Automatic Refinement and Vacuity Detection for
Symbolic Trajectory Evaluation

Rachel Tzoréf? and Orna Grumbetg
{rachelt,orna }@cs.technion.ac.ll

1 Computer Science Department, Technion, Haifa, Israel
2 |BM Haifa Research Laboratory, Israel

Abstract. Symbolic Trajectory Evaluation (STE) is a powerful technique for model checking. It

is based on 3-valued symbolic simulation, using 0,1 &nh¢’'unknown”). The X value is used

to abstract away parts of the circuit. The abstraction is derived from the user’s specification.
Currently the process of abstraction and refinement in STE is performed manually. This paper
presents an automatic refinement technique for STE. The technique is based on a clever selection
of constraints that are added to the specification so that on the one hand the semantics of the
original specification is preserved, and on the other hand, the part of the state space in which
the "unknown” result is received is significantly decreased or totally eliminated. In addition, this
paper raises the problem of vacuity of passed and failed specifications. This problem was never
discussed in the framework of STE. We describe when an STE specification may vacuously pass
or fail, and propose a method for vacuity detection in STE.

1 Introduction

Symbolic Trajectory Evaluation (STE) [11] is a powerful technique for hardware model
checking. STE is based on combining 3-valued simulation with symbolic simulation.
It is applied to a circuitM, described as a graph oveodes(gates and latches). The
specification consists of assertions in a restricted temporal language. The assertions
are of the formA — C, where theantecedentd expresses constraints on nodeat
different timeg, and theconsequent’ expresses requirements that should hold on such
nodes(n, t). STE computes a symbolic representation for each itedg. The size of
this representation depends on the sizé pfather than on the circuit sizAbstraction
in STE is derived from the specification by initializing all inputs not appearingd in
to the X (“unknown”) value. A forth value,L, represents a contradiction between the
constraint ofA on some nodén, t) and its actual behavior. Aefinemenamounts to
changing the assertion in order to present nodes values more accurately.

STE assertions may either pass or failldnin [5], a 4-valued truth domaif0, 1, X,
1} is defined for the temporal language of STE, corresponding to the 4-valued domain
of the values of the circuit nodes. The motivation for a 4-valued semantics is to dis-
tinguish between different causes for the pass or fail of an STE assertiotX Tiuth
value distinguishes the case in which the STE assertion fails due to partial information
about the state space from the case in which it is actually violatetd bin the latter
case aounterexamplés produced, representing an executionthat satisfiesA but
contradictsC. The X truth value stems from a too coarse antecedent which underspeci-
fies the circuit. Thel truth value indicates that the STE assertion passes vacuously due
to a contradiction betweed and M.

Generalized STE (GSTH)9] is a significant extension of STE that can verify.all
regular properties. Manual refinement methods for GSTE are presented in [18]. In [16],
SAT-based STE is used for manual refinement of GSTE assertion graphs.

(G)STE has been in active use in the industry, and has been very successful in veri-
fying huge circuits containing large data paths [12, 10, 17]. Its main drawback, however,
is the need for manual abstraction and refinement, which can be very labor-intensive.

Our Contribution . We propose a technique for automatic refinement of assertions
in STE. In our technique, the initial abstraction is derived, as usual in STE, from the
given specification. The refinement is an iterative process, which stops when a truth
value other tharX is achieved. In case of a 0 truth value, a counterexample is presented
to the user. Our automatic refinement is applied when the STE specification results with
X. We compute a set of input nodes, whose refinement is sufficient for eliminating the
X truth value. We further suggest heuristics for choosing a small subset of this set.

Selecting a "right” set of inputs has a crucial role in the success of the abstraction
and refinement process: selecting too many inputs will add many variables to the com-
putation of the symbolic representation, and may result in memory and time explosion.
On the other hand, selecting too few inputs or selecting inputs that do not affect the
result of the verification will lead to many iterations with antruth value.

We point out that, as in any automated verification framework, we are limited by
the following observations. First, there is no automatic way to determine whether the
provided specification is correct. Therefore, we assume it is, and we make sure that our
refined assertion passes on the concrete circuit iff the original assertion does. Second,
bugs cannot automatically be fixed. Thus, counterexamples are analyzed by the user.

Abstraction-Refinement is a well known methodology in model checking [4, 6] for
fighting the state explosion problem. In [3], it is shown that the abstraction in STE is an
abstract interpretation via a Galois connection. [9] presents a SAT-based algorithm to
assist in manual refinement of STE assertions. However, automatic refinement has never
been suggested before for STE. The work that is closest to ours is [15], which suggests
an automatic abstraction-refinement for symbolic simulation. However, the suggested
heuristics are significantly different from ours.

Another important contribution of our work is identifying that STE results may
hide vacuity. This possibility was never raised before. Hidden vacuity may occur since
an abstract execution @ff on which the truth value of the specificationlisr 0, might
not correspond to any concrete executiodbfIn such a case, a passvacuouswhile
a counterexample spurious We propose a method for detecting these cases.

We implemented our automatic refinement technique within Intel’s Forte environ-
ment [12]. We ran it on two nontrivial circuits with several assertions. Our experimen-
tal results show success in automatically identifying a set of inputs that are crucial for
reaching a definite truth value. Thus, a small number of iterations were needed.

2 Basic Definitions

A circuit M consists of a set of node¥, connected by directed edges. The nodes
consist of inputs and internal nodes. Internal nodes consist of latches and combinational
nodes. Each combinational node is associated with a Boolean function. We say that a
noden; enters a node, if there exists a directed edge from to n,. The nodes

entering a certain node are gsurce nodesand the nodes to which a node enters are
its sink nodes The value of a latch at timecan be expressed as a Boolean expression
over its source nodes at timesind¢ — 1, and over the latch value at time- 1. The
directed graph induced by may contain loops but no combinational loops.
Throughout the paper we refer to a nadat a specific time as(n, t).

Thebounded cone of influencéBCOI) of a node(n, ¢) contains all nodesn’, ')
with ¢’ < ¢ that may influence the value 6, ¢), and is defined recursively as follows:
the BCOI of a combinational node at timeés the union of the BCOI of its source nodes
at timet, and the BCOI of a latch at timeis the union of the BCOI of its source nodes
at timest andt — 1 according to the latch type.

Usually, the circuit nodes receive

Bool | In STE. a third val D|X|0[1|L OR|X|0|1|L NOT

B e I e S Yae! X X{O[X[L X [XIX[11 X X
Cunknown, is introduced. At 0[0[0]L 0 (x[0[1]L 0 |1

taching X to a certain node repre

sents lack of information regarding the X|0j1jL 1411 110

truth value of that node. A forth value, et S B B A

1, is added to represent the over-
constrained value, in which a node is
forced both to 0 and to 1. This value indicates that contradiction exists between external
assumptions on the circuit and its actual behavior. The set of v@ues{0,1, X, 1 }
forms a complete lattice with the partial ordeZ X, 1 C X, L £ 0andL C 1. This
order corresponds to set inclusion, whéfeepresents the s¢6, 1}, and_L represents
the empty set. As a result, tlygeatest lower boundi corresponds to set intersection
and theleast upper boundl corresponds to set union. The Boolean operations AND,
OR and NOT are extended to the domalras shown in Figure 1.
A states of the circuit M is an assignment of values fro@ to all circuit nodes,
s : N — Q. Given two states;, so, we say that; C sy <= ((In € N : s1(n) =
1)V (Yn € N : s1(n) C sa(n))). A state isconcreteif all nodes are assigned with
values out of 0, 1}. A states is an abstraction of a concrete statef s, C s.
A sequencers is any infinite series of states. We denotedty),: € N, the state
at time: in o, and byo(i)(n),i € N,n € N, the value of node: in the states (7).
o',i € N, denotes the suffix of starting at time. We say that; C 0y < ((3i >
0,nm e N :01(i)(n) = L)V (Vi>0:01(i) C o2(i))). Note that we refer to states
and sequences that containvalues as least elements wir.t
Let V be a set of symbolic Boolean variables over the domairni }. A symbolic
expressioroverV is an expression consisting of quaternary operations, appligd.to
Q. A symbolic stateover V' is a mapping which maps each nodeMfto a symbolic
expression. Each symbolic state represents a set of states, one for each assignment to the
variables inV. A symbolic sequenceverV is a series of symbolic states. It represents
a set of sequences, one for each assignmeit. tGiven a symbolic sequeneeand
an assignmenp to V', ¢(o) denotes the sequence that is received by applyitwall
symbolic expressions ia. Given two symbolic sequences,os overV, we say that
o1 C oy if for all assignmentg to V, ¢(o1) C ¢(o2).
A Trajectory Evaluation LogiTEL) formula is defined recursively ovéf as follows:

fua=nisp|finfalp— fINf

Fig. 1. Quaternary operations

wheren € N, p is a Boolean expression ovéf and N is the next time operator.
Note that TEL formulas can be expressed as a finite set of constraints on values of
specific nodes at specific timed! denotes the application éfnext time operators.

The constraints ofn, t) are those appearing in the scope\df. Themaximal depthof

a TEL formulaf, denoted depttf), is the maximal time for which a constraint exists

in f on some nodén, t), plus 1.

Usually, the satisfaction of a TEL formujaon a symbolic sequeneeis defined in
the 2-valued truth domain [11], i.€f,is either satisfied or not satisfied. In [§),is used
also as a 4-valued truth domain for an extension of TEL. Our 4-valued semantics defini-
tion is different from [5] w.r.tL values. In [5], a sequeneecontainingL values could
satisfy f with a truth value different fromL. In our definition this is not allowed. We
believe that our definition captures better the intent behind the specification w.r.t con-
tradictory information about the state space. Given a TEL forrfideerV’, a symbolic
sequence overV/, and an assignmetitto V', we define the satisfaction ¢fas follows:
[p,c = fl=L < Fi>0,neN:¢(0)(i)(n) = L. Otherwise:

6,0 Enisp] =1 < ¢()(0)(n) = 6(p)

6.0 = nisp] =0 < ¢(0)(0)(n) # é(p) ande(o)(0)(n) € {0,1}

[¢,0 Enispl =X < ¢(0)0)(n) =X ¢,0f=p—f=(dp) Vo]
U':flAf2:(¢7a':f1/\¢7U|:f2) ¢7O":Nf:¢a):f

Note that given an assignmefito V, ¢(p) is a constant (0 or 1). In addition, thetruth

value is determined only according ¢oando, regardless of . It is proven in [5] that

the satisfaction relation is monotonic, i.e., for all TEL formufasymbolic sequences

01,02 and assignmentsto V, if ¢(o2) T ¢(o1) then[p, o2 = f] C [¢p, 01 = f]. This

also holds for our satisfaction definition. We define the truth value jef f as follows:

[0 f]=0 < 3¢:[p,0=f]=0

lcEfl=X < Y:[p.0 = fl#0and3s: [¢,0 = f] =X

oEfl=1 < Yo:[pol=f1¢{0.X}and3ep: [p,0 = f]=1

o fl=L o Yo lpoFfl=1

It is proven in [5] that every TEL formulg has adefining sequencewhich is a
symbolic sequence’ so that[o/ |= f] = 1 and for allo, [|= f] € {1, 1} iff
o C o/. For exampleg?—(" S) is the sequence,, ;) Sz 5z 5z..., Wheresg, .,
is the state in which equals(q — p) A (=g — X)), and all other nodes equal, and
s, is the state in which all nodes equil o/ may be incompatible with the behavior
of M. A (symbolic) trajectoryr is a (symbolic) sequence that is compatible with the
behavior ofM [8]: let val(n,t) be the value of a nodg:, t) as computed according to
its source nodes valuesin It is required that for all nodes:, t), 7(¢)(n) C val(n,t)
(strict equality is not required in order to allow external assumptions on nodes values to
be embedded inta). A trajectory isconcreteif all its states are concrete. A trajectory
m IS an abstraction of a concrete trajectapyif 7. C .

Thedefining trajectoryn/ of M andf is a symbolic trajectory so that/ = f] €
{1, 1.} and for all trajectories of M, [r |= f] € {1, L}iff = C «/ (Similar definitions
for of andnf exist in [11] w.r.t a 2-valued truth domain). Giveri, 7/ is computed as
follows: Vi, 74 (i) is initialized tos 7 (i), and the nodes values from timand; — 1 are
propagated forward to nodes at timantil no new values are derived. Theoperator
is used to incorporate a propagated value into the current value of gnpde

STE assertions are of the forth =— C, where A (the antecedent) an@ (the
consequent) are TEL formulagl expresses constraints on circuit nodes at specific
times, and” expresses requirements that should hold on circuit nodes at specific times.
M E (A = C) iff for all concrete trajectoriesr of M and assignment$ to V,

[¢,m = A] = 1implies thatlp, 7 = C] = 1.

A natural verification algorithm for an STE asser-
tion A = C is to compute the defining trajectory
74 of M and A and then compute the truth value of <
™ = C.If [4 & C] € {1, 1} then it holds that |,)
M E (A= O).If [r* | C] = 0 then it holds that
M = (A= O).If [r* | C] = X, then it cannot
be determined whethe¥/ = (A = C). The case "™
in which there isp so thatp(7#) containsL is known
as amantecedent failure The default behavior of most Fig. 2. A Circuit
STE implementations is to consider antecedent failures
as illegal, and the user is required to changén order to eliminate anyl values.

For lack of space, in the rest of the paper, we take the same approach. The alternative
approach of STE implementations that supports occurrencesinfr* is described

in [13]. Note that although* is infinite, it is suffice to examine only a bounded prefix
of length depthdl) in order to detect_ in 7#. The first.L in 74 is the result of the1 op-
eration on some node:, t), where both operands have contradicting assignments 0 and
1. SinceVi > depth(A) : 0 (i) = s, it must hold that < depti{A). In order to com-
puter4 |= C (assumingr” does not contain), 74 is compared ter®, the defining
sequence of. If 74 C ¢¢, then[r4 = C] = 1. If there arep,i > 0,n € N so that
o(x4)(i)(n) Z ¢(0°)(0)(n) ando(r)(i)(n) 2 &(cC)(i)(n), then[r? |= C] = 0.
Otherwise[r4 = C] = X. Note that although* ands“ are infinite, it is suffice to
examine only a bounded prefix of length de(dtf, sinceVi > depth(C) : (i) = s,.

Example 1.Consider the circuid/ in Figure 2, containing three inputs In1, In2 and In3,
two OR nodes N1 and N2, two AND nodes N3 and N6, and two latches N4 and N5. For
simplicity, the latches clocks were omitted and at each tirthee latches sample their
data source node from tinte- 1. Note the negation on the source node In2 of N2. Also
consider the STE assertioh— C, whereA = (Inlis 0)A(In3 isv;) A(N3 is 1), and

C = N(N6 is 1). Figure 3 describes the defining trajectaryof M/ and A, up to time

1. It contains the symbolic expression of each node at time 0 and 1. TherStabes
represented by row The notatiory; 71 : X stands for "ifv; holds then 1 els&”. o€

is the sequence in which all nodes at all times are assigheeixcept for node N6 at
time 1, which is assigned 1r4 |= O] = 0 due to those assignments in which= 0.

We will return to this example in Section 5.

__ STE implementations use a sp&Time[in1(in2[in3[N1] N2 |N3[N4|N5|N6
cific encoding callediual railinor- o [0 [X [v, [X [0,71: X| 1 | X | X | X
der to represent the nodes,) in ™1 X[X [X |[X| X |X|1|v;|v
sequences. The dual rail of a node
(n,t) in 74 consists of two func- Fig. 3. The Defining Trajectoryr*
tions defined fromi/ to {0,1}: f!

n,t

and fgyt, whereV is the set of variables appearingh For each assignmertto V,

it fa: A —fn, holds underp, then(n,t) equals 1 undep. Similarly, - f} , A f} ,,
—fa A-fS andf A f2, stand for 0,X and L underg, respectively. Likewisey,, ,
andg! , is the dual rail representation 6f, ¢) in o©. Note thatg,. , A g5 , never holds,
since we always assume th@ts not self-contradicting.

3 Choosing Our Automatic Refinement Methodology

Intuitively, the defining trajectoryr” of a circuit M/ and an antecedent is an ab-
straction of all concrete trajectories 8 on which the consequeidt is required to

hold. This abstraction is directly derived from If [74 = C] = X, thenA is too
coarse, that is, contains too few constraints on the values of circuit nodes. Our goal is to
automatically refined (and subsequently”) in order to eliminate theX truth value.

In this section we examine the requirements that should be imposed on automatic
refinement in STE. We then describe our automatic refinement methodology, and for-
mally state the relationship between the two abstractions, derived from the original and
refined antecedent. We refer only to STE implementations that compuide assume
that antecedent failures are handled as described in Chapter 2.

Traditionally, the abstraction and refinement process in STE works as follows: the
user writes an STE assertioh — C for M, and receives a result from STE. If
[74 = O] = 0, then the set of alp so that[¢, 7* |= C] = 0 is provided to the user.

This set, called theymbolic counterexamplés given by the Boolean expression over

ViV nec(@ni A Fai An)V (gn i A fag A=Fie))- It stems from either anillegal
behavior of the circuit, or an erroneous specification. The user decides which of these
possibilities the counterexample displays[#f = C] = X, then the set of al so
that[¢, 74 = C] = X is provided to the user. This set, called fyenbolic incomplete
trace is given by:\/(m)ec((g}m Vogn) AN=fhs A=fp). The user decides how to
refine the specification in order to eliminate the partial information that causes the
truth value. Otherwisdzr” = C] = 1 and the verification completes successfully.

As mentioned before, we must assume that the given specification is correct. Thus,
automatic refinement ol must preserve the semanticsdf— C: Let A,,.., — C
denote the refined assertion. ketns(M) denote the set of all concrete trajectories of
M. We require thatd,,..,, = C holds onruns(M) iff A= C holds onruns(M).

In order to achieve the above preservation, we chose our automatic refinement as
follows. Wheneveifr“ = C] = X, we add constraints td that force the value of
input nodes at certain times (and initial values of latches) to the valfressf symbolic
variables that is, symbolic variables that do not already appedr imBy initializing
an input(in,t) with a fresh symbolic variable instead &f, we represent the value
of (in,t) accurately and add knowledge about its effectidn However, we do not
constrain input behavior that was allowed Hy nor do we allow input behavior that
was forbidden byA. Thus, the semantics of is preserved. In Section 4, a small but
significant addition is made to our refinement technique.

We now formally state the relationship between the abstractions derived from the
original and the refined antecedents. Udie the antecedent we want to refine. Uet,
be the original antecedent written by the user. Vgt,, be a set of symbolic variables
so thatV N V,.,, = 0. Let PI,.; be the set of inputs at specific times, selected for
refinement. Letd,,.., be a refinement ofl overV U V,,..,, Where A,,.., is received

from A by attaching to each inpyin,t) € PI,.; a unique variable;,, ; € V,.,, and
adding conditions tAA as follows: A,e, = A A /\(m,t)eplref Nt(p — (inisvint)),
wherep = —q if (in,t) has a constrainN’(¢ — (inise)) in A,,, for some Boolean
expressiong ande overV, andp = 1 otherwise (in, t) has no constraint inl,,,).

The reason we considel,,, is to avoid a contradiction between the added constraints
and the original ones, due to constraintsdi)., of the formg — f.

Let 4= be the defining trajectory af/ and A,,..,, overV U V,,..,. Let ¢ be an
assignment td’. Thenruns(A,.., M, ¢) denotes the set of all concrete trajectories
for which there is an assignmegt to V,,.,, so that(¢ U ¢')(7#<») is an abstraction
of 7. Since for all concrete trajectories [(¢ U ¢'), 7 E Anew] =1 <= 7 C
(U @) (mAnew), we get thatuns(A,..,, M, ¢) are exactly those for which there is
¢’ sothatl(p U ¢'), m = Apew) = 1.

Theorem 1. 1. For all assignments to V, runs(A, M, ¢) = runs(Anew, M, @).
2. If [xAnew = O] = 1 thenV¢ it holds thatyr € runs(A, M, ¢) : [¢, 7 = C] = 1.
3. If there is¢’ t0 Ve, and 7 € runs(Apew, M, ¢ U ¢') so that[(¢ U ¢'), 7
Apew] = 1but[(¢pU¢’), 7 = C] = 0thenr € runs(A, M, ¢) and[¢, 7 = A] =1
and[¢, 7 = C] = 0.

Theorem 1 implies that ifl,,.,, = C holds on all concrete trajectories df, then so
doesA — C. Moreover, ifA,,.,, = C' yields a concrete counterexampte thence
is also a concrete counterexample wi.t= C.

4 Selecting Inputs for Refinement

In this section we describe how exactly the refinement process is performed. We assume
that[74 = C] = X, and thus automatic refinement is activated. Our goal is to add a
small number of constraints té forcing inputs to the value of fresh symbolic variables,
while eliminating as many assignmentsas possible so thdp, 7 = C] = X. The
refinement process is incremental - inp(is, ¢) that are switched fronX to a fresh
symbolic variable will not be reduced 1§ in subsequent iterations.

Choosing our refinement goal. Assume thafr* = C] = X, and the symbolic in-
complete trace is generated. This trace contains all assigniéotsvhich [¢, 74 |=

C] = X. For each such assignment the trajectoryg(7*) is called anincomplete
trajectory. In addition, this trace may contain multiple nodes that are required foya
definite value (either 0 or 1) for some assignmgriiut equalX . We refer to such nodes
asundecided nodeswWe want to keep the number of added constraints small. There-
fore, we choose to eliminate one undecided ngde) in each refinement iteration,
since different nodes may depend on different inputs. A motivation for eliminating only
part of the undecided nodes is that an eliminatedalue may be replaced in the next
iteration with a definite value that contradicts the required value (a counterexample).
We suggest to choose an undecided npdée) with minimal number of inputs in its
BCOI. Out of those, we choose a node with minimal number of nodes in its BCOI. Our
experimental results support this choice. The chosen undecided nodeédinement

goal and is denotedroot, tt). We also choose to eliminate at once all incomplete tra-
jectories in which(root, tt) is undecided. These trajectories are likely to be eliminated
by similar sets of inputs. Thus, by considering them all at once we can considerably
reduce the number of refinement iterations, without adding too many variables.

The Boolean expressidm f,},,; s A= froot.tt/N(Groot.it VY Iroot 1)) TEPTESENTS the set
of all ¢ for which (root, tt) is undecided iny(74). Our goal is to add a small number
of constraints tod so that(root, tt) will not be X whenever(g; . ;; V 92,0, 1) holds.

Eliminating irrelevant inputs. Once we have a refinement gdabot, tt), we need to
choose inputsin, t) for which constraints will be added té. Naturally, only inputs in
the BCOI of(root, tt) are considered, but some of these inputs can be safely eliminated.

Consider an inputin, t), an assignment to V' and the defining trajectory”. We
say that(in, t) is relevantto (root, tt) underg, if there is a path of node® from
(in,t) to (root,tt) in M, so that for all nodesn, t') in P, ¢(74)(t')(n) = X. (in,t)
is relevantto (root, tt) if there existsp so that(in, t) is relevant to(root, tt) undere.

For each(in, t), we compute the set of assignmentsitdor which (in,t) is rel-
evant to(root, tt). The computation is performed recursively starting fromot, tt).
(root, tt) is relevant when it isX' and is required to have a definite valueif{,,, ,; A
S rootit N (Groot.et V Gooot.se))- A source noden, t) of (root,tt) is relevant when-
ever (root, tt) is relevant andn,t) equalsX. Let out(n,t) return the sink nodes
of (n,t) that are in the BCOI ofroot, tt). Proceeding recursively, we compute for
each nodgn,t) the set of assignments relevantgiven by the Boolean expression
(V .ty cout(n.r) TEIEVANG, 1) A= f s A=y, until we reach the input nodésn, ¢).

For all ¢ that are not in relevapt ;, changing(in, t) from X to 0 or to 1 ing(7*)
can never change the value(@bot, tt) in ¢(7*) from X to 0 or to 1. Thus, ifin,) is
chosen for refinement, a possible optimization is to constrain it to a fresh symbolic vari-
able only when relevapt,; holds, as follows: relevant; — N*(in is vy,). If (in,)
is chosen in a subsequent iteration for refinement of a new refinementgodl ¢t'),
then the previous constraint is extended by disjunction to include the condition under
which (in, t) is relevant to(root’, ¢t"). Theorem 1 holds also for the optimized re-
finement. LetPI be the set of inputs oM. The set of all inputs that are relevant to
(root,tt) is Pliyoor 41y = {(in,t) | in € PI Arelevant, ; # 0}. Adding constraints
to A for all relevant inputgin, t) will result in a refined antecededtt,,.,,. In gAnew jt
is guaranteed thdtoot, tt) will not be undecided. Note thd /... ;1 is sufficient but
not minimal for elimination of all undesire®l values from(root, tt). Namely, adding
constraints for all inputs i 1,.,.¢ ++) Will eliminate all cases in whickyroot, tt) is un-
decided. However, adding constraints for only a subsétlof,; ;;) may still eliminate
all such cases. The s&t(,,.: ++) may be valuable to the user even if automatic refine-
ment does not take place, since it excludes inputs that are in the BG@af ¢t) but
will not change the verification results w.fitoot, tt).

Heuristics for Selection of Important Inputs. We now propose heuristics for select-
ing a subset o’ [(,,. 1) for refinement. A motivation for this is that aor 0 truth
value may be reached even without adding constraints for all relevant inputs.

We apply the following heuristics: each nog@e, t) selects a subset dP1,.q¢, 1)
as candidates for refinement. The final set of inputs for refinement is selected out of
the candidates dfroot, tt). Each input inPI,... 1) Selects itself as a candidate. Other
inputs have no candidates for refinemesturceCand,, ; denotes the sets of candi-
dates of the source nodes of a nddet), excluding the source nodes that do not have
candidates. The candidates(ef t) are determined as follows:

1. If there are candidate inputs that appear in all set®ofceCand,, ;, then they are

the candidates dfn, t).

2. Otherwise, if(n, t) has source nodes that can be classified as control and data, then
the candidates dfn, t) are the union of the candidates of its control source nodes,

if this union is not empty. For example, a latch has one data source node and at

least one control source node - its clock. The identity of control source nodes is

automatically extracted from the netlist representation of the circuit.
3. If none of the above holds, then the candidategmoft) are the inputs with the
largest number of occurrencessurceCand,, ¢.

We prefer to refine inputs that affect control before those that affect data since the
value of control inputs has usually more affect on the verification result. Moreover, the
control inputs determine when data is sampled. Therefore, if the value of a data input is
required for verification, it can be restricted according to the value of previously refined
control inputs. In the final set of candidates, sets of nodes that are entries of the same
vector are treated as one candidate. Since the heuristics could not prefer one entry of the
vector over the other, then probably only their joint value can change the verification
result. Additional heuristics choose a fixed numbef cdindidates out of the final set.

5 Detecting Vacuity and Spurious Counterexamples

In this section we raise the problem of hidden vacuity and spurious counterexamples
that may occur in STE. This problem was never addressed before in the context of STE.
In STE, A functions both as determining the level of the abstraction/gfand as
determining the trajectories @ff on whichC' is required to hold. An important point is
that the constraints imposed blyare applied (using the operator) toabstracttrajec-
tories of M. If for some nodgn, t) and assignment to V, there is a contradiction be-
tweeng (o) (t)(n) and the value propagated throuihto (n, t), theng(m4)(t)(n) =
1, indicating that there is no concrete trajectargo thatj¢, 7 = A] = 1.
In this section we point out that due to the abstraction in STE, it is possible that
for some assignmentto V, there are no concrete trajectorieso that[¢, 7 = A] =
1, but still (7*) does not contain. values. This is due to the fact that an abstract
trajectory may represent more concrete trajectories than the ones that actually exist in
M. Consequently, it may be thit, 7* = C] € {1,0}, and there is no indication that
this result is vacuous, i.e., for all concrete trajectofiegp, 7 = A] = 0. Note that this
problem may only happen il contains constraints on internal nodesidgf Given a
constrainiz on an input, there always exists a concrete trajectory that satisfigdess
a itself is a contradiction, which can be easily detected). This problem exists also in
STE implementations that do not computé, such as [8].
Example 2.We return to Example 1 from Section 2. Note that the defining trajectory
74 does not contain.. In addition,[74 = C] = 0 due to the assignments 10 in
which v; = 0. However, A never holds on concrete trajectoriesdf whenv, = 0,
since N3 at time 0 will not be equal tb Thus, the counterexample is spurious, but
we have no indication of this fact. The problem occurs when calculating the value of
(N3,0) by computingX M1 = 1. If A had contained a constraint on the value of In2 at
time 0, say (In2 ig»,), then the value of (N3,0) in“ would have beefw; Avy) M1 =
(v1 Avp?1 : 1), indicating that for all assignments in whieh = 0 orv, = 0, 74 does
not correspond to any concrete trajecton\éf

Vacuity may also occur if for some to V', C' under¢ imposes no requirements.
This is due to constraints of the form— f where¢(p) is 0.

An STE assertiomd —> C'is vacuousin M if for all concrete trajectories of M
and assignmentsto V, either[¢, 7 = A] = 0, or C underg imposes no requirements.
This definition is compatible with the definition in [1] for ACTL.

We say thatd — C passes vacuouslgn M if A = C'is vacuous inM and
[74 | O] € {1,1}. A counterexampler is spuriousif there is no concrete trajectory
7. of M so thatr. C 7. Givent4, the symbolic counterexampte is spuriousif for
all assignments to V in ce, ¢(74) is spurious.A = C fails vacuouslyon M if
[r4 = C] = 0 andce is spurious.

As explained before, vacuity detection is required only whHetonstrains internal
nodes. It is performed only ifr4 = C] € {0,1} (if [v* = C] = L then surely
A = (' passes vacuously). In order to detect non-vacuous results in STE, we need to
check whether there exists an assignmgtd V' and a concrete trajectory of M so
thatC under¢ imposes some requirement ajadn = A] = 1. In casgr? |= C] = 0,
we also require thdth, 7 = C] = 0. SinceA can be expressed as an LTL formula, we
can translated and M into a Bounded Model Checking (BMC) [2] problem. Note that
in this BMC problem we search for a satisfying assignment4pnot for its negation.
Additional constraints should be added to the BMC formula as follows.

For detection of vacuous pass, the BMC formula is constrained as follows: Recall
that(g;, ,, 95 ;) denotes the dual rail representatior{oft) in ¢“. The Boolean expres-
siong,, ,V gy, , represents all assignmentso V' under whichC' imposes a requirement
on (n,t). Thus,V(,, yec Gn.e V 9. represents all assignmengsunder whichC' im-
poses some requirement, and is added as an additional constraint to the BMC formula.
A satisfying assignment to the resulting formula constitutes a witness fes- C.

For detection of vacuous fail, the BMC formula is constrained by conjunction with
the symbolic counterexample =V, ;o ((9n A Fa e AFR OV (G0 A fa A=)
ce represents all assignmentgor which [¢, 74 |= C] = 0. A satisfying assignment to
the resulting formula constitutes a concrete counterexamplé fee- C.

If BMC finds a satisfying assignment to the resulting formula, then the original truth
value of[74 |= C] is returned. Otherwise, we conclude that the STE result is vacuous.
In [13], we suggest an alternative vacuity detection algorithm that uses STE and present
an additional vacuity problem that arises in constraint-based STE [8].

6 Experimental Results

We implemented our automatic refinement algoridamoSTE on top of STE in Intel’'s
FORTE environment [12]JAutoSTE receives a circuifi/ and an STE assertioh —-
C.When[r4 | C] = X, it chooses a refinement gdabot, tt) out of the undecided
nodes, as described in Section 4. Next, it computes the set of relevant(fpuis The
Heuristics described in Section 4 are applied in order to choose a subset of those inputs.
In our experimental results we restrict the number of refined candidates in each iteration
to 1. A is changed as described in Section 4 and STE is rerun on the new assertion.

We ranAutoSTE on two different circuits, which are challenging for Model Check-
ing: the Content Addressable Memory (CAM) from Intel's GSTE tutorial, and IBM’s
Calculator 2 design [14]. The latter has a complex specification.Therefore, it constitutes

a good example for the benefit the user can gain from automatic refinementin STE. All
runs were performed on a 3.2 GHz Pentium 4 computer with 4 GB memory.

Content Addressable Memory. The twrite

CAM shown in Figure 4 contains 16 “t=™"-%
entries, has a data size of 64 bits and “*"*""" | TAGMEMORY | hie
a tag size of 8 bits. It contains 1152

latches, 83 inputs and 5064 combi-

- 5=

aread -t —

dwrite

national gates. CAMs use bit fields———— OATA MEMORY i dout
called tags to identify particular data™*™ ™" -
entries stored in an array. The associa- ") 5

tive read operation (aread) of CAMSrjg 4. Content Addressable Memory. Tag

consists of searching in parallel alkj;e=t Number of entries=n, Data size=d
tags in the CAM tag memory to find

a match to an input tag (tagin). If a match is found, the CAM outputs the associated
data entry to dout. The verification of the aread operation using STE is described in [7].
The assertions in [7] contain assumptions on the internal state of the tag memory. The
user may want to check the aread operation after a write operation to the tag memory. In
STE such cases can be checked by bounding the time that passed between the writing
and the reading of the tag. We present the resultautéSTE on 3 such assertions.
Figure 5 reports the final result, number of refinement iterations, run-time in seconds
and peak BDD nodes for each assertion. Table 1 reports the refinement goal and added
constraint in each refinement iteratiar,; denotes a fresh symbolic variable for node
(n,t). ¥, denotes a vector of fresh symbolic variables for a vector of nGeags.

Assertion 1 checks that if a ta
value TAG is written to an addressl
m%w tag_)memory at time 0 (whgr 5 il = 50 57494
TAG and A are vectors of symbolic 3 il 3 17 59006
variables over{0,1}), and at time 1
TAG is read, then it should be foundrFig. 5. Automatic Refinement Performance on
in the tag memory and hit should be 1CAM Assertions
(tagin isTAG) A (taddrisA) A (twrite is 1) A N ((aread is 1)\ (tagin isTAG)) =
N (hitis 1). Assertion 1 should pass: if at time 1 there is no write operation to the tag
memory (twrite is 0), theMAG should be found in address. If at time 1 twrite
is 1, TAG should be found since it is written again to the tag memory. However,
[4 = O] = X. Since twrite and taddr at time 1 a’¢, the CAM cannot determine
whether to write the value of tagin at time 1 to the tag memory, and to which tag entry
to write it. As a result, the entire tag memory at time KXisThus, hit at time 1 isX.

After two refinementsAutoSTE returns a pass result. Note that only constraints
necessary for obtaining the pass result were adtea. # 0 appears in the constraint
since in this CAM implementation, the default value of the data source nodes of the tag
memory is 0. Thus, WheTAG = 0, even without knowing if and to which entry a tag is
written at time 1, the CAM determines that a tag that equals 0 exists in the tag memory.

Assertion 2 is an extension of Assertion 1. We add a constraint to the antecedent
that at time O, datame[rﬁ)] is D. We also add a requirement to the consequent that at
time 1, dout isD. The first two refinements are the same as for assertion 1. The next

AssertionresuliTotal Iter/Time/BDD Nodes
1 pass 2 3 4768

Assertionlteration Goal Added Constraint
1,2 1 hit,1 N(TAG # 0 — twrite iS vsuwrite.1)
1,2 2 hit,1 N((TAG # 0 A vtwriten = 1) — taddr iST adar1)
2 3 |dout[0],1 N(TAG = 0 — twrite iS vsuwrite,1)
2 4 ldout[0],]] N((TAG = 0 A Vtwrite.s = 1) — taddr iST 1addr.1)
2 5 |dout[0],1 N(dwrite iISvgwrite,1)
2 6 dOUt[O],l N(waritc,l =1 — daddr iS?daddr,l)
2 7 dout[0], AN (((vawrite,q = 1) A (7daddr,1 = A)) — din[O] is Udin[o],l)
3 1 |dout[0],2 DI0] # 0 — dwrite iSvguwrite,0
3 2 dout[0],2 (D[O] # 0 A Vdwrite,0 = 1) — daddr iSWdaddno
3 3 |dout[0],2 (D[0] #0A A #0) — tagmemO iST tagmemo,0

Table 1. Automatic Refinement of CAM Assertions

refinement goal is dout[Q]. In iterations 3-4, twrite and taddr at time 1 are added to
A when'I'A—Gg = 0, since they are required in order to determine the value of dout[0]
at time 1. The relevant inputs for refinement in iterations 5-7 were dwrite, daddr and
din[0], all at times 0 and 1, the initial values of all tag memory entries and of bit number
0 of all data memory entries. The final iteration yields a counterexample in which dwrite
attime 1 equals 1, daddr at time 1 equals taddr at time O, and din[0] at time 1 is different
from D[O]. This counterexample stems from an erroneous specification. If new data is
written at time 1 to the data entry associated WG, then dout at time 1 will be equal
to the new data. Note that only constraints relevant to this counterexample were added.
Assertion 3 is as follows: (tagin W)A(taddr is A) A(twrite is 1)A(datamer{1?]
is 1—5) AN((twrite is 0)\(dwrite is 0) AN?((aread is 1)\(tagin isTTCﬁ)/\(twrite is QA
(dwrite is 0) = N?((hit is 1) A (dout isﬁ)). This assertion should fail since the tag
memory may already hold at time 0 a tag that equﬁ;}. Though usually it is as-
sumed that the CAM environment will not write the same tag to two different entries,
most CAM implementations do not assume AotoSTE generates a counterexample
after 3 refinement iterations. In the counterexample, tag entry 0 eﬁlwnd the ad-
dressA to whichTAG is written is different from 0. The data associated with tag entry
0 appears in dout, rather than the one written to addresEhis assertion demonstrates
the case in which there is a need for refinement of initial values of latches (tagmemO
at time 0). Since our heuristics prefer inputs that influence control, the constraint on
tagmemO was added after constraints were added on dwritdaatu at time 0.

Calculator Design. Calculator 2 design [14] shown in Figure 6 is used as a case study
design in simulation based verification. It contains 2781 latches, 157 inputs and 56960
combinational gates. The calculator supports 4 types of commands: add, sub, shift right
and shift left.nonestands for no command. Any other command is invalid. It has two
internal arithmetic pipelines: one for add/sub and one for shifts. The first argument of
the command is sent at the same cycle as the command. The second argument is sent in
the next cycle. The tag is a unique identifer for each of the commands from each of the 4
ports. Itis sent at the same cycle as the command. The commands may be executed out
of order. However, commands from the same port that use the same pipeline must return
in order. The response is 1 for good, 2 for underflow, overflow or invalid command, 3
for an internal error and O for no response. Reset is 1 for the first 3 cycles.

c_clk
We present the results @utoSTE on 4 —=—— out_resp{0:1]
assertions. Figure 7 reports the finallresg% popsup | (GO
number of refinement iterations, run-time iA==2"4— | e ine -
2_omd_in[0:3] out_resp2(0:1]
seconds and peak BDD nodes for each ass€k o out_ 02031
tion. For lack of space, the description of as&2 ta o1 (ot
. . .) req3_cmd_? n[0:3] out_resp3[0:1]
sertion 4 exists in [13]. Table 2 reports th%re@_daa__m[qﬂ] ey eeLinel [ar oa
refinement goal and added constraint in eae?i‘% EEEE S
. . . . reg4_cmd_in[0:
refinement iteration for assertions 1-3. “reqd dafa in[0:31] | out_respa[0:1]
. .regd _tag_in[0:1] out_datad[0:31]
Assertion 1 checks whether after reset, if ’ o tagl0]
a port sends an add or sub command, and the
other ports send no command or a command Fig. 6. Calculator

other than add and sub, then the port that sent

the add/sub command receives a good response with the appropriate tag at the first avail-
able time (4 cycles after the commands were sent). A veltof symbolic variables is

used to determine which port is sending the add or sub command.

In the counterexample, a data overflow occurs for an add command sent by port
1, which triggers an invalid response at cycle 7. The BCOI ofreap1[0] contains all
command, tag and data inputs of all ports at different times. However, the set of relevant
inputs contains only all entries of reglatain at cycles 3 and 4. reqdatain[31] at
cycles 3 and 4 is the minimal subset that is suffice to produce a counterexample, and is
indeed the one chosen by our heuristics.

Assertion 2 constrains the command sent by peotadd. The msb bits of the sent
data are constrained to 0 to avoid a possible overflow. The requirement is that the output
data for porti should match the expected data. No constraints exist on the commands
sent by other ports. In the counterexample, both ports 1 and 2 send an add command.
Port 1 is answered before port 2. The assertion fails due to an erroneous specification:
since port 1 has priority over port 2, port 2 may not receive a response at the first possible
cycle. Due to the implementation of the priority queue, the value of an additional port
had to be definite. The BCOI of (amesp2[0],7) contains cmd, data and tag inputs of all
ports at cycles 3 and 4. Out of them, only the cmd and data inputs are relevant inputs.

Assertion 3 presents the followin
constraints: after reset, a port sen

ssertionresultTotal Iter|Time/BDD Nodes

an add or sub command, followed by 1 fa?l 2 87 6241
an add command with a certain tag__ 2 fail 2 |100] 20134
and data arguments, while limitingthe 3 fail 1]220| 530733

msb of the data to O to avoid a pos- 4 |pass 11 [494| 17323
sible overflow. All other ports do nthig. 7. Automatic Refinement Performance on
se'nd'an add or sup command du”n@alculatorAssertions

this time. The requirements are: the

port that sent the add command receives a response with the appropriate tag value and
expected output data. There was one refinement iteration. The BCOI abuehj®]
includes all data and tag inputs of all ports. However, only the tags of all ports at cycles
3-5 are relevant inputs. Our heuristics chose the tag of port 1 at cycle 3. Choosing any
other input would require additional iterations in order to produce a counterexample.
In the counterexample, the tag values of port 1 at cycles 3 and 4 are not consecutive.

Assert|lteration Goal Added Constraint
1 1 |outrespl[0],IN*P = 1 — reqldatain[31]iS v,cq1_data_in[31).3
1 2 oquespl[O],‘N“}_j =1 — reqldatain[31]iS vycq1_data_in[31],4
2 1 outresp2[0],7 NP =2 - reqlemdin is T req1_emd_in,3
2 2 |outresp2[0],7N3(P =2 A T reqi_cmd_in,3 = (add V sub)) —
req3cmd.in is U eqs_cmd_in,3

’ 3 ‘ 1 OuLI’eSpl[O],Q NB? =1— feq1ta9in iS Wr'eql,ta,g,in,?) ‘
Table 2. Automatic Refinement of Calculator Assertions

This counterexample stems from a planted design bug documented in [14]. There is
supposed to be no restriction on tag ordering. However, commands whose tags are out
of order are treated as invalid.

Acknowledgement. We thank Eli Singerman for introducing us to STE and to the Forte
environment.

References

1. I. Beer, S. Ben-David, C. Eisner, and Y. Rodeh. Efficient detection of vacuity in ACTL
formulas. InCAV, 1997.
2. A. Biere, A. Cimatti, E. M. Clarke, and Y. Zhu. Symbolic model checking without BDDs.
In TACAS 1999.
. C-T. Chou. The mathematical foundation of symbolic trajectory evaluatioGAW 1999.
. E. M. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith. Counterexample-guided abstraction
refinement. IMCAV, 2000.
5. S. Hazelhurst and C.-J. H. Seger. Model checking lattices: Using and reasoning about infor-
mation orders for abstractioh.ogic journal of IGPL, 7(3), 1999.
6. R. P. KurshanComputer-Aided Verification of coordinating processes - the automata theo-
retic approach 1994.
7. M. Pandey, R. Raimi, R. E. Bryant, and M. S. Abadir. Formal verification of content ad-
dressable memories using symbolic trajectory evaluatioA€, 1997.
8. J.-W. Roorda and K. Claessen. A new SAT-based algorithm for symbolic trajectory evalua-
tion. In CHARME 2005.
9. J.-W. Roorda and K. Claessen. SAT-based assistance in abstraction refinement for symbolic
trajectory evaluation. IICAV, 2006.

10. T. Schubert. High level formal verification of next-generation microprocessoiBAGI03.

11. C.-J. H. Seger and R. E. Bryant. Formal verification by symbolic evaluation of partially-
ordered trajectoriefrormal Methods in System Desid#(2), 1995.

12. C.-J. H. Seger, R. B. Jones, J. W. O’Leary, T. F. Melham, M. Aagaard, C. Barrett, and
D. Syme. An industrially effective environment for formal hardware verificatidBEE
Trans. on Computer-Aided Design of Integrated Circuits and Sys@2#(8), 2005.

13. R. Tzoref. Automatic refinement and vacuity detection for symbolic trajectory evaluation.
Master’s thesis, Department of Computer Science, Technion, Israel, 2006.

14. B. Wile, W. Roesner, and J. Gos€omprehensive Functional Verification: The Complete
Industry Cycle Morgan-Kaufmann, 2005.

15. J.C. Wilson. Symbolic Simulation Using Automatic Abstraction of Internal Node Values
PhD thesis, Stanford University, Dept. of Electrical Engineering, 2001.

16. J. Yang, R. Gil, and E. Singerman. satGSTE: Combining the abstraction of GSTE with the
capacity of a SAT solver. IDCC, 2004.

17. J. Yang and A. Goel. GSTE through a case studyCIBAD, 2002.

18. J. Yang and C.-J. H. Seger. Generalized symbolic trajectory evaluation - abstraction in action.
In FMCAD, 2002.

19. J. Yang and C.-J. H. Seger. Introduction to generalized symbolic trajectory evalu&tith.
Trans. Very Large Scale Integr. Sysit1(3), 2003.

AW

