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Abstract

Model checking is an efficient procedure that checks whether or not a given system
model fulfills a desired property, described as a temporal logic formula. Yet, as real
models tend to be very big, model checking encounters the state-explosion problem.
One solution to this problem is the use of abstraction, that hides some of the de-
tails of the original (concrete) model. In this work we consider the branching time
logic CTL (Computation Tree Logic). Our work exploits and extends the game-based
framework of CTL model checking for incremental abstraction-refinement and coun-
terexamples. We define a game-based CTL model checking for abstract models over
the 3-valued semantics, which can be used for verification as well as refutation. The
model checking process of an abstract model may end with an indefinite result, in
which case we suggest a new notion of refinement, which eliminates indefinite results
of the model checking. This provides an iterative abstraction-refinement framework.
This framework is enhanced by an incremental algorithm, where refinement is ap-
plied only where indefinite results exist and definite results from prior iterations are
used within the model checking algorithm. We also define the notion of annotated
counterexamples, which are sufficient and minimal counterexamples for full CTL. We
present an algorithm that uses the game board of the model checking game to derive
an annotated counterexample in case the examined system model refutes the checked
formula.






Notation and Abbreviations

CTL — Computation Tree Logic
SCC — Strongly Connected Component
MSCC — Maximal Strongly Connected Component
KMTS — Kripke Modal Transition System
AP — Set of atomic propositions
Lit — Set of literals (atomic propositions and their negations)
¢ — CTL formula
M — Model of a system (a Kripke structure or a KMTS)
M¢ — Concrete model (Kripke structure)
My — Abstract model (KMTS)
M E ¢ — The model M satisfies ¢
M F ¢ — The model M refutes ¢
[(Mc, s) |E ¢] — Concrete semantics of CTL w.r.t Kripke structures

[(Ma,s) 2 ¢] — 2-valued semantics of CTL w.r.t KMTSs

[(Ma,s) £ ¢] — 3-valued semantics of CTL w.r.t KMTSs
tt — true
ff — false
1 — indefinite
H — Mixed simulation relation
o — Abstraction function
~ — Concretization function
Grrxe — Game-Graph for M and ¢
N — Nodes of the game-graph
E — Fdges of the game-graph
x — Coloring function
Y — Partial coloring function
y7 — Initial coloring function
Crxe — Annotated counterexample for M and ¢






Chapter 1

Introduction

This work exploits and extends the game-based framework [47] of CTL model checking
for counterexample and incremental abstraction-refinement.

The first goal of this work is to suggest a game-based new model checking algo-
rithm for the branching-time temporal logic CTL [11] in the context of abstraction.
Model checking is a successful approach for verifying whether a system model M
satisfies a specification ¢, written as a temporal logic formula. Yet, concrete (regu-
lar) models of realistic systems tend to be very large, resulting in the state explosion
problem. This raises the need for abstraction. Abstraction hides some of the system
details, thus resulting in smaller models. Abstractions are usually designed to be
conservative w.r.t. some logic of interest. That is, if the abstract model satisfies
a formula in that logic then the concrete model satisfies it as well. However, if the
abstract model does not satisfy the formula then nothing is known about the concrete
model.

Two types of semantics are available for interpreting CTL formulae over abstract
models. The 2-valued semantics defines a formula ¢ to be either true or false in an
abstract model. True is guaranteed to hold for the concrete model as well, whereas
false may be spurious. The 3-valued semantics [22] introduces a new truth value: the
value of a formula on an abstract model may be indefinite, which gives no informa-
tion on its value on the concrete model. On the other hand, both satisfaction and
falsification w.r.t the 3-valued semantics hold for the concrete model as well. That
is, while abstractions over 2-valued semantics are conservative w.r.t. only positive
answers, abstractions over 3-valued semantics are conservative w.r.t. both positive
and negative results. Abstractions over 3-valued semantics thus give precise results
more often both for verification and falsification.

Following the above observation, we define a game-based model checking algo-
rithm for abstract models w.r.t. the 3-valued semantics, where the abstract model
can be used for both verification and falsification. However, a third case is now
possible: model checking may end with an indefinite answer. This is an indication
that our abstraction cannot determine the value of the checked property in the con-
crete model and therefore needs to be refined. The traditional abstraction-refinement



framework [30, 9] is designed for 2-valued abstractions, where false may be a false-
alarm, thus refinement is aimed at eliminating false results. As such, it is usually
based on a counterexample analysis. Unlike this approach, the goal of our refinement
is to eliminate indefinite results and turn them into either definite true or definite
false.

An advantage of this work lies in the fact that the refinement is then applied only
to the indefinite part of the model. Thus, the refined abstract model does not grow
unnecessarily. In addition, model checking of the refined model uses definite results
from previous runs, resulting in an incremental model checking. Our abstraction-
refinement process is complete in the sense that for a finite concrete model it will
always terminate with a definite “yes” or “no” answer.

The next goal of our work is to use the game-based framework in order to pro-
vide counterexamples for the full branching-time temporal logic CTL. When model
checking a model M with respect to a property ¢, if M does not satisfy ¢ then the
model checker tries to return a counterexample. Typically, a counterexample is a part
of the model that demonstrates the reason for the refutation of ¢ on M. Providing
counterexamples is an important feature of model checking which helps tremendously
in the debugging of the verified system.

Most existing model checking tools return as a counterexample either a finite
path (for refuting formulae of the form AGp) or a finite path followed by a cycle
(for refuting formulae of the form AFp') [10, 11]. Recently, this approach has been
extended to provide counterexamples for all formulae of the universal branching-
time temporal logic ACTL [13]. In this case the part of the model given as the
counterexample has the form of a tree. Other works also extract information from
model checking [43, 18, 39, 48]. However, this information is presented in the form of
a temporal proof, rather than a part of the model.

In this work we provide counterexamples for full CTL. As for ACTL, counterex-
amples are part of the model. However, when CTL is considered, we face existential
properties as well. To prove refutation of an existential formula F1», one needs to
show an initial state from which all paths do not satisfy . Thus, the structure of
the counterexample becomes more complex.

Having such a complex counterexample, it might not be easy for the user to analyze
it by looking at the subgraph of M alone. We therefore annotate each state on the
counterexample with a subformula of ¢ that is false in that state. The annotating
subformulae being false in the respective states, provide the reason for ¢ to be false
in the initial state. Thus, the annotated counterexample gives a convenient tool for
debugging. We propose an algorithm that constructs an annotated counterexample
and prove that it is sufficient and minimal. We also discuss several ways to use and
present this information in practice.

Games for CTL model checking [47] is a most suitable framework for our goals.
The model checking game is played by two players, Vbelard, the refuter who wants

! AGp means “for every path, in every state on the path, p holds”, whereas AFp means “along
every path there is a state which satisfies p”.



to show that M £ ¢, and dloise, the prover who wants to show that M | ¢. The
board of the game consists of pairs (s,1) of a model state and a subformula, with the
meaning that the satisfaction of ¢ in the state s is examined. Vbelard proceeds from
such a node (s,1) to a node that helps refuting ¢ on s. Jloise chooses her moves with
the intention to prove that s satisfies ¥». All possible plays of a game are captured in
the game-graph, whose nodes are the elements of the game board and whose edges are
the possible moves of the players. The initial nodes are pairs (sg, @) where sq is an
initial state of M. It can be shown that Vbelard has a winning strategy (i.e., he can
win the game regardless of Jloise moves) iff M £ . Jloise has a winning strategy iff

M E .

Model checking is then done by applying a coloring algorithm on the game-
graph [5]. It colors a node (s,1) by T'iff Jloise has a winning strategy, which means ¢
is true in s. It colors it by F iff Vbelard has a winning strategy, which means ¢ is false
in s. At termination, if all initial nodes are colored T then M |= . If at least one
initial node is colored F' then M [~ ¢ and we would like to supply a counterexample.

In our work we add abstraction to the discussion. Concrete models for CTL are
state-transition graphs (Kripke structures) in which nodes correspond to states of
the system and transitions describe possible moves between states. Abstract models
consist of abstract states, representing (not necessarily disjoint) sets of concrete states.
In order to be conservative w.r.t. CTL, two types of transitions are required: may-
transitions which represent possible transitions in the concrete model, and must-
transitions [33, 16] which represent definite transitions in the concrete model. May
and must transitions correspond to over and under approximations, and are needed
in order to preserve formulae of the form AXvy and E X1, respectively.

We consider the 3-valued semantics of CTL formulae. We would like to maintain
the property of the 3-valued semantics that both the positive and the negative answers
are definite in the sense that they hold for the concrete model as well. To do so, we
allow each player to have two roles in the new 3-valued model checking game. The
goal of Vbelard is either to refute ¢ on M or to prevent Jloise from verifying. Similarly,
the goal of Jloise is either to verify or to prevent Vbelard from refuting. As before,
Vbelard has a winning strategy ifft M [~ ¢, and Jloise has a winning strategy iff
M [ . However, it is also possible that none of them has a winning strategy, in
which case the value of ¢ in M is indefinite.

In order to check ¢ on the abstract model M, we propose a coloring algorithm
over three colors: T, F', and 7. If all the initial nodes of the game-graph are colored
by T', then we conclude that M |= ¢. If some initial node of the game-graph is colored
by F, we know that M [~ ¢. Both these results apply to the concrete model as well.
Yet, if none of the above holds, meaning that none of the initial nodes is colored by
F and at least one of them is colored by 7, we have no definite answer. It is then
desirable to refine the abstract model.

We choose a criterion for refinement by examining the part of the game-graph
which is colored by 7. Once a criterion for refinement is chosen, the refinement is
traditionally done by splitting abstract states throughout the entire abstract model.



That is, while the decision on the criterion for refinement is local, the refinement is
global. However, the structure of the game-graph allows us to apply it only to the
indefinite part of the model. It also allows us to use definite results that were obtained
previously. Thus, previous runs are not wasted and the abstract model does not grow
where it is not needed.

Other researchers [22] have suggested to evaluate a property w.r.t the 3-valued
semantics by reducing the problem to two 2-valued model checking problems: one for
satisfaction and one for refutation. Such a reduction will result in the same answer
as our algorithm. Yet, it is then not clear how to guide the refinement, in case it
is needed, since at least part of the information about the indefinite portion of the
game-graph is lost. Thus, the application to refinement demonstrates the advantage
of designing a 3-valued model checking algorithm.

As for our second goal, we propose an algorithm that constructs an annotated
counterexample in case model checking ends with a negative answer, meaning that
the checked property ¢ is refuted by the examined model M. We first deal with the
simpler case where model checking is applied to a concrete model. The construction
uses the colored game-graph and starts from an initial node which is colored by F'. If
the formula in a node n is either AX or 11 At), then we include in the counterexample
one successor of n, which is colored by F'. This successor needs to be chosen wisely.
If the formula in n is either £ X1 or ¥y V ¥, then we include in the counterexample
all the successors of n (which are all colored by F'). The resulting counterexample
is an annotated sub-model of M, with possibly some unwinding, that gives the full
reason for the refutation of ¢ on M.

Having defined the notion of an annotated counterexample, we then discuss the
construction of annotated counterexamples when abstract models are used. In the
3-valued case, concretization of an abstract annotated counterexample will never fail
since the 3-valued abstraction is conservative w.r.t. negative results as well. Thus, we
can use an extension of the concrete algorithm to provide an abstract counterexample
and derive from it a concrete one.

To conclude, the main contributions of this work are:

o A game-based CTL model checking for abstract models over the 3-valued se-
mantics, which can be used for verification as well as refutation.

e A new notion of refinement, that eliminates indefinite results of the model
checking.

e An incremental model checking within the framework of abstraction-refinement.

o A sufficient and minimal counterexample for full CTL.



1.1 Related Work

Games and Automata

Our work uses a characterization of the CTL model checking problem in terms of
two-players games. The game-based approach to model checking was introduced by
Stirling [46] as a way of combining the algorithmic approach to model checking and
the proof system approach. [47, 32, 31] present model checking algorithms based on
games for various temporal logics, including CTL and the alternation-free u-calculus.
The model checking problem is described as a game between a refuter, Vbelard, and a
prover, Jdloise, where the player that has a winning strategy determines the result of
the model checking problem. The model checking game induces a game graph, which
is used to determine which player has a winning strategy. The game graph can be
computed on the fly, limited to its reachable states. This avoids exploring the parts
of the model that are irrelevant for the formula to be checked. Hence, it addresses
the issue raised in the work on local model checking.

A different characterization of the model checking problem for the alternation-free
pi-calculus and in particular for CTL can be given in terms of so-called 1-letter-simple-
weak alternating Buchi automata (ISWABA), as part of the automata-theoretic ap-
proach to model checking [4, 29]. This approach derives optimal model checking
algorithms for branching temporal logics using alternating tree automata. In general,
the basic idea behind the automata-theoretic approach to model checking of branch-
ing time logics is to construct an alternating tree automaton such that its language
is the set of all trees that satisfy the formula, i.e. it “describes” all the models that
satisfy the given formula. Alternating tree automata generalize the standard notion
of nondeterministic tree automata by allowing several successor states to go down
along the same branch of the tree. Alternation is used to reduce the size of the
automaton describing the formula from exponential in the length of the formula to
linear in its length. The alternating automaton is assembled with the given model,
resulting in the product automaton. The model checking problem is then reduced
to the problem of checking nonemptiness of the language of the product automaton.
The crucial observation is that the product automaton is a ISWABA, thus for model
checking it suffices to test the nonemptiness of the language of a 1ISWABA, which is
substantially simpler than solving the nonemptiness problem of tree automata.

The game-based approach to model checking, used in our work, is closely related
to the automata-theoretic approach. The resemblance between these two approaches
is described in [36], where it is shown how 1SWABA can be interpreted in terms of
games, such that runs of a ISWABA correspond to plays of a corresponding game
from dloise’s point of view. They define co-runs representing Vbelard’s point of view
and show that the ISWABA has an accepting run iff Jloise has a winning strategy
and that the ISWABA has an accepting co-run iff Vbelard has a winning strategy
for the corresponding game. Furthermore, they rephrase the algorithm for checking
nonemptiness of ISWABA from [4] and show that it can be used to determine a
winning strategy for the winner of the game. Thus, our work can also be described



in this framework, using alternating automata.

[19] also presents a local model checking algorithm for the alternation-free modal
p-calculus that is similar to the algorithm that results from the game-based or the
automata-theoretic approach.

These model checking algorithms are all designed for concrete models. In our
work we extend the discussion to abstract models and develop a game-based CTL
model checking algorithm for them, as well as a refinement mechanism that is based
on the properties of the game-based (or the automata-theoretic) model checking. We
also exploit this approach in order to derive counterexamples for full CTL.

Abstraction

Model checking of realistic systems encounters the state explosion problem. One
solution to it is the application of abstraction techniques, which aim to abstract
the model to a smaller one, preserving formulae of some logic. Various abstraction
techniques are formalized in the framework of Abstract interpretation [15, 38, 16].

[30, 3, 12, 8] discuss abstractions based on visible variables, where some of the
system variables become invisible. These variables are treated as inputs, meaning
that their behavior is non-deterministic.

[9] defines an abstraction based on variable clusters, which is more general than
the invisible variables abstraction since it exploits logical relationships among vari-
ables. Their technique is similar to predicate abstraction (also called boolean abstrac-
tions) [23, 17, 44, 40, 45]. In predicate abstraction, abstract models are constructed
by using boolean variables to represent concrete predicates. More specifically, [23] de-
scribes a method for the automatic construction of an abstract model using predicate
abstraction, based on abstract interpretation. They consider a particular set of ab-
stract states, which is the set of monomials on a set of state predicates. The successors
of an abstract state are computed using the PVS theorem prover and upper approxi-
mations are constructed when needed. Thus, they allow verification of any universal
temporal logic formula (without existential quantifiers). [17] has implemented a pro-
totype system for efficient verification of invariants by predicate abstraction, based on
the scheme presented in [23]. However, they use BDDs instead of monomials to rep-
resent the abstract state space, and the computation of successors is more accurate.
[44] proposes an efficient algorithm for the automatic construction of boolean ab-
stractions that requires fewer calls to decision procedures. [40] presents an algorithm
that constructs a finite state abstract program from a concrete program by means of
syntactic program transformations. They start with an initial set of predicates from
a specification and iteratively compute the predicates required for the abstraction
relative to the specification. All these works use the general framework of existential
abstraction [14] and are thus suitable for verifying universal properties only (without
existential quantifiers).

Unlike them, [45] shows how boolean abstractions can be constructed simply,
efficiently and precisely while preserving properties in the full p-calculus. They also
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propose an automatic algorithm that is given a set of new predicates and refines
the abstraction accordingly. The latter is based on the work of [16] that extends
abstract interpretation to the analysis of both existential and universal properties,
as expressible in the modal p-calculus. They investigated how to define abstract
models, based on abstract interpretation, such that the modal p-calculus is preserved.
Their approach can be applied to any abstraction within the framework of abstract
interpretation. This implies that our work which considers CTL can be combined
with any of these abstractions.

3-Valued Logic

Unlike the traditional (2-valued) abstraction, that preserves only truth of a formula
from the abstract model to the concrete one, recently [6, 7, 20, 21, 28, 22] it was
shown how automatic abstraction can be performed to verify modal p-calculus formu-
lae, based on a F-valued semantics, such that both truth and falseness are preserved.
The key to make this possible is to present abstract systems using richer models that
distinguish properties that are true, false and unknown of the concrete system. Dif-
ferent formalisms of abstract models suitable for the 3-valued semantics are proposed
in the literature: Modal Transition Systems [33, 34], Partial Kripke Structures [6, 7],
and Kripke Modal Transition Systems [28, 21]. It is shown in [22] that they have the
same expressiveness and that their model checking problem can be reduced to two
instances of traditional (2-valued) model checking. Thus, for any 3-valued formalism,
3-valued model checking has the same time and space complexity both in the size
of the formula and the model as traditional 2-valued model checking. Such results
were introduced in [20] and [27] for modal p-calculus. In our work we use Kripke
Modal Transition Systems [28, 21] and solve the model checking problem directly,
without reducing it to traditional model checking. The direct solution has the same
complexity as traditional model checking and it becomes helpful when refinement is
needed.

Reasoning about such richer models requires 3-valued temporal logics [6]. As
an enhancement of the standard 3-valued semantics, [7, 21] introduce the thorough
3-valued semantics. The thorough semantics gives more definite answers than the
standard 3-valued semantics, at the expense of increasing the complexity of model
checking: Interpreting a formula according to the thorough semantics is equivalent
to solving two instances of generalized model checking. [7, 21] present algorithms and
complexity bounds for the generalized model checking problem for various temporal
logics and show that for propositional modal logic, CTL, or any branching time logic
including CTL* or the modal g-calculus, the generalized model checking problem has
the same complexity as satisfiability, which is higher than the complexity of traditional
model checking. In our work we use the standard 3-valued semantics [6], which is less
precise, but enjoys a better complexity of the model checking algorithm, namely our
algorithm has linear running time both in the size of the model and in the size of the
formula.

It is shown in [20] that building a 3-valued abstraction, that can be used for model
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checking any formula of the modal p-calculus, can be done using existing abstraction
techniques at the same computational cost as building a conservative 2-valued ab-
straction. They adapt existing predicate and cartesian abstraction techniques to get
an abstraction that is monotonic, in the sense that adding predicates can only im-
prove its precision both state-wise and transition-wise (usual predicate abstraction of
Modal Transition Systems is not monotonic). Cartesian abstraction has no significant
cost overhead and is compatible with the standard incremental refinement process for
adding more predicates. Such abstractions can be used within our framework as well.

[49] also uses an abstraction mechanism based on 3-valued logic. They verify LTL
properties of programs with dynamic allocation of objects (including thread objects)
and references to objects. Their approach is different since it describes the model
using first order logic. In addition, it deals with LTL, whereas our work is aimed at
CTL properties.

Abstraction-Refinement

Kurshan [30] introduced Localization reduction with counterexample-guided refine-
ment (also called iterative abstraction-refinement) for checking universal properties.
This is an iterative technique that starts with an abstraction of the model and tries
to verify the specification on this abstraction. If a counterexample is found a re-
construction process is executed to determine if it is a valid one. If the (abstract)
counterexample is found to be spurious, the abstract model is refined to eliminate the
possibility of this counterexample in the next iteration. The reduction (abstraction)
used in their work is based on invisible variables. A similar approach is described in
[2]. Other researchers [3, 12, 8] have also addressed localization reduction based on in-
visible variables. [3] presents algorithmic improvements to the localization reduction.
They present a symbolic algorithm for path reconstruction including incremental re-
finement and backtracking. [12, 8] use SAT solvers in the counterexample analysis
of AGp properties. [12] checks whether a counterexample is real or spurious with a
SAT checker. They use a combination of Integer Linear Programming and machine
learning techniques for refining the abstraction based on the counterexample. In [§]
the abstract counterexamples obtained from model-checking the abstract model are
symbolically simulated on the concrete system using a SAT checker. If no concrete
counterexample is found, a subset of the invisible variables is reintroduced into the
system. They introduce two algorithms for identifying the relevant variables to be
reintroduced. These algorithms monitor the SAT checking phase in order to analyze
the impact of individual variables.

[9] introduces iterative abstraction-refinement which is similar to the localization
reduction. They use a more general abstraction based on variable clusters. [13]
extends the work in [9], by generalizing the notion of counterexamples, and thus
making this framework applicable to all ACTL properties.

[44] proposes an abstraction refinement framework for universal properties, using
predicate abstraction. They propose to use the error traces generated by model
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checking to automatically refine the abstraction. The refinement algorithm generates
new predicates that will be used to enrich the abstract state-space.

Localization reduction [30], or iterative abstraction-refinement [9] provides a frame-
work for model checking of universal properties, with counterexample guided refine-
ment. In our work we consider abstraction-refinement for full CTL and do not restrict
the discussion to universal properties. Other researchers have suggested abstraction-
refinement mechanisms for various branching time temporal logics.

In [35], the tearing paradigm is presented as a way to automatically abstract
behavior to obtain upper and lower bound approximations of a system. They present
algorithms that exploit the bounds to perform conservative ACTL or ECTL model
checking. Furthermore, an algorithm for false negative or false positive resolution is
suggested based on the theory of a lattice of approximations, resulting in increasingly
better approximations. Yet, their technique is restricted to ACTL or ECTL. In [41, 42]
the full propositional p-calculus is considered. In their abstraction, the concrete and
abstract systems share the same state space. The simplification is based on taking
supersets and subsets of a given set with a more compact BDD representation (to
get under or over approximations). Refinement is based on a “goal set” of states
which require further resolution. In [37] full CTL is handled. Their approximation
techniques enable them to avoid rechecking the entire model after each refinement step
while guaranteeing completeness. However, the verified system has to be described
as a cartesian product of machines. The initial abstraction considers only machines
that directly influence the formula and in each iteration the cone of influence is
extended in a BFS manner. In each iteration they compute both an upper and a
lower approximation to the states that satisfy the formula. [1] handles ACTL and
full CTL. Their abstraction collapses all states that satisfy the same subformulae of
@ into an abstract state. Thus, computing the abstract model is at least as hard as
model checking. Instead, they use partial knowledge on the abstraction function and
gain information in each refinement.

Our approach for abstraction-refinement is designed for full CTL and is applicable
to any abstraction that can be described in the framework of abstract interpretation,
thus it is more general. It also has the advantage of being most suitable for using
results from previous iterations, resulting in an incremental algorithm.

Incremental Abstraction-Refinement

[26] introduces the concept of lazy abstraction to integrate and optimize the three
phases of the abstract-check-refine loop within the abstraction-refinement framework.
Lazy abstraction continuously builds and refines a single abstract model on demand,
driven by the model checker, so that different parts of the model may exhibit differ-
ent degrees of precision. Predicate abstraction is used and predicates are added only
where necessary. The result is a nonuniform abstract model whose predicates change
from state to state. They present an algorithm for model checking safety properties
using lazy abstraction. The idea of lazy abstraction is also used in [25]. Our incre-
mental algorithm generalizes the idea of Lazy abstraction to model checking of CTL
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properties, where any abstraction that is described within the framework of abstract
interpretation can be used.

Counterexamples and Deductive Proofs

We consider the issue of producing counterexamples in case the model refutes the
examined property. A counterexample may be viewed as a proof of satisfaction for
the negation of the property. This makes counterexamples and proofs closely related.

[43, 18, 39, 48] investigated the idea of generating temporal proofs from the infor-
mation gained by model checking, when the verification succeeds. [18, 43] generate
fully deductive proofs for LTL properties, when the verification is done using general-
ized Buchi automata or just discrete systems ([18]). They use the information in the
product graph to generate a proof. [39] develops a deductive proof system for verify-
ing branching time properties expressed in the p-calculus and show how to generate
a proof in this system from a model checking run. They use model checking that
is based on parity games or alternating automata. The proof can be used to detect
errors in a model checker and can allow integration of model checking with theorem
proving. [48] introduces support sets which are abstract encodings of the “evidence”
a model checker uses to justify its answer. They show how model checkers can be
modified to compute support sets and how support sets can be used for generation
of diagnostic information for explaining negative results and certifying the results of
model checking (internal consistency).

Our approach is similar to these works in the sense that we use the information
gained during the run of a model checker. However, we use it to present a counterex-
ample, which is an extended sub-model, rather than a deductive proof. In this sense,
our approach is closer to [13, 24]. [13] introduces tree-like counterexamples, which
are a general form of ACTL counterexamples (and in fact suitable for a universal
fragment of an extended branching time logic based on w-regular temporal opera-
tors). They also present symbolic algorithms to generate tree-like counterexamples
for ACTL specifications. Our work considers full CTL and is not limited to universal
properties. This is also the case in [24], where counterexamples are annotated with
additional proof steps. They develop a proof system and use a model checker as a
decision procedure for construction of a proof. Yet, they provide only limited informa-
tion in the case of counterexamples for ECTL and properties that use both universal
and existential quantifiers, since proof “obligations” are used. In addition, unlike [24]
that uses a model checker as a decision procedure in each step of the counterexample
(proof) generation, we use the information gained in a single run of the model checker
and produce a counterexample that is minimal and sufficient to explain refutation of
any CTL formula.
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1.2 Organization

The rest of the thesis is organized as follows. In the next chapter we give the nec-
essary background for the game-based CTL model checking, abstractions and the
3-valued semantics. Due to technical reasons, we then start with the description of
an annotated counterexample. Thus, in Chapter 3 we describe how to construct an
annotated counterexample for full CTL and show that it is sufficient and minimal. In
Chapter 4 we extend the game-based model checking algorithm to abstract models,
using the 3-valued semantics. We then describe how to produce a concrete anno-
tated counterexample using the abstract information in Chapter 5. In Chapter 6 we
present our refinement technique, leading to an incremental abstraction-refinement
framework, which is described in Chapter 7. Finally, we discuss some conclusions in

Chapter 8.
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Chapter 2

Preliminaries

Let AP be a finite set of atomic propositions. We define the set Lit of literals over
AP to be the set Lit = AP U {=p:p &€ AP}, i.e. for each p € AP, both p and —p
are in Lit. We identify ——p with p.

Definition 2.1 The Logic CTL (Computation Tree Logic) in negation normal form
is the set of formulae defined as follows:

pu=true | false | 1| o ANp | oV | AY | B

where | ranges over Lit, and v is defined by

Y= Xo | U | Vo

The (concrete) semantics of CTL formulae is defined with respect to a Kripke struc-
ture.

Definition 2.2 A Kripke Structure is a tuple M = (S, So, —, L), where S is a finite
set of states, So C S is a set of initial states, —+C S x S s a transition relation,
which must be total (i.e., for every state s € S there exists a state s' € S such that
s— ') and LS — 28" is a labeling function that associates each state in S with a
subset of literals, such that for each state s and atomic proposition p € AP, we have
that exactly one of p and —p is in L(s), i.e. p € L(s) iff ~p & L(s).

A path in M is an infinite sequence of states, m = 89, 81,... such that for every
1 >0, 8; = Si11. If s = sg, then 7 is said to be from s.

[(M,s) = ¢] = tt means that the CTL formula  is true in the state s of a Kripke
structure M. [(M,s) = ¢] = ff means that ¢ is false in s. The formal definition
follows.
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Definition 2.3 [11] The truth value € {tt, [f} of a CTL formula ¢ in a state s of a
Kripke structure M = (S, So, —, L), denoted [(M,s) | ], is defined inductively as
follows:

(M, s) = true] = U
[(M,s) |= false] =[]
[(M,s) E] = tt & € L(s), wherel € Lit
[(M,s) =@iNga] = [(M,s) =@l A(M,s) = 2]
[(M,s) =i Viee] = [(M,s) @] VIIM,s) =]
[(M,s) = AY] = tt & Vrfroms:[(M,m)E¢] =1
[(M,s) = EY] = tt & dnfroms:[(M,m)E¢] =1
For a path m = so, 81,..., [(M,m) |E ] is defined as follows.
[(M,7) = X] = [(M,s1) ¢
[(M,7m) = eiUga] = it < Fk=0:[([(M si) | pa] = 1)
N (VG <k:[(M;s5) = @] = U)]
[(M,7m) =iV = #t & VEZ0:[(Vj<k:[(Ms;) = e =1f)

= ([(M, s1) = o] = 11)]
We say that M satisfies @, denoted [M = @] = tt, if Vso € So: [(M, s0) | @] = tt.
Otherwise, M refutes ¢, denoted [M = ¢] = [f.

When M is clear from the context, we omit it from the notation and write [s |= ¢]
or [ E o]

Definition 2.4 Given a CTL formula ¢ of the form A(p1Us), E(p1Ups), A1V e2)
or E(p1Vsy), its expansion exp(yp) is defined as:

o =A(p1Up2) : explp)={e, w2V (1 ANAXp), o1 N AXp, AXp}
= E(¢1Up2) cxp(e) = {o, e2V(p1 NEXp), o1 AN EXp, EXe}
= A(p1Vea) : exple) ={p, p2A(p1VAX@), o1 VAXp, AXp}
= E(¢1Vip2) cxp(e) ={o, e2 A1V EXp), o1V EXp, EXe}

2.1 Game-based Model Checking Algorithm

In this section we present the Game-theoretic approach to Model Checking of CTL
formulae in a (concrete) Kripke structure [47, 36]. Given a Kripke structure M =
(S, S0, —, L) and a CTL formula ¢, the model checking game of M and ¢ is defined
as follows. Its board is the Cartesian product S x sub(p) of the set of states S and
the set of subformulae sub(y), where sub(y) is defined by:

if o = true, false or [ where [ € Lit then sub(¢) = {¢}.

if o =1 Az or v1 Vs then sub(y) = {p} U sub(pr) U sub(vs).

if p = AXp1 or EX¢ then sub(e) = {¢} U sub(er).

if ¢ = AlpiUsps), E(e1Upa), AlpiVipz) or E(p1Vips) then sub(yp) = exp(p) U
sub(pr) U sub(ipz).

18



Given a state s € S, the model checking game is played by two players, Vbelard,
the refuter who wants to show that [(M,s) = ¢] = ff, and Jloise, the prover who
wants to show that [(M,s) E ¢] = tt. A single play from (s,¢) is a (possibly
infinite) sequence Cy —,0 C1 —p1 C2 —pa ... of configurations, where Cy = (s, ),
C; € S x sub(p) and p; € {Vbelard, Jloise}. The subformula in C; determines which

player p; makes the next move.

The possible moves at each step are:

1. C; = (s,false), C; = (s,true), or C; = (s,1) where [ € Lit: the play is finished.

Such configurations are called terminal configurations.

2. ;= (s, AX): Vbelard chooses a transition s — s in M and Cipy = (5, ).
3. Ci = (s, EX¢): Tloise chooses a transition s — s’ in M and Ciys = (5, ).
4. C; = (5,01 A pa): Vhelard chooses j € {1,2} and Cigy = (s, ;).

5. O = (5,01 V 3): Tloise chooses j € {1,2} and Cipy = (5, 0).

6. Ci = (s, A(p1U¢2)): Ciz1 = (5,02 V (1 N AXA(p1U2))).

7. Ci = (s, E(p1Ug2)): Cipr = (5,02 V (o1 A EXE(p1Up2))).

8. Ci = (s, A(p1V2)): Cipr = (5,902 A (1 V AXA(91Vp2)))

9. Ci = (s, E(p1V2)): Ciyr = (5,02 A (01 V EXE(1Vp2))).

In configurations 6-9 the move is deterministic, thus any player can make the
move.

A play is maxzimal iff it is infinite or ends in a terminal configuration. In [47] it
has been shown that a play is infinite iff there is exactly one subformula of the form
AU, EU, AV or EV that occurs infinitely often in the play. Such a subformula is
called a witness.

Winning Criteria: Vbelard wins a (maximal) play iff one of the following holds:

1. the play is finite and ends in a terminal configuration of the form C; = (s, false),

or C; = (s,1), where [ € L(s).

2. the play is infinite and the witness is of the form AU or FU.
Jloise wins the (maximal) play otherwise, i.e. iff one of the following holds:

1. the play is finite and ends in a terminal configuration of the form C; = (s, true),

or C; = (s,1), where [ € L(s).

2. the play is infinite and the witness is of the form AV or EV.
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The model checking game from (s, ¢) consists of all the possible plays from (s, ¢).
A strategy is a set of rules for a player, telling him how to move in the current
configuration. A winning strategy from (s, ) is a set of rules allowing the player to
win every play starting at (s, ¢) if he plays by the rules. The following theorem tells
us that the model checking problem can be reduced to the problem of finding which
player has a winning strategy in the model checking game.

Theorem 2.5 [/7] Let M be a Kripke structure and ¢ a CTL formula. Then, for
each s € S:

1. [(M,s) =] =tt iff Jloise has a winning strategy starting at (s, e).

2. (M, s) =]l =1 iff Ybelard has a winning strategy starting at (s, ).

The model checking algorithm for the evaluation of [M |= ] consists of two
parts. First, it constructs (part of) the game-graph. The game-graph is the graph
whose nodes are the elements (configurations) of the game board and whose edges
are the possible moves of the players. It captures all the possible plays of a game
(from any configuration). The evaluation of the truth value of ¢ in M is then done
in the second phase of the algorithm by coloring the game-graph.

2.1.1 Game-Graph Construction and its Properties

The truth value of ¢ in M depends on its truth value in the initial states of M.
Thus, we are interested in plays that start from configurations in Sy x {¢}, referred
to as wnitial configurations. The subgraph of the game-graph that is reachable from
the initial configurations So x {¢} is constructed in a BFS or DFS manner. The
construction starts from the initial configurations (nodes) and applies each possible
move, by the previously described rules, to get the successors in the game-graph of
each new node. The result is denoted Gy, = (N, E), where N C S x sub(¢). The

nodes (configurations) of the game-graph can be classified into three types.

1. Terminal configurations are leaves in the game-graph.
2. Nodes whose formula is of the form ¢; A @y or AX @, are A-nodes.

3. Nodes whose formula is of the form ¢, V 3 or E Xy are V-nodes.

Nodes whose formula is of the form AU, FU, AV, EV can be considered either V-nodes
or A-nodes. Sometimes we further distinguish between nodes whose formula is of the
form AXp (EX¢p) and other A-nodes (V-nodes) by referring to them as AX-nodes
(EX-nodes). The edges in the game-graph are also divided to two types.

o Edges that originate in AX-nodes or EX-nodes are progress edges that reflect
real transitions of the Kripke structure.
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o Other edges are auziliary edges.
An important property of the game-graph is described by the following lemma.

Lemma 2.6 Let B be a non trivial strongly connected component (SCC) in a game-
graph (a non-trivial SCC contains at least one edge). Then the set of formulae that
are associated with the nodes in B is exactly one of the sets exp(yp), where ¢ €

{A(991U992)7 E(%U‘Pz)a A(991V992)7 E(%V‘Pz)}'

Proof: By the rules of the game, which determine the edges in the game-graph, we
have that the sons of a node n = (s, ¢) in the game-graph are either associated with
strict subformulae of ., or with expansions of it in case ¢ i1s an AU, AV, KU, EV
formula. Therefore, a non-trivial SCC B, which contains cycles, must have at least
one node n in it that is associated with an AU, AV, EU, EV formula (otherwise we
have a loop where each formula is a strict subformula of the previous one, which is
impossible). Consider the case where the node n has the formula ¢ = A(pUgpy).
Other cases are similar. We prove that in this case the set of formulae that are
associated with the nodes in B is exactly exp(A(¢1Ups2)).

First, we prove that B cannot contain additional formulae. Let n’ = (s',¢") be
a node in B, other than n. We show that ¢’ € exp(A(p1U¢z)). By the rules of the
game, we have that the descendents of a node n” = (s”,¢") in the game-graph are
associated with subformulae from sub(¢”). Since n’ lies on the same SCC as n, we
have that n' is a descendent of n, and thus ¢’ € sub(¢). Since ¢ = A(p1Up2), we
have that sub(y) = exp(A(p1Up2)) U sub(pr) U sub(ps). It remains to show that ¢’ &
sub(p1) U sub(ps), thus it must be the case that ¢’ € exp(A(¢1Up2)). Suppose the
contrary, i.e. ¢’ € sub(p1) U sub(py). This implies that sub(¢") C sub(p1) U sub(es).
Since n is also a descendent of n’, we have that ¢ € sub(¢’). i.e. ¢ € sub(p1)Usub(ps).
Thus ¢ must obey one of the following.

L. || < Jea] or [p] < [p2, or:

2. ¢ is of the form (] V ¢}) or (¢} A ¢h) or AX ¢ (results from expansion).

Obviously, ¢ = A(¢1Ups) obeys none of the above. Contradiction.

To complete the proof, it remains to show that B must contain all the formulae
in exp(A(p1Ueps)). This is clear from the structure of the game-graph: if one of these
formulae were missing, no loop could be formed in contradiction to the fact that B
is a non-trivial SCC. O

Based on Lemma 2.6, we generalize the notion of a witness in the context of the
game-graph. The formula ¢ such that exp(p) is the set of formulae in a non-trivial

SCC is called a witness. Each non-trivial SCC is classified as an AU, AV, FU, or
EV SCC, based on its witness.
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2.1.2 Coloring Algorithm

The following Coloring Algorithm [5] labels each node (configuration) in the game-
graph G, by T or F, depending on whether dloise or Vbelard has a winning
strategy for the game that starts at that node.

The game-graph is partitioned into its Mazimal Strongly Connected Components
(MSCCs), denoted @;’s, and an order < is determined on the ();’s, such that an edge
(n,n’), where n € @); and n’ € Q);, exists in the game-graph only if @); < @,. Such
an order exists because the MSCCUs of the game-graph form a directed acyclic graph
(DAG). It can be extended to a total order < arbitrarily.

The coloring algorithm processes the ();’s according to the determined order,
bottom-up. Let @); be the smallest MSCC with respect to < that is not yet fully
colored. Hence, every outgoing edge of a node in (); leads either to a colored node or
to a node in the same set, (J;. The nodes of (); are colored as follows.

1. Terminal nodes in (); are colored by T'if dloise wins in them, and by F' otherwise.

2. An V-node is colored by T if it has a son that is colored T', and by F'if all its
sons are colored F'.

3. An A-node is colored by T'if all its sons are colored T, and by F'if it has a son
that is colored F'.

4. All the nodes in (); that remain uncolored after the propagation of these rules
are colored according to the witness in (); (by Lemma 2.6 there exists exactly

one such witness). They are colored by F'if the witness is of the form AU or
EU, and are colored by T' if the witness is of the form AV or EV.

The result of the coloring algorithm is a coloring function x : N — {T, F'}.

Theorem 2.7 [/7] Let Gy, be a game-graph and let n be a node in the game-graph,
then:

1. x(n)="T iff Floise has a winning strategy starting at n.
2. x(n) =F iff Vbelard has a winning strategy starting at n.

As a conclusion of Theorem 2.5 and Theorem 2.7, we get the following theorem.

Theorem 2.8 [/7] Let M be a Kripke structure and ¢ a CTL formula. Then, for
each n = (s,p1) € Garxy:

1. [(M,s) =] =ttt iff n=(s,¢1) is colored by T.
2. [(M,s) Eei] =1 iff n={(s,¢1) is colored by F.

Based on Theorem 2.8 we conclude that if every initial configuration ng € Sox {p}
is colored by T', then [M = ¢] = tt. Otherwise, [M |= ¢] = ff.
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2.2 Abstraction

In this section we present abstract models (for CTL) and their relation to concrete
models. So far, we considered Kripke structures that represent concrete models, and
discussed the semantics of CTL formulae with respect to them. However, concrete
Kripke structures may be very large. Consequently, their model checking problem
becomes infeasible due to the state explosion problem. A powerful solution is based
on using abstractions of the concrete model.

It turns out that in order to guarantee preservation of CTL formulae from abstract
models to concrete models, we need to introduce two transition relations [33, 16]:
preservation of universal properties requires an over-approximation, whereas preser-
vation of existential properties requires an under-approximation. This is accomplished
by using Kripke Modal Transition Systems [28, 21].

Definition 2.9 A Kripke Modal Transition System (KMTS) is a tuple M = (5, S,
L I L), where S is a finile set of states, So C S is a sel of inilial states, "5C
S xS and Z5C S x S are transition relations such that the relation — is total and
MU CI and L2 S — 25 s a labeling function that associates each state in S with
literals from Lit, such that for each state s and atomic proposition p € AP, at most

one of p and —p is in L(s).

A must (may) path in M is a maximal sequence of states, m = sq, $1,... such that
for every two consecutive states s;, s;41 tn ™, we have that s; e Siv1 (Si — Sip1).
The maximality is in the sense that m cannot be extended by any other transition of
the same type. If s = sq, then 7 is said to be from s.

Transitions in == are called must transitions, and transitions in =% are called may
transitions. Note that since the transition relation — is total, then every may path
is infinite (due to the maximality), whereas a (maximal) must path can be finite, since
the transition relation == is not necessarily total. This means that although every
must-transition is also a may-transition (by definition), the same does not necessarily
hold for paths. That is, a finite must path is not considered a may path, because it
is not maximal in terms of may transitions. Since we now consider finite paths in
addition to infinite paths, we need the following definition.

Definition 2.10 Let © be a must or may path. The length of 7, denoted |r|, is
defined to be the number of transitions in w. That is,

] = oo if m is infinite
| nif 7 is finite and of the form s, ..., s,

must may

Note, that a Kripke structure can be viewed as a KMTS where —» = —=—,
and for each state s and atomic proposition p € AP, we have that exactly one of p
and —p is in L(s).
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We consider abstractions that are done by collapsing sets of concrete states (from
Sc) into single abstract states (in S4). Such abstractions can be described in the
framework of Abstract Interpretation [38, 16].

Definition 2.11 [15, 38/ (a: C — A,v: A — C) is a Galois connection from (C, <)
to (A,C) iff (1) a and ~ are total and monotonic, (2) for all ¢ € C', yoa(c) = ¢, and
(3) for alla € A, o 0v(a) C a.

Let Mc = (Se¢, Soc, —, Le) be a (concrete) Kripke structure. Let (S4,C) be
a poset of abstract states and (v : Sy — 2°¢,a : 25¢ — S4) a Galois connection
from (2°¢,C) to (5S4, C), that determines its relation to the concrete states. v is the
concretization function that maps each abstract state to the set of concrete states
that it represents. « is the abstraction function that maps each set of concrete states
to the abstract state that represents it.

may

An abstract model My = (S4, So4, e, L4) can then be defined as follows.
The set of initial abstract states Sg4 1s built such that each concrete initial state is
represented by an abstract initial state and there are no additional initial abstract
states, i.e. sp, € Soa iff there exists sg. € S such that so. € v(s0.). The requirement
that there are no additional initial abstract states is needed to ensure preservation of
falsity in the model, as described in the second part of Theorem 2.14. This requirement
is not needed for state-wise preservation, described in the first part of the theorem.

The labeling of an abstract state is done according to the labeling of all the
concrete states that it represents. An abstract state s, is labeled by [ € Lit, only if
all the concrete states that are represented by it are labeled by [ as well. Therefore,
it is possible that neither p nor —p are in L4(s,).

The may-transitions in an abstract model are computed such that every concrete
transition between two states is represented by them: if Js. € y(s,) and Js’ € v(s!)
such that s. — s, then there exists a may-transition s, — s/. Note that it is
possible that there are additional may-transitions as well. The must-transitions, on
the other hand, represent concrete transitions that are common to all the concrete
states that are represented by the origin abstract state: a must-transition s, % s’
exists only if Vs, € v(s,) we have that s’ € ~(s/) such that s. — s’. Note that
it is possible that there are less must-transitions than allowed by this rule. That is,
the may and must transitions do not have to be accurate, as long as they maintain
these conditions. Also note, that since the concrete transition relation is total, then
the resulting abstract transition relation — is also total, as required. The abstract
transition relation =%, on the other hand, is not necessarily total. In fact, it can
even be empty.

Other constructions of abstract models, based on Galois connections, can be found

in [16, 20].

The resulting abstract model is more abstract than M¢ as defined by the following
definition, which formalizes the relation between an abstract model and a concrete
model that guarantees preservation of CTL formulae.
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Definition 2.12 /33, 16, 21] Let Mc = (Sc, Soc, —, L) be a conerete Kripke struc-
ture, and let My = (Sa,Son, =3, 2% L), be an abstract KMTS. We say that
H C S¢ x Si is a mixed simulation from Mg to My if (s.,8,) € H implies the

following:

1. LA(Sa) g Lc(Sc).

2. if s, — 8., then there is some s/, € Sy such that s, — s! and (s',s.) € H.

3. if 5, 4% !, then there is some s’ € S¢ such that s, — s’ and (s',s)) € H.

c?Ta

If there exists a mixed simulation H such that for each s. € Soc there exvists s, € Sgu
such that (s.,s,) € H and for each s, € Sy, there exists s. € Soc such that (s.,s,) €
H, we say that M4 is more abstract than M¢, denoted Mo < My.

The mixed simulation relation H C Sg x S4 from Me to an abstract model which
is constructed based on a Galois connection as described above is induced by the
concretization function as follows. H is defined such that (s.,s,) € H iff s. € v(s,).
The results presented in this thesis are applicable to any abstract model that is more
abstract than the concrete model My with respect to the mixed simulation relation,
and are not limited to our construction of an abstract model.

[28] defines the 3-valued semantics of a CTL formula over a KMTS. The 3-valued
semantics is designed to be conservative in the sense that it preserves both satisfaction
(tt) and refutation (ff) of a formula from the abstract model to the concrete one.
However, a new truth value, L is introduced. If the truth value of a formula in an
abstract model is L, the meaning is that its value over the concrete model is not
known and can be either tt or ff.

Definition 2.13 The 3-valued semantics of a CTL formula ¢ in a state s of a KMTS
M = (S, So, 24, 2% L), denoted [(M, s) |i ¢l, is defined inductively as follows:
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[(M,s) E true =
(M, s) | fals] =[]
ifl € L(s)

t
(M, s) £ 1] = { i -le L(s)
1

otherwise
(M) E ] =t and [(015) |
if (M, s) 1] = ff or (M, 5) = 2]

otherwise
Zf [(M,S) |é 991] =l or [(M,S) i 992] =t
i (M, s) E @] = [ and [(M,s) E @3] = ff

otherwise

ttif for each may-path w from s : [(M, ) |i =1t

[(M,S) |i ®1 A 2]

|
- s

[(M,S) |i ®1V 2]

|
- s

(M, s) El AY] B ff if there exists a must-path © from s such that :
| (M) 4] = g
L otherwise
tt  if there exists a must-path © from s such that
3
(M, s) [E EY] = (M, 7) o] =t

i if for each may-path 7 from s : [(M, ) |i = ff
1 otherwise

For a may or must path m = sg, s1,..., [(M,n) |é Y] is defined as follows.

(M7 Xg] = {KMasl) 2o if ] > 0

1 otherwise
ttoif 30<k<|x|: [([(M,s1) E ¢a] = t)
ANYG < k:[(M,s;) F 1] = U]
J i (VO<k<|r[:[(Vj<k:[(Ms;)FE el £
= ([(M, s¢) E 2] = )]
AV O<k<r] [(M.se) | o1] # 1) = || = o0)
1 otherwise
ttoif (VO<k<|n|:[(V]<k:[(Ms;)Ee]#t)
= ([(M, s¢) = 0] = 11)])
(M, 1) o Vis] = MY 0 <k < |m|: [(M, ) E ] # 1) = || = o0)

Fif 30<k< x| [([(M,si) | @] = )
ANYj <k [(M,s5) E o] = ]

[ co

[ee
I

[(Mv 7T) |i 1U ]

1 otherwise

We say that [M |i ] =1t ifVso € So: [(M, s0) |i o] = tt. We say that [M |i el =1
if 3s0 € So 1 [(M, s0) |i ] = ff. Otherwise, [M |i o] =1.

Intuitively, the 3-valued semantics is defined such that a formula is evaluated to
tt or ff only when the abstract information suffices to determine such a definite truth

26



value that will hold in the represented concrete model. Therefore, truth of universal
formulae (of the form Aw) is examined along all the may paths (which represent at
least all the concrete paths), whereas falsity of such formulae is shown by a single must
path (which represents a definite concrete path), and dually for existential formulae
(of the form FEt). Similar arguments apply to the evaluation of path formulae of
the form X, ©1Up2, @1V, For example, in order to say that the truth value of
w1Ups in a path is true, ¢y needs to become true within the path. In order to say
that Uy is false in the path we require that at every position, if ¢ is not false
vet, then ¢ is still false (the eventuality is not fulfilled), and we also require that if
@1 1s never false, then the path is infinite. The latter requirement is needed because
if we have a finite path where ¢y is never false (and ¢y is always false, based on
the first requirement) then we cannot claim that the truth value of p1U¢, is false.
The reason is that real concrete paths are infinite, thus in the concrete model that is
represented by the abstract KMTS there is still “hope” that ¢, will become true in
the future (and the eventuality will be fulfilled), although it is not reflected by the
abstract path. Since ¢; has not become false yet, this can make the until formula
true in the concrete model. This leaves us with two possibilities for falsity of ¢ Ups:
either ¢1 becomes false within the path (when s is still false as well), or the path is
infinite and 5 is false all along. Yet, if @y is always false along a finite path, then
this information alone is not sufficient in order to say that the until formula is false.

The preservation of CTL formulae from an abstract model to a concrete model is
guaranteed by the following theorem.

Theorem 2.14 [21] Let H C S¢: x Sy be a mized simulation relation from a Kripke
structure Mc to a KMTS Ma. Then for every (s.,s,) € H and every CTL formula
@, we have that:

1. [(Ma, sq) & @] = tt implies that [(Mc, s.) = o] = tt.
2. [(Ma,sa) B @] = ff implies that [(Mc, s.) = ¢] = .
We conclude that if Mc =< My, then for every CTL formula ¢, we have that:

1. [My E @] = tt implies that [Mc = o] = (.

2. [My E @] = ff implies that [Mc = o] = f.
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Chapter 3

Using Games to Produce
Annotated Counterexamples

In this chapter we consider the concrete semantics of CTL. We refer to (concrete)
Kripke structures and describe how to construct an annotated counterexample from a
game-graph for M and ¢, as well as the information gained by the coloring algorithm,
in case M does not satisfy .

First, the coloring algorithm described in Chapter 2.1 is changed to identify and
remember the cause of the coloring of an A-node n that is colored by [F. If n was
colored by its sons, then cause(n) is the son that was the first to be colored by F. If
n was colored due to a witness, then cause(n) is chosen to be one of its sons which
resides on the same SCC and was colored by witness as well. There must exist such
a son, otherwise n would be colored by its sons. Note that cause(n) depends on the
execution of the coloring algorithm.

Given a game-graph Gy, for a Kripke structure M and a CTL formula ¢,
and given its coloring y and an initial node ng = (sg, ) such that y(ng) = F, the
following DFS/BFS-like algorithm finds an annotated counterezample over the nodes
of Garxy,. The computed annotated counterexample, denoted Cysy, and in short C,
is a subgraph of the given game-graph Gy, colored by F.

Algorithm ComputeCounter
Initially: new = {(so, )}, C = 0.
while new # )

n = remove (new)

e if n was already handled - continue.
e if n is a terminal node - continue. \* sons = () *\
e if nis an V-node - for each son n’ of n add n’ to new and the edge (n,n’) to C.

e if n is an A-node - add cause(n) to new and the edge (n, cause(n)) to C.
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Figure 3.1: (a) A colored game-graph for M and ¢ = A(pV¢q), where white nodes

are colored by T', grey nodes are colored by F' and bold edges point to the cause of
an A-node, (b) Its annotated counterexample computed by ComputeCounter, and
(¢) A possible result of ComputeCounter without the use of the cause in A-nodes.

Note, that we construct C' by adding edges to it, with the meaning that ' consists
of the corresponding nodes connected by these edges.

Complexity: Clearly, the construction of the annotated counterexample has a linear
running time in the size of its result. The result is linear (in the worst case) with
respect to the size of the game-graph Gsy,. The latter is bounded by the size of the
underlying Kripke structure times the length of the CTL formula, i.e. O(|M]| - |¢|).

The computed annotated counterexample can be viewed as the part of the win-
ning strategy of the refuter that is sufficient to guarantee its victory. We formalize
and prove this notion in the next section. Intuitively speaking, it is indeed a coun-
terexample in the sense that it points out the reasons for ¢’s refutation on the model.
Each node in the computed annotated counterexample C' is marked by a state s and
by a subformula ¢y, such that x((s,¢1)) = F (as claimed by Lemma 3.2), thus by
Theorem 2.8, [s |= 1] = ff. The edges point out the reason (cause) for the refutation
of a certain subformula in a certain state: the refutation in an A-node is shown by
refutation in one of its sons, whereas the refutation in an V-node is shown by all
its sons. Hence, by analyzing the computed annotated counterexample, one can un-
derstand why each subformula, and in particular the main formula, is refuted in the
relevant state(s).

Note, that for the correctness of the algorithm ComputeCounter and its result, it
is mandatory to choose for an A-node the son that caused the coloring of the node,
and not any son that was colored by F'. The following example demonstrates the
importance of the use of the cause.
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Example 3.1 Figure 3.1 presents an example for computing an annotated coun-
terexample using the algorithm ComputeCounter and demonstrates the necessity of
choosing cause(n) as a son of an A-node n when computing an annotated coun-
terexample. Figure 3.1(a) presents a colored game-graph (' for the model M and
@ = A(pVq), where grey nodes are colored by F', whereas white nodes are colored by
T, and bold edges point to the cause of an A-node. The coloring algorithm that re-
sults in this coloring partitions ¢ into five MSCCS: Q1 = {(s,¢)}, Q2 = {(s,p)}, Qs =
{(51,9)}, Q4 = {(s1,p)} and Q5 consists of the rest of the nodes. The sets Q1 — @4,
that have no outgoing edges, can be ordered arbitrarily amongst themselves, but
they are all smaller than ()5, since ()5 has an outgoing edge to each of them. Thus
the terminal nodes in (); — )4 are colored before ()5 is handled. When @5 is pro-
cessed, (s1,q N (pV AXA(pVyq))) is colored F' based on (s1,q) (its cause). This
causes (s1, A(pVq)), (s, AXA(pVq)), (s,pV AXA(PVq)), (s;q N (pV AXA(pVq))),
(s, A(pVq)), (51, AXA(pVq)) and (s1,pV AX A(pV¢)) (in this order) to be colored F
as well. Thus, (s1, A(pVq)) is the cause of (s, AXA(pVyq)) and (s,pV AXA(pVyq))
is the cause of (s,q A (pV AXA(pVq))). Furthermore, the initial node (s, A(pVq))
is colored by F', ie. [s | A(pVq)] = ff. Figure 3.1(b) presents the annotated coun-
terexample computed by ComputeCounter, where it can be seen that the reason for
refutation is the existence of the path s,sy,... and particularly its prefix s, s;, where
q is not satisfied by sy, although it was not “released” by p (p does not hold in s).
On the other hand, Figure 3.1(c) presents a subgraph of G, that is computed by a
variation of ComputeCounter, where for an A-node, an arbitrary son that is colored
by F'is chosen. In the example, the node (s, A(pV¢q)) was chosen as a refuting son of
(s, AXA(pVq)) rather than (s1, A(pVq)), which is its cause. The resulting subgraph
implies that the refutation of A(pV¢) results from the path s,s,.... However, this
path satisfies pV ¢, such that it does not prove refutation. Thus, this is not a “good”
counterexample. This will be formally shown in Chapter 3.2, where the notion of an
annotated counterexample is formalized.

3.1 Properties of the Annotated Counterexample

The annotated counterexample produced by ComputeCounter, denoted C', is a sub-
graph of the game-graph, and as such it has the properties of the game-graph. In
addition, it has the following properties.

Lemma 3.2 For each node n € C, we have that x(n) = I

Proof: By its construction, all the nodes in the computed annotated counterexample
C' are colored by F'. This can be shown by induction on the construction of C'; when
we rely on the property of y that an V-node is colored by [ iff all its sons are colored
by F'and an A-node is colored by F'iff at least one of its sons is colored by F'. This
property is obviously correct when the coloring does not use a witness, but it is also
true when a witness causes the coloring. O
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Lemma 3.3 C' contains non-trivial SCCs if and only if at least one of the nodes in
the SCC was colored due to a witness.

Proof: Clearly, if the coloring of a node that appears in the computed annotated
counterexample C' was based on a witness, then this node resides on a non-trivial SCC
that will be added to C'. This results from the following properties. For an V-node all
the sons are added to the annotated counterexample and in particular the one(s) in
the non-trivial SCC. For an A-node that is colored by a witness, its cause is added to
the annotated counterexample, where the cause is a son within the non-trivial SCC
that is also colored by a witness. Thus, a cycle is formed.

To prove the second implication, let us look at a non trivial SCC in C. All the
nodes in it are colored by F. Assume that all of them were colored due to their
sons. Consider the first node on the SCC that was colored and denote it by ny. Since
it is the first, it must be colored by F' based on its sons outside the SCC. Yet, it
obviously has sons within the SCC too. Thus it must be an A-node. The reason for
this conclusion is that only A-nodes can be colored by F' based on part of their sons
only. However, an A-node has exactly one son in (', and by construction this son
is its cause, i.e. the node that caused its coloring, which is outside the SCC by our
assumption. Thus, it is not possible that n; has another son in ' within the SCC,
which contradicts the fact that n; resides on the SCC. We conclude that at least one
of the nodes in the SCC was colored due to a witness. O

From Lemma 3.2 and Lemma 3.3 we have the following conclusion.
Corollary 3.4 Non-trivial SCCs in C are either AU-SCCs or EU-SCCs.

Proof: Lemma 3.3 tells us that if a non-trivial SCC appears in ' then at least one
of its nodes was colored by a witness. On the other hand, by Lemma 3.2 we know
that all the nodes in C' are colored by F', and by the coloring algorithm we know that
only nodes in AU or KU SCCs are colored by F' due to witness. Thus, the corollary
is implied. O

The property of €' described in Lemma 3.3, along with Corollary 3.4, imply that
non-trivial SCCs appear in C iff at least one of their nodes was colored due to an
AU or EU witness. That is, any non-trivial SCC that appears in the annotated
counterexample indicates a refutation of the U operator, which results, at least partly,
from an infinite path, where weak until' is satisfied, but not strong until (which is
used in our work). This intuition results from the properties of the coloring algorithm.
If a node is colored due to a witness, this means that finite information alone is not
sufficient to cause its color. In the case of A(p;Uyy), this means that there is no
finite (prefix of a) path where ¢, ceases being satisfied before ¢, is satisfied, and the
refutation results from an infinite path where  is always satisfied, but 5 is never
satisfied. In case of E(p1U¢s), this means that the refutation results, at least partly,
from infinite evidence of this form and not only from finite (prefixes of) paths.

!The weak version of the until operator, @1 W, does not guarantee that oo holds eventually.
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Since the algorithm ComputeCounter is designed to find counterexamples for full
CTL, and in particular for existential properties, its result ' has a more complex
structure than counterexamples that are used for universal properties. Yet, the fol-
lowing Lemma shows that when applied to formulae in ACTL, where only universal
properties exist, the result of ComputeCounter has a simpler structure. In fact, it has
a tree-like structure, as defined in [13]. It differs from the counterexamples presented
in [13] only in the existence of annotations.

Lemma 3.5 Non-trivial AU-SCCs in C' are always simple cycles, rather than general
SCCs.

Proof: Consider a non-trivial AU-SCC in . By the construction of (', we have
that A-nodes in the SCC have a single son in ' and in particular in the SCC. Apart
from A-nodes, such an SCC contains only V-nodes, that are not EX-nodes. This
is because by Lemma 2.6, the game-graph, and C' in particular, have the property
that the set of formulae in a non-trivial AU-SCC is exactly exp(A(p1Ups)), for some
A(p1Upy) € sub(yp). This property also implies that V-nodes other than EX-nodes
in such an SCC also have at most one son within the SCC, since such nodes are of
the form (&', 2 V (01 A AX A(¢1Up2))) and have two sons in the game-graph, one of
which is with the subformula @2 € exp(A(p1Ups)) and thus clearly does not belong
to the SCC. Thus, every node within a non-trivial AU-SCC in ' has exactly one son
within the SCC and the claim is implied. 0O

3.2 The Annotated Counterexample is Sufficient
and Minimal

Up to now we have provided an intuitive explanation for the information that is
captured in an annotated counterexample. In this section we first informally describe
our requirements of a counterexample. We then formalize these requirements for
annotated counterexamples and show that the result of algorithm ComputeCounter
fulfills them. Generally speaking, for a sub-model to be a counterexample, it is
expected to:

1. falsify the given formula.

2. hold “enough” information to explain why the original model does not satisfy
the formula.

3. be minimal, in the sense that every state and transition are needed to maintain
1 and 2.

The minimality that is expected of the counterexample is in the sense that we wish to
have precise counterexamples, without redundancies. For example, if a finite prefix
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of a path suffices to prove the refutation, we would like to see only this prefix rather
than the entire (infinite) path.

The annotated counterexample is not a sub-model but a subgraph of the game-
graph. Hence, the above requirements need to be adapted accordingly. Rephrasing
these requirements in terms of a subgraph of the game-graph leads to the following
expectations of an annotated counterexample, which correspond to the above three.

1. It contains an initial node ng which is colored F' by .
2. It holds “enough” information to explain why ng is colored by F'.

3. It is minimal, in the sense that every node and edge are needed to maintain the
previous requirements.

In order to formalize the second requirement with respect to an annotated coun-
terexample, we need the following definitions.

Definition 3.6 Let G = (N, F) be a game-graph and let A be a subgraph of G. The
partial coloring algorithm of ' with respect to A works as follows. [t is given an
initial coloring function y;: N\ A — {71, F'} and computes a coloring function for G.
The algorithm is identical to the (original) coloring algorithm, except for the addition
of the following rule:

e A noden € N\ A is colored by y1(n) and its color is not changed as a result of
other rules.

Any result of the partial coloring algorithm of G with respect to A is called a partial
coloring function of G with respect to A, denoted X : N — {T, F'}.

As opposed to the usual coloring algorithm that has only one possible result,
referred to as the coloring function of the game-graph, the partial coloring algorithm
has several possible results, depending on the initial coloring function y;. Fach one
of them is considered a partial coloring function of the game-graph w.r.t A. By
definition, the usual coloring algorithm is a partial coloring algorithm of G with
respect to G.

Definition 3.7 Let G be a game-graph and let y be the result of the coloring algorithm
on G. A subgraph A of GG is independent of G if for each Y that is a partial coloring
function of G with respect to A, and for each n € A, we have that x(n) = X(n).

Basically, a subgraph is independent of a game-graph if its coloring is absolute in
the sense that every completion of its coloring to the full game-graph does not change
the color of any node in it. In fact, one may notice that the colors of terminal nodes
determine the coloring function of the full game-graph. Thus, to capture this notion,
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it suffices to refer to a partial coloring algorithm that allows arbitrary coloring of
the terminal nodes in N \ A, but maintains the consistency of the coloring of the
rest of the nodes. However, for simplicity, we strengthen the definition and allow
non-deterministic coloring of all the nodes in N \ A.

The notion of an independent subgraph captures our second expectation of an
annotated counterexample, since the coloring of such a subgraph determines in a
definite manner the coloring of any node within it, and in particular ng, such that
other parts of the game-graph can not affect or change it. Thus, such a subgraph
holds sufficient information for explaining the color of the initial node ny.

Having formalized the second requirement, we can now formalize the notion of an
annotated counterexample. Yet, before doing so, we note that since we are dealing
with formulae in negation normal form, the properties of the game-graph imply that
a subgraph that fulfills the three requirements described above is in fact entirely
colored by F' (rather than just having an initial node ng that is colored by F'). This
is expressed by the following lemma.

Lemma 3.8 Let GG be a game-graph, x its coloring function and A a subgraph of G
with the following properties: (1) It contains an initial node ng, colored F by x, (2)
It is independent of G, and (3) It is minimal. Then, for every n € A: x(n) = F.

Proof: Assume to the contrary that A contains at least one node that is colored
T by x. We show that removing all the nodes that are colored T" from A will not
affect 1 and 2. Thus, it will result in a strict subgraph of A that satisfies 1 and 2, in
contradiction to the minimality of A (3).

Let A" C A be the subgraph of (& that results from removing all the nodes colored
by T (and the corresponding edges) from A. Clearly, ng is not one of these nodes
since x(ng) = F' (by 1). Thus, A" contains no and fulfills 1. It remains to show that
it also satisfies 2, i.e. that it is independent of G.

We need to show that the partial coloring algorithm of G w.r.t A’, given any initial
coloring function, does not change the colors of all the nodes in A’, i.e. colors them by
F' (by the choice of A, all the nodes in it are colored F' by v). Let x} : N\ A" — {7, F'}
be such an initial coloring function and let y': N — {7 F'} be the resulting partial
coloring of GG w.r.t A’. We show that for every node n’ € A" \'(n') = F.

To do so, let us look at the initial coloring function y7 : N\ A" — {T, F'} that
agrees with y’ on all the nodes in N \ A, but colors the nodes in A\ A" by T'. Note
that (N \ A)U (A \ A') indeed equals N\ A". \} differs from y/ only in (possibly)
changing the colors of nodes in A\ A’ from T to F.

Note that the coloring is monotonic in the sense that changing the color of a node
from T to F'in the initial coloring function of N \ A’ can only cause nodes in A’ to
change their colors from 7' to F' as well and not the other way around: it cannot cause
their colors to change from F' to T. This monotonicity holds since the game-graph
is based on a CTL formula in negation normal form, thus there are no —-nodes in
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it. In particular, the subgraph A’ that needs to be colored consists of only terminal
nodes, A-nodes and V-nodes. The coloring of a terminal node depends on no other
node and thus is not affected by the initial coloring. As for A-nodes and V-nodes, the
properties of the partial coloring algorithm assure us that an A-node in A’ is colored
T iff all its sons are colored by T and an V-node in A’ is colored T iff it has a son
that is colored by T. Thus the monotonicity is guaranteed in such nodes as well.

As a result of the monotonicity of the coloring it suffices to show that the partial
coloring function y” of G w.r.t A’ that is based on Y/ colors all the nodes in A’ by F'.
This will imply that the same holds for Y’ that results from Y/, since \/; differs from
X7 only in possibly coloring F' some nodes (in A\ A’) that are colored T' by \/.

It remains to show that y” indeed colors all the nodes in A’ by I'. To do so, we
first use \/ to construct an initial coloring function x; : N\ A — {7, F'} that will
result in a partial coloring y of G w.r.t A. y; is defined such that for each n € N\ A:
x1(n) = xj(n). Note that y; is well defined, since A" C A. Since A is independent
of (¢ (2), y does not change the color of the nodes in A. In particular, the nodes in
A’ remain colored by F' and the nodes in A \ A’ remain colored T'. Thus, in fact y
colors all the nodes in N\ A’ as x7: for nodes in N\ A this results from the definition
of xr and for nodes in A\ A’ this results from the latter along with the definition of
X7. This implies that each execution of the partial coloring algorithm w.r.t A given
X1 (which eventually results in y) is also a “legal” execution of it w.r.t A" C A given
X7. Since the partial coloring algorithm is deterministic, this means that y”, which
results from the partial coloring w.r.t A" given x/, colors all the nodes as y, and in
particular colors the nodes in A" by F. O

We use the observation described in Lemma 3.8 and define an annotated counterex-
ample as follows.

Definition 3.9 Let G be a game-graph, and let x be its coloring function, such that
X(no) = F for some initial node ng. A subgraph C of G containing ng is an annotated
counterexample if it satisfies the following conditions.

1. For each node n € C', x(n) = F.
2. ' is independent of G.

3. C is minimal.

The first two requirements in Definition 3.9 imply that €' is sufficient for explain-
ing why the initial node is colored by F. First it guarantees that all the nodes in
(' are colored by F. In addition, since C' is independent of &, we can conclude that
regardless of the other nodes in G, all the nodes in C, and in particular the initial
node ng, will be colored by F'. Therefore, it also explains why the formula is refuted
by the model. The third condition shows that €' is also “necessary”.

We now show that the result of algorithm ComputeCounter, denoted (', is in-
deed an annotated counterexample. The first requirement is obviously fulfilled, as
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described in Lemma 3.2. The following theorems state that (' satisfies the other two
conditions as well.

Theorem 3.10 C s independent of 5.

The correctness of Theorem 3.10 strongly depends on the choice of cause(n) as the son
of an A-node in the algorithm ComputeCounter. Returning to the example presented
in Figure 3.1, the subgraph in Figure 3.1(c) which was already informally claimed
not to provide a “good” annotated counterexample, can now be formally shown to
be not independent of G. For example, an initial coloring function y; that colors
the node (s1, A(pVq)) by T, would result in a partial coloring function of G w.r.t the
subgraph from Figure 3.1(c), where the nodes (s, A(pVyq), (s,q A (p vV AXA(pVq))),
(s,pVAXA(pVyq)) and (s, AXA(pVyq)) from this subgraph, are colored by T instead
of F.

For the proof of Theorem 3.10, we need the following technical Lemma.

Lemma 3.11 Let n be a node in C that was colored due to a witness during the
partial coloring of G' with respect to C', given an initial coloring function yr. Suppose
that all the nodes from C' that were colored prior to n by the partial coloring algorithm
were colored by F'. Then n lies on a cycle in C'.

Proof: Suppose n was colored due to a witness by the partial coloring algorithm of
(. Let us look at the status of the game-graph at the phase of the partial coloring
algorithm, where n was colored by a witness. Obviously, n has a son that is not yet
colored at that time (otherwise n would be colored too, based on its sons). This son
must be within the same set @); (all the sons outside @); are in “smaller” sets @); and
are thus already colored). Let us show that at least one such uncolored son is in C.

o If n is an V-node, then all of its sons are in (', and in particular the uncolored
one, which concludes this case.

e If n is an A-node, then it has exactly one son n’ in . If this son n’ is not
one of the uncolored ones, then it is already colored at this time, thus by our
assumption it is already colored by F', which would cause n to be already colored
by F' too (based on this son rather than on a witness) in contradiction.

In any case, we get that each of these types of nodes has a son within its ¢); that is
also in (' and is not yet colored by the partial coloring algorithm. Such a son will be
colored due to a witness along with n. The same arguments apply to this son and
to its son, etc. Since there is a finite number of nodes in @);, we get a cycle of such
nodes, which are all in ¢'. O

We now return to the proof of Theorem 3.10.
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Proof of Theorem 3.10: We need to show that in any partial coloring function
of G with respect to (', all the nodes of ' are colored as they were originally col-
ored by x, i.e. by F. Thus, for each node n = (s,¢') € C' we prove that n is
colored F' by the partial coloring algorithm with respect to ', regardless of the initial
coloring. The proof is by induction on the execution of the partial coloring algorithm.

Base case:

1. n € N\ C : we have nothing to prove.

2. n € C is colored as a terminal node (leaf). Since n € €', we have that it was
originally colored F' by v, which means ¢’ is either [ ¢ L(s) or false. Thus n is
again colored F' by the partial coloring algorithm.

Induction step:

e n € ('is colored due to its sons by the partial coloring algorithm. We distinguish
between two possibilities.

1. n is an V-node.

Suppose n is colored by T by the partial algorithm. This means that it
has at least one son n’ that is already colored by T'. However, since n € ('
is an V-node, then by the construction of the annotated counterexample
(', all of its sons are in (', and in particular n’ € . Thus the induction
hypothesis, applied to n’ which was already colored by our assumption,
assures us that n’ is colored by F'. This contradicts our assumption, i.e. n
must be colored by F.

2. n is an A-nodes.
Suppose n is colored by T. This means that all of its sons are already
colored by T'. However, since n € (', then by the construction of the anno-
tated counterexample, n has exactly one son n’ in €. Thus, the induction
hypothesis, applied to n’ which was already colored by our assumption,
assures us that n’ is colored by F'. This contradicts our assumption that
all the sons of n, and in particular n’, are colored by T, i.e. n must be

colored by F'.

e n € (is colored due to a witness. Since it is colored due to a witness, we have
that it could not be colored based on its sons only. If n is colored due to the
existence of an AU or KU witness, then by the description of the algorithm, it
is colored by F', as required.

It remains to show that the witness cannot be AV or EV. which would have
caused n to be colored by T'. Let us rule out these possibilities by assuming the
contrary. Suppose n is colored due to a witness of the form AV or EV by the
partial coloring algorithm. The induction hypothesis provides the information
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that is needed in order to use Lemma 3.11. According to Lemma 3.11, we get
that n lies on a cycle of nodes from €', which forms a non-trivial SCC. However,
by Corollary 3.4, non-trivial SCCs in C' are either AU-SCCs or EU-5SCCs, which
contradicts the assumption that n is colored due to an AV or EV witness (By
Lemma 2.6, such a witness cannot exist in an AU or EU SCC). Thus the witness
that caused the coloring of n cannot be one of the above.

a

The following Theorem refers to the minimality of C.

Theorem 3.12 (' is minimal in the sense that removing a node or an edge will result
in a subgraph that is not independent of Gi.

Proof: It suffices to show that any node and edge that will be removed from C" will
result in a subgraph €’ that the partial coloring of GG with respect to it may change
its coloring. This property is guaranteed because of the following. If the son of an
A-node n (or the edge that connects them) is removed, then there is no longer a son
for this node in C”, thus there exists an initial coloring function (input for the partial
coloring algorithm) that colors all the sons of n by T', which will cause n to become
colored T' by the partial coloring algorithm. If a son of an V-node n is removed, then
this son can be colored by T by the initial coloring function (input of the partial
coloring algorithm), thus its parent will also be colored T by the partial coloring
algorithm. O

3.3 Practical Considerations

Since the computed annotated counterexample ' may be big and difficult to under-
stand, several simplifications may be suggested in order to make it smaller, and thus
easier to navigate and to comprehend.

Zoom In - Zoom Out

Since each non-trivial SCC in (' is “attached” to a single AU or EU formula, as
indicated by Corollary 3.4, the annotated counterexample can be “zoomed-out” into a
DAG. This can be done by constructing the (maximal strongly connected) components
graph of the annotated counterexample, where each non-trivial MSCC is replaced by
a single node, annotated with its witness. This way, we allow a “global” view on the
annotated counterexample, along with the possibility to “zoom in” into each MSCC
and view its inner structure. This allows a user to interact with the system and
navigate through different parts of the annotated counterexample.
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Reductions of the Annotated Counterexample

The complexity of the annotated counterexample results, at least partly, from the
node annotations and the auxiliary edges, that add information about the formula.
This auxiliary information is valuable in the sense that it helps in understanding the
counterexample. However, the annotated counterexample can be “reduced” into more
compact structures by hiding (some of ) the information that results from the formula.
Auxiliary edges may be collapsed by merging nodes that were originally separated by
them, resulting in a subgraph of the unwinded model. Node annotations can either be
removed or partially remembered. These simplifications reflect the trade-off between
the size of the counterexample and the additional information originating from the
formula.

Presenting All the Possible Counterexamples

The algorithm ComputeCounter produces a single annotated counterexample. Yet,
the colored game-graph holds the full information about the refutation of the for-
mula. This information is described by the reachable subgraph that is colored by F'.
Thus, we can identify all the possible annotated counterexamples. It is possible to
(interactively) give them all using a variation of the algorithm ComputeCounter.
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Chapter 4

Game-Based Model Checking for
Abstract Models

In this chapter, we extend the discussion to abstract models. We suggest a general-
ization of the game-based model checking algorithm for evaluating a CTL formula ¢
over a KMTS M (that represents an abstract model) according to the 3-valued se-
mantics. In Appendix A we describe the abstract 2-valued semantics of CTL, which
is also suitable for KMTSs. We present an abstract model checking algorithm based
on the 2-valued semantics and discuss solving the 3-valued problem by reducing it
to two instances of the 2-valued problem, as suggested in [22]. We also discuss the
advantages of the direct solution, described in this chapter.

We start with the description of the 3-valued game. The main difference arises
from the fact that KMTSs have two types of transitions. Since the transitions of
the model are considered only in configurations with subformulae of the form A Xy,
or X, these are the only cases where the rules of the play need to be changed.
Intuitively, in order to be able to both prove and refute each subformula, the game
needs to allow the players to use both may and must transitions in such configurations.
The reason is that for example, truth of a formula AX¢; should be checked upon
may-transitions, but its falseness should be checked upon must-transitions. Therefore,
the new moves of the game are adapted as follows.

The new moves of the game:

2. if C; = (s, AX ), then Vhelard chooses a transition s =% s’ (for refutation) or
s — s’ (for satisfaction), and Cyyy = (s, ¢).

3. if C; = (s, EX ), then Jloise chooses a transition s =% s’ (for satisfaction) or
s —% s’ (for refutation), and Ciyy = (s, ¢).

That is, each player can use both may and must transitions. Intuitively, the

players use must-transitions in order to win, while they use may-transitions in order
to prevent the other player from winning. As a result it is possible that none of
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the players wins the play, i.e. the play ends with a tie. As before, a maximal play,
defined in Chapter 2, is infinite if and only if exactly one witness, which is either an
AU ,EU,AV or EV-formula, appears in it infinitely often. However, the winning rules
become more complicated. A player can only win the play if he or she are “consistent”
in their moves: always makes moves that are designed for satisfaction (if the player
is Jloise), or always makes moves that are designed for refutation (if it is Vbelard).
These moves are all based on must transitions. The other player, on the other hand,
possibly uses both types of transitions.

Definition 4.1 1. A play is called true-consistent if in each configuration of the
form C; = (s, EX ), Aloise chooses a move based on ™% transilions.
2. A play s called false-consistent if in each configuration of the form C; =

(s, AX ), Ybelard chooses a move based on 2 transitions.

The new winning criteria:

e Vbelard wins the play iff the play is false-consistent and in addition one of the
following holds:

1. the play is finite and ends in a terminal configuration of the form C; =

(s, false), or C; = (s,1), where = € L(s).
2. the play is infinite and the witness is of the form AU or FU.

e dloise wins the play iff the play is true-consistent and in addition one of the

following holds:

1. the play is finite and ends in a terminal configuration of the form C; =

(s, true), or C; = (s,1), where [ € L(s).
2. the play is infinite and the witness is of the form AV or EV.

o Otherwise, the play ends with a tie.

We now have the following correspondence between the game and the truth value
of a formula in a certain state under the 3-valued semantics.

Theorem 4.2 Let M be a KMTS and ¢ a CTL formula. Then, for each s € S:

1. [(M,s) |i ] = tt iff loise has a winning strategy starting at (s, e).
2. (M, s) |i ol =ff iff Ybelard has a winning strategy starting at (s, ).
3. [(M,s) |i o] =L iff none of the players has a winning strategy from (s,¢).
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Proof: The proof is by induction on the structure of CTL formulae. It suffices to
prove the implication from the truth value to the existence of a winning strategy.

Base case: ¢ = true, false or [, where [ € Lit. Thus, Cy = (s,¢) is a terminal
configuration. By the winning criteria, if [s |§ ¢] = tt, then dloise wins every play,
right at the beginning. If [s |§ ¢] = fI, then Vbelard wins every play, right at the

beginning. Otherwise, every play ends with a tie, and therefore none of them has a
winning strategy.

Induction step:

o =1V

1. If [s |§ ¢] = tt, then by the definition of the 3-valued semantics, there
exists j € {1,2} such that [s |§ @;] = tt. By the induction hypothesis,
Jloise has a winning strategy for every play that starts from (s, ;). Thus,
her winning strategy, starting from (s,¢), consists of choosing the next
move, which is in her responsibility, to be (s,¢;) and from then on, using
the guaranteed winning strategy for (s, ;).

2. If [s | ¢] = I, then by the semantics definition, for each j € {1,2} we have

that [s |§ @;] = ff. By the induction hypothesis, ¥Ybelard has a winning
strategy for every play that starts from either one of the configurations
(s,¢;). The union of these winning strategies is his winning strategy for
the game starting from (s, ). This is indeed a winning strategy, because
no matter which of the two possible configurations is chosen by dloise as
her move, Vbelard has a winning strategy from this point and on.

3. If [s E o] =L, then by the definition, at least for one of j € {1,2} we have
that [s £ ¢;] =L, and for the other one, k € {1,2}, k # j, we have that
the value of [s E @] is L or fl. Thus, Ybelard has no winning strategy
because Jloise, that makes the move in the initial configuration, can always
choose to proceed to (s,;), for which Vbelard has no winning strategy,
by the induction hypothesis. In addition, Jloise has no winning strategy,
because no matter which move she makes, she reaches a configuration for
which by the induction hypothesis she does not have a winning strategy.

o © = 1 A py: symmetric, since the definition of 3-valued semantics is opposite
and so are the roles of the players in a configuration with such a formula.

o v =Xy

1. If [s  ¢] = tt, then by the semantics definition, there exists a transition

s ™% &' such that [s’ |§ 1] = tt. By the induction hypothesis, Floise
has a winning strategy for every play that starts from (s',¢1). Thus, her
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winning strategy, starting from (s, ¢), consists of choosing the next move,
which is in her responsibility, to be (s, 1), which allows her to maintain
the play true-consistent, and from then on, using the guaranteed winning
strategy for (s, ;).

2. If [s E o] = ff, then by the semantics definition, for each transition s =%

must

s', we have that [s |§ ©1] = fI. Recall that —=C == thus this applies to
2% transitions as well. By the induction hypothesis, Ybelard has a winning
strategy for every play that starts from either one of these configurations
(s',1). The union of these winning strategies is his winning strategy for
the game starting from (s, ). This is indeed a winning strategy, because
these are the only possibilities that dloise has for the first move, and no
matter which of the possible configurations is chosen by her, Vbelard has
a winning strategy from this point and on.

3. If [s & o] =L, then by the definition, there exists at least one transition
s % ¢ such that the value of [s' E ] is L or tt, and for all the

transitions s =% s”, we have that the value of [s” = ] is L or ff. Thus,
Vbelard has no winning strategy because Jloise, that makes the move in
the initial configuration, can always choose to proceed to (s, ¢y ), for which
Vbelard has no winning strategy, by the induction hypothesis. In addition,
Jdloise has no winning strategy, because for her to win, the play must be
true-consistent, and thus she has to choose as her first move one of the
configurations (s”, 1), which are based on must-transitions. However, no
matter which of them she chooses, she reaches a configuration for which
by the induction hypothesis she does not have a winning strategy.

o © = AXpy: symmetric, since the definition is opposite and so are the roles of
the players.

o v = AlpUps):

First note that (the prefix of) each play that starts from the configuration
(s,¢) is of the periodic form (s, A(p1U¢2)) = (s,02V (o1 NAX A(01Ugz))) —3
(s, 01 NAXA(p1Up2)) —v (8, AX A(p1Uz)) —v (81, A(p1Ups)) — ..., based
on some (must or may) path s,sq,... from s. This form continues as long as
none of the players chooses as a next move (s;, p2) (Floise) or (s;, 1) (Vbelard)
from the configurations (s;, 2V (1 AAX A(p1Ue2))) or (s, 01 NAX A(p1Ugs))
respectively.

If a player chooses as a next move (s;,¢1) or (s;,¢2), we say that he or she
interrupts the periodic form of the play in index ¢. Otherwise, we say that he
or she maintains the periodic form of the play in index .

In addition note that in fact Vbelard is responsible for choosing the path that
the play is based on, because in configurations of the form (s;, AX A(p1U¢p2))
where the move is based on a transition of the model, Vbelard is the player
that makes the move. If Vbelard bases his moves on a path m = sg, s1,... and
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maintains the periodic form of the play in his move in index ¢, then this means
that he continues from (s;, o1 A AXA(p1Ugs)) to (s;, AXA(¢1Up2)) and to
(Sit1, A(@p1Ues)). In this case we say that Vbelard proceeds along 7 in index .

1. If [s |§ ¢] = tt, then by the semantics definition, for each may-path
T = 80,81,... from s, we have that |7 |§ ©1Ups] = tt. This means
that for each such path there exists 0 < k < |r| such that [s; E o3 = tt

and for all j < k: [s; |§ ¢1] = tt. Thus, by the induction hypothesis, Jloise
has a winning strategy for each game that starts from either one of the
corresponding configurations (sg,¢2) and (s;,¢1). The winning strategy
of Jloise for a game that starts from the configuration (s, ) consists of
all these winning strategies, along with the rules that tell her to interrupt
the periodic form of the play and proceed to (s;,¢q) if ¢ = k for some k
as described above, and to maintain the periodic form if 7 < k. This is a
winning strategy, because as long as © < k for some £ as described above,
if Vbelard chooses (s;,¢1), then since [s; |§ 1] = tt, by the induction
hypothesis dloise has a winning strategy. Otherwise, Vbelard maintains
the periodic form of the play in such ¢’s, and so does Jloise (as described
by her strategy). When ¢ = k is reached, Jloise chooses the configuration
(Sk,p2), for which she has a winning strategy by the induction hypothesis,

since [s; [ ¢a] = tt.

2. If [s |§ ¢] = fI, then by its definition, there exists a must-path 7 =
80,81, ... from s, such that [ |§ ©1Upy] = . This means that (‘v’ 0
B<|rl: (¥ <k:ls; Eor ) = (s E gl =) A (VO <k
7]t [sp B 1] # ff) = |7| = oo). If there exists 0 < ¢ < |r| for which

[s; & 1] = I, then let k be the smallest index for which [s; E ] = fI.
Otherwise, we set k = co. Note that in this case |7| = oo as well. Either

<
<

way, by the minimality of &, we know that for every : < k the formula
Vi<i:ls; E 1] # T holds, which implies that [s; & o] = ff. Therefore,
for every i < k we have that [s; & ¢,] = II.

By the induction hypothesis, VYbelard has a winning strategy from every
configuration (s;, ¢2) for which [s; |§ o] = ff and from every configuration
(8i,1) for which [s; |§ 1] = fI. Thus, his winning strategy for a game
that starts from the configuration (s, ¢) includes these winning strategies,
as well as rules that tell him to interrupt the periodic form of the play
and proceed to (s;,¢1) if © = k, and to proceed along 7 otherwise. This
is a winning strategy, because as long as 1 < k, if Jloise chooses (s;, ¢2),
then by the induction hypothesis Ybelard has a winning strategy (which is
part of his winning strategy from (s, ¢)), since [s; |§ o] = . Otherwise,
Jdloise maintains the periodic form of the play in such ¢’s. As for Vbelard,
as long as ¢ < k, he proceeds along the must-path 7, maintaining the play
false-consistent. Now, there are two possibilities:
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(a) If k is finite, then when ¢ = k is reached, by the described strategy
Vbelard chooses the configuration (s, 1) as his next move. Since

by the choice of k [sg |§ ¢1] = f, then by the induction hypothesis
Vbelard has a winning strategy from this configuration.

(b) Otherwise, we have that the must-path 7 itself is infinite and for every
1 > 0 Vbelard proceeds along m, such that the play is infinite and false-
consistent with the AU-witness. Thus, Vbelard wins as well.

Cf s |§ ¢] =L, then by the semantics definition, there exists a may-path 7
from s, for which the value of [r & ¢10U,] is L or ff, and in addition for
each must-path 7/ the value of [7/ 2 ¢1Up,] is L or tt.

The existence of 7 shows that Jloise does not have a winning strategy. Let
T = Sg,81..., then by the definition of the semantics =3 0 < k < |7 :
[([sx B 2] = 1) A (V) < k:[s; E 1] = tt)]. That is, V0 < k < |r] :
[([sk £ o,] # tt) V(3 < ks £ o] # tt)]. In addition, since 7 is a may
path, then it is infinite (|7| = o). Now, in order to prevent Jloise from
winning, Vbelard can base the play on m. We consider two possibilities.

(a) There exists (|m| >) ¢ > 0 such that [s; £ 1] # tt. In this case we
set k to be the smallest such index, thus for each ¢+ < k& we have that
—37 <0 (s E o] # tt), which means that for each ¢« < k: [s; =
= 2] # tt. In this case, Vbelard can always choose to proceed along
7 as long as ¢ < k, and when ¢ = k he can choose the configuration
(Sk,1). If Jloise interrupts the periodic form of the play before (or
when) ¢ = k, then it is to a configuration (s;, ), for which by the
induction hypothesis she does not have a winning strategy (since for
each 1 < k:[s; |§ 2] # tt). Otherwise, when (sg, 1) is reached, she
does not have a winning strategy (by the induction hypothesis, since
[s 1] # t).

(b) Otherwise, for every i > 0 : [s; £ 1] = tt. In this case we get that
for every ¢ > 0 : [=35 < 1 : ([s £ o] £ tt)]. Thus, for each ¢ > 0,
[s; E 2] # tt. Hence, if Jloise chooses the configuration (8, 02) as
her next move at any point, then she reaches a configuration for which
she does not have a winning strategy (by the induction hypothesis).

If Jloise never chooses (s;,¢2), then the play is infinite (since 7 is
infinite) with the witness A(p1U,), thus Jloise can not win.

The property of each must-path shows that Vbelard does not have a win-
ning strategy. Let 7' = s{,s| ... denote such a path. Then the value of

[7! |§ ¢1Ups] is either L or tt, which means that =(V 0 < k < |7'| : [(Vj <
kil Bl #10) = (st B ool =M) V(YOS k< |7 : [sh B o] #
ff) = |7'| = oo) holds. In other words, (30 < k < /| : [(Vj < k : [s] e
o1l £ A (s, B ool # D)V (YO < b < || 1 [5) B ] # ) A|R| # o0)
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holds. This means that for every such must path 7’ there exists & > 0 such
that either (k < |7/[) A (V] < k : [} E 1] # ) A ([s} E o] # ff) (if the
first disjunct holds), or (k = [7'[) A (Vj < K : [s] £ o] # ff) (if the second
disjunct holds). In order to win, Vbelard needs to proceed along must-sons
of AX-nodes (for the play to be false-consistent), thus in particular as long
as the play has the periodic form, Vbelard needs to base it on a must-path
' = 55,8 .... Clearly, if ¥belard interrupts the periodic form of the play
before k (of the relevant must path) is reached, then it is to a configuration
(s%,¢1) for which by the induction hypothesis he does not have a winning

strategy (since for j <k we know that s’ £ o] # ff). Otherwise, Vbelard
maintains the periodic form of the play for every j < k, and in order to
prevent him from winning, Jloise will do the same. Now, when k is reached
we have two possibilities.

(a) If [s}, £ ;] # I, then Jloise can interrupt the periodic form of the
play at this point and proceed to (s}, ¥2), for which Vbelard does not
have a winning strategy by the induction hypothesis.

(b) Otherwise, we have that |7/| = k and we also know that [s}, E o] # T
In this case dloise will maintain the periodic form of the play at
this point as well. Now, if Vbelard at his turn chooses to interrupt
the periodic form of the play, then he will reach the configuration
(8%, 1) for which he does not have a winning strategy (by the in-
duction hypothesis). Otherwise, he will proceed to the configuration
(sh, AXA(p1Upsy)) and at this point he will not be able to base his
move on a must transition, because |7'| = k (and 7 is maximal by
definition, which means that there is no must transition that exits the
state s}). Therefore, Ybelard will be forced to proceed based on a may
transition that is not a must transition. As a result, the play will not
be false-consistent and Vbelard will not win.

o 0= F(p1Upz), A(p1V2) or E(p1Viy): similar.

a

Theorem 4.2 refers to the existence (or non-existence) of winning strategies for
the players. One may also be interested in the existence of memoryless winning
strategies. The interested reader is referred to appendix B, where we define the
notion of a memoryless strategy and it is shown that Theorem 4.2 can be rephrased
to refer to memoryless winning strategies.

In order to use the correspondence described in Theorem 4.2 for model checking,
we generalize the game-based model checking algorithm.
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4.1 Game-Graph Construction and its Properties

The construction of the (3-valued) game-graph, denoted Gas«,, is defined as for the
“concrete” game (as described in Chapter 2). The nodes of the game-graph, denoted
N, can again be classified as A-nodes, V-nodes, AX-nodes and F X-nodes. Similarly,
the edges can be classified as progress edges, that originate in AX or FX nodes, or
auziliary edges. But now, we distinguish between two types of progress edges, two
types of sons and two types of SCCs.

o Edges that are based on must-transitions are referred to as must-edges. Edges
that are based on may-transitions are referred to as may-edges.

e A node n’ is a may-son of the node n if there exists a may-edge (n,n’). n’ is a
must-son of n if there exists a must-edge (n,n’).

o An SCC in the game-graph is a may-SCC' if all its progress edges are may-edges.
It is a must-SCC if all its progress edges are must-edges.

4.2 Coloring Algorithm

The coloring algorithm of the 3-valued game-graph needs to be adapted as well. First,
a new color, denoted 7. is introduced for configurations in which none of the players
has a winning strategy.

Second, the partition to );’s that is based on MSCCs is affected because there are
two types of SCCs (and MSCCs) in Giasy,. However, ™3 C ™™ thus each must-edge
is also a may-edge and every must-SCC is also a may-SCC. As a result, the graph can
be partitioned to may-MSCCs (based on the may-edges). Note that Lemma 2.6 holds
for may-SCCs in the 3-valued game-graph as well. Thus, the notion of a witness in

an SCC is also valid.

As for the coloring itself, similarly to the concrete case, the 3-valued coloring
algorithm processes the game-graph bottom-up and colors nodes by T', F' or 7 based
on the colors of their sons, according to the type of the node (A versus V, AX versus
EX) and the (3-valued) semantics of A, V, AX and EX. Here too, if at any point the
coloring cannot proceed, then the existence of a non-trivial SCC and a corresponding
witness is implied. Yet, in this case further analysis is needed before being able to
color the remaining nodes. Intuitively, if the witness is of the form AU, then uncolored
loops can only be used to prove its refutation (F' color). To do so, “real” loops are
needed. Thus for such a witness, we need to have an uncolored non-trivial must-SCC
in order to color it by a definite color (F). On the other hand, for an AV-witness,
loops can contribute to satisfaction, and satisfaction of universal properties should
be examined upon may-transitions. Thus for such a witness, may-edges are sufficient
to color the loop by T'. Similarly, if the witness is of the form FEU, we need to have a
may-SCC, whereas for an £'V witness, a must-SCC is used. Thus, unlike the concrete
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case where all the remaining uncolored nodes were colored automatically according
to the witness, in this case we first apply a special method whose purpose is to
ensure that the remaining uncolored nodes form non-trivial SCCs with the type that
is required for a definite color. During this process, some of the remaining uncolored
nodes, which do not fill these criteria, are colored by 7. Only after this phase, the
remaining nodes are colored by the suitable definite color.

The (3-valued) coloring algorithm

Partition and Order: The game-graph is partitioned into its may-MSCCs. The result-
ing sets are denoted ();’s. This partition induces a partial order such that transitions
go out of a set only to itself or to a “smaller” set. The partial order is extended to a
total order < arbitrarily.

Coloring: As before, the coloring algorithm processes the ();’s according to <, bottom-
up. Let (); be the smallest set w.r.t < that is not yet fully colored. The nodes of @);
are colored in two phases, as follows.

1. Sons-coloring phase:
Apply the following rules to all the nodes in (); until none of them is applicable.

e A terminal node is colored by T' if Jloise wins in it, by F' if Vbelard wins
in it, and by 7 otherwise.

An AX-node is colored by:

— T if all its may-sons are colored by T'.
— F'if it has a must-son that is colored by F.

— 7 if all its must sons are colored by 1" or 7 and it has a may-son that
is colored by F or 7.

An E X-node is colored by:

— T if it has a must-son that is colored by T'.
— Fif all its may-sons are colored by F'.

— 7 if it has a may-son that is colored by T or 7 and all its must-sons
are colored by F or 7.

o An A-node, other than AX-node, is colored by:

— T if both its sons are colored by T'.
— Fif it has a son that is colored by F.

— 7 if it has a son that is colored 7 and the other one is colored 7 or 7.
e An V-node, other than £ X-node, is colored by:

— T if it has a son that is colored by T
— F'if both its sons are colored by F.

— 7 if it has a son that is colored 7 and the other one is colored 7 or F'.
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Note that auxiliary edges can be considered both may and must edges.
By doing so, it is possible to join the description of the coloring of AX-
nodes and other A-nodes, as well as the description of £ X-nodes and other
V-nodes. We do not do that for clarity.

2. Witness-coloring phase:

If after the propagation of the rules of phase 1 there are still nodes in ); that
remain uncolored, then ¢); must be a non-trivial may-MSCC that has exactly
one witness (by Lemma 2.6 which holds here as well). The uncolored nodes in
Q); are colored according to the witness in two phases, as follows.

e The witness is of the form A(p;Uepy) or E(p1Ugs):
(a) Repeatedly color by ? each node in ); that satisfies one of the following

conditions, until there is no change (i.e. none of the conditions holds
for any node in Q);).

— An AX-node that all its must sons are colored by T or 7.

— An A-node that both its sons are colored by T" or 7.

— An FX-node that has a may son that is colored by 7" or 7.

— An V-node that has a son that is colored by T or ?. (or equiva-
lently: An V-node that has a son that is colored by 7. since the T
option is impossible).

In fact, each node for which the I option is no longer possible accord-
ing to the rules of the sons-coloring phase is colored by 7.

(b) Color the remaining nodes in Q; by F.
e The witness is of the form A(p;Vs) or E(p1Ves):

(a) Repeatedly color by ? each node in ); that satisfies one of the following
conditions, until there is no change (i.e. none of the conditions holds
for any node in Q);).

— An AX-node that has a may son that is colored by £ or 7.

— An A-node that has a son that is colored by F' or 7. (or equiva-
lently: An A-node that has a son that is colored by 7, since the F
option is impossible).

— An FX-node that all its must sons are colored by F' or 7.

— An V-node that both its sons are colored by F or 7.

In fact, each node for which the 7" option is no longer possible accord-
ing to the rules of the sons-coloring phase is colored by 7.

(b) Color the remaining nodes in Q; by 7.

The result of the coloring algorithm is a 3-valued coloring function x : N — {T, F,7}.

Note that coloring by 7 is done carefully. One may suggest to color a node by 7 in
any case where it is not colored and the coloring can not proceed. However, since we
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would like to follow the 3-valued semantics, we need to color such a node by 7 only if
it is not possible that it should be colored by T or F'. This is not implied by the node
being uncolored. Therefore, a node is colored by 7 only if there is evidence that it
cannot be colored otherwise. In any other case, another method is used to determine
its color.

We now discuss the correctness of the coloring algorithm. To do so, we first prove
the following important Lemma.

Lemma 4.3 Let n be a node that is uncolored at the beginning of phase 2 in its set
Q;. Then n lies on a non-trivial SCC that is a subgraph of (); and all nodes of the
SCC are uncolored at the beginning of phase 2.

We conclude that if a set (); has uncolored nodes at the beginning of phase 2 then
Q; is a non-trivial may-MSCC.

Proof: Consider an uncolored node in @);, denoted n. n has outgoing edges only to
nodes in smaller sets ();’s, which are already colored, or to nodes in the same set @);
(by the choice of the order <). Since n is uncolored, we have that it has an outgoing
edge to an uncolored node n’, otherwise it could be colored in phase 1. This node n’
can only be in the same set ); (the others are already colored). Thus, each uncolored
node in ); has a son within ); that is not colored. Since @); is finite, this results in
a non-trivial SCC, whose nodes are all within ;.

We now conclude that in this case (); is a non-trivial may-MSCC. By the choice
of the partition of Gary,, @i is obviously a may-MSCC. Since we have seen that
it contains a non-trivial SCC, we can also conclude that @); itself is a non-trivial

may-MSCC. O

Theorem 4.4 All the nodes in the game-graph get colored by the 3-valued coloring
algorithm.

Proof: It suffices to prove that whenever phase 2 of the coloring is reached (with the
existence of uncolored nodes), the set (); that is handled by the algorithm indeed has
exactly one witness. This results from Lemma 4.3 that guarantees that ¢); is a non-
trivial MSCC, as well as Lemma 2.6, that guarantees that a non-trivial may-MSCC
has exactly one witness. Thus, all the remaining uncolored nodes in (); are colored
according to this witness. As a conclusion, we get that no node is left uncolored. O

Theorem 4.5 Let Gy, be a 3-valued game-graph and let n be a node in the game-
graph, then:

1. x(n)="T iff Floise has a winning strategy starting at n.

2. x(n)=F iff Ybelard has a winning strategy starting at n.
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3. x(n) =7 iff none of the players has a winning strategy starting at n.

The correctness of Theorem 4.5 strongly depends on the observation described by the
following Lemma.

Lemma 4.6 Let (); be the set that is handled by the coloring algorithm at its ith
iteration, and let n be a node in Q); that is uncolored at the beginning of phase 2b.
Then

1. If Q; has an AU or EV witness, then n lies on a non-trivial must-SCC that s
a subgraph of Q); and all nodes of the must-SCC' are uncolored at the beginning
of phase 2b.

2. If Q; has an EU or AV witness, then n lies on a non-trivial may-SCC that is
a subgraph of Q); and all nodes of the may-SCC are uncolored at the beginning
of phase 2b.

Proof: First note that any node that all its sons are already colored in phase 1
or phase 2a, gets colored as well in these phases. This is clear for phase 1 by the
description of the coloring algorithm, since all the cases where all the sons are colored
are handled. As for phase 2a, the reasoning is similar, with the exception that some
of the cases where all the sons of a node are colored by definite colors (T or F') are
not handled. Yet, if all the sons of a node are colored by definite colors in this phase,
this means that they were already colored in phase 1 (since in phase 2a nodes get
colored by ? only), which would make their parent already colored as well. That is,
cases where all the sons are colored by definite colors are not possible in phase 2a.

Thus, each node n’ that is uncolored at the beginning of phase 2b has an uncolored
son n'. This is clear because otherwise n’ would be colored as well either in phase 1
or in phase 2a. Since all the sons of n’ are either in the same set ); or in smaller
sets which are already colored, the uncolored son n” is definitely within Q; as well.
Since (); is finite, this results in a non-trivial SCC, which is a subgraph of ¢); and is
uncolored at the beginning of phase 2b.

[t remains to refer to the type of the resulting SCC (must versus may). Clearly,
it is a may-SCC (since a must-SCC is also a may-SCC). Thus, for the case of an
EU or an AV witness, the claim is implied. We now consider the case of an AU or
an KV witness. To do so, we refer to the type of edges that connect an uncolored
node n’ to its son n” within the SCC in this case. For any node n’ in @); other than
AX-nodes or K X-nodes the connecting edge is an auxiliary edge. As for AX-nodes
(in a set with an AU witness) and £ X-nodes (in a set with an EV witness), at least
one of the uncolored sons has to be a must-son. This is because if all the must-sons
were colored, then by the description of the algorithm, n’ would already be colored
by previous phases (either by phase 1 if at least one of them is colored F' for AX
or T for EX, or by phase 2a otherwise). Thus, in this case we choose n” to be an
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uncolored must-son of n’. By previous arguments, we get an uncolored non-trivial
SCC whose progress edges are must-edges. i.e. this is a must-SCC; as required.

Either way, we get that a node n that is uncolored at the beginning of phase 2b
lies on a non-trivial SCC, with the required type, that is a subgraph of its ¢); and all
nodes of the SCC are uncolored at the beginning of phase 2b. O

Proof of Theorem 4.5: The proof is by induction on the computation of the col-
oring algorithm. It suffices to prove the implication from each result of the coloring
of n to the existence (or non-existence) of winning strategies.

Base case: n is a terminal node. On the one hand, by the coloring algorithm, n is
colored according to the player that wins the game in such a configuration. On the
other hand, this also determines the existence of a winning strategy, since each play
that starts from such a configuration also ends in it. Thus, the claim is implied.

Induction step:

1. n is colored due to the coloring of its sons in phase 1.

Consider the case where n is an AX-node. The first move in each play that
starts from the configuration n is done by Vbelard.

o If n is colored T' then by the description of the algorithm all its may-sons
are colored T'; which means Jloise has a winning strategy from each one of
them (by the induction hypothesis). Thus, no matter which move ¥belard
makes (this is his turn), she can win, i.e. she has a winning strategy from
n, which is the union of the winning strategies of all the sons of n.

o If n is colored F' then by the description of the algorithm it has a must-son
n’ that is colored F', which means Vbelard has a winning strategy from n’
(by the induction hypothesis). Thus, ¥belard has a winning strategy from
n, which is to choose n’ as the first move and continue by the guaranteed
winning strategy from n’. Note, that the choice of n’ provides a false-
consistent play, since it is a must-son of n.

o If n is colored by 7 then by the description of the algorithm, it has a may-
son n’ that is colored by ? or F', and all its must-sons are colored by T or 7.
The existence of n’ assures us that Floise does not have a winning strategy
for a game that starts from n, since Vbelard (which makes the move in
such a configuration) can always choose as his first move the configuration
n’, for which dloise does not have a winning strategy by the induction
hypothesis. In addition, the information about the must sons, assures us
that Vbelard does not have a winning strategy from n, since for the play to
be false-consistent Vbelard has to proceed to one of the must-sons, but from
them, by the induction hypothesis, he does not have a winning strategy.
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If nis an A-node, other than AX-node, then the same proof holds, where instead
of may or must edges we use auxiliary edges.

If n is an £ X-node, or another V-node, then the proof is symmetric to the proof
for AX or A-nodes respectively, where the coloring rules are opposite and so
are the roles of the players.

. n is colored due to a witness during phase 2 in a (); that is a non-trivial may-

MSCC (by Lemma 4.3).

Consider the case where the witness is A(p;Ugpy) or E(piUgpy) . Then n is
colored by either ? (in phase 2a) or F' (in phase 2b).

We first prove that either way, dloise does not have a winning strategy for the
game that starts from n. Let B be the maximal subgraph of Gy, that is
reachable from n through uncolored nodes by the time phase 2 (coloring by
witness) starts. Obviously, B is a subgraph of @); (because by the choice of <,
only nodes in (); or smaller sets are reachable from n and the ones in smaller
sets are already colored). Since it is a subgraph of @);, then by Lemma 2.6, its
formulae are from exp(A(p1Ups)) or exp(FE(p1Ups)).

Suppose that dloise has a winning strategy for the game that starts from
n. Then dloise manages to “force” the play to exit B to a configuration for
which she has a winning strategy. This is because if the play stays within
B, then the play is infinite (there are no terminal nodes in exp(A(¢1Up2)) or
exp(E(p1Upz)) thus the play cannot end without exiting B) and the witness is
A(p1Upsy) or E(p1Ugsy). Thus Jloise loses.

First, let us show that it is not possible that Vbelard is “forced” to exit B. Any
node in B is uncolored at the beginning of phase 2 and thus lies on an uncolored
non-trivial SCC (by Lemma 4.3). Hence, in particular, it has an uncolored son,
which is also in B (by the maximality of B). Thus, for every node in B there
exists a consecutive node that Vbelard can choose in his moves.

Now, we show that dloise cannot exit B to a configuration for which she has
a winning strategy, which contradicts the assumption that she has a winning
strategy. The only configurations in which Jloise makes a move are V-nodes,
with subformulae of the form ¢' V " or EX¢'. Thus, if Jloise manages to exit
B, she does it in such a configuration. We consider each possibility separately.

@'V " This means that there exists a configuration (s, 'V ¢") in B for which,
without loss of generality, Jloise chooses n’ = (s, '), which is outside B,
as her next move. This node, n’, is already colored at the beginning of
phase 1 (otherwise it would be in B as well, seeing that it is obviously
reachable, since its parent is in B). In addition, by our assumption Jloise
has a winning strategy from n’, thus by the induction hypothesis it is
colored by T. However, by the coloring algorithm this means that the
configuration (s',¢’ V ¢”) that is in B could already be colored by T' as
well in phase 1, in contradiction to the property that B is uncolored.
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EX": If Jloise exits B in a configuration of the form (s, FX¢'), then similar
arguments apply, with the difference that in this case Jloise chooses a must-
son n” = (s",¢") outside B as her next move. It has to be a must-son since
this move is a part of her winning strategy, thus it has to be based on a
must-transition from s’ to s” (the play needs to be true-consistent for her
to win). By the same arguments, this configuration (node) n” is already
colored. In addition, dloise has a winning strategy from n”, thus by the
induction hypothesis it is already colored by T. Again, this results in
contradiction, since by the coloring algorithm this would cause its parent
that is in B to be colored by T" as well in phase 1.

We now show that if n is colored by 7 (in phase 2a), then none of the players
has a winning strategy from it, and if it is colored by F' (in phase 2b), then
Vbelard has a winning strategy.

(a) Consider the case where n is colored in phase 2a. i.e., it is colored by ?. In
this case, it remains to show that Vbelard does not have a winning strategy
for the game that starts from n (We already know this about Jloise). The
proof is by induction on the computation of phase 2a, where the main idea
is that a node n is colored by 7 only when the [’ option is overruled.

e If n is an AX-node (or an A-node), this means that all its must-sons
are colored by 7 or T', such that indeed Vbelard has no winning strategy
from this node: he can either choose a may-son, which will make the
play not false-consistent, or he can choose a must-son, for which he
has no winning strategy, by the induction hypothesis.

e If nis an K X-node (or an V-node), this means that it has a may-son
n’ that is colored by 7 or T', such that indeed Vbelard has no winning
strategy from this node: in such a configuration Jloise makes the first
move, such that she can choose n’ for which ¥belard has no winning
strategy by the induction hypothesis.

(b) Consider the case where n is colored in phase 2b. i.e., it is colored by F'.
We show that Vbelard has a winning strategy for the game from n.

A(p1Upsy): Let B be the mazimal uncolored subgraph of Gy, that is
reachable from n through uncolored nodes and through must-edges
or auxiliary edges (but not may-edges) by the time phase 2b of the
coloring algorithm starts. B is clearly a subgraph of (); with formulae
from exp(A(p1Ugs)).

The winning strategy of Vbelard is to always stay in B. Since the
only progress edges in B are must-edges, then by this strategy Vbelard
maintains the play false-consistent. Therefore, if he manages to stay
in B, he wins (we get an infinite play with an AU-witness, which is
also false-consistent).

First, we show that it is not possible that Vbelard is “forced” to exit B.
By the choice of B, every node n’ € B is uncolored at the beginning
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of phase 2b, thus by Lemma 4.6 it lies on a non-trivial must-SCC,
which is a subgraph of (); that none of its nodes are colored by the
time phase 2b starts. Note, that whereas @); is a may-MSCC, we
claim that n’ lies on an uncolored must-SCC. In particular, it has an
uncolored son, connected to it either by an auxiliary edge or by a must-
edge, which is also in B (by the maximality of B). Thus, for every
node in B there exists a consecutive node that Vbelard can choose in
his moves.

We now consider the case where Jloise exits B and show that in this
case Vbelard still has a strategy that allows him to win (which will
be added to his winning strategy). The only configurations in which
Jloise makes a move in such an SCC are of the form n’ = (&', ¢" V ¢").
Thus, the only way for dloise to exit B, is by choosing to proceed
to n” = (s',¢") (without loss of generality) in such a configuration in
B. By our assumption, n” is not in B and thus already colored (it is
connected to n’ € B by an auxiliary edge, thus if it was not colored,
it would be in B). It must be colored by F, otherwise n’ would be
already colored in phase 2a (as an V-node that has a son colored by
T or ?7) or before, in contradiction to its being a node in B. Since n”
must be colored by F', we get that Vbelard has a way to win the game
even if Jloise forces him to exit B (by the induction hypothesis).

E(p1Ups): Let B be the maximal subgraph that is reachable from n
through uncolored nodes by the time phase 2b of the coloring algo-
rithm starts. B is obviously a subgraph of ();, thus the formulae in B
are formulae from exp(E(p1Ups)).

The winning strategy of Vbelard is to always stay within B. This is a
winning strategy because if he manages to stay within B, we get an
infinite play with a witness E(pU¢qs), which is also false-consistent
(in fact Vbelard never uses any progress edges), thus he wins.
Obviously, Vbelard can always stay within B in his moves, since any
node in B is uncolored at the beginning of phase 2b and thus lies on
an uncolored non-trivial SCC (by Lemma 4.6) and in particular has
an uncolored son which is also in B.

Furthermore, if Jloise exits B, then her move is made in an V-node
(possibly an F X-node), and she reaches a configuration that is already
colored (otherwise it would be in B, by the choice of B and its max-
imality), and thus it is colored by F' (otherwise its parent would be
colored during phase 2a or before, in contradiction to its being in B).
Hence, by the induction hypothesis, Vbelard has a winning strategy
from this configuration as well.

If the witness is of the form A(p1Vq) or E(p1Vips), then the proof is symmet-
ric, where the coloring rules are opposite and so are the roles of the players.
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Implementation issues: First, note that the correctness of the coloring algorithm
is not damaged if during phase 1 of the ith iteration, nodes from sets other than @),
are colored as well. This results from the property that once a node is colored, its
color never changes. In other words, coloring successors of an already colored node
does not change its color. Thus, if a node from a set (); can be colored in phase 1
of the ith iteration (z < j) based on its sons, then these sons will still be colored the
same in the jth iteration, leading to the same coloring (although possibly additional
sons will be colored in the jth iteration).

Based on this observation, the coloring algorithm can be implemented in linear
running time, using an AND/OR graph, similarly to the algorithm described in [29]
for checking the nonemptiness of the language of a simple weak alternating word
automaton. The algorithm maintains an integer 7 that contains the current iteration
and three stacks Sy, Sp and S7. The stacks contain nodes that were colored by T,
F or 7, yet still have not propagated their coloring further. At the beginning, the
stacks are initialized by all the terminal nodes, according to their coloring. During
the son-based coloring (phase 1), whenever a node is colored, it is pushed into one of
the stacks, based on its color. As long as the stacks are not empty, a node is popped
from one of them and its parents are checked to see if they can be colored (based on
all their sons).

When the stacks are empty, the witness-based coloring (phase 2) is applied on the
smallest (); that contains uncolored nodes. First, phase 2a is applied, where initially
all the nodes in (); are checked once to see if they can be colored. The ones that are
colored are pushed into Sy as well as a temporary stack. The temporary stack is used
to propagate their coloring within ); based on the rules of phase 2a and each node
that gets colored is added to the temporary stack and to S;. Phase 2a ends when the
temporary stack is empty. At that time, all the remaining nodes in (); are colored by
T or F' (depending on the witness) in phase 2b and are pushed into the appropriate
stack. The algorithm then returns to phase 1 (with the new content of the stacks).

Complexity: The running time of the coloring algorithm is linear with respect to
the size of the game-graph Ghsy,. The latter is again bounded by the size of the
underlying KMTS times the length of the CTL formula, i.e. O(|M] - |¢]).

As a conclusion of Theorem 4.2 and Theorem 4.5, we get the following theorem.

Theorem 4.7 Let M be a KMTS and ¢ a CTL formula. Then, for each n =
(57991) € Gurxy:

1. [(M,s) |i e1] =t iff n=(s,¢1) is colored by T.
2. (M, s) |i o1] = Uf n=(s,¢1) is colored by F.
3. [(M,s) |i e1] =L iff n=(s,¢1) is colored by 7.
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Given the colored game-graph, if all the initial nodes are colored by T', or if at
least one of them is colored by F', then by Theorem 4.7 along with Theorem 2.14,
there is a definite answer as for the satisfaction of ¢ in the concrete model. This
is because there exists a mixed simulation from the concrete model to the abstract
one. Furthermore, if the result is ff, a concrete annotated counterexample can be
produced, using an extension of the ComputeCounter algorithm as described in the
following chapter.

Example 4.8 Figure 4.1 presents a 3-valued game-graph G and its coloring, where
dashed edges represent may-edges and solid edges represent must-edges, as well as
auxiliary edges. The partition of G to @);’s (may-MSCCs) is depicted by rectangles
in Figure 4.1, where their indices 1-5 determine the order <. The coloring algorithm
starts from ()1-Q)4, where the terminal nodes are colored in phase 1 of the coloring
algorithm. It then handles @s. (s1,p A AXA(pUq)) is colored F' in phase 1 due
to its son (sy,p) and (s1,q9 V (p AN AXA(pUq))) is colored T' due to its son (s1,q),
causing (s1, A(pUq)) to be colored T" as well. At this point, none of the remaining
nodes can be colored in phase 1. Thus, the algorithm proceeds to phase 2, with Qs
containing an AU-witness. The node (s1, AX A(pUq)) is colored ? in phase 2a, since
it is an AX node and its only must son is colored T'. The rest of the nodes are then
colored F' in phase 2b. This example demonstrates that if a node is left uncolored
after phase 2a in a set with an AU-witness, then it lies on a non-trivial must-SCC
that provides an evidence for refutation. The final coloring function can be seen in
Figure 4.1, where white nodes are colored T', dark grey nodes are colored F' and light
grey nodes are colored 7. Based on Theorem 4.7, that describes the relation between
the coloring results and model checking, we can use the color of each node in order
to conclude what is the truth value of its formula in its state. In particular, since the
initial node (s, A(pUq)) is colored by F', we can conclude that the value of the formula
¢ = A(pUq) in the initial state s of the model M is ff. This is indeed correct since the
value of the until formula pUq in the (infinite) must-path s,s,... is ff (the value of
p is always ff in this path, thus the eventuality of the until is definitely refuted), and
the existence of such a must-path suffices to definitely refute the universal formula
A(pUq), resulting in the truth value ff. Since s is an initial state of the model M,
we can conclude that the value of ¢ = A(pUgq) in the abstract model M is ff. This
implies that ¢ is refuted in the corresponding concrete model, represented by M.
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Figure 4.1: A colored 3-valued game-graph for M and ¢ = A(pUgq), where dashed

edges are may-edges, solid edges are must-edges or auxiliary edges, and rectangles

depict the partition of the nodes. White nodes are colored by T', dark grey nodes
are colored by F', and light grey nodes are colored by 7.
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Chapter 5

Concrete Annotated
Counterexamples Based on

Abstract Game-Graphs

In this chapter we show how to produce a concrete annotated counterexample from
the 3-valued abstract game-graph that was used for model checking, in case that one
of the initial nodes was colored by F', meaning that [M | ¢] = fI.

Let Me = (S¢,Soc,—, Lc) be a (concrete) Kripke structure and let My =
(S4, S04, =% 2% L) be a (abstract) KMTS as described in the preliminaries, such
that Ms =< My, where < is the mixed simulation relation. Let v : Sy — 25¢ be
the concretization function. Given the abstract 3-valued game-graph G4, based on ¢
and the abstract model M4, and its coloring function y : N — {7, F, 7}, such that
X(no,) = F for some initial node ng, = (S04, ¢), we first use a variation of the previ-
ously described ComputeCounter to produce an abstract annotated counterexample
(4. The difference in the abstract version of the algorithm is that for an AX-node,
where the cause is added to the annotated counterexample, we now choose the cause
to be a must-son, and in an FX-node, we add all its may-sons to the annotated
counterexample.

In order to find a concrete annotated counterexample out of C'4, we then need
to replace each abstract state s, in (4, that represents a set of concrete states,
with a single concrete state s, from v(s,). Since we are dealing with an annotated
counterexample, some of the edges between nodes are auxiliary edges, that do not
represent advancements along transitions of the model. If this is the case then the
same concrete state should eventually match both these nodes. For an AX-node,
the annotated counterexample shows one son that refutes the property. Given such
a node n,, and its only son in the counterexample n!, we need to match both their
states with concrete states that have a concrete transition between them. For an £ X-
node, the annotated counterexample shows refutation in all its sons. Hence, given
such a node n,, we need to match its abstract state s, with a concrete state s. and
add all its concrete sons to the concrete annotated counterexample.
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Hence, the concretization algorithm of C'4 for producing a concrete annotated
counterexample, C'¢, is described as follows.

e Choose the initial concrete node to be ng. = (so., ), where s, is the initial
abstract state that appears in ng, and sg. is an arbitrary node from y(so4) N .Soc-

e Apply the recursive procedure ComputeSons on (1o, Noa)-

Given a concrete node n. = (s.,¢") and the abstract node n, = (s,,¢") that matches
it, the procedure ComputeSons(n., n,) creates the concrete sons of n. as follows:

o If o' = EX¢q, then for each state s/ such that s. — s/, the node (s, ;) is
added to the concrete annotated counterexample as a son of n.. Each such node
matches an abstract node n!, = (s, 1), such that s’ € v(s!). Moreover, n/ is
a son of n, in the abstract annotated counterexample.

o If ¢’ = AX ¢, then n, has one son nl, = (s/,p1) in C4. An arbitrary state s’
is chosen from {s. € S¢ : s. — 5.} N~(s)) and the node (s., 1) is added to the

concrete annotated counterexample as a son of n.. The resulting son matches

/

n,.

o If @' = 1 V g, then the nodes (s.,¢1) and (s.,¢2) are added to the concrete
annotated counterexample as sons of n.. They match the abstract nodes (s, ¢1)
and (s, pq) respectively, which are both sons of n, in Cjy.

o If ¢ = 1 A2, then n, has one son n), = (s,, ;) in Cy, where ¢ € {1,2}. The
node (s., ;) is added to the concrete annotated counterexample as a son of n..
It matches the abstract node n/,.

In any case, we then recursively call the procedure ComputeSons on the new concrete
nodes (each one and the abstract node that it matches).

Basically, this is a greedy algorithm. The only situation where there is “freedom”
in the choice of concrete states is in case of sons of AX-nodes. In £ X-nodes the algo-
rithm makes sure to include all the concrete sons in the annotated counterexample.
As for other nodes, whose sons result from auxiliary edges, the algorithm makes sure
to attach both the parent and the son with the same state.

Complexity: The running time of the concretization algorithm is linear in the size of
the concrete annotated counterexample, which is bounded by the size of the concrete
Kripke structure M¢ times the length of the CTL formula ¢, i.e. O(|M¢| - |¢]).

Lemma 5.1 The concretization algorithm does not fail.

Proof: This results from the following properties of the mixed simulation between
My and M, induced by v, and of the abstract annotated counterexample.
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1. For each initial abstract state so,, there exists so. € Soc such that so. € (s04)

(since M =< My). Thus we have that y(sg.) N Soc # 0.

2. If s. € 4(s4), then for each s/ such that s. — s/, there exists an abstract
state s/ such that s € v(s") and s, —» s,. In addition, for £X-nodes the
abstract annotated counterexample C'4 contains all the may-sons. Thus, in the
concretization of an F X-node, we are guaranteed that all its concrete sons are
represented by the sons of its matching node in C'y4.

3. If s, ™% &', then for each s. € v(s,) there exists s’ € y(s") such that s. — s,
thus {s. € S¢ : s. = sL} N~y(s)) # (0. In addition, for AX-nodes the abstract
annotated counterexample (4 contains a must-son. Thus, in the concretization
of an AX-node, we are guaranteed that there exists a concrete son that is
represented by the abstract son in Cjy.

a

In order to prove the correctness of the concretization algorithm, we need to show
that the result C that it produces is indeed a (concrete) annotated counterexample
for the concrete game-graph G'¢ = (N¢, E¢), based on M and ¢. To do so, we need
to show that C¢ is a subgraph of Gi¢ that is (1) colored F' by the coloring function of
Gle, denoted x : No — {T, F'}, (2) independent of G/¢, i.e. that every partial coloring
function of G w.r.t Co does not change the colors of its nodes, and (3) minimal.

Lemma 5.2 C¢ is a subgraph of G .

Proof: This results from the following properties.

e The initial node consists of a concrete initial state and the original formula ¢
(which also appeared in the abstract initial node).

o Every other node is a legal son of its parent. The correctness in terms of
the formulae in the nodes results from the abstract annotated counterexample,
because the formulae are not changed. As for the states, if the parent is an AX
or X node, the correctness results from the fact that we replaced the may or
must edges with concrete edges, such that there exists a real transition in the
model from the parent’s state to its son’s state. Otherwise, it results from the
fact that we made sure to have the same state both in the parent and in its son.

a

As for (1) and (2), it suffices to show that both the regular coloring algorithm and
the partial coloring algorithm w.r.t C¢, given any initial coloring function of N¢ \ Ce,
color the nodes of Cc by F. In fact, the regular coloring algorithm can be viewed
as an instance of the partial coloring algorithm with respect to C'c where the initial
coloring function of N¢ \ C¢ colors each node n € No \ Ce by y(n). Thus, it suffices
to prove this claim for the partial coloring algorithm only.
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Lemma 5.3 Let n. be a node in Co that corresponds to a node n, in C' 4. Then given
any initial coloring function of No \ Ce, n. is colored by F' in the partial coloring of
GC w.r.t Cc.

Proof: Given any initial coloring function that colors N¢ \ C¢, the proof is by in-
duction on the computation of the partial coloring algorithm w.r.t Cc. We consider
nodes in C'¢ only. The rest are colored by the initial coloring function, however their
colors are not relevant to the proof. Note that each node n. € Uy has exactly one
matching node in Cy, denoted by n, (by the concretization algorithm).

Base case: n. € (¢ is a terminal node, thus so is its matching abstract node n,,
because they have the same formula. Since n, € C4, we have that it was colored by
F. Thus, their formula can be either false or [ where =l € L4(s,). In the first case,
n. is obviously colored by F. In the second case, by the concretization algorithm,
we have that the (concrete) state s. of n. belongs to v(s,). In addition, =l € La(s,)
means that =/ labels all the concrete states in v(s,) and in particular =/ € L¢(s.).
Hence, n. is colored by F' as well.

Induction step:

1. n. € C¢ 1s colored due to its sons. We prove that it is colored by F. Assume
to the contrary that n. was colored by 1" based on its sons.

o If n. is an V-node, this means that it has a son n/. € G¢ that is already
colored by T'. Clearly, by the description of the concretization algorithm,
we get that all of the sons of n. from G¢ appear in C¢. This is true in
particular for n’. Therefore, by the induction hypothesis, if it is already
colored, then it must be colored by F', in contradiction.

o If n. is an A-node, this means that all its sons in GG are already colored
by T'. By the concretization algorithm, one of its sons, denoted by n’, is
in Co. However, by our assumption, n’ is already colored by T', which
contradicts the Induction hypothesis.

2. n. was colored due to witness. It suffices to show that the witness can not be
AV or EV. Similarly to Lemma 3.11, it can be shown that for n. to be colored
by a witness, it must reside on a loop of nodes that matches an abstract loop
that passes through n, in C4. However, by a generalization of Lemma 3.3 to
the abstract case, if n, resides on a loop in (4, then at least one of the nodes
n! on the loop must have been colored by a witness. Now, if the witness that
caused the coloring of n. was AV or EV, then so would be the witness that
caused the coloring of n! (because n! lies on a loop that contains n,, thus by
Lemma 2.6 which holds for the abstract case as well, their formulae result from
the same witness and the formulae in n, and n, are the same), which means n/,
would be colored by T', in contradiction to its being in Cjy.
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a

Lemma 5.4 C¢ is minimal in the sense that any node and edge that are removed
from it result in a subgraph of G'¢ that is not independent of G¢.

Proof: similar to the proof of Theorem 3.12. O

We can now conclude the correctness of the concretization algorithm, guaranteed by
the following Theorem.

Theorem 5.5 C¢ is an annotated counterexample for Mo and .
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Chapter 6

Refinement

In this chapter, we show how to exploit the abstract game-graph in order to refine
the abstract model in case that the model checking resulted in an indefinite answer.

In the framework of abstraction-refinement, refinement is usually based on a spu-
rious counterexample, and the state in which its concretization fails. This approach is
suitable when the model checking is based on 2-valued semantics, where tt is definite,
whereas ff is not, such that an abstract counterexample may be spurious. The goal
of the refinement is then to eliminate the spurious counterexample.

When dealing with the 3-valued semantics, if the result of the model checking is
ff, then it is definite as well and no refinement is needed. In this case, refinement is
needed when the resulting truth value is indefinite, i.e. L., in which case there is no
reason to assume either one of the definite answers tt or ff. Thus, we would like to
base the refinement not on a counterexample as in [30, 9, 3, 12, 8], but on the point(s)
that are responsible for the indefinite answer. The goal of the refinement is to discard
these points, in the hope of getting a definite result on the refined abstraction.

Let Mc = (S¢, Soc, =+, L) be a concrete Kripke structure and let M4 = (54, Sox
[ % La) be an abstract KMTS as described in the preliminaries such that
Mg =< My. Let v : S4 — 25 be the concretization function. Given the abstract
3-valued game-graph 7, based on the abstract model M4 and its coloring function
x: N = {T, F, 7}, such that x(ng) =7 for some initial node ng, we use the information
gained by the coloring algorithm of GG in order to refine the abstraction. We refine
the abstract model by splitting its abstract states according to criteria obtained by a
failure node.

Definition 6.1 A node n is a failure node if it is colored by 7, whereas none of its
sons was colored by 7 at the time n got colored by the coloring algorithm.

Informally, such a node is a failure node in the sense that it can be seen as the
point where the loss of information occurred. Thus, it can guide the refinement in
hope to avoid the loss of information.
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Note that a failure node may have uncolored sons at the time it is colored, some
of which may eventually be colored by 7. Also note, that a terminal node that is
colored by 7 is also considered a failure node.

6.1 Finding a Failure Node

First, the coloring algorithm is adapted to identify and remember failure nodes. In
addition, for each node n that is colored by 7, but is not a failure node, the coloring
algorithm remembers a son that was already colored 7 by the time n was colored,
denoted cont(n). Now, given the initial node ng that is colored 7 a failure node is
found by the following DFS-like greedy algorithm, starting from ng.

Algorithm FailureSearch
o If the current node n is a failure node, the algorithm ends and returns it.

e As long as n is not a failure node, the algorithm proceeds to cont(n) (recur-
sively).

Lemma 6.2 The algorithm FailureSearch terminates.

Proof: As long as the current node n is not a failure node, the algorithm continues
to cont(n). This is a node that was colored ? prior to n. Note, that by the definition
of a failure node, there always exists such a node if n is not a failure node. Thus,
each recursive call is applied on a node that was colored 7 earlier. Hence, the number
of recursive calls is bounded by the running time of the coloring algorithm, which is
finite. O

Lemma 6.3 A failure node, and in particular the one returned by the algorithm
FailureSearch, is a node colored by 7, which is one of the following.

1. A terminal node of the form (s,,l) where | € Lit.
2. An AX-node (EX-node) that has a may-son colored by F' (T').

3. An AX-node (EX-node) that was colored during phase 2a based on an AU
(EV ) witness, and has a may-son colored by 7.

Proof: By its definition, a failure node n is colored by 7 and none of its sons were
colored by 7 at the time it got colored. Thus, it cannot be an A-node or an V-node
other than an AX-node or an £ X-node. This is because such a node can never be
colored by 7 when none of its sons are colored by 7. More specifically:

1. This is clear from the description of the coloring algorithm when n is colored
during phase 1.
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2. As for phase 2, n could get colored by 7 only in phase 2a. If the witness is an
AU or an EU witness, then by the description of the coloring algorithm, an
A-node gets colored by 7 only if both its sons are colored by T or 7. It is not
possible that both of them were colored by T, since this would mean they were
already colored this way in phase 1, thus n would already be colored in this
phase as well. Similarly, an V-node gets colored by 7 in this phase and with
such a witness only if it has a son that is colored by T or 7. The T option is not
possible since it would again mean that n could already be colored in phase 1.
In any case, we get that an A-node or an V-node that gets colored in phase 2a
based on such a witness has a son that is already colored by 7 at this time.
Similar arguments apply to the case of an AV or an KV witness.

Thus, by definition, the failure node cannot be such a node, which means it can only
be a terminal node, an AX-node or an FX-node.

e If nis a terminal node (case 1), then it must be of the form (s,,[) since terminal

nodes of the form (s,,true), (s,,false) are colored by definite colors rather than
7.

o Consider the case where the failure node n is an AX-node. We prove that either
it has a may-son colored by F' (case 2), or it was colored during phase 2a based
on an AU witness, and has a may-son colored by 7 (case 3). If n has a may-son
colored by F', then we are done.

If n does not have a may-son colored by F', then all its may-sons are clearly
colored by T or 7. It cannot be the case that all of them are colored by T', since
then n would also be colored by T', in contradiction to its being a failure node.
Thus, n has at least one may-son that is colored by 7. Note, that we claim that
this son is colored by 7 at the end of the coloring, but not at the time n got
colored (otherwise n would not be a failure node). It remains to show that if
this case occurs then n was colored during phase 2a based on an AU witness.

Obviously, n could not be colored during phase 1, since if this was the case,
then by the coloring algorithm, n would have a may-son n’ that was already
colored by F' or 7 when n got colored. By our assumption, none of its may-sons
is colored by F' at the end of the coloring and thus also at that time, which
implies that n has a may-son that was already colored by 7, which contradicts
its being a failure node.

Furthermore, n could not be colored during phase 2b of any iteration, otherwise
it would be colored by a definite color, in contradiction to its being a failure
node.

Thus, we conclude that in the case where n does not have a may-son that is
colored by F', n was indeed colored during phase 2a. In addition, since it is an
AX-node, it can not be a part of an MSCC whose witness is EU or EV (by
Lemma 2.6). Thus, it remains to eliminate the possibility that the witness is
AV. If n was colored during phase 2a based on an AV-witness, then by the
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coloring algorithm, when it got colored, it had a may-son n’ that was already
colored by F or 7. By our assumption, the F' option is not possible, which
means n had a may-son that was already colored by 7, in contradiction to its
being a failure node. Thus, we conclude that the witness is an AU-witness.

As a conclusion we get that either n has a may-son colored by F', or it has a
may-son colored by 7, in which case it was colored during phase 2a based on an
AU witness.

e The case where n is an F# X-node is similar.

6.2 Failure Analysis

Given a failure node n, it provides us with criteria for the refinement. Based on
this criteria, the refinement problem is reduced to the problem of separating sets of
(concrete) states, which can be solved by known techniques, depending on the type
of abstraction used. Examples of solutions for certain types of abstractions can be
found in [12] (for abstraction based on invisible variables) and in [9] (for abstraction
based on formulae clusters). The criterion for the separation depends on the type of
n and is found by the following analysis.

L. n = (8q,(0) is a terminal node. In this case, its indefinite color results from
the fact that s, represents both concrete states that are labeled by [ as well as
concrete states that are labeled by —/. In order to avoid the indefinite color in
this node, we need to separate these types of concrete states. Hence, our goal
is to separate v(s,) to two sets {s. € v(s.) : [ € Lo(s.)} and {s. € v(s.): =l €
Le(se)}

2. n = (84, AX¢1) with a may-son colored F', or n = (s,, EXp;) with a may-
son colored T. Let K stand for F or T. We define sonsx = [J{v(s!) :
(8!, 1) is a may-son of n colored K} and concyg = v(s,) N {s. € S¢ : Is!. €
sonsg,s. — s.}. For the AX ¢, case, K = F and concy is the set of all con-
crete states, represented by s,, that definitely refute AX ;. For the KX,
case, ' = T and concy is the set of all concrete states, represented by s,, that
definitely satisfy £ X ;. In both cases, our goal is to separate the sets concy
and v(s,) \ concg.

3. n = (84, AX 1) or n = (34, EXpy) was colored during phase 2a based on an
AU or an E'V witness (respectively), and has a may-son n’ = (s, 1) colored
by 7. Let concr: = v(s,) N{s. € Se : s, € ~v(s!), 5. — 5.} be the set of all
concrete states, represented by s,, that have a son represented by s/. Our goal
is to separate the sets concs and y(s,) \ cones.
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It is possible that one of the sets obtained during the failure analysis is empty
and provides no criterion for the split. Yet, new information can be gained from it
as well. For example, consider case 2, where the failure node n is an AX-node. if
concp = ¥(s,), then in fact every state that is represented by s, has a refuting son.
Thus, n can be colored by F' instead of its current indefinite color 7. If concp = 0,
then in fact none of the concrete states in y(s,) has a transition to a concrete state
that is represented by the F-colored may-sons of n. Thus, the (abstract) may-edges
from n to such sons, which caused n to be colored by 7, can be removed: none of
them represents concrete transitions. FEither way, the game-graph can be recolored
based on the new information, starting from the may-MSCC containing n. Similar
arguments apply to the rest of the cases as well.

The intuition behind the criterion for the split that is derived from cases 1-2 is
clear. Its purpose is to allow us to conclude definite results about (at least part) of
the new abstract states obtained by the split of the failure node. These new definite
results can be used within the framework of the incremental algorithm, suggested in
the next chapter. We now consider case 3. Intuitively, in this case we know that
by the time the failure node n got colored, its may-son n’ that is colored by 7 was
not yet colored (otherwise n would not be a failure node). By the description of the
coloring algorithm, we know that if n’ was a must-son of n, then as long as it was
uncolored, n would remain uncolored too and would eventually be colored in phase
2b by a definite color. Thus, our goal in this case is on the one hand to obtain a
must edge between (parts of) n and n’ and on the other hand remove the may-edge
altogether between other parts of n and n’.

Example 6.4 Consider the game-graph described in Figure 6.1(a). Its initial node
is colored by 7, thus refinement is needed. To understand which node is a failure
node and to identify cont(n) for a node n that is colored by 7 but is not a failure
node, we need to follow the coloring algorithm. All the nodes in ¢); — ()4 are terminal
nodes and are colored accordingly by definite colors. As for ()5, the nodes ng =
(t,pNAXA(pUq)), ns = (t,qV (pNAXA(pUq))), and ny = (t, A(pUq)) are colored in
phase 1 by definite colors. The rest are colored in phase 2a by 7 as follows. The nodes
ns = (s, AXA(pUq)), ny = (s,p N AXA(pUq)), n1 = (s,qV (p N AX A(pUq))) and
no = (s, A(pUq)) are colored in this order, which makes ns a failure node, whereas
ng, n1 and ng are not failure nodes and for them cont(ng) = nq, cont(ny) = ny and
cont(ny) = ns. The node ny = (¢, AX A(pUq)) can be colored at any time during this
phase. If it is colored before ng, then it is also a failure node, otherwise cont(ny) = no.
Given this information, the algorithm FailureSearch is applied starting from the
initial node, ng = (s, A(pUq)). It continues to ny, from there to ny and then reaches

the failure node ns = (s, AX A(pUq)).

Given the failure node ng, failure analysis is applied. n3 is an AX-node. It does
not have a may-son colored by F', thus as guaranteed by Lemma 6.3, it has a may-son
no = (s, A(pUq)) that is colored by 7 and it was colored in phase 2a based on an
AU-witness. That is, n3 corresponds to the third case. Thus, we compute the set
concy = y(s)N{s. € S¢ : Is. € y(s), 5. — s.} , which is the set of all concrete states
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Figure 6.1: (a) A 3-valued colored game-graph for M and ¢ = A(pUgq), where the

initial node is colored by 7 and the failure node found by FailureSearch appears in

boldface; (b) The colored refined game-graph, based on the refined model M; and .
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represented by s that have a transition to a concrete state represented by s. The
refinement is aimed at separating the sets concs and ~(s) \ concs. For example, if
the abstraction that is used is based on making some of the variables of the system
invisible, then these sets may be separated by turning some of the invisible variables
visible again.

Fig 6.1(b) presents a possible refined model M;, where each abstract state was
split into two abstract states (possibly due to the addition of one visible variable)
and the abstract transitions were computed according to the new abstract states. It
also presents the resulting refined game-graph, where the split in the abstract states
caused the nodes of the game-graph to be split as well. For example, ng was split to
(s1, A(pUq)) and (s2, A(pUq)). ns was split to (s1, AX A(pUq)) and (s2, AX A(pUq)),
etc. It can be seen that in the refined game-graph the initial nodes are now colored
by definite colors.

In this example the may-edge from the failure node n3 to ny that existed in
the game-graph described in Fig 6.1(a) and guided the refinement was indeed elim-
inated: 1t no longer exists as a may-edge in the refined game-graph described in
Figure 6.1(b) between none of the nodes that resulted from ns and ng. The nodes
(s1, AXA(pUq)) and (s1, A(pUq)) that resulted from them now have a must-edge be-
tween them, whereas the node (s3, AX A(pUq)), which also resulted from ns does not
have any edge to the nodes (s1, A(pUq)) and (sq, A(pUgq)) that resulted from nyg.

Note that in failure nodes of the type AX or KX we have ignored the information
about sons that are colored by T or F' respectively. This information may be used to
derive criteria for further separation. For example, consider the case of an AX-node.
Let coner = (s,)N{s. € S¢ : Is. € sonst,s. — s.} (where A = S¢\ A) be the set of
all the concrete states represented by s,, that all their (concrete) sons are represented
by sons of n that are colored by T'. These states all satisfy the AX formula. Thus,
separating them from the rest may be helpful as well.

Theorem 6.5 For finite concrete models, iterating the abstraction-refinement process
is guaranteed to terminate with a definite answer.

Proof: Applying the refinement on the abstract model results in an abstract model,
whose states are more accurate in the sense that they represent (possibly) less concrete
states. i.e., the refined model is “closer” to the concrete model than the original
abstract model in terms of states. Thus, the number of iterations in the abstraction-
refinement process is bounded by the number of concrete states and is guaranteed to
end when the state space is finite. O
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Chapter 7

Incremental
Abstraction-Refinement
Framework

We refine abstract models by splitting their states. The criterion for the refinement
is decided locally, based on one node, but it has a global effect, since the refine-
ment is applied to the whole abstract model. Yet, in practice, there is no reason to
split states for which the model checking results are definite. The game-based model
checking algorithm provides us with a convenient framework to use previous results
and avoid unnecessary refinement. This leads to an incremental model checking al-
gorithm based on iterative abstraction-refinement, where each iteration consists of
abstraction, model checking and refinement. This chapter is devoted to the descrip-
tion of our incremental abstraction-refinement framework.

At the end of the ith iteration of abstraction-refinement, we now remember the
(abstract) nodes that were colored by definite colors, as well as nodes for which a
definite color was discovered during the failure analysis. Let D; denote the set of
such nodes. Let yp, : D; — {T, F'} be the coloring function that maps each node
in D; to its (definite) color. xp, can be extracted from the result of the coloring
algorithm.

At the jth iteration, let D = Ui<j D; denote the set of nodes that were remembered
from previous runs, and let yp : D — {T, F'} denote their coloring function, yp =

Ui<j XD;-

During the construction of a new refined game-graph in the jth iteration, we
prune the game-graph in nodes that are sub-nodes of nodes from D (nodes with
definite colors from previous iterations). A node (s,,¢) is a sub-node of (s, ') if
(1) they both have the same subformula, i.e. ¢ = ¢', and (2) the set of concrete
states represented by s, is a subset of those represented by s’. When a node n that
is a sub-node of a node ny; € D is encountered, we add n; € D to the game-graph
rather than n and do not continue to construct the game-graph from n, nor ny. As a
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Figure 7.1: The pruned game-graph for M5 and ¢ from Figure 6.1, where nodes
from the initial game-graph, presented in Figure 6.1(a), appear in boldface.

result of this pruning, only the reachable subgraph that was previously colored by 7
is refined.

The coloring algorithm then considers the nodes in DD, where the game-graph was
pruned, as terminal nodes and colors them by their previous colors, i.e. anode ng € D
is colored by xp(ng). The rest of the algorithm remains unchanged. This is similar
to the partial coloring algorithm, presented in Definition 3.6.

Note that for many abstractions, checking if a node is a sub-node of another is
simple. For example, in the framework of predicate abstraction [23, 45, 40, 20], this
means that the abstract states “agree” on all the predicates that exist before the
refinement. When the abstraction is based on invisible variables [12], this means that
the abstract states “agree” on all the variables that are visible before the refinement.

Example 7.1 Figure 7.1 demonstrates the use of previous results within the incre-
mental algorithm, where after refining the model M described in Figure 6.1(a), instead
of building the entire game-graph based on the refined model M5, as described in Fig-
ure 6.1(b), the game-graph is pruned in (¢;, A(pUq)) and (t2, A(pUq)) that are both
sub-nodes of ny which already had a definite color (T'). The same goes for (s1,¢) and
(s2,q) that are sub-nodes of ng, and for (sy,p) and (s2,p) that are sub-nodes of ng.
The pruned game-graph, presented in Figure 7.1, is clearly smaller and simpler than
the full refined game-graph. Its coloring handles the nodes in ()1 — ()3, where the
game-graph was pruned, as terminal nodes and colors them by their previous colors.
The nodes in )4 are all colored by F'in phase 2b, based on the AU-witness, whereas
the nodes in ()5 — (Jg are colored in phase 1.
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Chapter 8

Conclusion

In this work, we have exploited the game-theoretic approach of CTL model check-
ing to produce annotated counterexamples for full CTL. We have generalized this
approach to 3-valued abstract models and suggested an incremental abstraction-
refinement framework based on our generalization.

Traditional game-based model checking algorithms determine a winning strategy
for the winning player. The winning strategy holds all the relevant information as for
the result of the model checking, but it has redundancies. The annotated counterex-
ample introduced in this thesis may be seen as a minimal part of it that is sufficient
to explain the result.

Our 3-valued game-based model checking and in particular the failure nodes pro-
vide information for refinement, in case the outcome is indefinite. Additional in-
formation can be extracted from them and be used for further optimizations of the
refinement.

The incremental abstraction-refinement algorithm described in this thesis can be
viewed as a generalization of Lazy abstraction [26], which allows different parts of the
abstract model to exhibit different degrees of abstraction. Lazy abstraction refers to
safety properties, whereas our approach is applicable to full CTL.

This work is based on the game-theoretic approach to model checking. This
approach is closely related to the Automata-theoretic approach [29], as described
in [36]. Thus, our work can also be described in this framework, using alternating
automata. In addition, it can easily be extended to alternation-free p-calculus.
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Appendix A

Discussion: 2-Valued Game-Based
Model Checking

In our discussion on abstract models, we have used the 3-valued semantics for the
interpretation of a CTL formula over a KMTS. The definition of [(M,s) E ¢] can
be extended to a KMTS using a 2-valued semantics as well [16], where the possible
truth values are tt and ff. The definition is similar to the concrete semantics with
the following changes. Universal properties, of the form, A, are interpreted along
may paths. Existential properties, of the form E1), are interpreted along must paths.

This gives us the 2-valued semantics of CTL formulae over KMTSs, denoted [(M, s) =
¢] = tt / = 1. The 2-valued semantics is designed to preserve the truth of a formula
from the abstract model to the concrete one. However, false alarms are possible,
where the abstract model falsifies the property, but the concrete one does not.

Theorem A.1 [16] Let H C S¢ x S be a mized simulation relation from a Kripke
structure Mc to a KMTS Ma. Then for every (s.,s,) € H and every CTL formula

@, we have that [(My, s,) £ o] = tt implies that [(Mc, s.) o] = tt.

We conclude that if Mc =< My, then [My & @] = tt implies that [Mc = ] = 1.

The game-based model checking algorithm can be extended to deal with KMTSs
based on the 2-valued semantics in a more natural way than was needed to deal with
the 3-valued semantics.

The 2-valued semantics is aimed at proving ¢: it preserves only truth from the ab-
stract model to the concrete one. Therefore, the purpose of the game is also to prove
¢’s satisfaction. As such, the moves of Jloise in configurations with £ X¢’ formulae
need to use =% transitions, since by the semantics definition, existential formulae are
interpreted over must-paths. Similarly, the moves of Vbelard in configurations with
AX ' formulae need to use — transitions, since universal formulae are interpreted
over may-paths. The rest of the moves, as well as the winning criteria remain the
same, with the following exception. The transition relation =% is not necessarily
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total. Thus, a configuration of the form (s, EX ') may also be a terminal configura-
tion, if s has no outgoing ™3 transitions. A play that ends in such a configuration
is won by Vbelard.

Clearly, the relation between the existence of winning strategies and the satisfac-
tion of the formula, as described in Theorem 2.5 for the concrete game, holds for the
new game and the 2-valued semantics. This results from the fact that the change in
the allowed moves of the players corresponds exactly to the change in the 2-valued
interpretation of a formula over a KMTS.

The model checking algorithm, induced by the game consists of two parts: con-
struction of a game-graph based on the rules of the game, and its coloring. Once the
moves for the new game are defined, the game-graph is defined as well. Recall that
in the 3-valued case, the resulting game-graph had a different structure and thus the
coloring algorithm needed to be changed as well. However, in the 2-valued case, the
resulting game-graph has the same structure as a concrete game-graph (with the ex-
ception of a new type of terminal nodes): Although the abstract model has two types
of transitions for each state, when the game-graph is constructed, the edges become
uniform. We no longer distinguish between them, since there is only one type in each
node. As a result, in terms of the game-graph there is only one type of edges. Thus,
the same coloring algorithm can be applied on the (abstract) game-graph in order
to check which player has a winning strategy, with the small change that terminal
nodes of the form (s, KX ¢') need to be colored by F. The correctness of the coloring
algorithm, as described in Theorem 2.7 for the concrete case, is maintained since the
new game has the same properties as a concrete game: the same possible moves from
each configuration (with the type of transitions adapted to match the semantics) and
the same winning rules. Thus we are guaranteed that the game-graph is colored by
the color of the player that has a winning strategy.

Altogether, we get that the resulting coloring function corresponds to the truth
value of the formula over the abstract model, under the 2-valued interpretation of a
formula over a KMTS. This is formalized by the following theorem.

Theorem A.2 Let M be a KMTS and ¢ a CTL formula. Then, for each n =
(57991) € Gurxy:

2
E

1 [(M,s) E i) =ttt iff n=(s,¢1) is colored by T

2
E

2. [(M,s) E el = iff n=(s,¢1) is colored by F.

Intuitively speaking, a node marked by (s, AX¢') is now colored by T' iff all its
sons in the game-graph are colored by T' (satisfy ¢), where its sons represent all the
states to which s has may transitions. In a similar way, a node marked by (s, FX¢') is
colored by T iff one of its sons is colored by T' (satisfies ¢'), where this son represents
a state to which s has a must transition. Therefore, the coloring corresponds to the
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2-valued semantics.

Complexity: Clearly, the running time of the coloring algorithm remains linear with
respect to the size of the game-graph Gsy,. The latter is bounded by the size of the
underlying KMTS times the length of the CTL formula, i.e. O(|M] - |¢]).

A.1 Application to 3-Valued Model Checking

We have the following correspondence between the 2-valued semantics and the 3-
valued semantics.

Theorem A.3 Let M be a KMTS. Then for every CTL formula ¢ and for every
s € 5, we have that:

1oif [(M,s) B ol =tt then [(M,s) | ¢] = it.
20 [(M,s)[E gl =t then [(M,s) = o] = ff.
3. otherwise [(M, s) |i o] =1.

where = denotes the CTL formula equivalent to -, with negations pushed to the
literals.

Based on Theorem A.3, given an abstract KMTS M4 such that Mo < My, one
may suggest using two instances of the previously described 2-valued model checking
algorithm in order to evaluate the 3-valued truth value of ¢ over M4, as follows.

First, evaluate ¢ over M4 using the 2-valued semantics. The constructed game-
graph is referred to as the satisfaction graph, since it was built for the purpose of
proving the satisfaction of ¢. If the result is tt for all the initial states, then we have

that [M4 E ¢] = tt and we can conclude that [M¢ = ¢] = tt.

Otherwise, evaluate =@ (with negations pushed to the literals) over M4 using
the 2-valued semantics. The constructed game-graph is referred to as the refutation
graph, since it was built for the purpose of proving satisfaction of the negation of ¢
(which is equivalent to proving refutation of ). If the result is tt for at least one

initial state, we have that [My E ¢] = (T and we can conclude that [M¢ |= ¢] = fI. In
addition, a concrete annotated counterexample may be produced from the refutation
graph.

This can be better understood using the following observation. Note, that instead

of evaluating —p using the previous 2-valued game-based model checking algorithm,
it 1s possible to define a game with different rules that is designed to refute the
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(a) (b)

Figure A.1: A satisfaction graph (a) versus a refutation graph (b) for AX¢

formula ¢. In such a game the players use the opposite type of transitions in each
configuration (node): Vbelard uses must transitions in AX-nodes and Jloise uses may-
transitions in £ X-nodes. As a result, F'is preserved from the corresponding abstract
game-graph to the concrete one, but 7" is not. Note, that the game-graph obtained
by these rules is isomorphic to the refutation graph and the result of its coloring is
equivalent to the result of the previous algorithm applied on —¢. Obviously, if an
initial node in such a game-graph is colored by F', then we can easily find an abstract
annotated counterexample by the algorithm ComputeCounter described in Chapter 3.
The abstract annotated counterexample is guaranteed not to be spurious and can be
matched with a concrete one by a greedy algorithm, as described in Chapter 5.

If none of the above holds, we have that [M4 E ¢] =L. Thus, M4 needs to
be refined. One would suggest to try and use both the satisfaction graph and the
refutation graph and their coloring functions to find a criterion for refinement. In a
sense they complement each other, because they are based on opposite types of tran-
sitions. However, these two game-graphs have different nodes (because reachability is
also based on opposite transitions), so most chances are that we can not find enough
needed information in their intersection. This is demonstrated in Figure A.1, where
in the satisfaction graph (a) the initial node (s, AX¢) is colored by F' since its son
(82,¢) is colored by F'. However, in the refutation graph (b) (s, AX¢) is colored by T'.
Thus, the result of the model checking in indefinite. Unfortunately, the refuting son
from the satisfaction graph, (s2, ), does not appear in the refutation graph, since it
is not a must-son of (s, AX¢). Thus, combining the information of both these graphs
does not supply enough information for the refinement.

In summary, this approach provides the same information as the 3-valued algo-
rithm about nodes that appear in both the satisfaction and the refutation graphs.
Since the initial nodes appear in both of them, this approach is sufficient in order
to answer the question “[M |§ ¢] 77, as accurately as the direct 3-valued approach.
However, for the refinement analysis we are interested in the inner nodes as well, that
are not necessarily mutual to both the graphs. Thus, using two such game-graphs
does not provide us with full information (in terms of edges) about all of them. Hence,
the 3-valued game-based algorithm is advantageous in terms of the refinement.
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Note, that this approach is similar in spirit to the result of translating the KMTS
to an equivalent partial Kripke structure (PKS) as described in [22] and then model
checking the PKS under the 3-valued semantics by running a standard 2-valued model
checker twice, as described in [7].
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Appendix B

Memoryless Winning Strategies

Theorem 4.2 describes the correspondence between the existence of winning strategies
for the model checking game and the model checking results. Thus, it refers to
the existence (or non-existence) of winning strategies for the players. Recall that
a strategy for a player is a set of rules telling him (or her) how to proceed from a
given configuration. In general, the rules in the strategy can depend on the entire
sequence of configurations in the current play that led to the given configuration.
Yet, one may also be interested in referring to memoryless (or history-free) winning
strategies, where every rule can depend only on the current configuration of the play
and cannot depend on the course of the play up until this configuration (i.e., it should
be independent of the prefix of the play). More formally:

Definition B.1 A strategy o for a player P is a function assigning to every finite
sequence of configurations c ending in a configuration C', which is in the responsibility
of the player P, a configuration C', such that the move from C' to C' is a legal move
for P. A strategy is memoryless iff 0(6) = 0(6’) whenever C and C' end in the

same configuration.

The winning strategies described in the proof of Theorem 4.2 are not memoryless.
The reason for this is that the paths that are used to construct the winning strategies
may contain repetitions of states. The result is that it is possible that the strategy
contains different rules for the same configuration (s’,¢’) based on the position of the
state s’ in the path, or in other words, based on the position of the configuration in
the play. This problem is avoided when using simple paths.

Definition B.2 o An infinite path 7 is said to be simple if w is of the form x-y*,
where ¥ = Sg,...,8 and Y = Sgp1,... ,5, such that for every 0 < 1,5 < n:

Z7£] — SZ'7£S]‘.

o A finite path m is said to be simple if ™ is of the form sq,...,s, such that for
every 0 <1, <n:1#j = s; # s;.
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The following lemma implies that every non-simple path that is used in the proof of
Theorem 4.2 for the construction of a strategy for any of the players can be replaced
by a simple one.

Lemma B.3 Let o be a (path) formula of the form o1Ups or ©1V s, where ¢1 and

vy are CTL formulae. If there exists a (must or may) path m such that |7 |i ]l =v
forv e {tt, [f, L}, then there exists a simple path 7' of the same type (must or may)

such that [x' 2 ¢] = v as well.

Based on Lemma B.3, we conclude that the winning strategies in the proof of
Theorem 4.2 can be made memoryless. As a result we get that Theorem 4.2 can be
rephrased in terms of memoryless winning strategies.
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