” choice of may

transitions, in which case one needs to consider all of their
(incomparable) possibilities to achieve maximal precision.
Unfortunately, a GTS does not enable to do that. We there-
fore suggest to model the may transitions as hyper transi-
tions as well, with the meaning that each may hyper tran-
sition (sa, Aa) ∈ SA × 2SA provides some over approxi-
mation of all the outgoing transitions of the concrete states
represented by sa.

3.3. Hyper Kripke Modal Transition Systems

This brings us to the new class of abstract models that
we suggest to be used in order to obtain maximal precision.

Definition 3.8 A Hyper Kripke Modal Transition System
(HTS) is a tuple M = (S,R+, R−, L), where S,L,R+ are
defined as before, and R− ⊆ S×2S (not necessarily total).

3-Valued Semantics for HTSs. To adapt the 3-valued se-
mantics of Lµ for HTSs we redefine �M . For every U ⊆ S:
�M (U) = {s | ∃A ⊆ S s.t. sR−A and ∀t ∈ A : t ∈ U}.
This changes the definition for �ψ in a consistent HTS to:

[[�ψ]]M3 (s) =

tt, if ∃A ⊆ S s.t. sR−A and
∀t ∈ A : [[ψ]]M3 (t) = tt

ff, if ∃A ⊆ S s.t. sR+A and
∀t ∈ A : [[ψ]]M3 (t) = ff

⊥, otherwise

and dually for [[♦ψ]]M3 (s) when exchanging tt with ff.
Thus, in order to evaluate a �ψ formula to tt, instead of

requiring that all the may transitions are to states that satisfy
ψ, we now require that there exists a may hyper transition
such that all the states within the target set satisfy ψ.

A GTS, and thus also a Kripke structure, can be viewed
as a HTS, where every state has exactly one outgoing may
hyper transition, whose target set consists of the target states
of all of its (ordinary) may transitions. Preservation of Lµ

between HTSs (and in particular between an HTS and a
Kripke structure) is guaranteed by the following relation.

Definition 3.9 (Hyper Mixed Simulation) Let M1 =
(S1, R

+
1 , R

−
1 , L1) and M2 = (S2, R

+
2 , R

−
2 , L2) be two

HTSs. H ⊆ S1 × S2 is a hyper mixed simulation from
M1 to M2 if (s1, s2) ∈ H implies the requirements of
Definition 2.4, except that requirement 2 is replaced by:

2. if s2R
−
2 A2, then there is some A1 ⊆ S1 s.t. s1R

−
1 A1

and (A1, A2) ∈ H∀∃, where as before: (A1, A2) ∈
H∀∃ ⇔ ∀s′1 ∈ A1 ∃s′2 ∈ A2 : (s′1, s

′
2) ∈ H .

If there is a hyper mixed simulation H such that (s1, s2) ∈
H , we write (M1, s1) � (M2, s2).

Intuitively, there can be less may hyper transitions inM2

but each one has to over approximate some hyper transition
in M1. Thus, if some may hyper transition was used to
verify �ψ in M2, then the may hyper transition that it over

approximates can be used to verify it in M1. Note that a
may hyper transition of M1 that has no representation in
M2 can only cause formulas with a definite value in M1 to
be indefinite in M2 and not vice versa.

Theorem 3.10 For HTSs M1 and M2 with states s1 and s2
resp., if (M1, s1) � (M2, s2) then for every ϕ ∈ Lµ: s2 ∈
[[ϕ]]M2

tt ⇒ s1 ∈ [[ϕ]]M1
tt , and s2 ∈ [[ϕ]]M2

ff ⇒ s1 ∈ [[ϕ]]M1
ff .

Construction of an Abstract HTS. Let MC =
(SC , R, LC) be a (concrete) Kripke structure. Given an ab-
straction (SA, γ) for it, an abstract model in the form of
a HTS MA = (SA, R

+, R−, LA), can be constructed as
before with the exception that R− now consists of hyper
transitions, constructed as follows. A may hyper transition
saR

−Aa exists only if an [∀∀∃] condition holds:
∀sc ∈ γ(sa) ∀s′c [scRs

′
c ⇒ ∃s′a ∈ Aa s.t. s′c ∈ γ(s′a)]

That is, every outgoing may hyper transition of sa over ap-
proximates all the concrete transitions of the states repre-
sented by sa. An example of a “legal” may hyper tran-
sition is (sa, Aa) for Aa = {s′a | ∃sc ∈ γ(sa) ∃s′c ∈
γ(s′a) s.t. scRs

′
c}. Note that the “only if” allows to include

less hyper transitions than allowed by the rule. The follow-
ing theorem formalizes the correctness of the construction.

Theorem 3.11 LetMC be a concrete Kripke structure over
SC , and let MA be an HTS computed as described above
based on an abstraction (SA, γ) for SC . Then whenever
sc ∈ γ(sa) then (MC , sc) � (MA, sa).

For example, to verify �p and �q in Example 1.1, we in-
clude (sa, {s1a}) and (sa, {s2a}) as may hyper transitions.

Exact HTS. If the “only if” in the definition of may hyper
transitions is replaced by “iff”, the may hyper transitions are
exact. If all components are exact, we get the exact HTS.

Theorem 3.12 Let MC be a Kripke structure and ME
A the

exact HTS computed as described above based on an ab-
straction (SA, γ). Then ME

A is precise w.r.t. (SA, γ).

4. Decreasing the Model Checking Cost

Using the exact HTS as an abstract model ensures max-
imal precision. Yet, it involves an exponential blowup. In
this section we suggest an efficient model checking, which
remains quadratic in the number of abstract states, and yet
produces a result which is as precise as possible with re-
spect to a specific property.

From now on, we restrict the discussion to the alterna-
tion free fragment of the µ-calculus. Let MC be a con-
crete Kripke structure and ϕ ∈ L0

µ a formula that we wish
to check in some state sc of MC . Moreover, suppose that
we are given a (finite) abstraction (SA, γ). All the abstract

s � ψ0 ∨ ψ1

s � ψi
: i ∈ {0, 1} s � ψ0 ∧ ψ1

s � ψi
: i ∈ {0, 1}

s � ηZ.ψ
s � Z

s � Z
s � ψ : if fp(Z) = ηZ.ψ

s � ♦ψ
t � ψ : sR̃t

s � �ψ
t � ψ : sR̃t

Figure 2. Rules for product graph construction

states that represent sc are candidates to enable verification
or falsification of ϕ in sc. We therefore refer to them as
designated states. Our purpose is to evaluate ϕ in all these
designated abstract states in the exact HTS ME

A .
Our algorithm is based on a generalization of the game-

based model checking suggested in [22] for CTL over ab-
stract models with ordinary may and must transitions. We
omit the details of the game, but continue with the game-
graph, to which we refer as the product graph.

Product Graph. The product graph presents all the infor-
mation “relevant” for the model checking: Every node in
the graph is labeled by sa � ψ, where sa is an abstract state
and ψ is a subformula of ϕ, indicating that the value of ψ
in sa is relevant for determining the model checking result.
The outgoing edges of a node sa � ψ can be seen as defin-
ing “subgoals” for the goal of checking ψ in sa.

Formally, let ϕ ∈ L0
µ be a formula, SA a set of states,

Sd ⊆ SA a set of designated states in which we want to
evaluate ϕ, and R̃ ⊆ SA × SA a total transition relation.
R̃ is meant to provide a basic description of the possible
transitions between states (we will soon see how it is ob-
tained). The product graph GSd,R̃,ϕ, or in short G, is a
graph (N,E) with a set of nodes N ⊆ SA × Sub(ϕ) and
a set of edges E ⊆ N ×N , defined as follows. The initial
nodes N0 ⊆ N consist of Sd ×{ϕ}. The (rest of the) nodes
and the edges are defined by the rules of Fig. 2, with the
meaning that whenever n ∈ N is of the form of the upper
part of the rule, then the result in the lower part of the rule
is also a node n′ ∈ N and (n, n′) ∈ E.

The nodes of G are classified as ∧, ∨, �, ♦ nodes, based
on their subformuals. Nodes whose subformula is a literal
are terminal nodes (they have no outgoing edges). Nodes
whose subformulas are of the form Z or ηZ.ψ are deter-
ministic – they have exactly one son.

Each strongly connected component (SCC) in G which
is non-trivial, i.e. has at least one edge, contains exactly one
free fixpoint variable Z ∈ V , called a witness. If fp(Z) =
µZ.ψ, then Z is a µ-witness. Otherwise it is a ν-witness.

Coloring Algorithm. To determine the model checking re-
sult, a coloring algorithm is applied on the product graph
with the purpose of labeling each node n = sa � ψ in it by
T , F , ? depending on the value of ψ in the state sa in ME

A .
The coloring algorithm of [22] processes the product

graph bottom-up by iterating two phases: In the sons-
coloring phase, a node is colored based on the colors of
its sons by rules which reflect the 3-valued semantics of the
logic. In the witness-coloring phase a special procedure is
applied to handle cycles (non trivial SCCs) in the graph.

As for our algorithm, for the sake of the explanation,
suppose first that we construct the product graph based
on ME

A (of course, eventually the point will be to avoid
the construction of ME

A). R̃ will then simply be the set
R̃E = {(sa, s

′
a) | s′a ∈ Aa and (saR

−Aa or saR
+Aa)},

where R− and R+ are the transition relations of ME
A . In

this case we also define may and must hyper-sons in G: If
n = s � ♥ψ ∈ N for ♥ ∈ {�,♦} and sR−A (sR+A),
then B = A× {ψ} ⊆ N is a may (must) hyper-son of n.

The coloring can be extended to handle hyper sons in the
same way that the 3-valued semantics is extended to handle
hyper transitions. For example, a �-node will be colored by
F iff it has a must hyper-son whose nodes are all colored by
F . It will be colored by T iff it has a may hyper-son whose
nodes are all colored by T . Otherwise it will be colored
?. Dually for a ♦-node. Yet, instead of considering all the
hyper sons and checking if any of them justifies coloring the
node, we suggest to use the information gathered so far in
the bottom-up coloring to perform this check wisely.

For example, to color a �-node n by F , it suffices to
check, whenever some son of n gets colored by F , if all
of n’s currently F -colored sons comprise a must hyper-son
(i.e., their underlying states fulfill the ∀∃∃ rule). Similarly,
to conclude that n should not be colored F , it suffices to
check that n’s currently F -colored sons along with the un-
colored sons (if exist) do not form a must hyper-son. Thus,
checking these candidates is as informative as checking all
of the possible must hyper sons. Similar reasoning applies
to may hyper sons. This leads us to the following algorithm,
where ME

A is not constructed in advance.

4.1. Optimized Abstract Model Checking

Let MC be a concrete model, sc ∈ SC a concrete state,
ϕ ∈ L0

µ a formula that we wish to check in sc, and (SA, γ)
an abstraction. The algorithm is as follows.

Product Graph Construction. Construct a partial HTS
M̃A = (SA, R̃, LA), where LA is defined as in the exact
HTS, and R̃ ⊆ SA×SA is defined by R̃ = {(sa, s

′
a) | ∃sc ∈

γ(sa) ∃s′c ∈ γ(s′a) s.t. scRs
′
c}. This ensures that R̃ ⊇ R̃E .

Construct the product graph GSd,R̃,ϕ based on ϕ, SA, R̃ as
above, and Sd = {sa | sc ∈ γ(sa)}.

Partition. GSd,R̃,ϕ is partitioned into Maximal Strongly
Connected Components (MSCCs), denoted Qi’s, and a (to-
tal) order ≤ is determined on them, s.t. for every n ∈ Qi

and n′ ∈ Qj , (n, n′) ∈ E only if Qj ≤ Qi. Such an order
exists because the MSCCs form a directed acyclic graph.

Coloring. The following two phases are performed repeat-
edly until all nodes are colored.

1. Sons-coloring phase. Apply the following rules until
none is applicable.

• A terminal node sa � l is colored T if l ∈
LA(sa), F if ¬l ∈ LA(sa), and ? otherwise.

• An ∧-node (∨-node) is colored by:
– T (F) if both its sons are colored T (F).
– F (T) if it has a son that is colored F (T).
– ? if it has a son that is colored ? and the other

is colored �= F (T).
• A deterministic node is colored as its (only) son.
• A �-node (♦-node) is colored by:

– T (F) if its currently T (F)-colored sons
form a may hyper son.

– F (T) if its currently F (T)-colored sons
form a must hyper son.

– ? if all of its sons are colored, yet none of the
above holds.

2. Witness-coloring phase. If there are still uncolored
nodes, let Qi be the smallest MSCC w.r.t. ≤ that is not
yet fully colored. Qi is necessarily a non-trivial MSCC
that has exactly one witness. Its uncolored nodes are
colored according to the witness. For a µ-witness:

(a) Repeatedly color ? each node in Qi satisfying
one of the following.
• An ∧-node (∨-node) that both (at least one)

of its sons are colored �= F .
• A deterministic node whose son is colored ?.
• A �-node (♦-node) whose F -colored sons

along with its remaining uncolored sons do
not form a must (may) hyper-son.

(b) Color the remaining nodes in Qi by F .

The case where the witness is of type ν is dual, when
exchanging F with T , ∧ with ∨, and � with ♦.

In each phase of the coloring, the rules will initially be
checked once for every uncolored node, and later will only
be checked when one of the sons of the node gets colored
by an appropriate color. Several optimizations can be used.

Remark 4.1 Checking if a set B of nodes forms a may or
must hyper son of a �-node or a ♦-node n is performed by
checking the ∀∃∃ or the ∀∀∃ condition (resp.) between the
underlying states of the node n and the set of nodes B.

Theorem 4.2 Let ME
A denote the exact HTS for MC w.r.t.

(SA, γ). Let G = GSd,R̃,ϕ be the product graph produced
by the algorithm. Then for every n = sa � ϕ1 ∈ G such
that ϕ1 is closed the following holds:

1. [[ϕ1]]
ME

A
3 (sa) = tt iff n = sa � ϕ1 is colored by T .

2. [[ϕ1]]
ME

A
3 (sa) = ff iff n = sa � ϕ1 is colored by F .

3. [[ϕ1]]
ME

A
3 (sa) =⊥ iff n = sa � ϕ1 is colored by ?.

Thus, for all nodes with closed formulas in the product
graph, the coloring is as precise as model checking with
ME

A , even though ME
A is not constructed by the algorithm.

In particular, this is true for N0 = Sd × {ϕ}, and by the
choice of Sd, we are guaranteed that whenever the abstrac-
tion is precise enough, at least one initial node will be col-
ored by a definite color T or F , in which case by Theo-
rems 4.2 and 3.10, [[ϕ]]MC (sc) = tt or ff respectively. Note,
that it is impossible that some initial node will be colored T
and another will be colored F . If all the initial nodes in the
product graph are colored ?, then the result is indefinite.

Remark 4.3 By considering the underlying hyper transi-
tions of hyper sons computed by the algorithm, the final
product graph induces an abstract HTS for MC which is
as precise as the exact HTS w.r.t. ϕ.

Complexity. During all applications of the sons-coloring
phase, the ∀∃∃ and the ∀∀∃ conditions are checked at most
|SA| times for each node, as each node has at most |SA|
sons, and between checks the set of candidates to comprise
a hyper son is monotonically increasing. Similar analy-
sis holds for phase 2a, with the difference that the sets of
candidates to comprise a hyper son are monotonically de-
creasing. As the number of nodes in the product graph is
O(|SA| × |ϕ|), the total number of checks of the ∀∃∃ and
the ∀∀∃ conditions is O(|SA|2 × |ϕ|). This is the dominant
part which determines the model checking complexity.

5. Abstraction-Refinement

Our abstract model checking ensures maximal precision.
Still, its result might be indefinite if the abstraction is not
precise enough. In this case, refinement can be applied
by splitting the abstract states, similarly to the refinement
of [22] for models with ordinary transitions (with various
optimizations that exploit the use of hyper transitions).

When refinement is introduced, monotonicity in the pre-
cision of the abstract models before and after the refinement
is desirable, meaning that formulas that had a definite value
before the refinement will not become indefinite after re-
finement [23]. This is guaranteed by the following theorem.

Theorem 5.1 (Monotonicity of HTSs) Let M ′
A and MA

be exact HTSs defined based on abstractions (S′
A, γ

′) and
(SA, γ) resp., where (S′

A, γ
′) is the result of splitting the

states of (SA, γ). Then whenever s′a ∈ S′
A is a substate of

sa ∈ SA then (M ′
A, s

′
a) � (MA, sa).

Monotonicity implies that refinement of an exact HTS will
never take us further from the (definite) result. In particular,

we will not “miss” the opportunity to get a definite result
only due to excess refinement. Thus, our approach, which is
as precise as using the exact HTS w.r.t. the desired property,
will ensure the same. Recall that the same is not guaranteed
when using ordinary must transitions [23].

If the concrete model is finite, an iterative abstraction-
refinement is guaranteed to terminate with a definite answer.

References
[1] G. Bruns and P. Godefroid. Model checking partial state

spaces with 3-valued temporal logics. In CAV, 1999.
[2] G. Bruns and P. Godefroid. Generalized model checking:

Reasoning about partial state spaces. In CONCUR, 2000.
[3] E. Clarke, O. Grumberg, and D. Peled. Model Checking.

MIT press, 1999.
[4] R. Cleaveland, P. Iyer, and D. Yankelevich. Optimality in

abstraction of model checking. In SAS, 1995.
[5] P. Cousot and R. Cousot. Abstract interpretation: A unified

lattice model for static analysis of programs by construction
or approximation of fixpoints. In POPL, 1977.

[6] P. Cousot and R. Cousot. Abstract interpretation frame-
works. J. Log. Comput., 2(4), 1992.

[7] D. Dams, R. Gerth, and O. Grumberg. Abstract interpreta-
tion of reactive systems. TOPLAS, 19(2), 1997.

[8] D. Dams and K. Namjoshi. The existence of finite abstrac-
tions for branching time model checking. In LICS, 2004.

[9] L. de Alfaro, P. Godefroid, and R. Jagadeesan. Three-valued
abstractions of games: Uncertainty, but with precision. In
LICS, 2004.

[10] P. Godefroid, M. Huth, and R. Jagadeesan. Abstraction-
based model checking using modal transition systems. In
CONCUR, 2001.

[11] P. Godefroid and R. Jagadeesan. Automatic abstraction us-
ing generalized model checking. In CAV, 2002.

[12] P. Godefroid and R. Jagadeesan. On the expressiveness of
3-valued models. In VMCAI, 2003.

[13] A. Gurfinkel, O. Wei, and M. Chechik. Systematic construc-
tion of abstractions for model-checking. In VMCAI, 2006.

[14] M. Huth, R. Jagadeesan, and D. Schmidt. Modal transition
systems: A foundation for three-valued program analysis. In
ESOP, 2001.

[15] D. Kozen. Results on the propositional µ-calculus. TCS, 27,
1983.

[16] K. Larsen and B. Thomsen. A modal process logic. In LICS,
1988.

[17] K. Larsen and L. Xinxin. Equation solving using modal tran-
sition systems. In LICS, 1990.

[18] K. G. Larsen. Modal specifications. In Automatic Verifica-
tion Methods for Finite State Systems, Grenoble, 1989.

[19] K. Namjoshi. Abstraction for branching time properties. In
CAV, 2003.

[20] C. S. Pasareanu, R. Pelánek, and W. Visser. Concrete model
checking with abstract matching and refinement. In CAV’05.

[21] D. A. Schmidt. Closed and logical relations for over- and
under-approximation of powersets. In SAS, 2004.

[22] S. Shoham and O. Grumberg. A game-based framework for
CTL counterexamples and 3-valued abstraction-refinement.
In CAV, 2003. To appear in TOCL.

[23] S. Shoham and O. Grumberg. Monotonic abstraction-
refinement for CTL. In TACAS, 2004.

