
Automatic Refinement and Vacuity Detection for
Symbolic Trajectory Evaluation

Rachel Tzoref1,2 and Orna Grumberg1

{rachelt,orna }@cs.technion.ac.il

1 Computer Science Department, Technion, Haifa, Israel
2 IBM Haifa Research Laboratory, Israel

Abstract. Symbolic Trajectory Evaluation (STE) is a powerful technique for model checking. It
is based on 3-valued symbolic simulation, using 0,1 andX (”unknown”). TheX value is used
to abstract away parts of the circuit. The abstraction is derived from the user’s specification.
Currently the process of abstraction and refinement in STE is performed manually. This paper
presents an automatic refinement technique for STE. The technique is based on a clever selection
of constraints that are added to the specification so that on the one hand the semantics of the
original specification is preserved, and on the other hand, the part of the state space in which
the ”unknown” result is received is significantly decreased or totally eliminated. In addition, this
paper raises the problem of vacuity of passed and failed specifications. This problem was never
discussed in the framework of STE. We describe when an STE specification may vacuously pass
or fail, and propose a method for vacuity detection in STE.

1 Introduction

Symbolic Trajectory Evaluation (STE) [11] is a powerful technique for hardware model
checking. STE is based on combining 3-valued simulation with symbolic simulation.
It is applied to a circuitM , described as a graph overnodes(gates and latches). The
specification consists of assertions in a restricted temporal language. The assertions
are of the formA =⇒ C, where theantecedentA expresses constraints on nodesn at
different timest, and theconsequentC expresses requirements that should hold on such
nodes(n, t). STE computes a symbolic representation for each node(n, t). The size of
this representation depends on the size ofA, rather than on the circuit size.Abstraction
in STE is derived from the specification by initializing all inputs not appearing inA
to theX (“unknown”) value. A forth value,⊥, represents a contradiction between the
constraint ofA on some node(n, t) and its actual behavior. Arefinementamounts to
changing the assertion in order to present nodes values more accurately.

STE assertions may either pass or fail onM . In [5], a 4-valued truth domain{0, 1, X,
⊥} is defined for the temporal language of STE, corresponding to the 4-valued domain
of the values of the circuit nodes. The motivation for a 4-valued semantics is to dis-
tinguish between different causes for the pass or fail of an STE assertion. TheX truth
value distinguishes the case in which the STE assertion fails due to partial information
about the state space from the case in which it is actually violated byM . In the latter
case acounterexampleis produced, representing an execution ofM that satisfiesA but
contradictsC. TheX truth value stems from a too coarse antecedent which underspeci-
fies the circuit. The⊥ truth value indicates that the STE assertion passes vacuously due
to a contradiction betweenA andM .

Generalized STE (GSTE)[19] is a significant extension of STE that can verify allω-
regular properties. Manual refinement methods for GSTE are presented in [18]. In [16],
SAT-based STE is used for manual refinement of GSTE assertion graphs.

(G)STE has been in active use in the industry, and has been very successful in veri-
fying huge circuits containing large data paths [12, 10, 17]. Its main drawback, however,
is the need for manual abstraction and refinement, which can be very labor-intensive.

Our Contribution . We propose a technique for automatic refinement of assertions
in STE. In our technique, the initial abstraction is derived, as usual in STE, from the
given specification. The refinement is an iterative process, which stops when a truth
value other thanX is achieved. In case of a 0 truth value, a counterexample is presented
to the user. Our automatic refinement is applied when the STE specification results with
X. We compute a set of input nodes, whose refinement is sufficient for eliminating the
X truth value. We further suggest heuristics for choosing a small subset of this set.

Selecting a ”right” set of inputs has a crucial role in the success of the abstraction
and refinement process: selecting too many inputs will add many variables to the com-
putation of the symbolic representation, and may result in memory and time explosion.
On the other hand, selecting too few inputs or selecting inputs that do not affect the
result of the verification will lead to many iterations with anX truth value.

We point out that, as in any automated verification framework, we are limited by
the following observations. First, there is no automatic way to determine whether the
provided specification is correct. Therefore, we assume it is, and we make sure that our
refined assertion passes on the concrete circuit iff the original assertion does. Second,
bugs cannot automatically be fixed. Thus, counterexamples are analyzed by the user.

Abstraction-Refinement is a well known methodology in model checking [4, 6] for
fighting the state explosion problem. In [3], it is shown that the abstraction in STE is an
abstract interpretation via a Galois connection. [9] presents a SAT-based algorithm to
assist in manual refinement of STE assertions. However, automatic refinement has never
been suggested before for STE. The work that is closest to ours is [15], which suggests
an automatic abstraction-refinement for symbolic simulation. However, the suggested
heuristics are significantly different from ours.

Another important contribution of our work is identifying that STE results may
hide vacuity. This possibility was never raised before. Hidden vacuity may occur since
an abstract execution ofM on which the truth value of the specification is1 or 0, might
not correspond to any concrete execution ofM . In such a case, a pass isvacuous, while
a counterexample isspurious. We propose a method for detecting these cases.

We implemented our automatic refinement technique within Intel’s Forte environ-
ment [12]. We ran it on two nontrivial circuits with several assertions. Our experimen-
tal results show success in automatically identifying a set of inputs that are crucial for
reaching a definite truth value. Thus, a small number of iterations were needed.

2 Basic Definitions

A circuit M consists of a set of nodesN , connected by directed edges. The nodes
consist of inputs and internal nodes. Internal nodes consist of latches and combinational
nodes. Each combinational node is associated with a Boolean function. We say that a
noden1 enters a noden2 if there exists a directed edge fromn1 to n2. The nodes

entering a certain node are itssource nodes, and the nodes to which a node enters are
its sink nodes. The value of a latch at timet can be expressed as a Boolean expression
over its source nodes at timest andt − 1, and over the latch value at timet − 1. The
directed graph induced byM may contain loops but no combinational loops.
Throughout the paper we refer to a noden at a specific timet as(n, t).

Thebounded cone of influence(BCOI) of a node(n, t) contains all nodes(n′, t′)
with t′ ≤ t that may influence the value of(n, t), and is defined recursively as follows:
the BCOI of a combinational node at timet is the union of the BCOI of its source nodes
at timet, and the BCOI of a latch at timet is the union of the BCOI of its source nodes
at timest andt− 1 according to the latch type.

AND X 0 1 ⊥
X X 0 X ⊥
0 0 0 0 ⊥
1 X 0 1 ⊥
⊥ ⊥ ⊥ ⊥ ⊥

OR X 0 1 ⊥
X X X 1 ⊥
0 X 0 1 ⊥
1 1 1 1 ⊥
⊥ ⊥ ⊥ ⊥ ⊥

NOT
X X
0 1
1 0
⊥ ⊥

Fig. 1.Quaternary operations

Usually, the circuit nodes receive
Boolean values. In STE, a third value,
X (”unknown”), is introduced. At-
taching X to a certain node repre-
sents lack of information regarding the
truth value of that node. A forth value,
⊥, is added to represent the over-
constrained value, in which a node is
forced both to 0 and to 1. This value indicates that contradiction exists between external
assumptions on the circuit and its actual behavior. The set of valuesQ ≡ {0, 1, X,⊥}
forms a complete lattice with the partial order0 v X, 1 v X,⊥ v 0 and⊥ v 1. This
order corresponds to set inclusion, whereX represents the set{0, 1}, and⊥ represents
the empty set. As a result, thegreatest lower boundu corresponds to set intersection
and theleast upper boundt corresponds to set union. The Boolean operations AND,
OR and NOT are extended to the domainQ as shown in Figure 1.

A states of the circuitM is an assignment of values fromQ to all circuit nodes,
s : N → Q. Given two statess1, s2, we say thats1 v s2 ⇐⇒ ((∃n ∈ N : s1(n) =
⊥) ∨ (∀n ∈ N : s1(n) v s2(n))). A state isconcreteif all nodes are assigned with
values out of{0, 1}. A states is an abstraction of a concrete statesc if sc v s.

A sequenceσ is any infinite series of states. We denote byσ(i), i ∈ N, the state
at time i in σ, and byσ(i)(n), i ∈ N, n ∈ N , the value of noden in the stateσ(i).
σi, i ∈ N, denotes the suffix ofσ starting at timei. We say thatσ1 v σ2 ⇐⇒ ((∃i ≥
0, n ∈ N : σ1(i)(n) = ⊥) ∨ (∀ i ≥ 0 : σ1(i) v σ2(i))). Note that we refer to states
and sequences that contain⊥ values as least elements w.r.tv.

Let V be a set of symbolic Boolean variables over the domain{0, 1}. A symbolic
expressionoverV is an expression consisting of quaternary operations, applied toV ∪
Q. A symbolic stateoverV is a mapping which maps each node ofM to a symbolic
expression. Each symbolic state represents a set of states, one for each assignment to the
variables inV . A symbolic sequenceoverV is a series of symbolic states. It represents
a set of sequences, one for each assignment toV . Given a symbolic sequenceσ and
an assignmentφ to V , φ(σ) denotes the sequence that is received by applyingφ to all
symbolic expressions inσ. Given two symbolic sequencesσ1,σ2 overV , we say that
σ1 v σ2 if for all assignmentsφ to V , φ(σ1) v φ(σ2).
A Trajectory Evaluation Logic(TEL) formula is defined recursively overV as follows:

f ::= n is p | f1 ∧ f2 | p → f |Nf

wheren ∈ N , p is a Boolean expression overV andN is the next time operator.
Note that TEL formulas can be expressed as a finite set of constraints on values of
specific nodes at specific times.N t denotes the application oft next time operators.
The constraints on(n, t) are those appearing in the scope ofN t. Themaximal depthof
a TEL formulaf , denoted depth(f), is the maximal timet for which a constraint exists
in f on some node(n, t), plus 1.

Usually, the satisfaction of a TEL formulaf on a symbolic sequenceσ is defined in
the 2-valued truth domain [11], i.e.,f is either satisfied or not satisfied. In [5],Q is used
also as a 4-valued truth domain for an extension of TEL. Our 4-valued semantics defini-
tion is different from [5] w.r.t⊥ values. In [5], a sequenceσ containing⊥ values could
satisfyf with a truth value different from⊥. In our definition this is not allowed. We
believe that our definition captures better the intent behind the specification w.r.t con-
tradictory information about the state space. Given a TEL formulaf overV , a symbolic
sequenceσ overV , and an assignmentφ toV , we define the satisfaction off as follows:
[φ, σ |= f] = ⊥ ↔ ∃i ≥ 0, n ∈ N : φ(σ)(i)(n) = ⊥. Otherwise:
[φ, σ |= n is p] = 1 ↔ φ(σ)(0)(n) = φ(p)
[φ, σ |= n is p] = 0 ↔ φ(σ)(0)(n) 6= φ(p) andφ(σ)(0)(n) ∈ {0, 1}
[φ, σ |= n is p] = X ↔ φ(σ)(0)(n) = X φ, σ |= p → f = (¬φ(p) ∨ φ, σ |= f)
φ, σ |= f1 ∧ f2 = (φ, σ |= f1 ∧ φ, σ |= f2) φ, σ |= Nf = φ, σ1 |= f

Note that given an assignmentφ toV , φ(p) is a constant (0 or 1). In addition, the⊥ truth
value is determined only according toφ andσ, regardless off . It is proven in [5] that
the satisfaction relation is monotonic, i.e., for all TEL formulasf , symbolic sequences
σ1, σ2 and assignmentsφ to V , if φ(σ2) v φ(σ1) then[φ, σ2 |= f] v [φ, σ1 |= f]. This
also holds for our satisfaction definition. We define the truth value ofσ |= f as follows:
[σ |= f] = 0 ↔ ∃φ : [φ, σ |= f] = 0
[σ |= f] = X ↔ ∀φ : [φ, σ |= f] 6= 0 and∃φ : [φ, σ |= f] = X
[σ |= f] = 1 ↔ ∀φ : [φ, σ |= f] 6∈ {0, X} and∃φ : [φ, σ |= f] = 1
[σ |= f] = ⊥ ↔ ∀φ : [φ, σ |= f] = ⊥

It is proven in [5] that every TEL formulaf has adefining sequence, which is a
symbolic sequenceσf so that[σf |= f] = 1 and for allσ, [σ |= f] ∈ {1,⊥} iff
σ v σf . For example,σq→(n is p) is the sequences(n,q→p)sxsxsx..., wheres(n,q→p)

is the state in whichn equals(q → p) ∧ (¬q → X), and all other nodes equalX, and
sx is the state in which all nodes equalX. σf may be incompatible with the behavior
of M . A (symbolic) trajectoryπ is a (symbolic) sequence that is compatible with the
behavior ofM [8]: let val(n, t) be the value of a node(n, t) as computed according to
its source nodes values inπ. It is required that for all nodes(n, t), π(t)(n) v val(n, t)
(strict equality is not required in order to allow external assumptions on nodes values to
be embedded intoπ). A trajectory isconcreteif all its states are concrete. A trajectory
π is an abstraction of a concrete trajectoryπc if πc v π.

Thedefining trajectoryπf of M andf is a symbolic trajectory so that[πf |= f] ∈
{1,⊥} and for all trajectoriesπ of M , [π |= f] ∈ {1,⊥} iff π v πf (Similar definitions
for σf andπf exist in [11] w.r.t a 2-valued truth domain). Givenσf , πf is computed as
follows: ∀i, πf (i) is initialized toσf (i), and the nodes values from timei andi− 1 are
propagated forward to nodes at timei until no new values are derived. Theu operator
is used to incorporate a propagated value into the current value of a node(n, i).

STE assertions are of the formA =⇒ C, whereA (the antecedent) andC (the
consequent) are TEL formulas.A expresses constraints on circuit nodes at specific
times, andC expresses requirements that should hold on circuit nodes at specific times.
M |= (A =⇒ C) iff for all concrete trajectoriesπ of M and assignmentsφ to V ,
[φ, π |= A] = 1 implies that[φ, π |= C] = 1.

N4

N5

N3

N6

In1

In2

In3
N2

N1

Fig. 2.A Circuit

A natural verification algorithm for an STE asser-
tion A =⇒ C is to compute the defining trajectory
πA of M andA and then compute the truth value of
πA |= C. If [πA |= C] ∈ {1,⊥} then it holds that
M |= (A =⇒ C). If [πA |= C] = 0 then it holds that
M 6|= (A =⇒ C). If [πA |= C] = X, then it cannot
be determined whetherM |= (A =⇒ C). The case
in which there isφ so thatφ(πA) contains⊥ is known
as anantecedent failure. The default behavior of most
STE implementations is to consider antecedent failures
as illegal, and the user is required to changeA in order to eliminate any⊥ values.
For lack of space, in the rest of the paper, we take the same approach. The alternative
approach of STE implementations that supports occurrences of⊥ in πA is described
in [13]. Note that althoughπA is infinite, it is suffice to examine only a bounded prefix
of length depth(A) in order to detect⊥ in πA. The first⊥ in πA is the result of theu op-
eration on some node(n, t), where both operands have contradicting assignments 0 and
1. Since∀i > depth(A) : σA(i) = sx, it must hold thatt ≤ depth(A). In order to com-
puteπA |= C (assumingπA does not contain⊥), πA is compared toσC , the defining
sequence ofC. If πA v σC , then[πA |= C] = 1. If there areφ, i ≥ 0, n ∈ N so that
φ(πA)(i)(n) 6v φ(σC)(i)(n) andφ(πA)(i)(n) 6w φ(σC)(i)(n), then[πA |= C] = 0.
Otherwise,[πA |= C] = X. Note that althoughπA andσC are infinite, it is suffice to
examine only a bounded prefix of length depth(C), since∀i > depth(C) : σC(i) = sx.

Example 1.Consider the circuitM in Figure 2, containing three inputs In1, In2 and In3,
two OR nodes N1 and N2, two AND nodes N3 and N6, and two latches N4 and N5. For
simplicity, the latches clocks were omitted and at each timet the latches sample their
data source node from timet−1. Note the negation on the source node In2 of N2. Also
consider the STE assertionA =⇒ C, whereA = (In1 is 0)∧(In3 isv1)∧(N3 is 1), and
C = N(N6 is 1). Figure 3 describes the defining trajectoryπA of M andA, up to time
1. It contains the symbolic expression of each node at time 0 and 1. The stateπA(i) is
represented by rowi. The notationv1?1 : X stands for ”ifv1 holds then 1 elseX”. σC

is the sequence in which all nodes at all times are assignedX, except for node N6 at
time 1, which is assigned 1.[πA |= C] = 0 due to those assignments in whichv1 = 0.
We will return to this example in Section 5.

Time In1 In2 In3 N1 N2 N3 N4 N5 N6
0 0 X v1 X v1?1 : X 1 X X X
1 X X X X X X 1 v1 v1

Fig. 3. The Defining TrajectoryπA

STE implementations use a spe-
cific encoding calleddual rail in or-
der to represent the nodes(n, t) in
sequences. The dual rail of a node
(n, t) in πA consists of two func-
tions defined fromV to {0, 1}: f1

n,t

andf0
n,t, whereV is the set of variables appearing inA. For each assignmentφ to V ,

if f1
n,t ∧ ¬f0

n,t holds underφ, then(n, t) equals 1 underφ. Similarly, ¬f1
n,t ∧ f0

n,t,
¬f1

n,t ∧¬f0
n,t andf1

n,t ∧ f0
n,t stand for 0,X and⊥ underφ, respectively. Likewise,g1

n,t

andg0
n,t is the dual rail representation of(n, t) in σC . Note thatg1

n,t ∧ g0
n,t never holds,

since we always assume thatC is not self-contradicting.

3 Choosing Our Automatic Refinement Methodology

Intuitively, the defining trajectoryπA of a circuit M and an antecedentA is an ab-
straction of all concrete trajectories ofM on which the consequentC is required to
hold. This abstraction is directly derived fromA. If [πA |= C] = X, thenA is too
coarse, that is, contains too few constraints on the values of circuit nodes. Our goal is to
automatically refineA (and subsequentlyπA) in order to eliminate theX truth value.

In this section we examine the requirements that should be imposed on automatic
refinement in STE. We then describe our automatic refinement methodology, and for-
mally state the relationship between the two abstractions, derived from the original and
refined antecedent. We refer only to STE implementations that computeπA. We assume
that antecedent failures are handled as described in Chapter 2.

Traditionally, the abstraction and refinement process in STE works as follows: the
user writes an STE assertionA =⇒ C for M , and receives a result from STE. If
[πA |= C] = 0, then the set of allφ so that[φ, πA |= C] = 0 is provided to the user.
This set, called thesymbolic counterexample, is given by the Boolean expression over
V :

∨
(n,t)∈C((g1

n,t∧¬f1
n,t∧f0

n,t)∨ (g0
n,t∧f1

n,t∧¬f0
n,t)). It stems from either an illegal

behavior of the circuit, or an erroneous specification. The user decides which of these
possibilities the counterexample displays. If[πA |= C] = X, then the set of allφ so
that[φ, πA |= C] = X is provided to the user. This set, called thesymbolic incomplete
trace, is given by:

∨
(n,t)∈C((g1

n,t ∨ g0
n,t) ∧ ¬f1

n,t ∧ ¬f0
n,t). The user decides how to

refine the specification in order to eliminate the partial information that causes theX
truth value. Otherwise,[πA |= C] = 1 and the verification completes successfully.

As mentioned before, we must assume that the given specification is correct. Thus,
automatic refinement ofA must preserve the semantics ofA =⇒ C: Let Anew =⇒ C
denote the refined assertion. Letruns(M) denote the set of all concrete trajectories of
M . We require thatAnew =⇒ C holds onruns(M) iff A =⇒ C holds onruns(M).

In order to achieve the above preservation, we chose our automatic refinement as
follows. Whenever[πA |= C] = X, we add constraints toA that force the value of
input nodes at certain times (and initial values of latches) to the value offresh symbolic
variables, that is, symbolic variables that do not already appear inV . By initializing
an input(in, t) with a fresh symbolic variable instead ofX, we represent the value
of (in, t) accurately and add knowledge about its effect onM . However, we do not
constrain input behavior that was allowed byA, nor do we allow input behavior that
was forbidden byA. Thus, the semantics ofA is preserved. In Section 4, a small but
significant addition is made to our refinement technique.

We now formally state the relationship between the abstractions derived from the
original and the refined antecedents. LetA be the antecedent we want to refine. LetAorg

be the original antecedent written by the user. LetVnew be a set of symbolic variables
so thatV ∩ Vnew = ∅. Let PIref be the set of inputs at specific times, selected for
refinement. LetAnew be a refinement ofA over V ∪ Vnew, whereAnew is received

from A by attaching to each input(in, t) ∈ PIref a unique variablevin,t ∈ Vnew and
adding conditions toA as follows:Anew = A ∧∧

(in,t)∈PIref
N t(p → (in is vin,t)),

wherep = ¬q if (in, t) has a constraintN t(q → (in is e)) in Aorg for some Boolean
expressionsq ande overV , andp = 1 otherwise ((in, t) has no constraint inAorg).
The reason we considerAorg is to avoid a contradiction between the added constraints
and the original ones, due to constraints inAorg of the formq → f .

Let πAnew be the defining trajectory ofM andAnew, overV ∪ Vnew. Let φ be an
assignment toV . Thenruns(Anew,M, φ) denotes the set of all concrete trajectoriesπ
for which there is an assignmentφ′ to Vnew so that(φ ∪ φ′)(πAnew) is an abstraction
of π. Since for all concrete trajectoriesπ, [(φ ∪ φ′), π |= Anew] = 1 ⇐⇒ π v
(φ ∪ φ′)(πAnew), we get thatruns(Anew, M, φ) are exactly thoseπ for which there is
φ′ so that[(φ ∪ φ′), π |= Anew] = 1.
Theorem 1. 1. For all assignmentsφ to V , runs(A,M, φ) = runs(Anew, M, φ).
2. If [πAnew |= C] = 1 then∀φ it holds that∀π ∈ runs(A,M, φ) : [φ, π |= C] = 1.
3. If there isφ′ to Vnew and π ∈ runs(Anew,M, φ ∪ φ′) so that [(φ ∪ φ′), π |=

Anew] = 1 but [(φ∪φ′), π |= C] = 0 thenπ ∈ runs(A,M, φ) and[φ, π |= A] = 1
and[φ, π |= C] = 0.

Theorem 1 implies that ifAnew =⇒ C holds on all concrete trajectories ofM , then so
doesA =⇒ C. Moreover, ifAnew =⇒ C yields a concrete counterexamplece, thence
is also a concrete counterexample w.r.tA =⇒ C.

4 Selecting Inputs for Refinement
In this section we describe how exactly the refinement process is performed. We assume
that [πA |= C] = X, and thus automatic refinement is activated. Our goal is to add a
small number of constraints toA forcing inputs to the value of fresh symbolic variables,
while eliminating as many assignmentsφ as possible so that[φ, πA |= C] = X. The
refinement process is incremental - inputs(in, t) that are switched fromX to a fresh
symbolic variable will not be reduced toX in subsequent iterations.
Choosing our refinement goal. Assume that[πA |= C] = X, and the symbolic in-
complete trace is generated. This trace contains all assignmentsφ for which [φ, πA |=
C] = X. For each such assignmentφ, the trajectoryφ(πA) is called anincomplete
trajectory. In addition, this trace may contain multiple nodes that are required byC to a
definite value (either 0 or 1) for some assignmentφ, but equalX. We refer to such nodes
asundecided nodes. We want to keep the number of added constraints small. There-
fore, we choose to eliminate one undecided node(n, t) in each refinement iteration,
since different nodes may depend on different inputs. A motivation for eliminating only
part of the undecided nodes is that an eliminatedX value may be replaced in the next
iteration with a definite value that contradicts the required value (a counterexample).
We suggest to choose an undecided node(n, t) with minimal number of inputs in its
BCOI. Out of those, we choose a node with minimal number of nodes in its BCOI. Our
experimental results support this choice. The chosen undecided node is ourrefinement
goal and is denoted(root, tt). We also choose to eliminate at once all incomplete tra-
jectories in which(root, tt) is undecided. These trajectories are likely to be eliminated
by similar sets of inputs. Thus, by considering them all at once we can considerably
reduce the number of refinement iterations, without adding too many variables.

The Boolean expression(¬f1
root,tt∧¬f0

root,tt∧(g1
root,tt∨g0

root,tt)) represents the set
of all φ for which (root, tt) is undecided inφ(πA). Our goal is to add a small number
of constraints toA so that(root, tt) will not beX whenever(g1

root,tt ∨ g0
root,tt) holds.

Eliminating irrelevant inputs. Once we have a refinement goal(root, tt), we need to
choose inputs(in, t) for which constraints will be added toA. Naturally, only inputs in
the BCOI of(root, tt) are considered, but some of these inputs can be safely eliminated.

Consider an input(in, t), an assignmentφ to V and the defining trajectoryπA. We
say that(in, t) is relevant to (root, tt) underφ, if there is a path of nodesP from
(in, t) to (root, tt) in M , so that for all nodes(n, t′) in P , φ(πA)(t′)(n) = X. (in, t)
is relevantto (root, tt) if there existsφ so that(in, t) is relevant to(root, tt) underφ.

For each(in, t), we compute the set of assignments toV for which (in, t) is rel-
evant to(root, tt). The computation is performed recursively starting from(root, tt).
(root, tt) is relevant when it isX and is required to have a definite value: (¬f1

root,tt ∧
¬f0

root,tt ∧ (g1
root,tt ∨ g0

root,tt)). A source node(n, t) of (root, tt) is relevant when-
ever (root, tt) is relevant and(n, t) equalsX. Let out(n, t) return the sink nodes
of (n, t) that are in the BCOI of(root, tt). Proceeding recursively, we compute for
each node(n, t) the set of assignments relevantn,t given by the Boolean expression
(
∨

(m,t′)∈out(n,t) relevantm,t′) ∧ ¬f0
n,t ∧ ¬f1

n,t, until we reach the input nodes(in, t).
For all φ that are not in relevantin,t, changing(in, t) from X to 0 or to 1 inφ(πA)

can never change the value of(root, tt) in φ(πA) from X to 0 or to 1. Thus, if(in, t) is
chosen for refinement, a possible optimization is to constrain it to a fresh symbolic vari-
able only when relevantin,t holds, as follows: relevantin,t → Nt(in is vin,t). If (in, t)
is chosen in a subsequent iteration for refinement of a new refinement goal(root′, tt′),
then the previous constraint is extended by disjunction to include the condition under
which (in, t) is relevant to(root′, tt′). Theorem 1 holds also for the optimized re-
finement. LetPI be the set of inputs ofM . The set of all inputs that are relevant to
(root, tt) is PI(root,tt) ≡ {(in, t) | in ∈ PI ∧ relevantin,t 6≡ 0}. Adding constraints
to A for all relevant inputs(in, t) will result in a refined antecedentAnew. In πAnew , it
is guaranteed that(root, tt) will not be undecided. Note thatPI(root,tt) is sufficient but
not minimal for elimination of all undesiredX values from(root, tt). Namely, adding
constraints for all inputs inPI(root,tt) will eliminate all cases in which(root, tt) is un-
decided. However, adding constraints for only a subset ofPI(root,tt) may still eliminate
all such cases. The setPI(root,tt) may be valuable to the user even if automatic refine-
ment does not take place, since it excludes inputs that are in the BCOI of(root, tt) but
will not change the verification results w.r.t(root, tt).

Heuristics for Selection of Important Inputs. We now propose heuristics for select-
ing a subset ofPI(root,tt) for refinement. A motivation for this is that a1 or 0 truth
value may be reached even without adding constraints for all relevant inputs.

We apply the following heuristics: each node(n, t) selects a subset ofPI(root,tt)

as candidates for refinement. The final set of inputs for refinement is selected out of
the candidates of(root, tt). Each input inPI(root,tt) selects itself as a candidate. Other
inputs have no candidates for refinement.sourceCandn,t denotes the sets of candi-
dates of the source nodes of a node(n, t), excluding the source nodes that do not have
candidates. The candidates of(n, t) are determined as follows:

1. If there are candidate inputs that appear in all sets ofsourceCandn,t, then they are
the candidates of(n, t).

2. Otherwise, if(n, t) has source nodes that can be classified as control and data, then
the candidates of(n, t) are the union of the candidates of its control source nodes,
if this union is not empty. For example, a latch has one data source node and at
least one control source node - its clock. The identity of control source nodes is
automatically extracted from the netlist representation of the circuit.

3. If none of the above holds, then the candidates of(n, t) are the inputs with the
largest number of occurrences insourceCandn,t.
We prefer to refine inputs that affect control before those that affect data since the

value of control inputs has usually more affect on the verification result. Moreover, the
control inputs determine when data is sampled. Therefore, if the value of a data input is
required for verification, it can be restricted according to the value of previously refined
control inputs. In the final set of candidates, sets of nodes that are entries of the same
vector are treated as one candidate. Since the heuristics could not prefer one entry of the
vector over the other, then probably only their joint value can change the verification
result. Additional heuristics choose a fixed number ofl candidates out of the final set.

5 Detecting Vacuity and Spurious Counterexamples
In this section we raise the problem of hidden vacuity and spurious counterexamples
that may occur in STE. This problem was never addressed before in the context of STE.

In STE,A functions both as determining the level of the abstraction ofM , and as
determining the trajectories ofM on whichC is required to hold. An important point is
that the constraints imposed byA are applied (using theu operator) toabstracttrajec-
tories ofM . If for some node(n, t) and assignmentφ to V , there is a contradiction be-
tweenφ(σA)(t)(n) and the value propagated throughM to (n, t), thenφ(πA)(t)(n) =
⊥, indicating that there is no concrete trajectoryπ so that[φ, π |= A] = 1.

In this section we point out that due to the abstraction in STE, it is possible that
for some assignmentφ to V , there are no concrete trajectoriesπ so that[φ, π |= A] =
1, but still φ(πA) does not contain⊥ values. This is due to the fact that an abstract
trajectory may represent more concrete trajectories than the ones that actually exist in
M . Consequently, it may be that[φ, πA |= C] ∈ {1, 0}, and there is no indication that
this result is vacuous, i.e., for all concrete trajectoriesπ, [φ, π |= A] = 0. Note that this
problem may only happen ifA contains constraints on internal nodes ofM . Given a
constrainta on an input, there always exists a concrete trajectory that satisfiesa (unless
a itself is a contradiction, which can be easily detected). This problem exists also in
STE implementations that do not computeπA, such as [8].
Example 2.We return to Example 1 from Section 2. Note that the defining trajectory
πA does not contain⊥. In addition,[πA |= C] = 0 due to the assignments toV in
which v1 = 0. However,A never holds on concrete trajectories ofM whenv1 = 0,
since N3 at time 0 will not be equal to1. Thus, the counterexample is spurious, but
we have no indication of this fact. The problem occurs when calculating the value of
(N3,0) by computingX u 1 = 1. If A had contained a constraint on the value of In2 at
time 0, say (In2 isv2), then the value of (N3,0) inπA would have been(v1 ∧ v2)u 1 =
(v1 ∧ v2?1 : ⊥), indicating that for all assignments in whichv1 = 0 or v2 = 0, πA does
not correspond to any concrete trajectory ofM .

Vacuity may also occur if for someφ to V , C underφ imposes no requirements.
This is due to constraints of the formp → f whereφ(p) is 0.

An STE assertionA =⇒ C is vacuousin M if for all concrete trajectoriesπ of M
and assignmentsφ to V , either[φ, π |= A] = 0, orC underφ imposes no requirements.
This definition is compatible with the definition in [1] for ACTL.

We say thatA =⇒ C passes vacuouslyon M if A =⇒ C is vacuous inM and
[πA |= C] ∈ {⊥, 1}. A counterexampleπ is spuriousif there is no concrete trajectory
πc of M so thatπc v π. GivenπA, the symbolic counterexamplece is spuriousif for
all assignmentsφ to V in ce, φ(πA) is spurious.A =⇒ C fails vacuouslyon M if
[πA |= C] = 0 andce is spurious.

As explained before, vacuity detection is required only whenA constrains internal
nodes. It is performed only if[πA |= C] ∈ {0, 1} (if [πA |= C] = ⊥ then surely
A =⇒ C passes vacuously). In order to detect non-vacuous results in STE, we need to
check whether there exists an assignmentφ to V and a concrete trajectoryπ of M so
thatC underφ imposes some requirement and[φ, π |= A] = 1. In case[πA |= C] = 0,
we also require that[φ, π |= C] = 0. SinceA can be expressed as an LTL formula, we
can translateA andM into a Bounded Model Checking (BMC) [2] problem. Note that
in this BMC problem we search for a satisfying assignment forA, not for its negation.
Additional constraints should be added to the BMC formula as follows.

For detection of vacuous pass, the BMC formula is constrained as follows: Recall
that(g1

n,t, g
0
n,t) denotes the dual rail representation of(n, t) in σC . The Boolean expres-

siong1
n,t∨g0

n,t represents all assignmentsφ to V under whichC imposes a requirement
on (n, t). Thus,

∨
(n,t)∈C g1

n,t ∨ g0
n,t represents all assignmentsφ under whichC im-

poses some requirement, and is added as an additional constraint to the BMC formula.
A satisfying assignment to the resulting formula constitutes a witness forA =⇒ C.

For detection of vacuous fail, the BMC formula is constrained by conjunction with
the symbolic counterexamplece =

∨
(n,t)∈C((g1

n,t∧¬f1
n,t∧f0

n,t)∨(g0
n,t∧f1

n,t∧¬f0
n,t)).

ce represents all assignmentsφ for which [φ, πA |= C] = 0. A satisfying assignment to
the resulting formula constitutes a concrete counterexample forA =⇒ C.

If BMC finds a satisfying assignment to the resulting formula, then the original truth
value of[πA |= C] is returned. Otherwise, we conclude that the STE result is vacuous.
In [13], we suggest an alternative vacuity detection algorithm that uses STE and present
an additional vacuity problem that arises in constraint-based STE [8].

6 Experimental Results

We implemented our automatic refinement algorithmAutoSTE on top of STE in Intel’s
FORTE environment [12].AutoSTE receives a circuitM and an STE assertionA =⇒
C. When[πA |= C] = X, it chooses a refinement goal(root, tt) out of the undecided
nodes, as described in Section 4. Next, it computes the set of relevant inputs(in, t). The
Heuristics described in Section 4 are applied in order to choose a subset of those inputs.
In our experimental results we restrict the number of refined candidates in each iteration
to 1.A is changed as described in Section 4 and STE is rerun on the new assertion.

We ranAutoSTE on two different circuits, which are challenging for Model Check-
ing: the Content Addressable Memory (CAM) from Intel’s GSTE tutorial, and IBM’s
Calculator 2 design [14]. The latter has a complex specification.Therefore, it constitutes

a good example for the benefit the user can gain from automatic refinement in STE. All
runs were performed on a 3.2 GHz Pentium 4 computer with 4 GB memory.

hit
TAG MEMORY

DATA MEMORY

n

n

d

aread

dwrite

dout
daddr[log(n)−1..0]

datain[d−1..0]

t

tagin[t−1..0]

taddr[log(n)−1..0]

twrite

Fig. 4. Content Addressable Memory. Tag
size=t, Number of entries=n, Data size=d

Content Addressable Memory. The
CAM shown in Figure 4 contains 16
entries, has a data size of 64 bits and
a tag size of 8 bits. It contains 1152
latches, 83 inputs and 5064 combi-
national gates. CAMs use bit fields
called tags to identify particular data
entries stored in an array. The associa-
tive read operation (aread) of CAMs
consists of searching in parallel all
tags in the CAM tag memory to find
a match to an input tag (tagin). If a match is found, the CAM outputs the associated
data entry to dout. The verification of the aread operation using STE is described in [7].
The assertions in [7] contain assumptions on the internal state of the tag memory. The
user may want to check the aread operation after a write operation to the tag memory. In
STE such cases can be checked by bounding the time that passed between the writing
and the reading of the tag. We present the results ofAutoSTE on 3 such assertions.
Figure 5 reports the final result, number of refinement iterations, run-time in seconds
and peak BDD nodes for each assertion. Table 1 reports the refinement goal and added
constraint in each refinement iteration.vn,t denotes a fresh symbolic variable for node
(n, t).−→v n,t denotes a vector of fresh symbolic variables for a vector of nodes(n, t).

AssertionresultTotal Iter.Time BDD Nodes
1 pass 2 3 4768
2 fail 7 20 57424
3 fail 3 17 29006

Fig. 5. Automatic Refinement Performance on
CAM Assertions

Assertion 1 checks that if a tag
value

−−→
TAG is written to an address

−→
A

in the tag memory at time 0 (where−−→
TAG and

−→
A are vectors of symbolic

variables over{0, 1}), and at time 1−−→
TAG is read, then it should be found
in the tag memory and hit should be 1:
(tagin is

−−→
TAG) ∧ (taddr is

−→
A) ∧ (twrite is 1)∧ N ((aread is 1)∧ (tagin is

−−→
TAG)) =⇒

N (hit is 1). Assertion 1 should pass: if at time 1 there is no write operation to the tag
memory (twrite is 0), then

−−→
TAG should be found in address

−→
A . If at time 1 twrite

is 1,
−−→
TAG should be found since it is written again to the tag memory. However,

[πA |= C] = X. Since twrite and taddr at time 1 areX, the CAM cannot determine
whether to write the value of tagin at time 1 to the tag memory, and to which tag entry
to write it. As a result, the entire tag memory at time 1 isX.Thus, hit at time 1 isX.

After two refinements,AutoSTE returns a pass result. Note that only constraints
necessary for obtaining the pass result were added.

−−→
TAG 6= 0 appears in the constraint

since in this CAM implementation, the default value of the data source nodes of the tag
memory is 0. Thus, when

−−→
TAG = 0, even without knowing if and to which entry a tag is

written at time 1, the CAM determines that a tag that equals 0 exists in the tag memory.
Assertion 2 is an extension of Assertion 1. We add a constraint to the antecedent

that at time 0, datamem[−→A] is
−→
D . We also add a requirement to the consequent that at

time 1, dout is
−→
D . The first two refinements are the same as for assertion 1. The next

AssertionIteration Goal Added Constraint
1,2 1 hit,1 N(

−−→
TAG 6= 0 → twrite isvtwrite,1)

1,2 2 hit,1 N((
−−→
TAG 6= 0 ∧ vtwrite,1 = 1) → taddr is−→v taddr,1)

2 3 dout[0],1 N(
−−→
TAG = 0 → twrite isvtwrite,1)

2 4 dout[0],1 N((
−−→
TAG = 0 ∧ vtwrite,1 = 1) → −−→

taddr is−→v taddr,1)

2 5 dout[0],1 N(dwrite isvdwrite,1)

2 6 dout[0],1 N(vdwrite,1 = 1 → −−−→
daddr is−→v daddr,1)

2 7 dout[0],1N(((vdwrite,1 = 1) ∧ (−→v daddr,1 =
−→
A)) → din[0] is vdin[0],1)

3 1 dout[0],2 D[0] 6= 0 → dwrite isvdwrite,0

3 2 dout[0],2 (D[0] 6= 0 ∧ vdwrite,0 = 1) → −−−→
daddr is−→v daddr,0

3 3 dout[0],2 (D[0] 6= 0 ∧ −→A 6= 0) → tagmem0 is−→v tagmem0,0

Table 1.Automatic Refinement of CAM Assertions

refinement goal is dout[0]. In iterations 3-4, twrite and taddr at time 1 are added to
A when

−−→
TAG = 0, since they are required in order to determine the value of dout[0]

at time 1. The relevant inputs for refinement in iterations 5-7 were dwrite, daddr and
din[0], all at times 0 and 1, the initial values of all tag memory entries and of bit number
0 of all data memory entries. The final iteration yields a counterexample in which dwrite
at time 1 equals 1, daddr at time 1 equals taddr at time 0, and din[0] at time 1 is different
from D[0]. This counterexample stems from an erroneous specification. If new data is
written at time 1 to the data entry associated with

−−→
TAG, then dout at time 1 will be equal

to the new data. Note that only constraints relevant to this counterexample were added.
Assertion 3 is as follows: (tagin is

−−−→
TAG)∧(taddr is

−→
A)∧(twrite is 1)∧(datamem[−→A]

is
−→
D)∧N((twrite is 0)∧(dwrite is 0))∧N2((aread is 1)∧(tagin is

−−−→
TAG)∧(twrite is 0)∧

(dwrite is 0)) =⇒ N2((hit is 1)∧ (dout is
−→
D)). This assertion should fail since the tag

memory may already hold at time 0 a tag that equals
−−→
TAG. Though usually it is as-

sumed that the CAM environment will not write the same tag to two different entries,
most CAM implementations do not assume so.AutoSTE generates a counterexample
after 3 refinement iterations. In the counterexample, tag entry 0 equals

−−→
TAG, and the ad-

dress
−→
A to which

−−→
TAG is written is different from 0. The data associated with tag entry

0 appears in dout, rather than the one written to address
−→
A . This assertion demonstrates

the case in which there is a need for refinement of initial values of latches (tagmem0
at time 0). Since our heuristics prefer inputs that influence control, the constraint on
tagmem0 was added after constraints were added on dwrite and

−−−→
daddr at time 0.

Calculator Design. Calculator 2 design [14] shown in Figure 6 is used as a case study
design in simulation based verification. It contains 2781 latches, 157 inputs and 56960
combinational gates. The calculator supports 4 types of commands: add, sub, shift right
and shift left.nonestands for no command. Any other command is invalid. It has two
internal arithmetic pipelines: one for add/sub and one for shifts. The first argument of
the command is sent at the same cycle as the command. The second argument is sent in
the next cycle. The tag is a unique identifer for each of the commands from each of the 4
ports. It is sent at the same cycle as the command. The commands may be executed out
of order. However, commands from the same port that use the same pipeline must return
in order. The response is 1 for good, 2 for underflow, overflow or invalid command, 3
for an internal error and 0 for no response. Reset is 1 for the first 3 cycles.

SHIFT PIPELINE

PIPELINE

ADD/SUB

reset

c_clk

req1_cmd_in[0:3]
req1_data_in[0:31]
req1_tag_in[0:1]

req2_cmd_in[0:3]
req2_data_in[0:31]
req2_tag_in[0:1]

req3_cmd_in[0:3]
req3_data_in[0:31]
req3_tag_in[0:1]

req4_cmd_in[0:3]
req4_data_in[0:31]
req4_tag_in[0:1]

out_resp1[0:1]

out_data1[0:31]
out_tag1[0:1]

out_resp2[0:1]
out_data2[0:31]
out_tag2[0:1]

out_resp3[0:1]
out_data3[0:31]

out_resp4[0:1]
out_data4[0:31]
out_tag4[0:1]

out_tag3[0:1]

Fig. 6.Calculator

We present the results ofAutoSTE on 4
assertions. Figure 7 reports the final result,
number of refinement iterations, run-time in
seconds and peak BDD nodes for each asser-
tion. For lack of space, the description of as-
sertion 4 exists in [13]. Table 2 reports the
refinement goal and added constraint in each
refinement iteration for assertions 1-3.

Assertion 1 checks whether after reset, if
a port sends an add or sub command, and the
other ports send no command or a command
other than add and sub, then the port that sent
the add/sub command receives a good response with the appropriate tag at the first avail-
able time (4 cycles after the commands were sent). A vector

−→
P of symbolic variables is

used to determine which port is sending the add or sub command.

In the counterexample, a data overflow occurs for an add command sent by port
1, which triggers an invalid response at cycle 7. The BCOI of outresp1[0] contains all
command, tag and data inputs of all ports at different times. However, the set of relevant
inputs contains only all entries of req1datain at cycles 3 and 4. req1datain[31] at
cycles 3 and 4 is the minimal subset that is suffice to produce a counterexample, and is
indeed the one chosen by our heuristics.

Assertion 2 constrains the command sent by porti to add. The msb bits of the sent
data are constrained to 0 to avoid a possible overflow. The requirement is that the output
data for porti should match the expected data. No constraints exist on the commands
sent by other ports. In the counterexample, both ports 1 and 2 send an add command.
Port 1 is answered before port 2. The assertion fails due to an erroneous specification:
since port 1 has priority over port 2, port 2 may not receive a response at the first possible
cycle. Due to the implementation of the priority queue, the value of an additional port
had to be definite. The BCOI of (outresp2[0],7) contains cmd, data and tag inputs of all
ports at cycles 3 and 4. Out of them, only the cmd and data inputs are relevant inputs.

AssertionresultTotal Iter.Time BDD Nodes
1 fail 2 87 6241
2 fail 2 100 20134
3 fail 1 220 530733
4 pass 11 494 17323

Fig. 7. Automatic Refinement Performance on
Calculator Assertions

Assertion 3 presents the following
constraints: after reset, a port sends
an add or sub command, followed by
an add command with a certain tag
and data arguments, while limiting the
msb of the data to 0 to avoid a pos-
sible overflow. All other ports do not
send an add or sub command during
this time. The requirements are: the
port that sent the add command receives a response with the appropriate tag value and
expected output data. There was one refinement iteration. The BCOI of respout1[0]
includes all data and tag inputs of all ports. However, only the tags of all ports at cycles
3-5 are relevant inputs. Our heuristics chose the tag of port 1 at cycle 3. Choosing any
other input would require additional iterations in order to produce a counterexample.
In the counterexample, the tag values of port 1 at cycles 3 and 4 are not consecutive.

Assert.Iteration Goal Added Constraint
1 1 out resp1[0],7N3−→P = 1 → req1datain[31] is vreq1 data in[31],3

1 2 out resp1[0],7N4−→P = 1 → req1datain[31] is vreq1 data in[31],4

2 1 out resp2[0],7 N3−→P = 2 → req1cmd in is−→v req1 cmd in,3

2 2 out resp2[0],7 N3(
−→
P = 2 ∧ −→v req1 cmd in,3 = (add ∨ sub)) →

req3cmd in is−→v req3 cmd in,3

3 1 out resp1[0],9 N3−→P = 1 → req1 tag in is−→v req1 tag in,3

Table 2.Automatic Refinement of Calculator Assertions

This counterexample stems from a planted design bug documented in [14]. There is
supposed to be no restriction on tag ordering. However, commands whose tags are out
of order are treated as invalid.

Acknowledgement.We thank Eli Singerman for introducing us to STE and to the Forte
environment.

References

1. I. Beer, S. Ben-David, C. Eisner, and Y. Rodeh. Efficient detection of vacuity in ACTL
formulas. InCAV, 1997.

2. A. Biere, A. Cimatti, E. M. Clarke, and Y. Zhu. Symbolic model checking without BDDs.
In TACAS, 1999.

3. C-T. Chou. The mathematical foundation of symbolic trajectory evaluation. InCAV, 1999.
4. E. M. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith. Counterexample-guided abstraction

refinement. InCAV, 2000.
5. S. Hazelhurst and C.-J. H. Seger. Model checking lattices: Using and reasoning about infor-

mation orders for abstraction.Logic journal of IGPL, 7(3), 1999.
6. R. P. Kurshan.Computer-Aided Verification of coordinating processes - the automata theo-

retic approach. 1994.
7. M. Pandey, R. Raimi, R. E. Bryant, and M. S. Abadir. Formal verification of content ad-

dressable memories using symbolic trajectory evaluation. InDAC, 1997.
8. J.-W. Roorda and K. Claessen. A new SAT-based algorithm for symbolic trajectory evalua-

tion. In CHARME, 2005.
9. J.-W. Roorda and K. Claessen. SAT-based assistance in abstraction refinement for symbolic

trajectory evaluation. InCAV, 2006.
10. T. Schubert. High level formal verification of next-generation microprocessors. InDAC’03.
11. C.-J. H. Seger and R. E. Bryant. Formal verification by symbolic evaluation of partially-

ordered trajectories.Formal Methods in System Design, 6(2), 1995.
12. C.-J. H. Seger, R. B. Jones, J. W. O’Leary, T. F. Melham, M. Aagaard, C. Barrett, and

D. Syme. An industrially effective environment for formal hardware verification.IEEE
Trans. on Computer-Aided Design of Integrated Circuits and Systems, 24(9), 2005.

13. R. Tzoref. Automatic refinement and vacuity detection for symbolic trajectory evaluation.
Master’s thesis, Department of Computer Science, Technion, Israel, 2006.

14. B. Wile, W. Roesner, and J. Goss.Comprehensive Functional Verification: The Complete
Industry Cycle. Morgan-Kaufmann, 2005.

15. J.C. Wilson. Symbolic Simulation Using Automatic Abstraction of Internal Node Values.
PhD thesis, Stanford University, Dept. of Electrical Engineering, 2001.

16. J. Yang, R. Gil, and E. Singerman. satGSTE: Combining the abstraction of GSTE with the
capacity of a SAT solver. InDCC, 2004.

17. J. Yang and A. Goel. GSTE through a case study. InICCAD, 2002.
18. J. Yang and C.-J. H. Seger. Generalized symbolic trajectory evaluation - abstraction in action.

In FMCAD, 2002.
19. J. Yang and C.-J. H. Seger. Introduction to generalized symbolic trajectory evaluation.IEEE

Trans. Very Large Scale Integr. Syst., 11(3), 2003.

