
A Game�Based Framework for CTL

Counterexamples and

Abstraction�Re�nement

Sharon Shoham

A Game�Based Framework for CTL

Counterexamples and

Abstraction�Re�nement

Research Thesis

Submitted in Partial Ful�llment of the Requirements

for the Degree of Master of Science in Computer Science

Sharon Shoham

Submitted to the Senate of the Technion � Israel Institute of Technology

KISLEV� ���� Haifa November� �		

This Research Thesis was done under the supervision of Orna Grumberg in the
Department of Computer Science

I wish to express my deep gratitude to Orna Grumberg for being the best supervisor I
could have ever hoped for and so much more than that� I thank Orna for introducing
me to the world of academic research and showing me that it can be a lot of fun� More
importantly� I thank Orna for her friendship� which made my studies so enjoyable�
As this work proves� serious issues are sometimes nothing more than just a game�

The generous �nancial help of the Technion is gratefully acknowledged

Contents

Abstract �

Notation and Abbreviations �

� Introduction �

�
 Related Work �

�� Organization �
�

� Preliminaries ��

��
 Game�based Model Checking Algorithm � � � � � � � � � � � � � � � �
�

��
�
 Game�Graph Construction and its Properties � � � � � � � � � �	

��
�� Coloring Algorithm ��

��� Abstraction �

� Using Games to Produce Annotated Counterexamples ��

�
 Properties of the Annotated Counterexample � � � � � � � � � � � � �

�� The Annotated Counterexample is Su�cient and Minimal � � � � � �

�
 Practical Considerations �
�

� Game	Based Model Checking for Abstract Models ��

��
 Game�Graph Construction and its Properties � � � � � � � � � � � � � ��

��� Coloring Algorithm ��

� Concrete Annotated Counterexamples Based on Abstract Game	
Graphs
�

 Re�nement
�

��
 Finding a Failure Node ��

��� Failure Analysis �	

i

ii Contents �continued�

� Incremental Abstraction	Re�nement Framework ��

� Conclusion ��

A Discussion
 �	Valued Game	Based Model Checking ��

A�
 Application to
�Valued Model Checking � � � � � � � � � � � � � � � � �

B Memoryless Winning Strategies ��

References �

Hebrew Abstract d

List of Figures

�
 A running example of the algorithm ComputeCounter� demonstrating
the importance of the use of the cause � � � � � � � � � � � � � � � � �
	

��
 A coloring example of a
�valued game�graph � � � � � � � � � � � � � � ��

��
 A re�nement example of a
�valued game�graph � � � � � � � � � � � � ��

��
 A pruning example of a re�ned game�graph � � � � � � � � � � � � � � ��

A�
 A satisfaction graph �a� versus a refutation graph �b� for AX� � � � � ��

iii

iv

Abstract

Model checking is an e�cient procedure that checks whether or not a given system
model ful�lls a desired property� described as a temporal logic formula� Yet� as real
models tend to be very big� model checking encounters the state�explosion problem�
One solution to this problem is the use of abstraction� that hides some of the de�
tails of the original �concrete� model� In this work we consider the branching time
logic CTL �Computation Tree Logic�� Our work exploits and extends the game�based
framework of CTL model checking for incremental abstraction�re�nement and coun�
terexamples� We de�ne a game�based CTL model checking for abstract models over
the
�valued semantics� which can be used for veri�cation as well as refutation� The
model checking process of an abstract model may end with an inde�nite result� in
which case we suggest a new notion of re�nement� which eliminates inde�nite results
of the model checking� This provides an iterative abstraction�re�nement framework�
This framework is enhanced by an incremental algorithm� where re�nement is ap�
plied only where inde�nite results exist and de�nite results from prior iterations are
used within the model checking algorithm� We also de�ne the notion of annotated
counterexamples� which are su�cient and minimal counterexamples for full CTL� We
present an algorithm that uses the game board of the model checking game to derive
an annotated counterexample in case the examined system model refutes the checked
formula�

�

Notation and Abbreviations

CTL � Computation Tree Logic
SCC � Strongly Connected Component

MSCC � Maximal Strongly Connected Component
KMTS � Kripke Modal Transition System

AP � Set of atomic propositions
Lit � Set of literals �atomic propositions and their negations�
� � CTL formula
M � Model of a system �a Kripke structure or a KMTS�
MC � Concrete model �Kripke structure�
MA � Abstract model �KMTS�

M j� � � The model M satis�es �
M �j� � � The model M refutes �

��MC� s� j� �� � Concrete semantics of CTL w�r�t Kripke structures

��MA� s� j�
�

� �� � ��valued semantics of CTL w�r�t KMTSs

��MA� s� j�
�

� �� �
�valued semantics of CTL w�r�t KMTSs
tt � true
� � false
� � inde�nite
H � Mixed simulation relation
� � Abstraction function
� � Concretization function

GM�� � Game�Graph for M and �
N � Nodes of the game�graph
E � Edges of the game�graph
� � Coloring function
� � Partial coloring function
�I � Initial coloring function

CM�� � Annotated counterexample for M and �

�

Chapter �

Introduction

This work exploits and extends the game�based framework ���� of CTL model checking
for counterexample and incremental abstraction�re�nement�

The �rst goal of this work is to suggest a game�based new model checking algo�
rithm for the branching�time temporal logic CTL �

� in the context of abstraction�
Model checking is a successful approach for verifying whether a system model M
satis�es a speci�cation �� written as a temporal logic formula� Yet� concrete �regu�
lar� models of realistic systems tend to be very large� resulting in the state explosion
problem� This raises the need for abstraction� Abstraction hides some of the system
details� thus resulting in smaller models� Abstractions are usually designed to be
conservative w�r�t� some logic of interest� That is� if the abstract model satis�es
a formula in that logic then the concrete model satis�es it as well� However� if the
abstract model does not satisfy the formula then nothing is known about the concrete
model�

Two types of semantics are available for interpreting CTL formulae over abstract
models� The ��valued semantics de�nes a formula � to be either true or false in an
abstract model� True is guaranteed to hold for the concrete model as well� whereas
false may be spurious� The ��valued semantics ���� introduces a new truth value� the
value of a formula on an abstract model may be inde�nite� which gives no informa�
tion on its value on the concrete model� On the other hand� both satisfaction and
falsi�cation w�r�t the
�valued semantics hold for the concrete model as well� That
is� while abstractions over ��valued semantics are conservative w�r�t� only positive
answers� abstractions over
�valued semantics are conservative w�r�t� both positive
and negative results� Abstractions over
�valued semantics thus give precise results
more often both for veri�cation and falsi�cation�

Following the above observation� we de�ne a game�based model checking algo�
rithm for abstract models w�r�t� the
�valued semantics� where the abstract model
can be used for both veri�cation and falsi�cation� However� a third case is now
possible� model checking may end with an inde�nite answer� This is an indication
that our abstraction cannot determine the value of the checked property in the con�
crete model and therefore needs to be re�ned� The traditional abstraction�re�nement

�

framework �
	� �� is designed for ��valued abstractions� where false may be a false�
alarm� thus re�nement is aimed at eliminating false results� As such� it is usually
based on a counterexample analysis� Unlike this approach� the goal of our re�nement
is to eliminate inde�nite results and turn them into either de�nite true or de�nite
false�

An advantage of this work lies in the fact that the re�nement is then applied only
to the inde�nite part of the model� Thus� the re�ned abstract model does not grow
unnecessarily� In addition� model checking of the re�ned model uses de�nite results
from previous runs� resulting in an incremental model checking� Our abstraction�
re�nement process is complete in the sense that for a �nite concrete model it will
always terminate with a de�nite �yes� or �no� answer�

The next goal of our work is to use the game�based framework in order to pro�
vide counterexamples for the full branching�time temporal logic CTL� When model
checking a model M with respect to a property �� if M does not satisfy � then the
model checker tries to return a counterexample� Typically� a counterexample is a part
of the model that demonstrates the reason for the refutation of � on M � Providing
counterexamples is an important feature of model checking which helps tremendously
in the debugging of the veri�ed system�

Most existing model checking tools return as a counterexample either a �nite
path �for refuting formulae of the form AGp� or a �nite path followed by a cycle
�for refuting formulae of the form AFp�� �
	�

�� Recently� this approach has been
extended to provide counterexamples for all formulae of the universal branching�
time temporal logic ACTL �

�� In this case the part of the model given as the
counterexample has the form of a tree� Other works also extract information from
model checking ��
�
��
�� ���� However� this information is presented in the form of
a temporal proof� rather than a part of the model�

In this work we provide counterexamples for full CTL� As for ACTL� counterex�
amples are part of the model� However� when CTL is considered� we face existential
properties as well� To prove refutation of an existential formula E�� one needs to
show an initial state from which all paths do not satisfy �� Thus� the structure of
the counterexample becomes more complex�

Having such a complex counterexample� it might not be easy for the user to analyze
it by looking at the subgraph of M alone� We therefore annotate each state on the
counterexample with a subformula of � that is false in that state� The annotating
subformulae being false in the respective states� provide the reason for � to be false
in the initial state� Thus� the annotated counterexample gives a convenient tool for
debugging� We propose an algorithm that constructs an annotated counterexample
and prove that it is su�cient and minimal� We also discuss several ways to use and
present this information in practice�

Games for CTL model checking ���� is a most suitable framework for our goals�
The model checking game is played by two players� �belard� the refuter who wants

�AGp means �for every path� in every state on the path� p holds�� whereas AFp means �along

every path there is a state which satis�es p��

�

to show that M �j� �� and �loise� the prover who wants to show that M j� �� The
board of the game consists of pairs �s� �� of a model state and a subformula� with the
meaning that the satisfaction of � in the state s is examined� �belard proceeds from
such a node �s� �� to a node that helps refuting � on s� �loise chooses her moves with
the intention to prove that s satis�es �� All possible plays of a game are captured in
the game�graph� whose nodes are the elements of the game board and whose edges are
the possible moves of the players� The initial nodes are pairs �s�� �� where s� is an
initial state of M � It can be shown that �belard has a winning strategy �i�e�� he can
win the game regardless of �loise moves� i� M �j� �� �loise has a winning strategy i�
M j� ��

Model checking is then done by applying a coloring algorithm on the game�
graph ���� It colors a node �s� �� by T i� �loise has a winning strategy� which means �
is true in s� It colors it by F i� �belard has a winning strategy� which means � is false
in s� At termination� if all initial nodes are colored T then M j� �� If at least one
initial node is colored F then M �j� � and we would like to supply a counterexample�

In our work we add abstraction to the discussion� Concrete models for CTL are
state�transition graphs �Kripke structures� in which nodes correspond to states of
the system and transitions describe possible moves between states� Abstract models
consist of abstract states� representing �not necessarily disjoint� sets of concrete states�
In order to be conservative w�r�t� CTL� two types of transitions are required� may�
transitions which represent possible transitions in the concrete model� and must�
transitions �

�
�� which represent de�nite transitions in the concrete model� May
and must transitions correspond to over and under approximations� and are needed
in order to preserve formulae of the form AX� and EX�� respectively�

We consider the
�valued semantics of CTL formulae� We would like to maintain
the property of the
�valued semantics that both the positive and the negative answers
are de�nite in the sense that they hold for the concrete model as well� To do so� we
allow each player to have two roles in the new
�valued model checking game� The
goal of �belard is either to refute � onM or to prevent �loise from verifying� Similarly�
the goal of �loise is either to verify or to prevent �belard from refuting� As before�
�belard has a winning strategy i� M �j� �� and �loise has a winning strategy i�
M j� �� However� it is also possible that none of them has a winning strategy� in
which case the value of � in M is inde�nite�

In order to check � on the abstract model M � we propose a coloring algorithm
over three colors� T � F � and �� If all the initial nodes of the game�graph are colored
by T � then we conclude thatM j� �� If some initial node of the game�graph is colored
by F � we know that M �j� �� Both these results apply to the concrete model as well�
Yet� if none of the above holds� meaning that none of the initial nodes is colored by
F and at least one of them is colored by �� we have no de�nite answer� It is then
desirable to re�ne the abstract model�

We choose a criterion for re�nement by examining the part of the game�graph
which is colored by �� Once a criterion for re�nement is chosen� the re�nement is
traditionally done by splitting abstract states throughout the entire abstract model�

�

That is� while the decision on the criterion for re�nement is local� the re�nement is
global� However� the structure of the game�graph allows us to apply it only to the
inde�nite part of the model� It also allows us to use de�nite results that were obtained
previously� Thus� previous runs are not wasted and the abstract model does not grow
where it is not needed�

Other researchers ���� have suggested to evaluate a property w�r�t the
�valued
semantics by reducing the problem to two ��valued model checking problems� one for
satisfaction and one for refutation� Such a reduction will result in the same answer
as our algorithm� Yet� it is then not clear how to guide the re�nement� in case it
is needed� since at least part of the information about the inde�nite portion of the
game�graph is lost� Thus� the application to re�nement demonstrates the advantage
of designing a
�valued model checking algorithm�

As for our second goal� we propose an algorithm that constructs an annotated
counterexample in case model checking ends with a negative answer� meaning that
the checked property � is refuted by the examined model M � We �rst deal with the
simpler case where model checking is applied to a concrete model� The construction
uses the colored game�graph and starts from an initial node which is colored by F � If
the formula in a node n is eitherAX� or ����� then we include in the counterexample
one successor of n� which is colored by F � This successor needs to be chosen wisely�
If the formula in n is either EX� or �� � �� then we include in the counterexample
all the successors of n �which are all colored by F �� The resulting counterexample
is an annotated sub�model of M � with possibly some unwinding� that gives the full
reason for the refutation of � on M �

Having de�ned the notion of an annotated counterexample� we then discuss the
construction of annotated counterexamples when abstract models are used� In the

�valued case� concretization of an abstract annotated counterexample will never fail
since the
�valued abstraction is conservative w�r�t� negative results as well� Thus� we
can use an extension of the concrete algorithm to provide an abstract counterexample
and derive from it a concrete one�

To conclude� the main contributions of this work are�

� A game�based CTL model checking for abstract models over the
�valued se�
mantics� which can be used for veri�cation as well as refutation�

� A new notion of re�nement� that eliminates inde�nite results of the model
checking�

� An incrementalmodel checking within the framework of abstraction�re�nement�

� A su�cient and minimal counterexample for full CTL�

�

��� Related Work

Games and Automata

Our work uses a characterization of the CTL model checking problem in terms of
two�players games� The game�based approach to model checking was introduced by
Stirling ���� as a way of combining the algorithmic approach to model checking and
the proof system approach� ����
��

� present model checking algorithms based on
games for various temporal logics� including CTL and the alternation�free ��calculus�
The model checking problem is described as a game between a refuter� �belard� and a
prover� �loise� where the player that has a winning strategy determines the result of
the model checking problem� The model checking game induces a game graph� which
is used to determine which player has a winning strategy� The game graph can be
computed on the �y� limited to its reachable states� This avoids exploring the parts
of the model that are irrelevant for the formula to be checked� Hence� it addresses
the issue raised in the work on local model checking�

A di�erent characterization of the model checking problem for the alternation�free
��calculus and in particular for CTL can be given in terms of so�called ��letter�simple�
weak alternating Buchi automata �
SWABA�� as part of the automata�theoretic ap�
proach to model checking ��� ���� This approach derives optimal model checking
algorithms for branching temporal logics using alternating tree automata� In general�
the basic idea behind the automata�theoretic approach to model checking of branch�
ing time logics is to construct an alternating tree automaton such that its language
is the set of all trees that satisfy the formula� i�e� it �describes� all the models that
satisfy the given formula� Alternating tree automata generalize the standard notion
of nondeterministic tree automata by allowing several successor states to go down
along the same branch of the tree� Alternation is used to reduce the size of the
automaton describing the formula from exponential in the length of the formula to
linear in its length� The alternating automaton is assembled with the given model�
resulting in the product automaton� The model checking problem is then reduced
to the problem of checking nonemptiness of the language of the product automaton�
The crucial observation is that the product automaton is a
SWABA� thus for model
checking it su�ces to test the nonemptiness of the language of a
SWABA� which is
substantially simpler than solving the nonemptiness problem of tree automata�

The game�based approach to model checking� used in our work� is closely related
to the automata�theoretic approach� The resemblance between these two approaches
is described in �
��� where it is shown how
SWABA can be interpreted in terms of
games� such that runs of a
SWABA correspond to plays of a corresponding game
from �loise�s point of view� They de�ne co�runs representing �belard�s point of view
and show that the
SWABA has an accepting run i� �loise has a winning strategy
and that the
SWABA has an accepting co�run i� �belard has a winning strategy
for the corresponding game� Furthermore� they rephrase the algorithm for checking
nonemptiness of
SWABA from ��� and show that it can be used to determine a
winning strategy for the winner of the game� Thus� our work can also be described

�

in this framework� using alternating automata�

�
�� also presents a local model checking algorithm for the alternation�free modal
��calculus that is similar to the algorithm that results from the game�based or the
automata�theoretic approach�

These model checking algorithms are all designed for concrete models� In our
work we extend the discussion to abstract models and develop a game�based CTL
model checking algorithm for them� as well as a re�nement mechanism that is based
on the properties of the game�based �or the automata�theoretic� model checking� We
also exploit this approach in order to derive counterexamples for full CTL�

Abstraction

Model checking of realistic systems encounters the state explosion problem� One
solution to it is the application of abstraction techniques� which aim to abstract
the model to a smaller one� preserving formulae of some logic� Various abstraction
techniques are formalized in the framework of Abstract interpretation �
��
��
���

�
	�
�
�� �� discuss abstractions based on visible variables� where some of the
system variables become invisible� These variables are treated as inputs� meaning
that their behavior is non�deterministic�

��� de�nes an abstraction based on variable clusters� which is more general than
the invisible variables abstraction since it exploits logical relationships among vari�
ables� Their technique is similar to predicate abstraction �also called boolean abstrac�
tions� ��
�
�� ��� �	� ���� In predicate abstraction� abstract models are constructed
by using boolean variables to represent concrete predicates� More speci�cally� ��
� de�
scribes a method for the automatic construction of an abstract model using predicate
abstraction� based on abstract interpretation� They consider a particular set of ab�
stract states� which is the set of monomials on a set of state predicates� The successors
of an abstract state are computed using the PVS theorem prover and upper approxi�
mations are constructed when needed� Thus� they allow veri�cation of any universal
temporal logic formula �without existential quanti�ers�� �
�� has implemented a pro�
totype system for e�cient veri�cation of invariants by predicate abstraction� based on
the scheme presented in ��
�� However� they use BDDs instead of monomials to rep�
resent the abstract state space� and the computation of successors is more accurate�
���� proposes an e�cient algorithm for the automatic construction of boolean ab�
stractions that requires fewer calls to decision procedures� ��	� presents an algorithm
that constructs a �nite state abstract program from a concrete program by means of
syntactic program transformations� They start with an initial set of predicates from
a speci�cation and iteratively compute the predicates required for the abstraction
relative to the speci�cation� All these works use the general framework of existential
abstraction �
�� and are thus suitable for verifying universal properties only �without
existential quanti�ers��

Unlike them� ���� shows how boolean abstractions can be constructed simply�
e�ciently and precisely while preserving properties in the full ��calculus� They also

	

propose an automatic algorithm that is given a set of new predicates and re�nes
the abstraction accordingly� The latter is based on the work of �
�� that extends
abstract interpretation to the analysis of both existential and universal properties�
as expressible in the modal ��calculus� They investigated how to de�ne abstract
models� based on abstract interpretation� such that the modal ��calculus is preserved�
Their approach can be applied to any abstraction within the framework of abstract
interpretation� This implies that our work which considers CTL can be combined
with any of these abstractions�

�	Valued Logic

Unlike the traditional ���valued� abstraction� that preserves only truth of a formula
from the abstract model to the concrete one� recently ��� �� �	� �
� ��� ��� it was
shown how automatic abstraction can be performed to verify modal ��calculus formu�
lae� based on a ��valued semantics� such that both truth and falseness are preserved�
The key to make this possible is to present abstract systems using richer models that
distinguish properties that are true� false and unknown of the concrete system� Dif�
ferent formalisms of abstract models suitable for the
�valued semantics are proposed
in the literature� Modal Transition Systems �

�
��� Partial Kripke Structures ��� ���
and Kripke Modal Transition Systems ���� �
�� It is shown in ���� that they have the
same expressiveness and that their model checking problem can be reduced to two
instances of traditional ���valued� model checking� Thus� for any
�valued formalism�

�valued model checking has the same time and space complexity both in the size
of the formula and the model as traditional ��valued model checking� Such results
were introduced in ��	� and ���� for modal ��calculus� In our work we use Kripke
Modal Transition Systems ���� �
� and solve the model checking problem directly�
without reducing it to traditional model checking� The direct solution has the same
complexity as traditional model checking and it becomes helpful when re�nement is
needed�

Reasoning about such richer models requires
�valued temporal logics ���� As
an enhancement of the standard
�valued semantics� ��� �
� introduce the thorough

�valued semantics� The thorough semantics gives more de�nite answers than the
standard
�valued semantics� at the expense of increasing the complexity of model
checking� Interpreting a formula according to the thorough semantics is equivalent
to solving two instances of generalized model checking� ��� �
� present algorithms and
complexity bounds for the generalized model checking problem for various temporal
logics and show that for propositional modal logic� CTL� or any branching time logic
including CTL� or the modal ��calculus� the generalized model checking problem has
the same complexity as satis�ability� which is higher than the complexity of traditional
model checking� In our work we use the standard
�valued semantics ���� which is less
precise� but enjoys a better complexity of the model checking algorithm� namely our
algorithm has linear running time both in the size of the model and in the size of the
formula�

It is shown in ��	� that building a
�valued abstraction� that can be used for model

checking any formula of the modal ��calculus� can be done using existing abstraction
techniques at the same computational cost as building a conservative ��valued ab�
straction� They adapt existing predicate and cartesian abstraction techniques to get
an abstraction that is monotonic� in the sense that adding predicates can only im�
prove its precision both state�wise and transition�wise �usual predicate abstraction of
Modal Transition Systems is not monotonic�� Cartesian abstraction has no signi�cant
cost overhead and is compatible with the standard incremental re�nement process for
adding more predicates� Such abstractions can be used within our framework as well�

���� also uses an abstraction mechanism based on
�valued logic� They verify LTL
properties of programs with dynamic allocation of objects �including thread objects�
and references to objects� Their approach is di�erent since it describes the model
using �rst order logic� In addition� it deals with LTL� whereas our work is aimed at
CTL properties�

Abstraction	Re�nement

Kurshan �
	� introduced Localization reduction with counterexample�guided re�ne�
ment �also called iterative abstraction�re�nement� for checking universal properties�
This is an iterative technique that starts with an abstraction of the model and tries
to verify the speci�cation on this abstraction� If a counterexample is found a re�
construction process is executed to determine if it is a valid one� If the �abstract�
counterexample is found to be spurious� the abstract model is re�ned to eliminate the
possibility of this counterexample in the next iteration� The reduction �abstraction�
used in their work is based on invisible variables� A similar approach is described in
���� Other researchers �
�
�� �� have also addressed localization reduction based on in�
visible variables� �
� presents algorithmic improvements to the localization reduction�
They present a symbolic algorithm for path reconstruction including incremental re�
�nement and backtracking� �
�� �� use SAT solvers in the counterexample analysis
of AGp properties� �
�� checks whether a counterexample is real or spurious with a
SAT checker� They use a combination of Integer Linear Programming and machine
learning techniques for re�ning the abstraction based on the counterexample� In ���
the abstract counterexamples obtained from model�checking the abstract model are
symbolically simulated on the concrete system using a SAT checker� If no concrete
counterexample is found� a subset of the invisible variables is reintroduced into the
system� They introduce two algorithms for identifying the relevant variables to be
reintroduced� These algorithms monitor the SAT checking phase in order to analyze
the impact of individual variables�

��� introduces iterative abstraction�re�nement which is similar to the localization
reduction� They use a more general abstraction based on variable clusters� �

�
extends the work in ���� by generalizing the notion of counterexamples� and thus
making this framework applicable to all ACTL properties�

���� proposes an abstraction re�nement framework for universal properties� using
predicate abstraction� They propose to use the error traces generated by model

�

checking to automatically re�ne the abstraction� The re�nement algorithm generates
new predicates that will be used to enrich the abstract state�space�

Localization reduction �
	�� or iterative abstraction�re�nement ��� provides a frame�
work for model checking of universal properties� with counterexample guided re�ne�
ment� In our work we consider abstraction�re�nement for full CTL and do not restrict
the discussion to universal properties� Other researchers have suggested abstraction�
re�nement mechanisms for various branching time temporal logics�

In �
��� the tearing paradigm is presented as a way to automatically abstract
behavior to obtain upper and lower bound approximations of a system� They present
algorithms that exploit the bounds to perform conservative ACTL or ECTL model
checking� Furthermore� an algorithm for false negative or false positive resolution is
suggested based on the theory of a lattice of approximations� resulting in increasingly
better approximations� Yet� their technique is restricted to ACTL or ECTL� In ��
� ���
the full propositional ��calculus is considered� In their abstraction� the concrete and
abstract systems share the same state space� The simpli�cation is based on taking
supersets and subsets of a given set with a more compact BDD representation �to
get under or over approximations�� Re�nement is based on a �goal set� of states
which require further resolution� In �
�� full CTL is handled� Their approximation
techniques enable them to avoid rechecking the entire model after each re�nement step
while guaranteeing completeness� However� the veri�ed system has to be described
as a cartesian product of machines� The initial abstraction considers only machines
that directly in�uence the formula and in each iteration the cone of in�uence is
extended in a BFS manner� In each iteration they compute both an upper and a
lower approximation to the states that satisfy the formula� �
� handles ACTL and
full CTL� Their abstraction collapses all states that satisfy the same subformulae of
� into an abstract state� Thus� computing the abstract model is at least as hard as
model checking� Instead� they use partial knowledge on the abstraction function and
gain information in each re�nement�

Our approach for abstraction�re�nement is designed for full CTL and is applicable
to any abstraction that can be described in the framework of abstract interpretation�
thus it is more general� It also has the advantage of being most suitable for using
results from previous iterations� resulting in an incremental algorithm�

Incremental Abstraction	Re�nement

���� introduces the concept of lazy abstraction to integrate and optimize the three
phases of the abstract�check�re�ne loop within the abstraction�re�nement framework�
Lazy abstraction continuously builds and re�nes a single abstract model on demand�
driven by the model checker� so that di�erent parts of the model may exhibit di�er�
ent degrees of precision� Predicate abstraction is used and predicates are added only
where necessary� The result is a nonuniform abstract model whose predicates change
from state to state� They present an algorithm for model checking safety properties
using lazy abstraction� The idea of lazy abstraction is also used in ����� Our incre�
mental algorithm generalizes the idea of Lazy abstraction to model checking of CTL

properties� where any abstraction that is described within the framework of abstract
interpretation can be used�

Counterexamples and Deductive Proofs

We consider the issue of producing counterexamples in case the model refutes the
examined property� A counterexample may be viewed as a proof of satisfaction for
the negation of the property� This makes counterexamples and proofs closely related�

��
�
��
�� ��� investigated the idea of generating temporal proofs from the infor�
mation gained by model checking� when the veri�cation succeeds� �
�� �
� generate
fully deductive proofs for LTL properties� when the veri�cation is done using general�
ized Buchi automata or just discrete systems ��
���� They use the information in the
product graph to generate a proof� �
�� develops a deductive proof system for verify�
ing branching time properties expressed in the ��calculus and show how to generate
a proof in this system from a model checking run� They use model checking that
is based on parity games or alternating automata� The proof can be used to detect
errors in a model checker and can allow integration of model checking with theorem
proving� ���� introduces support sets which are abstract encodings of the �evidence�
a model checker uses to justify its answer� They show how model checkers can be
modi�ed to compute support sets and how support sets can be used for generation
of diagnostic information for explaining negative results and certifying the results of
model checking �internal consistency��

Our approach is similar to these works in the sense that we use the information
gained during the run of a model checker� However� we use it to present a counterex�
ample� which is an extended sub�model� rather than a deductive proof� In this sense�
our approach is closer to �

� ���� �

� introduces tree�like counterexamples� which
are a general form of ACTL counterexamples �and in fact suitable for a universal
fragment of an extended branching time logic based on 	�regular temporal opera�
tors�� They also present symbolic algorithms to generate tree�like counterexamples
for ACTL speci�cations� Our work considers full CTL and is not limited to universal
properties� This is also the case in ����� where counterexamples are annotated with
additional proof steps� They develop a proof system and use a model checker as a
decision procedure for construction of a proof� Yet� they provide only limited informa�
tion in the case of counterexamples for ECTL and properties that use both universal
and existential quanti�ers� since proof �obligations� are used� In addition� unlike ����
that uses a model checker as a decision procedure in each step of the counterexample
�proof� generation� we use the information gained in a single run of the model checker
and produce a counterexample that is minimal and su�cient to explain refutation of
any CTL formula�

�

��� Organization

The rest of the thesis is organized as follows� In the next chapter we give the nec�
essary background for the game�based CTL model checking� abstractions and the

�valued semantics� Due to technical reasons� we then start with the description of
an annotated counterexample� Thus� in Chapter
 we describe how to construct an
annotated counterexample for full CTL and show that it is su�cient and minimal� In
Chapter � we extend the game�based model checking algorithm to abstract models�
using the
�valued semantics� We then describe how to produce a concrete anno�
tated counterexample using the abstract information in Chapter �� In Chapter � we
present our re�nement technique� leading to an incremental abstraction�re�nement
framework� which is described in Chapter �� Finally� we discuss some conclusions in
Chapter ��

�

�

Chapter �

Preliminaries

Let AP be a �nite set of atomic propositions� We de�ne the set Lit of literals over
AP to be the set Lit � AP 	 f
p � p � APg� i�e� for each p � AP � both p and
p
are in Lit� We identify

p with p�

De�nition ��� The Logic CTL �Computation Tree Logic� in negation normal form
is the set of formulae de�ned as follows	

� ��� true j false j l j � � � j � � � j A� j E�

where l ranges over Lit
 and � is de�ned by

� ��� X� j �U� j �V �

The �concrete� semantics of CTL formulae is de�ned with respect to a Kripke struc�
ture�

De�nition ��� A Kripke Structure is a tuple M � �S� S���� L�
 where S is a �nite
set of states
 S�
 S is a set of initial states
 �
 S � S is a transition relation

which must be total �i�e�
 for every state s � S there exists a state s� � S such that
s� s�� and L � S � �Lit is a labeling function that associates each state in S with a
subset of literals
 such that for each state s and atomic proposition p � AP
 we have
that exactly one of p and
p is in L�s�
 i�e� p � L�s� i�
p �� L�s��

A path in M is an in�nite sequence of states

 � s�� s�� � � � such that for every
i � 	
 si � si��� If s � s�
 then
 is said to be from s�

��M�s� j� �� � tt means that the CTL formula � is true in the state s of a Kripke
structure M � ��M�s� j� �� � � means that � is false in s� The formal de�nition
follows�

�

De�nition ���
��� The truth value � ftt��g of a CTL formula � in a state s of a
Kripke structure M � �S� S���� L�
 denoted ��M�s� j� ��
 is de�ned inductively as
follows	

��M�s� j� true� � tt
��M�s� j� false� � �
��M�s� j� l� � tt � l � L�s�
 where l � Lit
��M�s� j� �� � ��� � ��M�s� j� ��� � ��M�s� j� ���
��M�s� j� �� � ��� � ��M�s� j� ��� � ��M�s� j� ���
��M�s� j� A�� � tt � �
 from s � ��M�
� j� �� � tt
��M�s� j� E�� � tt � �
 from s � ��M�
� j� �� � tt

For a path
 � s�� s�� � � �
 ��M�
� j� �� is de�ned as follows�
��M�
� j� X�� � ��M�s�� j� ��
��M�
� j� ��U��� � tt � �k � 	 � ����M�sk� j� ��� � tt�

� ��j � k � ��M�sj� j� ��� � tt��
��M�
� j� ��V ��� � tt � �k � 	 � ���j � k � ��M�sj� j� ��� � ��

� ���M�sk� j� ��� � tt��

We say that M satis�es �
 denoted �M j� �� � tt
 if �s� � S� � ��M�s�� j� �� � tt�
Otherwise
 M refutes �
 denoted �M j� �� � ��

When M is clear from the context� we omit it from the notation and write �s j� ��
or �
 j� ���

De�nition ��� Given a CTL formula � of the form A���U���
 E���U���
 A���V ���
or E���V ���
 its expansion exp��� is de�ned as	
� � A���U��� 	 exp��� � f�� �� � ��� �AX��� �� �AX�� AX�g
� � E���U��� 	 exp��� � f�� �� � ��� � EX��� �� � EX�� EX�g
� � A���V ��� 	 exp��� � f�� �� � ��� �AX��� �� �AX�� AX�g
� � E���V ��� 	 exp��� � f�� �� � ��� � EX��� �� � EX�� EX�g

��� Game�based Model Checking Algorithm

In this section we present the Game�theoretic approach to Model Checking of CTL
formulae in a �concrete� Kripke structure ����
��� Given a Kripke structure M �
�S� S���� L� and a CTL formula �� the model checking game of M and � is de�ned
as follows� Its board is the Cartesian product S � sub��� of the set of states S and
the set of subformulae sub���� where sub��� is de�ned by�
if � � true� false or l where l � Lit then sub��� � f�g�
if � � �� � �� or �� � �� then sub��� � f�g 	 sub���� 	 sub�����
if � � AX�� or EX�� then sub��� � f�g 	 sub�����
if � � A���U���� E���U���� A���V ��� or E���V ��� then sub��� � exp��� 	
sub���� 	 sub�����

�

Given a state s � S� the model checking game is played by two players� �belard�
the refuter who wants to show that ��M�s� j� �� � �� and �loise� the prover who
wants to show that ��M�s� j� �� � tt� A single play from �s� �� is a �possibly
in�nite� sequence C� �p� C� �p� C� �p� ��� of con�gurations� where C� � �s� ���
Ci � S � sub��� and pi � f�belard��loiseg� The subformula in Ci determines which
player pi makes the next move�

The possible moves at each step are

� Ci � �s� false�� Ci � �s� true�� or Ci � �s� l� where l � Lit� the play is �nished�
Such con�gurations are called terminal con�gurations�

�� Ci � �s�AX��� �belard chooses a transition s� s� in M and Ci�� � �s�� ���

� Ci � �s�EX��� �loise chooses a transition s� s� in M and Ci�� � �s�� ���

�� Ci � �s� �� � ���� �belard chooses j � f
� �g and Ci�� � �s� �j��

�� Ci � �s� �� � ���� �loise chooses j � f
� �g and Ci�� � �s� �j��

�� Ci � �s�A���U����� Ci�� � �s� �� � ��� �AXA���U������

�� Ci � �s�E���U����� Ci�� � �s� �� � ��� � EXE���U������

�� Ci � �s�A���V ����� Ci�� � �s� �� � ��� �AXA���V ������

�� Ci � �s�E���V ����� Ci�� � �s� �� � ��� � EXE���V ������

In con�gurations ��� the move is deterministic� thus any player can make the
move�

A play is maximal i� it is in�nite or ends in a terminal con�guration� In ���� it
has been shown that a play is in�nite i� there is exactly one subformula of the form
AU � EU � AV or EV that occurs in�nitely often in the play� Such a subformula is
called a witness�

Winning Criteria
 �belard wins a �maximal� play i� one of the following holds�

� the play is �nite and ends in a terminal con�guration of the form Ci � �s� false��
or Ci � �s� l�� where l �� L�s��

�� the play is in�nite and the witness is of the form AU or EU �

�loise wins the �maximal� play otherwise� i�e� i� one of the following holds�

� the play is �nite and ends in a terminal con�guration of the form Ci � �s� true��
or Ci � �s� l�� where l � L�s��

�� the play is in�nite and the witness is of the form AV or EV �

�

The model checking game from �s� �� consists of all the possible plays from �s� ���
A strategy is a set of rules for a player� telling him how to move in the current
con�guration� A winning strategy from �s� �� is a set of rules allowing the player to
win every play starting at �s� �� if he plays by the rules� The following theorem tells
us that the model checking problem can be reduced to the problem of �nding which
player has a winning strategy in the model checking game�

Theorem ���
��� Let M be a Kripke structure and � a CTL formula� Then
 for
each s � S	

�� ��M�s� j� �� � tt i� �loise has a winning strategy starting at �s� ���

�� ��M�s� j� �� � � i� �belard has a winning strategy starting at �s� ���

The model checking algorithm for the evaluation of �M j� �� consists of two
parts� First� it constructs �part of� the game�graph� The game�graph is the graph
whose nodes are the elements �con�gurations� of the game board and whose edges
are the possible moves of the players� It captures all the possible plays of a game
�from any con�guration�� The evaluation of the truth value of � in M is then done
in the second phase of the algorithm by coloring the game�graph�

����� Game�Graph Construction and its Properties

The truth value of � in M depends on its truth value in the initial states of M �
Thus� we are interested in plays that start from con�gurations in S� � f�g� referred
to as initial con�gurations� The subgraph of the game�graph that is reachable from
the initial con�gurations S� � f�g is constructed in a BFS or DFS manner� The
construction starts from the initial con�gurations �nodes� and applies each possible
move� by the previously described rules� to get the successors in the game�graph of
each new node� The result is denoted GM�� � �N�E�� where N
 S � sub���� The
nodes �con�gurations� of the game�graph can be classi�ed into three types�

� Terminal con�gurations are leaves in the game�graph�

�� Nodes whose formula is of the form �� � �� or AX�� are ��nodes�

� Nodes whose formula is of the form �� � �� or EX�� are ��nodes�

Nodes whose formula is of the form AU�EU�AV�EV can be considered either ��nodes
or ��nodes� Sometimes we further distinguish between nodes whose formula is of the
form AX� �EX�� and other ��nodes ���nodes� by referring to them as AX�nodes
�EX�nodes�� The edges in the game�graph are also divided to two types�

� Edges that originate in AX�nodes or EX�nodes are progress edges that re�ect
real transitions of the Kripke structure�

�	

� Other edges are auxiliary edges�

An important property of the game�graph is described by the following lemma�

Lemma ��
 Let B be a non trivial strongly connected component �SCC� in a game�
graph �a non�trivial SCC contains at least one edge�� Then the set of formulae that
are associated with the nodes in B is exactly one of the sets exp���
 where � �
fA���U���� E���U���� A���V ���� E���V ���g�

Proof
 By the rules of the game� which determine the edges in the game�graph� we
have that the sons of a node n � �s� �� in the game�graph are either associated with
strict subformulae of �� or with expansions of it in case � is an AU�AV�EU�EV
formula� Therefore� a non�trivial SCC B� which contains cycles� must have at least
one node n in it that is associated with an AU�AV�EU�EV formula �otherwise we
have a loop where each formula is a strict subformula of the previous one� which is
impossible�� Consider the case where the node n has the formula � � A���U����
Other cases are similar� We prove that in this case the set of formulae that are
associated with the nodes in B is exactly exp�A���U�����

First� we prove that B cannot contain additional formulae� Let n� � �s�� ��� be
a node in B� other than n� We show that �� � exp�A���U����� By the rules of the
game� we have that the descendents of a node n�� � �s��� ���� in the game�graph are
associated with subformulae from sub������ Since n� lies on the same SCC as n� we
have that n� is a descendent of n� and thus �� � sub���� Since � � A���U���� we
have that sub��� � exp�A���U����	 sub����	 sub����� It remains to show that �� ��
sub���� 	 sub����� thus it must be the case that �� � exp�A���U����� Suppose the
contrary� i�e� �� � sub���� 	 sub����� This implies that sub����
 sub���� 	 sub�����
Since n is also a descendent of n�� we have that � � sub����� i�e� � � sub����	sub�����
Thus � must obey one of the following�

� j�j � j��j or j�j � j��j� or�

�� � is of the form ���
� � �

�
�� or ��

�
� � �

�
�� or AX�� �results from expansion��

Obviously� � � A���U��� obeys none of the above� Contradiction�

To complete the proof� it remains to show that B must contain all the formulae
in exp�A���U����� This is clear from the structure of the game�graph� if one of these
formulae were missing� no loop could be formed in contradiction to the fact that B
is a non�trivial SCC� �

Based on Lemma ���� we generalize the notion of a witness in the context of the
game�graph� The formula � such that exp��� is the set of formulae in a non�trivial
SCC is called a witness� Each non�trivial SCC is classi�ed as an AU � AV � EU � or
EV SCC� based on its witness�

�

����� Coloring Algorithm

The following Coloring Algorithm ��� labels each node �con�guration� in the game�
graph GM�� by T or F � depending on whether �loise or �belard has a winning
strategy for the game that starts at that node�

The game�graph is partitioned into its Maximal Strongly Connected Components
�MSCCs�� denoted Qi�s� and an order � is determined on the Qi�s� such that an edge
�n� n��� where n � Qi and n� � Qj� exists in the game�graph only if Qj � Qi� Such
an order exists because the MSCCs of the game�graph form a directed acyclic graph
�DAG�� It can be extended to a total order � arbitrarily�

The coloring algorithm processes the Qi�s according to the determined order�
bottom�up� Let Qi be the smallest MSCC with respect to � that is not yet fully
colored� Hence� every outgoing edge of a node in Qi leads either to a colored node or
to a node in the same set� Qi� The nodes of Qi are colored as follows�

� Terminal nodes inQi are colored by T if �loise wins in them� and by F otherwise�

�� An ��node is colored by T if it has a son that is colored T � and by F if all its
sons are colored F �

� An ��node is colored by T if all its sons are colored T � and by F if it has a son
that is colored F �

�� All the nodes in Qi that remain uncolored after the propagation of these rules
are colored according to the witness in Qi �by Lemma ��� there exists exactly
one such witness�� They are colored by F if the witness is of the form AU or
EU � and are colored by T if the witness is of the form AV or EV �

The result of the coloring algorithm is a coloring function � � N � fT�Fg�

Theorem ���
��� Let GM�� be a game�graph and let n be a node in the game�graph

then	

�� ��n� � T i� �loise has a winning strategy starting at n�

�� ��n� � F i� �belard has a winning strategy starting at n�

As a conclusion of Theorem ��� and Theorem ���� we get the following theorem�

Theorem ���
��� Let M be a Kripke structure and � a CTL formula� Then
 for
each n � �s� ��� � GM��	

�� ��M�s� j� ��� � tt i� n � �s� ��� is colored by T �

�� ��M�s� j� ��� � � i� n � �s� ��� is colored by F �

Based on Theorem ��� we conclude that if every initial con�guration n� � S��f�g
is colored by T � then �M j� �� � tt� Otherwise� �M j� �� � ��

��

��� Abstraction

In this section we present abstract models �for CTL� and their relation to concrete
models� So far� we considered Kripke structures that represent concrete models� and
discussed the semantics of CTL formulae with respect to them� However� concrete
Kripke structures may be very large� Consequently� their model checking problem
becomes infeasible due to the state explosion problem� A powerful solution is based
on using abstractions of the concrete model�

It turns out that in order to guarantee preservation of CTL formulae from abstract
models to concrete models� we need to introduce two transition relations �

�
���
preservation of universal properties requires an over�approximation� whereas preser�
vation of existential properties requires an under�approximation� This is accomplished
by using Kripke Modal Transition Systems ���� �
��

De�nition ��� A Kripke Modal Transition System �KMTS� is a tuple M � �S� S��
must

���
may

��� L�
 where S is a �nite set of states
 S�
 S is a set of initial states

must

��

S�S and

may

��
 S�S are transition relations such that the relation
may

�� is total and
must

��

may

��
 and L � S � �Lit is a labeling function that associates each state in S with
literals from Lit
 such that for each state s and atomic proposition p � AP
 at most
one of p and
p is in L�s��

A must �may� path in M is a maximal sequence of states

 � s�� s�� � � � such that

for every two consecutive states si� si�� in

 we have that si
must

�� si�� �si
may

�� si����
The maximality is in the sense that
 cannot be extended by any other transition of
the same type� If s � s�
 then
 is said to be from s�

Transitions in
must
�� are called must transitions� and transitions in

may
�� are called may

transitions� Note that since the transition relation
may
�� is total� then every may path

is in�nite �due to the maximality�� whereas a �maximal�must path can be �nite� since

the transition relation
must
�� is not necessarily total� This means that although every

must�transition is also a may�transition �by de�nition�� the same does not necessarily
hold for paths� That is� a �nite must path is not considered a may path� because it
is not maximal in terms of may transitions� Since we now consider �nite paths in
addition to in�nite paths� we need the following de�nition�

De�nition ���� Let
 be a must or may path� The length of

 denoted j
j
 is
de�ned to be the number of transitions in
� That is

j
j �

�
� if
 is in�nite
n if
 is �nite and of the form s�� � � � � sn

Note� that a Kripke structure can be viewed as a KMTS where � �
must
���

may
���

and for each state s and atomic proposition p � AP � we have that exactly one of p
and
p is in L�s��

�

We consider abstractions that are done by collapsing sets of concrete states �from
SC� into single abstract states �in SA�� Such abstractions can be described in the
framework of Abstract Interpretation �
��
���

De�nition ����
��
 ��� �� � C � A� � � A� C� is a Galois connection from �C���
to �A�v� i� ��� � and � are total and monotonic
 ��� for all c � C
 � ���c� � c
 and
��� for all a � A
 � � ��a� v a�

Let MC � �SC � S�C��� LC� be a �concrete� Kripke structure� Let �SA�v� be
a poset of abstract states and �� � SA � �SC � � � �SC � SA� a Galois connection
from ��SC �
� to �SA�v�� that determines its relation to the concrete states� � is the
concretization function that maps each abstract state to the set of concrete states
that it represents� � is the abstraction function that maps each set of concrete states
to the abstract state that represents it�

An abstract model MA � �SA� S�A�
must
���

may
��� LA� can then be de�ned as follows�

The set of initial abstract states S�A is built such that each concrete initial state is
represented by an abstract initial state and there are no additional initial abstract
states� i�e� s�a � S�A i� there exists s�c � S�C such that s�c � ��s�a�� The requirement
that there are no additional initial abstract states is needed to ensure preservation of
falsity in themodel� as described in the second part of Theorem ��
�� This requirement
is not needed for state�wise preservation� described in the �rst part of the theorem�

The labeling of an abstract state is done according to the labeling of all the
concrete states that it represents� An abstract state sa is labeled by l � Lit� only if
all the concrete states that are represented by it are labeled by l as well� Therefore�
it is possible that neither p nor
p are in LA�sa��

The may�transitions in an abstract model are computed such that every concrete
transition between two states is represented by them� if �sc � ��sa� and �s�c � ��s�a�
such that sc � s�c� then there exists a may�transition sa

may
�� s�a� Note that it is

possible that there are additional may�transitions as well� The must �transitions� on
the other hand� represent concrete transitions that are common to all the concrete
states that are represented by the origin abstract state� a must�transition sa

must
�� s�a

exists only if �sc � ��sa� we have that �s�c � ��s�a� such that sc � s�c� Note that
it is possible that there are less must�transitions than allowed by this rule� That is�
the may and must transitions do not have to be accurate� as long as they maintain
these conditions� Also note� that since the concrete transition relation is total� then
the resulting abstract transition relation

may
�� is also total� as required� The abstract

transition relation
must
��� on the other hand� is not necessarily total� In fact� it can

even be empty�

Other constructions of abstract models� based on Galois connections� can be found
in �
�� �	��

The resulting abstract model is more abstract thanMC as de�ned by the following
de�nition� which formalizes the relation between an abstract model and a concrete
model that guarantees preservation of CTL formulae�

��

De�nition ����
��
 ��
 ��� Let MC � �SC� S�C��� LC� be a concrete Kripke struc�

ture
 and let MA � �SA� S�A�
must

���
may

��� LA�
 be an abstract KMTS� We say that
H
 SC � SA is a mixed simulation from MC to MA if �sc� sa� � H implies the
following	

�� LA�sa�
 LC�sc��

�� if sc � s�c
 then there is some s�a � SA such that sa
may

�� s�a and �s�c� s
�

a� � H�

�� if sa
must

�� s�a
 then there is some s�c � SC such that sc � s�c and �s�c� s
�

a� � H�

If there exists a mixed simulation H such that for each sc � S�C there exists sa � S�A

such that �sc� sa� � H and for each sa � S�A there exists sc � S�C such that �sc� sa� �
H
 we say that MA is more abstract than MC
 denoted MC �MA�

The mixed simulation relation H
 SC � SA from MC to an abstract model which
is constructed based on a Galois connection as described above is induced by the
concretization function as follows� H is de�ned such that �sc� sa� � H i� sc � ��sa��
The results presented in this thesis are applicable to any abstract model that is more
abstract than the concrete model MC with respect to the mixed simulation relation�
and are not limited to our construction of an abstract model�

���� de�nes the ��valued semantics of a CTL formula over a KMTS� The
�valued
semantics is designed to be conservative in the sense that it preserves both satisfaction
�tt� and refutation ��� of a formula from the abstract model to the concrete one�
However� a new truth value� � is introduced� If the truth value of a formula in an
abstract model is �� the meaning is that its value over the concrete model is not
known and can be either tt or ��

De�nition ���� The ��valued semantics of a CTL formula � in a state s of a KMTS

M � �S� S��
must

���
may

��� L�
 denoted ��M�s� j�
�

� ��
 is de�ned inductively as follows	

��

��M�s� j�
�

� true� � tt

��M�s� j�
�

� false� � �

��M�s� j�
�

� l� �

��
�

tt if l � L�s�
� if
l � L�s�
� otherwise

��M�s� j�
�

� �� � ��� �

���
��

tt if ��M�s� j�
�

� ��� � tt and ��M�s� j�
�

� ��� � tt

� if ��M�s� j�
�

� ��� � � or ��M�s� j�
�

� ��� � �
� otherwise

��M�s� j�
�

� �� � ��� �

���
��

tt if ��M�s� j�
�

� ��� � tt or ��M�s� j�
�

� ��� � tt

� if ��M�s� j�
�

� ��� � � and ��M�s� j�
�

� ��� � �
� otherwise

��M�s� j�
�

� A�� �

�����
����

tt if for each may�path
 from s � ��M�
� j�
�

� �� � tt
� if there exists a must�path
 from s such that �

��M�
� j�
�

� �� � �
� otherwise

��M�s� j�
�

� E�� �

�����
����

tt if there exists a must�path
 from s such that �

��M�
� j�
�

� �� � tt

� if for each may�path
 from s � ��M�
� j�
�

� �� � �
� otherwise

For a may or must path
 � s�� s�� � � �
 ��M�
� j�
�

� �� is de�ned as follows�

��M�
� j�
�

� X�� �

�
��M�s�� j�

�

� �� if j
j
 	
� otherwise

��M�
� j�
�

� ��U��� �

����������
���������

tt if � 	 � k � j
j � ����M�sk� j�
�

� ��� � tt�

���j � k � ��M�sj� j�
�

� ��� � tt��

� if
�
� 	 � k � j
j � ���j � k � ��M�sj� j�

�

� ��� �� ��

� ���M�sk� j�
�

� ��� � ���
�

�
�
�� 	 � k � j
j � ��M�sk� j�

�

� ��� �� ��� j
j ��
�

� otherwise

��M�
� j�
�

� ��V ��� �

����������
���������

tt if
�
� 	 � k � j
j � ���j � k � ��M�sj� j�

�

� ��� �� tt�

� ���M�sk� j�
�

� ��� � tt��
�

�
�
�� 	 � k � j
j � ��M�sk� j�

�

� ��� �� tt�� j
j ��
�

� if � 	 � k � j
j � ����M�sk� j�
�

� ��� � ��

���j � k � ��M�sj� j�
�

� ��� � ���
� otherwise

We say that �M j�
�

� �� � tt if �s� � S� � ��M�s�� j�
�

� �� � tt� We say that �M j�
�

� �� � �

if �s� � S� � ��M�s�� j�
�

� �� � �� Otherwise
 �M j�
�

� �� ���

Intuitively� the
�valued semantics is de�ned such that a formula is evaluated to
tt or � only when the abstract information su�ces to determine such a de�nite truth

��

value that will hold in the represented concrete model� Therefore� truth of universal
formulae �of the form A�� is examined along all the may paths �which represent at
least all the concrete paths�� whereas falsity of such formulae is shown by a single must
path �which represents a de�nite concrete path�� and dually for existential formulae
�of the form E��� Similar arguments apply to the evaluation of path formulae of
the form X�� ��U��� ��V ��� For example� in order to say that the truth value of
��U�� in a path is true� �� needs to become true within the path� In order to say
that ��U�� is false in the path we require that at every position� if �� is not false
yet� then �� is still false �the eventuality is not ful�lled�� and we also require that if
�� is never false� then the path is in�nite� The latter requirement is needed because
if we have a �nite path where �� is never false �and �� is always false� based on
the �rst requirement� then we cannot claim that the truth value of ��U�� is false�
The reason is that real concrete paths are in�nite� thus in the concrete model that is
represented by the abstract KMTS there is still �hope� that �� will become true in
the future �and the eventuality will be ful�lled�� although it is not re�ected by the
abstract path� Since �� has not become false yet� this can make the until formula
true in the concrete model� This leaves us with two possibilities for falsity of ��U���
either �� becomes false within the path �when �� is still false as well�� or the path is
in�nite and �� is false all along� Yet� if �� is always false along a �nite path� then
this information alone is not su�cient in order to say that the until formula is false�

The preservation of CTL formulae from an abstract model to a concrete model is
guaranteed by the following theorem�

Theorem ����
��� Let H
 SC � SA be a mixed simulation relation from a Kripke
structure MC to a KMTS MA� Then for every �sc� sa� � H and every CTL formula
�
 we have that	

�� ��MA� sa� j�
�

� �� � tt implies that ��MC� sc� j� �� � tt�

�� ��MA� sa� j�
�

� �� � � implies that ��MC � sc� j� �� � ��

We conclude that if MC �MA
 then for every CTL formula �
 we have that	

�� �MA j�
�

� �� � tt implies that �MC j� �� � tt�

�� �MA j�
�

� �� � � implies that �MC j� �� � ��

��

��

Chapter �

Using Games to Produce

Annotated Counterexamples

In this chapter we consider the concrete semantics of CTL� We refer to �concrete�
Kripke structures and describe how to construct an annotated counterexample from a
game�graph for M and �� as well as the information gained by the coloring algorithm�
in case M does not satisfy ��

First� the coloring algorithm described in Chapter ��
 is changed to identify and
remember the cause of the coloring of an ��node n that is colored by F � If n was
colored by its sons� then cause�n� is the son that was the �rst to be colored by F � If
n was colored due to a witness� then cause�n� is chosen to be one of its sons which
resides on the same SCC and was colored by witness as well� There must exist such
a son� otherwise n would be colored by its sons� Note that cause�n� depends on the
execution of the coloring algorithm�

Given a game�graph GM��� for a Kripke structure M and a CTL formula ��
and given its coloring � and an initial node n� � �s�� �� such that ��n�� � F � the
following DFS�BFS�like algorithm �nds an annotated counterexample over the nodes
of GM��� The computed annotated counterexample� denoted CM�� and in short C�
is a subgraph of the given game�graph GM��� colored by F �

Algorithm ComputeCounter

Initially� new � f�s�� ��g� C � ��
while new �� �
n � remove �new�

� if n was already handled � continue�

� if n is a terminal node � continue� n� sons � � �n

� if n is an ��node � for each son n� of n add n� to new and the edge �n� n�� to C�

� if n is an ��node � add cause�n� to new and the edge �n� cause�n�� to C�

��

M:

�s� q � �p � AXA�pV q���

�s�� p�

�s� q�

�s�� A�pV q��

�s�� q � �p � AXA�pV q���

�s�� q�

�s� p�

�s� p �AXA�pV q��

�s�� AXA�pV q��

�s�� p � AXA�pV q��

�s�AXA�pV q��

�s�A�pV q��

s

s�

�p� q

�p��q

�s� q � �p �AXA�pV q���

�s�� A�pV q��

�s�� q � �p � AXA�pV q���

�s�� q�

�s�A�pV q��

�s� p� �s�AXA�pV q��

�s� p � AXA�pV q��

�s�A�pV q��

�s� p � AXA�pV q��

�s�AXA�pV q���s� p�

�s� q � �p � AXA�pV q���

�a� �b� �c�

Figure
�
� �a� A colored game�graph for M and � � A�pV q�� where white nodes
are colored by T � grey nodes are colored by F and bold edges point to the cause of
an ��node� �b� Its annotated counterexample computed by ComputeCounter� and
�c� A possible result of ComputeCounter without the use of the cause in ��nodes�

Note� that we construct C by adding edges to it� with the meaning that C consists
of the corresponding nodes connected by these edges�

Complexity
 Clearly� the construction of the annotated counterexample has a linear
running time in the size of its result� The result is linear �in the worst case� with
respect to the size of the game�graph GM��� The latter is bounded by the size of the
underlying Kripke structure times the length of the CTL formula� i�e� O�jM j � j�j��

The computed annotated counterexample can be viewed as the part of the win�
ning strategy of the refuter that is su�cient to guarantee its victory� We formalize
and prove this notion in the next section� Intuitively speaking� it is indeed a coun�
terexample in the sense that it points out the reasons for ��s refutation on the model�
Each node in the computed annotated counterexample C is marked by a state s and
by a subformula ��� such that ���s� ���� � F �as claimed by Lemma
���� thus by
Theorem ���� �s j� ��� � �� The edges point out the reason �cause� for the refutation
of a certain subformula in a certain state� the refutation in an ��node is shown by
refutation in one of its sons� whereas the refutation in an ��node is shown by all
its sons� Hence� by analyzing the computed annotated counterexample� one can un�
derstand why each subformula� and in particular the main formula� is refuted in the
relevant state�s��

Note� that for the correctness of the algorithm ComputeCounter and its result� it
is mandatory to choose for an ��node the son that caused the coloring of the node�
and not any son that was colored by F � The following example demonstrates the
importance of the use of the cause�

	

Example ��� Figure
�
 presents an example for computing an annotated coun�
terexample using the algorithm ComputeCounter and demonstrates the necessity of
choosing cause�n� as a son of an ��node n when computing an annotated coun�
terexample� Figure
�
�a� presents a colored game�graph G for the model M and
� � A�pV q�� where grey nodes are colored by F � whereas white nodes are colored by
T � and bold edges point to the cause of an ��node� The coloring algorithm that re�
sults in this coloring partitions G into �ve MSCCS� Q� � f�s� q�g� Q� � f�s� p�g� Q� �
f�s�� q�g� Q� � f�s�� p�g and Q� consists of the rest of the nodes� The sets Q� �Q��
that have no outgoing edges� can be ordered arbitrarily amongst themselves� but
they are all smaller than Q�� since Q� has an outgoing edge to each of them� Thus
the terminal nodes in Q� � Q� are colored before Q� is handled� When Q� is pro�
cessed� �s�� q � �p � AXA�pV q��� is colored F based on �s�� q� �its cause�� This
causes �s�� A�pV q��� �s�AXA�pV q��� �s� p � AXA�pV q��� �s� q � �p � AXA�pV q����
�s�A�pV q��� �s�� AXA�pV q�� and �s�� p�AXA�pV q�� �in this order� to be colored F
as well� Thus� �s�� A�pV q�� is the cause of �s�AXA�pV q�� and �s� p � AXA�pV q��
is the cause of �s� q � �p � AXA�pV q���� Furthermore� the initial node �s�A�pV q��
is colored by F � i�e� �s j� A�pV q�� � �� Figure
�
�b� presents the annotated coun�
terexample computed by ComputeCounter� where it can be seen that the reason for
refutation is the existence of the path s� s�� � � � and particularly its pre�x s� s�� where
q is not satis�ed by s�� although it was not �released� by p �p does not hold in s��
On the other hand� Figure
�
�c� presents a subgraph of G� that is computed by a
variation of ComputeCounter� where for an ��node� an arbitrary son that is colored
by F is chosen� In the example� the node �s�A�pV q�� was chosen as a refuting son of
�s�AXA�pV q�� rather than �s�� A�pV q��� which is its cause� The resulting subgraph
implies that the refutation of A�pV q� results from the path s� s� � � � � However� this
path satis�es pV q� such that it does not prove refutation� Thus� this is not a �good�
counterexample� This will be formally shown in Chapter
��� where the notion of an
annotated counterexample is formalized�

��� Properties of the Annotated Counterexample

The annotated counterexample produced by ComputeCounter� denoted C� is a sub�
graph of the game�graph� and as such it has the properties of the game�graph� In
addition� it has the following properties�

Lemma ��� For each node n � C
 we have that ��n� � F �

Proof
 By its construction� all the nodes in the computed annotated counterexample
C are colored by F � This can be shown by induction on the construction of C� when
we rely on the property of � that an ��node is colored by F i� all its sons are colored
by F and an ��node is colored by F i� at least one of its sons is colored by F � This
property is obviously correct when the coloring does not use a witness� but it is also
true when a witness causes the coloring� �

Lemma ��� C contains non�trivial SCCs if and only if at least one of the nodes in
the SCC was colored due to a witness�

Proof
 Clearly� if the coloring of a node that appears in the computed annotated
counterexampleC was based on a witness� then this node resides on a non�trivial SCC
that will be added to C� This results from the following properties� For an ��node all
the sons are added to the annotated counterexample and in particular the one�s� in
the non�trivial SCC� For an ��node that is colored by a witness� its cause is added to
the annotated counterexample� where the cause is a son within the non�trivial SCC
that is also colored by a witness� Thus� a cycle is formed�

To prove the second implication� let us look at a non trivial SCC in C� All the
nodes in it are colored by F � Assume that all of them were colored due to their
sons� Consider the �rst node on the SCC that was colored and denote it by n�� Since
it is the �rst� it must be colored by F based on its sons outside the SCC� Yet� it
obviously has sons within the SCC too� Thus it must be an ��node� The reason for
this conclusion is that only ��nodes can be colored by F based on part of their sons
only� However� an ��node has exactly one son in C� and by construction this son
is its cause� i�e� the node that caused its coloring� which is outside the SCC by our
assumption� Thus� it is not possible that n� has another son in C within the SCC�
which contradicts the fact that n� resides on the SCC� We conclude that at least one
of the nodes in the SCC was colored due to a witness� �

From Lemma
�� and Lemma
�
 we have the following conclusion�

Corollary ��� Non�trivial SCCs in C are either AU�SCCs or EU�SCCs�

Proof
 Lemma
�
 tells us that if a non�trivial SCC appears in C then at least one
of its nodes was colored by a witness� On the other hand� by Lemma
�� we know
that all the nodes in C are colored by F � and by the coloring algorithm we know that
only nodes in AU or EU SCCs are colored by F due to witness� Thus� the corollary
is implied� �

The property of C described in Lemma
�
� along with Corollary
��� imply that
non�trivial SCCs appear in C i� at least one of their nodes was colored due to an
AU or EU witness� That is� any non�trivial SCC that appears in the annotated
counterexample indicates a refutation of the U operator� which results� at least partly�
from an in�nite path� where weak until� is satis�ed� but not strong until �which is
used in our work�� This intuition results from the properties of the coloring algorithm�
If a node is colored due to a witness� this means that �nite information alone is not
su�cient to cause its color� In the case of A���U���� this means that there is no
�nite �pre�x of a� path where �� ceases being satis�ed before �� is satis�ed� and the
refutation results from an in�nite path where �� is always satis�ed� but �� is never
satis�ed� In case of E���U���� this means that the refutation results� at least partly�
from in�nite evidence of this form and not only from �nite �pre�xes of� paths�

�The weak version of the until operator� ��W��� does not guarantee that �� holds eventually�

�

Since the algorithm ComputeCounter is designed to �nd counterexamples for full
CTL� and in particular for existential properties� its result C has a more complex
structure than counterexamples that are used for universal properties� Yet� the fol�
lowing Lemma shows that when applied to formulae in ACTL� where only universal
properties exist� the result of ComputeCounter has a simpler structure� In fact� it has
a tree�like structure� as de�ned in �

�� It di�ers from the counterexamples presented
in �

� only in the existence of annotations�

Lemma ��� Non�trivial AU�SCCs in C are always simple cycles
 rather than general
SCCs�

Proof
 Consider a non�trivial AU �SCC in C� By the construction of C� we have
that ��nodes in the SCC have a single son in C and in particular in the SCC� Apart
from ��nodes� such an SCC contains only ��nodes� that are not EX�nodes� This
is because by Lemma ���� the game�graph� and C in particular� have the property
that the set of formulae in a non�trivial AU �SCC is exactly exp�A���U����� for some
A���U��� � sub���� This property also implies that ��nodes other than EX�nodes
in such an SCC also have at most one son within the SCC� since such nodes are of
the form �s�� �� � ��� �AXA���U����� and have two sons in the game�graph� one of
which is with the subformula �� �� exp�A���U���� and thus clearly does not belong
to the SCC� Thus� every node within a non�trivial AU �SCC in C has exactly one son
within the SCC and the claim is implied� �

��� The Annotated Counterexample is Su�cient

and Minimal

Up to now we have provided an intuitive explanation for the information that is
captured in an annotated counterexample� In this section we �rst informally describe
our requirements of a counterexample� We then formalize these requirements for
annotated counterexamples and show that the result of algorithm ComputeCounter

ful�lls them� Generally speaking� for a sub�model to be a counterexample� it is
expected to�

� falsify the given formula�

�� hold �enough� information to explain why the original model does not satisfy
the formula�

� be minimal� in the sense that every state and transition are needed to maintain

 and ��

The minimality that is expected of the counterexample is in the sense that we wish to
have precise counterexamples� without redundancies� For example� if a �nite pre�x

of a path su�ces to prove the refutation� we would like to see only this pre�x rather
than the entire �in�nite� path�

The annotated counterexample is not a sub�model but a subgraph of the game�
graph� Hence� the above requirements need to be adapted accordingly� Rephrasing
these requirements in terms of a subgraph of the game�graph leads to the following
expectations of an annotated counterexample� which correspond to the above three�

� It contains an initial node n� which is colored F by ��

�� It holds �enough� information to explain why n� is colored by F �

� It is minimal� in the sense that every node and edge are needed to maintain the
previous requirements�

In order to formalize the second requirement with respect to an annotated coun�
terexample� we need the following de�nitions�

De�nition ��
 Let G � �N�E� be a game�graph and let A be a subgraph of G� The
partial coloring algorithm of G with respect to A works as follows� It is given an
initial coloring function �I � N nA� fT�Fg and computes a coloring function for G�
The algorithm is identical to the �original� coloring algorithm
 except for the addition
of the following rule	

� A node n � N nA is colored by �I�n� and its color is not changed as a result of
other rules�

Any result of the partial coloring algorithm of G with respect to A is called a partial
coloring function of G with respect to A
 denoted � � N � fT�Fg�

As opposed to the usual coloring algorithm that has only one possible result�
referred to as the coloring function of the game�graph� the partial coloring algorithm
has several possible results� depending on the initial coloring function �I� Each one
of them is considered a partial coloring function of the game�graph w�r�t A� By
de�nition� the usual coloring algorithm is a partial coloring algorithm of G with
respect to G�

De�nition ��� Let G be a game�graph and let � be the result of the coloring algorithm
on G� A subgraph A of G is independent of G if for each � that is a partial coloring
function of G with respect to A
 and for each n � A
 we have that ��n� � ��n��

Basically� a subgraph is independent of a game�graph if its coloring is absolute in
the sense that every completion of its coloring to the full game�graph does not change
the color of any node in it� In fact� one may notice that the colors of terminal nodes
determine the coloring function of the full game�graph� Thus� to capture this notion�

�

it su�ces to refer to a partial coloring algorithm that allows arbitrary coloring of
the terminal nodes in N n A� but maintains the consistency of the coloring of the
rest of the nodes� However� for simplicity� we strengthen the de�nition and allow
non�deterministic coloring of all the nodes in N nA�

The notion of an independent subgraph captures our second expectation of an
annotated counterexample� since the coloring of such a subgraph determines in a
de�nite manner the coloring of any node within it� and in particular n�� such that
other parts of the game�graph can not a�ect or change it� Thus� such a subgraph
holds su�cient information for explaining the color of the initial node n��

Having formalized the second requirement� we can now formalize the notion of an
annotated counterexample� Yet� before doing so� we note that since we are dealing
with formulae in negation normal form� the properties of the game�graph imply that
a subgraph that ful�lls the three requirements described above is in fact entirely
colored by F �rather than just having an initial node n� that is colored by F �� This
is expressed by the following lemma�

Lemma ��� Let G be a game�graph
 � its coloring function and A a subgraph of G
with the following properties	 ��� It contains an initial node n�
 colored F by �
 ���
It is independent of G
 and ��� It is minimal� Then
 for every n � A	 ��n� � F �

Proof
 Assume to the contrary that A contains at least one node that is colored
T by �� We show that removing all the nodes that are colored T from A will not
a�ect
 and �� Thus� it will result in a strict subgraph of A that satis�es
 and �� in
contradiction to the minimality of A �
��

Let A�
 A be the subgraph of G that results from removing all the nodes colored
by T �and the corresponding edges� from A� Clearly� n� is not one of these nodes
since ��n�� � F �by
�� Thus� A� contains n� and ful�lls
� It remains to show that
it also satis�es �� i�e� that it is independent of G�

We need to show that the partial coloring algorithm of G w�r�t A�� given any initial
coloring function� does not change the colors of all the nodes in A�� i�e� colors them by
F �by the choice of A�� all the nodes in it are colored F by ��� Let ��I � NnA

� � fT�Fg
be such an initial coloring function and let �� � N � fT�Fg be the resulting partial
coloring of G w�r�t A�� We show that for every node n� � A�� ���n�� � F �

To do so� let us look at the initial coloring function ���I � N n A� � fT�Fg that
agrees with ��I on all the nodes in N n A� but colors the nodes in A nA� by T � Note
that �N n A� 	 �A n A�� indeed equals N n A�� ��I di�ers from ���I only in �possibly�
changing the colors of nodes in A nA� from T to F �

Note that the coloring is monotonic in the sense that changing the color of a node
from T to F in the initial coloring function of N n A� can only cause nodes in A� to
change their colors from T to F as well and not the other way around� it cannot cause
their colors to change from F to T � This monotonicity holds since the game�graph
is based on a CTL formula in negation normal form� thus there are no
�nodes in

�

it� In particular� the subgraph A� that needs to be colored consists of only terminal
nodes� ��nodes and ��nodes� The coloring of a terminal node depends on no other
node and thus is not a�ected by the initial coloring� As for ��nodes and ��nodes� the
properties of the partial coloring algorithm assure us that an ��node in A� is colored
T i� all its sons are colored by T and an ��node in A� is colored T i� it has a son
that is colored by T � Thus the monotonicity is guaranteed in such nodes as well�

As a result of the monotonicity of the coloring it su�ces to show that the partial
coloring function ��� of G w�r�t A� that is based on ���I colors all the nodes in A

� by F �
This will imply that the same holds for �� that results from ��I � since �

�

I di�ers from
���I only in possibly coloring F some nodes �in A nA�� that are colored T by ���I �

It remains to show that ��� indeed colors all the nodes in A� by F � To do so� we
�rst use ���I to construct an initial coloring function �I � N n A � fT�Fg that will
result in a partial coloring � of G w�r�t A� �I is de�ned such that for each n � N nA�
�I�n� � ���I �n�� Note that �I is well de�ned� since A�
 A� Since A is independent
of G ���� � does not change the color of the nodes in A� In particular� the nodes in
A� remain colored by F and the nodes in A n A� remain colored T � Thus� in fact �
colors all the nodes in N nA� as ���I � for nodes in N nA this results from the de�nition
of �I and for nodes in A n A� this results from the latter along with the de�nition of
���I � This implies that each execution of the partial coloring algorithm w�r�t A given
�I �which eventually results in �� is also a �legal� execution of it w�r�t A�
 A given
���I � Since the partial coloring algorithm is deterministic� this means that ���� which
results from the partial coloring w�r�t A� given ���I � colors all the nodes as �� and in
particular colors the nodes in A� by F � �

We use the observation described in Lemma
�� and de�ne an annotated counterex�
ample as follows�

De�nition ��� Let G be a game�graph
 and let � be its coloring function
 such that
��n�� � F for some initial node n�� A subgraph !C of G containing n� is an annotated
counterexample if it satis�es the following conditions�

�� For each node n � !C
 ��n� � F �

�� !C is independent of G�

�� !C is minimal�

The �rst two requirements in De�nition
�� imply that !C is su�cient for explain�
ing why the initial node is colored by F � First it guarantees that all the nodes in
!C are colored by F � In addition� since !C is independent of G� we can conclude that
regardless of the other nodes in G� all the nodes in !C� and in particular the initial
node n�� will be colored by F � Therefore� it also explains why the formula is refuted
by the model� The third condition shows that !C is also �necessary��

We now show that the result of algorithm ComputeCounter� denoted C� is in�
deed an annotated counterexample� The �rst requirement is obviously ful�lled� as

�

described in Lemma
��� The following theorems state that C satis�es the other two
conditions as well�

Theorem ���� C is independent of G�

The correctness of Theorem
�
	 strongly depends on the choice of cause�n� as the son
of an ��node in the algorithm ComputeCounter� Returning to the example presented
in Figure
�
� the subgraph in Figure
�
�c� which was already informally claimed
not to provide a �good� annotated counterexample� can now be formally shown to
be not independent of G� For example� an initial coloring function �I that colors
the node �s�� A�pV q�� by T � would result in a partial coloring function of G w�r�t the
subgraph from Figure
�
�c�� where the nodes �s�A�pV q�� �s� q � �p � AXA�pV q����
�s� p�AXA�pV q�� and �s�AXA�pV q�� from this subgraph� are colored by T instead
of F �

For the proof of Theorem
�
	� we need the following technical Lemma�

Lemma ���� Let n be a node in C that was colored due to a witness during the
partial coloring of G with respect to C
 given an initial coloring function �I � Suppose
that all the nodes from C that were colored prior to n by the partial coloring algorithm
were colored by F � Then n lies on a cycle in C�

Proof
 Suppose n was colored due to a witness by the partial coloring algorithm of
G� Let us look at the status of the game�graph at the phase of the partial coloring
algorithm� where n was colored by a witness� Obviously� n has a son that is not yet
colored at that time �otherwise n would be colored too� based on its sons�� This son
must be within the same set Qi �all the sons outside Qi are in �smaller� sets Qj and
are thus already colored�� Let us show that at least one such uncolored son is in C�

� If n is an ��node� then all of its sons are in C� and in particular the uncolored
one� which concludes this case�

� If n is an ��node� then it has exactly one son n� in C� If this son n� is not
one of the uncolored ones� then it is already colored at this time� thus by our
assumption it is already colored by F � which would cause n to be already colored
by F too �based on this son rather than on a witness� in contradiction�

In any case� we get that each of these types of nodes has a son within its Qi that is
also in C and is not yet colored by the partial coloring algorithm� Such a son will be
colored due to a witness along with n� The same arguments apply to this son and
to its son� etc� Since there is a �nite number of nodes in Qi� we get a cycle of such
nodes� which are all in C� �

We now return to the proof of Theorem
�
	�

�

Proof of Theorem ����
 We need to show that in any partial coloring function
of G with respect to C� all the nodes of C are colored as they were originally col�
ored by �� i�e� by F � Thus� for each node n � �s� ��� � C we prove that n is
colored F by the partial coloring algorithm with respect to C� regardless of the initial
coloring� The proof is by induction on the execution of the partial coloring algorithm�

Base case

� n � N n C � we have nothing to prove�

�� n � C is colored as a terminal node �leaf�� Since n � C� we have that it was
originally colored F by �� which means �� is either l �� L�s� or false� Thus n is
again colored F by the partial coloring algorithm�

Induction step

� n � C is colored due to its sons by the partial coloring algorithm� We distinguish
between two possibilities�

� n is an ��node�
Suppose n is colored by T by the partial algorithm� This means that it
has at least one son n� that is already colored by T � However� since n � C
is an ��node� then by the construction of the annotated counterexample
C� all of its sons are in C� and in particular n� � C� Thus the induction
hypothesis� applied to n� which was already colored by our assumption�
assures us that n� is colored by F � This contradicts our assumption� i�e� n
must be colored by F �

�� n is an ��nodes�
Suppose n is colored by T � This means that all of its sons are already
colored by T � However� since n � C� then by the construction of the anno�
tated counterexample� n has exactly one son n� in C� Thus� the induction
hypothesis� applied to n� which was already colored by our assumption�
assures us that n� is colored by F � This contradicts our assumption that
all the sons of n� and in particular n�� are colored by T � i�e� n must be
colored by F �

� n � C is colored due to a witness� Since it is colored due to a witness� we have
that it could not be colored based on its sons only� If n is colored due to the
existence of an AU or EU witness� then by the description of the algorithm� it
is colored by F � as required�

It remains to show that the witness cannot be AV or EV � which would have
caused n to be colored by T � Let us rule out these possibilities by assuming the
contrary� Suppose n is colored due to a witness of the form AV or EV by the
partial coloring algorithm� The induction hypothesis provides the information

�

that is needed in order to use Lemma
�

� According to Lemma
�

� we get
that n lies on a cycle of nodes from C� which forms a non�trivial SCC� However�
by Corollary
��� non�trivial SCCs in C are eitherAU �SCCs or EU �SCCs� which
contradicts the assumption that n is colored due to an AV or EV witness �By
Lemma ���� such a witness cannot exist in an AU or EU SCC�� Thus the witness
that caused the coloring of n cannot be one of the above�

�

The following Theorem refers to the minimality of C�

Theorem ���� C is minimal in the sense that removing a node or an edge will result
in a subgraph that is not independent of G�

Proof
 It su�ces to show that any node and edge that will be removed from C will
result in a subgraph C � that the partial coloring of G with respect to it may change
its coloring� This property is guaranteed because of the following� If the son of an
��node n �or the edge that connects them� is removed� then there is no longer a son
for this node in C �� thus there exists an initial coloring function �input for the partial
coloring algorithm� that colors all the sons of n by T � which will cause n to become
colored T by the partial coloring algorithm� If a son of an ��node n is removed� then
this son can be colored by T by the initial coloring function �input of the partial
coloring algorithm�� thus its parent will also be colored T by the partial coloring
algorithm� �

��� Practical Considerations

Since the computed annotated counterexample C may be big and di�cult to under�
stand� several simpli�cations may be suggested in order to make it smaller� and thus
easier to navigate and to comprehend�

Zoom In 	 Zoom Out

Since each non�trivial SCC in C is �attached� to a single AU or EU formula� as
indicated by Corollary
��� the annotated counterexample can be �zoomed�out� into a
DAG� This can be done by constructing the �maximal strongly connected� components
graph of the annotated counterexample� where each non�trivial MSCC is replaced by
a single node� annotated with its witness� This way� we allow a �global� view on the
annotated counterexample� along with the possibility to �zoom in� into each MSCC
and view its inner structure� This allows a user to interact with the system and
navigate through di�erent parts of the annotated counterexample�

�

Reductions of the Annotated Counterexample

The complexity of the annotated counterexample results� at least partly� from the
node annotations and the auxiliary edges� that add information about the formula�
This auxiliary information is valuable in the sense that it helps in understanding the
counterexample� However� the annotated counterexample can be �reduced� into more
compact structures by hiding �some of� the information that results from the formula�
Auxiliary edges may be collapsed by merging nodes that were originally separated by
them� resulting in a subgraph of the unwinded model� Node annotations can either be
removed or partially remembered� These simpli�cations re�ect the trade�o� between
the size of the counterexample and the additional information originating from the
formula�

Presenting All the Possible Counterexamples

The algorithm ComputeCounter produces a single annotated counterexample� Yet�
the colored game�graph holds the full information about the refutation of the for�
mula� This information is described by the reachable subgraph that is colored by F �
Thus� we can identify all the possible annotated counterexamples� It is possible to
�interactively� give them all using a variation of the algorithm ComputeCounter�

�	

Chapter �

Game�Based Model Checking for

Abstract Models

In this chapter� we extend the discussion to abstract models� We suggest a general�
ization of the game�based model checking algorithm for evaluating a CTL formula �
over a KMTS M �that represents an abstract model� according to the
�valued se�
mantics� In Appendix A we describe the abstract ��valued semantics of CTL� which
is also suitable for KMTSs� We present an abstract model checking algorithm based
on the ��valued semantics and discuss solving the
�valued problem by reducing it
to two instances of the ��valued problem� as suggested in ����� We also discuss the
advantages of the direct solution� described in this chapter�

We start with the description of the
�valued game� The main di�erence arises
from the fact that KMTSs have two types of transitions� Since the transitions of
the model are considered only in con�gurations with subformulae of the form AX��

or EX��� these are the only cases where the rules of the play need to be changed�
Intuitively� in order to be able to both prove and refute each subformula� the game
needs to allow the players to use both may and must transitions in such con�gurations�
The reason is that for example� truth of a formula AX�� should be checked upon
may�transitions� but its falseness should be checked upon must�transitions� Therefore�
the new moves of the game are adapted as follows�

The new moves of the game

�� if Ci � �s�AX��� then �belard chooses a transition s
must
�� s� �for refutation� or

s
may
�� s� �for satisfaction�� and Ci�� � �s�� ���

� if Ci � �s�EX��� then �loise chooses a transition s
must
�� s� �for satisfaction� or

s
may
�� s� �for refutation�� and Ci�� � �s�� ���

That is� each player can use both may and must transitions� Intuitively� the
players use must�transitions in order to win� while they use may�transitions in order
to prevent the other player from winning� As a result it is possible that none of

�

the players wins the play� i�e� the play ends with a tie� As before� a maximal play�
de�ned in Chapter �� is in�nite if and only if exactly one witness� which is either an
AU �EU �AV or EV �formula� appears in it in�nitely often� However� the winning rules
become more complicated� A player can only win the play if he or she are �consistent�
in their moves� always makes moves that are designed for satisfaction �if the player
is �loise�� or always makes moves that are designed for refutation �if it is �belard��
These moves are all based on must transitions� The other player� on the other hand�
possibly uses both types of transitions�

De�nition ��� �� A play is called true�consistent if in each con�guration of the
form Ci � �s�EX��
 �loise chooses a move based on

must

�� transitions�

�� A play is called false�consistent if in each con�guration of the form Ci �
�s�AX��
 �belard chooses a move based on

must

�� transitions�

The new winning criteria

� �belard wins the play i� the play is false�consistent and in addition one of the
following holds�

� the play is �nite and ends in a terminal con�guration of the form Ci �
�s� false�� or Ci � �s� l�� where
l � L�s��

�� the play is in�nite and the witness is of the form AU or EU �

� �loise wins the play i� the play is true�consistent and in addition one of the
following holds�

� the play is �nite and ends in a terminal con�guration of the form Ci �
�s� true�� or Ci � �s� l�� where l � L�s��

�� the play is in�nite and the witness is of the form AV or EV �

� Otherwise� the play ends with a tie�

We now have the following correspondence between the game and the truth value
of a formula in a certain state under the
�valued semantics�

Theorem ��� Let M be a KMTS and � a CTL formula� Then
 for each s � S	

�� ��M�s� j�
�

� �� � tt i� �loise has a winning strategy starting at �s� ���

�� ��M�s� j�
�

� �� � � i� �belard has a winning strategy starting at �s� ���

�� ��M�s� j�
�

� �� �� i� none of the players has a winning strategy from �s� ���

��

Proof
 The proof is by induction on the structure of CTL formulae� It su�ces to
prove the implication from the truth value to the existence of a winning strategy�

Base case
 � � true� false or l� where l � Lit� Thus� C� � �s� �� is a terminal

con�guration� By the winning criteria� if �s j�
�
� �� � tt� then �loise wins every play�

right at the beginning� If �s j�
�
� �� � �� then �belard wins every play� right at the

beginning� Otherwise� every play ends with a tie� and therefore none of them has a
winning strategy�

Induction step

� � � �� � ���

� If �s j�
�
� �� � tt� then by the de�nition of the
�valued semantics� there

exists j � f
� �g such that �s j�
�
� �j� � tt� By the induction hypothesis�

�loise has a winning strategy for every play that starts from �s� �j�� Thus�
her winning strategy� starting from �s� ��� consists of choosing the next
move� which is in her responsibility� to be �s� �j� and from then on� using
the guaranteed winning strategy for �s� �j��

�� If �s j�
�
� �� � �� then by the semantics de�nition� for each j � f
� �g we have

that �s j�
�
� �j� � �� By the induction hypothesis� �belard has a winning

strategy for every play that starts from either one of the con�gurations
�s� �j�� The union of these winning strategies is his winning strategy for
the game starting from �s� ��� This is indeed a winning strategy� because
no matter which of the two possible con�gurations is chosen by �loise as
her move� �belard has a winning strategy from this point and on�

� If �s j�
�
� �� ��� then by the de�nition� at least for one of j � f
� �g we have

that �s j�
�
� �j� ��� and for the other one� k � f
� �g� k �� j� we have that

the value of �s j�
�
� �k� is � or �� Thus� �belard has no winning strategy

because �loise� that makes the move in the initial con�guration� can always
choose to proceed to �s� �j�� for which �belard has no winning strategy�
by the induction hypothesis� In addition� �loise has no winning strategy�
because no matter which move she makes� she reaches a con�guration for
which by the induction hypothesis she does not have a winning strategy�

� � � �� � ��� symmetric� since the de�nition of
�valued semantics is opposite
and so are the roles of the players in a con�guration with such a formula�

� � � EX���

� If �s j�
�
� �� � tt� then by the semantics de�nition� there exists a transition

s
must
�� s�� such that �s� j�

�
� ��� � tt� By the induction hypothesis� �loise

has a winning strategy for every play that starts from �s�� ���� Thus� her

�

winning strategy� starting from �s� ��� consists of choosing the next move�
which is in her responsibility� to be �s�� ���� which allows her to maintain
the play true�consistent� and from then on� using the guaranteed winning
strategy for �s� �j��

�� If �s j�
�
� �� � �� then by the semantics de�nition� for each transition s

may
��

s�� we have that �s� j�
�
� ��� � �� Recall that

must
��

may
��� thus this applies to

must
�� transitions as well� By the induction hypothesis� �belard has a winning
strategy for every play that starts from either one of these con�gurations
�s�� ���� The union of these winning strategies is his winning strategy for
the game starting from �s� ��� This is indeed a winning strategy� because
these are the only possibilities that �loise has for the �rst move� and no
matter which of the possible con�gurations is chosen by her� �belard has
a winning strategy from this point and on�

� If �s j�
�
� �� ��� then by the de�nition� there exists at least one transition

s
may
�� s� such that the value of �s� j�

�
� ��� is � or tt� and for all the

transitions s
must
�� s��� we have that the value of �s�� j�

�
� ��� is � or �� Thus�

�belard has no winning strategy because �loise� that makes the move in
the initial con�guration� can always choose to proceed to �s�� ���� for which
�belard has no winning strategy� by the induction hypothesis� In addition�
�loise has no winning strategy� because for her to win� the play must be
true�consistent� and thus she has to choose as her �rst move one of the
con�gurations �s��� ���� which are based on must�transitions� However� no
matter which of them she chooses� she reaches a con�guration for which
by the induction hypothesis she does not have a winning strategy�

� � � AX��� symmetric� since the de�nition is opposite and so are the roles of
the players�

� � � A���U����

First note that �the pre�x of� each play that starts from the con�guration
�s� �� is of the periodic form �s�A���U����� �s� ��� ����AXA���U�������

�s� ���AXA���U������ �s�AXA���U������ �s�� A���U����� � � � � based
on some �must or may� path s� s�� � � � from s� This form continues as long as
none of the players chooses as a next move �si� ��� ��loise� or �si� ��� ��belard�
from the con�gurations �si� �������AXA���U����� or �si� ���AXA���U����
respectively�

If a player chooses as a next move �si� ��� or �si� ���� we say that he or she
interrupts the periodic form of the play in index i� Otherwise� we say that he
or she maintains the periodic form of the play in index i�

In addition note that in fact �belard is responsible for choosing the path that
the play is based on� because in con�gurations of the form �si� AXA���U����
where the move is based on a transition of the model� �belard is the player
that makes the move� If �belard bases his moves on a path
 � s�� s�� � � � and

��

maintains the periodic form of the play in his move in index i� then this means
that he continues from �si� �� � AXA���U���� to �si� AXA���U���� and to
�si��� A���U����� In this case we say that �belard proceeds along
 in index i�

� If �s j�
�
� �� � tt� then by the semantics de�nition� for each may�path

 � s�� s�� � � � from s� we have that �
 j�
�
� ��U��� � tt� This means

that for each such path there exists 	 � k � j
j such that �sk j�
�
� ��� � tt

and for all j � k� �sj j�
�
� ��� � tt� Thus� by the induction hypothesis� �loise

has a winning strategy for each game that starts from either one of the
corresponding con�gurations �sk� ��� and �sj� ���� The winning strategy
of �loise for a game that starts from the con�guration �s� �� consists of
all these winning strategies� along with the rules that tell her to interrupt
the periodic form of the play and proceed to �si� ��� if i � k for some k
as described above� and to maintain the periodic form if i � k� This is a
winning strategy� because as long as i � k for some k as described above�

if �belard chooses �si� ���� then since �si j�
�
� ��� � tt� by the induction

hypothesis �loise has a winning strategy� Otherwise� �belard maintains
the periodic form of the play in such i�s� and so does �loise �as described
by her strategy�� When i � k is reached� �loise chooses the con�guration
�sk� ���� for which she has a winning strategy by the induction hypothesis�

since �sk j�
�
� ��� � tt�

�� If �s j�
�
� �� � �� then by its de�nition� there exists a must�path
 �

s�� s�� � � � from s� such that �
 j�
�
� ��U��� � �� This means that

�
� 	 �

k � j
j � ���j � k � �sj j�
�
� ��� �� �� � ��sk j�

�
� ��� � ���

�
�
�
�� 	 � k �

j
j � �sk j�
�
� ��� �� �� � j
j � �

�
� If there exists 	 � i � j
j for which

�si j�
�
� ��� � �� then let k be the smallest index for which �sk j�

�
� ��� � ��

Otherwise� we set k � �� Note that in this case j
j � � as well� Either
way� by the minimality of k� we know that for every i � k the formula

�j � i � �sj j�
�
� ��� �� � holds� which implies that �si j�

�
� ��� � �� Therefore�

for every i � k we have that �si j�
�
� ��� � ��

By the induction hypothesis� �belard has a winning strategy from every

con�guration �si� ��� for which �si j�
�
� ��� � � and from every con�guration

�si� ��� for which �si j�
�
� ��� � �� Thus� his winning strategy for a game

that starts from the con�guration �s� �� includes these winning strategies�
as well as rules that tell him to interrupt the periodic form of the play
and proceed to �si� ��� if i � k� and to proceed along
 otherwise� This
is a winning strategy� because as long as i � k� if �loise chooses �si� ����
then by the induction hypothesis �belard has a winning strategy �which is

part of his winning strategy from �s� ���� since �si j�
�
� ��� � �� Otherwise�

�loise maintains the periodic form of the play in such i�s� As for �belard�
as long as i � k� he proceeds along the must�path
� maintaining the play
false�consistent� Now� there are two possibilities�

��

�a� If k is �nite� then when i � k is reached� by the described strategy
�belard chooses the con�guration �sk� ��� as his next move� Since

by the choice of k �sk j�
�
� ��� � �� then by the induction hypothesis

�belard has a winning strategy from this con�guration�

�b� Otherwise� we have that the must�path
 itself is in�nite and for every
i � 	 �belard proceeds along
� such that the play is in�nite and false�
consistent with the AU �witness� Thus� �belard wins as well�

� If �s j�
�
� �� ��� then by the semantics de�nition� there exists a may�path

from s� for which the value of �
 j�
�
� ��U��� is � or �� and in addition for

each must�path
� the value of �
� j�
�
� ��U��� is � or tt�

The existence of
 shows that �loise does not have a winning strategy� Let

 � s�� s� � � � � then by the de�nition of the semantics
� 	 � k � j
j �

���sk j�
�
� ��� � tt� � ��j � k � �sj j�

�
� ��� � tt��� That is� � 	 � k � j
j �

���sk j�
�
� ��� �� tt�� ��j � k � �sj j�

�
� ��� �� tt��� In addition� since
 is a may

path� then it is in�nite �j
j � ��� Now� in order to prevent �loise from
winning� �belard can base the play on
� We consider two possibilities�

�a� There exists �j
j �� i � 	 such that �si j�
�
� ��� �� tt� In this case we

set k to be the smallest such index� thus for each i � k we have that

�j � i � ��sj j�
�
� ��� �� tt�� which means that for each i � k � �si j�

�
� ��� �� tt� In this case� �belard can always choose to proceed along

 as long as i � k� and when i � k he can choose the con�guration
�sk� ���� If �loise interrupts the periodic form of the play before �or
when� i � k� then it is to a con�guration �si� ���� for which by the
induction hypothesis she does not have a winning strategy �since for

each i � k � �si j�
�
� ��� �� tt�� Otherwise� when �sk� ��� is reached� she

does not have a winning strategy �by the induction hypothesis� since

�sk j�
�
� ��� �� tt��

�b� Otherwise� for every i � 	 � �si j�
�
� ��� � tt� In this case we get that

for every i � 	 � �
�j � i � ��sj j�
�
� ��� �� tt��� Thus� for each i � 	�

�si j�
�
� ��� �� tt� Hence� if �loise chooses the con�guration �si� ��� as

her next move at any point� then she reaches a con�guration for which
she does not have a winning strategy �by the induction hypothesis��
If �loise never chooses �si� ���� then the play is in�nite �since
 is
in�nite� with the witness A���U���� thus �loise can not win�

The property of each must�path shows that �belard does not have a win�
ning strategy� Let
� � s��� s

�

� � � � denote such a path� Then the value of

�
� j�
�
� ��U��� is either � or tt� which means that

�
� 	 � k � j
�j � ���j �

k � �s�j j�
�
� ��� �� �� � ��s�k j�

�
� ��� � ���

�
�

�
�� 	 � k � j
�j � �s�k j�

�
� ��� ��

�� � j
�j � �
�
holds� In other words�

�
� 	 � k � j
�j � ���j � k � �s�j j�

�
�

��� �� ��� ��s�k j�
�
� ��� �� ���

�
�
�
�� 	 � k � j
�j � �s�k j�

�
� ��� �� ���j
�j ���

�
��

holds� This means that for every such must path
� there exists k � 	 such

that either �k � j
�j� � ��j � k � �s�j j�
�
� ��� �� �� � ��s�k j�

�
� ��� �� �� �if the

�rst disjunct holds�� or �k � j
�j� � ��j � k � �s�j j�
�
� ��� �� �� �if the second

disjunct holds�� In order to win� �belard needs to proceed along must�sons
of AX�nodes �for the play to be false�consistent�� thus in particular as long
as the play has the periodic form� �belard needs to base it on a must�path

� � s��� s

�

� � � � � Clearly� if �belard interrupts the periodic form of the play
before k �of the relevant must path� is reached� then it is to a con�guration
�s�j� ��� for which by the induction hypothesis he does not have a winning

strategy �since for j � k we know that s�j j�
�
� ��� �� ��� Otherwise� �belard

maintains the periodic form of the play for every j � k� and in order to
prevent him from winning� �loise will do the same� Now� when k is reached
we have two possibilities�

�a� If �s�k j�
�
� ��� �� �� then �loise can interrupt the periodic form of the

play at this point and proceed to �s�k� ���� for which �belard does not
have a winning strategy by the induction hypothesis�

�b� Otherwise� we have that j
�j � k and we also know that �s�k j�
�
� ��� �� ��

In this case �loise will maintain the periodic form of the play at
this point as well� Now� if �belard at his turn chooses to interrupt
the periodic form of the play� then he will reach the con�guration
�s�k� ��� for which he does not have a winning strategy �by the in�
duction hypothesis�� Otherwise� he will proceed to the con�guration
�s�k� AXA���U���� and at this point he will not be able to base his
move on a must transition� because j
�j � k �and
 is maximal by
de�nition� which means that there is no must transition that exits the
state s�k�� Therefore� �belard will be forced to proceed based on a may
transition that is not a must transition� As a result� the play will not
be false�consistent and �belard will not win�

� � � E���U���� A���V ��� or E���V ���� similar�

�

Theorem ��� refers to the existence �or non�existence� of winning strategies for
the players� One may also be interested in the existence of memoryless winning
strategies� The interested reader is referred to appendix B� where we de�ne the
notion of a memoryless strategy and it is shown that Theorem ��� can be rephrased
to refer to memoryless winning strategies�

In order to use the correspondence described in Theorem ��� for model checking�
we generalize the game�based model checking algorithm�

��

��� Game�Graph Construction and its Properties

The construction of the �
�valued� game�graph� denoted GM��� is de�ned as for the
�concrete� game �as described in Chapter ��� The nodes of the game�graph� denoted
N � can again be classi�ed as ��nodes� ��nodes� AX�nodes and EX�nodes� Similarly�
the edges can be classi�ed as progress edges� that originate in AX or EX nodes� or
auxiliary edges� But now� we distinguish between two types of progress edges� two
types of sons and two types of SCCs�

� Edges that are based on must�transitions are referred to as must�edges� Edges
that are based on may�transitions are referred to as may�edges�

� A node n� is a may�son of the node n if there exists a may�edge �n� n��� n� is a
must�son of n if there exists a must�edge �n� n���

� An SCC in the game�graph is a may�SCC if all its progress edges are may�edges�
It is a must�SCC if all its progress edges are must�edges�

��� Coloring Algorithm

The coloring algorithm of the
�valued game�graph needs to be adapted as well� First�
a new color� denoted �� is introduced for con�gurations in which none of the players
has a winning strategy�

Second� the partition to Qi�s that is based on MSCCs is a�ected because there are
two types of SCCs �and MSCCs� in GM��� However�

must
��

may
��� thus each must�edge

is also a may�edge and every must�SCC is also a may�SCC� As a result� the graph can
be partitioned to may�MSCCs �based on the may�edges�� Note that Lemma ��� holds
for may�SCCs in the
�valued game�graph as well� Thus� the notion of a witness in
an SCC is also valid�

As for the coloring itself� similarly to the concrete case� the
�valued coloring
algorithm processes the game�graph bottom�up and colors nodes by T � F or � based
on the colors of their sons� according to the type of the node �� versus �� AX versus
EX� and the �
�valued� semantics of �� �� AX and EX� Here too� if at any point the
coloring cannot proceed� then the existence of a non�trivial SCC and a corresponding
witness is implied� Yet� in this case further analysis is needed before being able to
color the remaining nodes� Intuitively� if the witness is of the formAU � then uncolored
loops can only be used to prove its refutation �F color�� To do so� �real� loops are
needed� Thus for such a witness� we need to have an uncolored non�trivial must�SCC
in order to color it by a de�nite color �F �� On the other hand� for an AV �witness�
loops can contribute to satisfaction� and satisfaction of universal properties should
be examined upon may�transitions� Thus for such a witness� may�edges are su�cient
to color the loop by T � Similarly� if the witness is of the form EU � we need to have a
may�SCC� whereas for an EV witness� a must�SCC is used� Thus� unlike the concrete

��

case where all the remaining uncolored nodes were colored automatically according
to the witness� in this case we �rst apply a special method whose purpose is to
ensure that the remaining uncolored nodes form non�trivial SCCs with the type that
is required for a de�nite color� During this process� some of the remaining uncolored
nodes� which do not �ll these criteria� are colored by �� Only after this phase� the
remaining nodes are colored by the suitable de�nite color�

The ��	valued� coloring algorithm

Partition and Order	 The game�graph is partitioned into its may�MSCCs� The result�
ing sets are denoted Qi�s� This partition induces a partial order such that transitions
go out of a set only to itself or to a �smaller� set� The partial order is extended to a
total order � arbitrarily�

Coloring	 As before� the coloring algorithm processes theQi�s according to �� bottom�
up� Let Qi be the smallest set w�r�t � that is not yet fully colored� The nodes of Qi

are colored in two phases� as follows�

� Sons�coloring phase	

Apply the following rules to all the nodes in Qi until none of them is applicable�

� A terminal node is colored by T if �loise wins in it� by F if �belard wins
in it� and by � otherwise�

� An AX�node is colored by�

� T if all its may�sons are colored by T �

� F if it has a must�son that is colored by F �

� � if all its must sons are colored by T or � and it has a may�son that
is colored by F or ��

� An EX�node is colored by�

� T if it has a must�son that is colored by T �

� F if all its may�sons are colored by F �

� � if it has a may�son that is colored by T or � and all its must�sons
are colored by F or ��

� An ��node� other than AX�node� is colored by�

� T if both its sons are colored by T �

� F if it has a son that is colored by F �

� � if it has a son that is colored � and the other one is colored � or T �

� An ��node� other than EX�node� is colored by�

� T if it has a son that is colored by T �

� F if both its sons are colored by F �

� � if it has a son that is colored � and the other one is colored � or F �

��

Note that auxiliary edges can be considered both may and must edges�
By doing so� it is possible to join the description of the coloring of AX�
nodes and other ��nodes� as well as the description of EX�nodes and other
��nodes� We do not do that for clarity�

�� Witness�coloring phase	

If after the propagation of the rules of phase
 there are still nodes in Qi that
remain uncolored� then Qi must be a non�trivial may�MSCC that has exactly
one witness �by Lemma ��� which holds here as well�� The uncolored nodes in
Qi are colored according to the witness in two phases� as follows�

� The witness is of the form A���U��� or E���U����

�a� Repeatedly color by � each node in Qi that satis�es one of the following
conditions� until there is no change �i�e� none of the conditions holds
for any node in Qi��

� An AX�node that all its must sons are colored by T or ��

� An ��node that both its sons are colored by T or ��

� An EX�node that has a may son that is colored by T or ��

� An ��node that has a son that is colored by T or �� �or equiva�
lently� An ��node that has a son that is colored by �� since the T
option is impossible��

In fact� each node for which the F option is no longer possible accord�
ing to the rules of the sons�coloring phase is colored by ��

�b� Color the remaining nodes in Qi by F �

� The witness is of the form A���V ��� or E���V ����

�a� Repeatedly color by � each node in Qi that satis�es one of the following
conditions� until there is no change �i�e� none of the conditions holds
for any node in Qi��

� An AX�node that has a may son that is colored by F or ��

� An ��node that has a son that is colored by F or �� �or equiva�
lently� An ��node that has a son that is colored by �� since the F
option is impossible��

� An EX�node that all its must sons are colored by F or ��

� An ��node that both its sons are colored by F or ��

In fact� each node for which the T option is no longer possible accord�
ing to the rules of the sons�coloring phase is colored by ��

�b� Color the remaining nodes in Qi by T �

The result of the coloring algorithm is a ��valued coloring function � � N � fT�F� �g�

Note that coloring by � is done carefully� One may suggest to color a node by � in
any case where it is not colored and the coloring can not proceed� However� since we

�	

would like to follow the
�valued semantics� we need to color such a node by � only if
it is not possible that it should be colored by T or F � This is not implied by the node
being uncolored� Therefore� a node is colored by � only if there is evidence that it
cannot be colored otherwise� In any other case� another method is used to determine
its color�

We now discuss the correctness of the coloring algorithm� To do so� we �rst prove
the following important Lemma�

Lemma ��� Let n be a node that is uncolored at the beginning of phase � in its set
Qi� Then n lies on a non�trivial SCC that is a subgraph of Qi and all nodes of the
SCC are uncolored at the beginning of phase ��

We conclude that if a set Qi has uncolored nodes at the beginning of phase � then
Qi is a non�trivial may�MSCC�

Proof
 Consider an uncolored node in Qi� denoted n� n has outgoing edges only to
nodes in smaller sets Qj�s� which are already colored� or to nodes in the same set Qi

�by the choice of the order ��� Since n is uncolored� we have that it has an outgoing
edge to an uncolored node n�� otherwise it could be colored in phase
� This node n�

can only be in the same set Qi �the others are already colored�� Thus� each uncolored
node in Qi has a son within Qi that is not colored� Since Qi is �nite� this results in
a non�trivial SCC� whose nodes are all within Qi�

We now conclude that in this case Qi is a non�trivial may�MSCC� By the choice
of the partition of GM��� Qi is obviously a may�MSCC� Since we have seen that
it contains a non�trivial SCC� we can also conclude that Qi itself is a non�trivial
may�MSCC� �

Theorem ��� All the nodes in the game�graph get colored by the ��valued coloring
algorithm�

Proof
 It su�ces to prove that whenever phase � of the coloring is reached �with the
existence of uncolored nodes�� the set Qi that is handled by the algorithm indeed has
exactly one witness� This results from Lemma ��
 that guarantees that Qi is a non�
trivial MSCC� as well as Lemma ���� that guarantees that a non�trivial may�MSCC
has exactly one witness� Thus� all the remaining uncolored nodes in Qi are colored
according to this witness� As a conclusion� we get that no node is left uncolored� �

Theorem ��� Let GM�� be a ��valued game�graph and let n be a node in the game�
graph
 then	

�� ��n� � T i� �loise has a winning strategy starting at n�

�� ��n� � F i� �belard has a winning strategy starting at n�

�

�� ��n� �� i� none of the players has a winning strategy starting at n�

The correctness of Theorem ��� strongly depends on the observation described by the
following Lemma�

Lemma ��
 Let Qi be the set that is handled by the coloring algorithm at its ith
iteration
 and let n be a node in Qi that is uncolored at the beginning of phase �b�
Then

�� If Qi has an AU or EV witness
 then n lies on a non�trivial must�SCC that is
a subgraph of Qi and all nodes of the must�SCC are uncolored at the beginning
of phase �b�

�� If Qi has an EU or AV witness
 then n lies on a non�trivial may�SCC that is
a subgraph of Qi and all nodes of the may�SCC are uncolored at the beginning
of phase �b�

Proof
 First note that any node that all its sons are already colored in phase

or phase �a� gets colored as well in these phases� This is clear for phase
 by the
description of the coloring algorithm� since all the cases where all the sons are colored
are handled� As for phase �a� the reasoning is similar� with the exception that some
of the cases where all the sons of a node are colored by de�nite colors �T or F � are
not handled� Yet� if all the sons of a node are colored by de�nite colors in this phase�
this means that they were already colored in phase
 �since in phase �a nodes get
colored by � only�� which would make their parent already colored as well� That is�
cases where all the sons are colored by de�nite colors are not possible in phase �a�

Thus� each node n� that is uncolored at the beginning of phase �b has an uncolored
son n��� This is clear because otherwise n� would be colored as well either in phase

or in phase �a� Since all the sons of n� are either in the same set Qi or in smaller
sets which are already colored� the uncolored son n�� is de�nitely within Qi as well�
Since Qi is �nite� this results in a non�trivial SCC� which is a subgraph of Qi and is
uncolored at the beginning of phase �b�

It remains to refer to the type of the resulting SCC �must versus may�� Clearly�
it is a may�SCC �since a must�SCC is also a may�SCC�� Thus� for the case of an
EU or an AV witness� the claim is implied� We now consider the case of an AU or
an EV witness� To do so� we refer to the type of edges that connect an uncolored
node n� to its son n�� within the SCC in this case� For any node n� in Qi other than
AX�nodes or EX�nodes the connecting edge is an auxiliary edge� As for AX�nodes
�in a set with an AU witness� and EX�nodes �in a set with an EV witness�� at least
one of the uncolored sons has to be a must�son� This is because if all the must�sons
were colored� then by the description of the algorithm� n� would already be colored
by previous phases �either by phase
 if at least one of them is colored F for AX
or T for EX� or by phase �a otherwise�� Thus� in this case we choose n�� to be an

��

uncolored must�son of n�� By previous arguments� we get an uncolored non�trivial
SCC whose progress edges are must�edges� i�e� this is a must�SCC� as required�

Either way� we get that a node n that is uncolored at the beginning of phase �b
lies on a non�trivial SCC� with the required type� that is a subgraph of its Qi and all
nodes of the SCC are uncolored at the beginning of phase �b� �

Proof of Theorem ���
 The proof is by induction on the computation of the col�
oring algorithm� It su�ces to prove the implication from each result of the coloring
of n to the existence �or non�existence� of winning strategies�

Base case
 n is a terminal node� On the one hand� by the coloring algorithm� n is
colored according to the player that wins the game in such a con�guration� On the
other hand� this also determines the existence of a winning strategy� since each play
that starts from such a con�guration also ends in it� Thus� the claim is implied�

Induction step

� n is colored due to the coloring of its sons in phase
�

Consider the case where n is an AX�node� The �rst move in each play that
starts from the con�guration n is done by �belard�

� If n is colored T then by the description of the algorithm all its may�sons
are colored T � which means �loise has a winning strategy from each one of
them �by the induction hypothesis�� Thus� no matter which move �belard
makes �this is his turn�� she can win� i�e� she has a winning strategy from
n� which is the union of the winning strategies of all the sons of n�

� If n is colored F then by the description of the algorithm it has a must�son
n� that is colored F � which means �belard has a winning strategy from n�

�by the induction hypothesis�� Thus� �belard has a winning strategy from
n� which is to choose n� as the �rst move and continue by the guaranteed
winning strategy from n�� Note� that the choice of n� provides a false�
consistent play� since it is a must�son of n�

� If n is colored by � then by the description of the algorithm� it has a may�
son n� that is colored by � or F � and all its must�sons are colored by T or ��
The existence of n� assures us that �loise does not have a winning strategy
for a game that starts from n� since �belard �which makes the move in
such a con�guration� can always choose as his �rst move the con�guration
n�� for which �loise does not have a winning strategy by the induction
hypothesis� In addition� the information about the must sons� assures us
that �belard does not have a winning strategy from n� since for the play to
be false�consistent �belard has to proceed to one of the must�sons� but from
them� by the induction hypothesis� he does not have a winning strategy�

�

If n is an ��node� other than AX�node� then the same proof holds� where instead
of may or must edges we use auxiliary edges�

If n is an EX�node� or another ��node� then the proof is symmetric to the proof
for AX or ��nodes respectively� where the coloring rules are opposite and so
are the roles of the players�

�� n is colored due to a witness during phase � in a Qi that is a non�trivial may�
MSCC �by Lemma ��
��

Consider the case where the witness is A���U��� or E���U��� � Then n is
colored by either � �in phase �a� or F �in phase �b��

We �rst prove that either way� �loise does not have a winning strategy for the
game that starts from n� Let B be the maximal subgraph of GM�� that is
reachable from n through uncolored nodes by the time phase � �coloring by
witness� starts� Obviously� B is a subgraph of Qi �because by the choice of ��
only nodes in Qi or smaller sets are reachable from n and the ones in smaller
sets are already colored�� Since it is a subgraph of Qi� then by Lemma ���� its
formulae are from exp�A���U���� or exp�E���U�����

Suppose that �loise has a winning strategy for the game that starts from
n� Then �loise manages to �force� the play to exit B to a con�guration for
which she has a winning strategy� This is because if the play stays within
B� then the play is in�nite �there are no terminal nodes in exp�A���U���� or
exp�E���U���� thus the play cannot end without exiting B� and the witness is
A���U��� or E���U���� Thus �loise loses�

First� let us show that it is not possible that �belard is �forced� to exit B� Any
node in B is uncolored at the beginning of phase � and thus lies on an uncolored
non�trivial SCC �by Lemma ��
�� Hence� in particular� it has an uncolored son�
which is also in B �by the maximality of B�� Thus� for every node in B there
exists a consecutive node that �belard can choose in his moves�

Now� we show that �loise cannot exit B to a con�guration for which she has
a winning strategy� which contradicts the assumption that she has a winning
strategy� The only con�gurations in which �loise makes a move are ��nodes�
with subformulae of the form �� � ��� or EX��� Thus� if �loise manages to exit
B� she does it in such a con�guration� We consider each possibility separately�

�� � ���
 This means that there exists a con�guration �s�� ������� in B for which�
without loss of generality� �loise chooses n� � �s�� ���� which is outside B�
as her next move� This node� n�� is already colored at the beginning of
phase
 �otherwise it would be in B as well� seeing that it is obviously
reachable� since its parent is in B�� In addition� by our assumption �loise
has a winning strategy from n�� thus by the induction hypothesis it is
colored by T � However� by the coloring algorithm this means that the
con�guration �s�� �� � ���� that is in B could already be colored by T as
well in phase
� in contradiction to the property that B is uncolored�

��

EX��
 If �loise exits B in a con�guration of the form �s�� EX���� then similar
arguments apply� with the di�erence that in this case �loise chooses amust �
son n�� � �s��� ��� outside B as her next move� It has to be a must �son since
this move is a part of her winning strategy� thus it has to be based on a
must�transition from s� to s�� �the play needs to be true�consistent for her
to win�� By the same arguments� this con�guration �node� n�� is already
colored� In addition� �loise has a winning strategy from n��� thus by the
induction hypothesis it is already colored by T � Again� this results in
contradiction� since by the coloring algorithm this would cause its parent
that is in B to be colored by T as well in phase
�

We now show that if n is colored by � �in phase �a�� then none of the players
has a winning strategy from it� and if it is colored by F �in phase �b�� then
�belard has a winning strategy�

�a� Consider the case where n is colored in phase �a� i�e�� it is colored by �� In
this case� it remains to show that �belard does not have a winning strategy
for the game that starts from n �We already know this about �loise�� The
proof is by induction on the computation of phase �a� where the main idea
is that a node n is colored by � only when the F option is overruled�

� If n is an AX�node �or an ��node�� this means that all its must�sons
are colored by � or T � such that indeed �belard has no winning strategy
from this node� he can either choose a may�son� which will make the
play not false�consistent� or he can choose a must�son� for which he
has no winning strategy� by the induction hypothesis�

� If n is an EX�node �or an ��node�� this means that it has a may�son
n� that is colored by � or T � such that indeed �belard has no winning
strategy from this node� in such a con�guration �loise makes the �rst
move� such that she can choose n� for which �belard has no winning
strategy by the induction hypothesis�

�b� Consider the case where n is colored in phase �b� i�e�� it is colored by F �
We show that �belard has a winning strategy for the game from n�

A���U���
 Let B be the maximal uncolored subgraph of GM�� that is
reachable from n through uncolored nodes and through must�edges
or auxiliary edges �but not may�edges� by the time phase �b of the
coloring algorithm starts� B is clearly a subgraph of Qi with formulae
from exp�A���U�����
The winning strategy of �belard is to always stay in B� Since the
only progress edges in B are must�edges� then by this strategy �belard
maintains the play false�consistent� Therefore� if he manages to stay
in B� he wins �we get an in�nite play with an AU �witness� which is
also false�consistent��
First� we show that it is not possible that �belard is �forced� to exitB�
By the choice of B� every node n� � B is uncolored at the beginning

��

of phase �b� thus by Lemma ��� it lies on a non�trivial must�SCC�
which is a subgraph of Qi that none of its nodes are colored by the
time phase �b starts� Note� that whereas Qi is a may�MSCC� we
claim that n� lies on an uncolored must �SCC� In particular� it has an
uncolored son� connected to it either by an auxiliary edge or by a must�
edge� which is also in B �by the maximality of B�� Thus� for every
node in B there exists a consecutive node that �belard can choose in
his moves�
We now consider the case where �loise exits B and show that in this
case �belard still has a strategy that allows him to win �which will
be added to his winning strategy�� The only con�gurations in which
�loise makes a move in such an SCC are of the form n� � �s�� �� ������
Thus� the only way for �loise to exit B� is by choosing to proceed
to n�� � �s�� ��� �without loss of generality� in such a con�guration in
B� By our assumption� n�� is not in B and thus already colored �it is
connected to n� � B by an auxiliary edge� thus if it was not colored�
it would be in B�� It must be colored by F � otherwise n� would be
already colored in phase �a �as an ��node that has a son colored by
T or �� or before� in contradiction to its being a node in B� Since n��

must be colored by F � we get that �belard has a way to win the game
even if �loise forces him to exit B �by the induction hypothesis��

E���U���
 Let B be the maximal subgraph that is reachable from n
through uncolored nodes by the time phase �b of the coloring algo�
rithm starts� B is obviously a subgraph of Qi� thus the formulae in B
are formulae from exp�E���U�����
The winning strategy of �belard is to always stay within B� This is a
winning strategy because if he manages to stay within B� we get an
in�nite play with a witness E���U���� which is also false�consistent
�in fact �belard never uses any progress edges�� thus he wins�
Obviously� �belard can always stay within B in his moves� since any
node in B is uncolored at the beginning of phase �b and thus lies on
an uncolored non�trivial SCC �by Lemma ���� and in particular has
an uncolored son which is also in B�
Furthermore� if �loise exits B� then her move is made in an ��node
�possibly an EX�node�� and she reaches a con�guration that is already
colored �otherwise it would be in B� by the choice of B and its max�
imality�� and thus it is colored by F �otherwise its parent would be
colored during phase �a or before� in contradiction to its being in B��
Hence� by the induction hypothesis� �belard has a winning strategy
from this con�guration as well�

If the witness is of the form A���V ��� or E���V ���� then the proof is symmet�
ric� where the coloring rules are opposite and so are the roles of the players�

�

��

Implementation issues
 First� note that the correctness of the coloring algorithm
is not damaged if during phase
 of the ith iteration� nodes from sets other than Qi

are colored as well� This results from the property that once a node is colored� its
color never changes� In other words� coloring successors of an already colored node
does not change its color� Thus� if a node from a set Qj can be colored in phase

of the ith iteration �i � j� based on its sons� then these sons will still be colored the
same in the jth iteration� leading to the same coloring �although possibly additional
sons will be colored in the jth iteration��

Based on this observation� the coloring algorithm can be implemented in linear
running time� using an AND�OR graph� similarly to the algorithm described in ����
for checking the nonemptiness of the language of a simple weak alternating word
automaton� The algorithm maintains an integer i that contains the current iteration
and three stacks ST � SF and S�� The stacks contain nodes that were colored by T �
F or �� yet still have not propagated their coloring further� At the beginning� the
stacks are initialized by all the terminal nodes� according to their coloring� During
the son�based coloring �phase
�� whenever a node is colored� it is pushed into one of
the stacks� based on its color� As long as the stacks are not empty� a node is popped
from one of them and its parents are checked to see if they can be colored �based on
all their sons��

When the stacks are empty� the witness�based coloring �phase �� is applied on the
smallest Qi that contains uncolored nodes� First� phase �a is applied� where initially
all the nodes in Qi are checked once to see if they can be colored� The ones that are
colored are pushed into S� as well as a temporary stack� The temporary stack is used
to propagate their coloring within Qi based on the rules of phase �a and each node
that gets colored is added to the temporary stack and to S�� Phase �a ends when the
temporary stack is empty� At that time� all the remaining nodes in Qi are colored by
T or F �depending on the witness� in phase �b and are pushed into the appropriate
stack� The algorithm then returns to phase
 �with the new content of the stacks��

Complexity
 The running time of the coloring algorithm is linear with respect to
the size of the game�graph GM��� The latter is again bounded by the size of the
underlying KMTS times the length of the CTL formula� i�e� O�jM j � j�j��

As a conclusion of Theorem ��� and Theorem ���� we get the following theorem�

Theorem ��� Let M be a KMTS and � a CTL formula� Then
 for each n �
�s� ��� � GM��	

�� ��M�s� j�
�

� ��� � tt i� n � �s� ��� is colored by T �

�� ��M�s� j�
�

� ��� � � i� n � �s� ��� is colored by F �

�� ��M�s� j�
�

� ��� �� i� n � �s� ��� is colored by ��

��

Given the colored game�graph� if all the initial nodes are colored by T � or if at
least one of them is colored by F � then by Theorem ��� along with Theorem ��
��
there is a de�nite answer as for the satisfaction of � in the concrete model� This
is because there exists a mixed simulation from the concrete model to the abstract
one� Furthermore� if the result is �� a concrete annotated counterexample can be
produced� using an extension of the ComputeCounter algorithm as described in the
following chapter�

Example ��� Figure ��
 presents a
�valued game�graph G and its coloring� where
dashed edges represent may�edges and solid edges represent must�edges� as well as
auxiliary edges� The partition of G to Qi�s �may�MSCCs� is depicted by rectangles
in Figure ��
� where their indices
�� determine the order �� The coloring algorithm
starts from Q��Q�� where the terminal nodes are colored in phase
 of the coloring
algorithm� It then handles Q�� �s�� p � AXA�pUq�� is colored F in phase
 due
to its son �s�� p� and �s�� q � �p � AXA�pUq��� is colored T due to its son �s�� q��
causing �s�� A�pUq�� to be colored T as well� At this point� none of the remaining
nodes can be colored in phase
� Thus� the algorithm proceeds to phase �� with Q�

containing an AU �witness� The node �s�� AXA�pUq�� is colored � in phase �a� since
it is an AX node and its only must son is colored T � The rest of the nodes are then
colored F in phase �b� This example demonstrates that if a node is left uncolored
after phase �a in a set with an AU �witness� then it lies on a non�trivial must�SCC
that provides an evidence for refutation� The �nal coloring function can be seen in
Figure ��
� where white nodes are colored T � dark grey nodes are colored F and light
grey nodes are colored �� Based on Theorem ���� that describes the relation between
the coloring results and model checking� we can use the color of each node in order
to conclude what is the truth value of its formula in its state� In particular� since the
initial node �s�A�pUq�� is colored by F � we can conclude that the value of the formula
� � A�pUq� in the initial state s of the modelM is �� This is indeed correct since the
value of the until formula pUq in the �in�nite� must�path s� s� � � � is � �the value of
p is always � in this path� thus the eventuality of the until is de�nitely refuted�� and
the existence of such a must�path su�ces to de�nitely refute the universal formula
A�pUq�� resulting in the truth value �� Since s is an initial state of the model M �
we can conclude that the value of � � A�pUq� in the abstract model M is �� This
implies that � is refuted in the corresponding concrete model� represented by M �

��

M:

3

1

2

4

5

�s�� q�

�s� q � �p �AXA�pUq���

�s� q�

�s� A�pUq��

�s� p�

�s�� AXA�pUq��

�s�� A�pUq��

�s�� p�

�s�� p � AXA�pUq��

�s�� q � �p � AXA�pUq���

�s� p � AXA�pUq��

�s� AXA�pUq��

�p� q

p��q

s�

s

Figure ��
� A colored
�valued game�graph for M and � � A�pUq�� where dashed
edges are may�edges� solid edges are must�edges or auxiliary edges� and rectangles
depict the partition of the nodes� White nodes are colored by T � dark grey nodes

are colored by F � and light grey nodes are colored by ��

��

�	

Chapter �

Concrete Annotated

Counterexamples Based on

Abstract Game�Graphs

In this chapter we show how to produce a concrete annotated counterexample from
the
�valued abstract game�graph that was used for model checking� in case that one
of the initial nodes was colored by F � meaning that �M j� �� � ��

Let MC � �SC� S�C��� LC� be a �concrete� Kripke structure and let MA �

�SA� S�A�
must
���

may
��� LA� be a �abstract� KMTS as described in the preliminaries� such

that MC � MA� where � is the mixed simulation relation� Let � � SA � �SC be
the concretization function� Given the abstract
�valued game�graph GA� based on �
and the abstract model MA� and its coloring function � � N � fT�F� �g� such that
��n�a� � F for some initial node n�a � �s�a� ��� we �rst use a variation of the previ�
ously described ComputeCounter to produce an abstract annotated counterexample
CA� The di�erence in the abstract version of the algorithm is that for an AX�node�
where the cause is added to the annotated counterexample� we now choose the cause
to be a must�son� and in an EX�node� we add all its may�sons to the annotated
counterexample�

In order to �nd a concrete annotated counterexample out of CA� we then need
to replace each abstract state sa in CA� that represents a set of concrete states�
with a single concrete state sc from ��sa�� Since we are dealing with an annotated
counterexample� some of the edges between nodes are auxiliary edges� that do not
represent advancements along transitions of the model� If this is the case then the
same concrete state should eventually match both these nodes� For an AX�node�
the annotated counterexample shows one son that refutes the property� Given such
a node na� and its only son in the counterexample n�a� we need to match both their
states with concrete states that have a concrete transition between them� For an EX�
node� the annotated counterexample shows refutation in all its sons� Hence� given
such a node na� we need to match its abstract state sa with a concrete state sc and
add all its concrete sons to the concrete annotated counterexample�

�

Hence� the concretization algorithm of CA for producing a concrete annotated
counterexample� CC � is described as follows�

� Choose the initial concrete node to be n�c � �s�c� ��� where s�a is the initial
abstract state that appears in n�a and s�c is an arbitrary node from ��s�a��S�C�

� Apply the recursive procedure ComputeSons on �n�c� n�a��

Given a concrete node nc � �sc� ��� and the abstract node na � �sa� ��� that matches
it� the procedure ComputeSons�nc� na� creates the concrete sons of nc as follows�

� If �� � EX��� then for each state s�c such that sc � s�c� the node �s�c� ��� is
added to the concrete annotated counterexample as a son of nc� Each such node
matches an abstract node n�a � �s�a� ���� such that s�c � ��s�a�� Moreover� n�a is
a son of na in the abstract annotated counterexample�

� If �� � AX��� then na has one son n�a � �s�a� ��� in CA� An arbitrary state s�c
is chosen from fs�c � SC � sc � s�cg� ��s

�
a� and the node �s�c� ��� is added to the

concrete annotated counterexample as a son of nc� The resulting son matches
n�a�

� If �� � �� � ��� then the nodes �sc� ��� and �sc� ��� are added to the concrete
annotated counterexample as sons of nc� They match the abstract nodes �sa� ���
and �sa� ��� respectively� which are both sons of na in CA�

� If �� � �� � ��� then na has one son n�a � �sa� �i� in CA� where i � f
� �g� The
node �sc� �i� is added to the concrete annotated counterexample as a son of nc�
It matches the abstract node n�a�

In any case� we then recursively call the procedure ComputeSons on the new concrete
nodes �each one and the abstract node that it matches��

Basically� this is a greedy algorithm� The only situation where there is �freedom�
in the choice of concrete states is in case of sons of AX�nodes� In EX�nodes the algo�
rithm makes sure to include all the concrete sons in the annotated counterexample�
As for other nodes� whose sons result from auxiliary edges� the algorithm makes sure
to attach both the parent and the son with the same state�

Complexity
 The running time of the concretization algorithm is linear in the size of
the concrete annotated counterexample� which is bounded by the size of the concrete
Kripke structure MC times the length of the CTL formula �� i�e� O�jMC j � j�j��

Lemma ��� The concretization algorithm does not fail�

Proof
 This results from the following properties of the mixed simulation between
MA and MC � induced by �� and of the abstract annotated counterexample�

��

� For each initial abstract state s�a� there exists s�c � S�C such that s�c � ��s�a�
�since MC �MA�� Thus we have that ��s�a� � S�C �� ��

�� If sc � ��sa�� then for each s�c such that sc � s�c� there exists an abstract
state s�a such that s�c � ��s�a� and sa

may
�� s�a� In addition� for EX�nodes the

abstract annotated counterexample CA contains all the may�sons� Thus� in the
concretization of an EX�node� we are guaranteed that all its concrete sons are
represented by the sons of its matching node in CA�

� If sa
must
�� s�a� then for each sc � ��sa� there exists s�c � ��s�a� such that sc � s�c�

thus fs�c � SC � sc � s�cg � ��s�a� �� �� In addition� for AX�nodes the abstract
annotated counterexample CA contains a must�son� Thus� in the concretization
of an AX�node� we are guaranteed that there exists a concrete son that is
represented by the abstract son in CA�

�

In order to prove the correctness of the concretization algorithm� we need to show
that the result CC that it produces is indeed a �concrete� annotated counterexample
for the concrete game�graph GC � �NC� EC�� based on MC and �� To do so� we need
to show that CC is a subgraph of GC that is �
� colored F by the coloring function of
GC � denoted � � NC � fT�Fg� ��� independent of GC � i�e� that every partial coloring
function of GC w�r�t CC does not change the colors of its nodes� and �
� minimal�

Lemma ��� CC is a subgraph of GC �

Proof
 This results from the following properties�

� The initial node consists of a concrete initial state and the original formula �
�which also appeared in the abstract initial node��

� Every other node is a legal son of its parent� The correctness in terms of
the formulae in the nodes results from the abstract annotated counterexample�
because the formulae are not changed� As for the states� if the parent is an AX
or EX node� the correctness results from the fact that we replaced the may or
must edges with concrete edges� such that there exists a real transition in the
model from the parent�s state to its son�s state� Otherwise� it results from the
fact that we made sure to have the same state both in the parent and in its son�

�

As for �
� and ���� it su�ces to show that both the regular coloring algorithm and
the partial coloring algorithm w�r�t CC � given any initial coloring function of NC nCC�
color the nodes of CC by F � In fact� the regular coloring algorithm can be viewed
as an instance of the partial coloring algorithm with respect to CC where the initial
coloring function of NC nCC colors each node n � NC nCC by ��n�� Thus� it su�ces
to prove this claim for the partial coloring algorithm only�

�

Lemma ��� Let nc be a node in CC that corresponds to a node na in CA� Then given
any initial coloring function of NC n CC
 nc is colored by F in the partial coloring of
GC w�r�t CC�

Proof
 Given any initial coloring function that colors NC n CC� the proof is by in�
duction on the computation of the partial coloring algorithm w�r�t CC� We consider
nodes in CC only� The rest are colored by the initial coloring function� however their
colors are not relevant to the proof� Note that each node nc � CC has exactly one
matching node in CA� denoted by na �by the concretization algorithm��

Base case
 nc � CC is a terminal node� thus so is its matching abstract node na�
because they have the same formula� Since na � CA� we have that it was colored by
F � Thus� their formula can be either false or l where
l � LA�sa�� In the �rst case�
nc is obviously colored by F � In the second case� by the concretization algorithm�
we have that the �concrete� state sc of nc belongs to ��sa�� In addition�
l � LA�sa�
means that
l labels all the concrete states in ��sa� and in particular
l � LC�sc��
Hence� nc is colored by F as well�

Induction step

� nc � CC is colored due to its sons� We prove that it is colored by F � Assume
to the contrary that nc was colored by T based on its sons�

� If nc is an ��node� this means that it has a son n�c � GC that is already
colored by T � Clearly� by the description of the concretization algorithm�
we get that all of the sons of nc from GC appear in CC� This is true in
particular for n�c� Therefore� by the induction hypothesis� if it is already
colored� then it must be colored by F � in contradiction�

� If nc is an ��node� this means that all its sons in GC are already colored
by T � By the concretization algorithm� one of its sons� denoted by n�c� is
in CC� However� by our assumption� n�c is already colored by T � which
contradicts the Induction hypothesis�

�� nc was colored due to witness� It su�ces to show that the witness can not be
AV or EV � Similarly to Lemma
�

� it can be shown that for nc to be colored
by a witness� it must reside on a loop of nodes that matches an abstract loop
that passes through na in CA� However� by a generalization of Lemma
�
 to
the abstract case� if na resides on a loop in CA� then at least one of the nodes
n�a on the loop must have been colored by a witness� Now� if the witness that
caused the coloring of nc was AV or EV � then so would be the witness that
caused the coloring of n�a �because n�a lies on a loop that contains na� thus by
Lemma ��� which holds for the abstract case as well� their formulae result from
the same witness and the formulae in nc and na are the same�� which means n�a
would be colored by T � in contradiction to its being in CA�

��

�

Lemma ��� CC is minimal in the sense that any node and edge that are removed
from it result in a subgraph of GC that is not independent of GC �

Proof
 similar to the proof of Theorem
�
�� �

We can now conclude the correctness of the concretization algorithm� guaranteed by
the following Theorem�

Theorem ��� CC is an annotated counterexample for MC and ��

��

��

Chapter �

Re	nement

In this chapter� we show how to exploit the abstract game�graph in order to re�ne
the abstract model in case that the model checking resulted in an inde�nite answer�

In the framework of abstraction�re�nement� re�nement is usually based on a spu�
rious counterexample� and the state in which its concretization fails� This approach is
suitable when the model checking is based on ��valued semantics� where tt is de�nite�
whereas � is not� such that an abstract counterexample may be spurious� The goal
of the re�nement is then to eliminate the spurious counterexample�

When dealing with the
�valued semantics� if the result of the model checking is
�� then it is de�nite as well and no re�nement is needed� In this case� re�nement is
needed when the resulting truth value is inde�nite� i�e� �� in which case there is no
reason to assume either one of the de�nite answers tt or �� Thus� we would like to
base the re�nement not on a counterexample as in �
	� ��
�
�� ��� but on the point�s�
that are responsible for the inde�nite answer� The goal of the re�nement is to discard
these points� in the hope of getting a de�nite result on the re�ned abstraction�

Let MC � �SC � S�C ��� LC� be a concrete Kripke structure and letMA � �SA� S�A

�
must
���

may
��� LA� be an abstract KMTS as described in the preliminaries such that

MC � MA� Let � � SA � �SC be the concretization function� Given the abstract

�valued game�graph G� based on the abstract model MA and its coloring function
� � N � fT�F� �g� such that ��n�� �� for some initial node n�� we use the information
gained by the coloring algorithm of G in order to re�ne the abstraction� We re�ne
the abstract model by splitting its abstract states according to criteria obtained by a
failure node�

De�nition
�� A node n is a failure node if it is colored by �
 whereas none of its
sons was colored by � at the time n got colored by the coloring algorithm�

Informally� such a node is a failure node in the sense that it can be seen as the
point where the loss of information occurred� Thus� it can guide the re�nement in
hope to avoid the loss of information�

��

Note that a failure node may have uncolored sons at the time it is colored� some
of which may eventually be colored by �� Also note� that a terminal node that is
colored by � is also considered a failure node�

	�� Finding a Failure Node

First� the coloring algorithm is adapted to identify and remember failure nodes� In
addition� for each node n that is colored by �� but is not a failure node� the coloring
algorithm remembers a son that was already colored � by the time n was colored�
denoted cont�n�� Now� given the initial node n� that is colored � a failure node is
found by the following DFS�like greedy algorithm� starting from n��

Algorithm FailureSearch

� If the current node n is a failure node� the algorithm ends and returns it�

� As long as n is not a failure node� the algorithm proceeds to cont�n� �recur�
sively��

Lemma
�� The algorithm FailureSearch terminates�

Proof
 As long as the current node n is not a failure node� the algorithm continues
to cont�n�� This is a node that was colored � prior to n� Note� that by the de�nition
of a failure node� there always exists such a node if n is not a failure node� Thus�
each recursive call is applied on a node that was colored � earlier� Hence� the number
of recursive calls is bounded by the running time of the coloring algorithm� which is
�nite� �

Lemma
�� A failure node
 and in particular the one returned by the algorithm
FailureSearch
 is a node colored by �
 which is one of the following�

�� A terminal node of the form �sa� l� where l � Lit�

�� An AX�node �EX�node� that has a may�son colored by F �T ��

�� An AX�node �EX�node� that was colored during phase �a based on an AU
�EV � witness
 and has a may�son colored by ��

Proof
 By its de�nition� a failure node n is colored by � and none of its sons were
colored by � at the time it got colored� Thus� it cannot be an ��node or an ��node
other than an AX�node or an EX�node� This is because such a node can never be
colored by � when none of its sons are colored by �� More speci�cally�

� This is clear from the description of the coloring algorithm when n is colored
during phase
�

��

�� As for phase �� n could get colored by � only in phase �a� If the witness is an
AU or an EU witness� then by the description of the coloring algorithm� an
��node gets colored by � only if both its sons are colored by T or �� It is not
possible that both of them were colored by T � since this would mean they were
already colored this way in phase
� thus n would already be colored in this
phase as well� Similarly� an ��node gets colored by � in this phase and with
such a witness only if it has a son that is colored by T or �� The T option is not
possible since it would again mean that n could already be colored in phase
�
In any case� we get that an ��node or an ��node that gets colored in phase �a
based on such a witness has a son that is already colored by � at this time�
Similar arguments apply to the case of an AV or an EV witness�

Thus� by de�nition� the failure node cannot be such a node� which means it can only
be a terminal node� an AX�node or an EX�node�

� If n is a terminal node �case
�� then it must be of the form �sa� l� since terminal
nodes of the form �sa� true�� �sa� false� are colored by de�nite colors rather than
��

� Consider the case where the failure node n is an AX�node� We prove that either
it has a may�son colored by F �case ��� or it was colored during phase �a based
on an AU witness� and has a may�son colored by � �case
�� If n has a may�son
colored by F � then we are done�

If n does not have a may�son colored by F � then all its may�sons are clearly
colored by T or �� It cannot be the case that all of them are colored by T � since
then n would also be colored by T � in contradiction to its being a failure node�
Thus� n has at least one may�son that is colored by �� Note� that we claim that
this son is colored by � at the end of the coloring� but not at the time n got
colored �otherwise n would not be a failure node�� It remains to show that if
this case occurs then n was colored during phase �a based on an AU witness�

Obviously� n could not be colored during phase
� since if this was the case�
then by the coloring algorithm� n would have a may�son n� that was already
colored by F or � when n got colored� By our assumption� none of its may�sons
is colored by F at the end of the coloring and thus also at that time� which
implies that n has a may�son that was already colored by �� which contradicts
its being a failure node�

Furthermore� n could not be colored during phase �b of any iteration� otherwise
it would be colored by a de�nite color� in contradiction to its being a failure
node�

Thus� we conclude that in the case where n does not have a may�son that is
colored by F � n was indeed colored during phase �a� In addition� since it is an
AX�node� it can not be a part of an MSCC whose witness is EU or EV �by
Lemma ����� Thus� it remains to eliminate the possibility that the witness is
AV � If n was colored during phase �a based on an AV �witness� then by the

��

coloring algorithm� when it got colored� it had a may�son n� that was already
colored by F or �� By our assumption� the F option is not possible� which
means n had a may�son that was already colored by �� in contradiction to its
being a failure node� Thus� we conclude that the witness is an AU �witness�

As a conclusion we get that either n has a may�son colored by F � or it has a
may�son colored by �� in which case it was colored during phase �a based on an
AU witness�

� The case where n is an EX�node is similar�

�

	�� Failure Analysis

Given a failure node n� it provides us with criteria for the re�nement� Based on
this criteria� the re�nement problem is reduced to the problem of separating sets of
�concrete� states� which can be solved by known techniques� depending on the type
of abstraction used� Examples of solutions for certain types of abstractions can be
found in �
�� �for abstraction based on invisible variables� and in ��� �for abstraction
based on formulae clusters�� The criterion for the separation depends on the type of
n and is found by the following analysis�

� n � �sa� l� is a terminal node� In this case� its inde�nite color results from
the fact that sa represents both concrete states that are labeled by l as well as
concrete states that are labeled by
l� In order to avoid the inde�nite color in
this node� we need to separate these types of concrete states� Hence� our goal
is to separate ��sa� to two sets fsc � ��sc� � l � LC�sc�g and fsc � ��sc� �
l �
LC�sc�g�

�� n � �sa� AX��� with a may�son colored F � or n � �sa� EX��� with a may�
son colored T � Let K stand for F or T � We de�ne sonsK �

S
f��s�a� �

�s�a� ��� is a may�son of n colored Kg and concK � ��sa� � fsc � SC � �s�c �
sonsK � sc � s�cg� For the AX�� case� K � F and concK is the set of all con�
crete states� represented by sa� that de�nitely refute AX��� For the EX��

case� K � T and concK is the set of all concrete states� represented by sa� that
de�nitely satisfy EX��� In both cases� our goal is to separate the sets concK
and ��sa� n concK�

� n � �sa� AX��� or n � �sa� EX��� was colored during phase �a based on an
AU or an EV witness �respectively�� and has a may�son n� � �s�a� ��� colored
by �� Let conc� � ��sa� � fsc � SC � �s�c � ��s�a�� sc � s�cg be the set of all
concrete states� represented by sa� that have a son represented by s�a� Our goal
is to separate the sets conc� and ��sa� n conc��

�	

It is possible that one of the sets obtained during the failure analysis is empty
and provides no criterion for the split� Yet� new information can be gained from it
as well� For example� consider case �� where the failure node n is an AX�node� if
concF � ��sa�� then in fact every state that is represented by sa has a refuting son�
Thus� n can be colored by F instead of its current inde�nite color �� If concF � ��
then in fact none of the concrete states in ��sa� has a transition to a concrete state
that is represented by the F �colored may�sons of n� Thus� the �abstract� may�edges
from n to such sons� which caused n to be colored by �� can be removed� none of
them represents concrete transitions� Either way� the game�graph can be recolored
based on the new information� starting from the may�MSCC containing n� Similar
arguments apply to the rest of the cases as well�

The intuition behind the criterion for the split that is derived from cases
�� is
clear� Its purpose is to allow us to conclude de�nite results about �at least part� of
the new abstract states obtained by the split of the failure node� These new de�nite
results can be used within the framework of the incremental algorithm� suggested in
the next chapter� We now consider case
� Intuitively� in this case we know that
by the time the failure node n got colored� its may�son n� that is colored by � was
not yet colored �otherwise n would not be a failure node�� By the description of the
coloring algorithm� we know that if n� was a must�son of n� then as long as it was
uncolored� n would remain uncolored too and would eventually be colored in phase
�b by a de�nite color� Thus� our goal in this case is on the one hand to obtain a
must edge between �parts of� n and n� and on the other hand remove the may�edge
altogether between other parts of n and n��

Example
�� Consider the game�graph described in Figure ��
�a�� Its initial node
is colored by �� thus re�nement is needed� To understand which node is a failure
node and to identify cont�n� for a node n that is colored by � but is not a failure
node� we need to follow the coloring algorithm� All the nodes in Q��Q� are terminal
nodes and are colored accordingly by de�nite colors� As for Q�� the nodes n	 �
�t� p�AXA�pUq��� n� � �t� q� �p�AXA�pUq���� and n� � �t� A�pUq�� are colored in
phase
 by de�nite colors� The rest are colored in phase �a by � as follows� The nodes
n� � �s�AXA�pUq��� n� � �s� p � AXA�pUq��� n� � �s� q � �p � AXA�pUq��� and
n� � �s�A�pUq�� are colored in this order� which makes n� a failure node� whereas
n�� n� and n� are not failure nodes and for them cont�n�� � n�� cont�n�� � n� and
cont�n�� � n�� The node n� � �t� AXA�pUq�� can be colored at any time during this
phase� If it is colored before n�� then it is also a failure node� otherwise cont�n�� � n��
Given this information� the algorithm FailureSearch is applied starting from the
initial node� n� � �s�A�pUq��� It continues to n�� from there to n� and then reaches
the failure node n� � �s�AXA�pUq���

Given the failure node n�� failure analysis is applied� n� is an AX�node� It does
not have a may�son colored by F � thus as guaranteed by Lemma ��
� it has a may�son
n� � �s�A�pUq�� that is colored by � and it was colored in phase �a based on an
AU �witness� That is� n� corresponds to the third case� Thus� we compute the set
conc� � ��s� � fsc � SC � �s�c � ��s�� sc � s�cg � which is the set of all concrete states

�

M:
5

4

3

2

1
n�� � �t� p�

n� � �s� p�

n� � �s� q�

n� � �t� p � AXA�pUq��

n� � �s�AXA�pUq��

n�� � �t� q�

n� � �s� q � �p � AXA�pUq���

n� � �t� AXA�pUq��

n� � �t� A�pUq��

n� � �s�A�pUq��

n	 � �t� q � �p � AXA�pUq���

n
 � �s� p � AXA�pUq��

p��q

�p� q

s

t

�a�

3

4

2

7

8

5

6

1

10 9

M�

�s
� A�pUq��

�t
� q�

�t
� p�

�s
� p�

�s
� q � �p � AXA�pUq���

�s
� p � AXA�pUq��

�t
� AXA�pUq��

�s
� AXA�pUq��

�t
� A�pUq��

�t
� q � �p � AXA�pUq���

�t
� p � AXA�pUq��

�t�� p�

�s
� q�

�t�� p � AXA�pUq��

�s�� q�

�t�� q�

�t�� AXA�pUq��

�t�� q � �p � AXA�pUq���

�t� � A�pUq��

�s�� AXA�pUq���s�� p�

�s�� A�pUq��

�s�� p �AXA�pUq��

�s�� q � �p � AXA�pUq���

t

s�

s

p��q

�p� q�p� q

p��q

t�

�b�

Figure ��
� �a� A
�valued colored game�graph for M and � � A�pUq�� where the
initial node is colored by � and the failure node found by FailureSearch appears in
boldface" �b� The colored re�ned game�graph� based on the re�ned model M� and ��

��

represented by s that have a transition to a concrete state represented by s� The
re�nement is aimed at separating the sets conc� and ��s� n conc�� For example� if
the abstraction that is used is based on making some of the variables of the system
invisible� then these sets may be separated by turning some of the invisible variables
visible again�

Fig ��
�b� presents a possible re�ned model M�� where each abstract state was
split into two abstract states �possibly due to the addition of one visible variable�
and the abstract transitions were computed according to the new abstract states� It
also presents the resulting re�ned game�graph� where the split in the abstract states
caused the nodes of the game�graph to be split as well� For example� n� was split to
�s�� A�pUq�� and �s�� A�pUq��� n� was split to �s�� AXA�pUq�� and �s�� AXA�pUq���
etc� It can be seen that in the re�ned game�graph the initial nodes are now colored
by de�nite colors�

In this example the may�edge from the failure node n� to n� that existed in
the game�graph described in Fig ��
�a� and guided the re�nement was indeed elim�
inated� it no longer exists as a may�edge in the re�ned game�graph described in
Figure ��
�b� between none of the nodes that resulted from n� and n�� The nodes
�s�� AXA�pUq�� and �s�� A�pUq�� that resulted from them now have a must�edge be�
tween them� whereas the node �s�� AXA�pUq��� which also resulted from n� does not
have any edge to the nodes �s�� A�pUq�� and �s�� A�pUq�� that resulted from n��

Note that in failure nodes of the type AX or EX we have ignored the information
about sons that are colored by T or F respectively� This information may be used to
derive criteria for further separation� For example� consider the case of an AX�node�
Let gconcT � ��sa��fsc � SC � �s�c � sonsT � sc � s�cg �where A � SC nA� be the set of
all the concrete states represented by sa� that all their �concrete� sons are represented
by sons of n that are colored by T � These states all satisfy the AX formula� Thus�
separating them from the rest may be helpful as well�

Theorem
�� For �nite concrete models
 iterating the abstraction�re�nement process
is guaranteed to terminate with a de�nite answer�

Proof
 Applying the re�nement on the abstract model results in an abstract model�
whose states are more accurate in the sense that they represent �possibly� less concrete
states� i�e�� the re�ned model is �closer� to the concrete model than the original
abstract model in terms of states� Thus� the number of iterations in the abstraction�
re�nement process is bounded by the number of concrete states and is guaranteed to
end when the state space is �nite� �

�

��

Chapter

Incremental

Abstraction�Re	nement

Framework

We re�ne abstract models by splitting their states� The criterion for the re�nement
is decided locally� based on one node� but it has a global e�ect� since the re�ne�
ment is applied to the whole abstract model� Yet� in practice� there is no reason to
split states for which the model checking results are de�nite� The game�based model
checking algorithm provides us with a convenient framework to use previous results
and avoid unnecessary re�nement� This leads to an incremental model checking al�
gorithm based on iterative abstraction�re�nement� where each iteration consists of
abstraction� model checking and re�nement� This chapter is devoted to the descrip�
tion of our incremental abstraction�re�nement framework�

At the end of the ith iteration of abstraction�re�nement� we now remember the
�abstract� nodes that were colored by de�nite colors� as well as nodes for which a
de�nite color was discovered during the failure analysis� Let Di denote the set of
such nodes� Let �Di

� Di � fT�Fg be the coloring function that maps each node
in Di to its �de�nite� color� �Di

can be extracted from the result of the coloring
algorithm�

At the jth iteration� letD �
S

i�j Di denote the set of nodes that were remembered
from previous runs� and let �D � D � fT�Fg denote their coloring function� �D �S

i�j �Di
�

During the construction of a new re�ned game�graph in the jth iteration� we
prune the game�graph in nodes that are sub�nodes of nodes from D �nodes with
de�nite colors from previous iterations�� A node �sa� �� is a sub�node of �s�a� �

�� if
�
� they both have the same subformula� i�e� � � ��� and ��� the set of concrete
states represented by sa is a subset of those represented by s�a� When a node n that
is a sub�node of a node nd � D is encountered� we add nd � D to the game�graph
rather than n and do not continue to construct the game�graph from n� nor nd� As a

��

2

3

1

4

5

7

6

8

�s�� A�pUq�� �s
� A�pUq��

n� � �t�A�pUq��

�s
� AXA�pUq��

�s
� p � AXA�pUq��n� � �s� q�

�s
� q � �p � AXA�pUq���

n� � �s� p��s�� AXA�pUq��

�s�� p � AXA�pUq��

�s�� q � �p �AXA�pUq���

Figure ��
� The pruned game�graph for M� and � from Figure ��
� where nodes
from the initial game�graph� presented in Figure ��
�a�� appear in boldface�

result of this pruning� only the reachable subgraph that was previously colored by �
is re�ned�

The coloring algorithm then considers the nodes in D� where the game�graph was
pruned� as terminal nodes and colors them by their previous colors� i�e� a node nd � D
is colored by �D�nd�� The rest of the algorithm remains unchanged� This is similar
to the partial coloring algorithm� presented in De�nition
���

Note that for many abstractions� checking if a node is a sub�node of another is
simple� For example� in the framework of predicate abstraction ��
� ��� �	� �	�� this
means that the abstract states �agree� on all the predicates that exist before the
re�nement� When the abstraction is based on invisible variables �
��� this means that
the abstract states �agree� on all the variables that are visible before the re�nement�

Example ��� Figure ��
 demonstrates the use of previous results within the incre�
mental algorithm� where after re�ning the modelM described in Figure ��
�a�� instead
of building the entire game�graph based on the re�ned modelM�� as described in Fig�
ure ��
�b�� the game�graph is pruned in �t�� A�pUq�� and �t�� A�pUq�� that are both
sub�nodes of n� which already had a de�nite color �T �� The same goes for �s�� q� and
�s�� q� that are sub�nodes of n�� and for �s�� p� and �s�� p� that are sub�nodes of n��
The pruned game�graph� presented in Figure ��
� is clearly smaller and simpler than
the full re�ned game�graph� Its coloring handles the nodes in Q� � Q�� where the
game�graph was pruned� as terminal nodes and colors them by their previous colors�
The nodes in Q� are all colored by F in phase �b� based on the AU �witness� whereas
the nodes in Q� �Q� are colored in phase
�

��

Chapter �

Conclusion

In this work� we have exploited the game�theoretic approach of CTL model check�
ing to produce annotated counterexamples for full CTL� We have generalized this
approach to
�valued abstract models and suggested an incremental abstraction�
re�nement framework based on our generalization�

Traditional game�based model checking algorithms determine a winning strategy
for the winning player� The winning strategy holds all the relevant information as for
the result of the model checking� but it has redundancies� The annotated counterex�
ample introduced in this thesis may be seen as a minimal part of it that is su�cient
to explain the result�

Our
�valued game�based model checking and in particular the failure nodes pro�
vide information for re�nement� in case the outcome is inde�nite� Additional in�
formation can be extracted from them and be used for further optimizations of the
re�nement�

The incremental abstraction�re�nement algorithm described in this thesis can be
viewed as a generalization of Lazy abstraction ����� which allows di�erent parts of the
abstract model to exhibit di�erent degrees of abstraction� Lazy abstraction refers to
safety properties� whereas our approach is applicable to full CTL�

This work is based on the game�theoretic approach to model checking� This
approach is closely related to the Automata�theoretic approach ����� as described
in �
��� Thus� our work can also be described in this framework� using alternating
automata� In addition� it can easily be extended to alternation�free ��calculus�

��

��

Appendix A

Discussion� ��Valued Game�Based

Model Checking

In our discussion on abstract models� we have used the
�valued semantics for the
interpretation of a CTL formula over a KMTS� The de�nition of ��M�s� j� �� can
be extended to a KMTS using a ��valued semantics as well �
��� where the possible
truth values are tt and �� The de�nition is similar to the concrete semantics with
the following changes� Universal properties� of the form� A�� are interpreted along
may paths� Existential properties� of the form E�� are interpreted along must paths�

This gives us the ��valued semantics of CTL formulae over KMTSs� denoted ��M�s� j�
�
�

�� � tt � � �� The ��valued semantics is designed to preserve the truth of a formula
from the abstract model to the concrete one� However� false alarms are possible�
where the abstract model falsi�es the property� but the concrete one does not�

Theorem A��
��� Let H
 SC � SA be a mixed simulation relation from a Kripke
structure MC to a KMTS MA� Then for every �sc� sa� � H and every CTL formula

�
 we have that ��MA� sa� j�
�

� �� � tt implies that ��MC � sc� j�
�

� �� � tt�

We conclude that if MC �MA
 then �MA j�
�

� �� � tt implies that �MC j�
�

� �� � tt�

The game�based model checking algorithm can be extended to deal with KMTSs
based on the ��valued semantics in a more natural way than was needed to deal with
the
�valued semantics�

The ��valued semantics is aimed at proving �� it preserves only truth from the ab�
stract model to the concrete one� Therefore� the purpose of the game is also to prove
��s satisfaction� As such� the moves of �loise in con�gurations with EX�� formulae
need to use

must
�� transitions� since by the semantics de�nition� existential formulae are

interpreted over must �paths� Similarly� the moves of �belard in con�gurations with
AX�� formulae need to use

may
�� transitions� since universal formulae are interpreted

over may�paths� The rest of the moves� as well as the winning criteria remain the
same� with the following exception� The transition relation

must
�� is not necessarily

��

total� Thus� a con�guration of the form �s�EX��� may also be a terminal con�gura�

tion� if s has no outgoing
must
�� transitions� A play that ends in such a con�guration

is won by �belard�

Clearly� the relation between the existence of winning strategies and the satisfac�
tion of the formula� as described in Theorem ��� for the concrete game� holds for the
new game and the ��valued semantics� This results from the fact that the change in
the allowed moves of the players corresponds exactly to the change in the ��valued
interpretation of a formula over a KMTS�

The model checking algorithm� induced by the game consists of two parts� con�
struction of a game�graph based on the rules of the game� and its coloring� Once the
moves for the new game are de�ned� the game�graph is de�ned as well� Recall that
in the
�valued case� the resulting game�graph had a di�erent structure and thus the
coloring algorithm needed to be changed as well� However� in the ��valued case� the
resulting game�graph has the same structure as a concrete game�graph �with the ex�
ception of a new type of terminal nodes�� Although the abstract model has two types
of transitions for each state� when the game�graph is constructed� the edges become
uniform� We no longer distinguish between them� since there is only one type in each
node� As a result� in terms of the game�graph there is only one type of edges� Thus�
the same coloring algorithm can be applied on the �abstract� game�graph in order
to check which player has a winning strategy� with the small change that terminal
nodes of the form �s�EX��� need to be colored by F � The correctness of the coloring
algorithm� as described in Theorem ��� for the concrete case� is maintained since the
new game has the same properties as a concrete game� the same possible moves from
each con�guration �with the type of transitions adapted to match the semantics� and
the same winning rules� Thus we are guaranteed that the game�graph is colored by
the color of the player that has a winning strategy�

Altogether� we get that the resulting coloring function corresponds to the truth
value of the formula over the abstract model� under the ��valued interpretation of a
formula over a KMTS� This is formalized by the following theorem�

Theorem A�� Let M be a KMTS and � a CTL formula� Then
 for each n �
�s� ��� � GM��	

�� ��M�s� j�
�

� ��� � tt i� n � �s� ��� is colored by T �

�� ��M�s� j�
�

� ��� � � i� n � �s� ��� is colored by F �

Intuitively speaking� a node marked by �s� AX��� is now colored by T i� all its
sons in the game�graph are colored by T �satisfy ���� where its sons represent all the
states to which s has may transitions� In a similar way� a node marked by �s� EX��� is
colored by T i� one of its sons is colored by T �satis�es ���� where this son represents
a state to which s has a must transition� Therefore� the coloring corresponds to the

�	

��valued semantics�

Complexity
 Clearly� the running time of the coloring algorithm remains linear with
respect to the size of the game�graph GM��� The latter is bounded by the size of the
underlying KMTS times the length of the CTL formula� i�e� O�jM j � j�j��

A�� Application to ��Valued Model Checking

We have the following correspondence between the ��valued semantics and the
�
valued semantics�

Theorem A�� Let M be a KMTS� Then for every CTL formula � and for every
s � S
 we have that	

�� if ��M�s� j�
�

� �� � tt then ��M�s� j�
�

� �� � tt�

�� if ��M�s� j�
�

�
�� � tt then ��M�s� j�
�

� �� � ��

�� otherwise ��M�s� j�
�

� �� ���

where
� denotes the CTL formula equivalent to
�
 with negations pushed to the
literals�

Based on Theorem A�
� given an abstract KMTS MA such that MC � MA� one
may suggest using two instances of the previously described ��valued model checking
algorithm in order to evaluate the
�valued truth value of � over MA� as follows�

First� evaluate � over MA using the ��valued semantics� The constructed game�
graph is referred to as the satisfaction graph� since it was built for the purpose of
proving the satisfaction of �� If the result is tt for all the initial states� then we have

that �MA j�
�
� �� � tt and we can conclude that �MC j� �� � tt�

Otherwise� evaluate
� �with negations pushed to the literals� over MA using
the ��valued semantics� The constructed game�graph is referred to as the refutation
graph� since it was built for the purpose of proving satisfaction of the negation of �
�which is equivalent to proving refutation of ��� If the result is tt for at least one

initial state� we have that �MA j�
�
� �� � � and we can conclude that �MC j� �� � �� In

addition� a concrete annotated counterexample may be produced from the refutation
graph�

This can be better understood using the following observation� Note� that instead
of evaluating
� using the previous ��valued game�based model checking algorithm�
it is possible to de�ne a game with di�erent rules that is designed to refute the

�

s�� ��
s�� ��

s� AX��

s�� ��
s�� ��
s�� ��

s� AX��

�a� �b�

Figure A�
� A satisfaction graph �a� versus a refutation graph �b� for AX�

formula �� In such a game the players use the opposite type of transitions in each
con�guration �node�� �belard uses must transitions in AX�nodes and �loise uses may�
transitions in EX�nodes� As a result� F is preserved from the corresponding abstract
game�graph to the concrete one� but T is not� Note� that the game�graph obtained
by these rules is isomorphic to the refutation graph and the result of its coloring is
equivalent to the result of the previous algorithm applied on
�� Obviously� if an
initial node in such a game�graph is colored by F � then we can easily �nd an abstract
annotated counterexample by the algorithm ComputeCounter described in Chapter
�
The abstract annotated counterexample is guaranteed not to be spurious and can be
matched with a concrete one by a greedy algorithm� as described in Chapter ��

If none of the above holds� we have that �MA j�
�
� �� ��� Thus� MA needs to

be re�ned� One would suggest to try and use both the satisfaction graph and the
refutation graph and their coloring functions to �nd a criterion for re�nement� In a
sense they complement each other� because they are based on opposite types of tran�
sitions� However� these two game�graphs have di�erent nodes �because reachability is
also based on opposite transitions�� so most chances are that we can not �nd enough
needed information in their intersection� This is demonstrated in Figure A�
� where
in the satisfaction graph �a� the initial node �s�AX�� is colored by F since its son
�s�� �� is colored by F � However� in the refutation graph �b� �s�AX�� is colored by T �
Thus� the result of the model checking in inde�nite� Unfortunately� the refuting son
from the satisfaction graph� �s�� ��� does not appear in the refutation graph� since it
is not a must�son of �s�AX��� Thus� combining the information of both these graphs
does not supply enough information for the re�nement�

In summary� this approach provides the same information as the
�valued algo�
rithm about nodes that appear in both the satisfaction and the refutation graphs�
Since the initial nodes appear in both of them� this approach is su�cient in order

to answer the question ��M j�
�
� �� ��� as accurately as the direct
�valued approach�

However� for the re�nement analysis we are interested in the inner nodes as well� that
are not necessarily mutual to both the graphs� Thus� using two such game�graphs
does not provide us with full information �in terms of edges� about all of them� Hence�
the
�valued game�based algorithm is advantageous in terms of the re�nement�

��

Note� that this approach is similar in spirit to the result of translating the KMTS
to an equivalent partial Kripke structure �PKS� as described in ���� and then model
checking the PKS under the
�valued semantics by running a standard ��valued model
checker twice� as described in ����

�

��

Appendix B

Memoryless Winning Strategies

Theorem ��� describes the correspondence between the existence of winning strategies
for the model checking game and the model checking results� Thus� it refers to
the existence �or non�existence� of winning strategies for the players� Recall that
a strategy for a player is a set of rules telling him �or her� how to proceed from a
given con�guration� In general� the rules in the strategy can depend on the entire
sequence of con�gurations in the current play that led to the given con�guration�
Yet� one may also be interested in referring to memoryless �or history�free� winning
strategies� where every rule can depend only on the current con�guration of the play
and cannot depend on the course of the play up until this con�guration �i�e�� it should
be independent of the pre�x of the play�� More formally�

De�nition B�� A strategy � for a player P is a function assigning to every �nite
sequence of con�gurations �C ending in a con�guration C
 which is in the responsibility
of the player P
 a con�guration C �
 such that the move from C to C � is a legal move
for P � A strategy is memoryless i� ���C� � �� �C �� whenever �C and �C � end in the
same con�guration�

The winning strategies described in the proof of Theorem ��� are not memoryless�
The reason for this is that the paths that are used to construct the winning strategies
may contain repetitions of states� The result is that it is possible that the strategy
contains di�erent rules for the same con�guration �s�� ��� based on the position of the
state s� in the path� or in other words� based on the position of the con�guration in
the play� This problem is avoided when using simple paths�

De�nition B�� � An in�nite path
 is said to be simple if
 is of the form x �y�

where x � s�� � � � � sk and y � sk��� � � � � sn such that for every 	 � i� j � n	
i �� j �� si �� sj�

� A �nite path
 is said to be simple if
 is of the form s�� � � � � sn such that for
every 	 � i� j � n	 i �� j �� si �� sj�

��

The following lemma implies that every non�simple path that is used in the proof of
Theorem ��� for the construction of a strategy for any of the players can be replaced
by a simple one�

Lemma B�� Let � be a �path� formula of the form ��U�� or ��V ��
 where �� and

�� are CTL formulae� If there exists a �must or may� path
 such that �
 j�
�

� �� � v
for v � ftt����g
 then there exists a simple path
� of the same type �must or may�

such that �
� j�
�

� �� � v as well�

Based on Lemma B�
� we conclude that the winning strategies in the proof of
Theorem ��� can be made memoryless� As a result we get that Theorem ��� can be
rephrased in terms of memoryless winning strategies�

��

References

�
� A� Asteroth� C� Baier� and U� Assmann� Model checking with formula�
dependent abstract models� In Computer�Aided Veri�cation �CAV�� vol�
ume �
	� of LNCS� pages
��#
��� �		
�

��� F� Balarin and A� Sangiovanni�Vincentelli� An itertaive approach to lan�
guage containment� In Computer�Aided Veri�cation� pages ��#�	�
��
�

�
� S� Barner� D� Geist� and A� Gringauze� Symbolic localization reduction
with reconstruction layering and backtracking� In Proc� of Conference on
Computer�Aided Veri�cation �CAV�� Copenhagen� Denmark� July �		��

��� O� Bernholtz� M� Vardi� and P�Wolper� An automata�theoretic approach
to branching�time model cheching� In Proceedings of the �th International
Conference on Computer Adided Veri�cation �CAV����� volume �
� of
LNCS� pages
��#
��� Springer�Verlag�
����

��� B� Bollig� M� Leucker� and M� Weber� Local parallel model checking for the
alternation�free mu�calculus� In Proceedings of the �th International SPIN
Workshop on Model checking of Software �SPIN ����� Springer�Verlag Inc��
�		��

��� G� Bruns and P� Godefroid� Model checking partial state spaces with
�
valued temporal logics� In Computer Aided Veri�cation� pages ���#����

����

��� G� Bruns and P� Godefroid� Generalized model checking� Reasoning about
partial state spaces� Lecture Notes in Computer Science�
����
��#
���
�			�

��� P� Chauhan� E� Clarke� J� Kukula� S� Sapra� H� Veith� and D�Wang� Auto�
mated abstraction re�nement for model checking large state spaces using
sat based con�ict analysis� In Formal Methods in Computer Aided Design
�FMCAD�� November �		��

��� E� Clarke� O� Grumberg� S� Jha� Y� Lu� and H� Veith� Counterexample�
guided abstraction re�nement� In ��th International Conference on Com�
puter Aided Veri�cation �CAV����� LNCS� Chicago� USA� July �			�

��

�
	� E� Clarke� O� Grumberg� K� McMillan� and X� Zhao� E�cient generation of
counterexamples and witnesses in symbolic model checking� In Proceedings
of the ��nd Design Automation Conference �DAC����� IEEE Computer
Society Press� June
����

�

� E� Clarke� O� Grumberg� and D� Peled� Model Checking� MIT press� De�
cember
����

�
�� E� Clarke� A� Gupta� J� Kukula� and O� Strichman� SAT based abstraction�
re�nement using ILP and machine leraning techniques� In Proc� of Confer�
ence on Computer�Aided Veri�cation �CAV�� Copenhagen� Denmark� July
�		��

�

� E� Clarke� S� Jha� Y� Lu� and H� Veith� Tree�like counterexamples in model
checking� In Seventeenth Annual IEEE Symposium on Logic In Computer
Science �LICS�� Copenhagen� Denmark� July �		��

�
�� E� M� Clarke� O� Grumberg� and D� E� Long� Model checking and ab�
straction� ACM Transactions on Programming Languages and Systems
�TOPLAS��
�� ��
�
�#
���� September
����

�
�� P� Cousot and R� Cousot� Abstract interpretation� A uni�ed lattice model
for static analysis of programs by construction or approximation of �x�
points� In popl�� pages �
�#���� Los Angeles� California�
����

�
�� D� Dams� R� Gerth� and O� Grumberg� Abstract interpretation of reac�
tive systems� ACM Transactions on Programming Languages and Systems
�TOPLAS��
����� March
����

�
�� S� Das� D� L� Dill� and S� Park� Experience with predicate abstraction� In
Computer Aided Veri�cation� pages
�	#
�
�
����

�
�� D�Peled� A�Pnueli� and L�Zuck� From falsi�cation to veri�cation� In
FSTTCS� volume ���� of LNCS� Springer�Verlag� �		
�

�
�� X� Du� S� A� Smolka� and R� Cleaveland� Local model checking and protocol
analysis� International Journal on Software Tools for Technology Transfer�
��
���
�#��
�
����

��	� P� Godefroid� M� Huth� and R� Jagadeesan� Abstraction�based model
checking using modal transition systems� In Proceedings of CONCUR����
�		
�

��
� P� Godefroid and R� Jagadeesan� Automatic abstraction using generalized
model checking� In Proc� of Conference on Computer�Aided Veri�cation
�CAV�� volume ��	� of LNCS� pages

�#
�	� Copenhagen� Denmark� July
�		�� Springer�Verlag�

��

���� P� Godefroid and R� Jagadeesan� On the expressiveness of
�valued mod�
els� In Proceedings of VMCAI����� ��th Conference on Veri�cation
 Model
Checking and Abstract Interpretation�� volume ���� of Lecture Notes in
Computer Science� pages �	�#���� New York� January �		
� Springer�
Verlag�

��
� S� Graf and H� Saidi� Construction of abstract state graphs with PVS� In
Proc� of Conference on Computer�Aided Veri�cation �CAV�� volume
���
of LNCS� pages ��#�
� Springer�Verlag� June
����

���� A� Gur�nkel and M� Chechik� Proof�like counter�examples� In Proceedings
of TACAS���� April �		
�

���� T� A� Henzinger� R� Jhala� R� Majumdar� G� C� Necula� G� Sutre� and
W� Weimer� Temporal�safety proofs for systems code� In Proc� of Confer�
ence on Computer�Aided Veri�cation �CAV�� Copenhagen� Denmark� July
�		��

���� T� A� Henzinger� R� Jhala� R� Majumdar� and G� Sutre� Lazy abstraction�
In Proceedings of the ��th ACM SIGPLAN�SIGACT symposium on Prin�
ciples of programming languages �POPL�� pages ��#�	� Portland� Oregon�
�		�� ACM Press�

���� M� Huth� Model checking modal transition systems using kripke structures�
In Proceedings of the Third International Workshop on Veri�cation
 Model
Checking and Abstract Interpretation �VMCAI����
� volume ���� of LNCS�
pages
	�#

�� Venice� January �		�� Springer�Verlag�

���� M� Huth� R� Jagadeesan� and D� Schmidt� Modal transition systems� A
foundation for three�valued program analysis� Lecture Notes in Computer
Science� �	���
��#
��� �		
�

���� O� Kupferman� M� Y� Vardi� and P� Wolper� An automata�theoretic ap�
proach to branching�time model checking� Journal of the ACM �JACM��
������

�#
�	� �			�

�
	� R� Kurshan� Computer�Aided�Veri�cation of Coordinating Processes�
Princeton University Press�
����

�

� M� Lange� A game based approach to CTL� model checking� In Proc�
summer school MOVEP��k� Nantes� France� June �			�

�
�� M� Lange and C� Stirling� Model checking games for CTL�� In Proc� Conf�
on Temporal Logic
 ICTL���� pages

�#
��� Leipzig� Germany� Oct� �			�

�

� K� Larsen and B� Thomsen� A modal process logic� In Proceedings of Third
Annual Symposium on Logic in Computer Science �LICS�� pages �	
#�
	�
IEEE Computer Society Press� July
����

��

�
�� K� G� Larsen� Modal speci�cations� In J� Sifakis� editor� Proceedings of
the ���� International Workshop on Automatic Veri�cation Methods for
Finite State Systems
 Grenoble
 France� volume �	� of Lecture Notes in
Computer Science� Springer�Verlag� June
����

�
�� W� Lee� A� Pardo� J��Y� Jang� G� D� Hachtel� and F� Somenzi� Tearing
based automatic abstraction for CTL model checking� In ICCAD� pages
��#�
�
����

�
�� M� Leucker� Model checking games for the alternation free mu�calculus
and alternating automata� In �th International Conference on Logic for
Programming and Automated Reasoning �LPAR����� September
����

�
�� J� Lind�Nielsen and H� R� Andersen� Stepwise CTL model checking of
state�event systems� In Computer Aided Veri�cation� pages

�#
���
����

�
�� C� Loiseaux� S� Graf� J� Sifakis� A� Bouajjani� and S� Bensalem� Property
preserving abstractions for the veri�cation of concurrent systems� Formal
Methods in System Design� ��

#���
����

�
�� K� S� Namjoshi� Certifying model checkers� In ��th Conference on Com�
puter Aided Veri�cation �CAV�� volume �
	� of LNCS� Springer�Verlag�
�		
�

��	� K� S� Namjoshi and R� P� Kurshan� Syntactic program transformations for
automatic abstraction� In Proc� of Conference on Computer�Aided Veri�
�cation �CAV�� volume
��� of LNCS� pages �
�#���� Chicago� IL� USA�
July �			� Springer�

��
� A� Pardo and G� D� Hachtel� Automatic abstraction techniques for proposi�
tional mu�calculus model checking� In Computer Aided Veri�cation� pages

�#�
�
����

���� A� Pardo and G� D� Hachtel� Incremental CTL model checking using BDD
subsetting� In Design Automation Conference� pages ���#����
����

��
� D� Peled and L� Zuck� From model checking to a temporal proof� In
Proceedings of the �th international SPIN workshop on Model checking of
software� pages
#
�� Toronto� Ontario� Canada� �		
� Springer�Verlag New
York� Inc�

���� H� Saidi� Model checking guided abstraction and analysis� In Proceed�
ings of the �th International Static Analysis Symposium �SAS������ Santa
Barbara� CA� Jul �			�

���� H� Saidi and N� Shankar� Abstract and model check while you prove� In
Proceedings of the eleventh International Conference on Computer�Aided
Veri�cation �CAV���� Trento� Italy� Jul
����

�	

���� C� Stirling� Local model checking games� In Proceedings of the �th Inter�
national Conference on Concurrency Theory �CONCUR����� volume ���
of LNCS� pages
#

� Berlin� Germany� August
���� Springer�

���� C� Stirling� Modal and Temporal Properties of Processes� Springer� �		
�

���� L� Tan and R� Cleaveland� Evidence�based model checking� In ��th Con�
ference on Computer Aided Veri�cation �CAV�� volume ��	� of Lecture
Notes in Computer Science� pages ���#��	� Copenhagen� Denmark� July
�		�� Springer Verlag�

���� E� Yahav� T� Reps� and M� Sagiv� LTL model checking for systems with
unbounded number of dynamically created threads and objects� Technical
Report TR�
���� Computer Sciences Department� University of Wisconsin�
Madison� WI� Mar� �		
�

�

��

zeicbp ze�nbecl miwgyn zqqean dnkq

CTL xear oecir�divwxhqa� inzixebl�le

mdey oexy

zeicbp ze�nbecl miwgyn zqqean dnkq

CTL xear oecir�divwxhqa� inzixebl�le

xwgn lr xeaig

x�ez zlawl zeyixcd ly iwlg ielin myl

aygnd ircna mircnl xhqibn

mdey oexy

l�xyil ibelepkh oekn � oeipkhd hpql ybed

���� xanaep dtig c�qyz elqk

aygnd ircnl dhlewta bxanixb dpx� ziigpda dyrp xwgnd

izenlzyda daicpd zitqkd dkinzd lr oeipkhl dcen ip�

mipipr okez

� zilbp�a xivwz

� zilbp�a mixeviwe milnq

� �ean �

� izextq rwx ���

�� dceard oebx� ���

�� ceqi ibyene zexcbd �

�� miwgyn qqean lcen zwica mzixebl� ���

�	 � eizepekze wgyn sxb ziipa �����

�� driavd mzixebl� �����

�
 � divwxhqa� ���

�� zpneqn zicbp �nbec ziipal miwgyna yeniy �

� zpneqnd zicbpd �nbecd zepekz
��

 � � � � � � � � � � � � � zilnipine dwitqn �id zpneqnd zicbpd �nbecd
��

� miiyrn milewiy
�

	� miihwxhqa� milcenl miwgyn zqqean lcen zwica 	

�� eizepekze wgyn sxb ziipa ���

�� driavd mzixebl� ���

� ihwxhqa� wgyn sxb jezn zihxwpew zicbp �nbec ziipa �

� oecir

�� oelyk znev z�ivn ���

	 � oelykd gezip ���

�

�jynd� mipipr okez a

�� zizbxcd oecir�divwxhqa� znkq �

�� mekiq �

�� miwgyn zqqean zikxr�ec lcen zwica
oeic �

�� zikxr�zlz lcen zwica jxevl yeniy ���

�� oexkf zexqg oegvp zeibhxhq� a

�
 zexewn zniyx

d agxen xivwz

mixei� zniyx

zeaiyg z� dnibcnd ComputeCounter mzixebl�d ly dvxd znbec
��

	 � cause�a yeniyd

�� ikxr�zlz wgyn sxb zriavl �nbec ���

� � � � � � � � � � � � � � � � ikxr�zlz wgyn sxb lr oecir zlrtdl �nbec ���

� ocern wgyn sxb mefibl �nbec
��

�� � � � � � � � � � � � �AX� xear �b� dkxtd sxb znerl ��a� zewtzqd sxb ���

b

c

agxen xivwz

�
�� CTL lcen zwica ly miwgynd zqqean dnkqd z� daigxne zlvpn ef dcear
�izbxcd oecir�divwxhqa� mzixebl�le zeicbp ze�nbecl

���� CTL dwibell ycg lcen zwica mzixebl� rivdl �id ef dceara dpey�xd epzxhn
M lcen m�d dwical dgilvn dyib �id lcen zwica �miihwxhqa� milcenl qgia
zwica �oiteligl �� zilxetnh dwibela dgqepk oezpd hxtn wtqn dpezp zkxrn ly
�nyn true zn� jxr xy�k �M lcena � dgqepd ly zn�d jxr z� zaygn lcend
�lcena zkxten dgqepdy ezernyn false zn� jxre �lcena zwtzqn dgqepdy ezer
�xn �ce�n milecb zeidl mihep zeizin� zekxrn ly �milibx� miihxwpew milcen �mle�
ziiral liaend xac �zkxrna mipzynd xtqna il�ivppetqw� �ed mdly miavnd ag
wlg dxizqn divwxhqa� �divwxhqa�a jxevd xxerzn �jkn d�vezk �miavnd zevvetzd

zeppkezn llk jxca zeivwxhqa� �xzei ohw �ed lawznd lcendy jk �zkxrnd ihxtn
wtqn ihwxhqa� lcen m�y �id zernynd �dpezp dwibell qgia zeipxny dpiidzy jk
lcend m� �z�f znerl �dze� wtqn ihxwpewd lcend mb if� �dpezpd dwibela dgqep
�ihxwpewd lcend lr xac wiqdl xyt� i� if� �dgqepd z� wtqn epi� ihwxhqa�d

�ihwxhqa�milcen lrn CTL dwibela ze�gqep yexitl zeixyt� zewihpnq izy opyi
lcena false e� true zn� jxr zlra zeidl � dgqep dxicbn zikxr�ecd dwihpnqd �mi
�mle� �ihxwpewd lcena mb xnyi �edy ghaen �true �ed zn�d jxr xy�k �ihwxhqa�
�ycg zn� jxr dtiqen ���� zikxr�zlzd dwihpnqd �dnecn zeidl lelr false zn� jxr
didi ihwxhqa� lcena dgqep ly zn�d jxr ik okzi zikxr�zlzd dwihpnqd zgz
od �z�f znerl �ihxwpewd lcena zn�d jxr lr rcin lk ozip �l �df dxwna �hlgen �l

�xnyp �dkxtd lr cirnd false zn�d jxr ode �zewtzqd lr cirnd true zn�d jxr
�zexg� milina �zikxr�zlzd dwihpnqd lr xaecn xy�k �ihxwpewd lcena mb mi
zeiaeig ze�vezl qgia zeipxny od zikxr�ecd dwihpnqd lrn zeivwxhqa�y cera
qgia zeipxny od zikxr�zlzd dwihpnqd lrn zeivwxhqa�y ixd �cala �zewtzqd�
zeivwxhqa� �jkn d�vezk �cgi mb �dkxtd� zeililye �zewtzqd� zeiaeig ze�vezl
xear od xzei zeaexw mizirl zewiecn ze�vez zewtqn zikxr�zlzd dwihpnqd lrn

�dkxtd xear ode zeni�

miwgyn qqean lcen zwica mzixebl� mixicbn ep� �zncewd dpga�d zeawra
leki ihwxhqa� lcen day �zikxr�zlzd dwihpnql qgia miihwxhqa� milcenl
lcend zwica �ziyily zexyt� ztqeezn dzr �mle� �dkxtdl ode zeni�l od ynyl
dpi� zigkepd divwxhqa�dy jkl oniq edf �zhlgen �l daeyz mr miizqdl dieyr
�ihxwpewd lcena zwcapd dpekzd ly zn�d jxr dn reawl zpn lr zhxetn witqn
lcenl mihxt mitiqen eay �divwxhqa�l jetd jildz �ed oecir �oecir xearl dilr okle

�ihwxhqa�d

d

�e�a zrvazn oezpd lcena dpekzd zwica day zillk dnkq �id oecir�divwxhqa�

ly lcen zwica revia �ihwxhqa� lcen ziipan zakxen divxhi� lk �iaihxhi� ot
lcend zwica z�veze dcina ihwxhqa�d lcend oecire �ihwxhqa�d lcena dpekzd
cr jynp jildzd �ihxwpewd lcena d�vezd idn wiqdl zxyt�n �l ihwxhqa�d
�zxeqnd oecir�divwxhqa�d znkq �ihxwpewd lcend iabl zhlgen d�vez zlawl
�id if� �false �id d�vezd m� oday �zeikxr�ec zeivwxhqa�l dni�zn �� �	
� zi
ze�vez �false ze�vez zlaw repnl �id oecird ly ezxhn �ok lr �dnecn zeidl dieyr
lr qqean oecird mixwnd ziaxna okl �zeicbp ze�nbeca zeax minrt zeeln dl�k
oecird ly ezxhn �efd dyibl cebipa �lcend zwica jildza d�vnpy zicbp �nbec gezip
true �l dl�k ze�vez zepyle �zehlgen �l ze�vez zlaw repnl �id eply dceara

�hlgen false �l e� hlgen

eiably lcend ly wlgd lr wx lrten oecirdy jka oenh ef dcear ly zepexzid cg�
xzi �jxevl �ly lcb �l ihwxhqa�d lcend jkn d�vezk �zehlgen �l ze�vez elawzd
zeivxhi�a elawzdy zehlgen ze�veza zxfrp ocernd lcend ly lcend zwica �ok lr
mirivn ep�y oecir�divwxhqa�d jildz �zizbxcd lcen zwical liaend xac �zencew
daeyz mr miizqi �edy ghaen miiteq miihxwpew milcen xeary oaena mly �ed

�zhlgen

zwica ly miwgynd zqqean dnkqa ynzydl dpid ef dcear ly d�ad dxhnd
zwica revia zra �CTL �lvtznd onfd zwibell zeicbp ze�nbec wtql zpn lr lcen
zwica ilk if� �dpekzd z� wtqn epi� lcend m� �� dpekzl qgia M lcen ly lcen
xiaqny lcendn wlg �id zicbp �nbec �llk jxca �zicbp �nbec wtql dqpn lcend
zwica ly daeyg dpekz �id zeicbp ze�nbec z�ivn �lcena zkxten dgqepd recn

�zwcapd zkxrna ze�iby oewize ieliba zeax zriiqn xy� �lcen

jxevl� iteq lelqn zicbp �nbec xeza mixifgn miniiwd lcend zwica ilk ziaxn
ze�gqep zkxtd jxevl� bega deeln iteq lelqn e� �AGp dxevdn ze�gqep zkxtd
lkl zeicbp ze�nbec wtql zpn lr dagxed ef dyib �dpexg�l ���� �	�� ��AFp dxevdn
dxwna ��
�� CTL dwibeld ly ilqxaipe�d wlgd �idy �ACTL dwibela ze�gqepd
zetqep zecear opyi �ur zxeva �ed zicbp �nbec xeza xfgeny lcend ly wlgd �df
rcind z� zebivn od j� ���� ��
 ��� �
�� lcend zwica jildzn rcin zwtda zewqery

�lcendn wlgk �le zilxetnh dgked zxeva

xy�k �xen�k �dzenlya CTL dwibell zeicbp ze�nbec miwtqn ep� ef dceara
�CTL �a xaecn xy�k �mle� �lcendn wlg od zeicbpd ze�nbecd �ACTL �a xaecn
�epy ze�xdl zpn lr �zeilqxaipe� zepekzl sqepa �zeineiw zepekz mr ccenzdl yi
milelqnd lky lcena izlgzd avn ze�xdl yi �zkxten �id E� dxevdn zineiw dgq
dyrp zicbpd �nbecd ly dpand �jkn d�vezk �� z� miwtqn mpi� epnn mi�veid

�xzei akxen

m� dzpada miiywa lwzidl lelr ynzynd �zakxen dk �id zicbpd �nbecd xy�k
�nbeca avn lkl micinvn ep� �ok lr �lcendn wlg deedny sxb zza wtzqdl eilr didi
zekxtend �dl�d ze�gqepd �avn eze� ici lr zkxten dpidy � ly dgqep zz zicbpd
�ed � dgqepd ly zn�d jxry jkl daiqd z� zewtqn �zecnven od odil� miavna
�zpneqn zicbp �nbec dpeknd �zlawznd zicbpd �nbecd �okl �izlgzdd avna false

ly zernyndy cera ��miiwzn p �lelqnd jxe�l avn lka �lelqn lka� �id AGp ly zernynd�

��p wtqny avn miiw lelqn lk jxe�l� �id AFp

e

zepneqn zeicbp ze�nbec dpea xy� mzixebl� mirivn ep� �ze�iby ielibl gep ilk deedn
xtqna mipc ep� �sqepa �zeilnipine zewitqn od aygn �edy ze�nbecdy migikene

�lreta rcind zbvde yeniyl mikxc

�xhn zbydl cgeina dgep zxbqn �id CTL xear �
�� miwgyn zqqean lcen zwica

xy� jixtnd ��belard� cxla� �mipwgy ipy oia wgyn �ed lcend zwica wgyn �epize
��loise� fi�el�e ��M �j� � oneqi� � dgqepd z� jixtn M lcend ik ze�xdl dqpn
gel ��M j� � oneqi� dgqepd z� wtqn lcend ik ze�xdl dzxhn xy� dgikend
�� ly dgqep�zz �id � �e lcend ly avn �ed s xy�k ��s� �� zebefn akxen wgynd
znevn mcwzn exeza mipwgydn cg� lk �s avna ogap � ly zn�d jxry zernyna
��d mipewgynd lk �s avna � zgked e� zkxtd �ezxhn zbyda xefriy znevl dfk
wgynd gel ly mihpnl�d md eiznvy �wgynd sxb ici lr mix�ezn wgyna miixyt
�dn zebef md miizlgzdd miznvd �mipwgyd ly miixyt�d mikldnd od eizezywe
ik migihany dl�k md wgynd illk �lcena izlgzd avn �ed s� xy�k �s�� �� dxev
�fi�el� ly dikldna zelz �ll gvpl leki �ed �xnelk� zgvpn dibhxhq� yi cxla�l

�M j� � m�m� zgvpn dibhxhq� yi fi�el�l �M �j� � m�m�

znev �wgynd sxb lr ��� driav mzixebl� zlrtd ici lr zrvean lcend zwica
oiteligl e� �epnn lgd zgvpn dibhxhq� yi fi�el�l m�m� T �a ravp �s� �� dxevdn
dibhxhq� yi cxla�l m�m� F �a ravp �ed �s avnd ici lr zwtzqn � dgqepd m�m�
miznvd lk m� �driavd meiqa �s avnd ici lr zkxten � m�m� oiteligl e� � zgvpn
cg� izlgzd znev zegtl m� �M j� � ik wiqdl ozip if� �T �a mireav miizlgzdd

�zicbp �nbec wtql dvxpe M �j� � if� �F �a reav

ly zikxr�zlzd dwihpnqa miwqer ep� �oeicl divwxhqa� mitiqen ep� ef dceara
ze�vez mb dit lr �zikxr�zlzd dwihpnqd zpekz z� xnyl eppevxa �CTL ze�gqep
myl �ihxwpewd lcena mb zetwz ody oaena zehlgen od zeilily ze�vez mbe zeiaeig
�ihwxhqa�d wgyna miciwtz ipy lra zeidl mipwgydn cg� lkl mixyt�n ep� �jk
wgyna enk� owgyl m�zda �dpekzd z� gikedl e� jixtdle gvpl �ed oey�xd ciwtzd
�okl �ezxhn z� biydl epnn repnle aixid z� liykdl zeqpl �ed sqepd ciwtzd ��libxd
�z�f znerl �fi�el� �dze� gikedl fi�el�n repnl e� dpekzd z� jixtdl dqpi cxla�
ik dzr okzi ccea oewgyna �dze� jixtdl cxla�n repnl e� dpekzd z� gikedl dqpz
md wgynd illk �mcew enk �ewiza miizqi oewgyndy jk �gvpi �l mipwgynd cg� s�
M lcena � ly zn�d jxr m�m� zgvpn dibhxhq� yi cxla�l ik migihany dl�k
okzi dzr �mle� �true �ed zn�d jxr m�m� zgvpn dibhxhq� yi fi�el�l �false �ed
M lcena � ly zn�d jxr df dxwnae � zgvpn dibhxhq� oi� mipwgydn cg� s�l ik

�hlgen epi�

�miihwxhqa� milcen ly lcen zwica revia jxevl ycgd wgynd z� lvpl zpn lr
mi�zn T ravd �T�F� � �mirav dyelya ynzynd ycg driav mzixebl� mirivn ep�
m� �hlgen �ld zn�d jxrl mi�zn � �e false zn�d jxrl mi�zn F �true zn�d jxrl
lcena dgqepd ly zn�d jxr ik wiqdl ozip if� �T �a miravp miizlgzdd miznvd lk
zn�d jxr ik wiqdl ozip F �a ravp izlgzd znev edyfi� m� �true �ed ihwxhqa�d
�ihxwpewd lcend iabl mb dtwz d�vezd mixwnd ipya �false �ed ihwxhqa�d lcena
�zhlgen d�vez zlawzn �l if� �zniiwzn �l dl�d zeiexyt�dn zg� s� m� �mle�

�ihwxhqa�d lcend z� ocrl yi df dxwna

jxca �� �a reavd wgynd sxb ly wlgd zpiga ici lr oecirl oeixhixw mixgea ep�

f

lcena miavnd lk levit ici lr dyrp oecird �oecirl oeixhixw xgapy xg�l �llk
oecird �zilwel �id oecirl oeixhixwd lr dhlgddy cera �zexg� milina �ihwxhqa�d
lcend ly wlgd z� wx ocrl epl xyt�n wgynd sxb ly dpand �mle� �ilaelb �ed envr
�lgen ze�veza ynzydl epl xyt�n �ed �sqepa �zehlgen izla ze�vez elawzp eiably
ihwxhqa�d lcende zefafean opi� zencew zevix �jkn d�vezk �xara elawzdy zeh

�uegpl xarn lcb epi�

�na zpneqn zicbp �nbec dpea xy� mzixebl� mirivn ep� �diipyd epzxhnl xy�a
lr zkxten � dpekzdy dzernyny �zilily d�vez mr zniizqn lcend zwicae dci
lr zrvean lcend zwica eay xzei heytd dxwna milthn ep� dligz �M lcend ici
�ica meiqa lawzdy reavd driavd sxb zxfra zrvazn �nbecd ziipa �ihxwpew lcen
zneva m� �F �ed eravy wgynd sxb jezn izlgzd zneva dligzn �nbecd �lcend zw
eipan cg� z� zllek zicbpd �nbecd if� ����� e� AX� dxevdn �id �gqepd miieqn
dxevdn �id dgqepd m� �dnkga xgaidl jixv df oa �ok mb F �a ravp xy� �znevd ly
�a mireav mleky� znevd ly mipad lk z� lelkz zicbpd �nbecd if� ����� e� EX�
�znieqn dyixt mry okzi �M ly oneqn lcen�zz �id zlawznd zicbpd �nbecd ��F

�lcena � dpekzd zkxtdl d�lnd daiqd z� zwtqn �ide

xy�k efk �nbec ziipaa mipc ep� �zpneqnd zicbpd �nbecd byen z� epxcbdy xg�l
dwihpnqd lr miqqazn ep�y oeeik �ihwxhqa� lcen lr zrvazn lcend zwica
�l zihwxhqa� zpneqn zicbp �nbec ly divfihxwpewdy epl ghaen �zikxr�zlzd
zeilily ze�vezl qgia mb zipxny �id zikxr�zlzd divwxhqa�dy oeeik z�f �lykz
ly dagxda ynzydl ozip cvik mix�zn ep� �ef dpekz lr jnzqda �lcen zwica ly
�pew �nbec xviil dpnne zihwxhqa� zicbp �nbec xviil zpn lr ihxwpewd mzixebl�d

�zihxw

g

