
Abstraction-Refinement and Modularity

in µ-Calculus Model Checking

Sharon Shoham

Abstraction-Refinement and Modularity

in µ-Calculus Model Checking

Research Thesis

Submitted in Partial Fulfillment of the Requirements

for the Degree of Doctor of Philosophy

Sharon Shoham

Submitted to the Senate of the

Technion - Israel Institute of Technology

Shvat 5769 Haifa February 2009

This research thesis was done under the supervision of Prof. Orna Grumberg in the
Department of Computer Science.

I would like to thank Orna, my advisor, who has assisted me and guided me throughout
the long years of my work. For many long academic, as well as social, conversations,
and most of all for your great support and encouragement. I highly appreciate the good
fortune of having the chance to work with you.

I would like to thank the IBM T.J. Watson research lab at Hawthorne for the opportu-
nity of doing a summer internship there and for the generous support during my visit.
Special thanks goes to the researchers from this lab for their collaborations on interesting
research topics.

I would like to thank my many friends at the Technion, and outside, which have been a
constant source of support and help. For many interesting coffee breaks at the 3rd floor
that enriched my world.

I would like to thank my parents, Carmela and Doron, who were always there for me,
assisting me. To my beloved sisters, Keren and Chen, who were my link to the Technion
whenever I was away, running annoying errands with no complaint.

Finally, I would like to thank my husband, Niv, for convincing me to continue to graduate
studies. For his support and love all of these years, through the pressure, the travels,
and the deadlines. I couldn’t have made it without you!

The generous financial help of the Technion is gratefully acknowledged.

Contents

Abstract 1

Notation and Abbreviations 3

1 Introduction 5
1.1 Abstraction-Refinement . 5
1.2 Compositional Verification . 7
1.3 Overview of the Thesis . 7

2 Preliminaries 11
2.1 The µ-calculus . 11
2.2 Concrete Models and Concrete Semantics 12
2.3 Abstraction and 3-Valued Semantics . 13

3 3-Valued Model Checking Games 19
3.1 Introduction . 19

3.1.1 Related work . 20
3.2 Model Checking Games for 3-Valued µ-Calculus 20
3.3 3-Valued Parity Games . 27

3.3.1 3-Valued Parity Games . 27
3.3.2 Model Checking Games as Parity Games 28

3.4 Concluding Remarks . 30

4 Game-Based Abstraction-Refinement: Direct Approach 31
4.1 Introduction . 31

4.1.1 Related Work . 32
4.2 Model Checking via Solving 3-Valued Parity Games 33

4.2.1 Solving 3-Valued Parity Games . 34
4.3 Refinement of 3-Valued Parity Games . 45

4.3.1 Identifying a Failure Cause . 45
4.3.2 Failure Analysis . 51

4.4 Incremental Abstraction-Refinement Framework 52
4.5 Concluding Remarks . 53

i

5 Game-Based Abstraction-Refinement: Reduction Approach 55
5.1 Introduction . 55

5.1.1 Related Work . 56
5.2 Solving 3-Valued Parity Games via Reduction 57
5.3 Refinement . 58

5.3.1 Using Non-Losing Strategies to Solve the Game 59
5.3.2 Refinement with Non-Losing Strategies 60

5.4 Concluding Remarks . 63

6 Monotonic Abstraction-Refinement 65
6.1 Introduction . 65

6.1.1 Related Work . 66
6.2 Generalized Abstract Models . 67

6.2.1 Motivation . 67
6.2.2 Generalized KMTSs . 69

6.3 Monotonic Abstraction-Refinement Framework 73
6.4 Concluding Remarks . 78

7 More Precision at Less Cost 79
7.1 Introduction . 79

7.1.1 Related Work . 82
7.2 Abstraction Framework . 84
7.3 Increasing Precision . 86

7.3.1 Precision of Abstract Models . 87
7.3.2 May Transitions as a Source of Imprecision 91
7.3.3 Hyper Kripke Modal Transition Systems 91

7.4 Decreasing the Model Checking Cost . 95
7.4.1 Optimized Abstract Model Checking 98

7.5 Abstraction-Refinement . 103
7.6 Handling Multiple Initial States . 104
7.7 Concluding Remarks . 106

8 Compositional Verification and 3-Valued Abstractions Join Forces 107
8.1 Introduction . 107

8.1.1 Related Work . 109
8.2 Preliminaries . 111

8.2.1 Game Graph . 111
8.2.2 Coloring Algorithm . 111

8.3 Partial Coloring and Subgraphs . 113
8.4 Compositional Model Checking . 115
8.5 Adding Abstraction . 120

8.5.1 Motivation . 121
8.5.2 Compositional Abstraction-Refinement 123

8.6 Extension: Labeled Transition Systems . 131
8.7 Concluding Remarks . 133

ii

9 Conclusion 135

Bibliography 137

iii

iv

List of Figures

2.1 (a) A concrete Kripke structure, and (b) an abstract KMTS for it. 17

3.1 The model checking game rules for 3-valued µ-calculus. 21
3.2 All possible moves in the game over the KMTS from Figure 2.1(b). 23
3.3 The parity game corresponding to the game from Figure 3.2. 29

4.1 Illustration of the sets used by ComputeOpponentWin, and of those used by
ComputeNoWin, in which the must-attractor is replaced by a may-attractor
and vice versa. 36

4.2 Computation of winning vertices for the opponent: ComputeOpponentWin. 36
4.3 Computation of vertices in which no win is possible: ComputeNoWin. . . . 39
4.4 Algorithm SolveGame. 41
4.5 Subgame G[Y] used by SolveGame (G) in Example 4.14. 44
4.6 Illustration of the failure analysis for the 3-valued parity game G depicted

in Figure 3.3. 51

5.1 The reduced games of the parity game from Figure 3.3. 58
5.2 Winning strategies of the reduced games of the parity game from Figure 3.3. 61

6.1 (a) An abstract model M describing the program P , and (b) the abstract
model M ′ resulting from its refinement. Outgoing transitions of s21 are
omitted since they are irrelevant. 68

6.2 The model M ′′ achieved by applying refinement as suggested in [37] on M
from Figure 6.1(a). Outgoing transitions of s21 are omitted since they are
irrelevant, and so are additional outgoing may transitions of the unrefined
states (there are no additional outgoing must transitions for the unrefined
states). 69

6.3 New model checking game rules for GTSs. 77

7.1 Illustration of Example 7.1. 80
7.2 Rules for the construction of the model checking graph. 96
7.3 A colored model checking graph. Gray vertices are colored ?, while white

vertices are colored T . 103

8.1 Compositional model checking algorithm. 120

v

8.2 (a) Components, (b) their game graphs and their ?-subgraphs (enclosed
by a line), and (c) the product graph. Dashed edges denote may edges
which are not must edges. The colors reflect the coloring function: white
stands for T , dark gray stands for F and light gray stands for ?. 121

8.3 Compositional abstraction-refinement algorithm. 127
8.4 Most coarse abstraction of M2 from Figure 8.2(a) w.r.t. {r}. 128
8.5 Game graphs arising during the run of the compositional abstraction-

refinement algorithm described in Example 8.28. 129
8.6 (a) Pruned ?-subgraph, and (b) its re-coloring after refinement which

changes the color of t̂0 ` ¬i to T . 131

vi

Abstract

Model checking is an automated technique for checking whether or not a given system
model fulfills a desired property, described as a temporal logic formula. Yet, as real
models tend to be very big, model checking encounters the state-explosion problem,
which refers to its high space requirements. Two of the most successful approaches to
fighting the state-explosion problem in model checking are abstraction and compositional
model checking.

Abstractions hide certain details of the system in order to result in a smaller model.
In some cases the abstraction is too coarse, resulting in an inconclusive model checking
result. Thus, the abstract model is refined by adding more details into it, making it more
similar to the concrete model. Iterating this process is called abstraction-refinement. In
compositional model checking, on the other hand, one tries to verify parts of the system
separately in order to avoid the construction of the entire system.

In this research, we investigate abstraction-refinement and compositional techniques
for specifications in the µ-calculus, which is a powerful formalism for expressing prop-
erties of transition systems using fixpoint operators. Our work exploits and extends
the game-based approach to µ-calculus model checking, in which the model checking
problem is formulated as a game between a verifier and a falsifier. We develop novel
abstraction-refinement schemes for the µ-calculus, based on a 3-valued semantics. The
3-valued semantics allows an abstract model to be used for verification as well as falsifi-
cation, unlike traditional abstraction which is only used for verification. We investigate
both the efficiency and the precision of abstract models used within the abstraction-
refinement framework. We then extend our work on abstraction-refinement to the arena
of compositional verification, thus joining the forces of both approaches. We use tech-
niques taken from the game-based 3-valued model checking for abstract models to obtain
a novel fully automatic compositional technique that can determine the truth value of
the full µ-calculus w.r.t. a given system.

1

2

Notation and Abbreviations

KMTS — Kripke Modal Transition System
GTS — Generalized Kripke Modal Transition System
HTS — Hyper Kripke Modal Transition System
AP — Set of atomic propositions
Lit — Set of literals (atomic propositions and their negations)
Lµ — The µ-calculus

L0
µ — The alternation-free fragment of the µ-calculus

ϕ — µ-calculus formula
Sub(ϕ) — Subformulas of ϕ
fp(Z) — Fixpoint formula associated with variable Z
M — Model of a system (Kripke structure, KMTS, GTS or HTS)
tt — Truth value ‘true’
ff — Truth value ‘false’
⊥ — Truth value ‘indefinite’
ρ — Environment, explaining the meaning of free variables in a formula

[[ϕ]]M,ρ — Concrete semantics of ϕ w.r.t. a Kripke structure M and an environment ρ

[[ϕ]]M,ρ
3 — 3-Valued semantics of ϕ w.r.t. a KMTS, GTS or HTS M and an environment ρ

M |= ϕ — The model M satisfies ϕ
M 6|= ϕ — The model M falsifies ϕ

M |=
?

= ϕ — The value of ϕ in M is indefinite
� — Mixed, Generalized mixed, or Hyper mixed simulation relation
SC — Set of concrete states
SA — Set of abstract states
γ — Concretization function
MC — Concrete model (Kripke structure)
MA — Abstract model (KMTS, GTS or HTS)
ΓM (s, ϕ) — 3-valued model checking game on a model M , a state s and a formula ϕ

3

4

Chapter 1

Introduction

This research deals with abstraction-refinement and modularity in model checking, a key
procedure in the area of formal verification. Model checking [19] is a useful approach
for verifying properties of systems. It is given a model M of a system and a temporal
logic formula ϕ, describing a specification, and returns ’true’ if the system satisfies the
specification and ’false’, otherwise.

The logic specifications we consider in this research are formulas of the modal µ-
calculus [50]. The µ-calculus is a powerful formalism for expressing properties of tran-
sition systems using fixpoint operators. Many verification procedures can be solved by
translating them into µ-calculus model checking [13]. Such problems include (fair) CTL
model checking, LTL model checking, bisimulation equivalence and language contain-
ment of deterministic ω-regular automata.

The main disadvantage of model checking in general, and in the context of µ-calculus
properties in particular, is the state explosion problem, which refers to its high space re-
quirements. Several solutions have been suggested in the literature to fight the state
explosion problem. Two of the most promising approaches are abstraction and compo-
sitional verification, which are also the subject of this research.

1.1 Abstraction-Refinement

Abstractions hide certain details of the system in order to result in a smaller (abstract)
model. Most commonly used are state abstractions that collapse (possibly non disjoint)
sets of concrete states into abstract states. An abstract model is then constructed in
a way that ensures preservation of the logic of interest from the abstract model to the
concrete model.

Two types of semantics are available for interpreting temporal logic formulas over
abstract models. The 2-valued semantics defines a formula ϕ to be either true or false
in an abstract model. When using a 2-valued semantics, abstract models are usually
designed to be conservative for true, meaning that if a formula is true of the abstract
model then it is also true of the concrete (precise) model of the system. However, if it
is false in the abstract model then nothing can be deduced of the concrete one.

In order to obtain more precise results, temporal logics can be interpreted over ab-
stract models w.r.t. the 3-valued semantics [11, 45, 39]. The 3-valued semantics evaluates

5

a formula to either true, false, or indefinite. Abstract models can then be designed to be
conservative for both true and false, meaning that both truth and falsity of a formula are
preserved from the abstract model to the concrete model. Only if the value of a formula
in the abstract model is indefinite, its value in the concrete model is unknown. Abstrac-
tions over 3-valued semantics thus give precise results more often both for verification
and falsification.

In either setting, the abstraction is sometimes too coarse, resulting in an inconclusive
model checking result. In this case, the abstract model is refined by adding more details
into it, making it more similar to the concrete model. Refinement is traditionally done
by splitting abstract states based on some criterion. Iterating this process of abstraction,
model checking, and refinement is called abstraction-refinement.

The traditional abstraction-refinement framework [52, 18] is designed for universal
temporal logics, such as the linear time logic LTL, and the universal fragments of the
branching time logics CTL, CTL* and the µ-calculus [19]. It considers 2-valued abstrac-
tions, where false may be a false-alarm, thus refinement is aimed at eliminating false
results. As such, it is usually based on a counterexample analysis. In case that the ab-
stract model does not satisfy the property, it is known how to verify whether the found
error occurs also in the concrete (full) model. If not, then the spurious error is used
in order to refine the abstract model. This approach is less suitable for branching time
temporal logics with both universal and existential operators, such as the full µ-calculus,
where the notion of counterexample is less clear.

Moreover, the traditional abstraction framework considers either over-approximated
abstract models (for verification of universal properties) or under-approximated abstract
models (for their falsification). Abstractions for the full µ-calculus, on the other hand, re-
quire more complex abstract models: Two transition relations are needed in an abstract
model for it to be conservative w.r.t. the full µ-calculus, be it over a 2-valued or a 3-
valued semantics. Examples of such abstract models are Mixed Transition Systems [26]
or Kripke Modal Transition Systems (KMTSs) [45, 38], which extend Modal Transi-
tion Systems [56, 54]1. These models contain may transitions which over-approximate
transitions of the concrete model, and must transitions, which under-approximate the
concrete transitions. To ensure logic preservation, truth of universal formulas is then
examined over may transitions, whereas truth of existential formulas is examined over
must transitions. Dually for falsity when a 3-valued semantics is considered.

While the traditional abstraction-refinement has been investigated intensively, not
much research has been devoted to abstraction-refinement algorithms for branching time
temporal logics that combine both existential and universal quantifiers. Several works
[65, 66, 60, 6] suggested abstraction-refinement mechanisms for the µ-calculus and CTL
over 2-valued semantics, for specific abstractions. The refinement in these works is
abstraction-specific. It is not suitable for every abstraction. As for the 3-valued seman-
tics, several researchers studied model checking for abstract models w.r.t. specifications
in µ-calculus, interpreted over a 3-valued semantics (e.g. [37, 39]). Yet, these works lack
an automatic refinement mechanism, which prevents them from comprising an automatic
abstraction-refinement framework. No general, automatic abstraction-refinement frame-
work based on a 3-valued semantics for the µ-calculus was suggested in the literature.

1In this research we use KMTSs as a starting point for our investigation of abstract models.

6

1.2 Compositional Verification

Another promising solution to the state explosion problem is compositional model check-
ing, where parts of the system are verified separately in order to avoid the construction
of the entire system and reduce the model checking cost. Usually, it is impossible to
verify a component of the system in complete isolation from the rest of the system. This
is because the behavior of one component depends on the interaction (e.g., input-output)
it has with its environment.

To account for the dependencies between the components, the Assume-Guarantee
(AG) paradigm [46, 68] suggests how to verify one component based on an assumption
about the behavior of its environment, where the environment consists of the other
system components. The environment is then verified, in order to guarantee that it
actually satisfies the assumption.

Many of the works on compositional model checking are based on the AG paradigm.
Various AG proof rules have been suggested in the literature. A common obstacle in
the application of all of them is the need to construct assumptions which are on the
one hand simple enough to enable efficient verification, and on the other hand detailed
enough to capture the properties of the environment that ensure correct behavior of
the component. In practice, the development of the assumptions for each component
becomes a bottleneck in modular verification. This is because it requires deep knowledge
of the design and in many cases the first version is either incorrect or too abstract.

Most of the works on AG reasoning do not tackle the problem of automatically con-
structing assumptions and checking their correctness. The latter is particularly prob-
lematic since the environment, being the rest of the system, is typically very large. To
overcome this difficulty, recent works suggested automatic assumption generation based
on learning [23, 5, 15, 34]. They use iterative AG reasoning, where in each iteration the
assumptions are modified based on the learning algorithm. These works are all designed
for universal properties, mostly (except for [34]) safety properties. Their extension to
full branching time logics such as the µ-calculus is unclear.

1.3 Overview of the Thesis

This thesis develops novel abstraction-refinement schemes, as well as compositional
model checking techniques, for the verification of µ-calculus specifications. In what
follows we give an overview of our results.

Game-Based 3-Valued Abstraction-Refinement This work presents a novel game-
based approach to abstraction-refinement for the full µ-calculus, interpreted over 3-
valued semantics.

We define a new game for the 3-valued model checking problem of the µ-calculus.
Similarly to the traditional game-based approach to model checking [75], the game is
defined s.t. the player that has a winning strategy in the game determines the model
checking result. To account for the indefinite truth value, it is possible that none of the
players has a winning strategy. Model checking then reduces to the problem of solving

7

the model checking game, namely determining the player that has a winning strategy.
The game is described in Chapter 3.

We derive from the game two abstraction-refinement schemes. Each scheme consists
of a game-based model checking algorithm for abstract models w.r.t. specifications
in µ-calculus interpreted over a 3-valued semantics, as well as an automatic refinement
mechanism. The 3-valued semantics allows the model checking to be used for verification
as well as falsification. Refinement in this case is aimed at eliminating indefinite results
of the model checking, rather than false results. Namely, if the model checking result is
indefinite, the abstract model is refined, based on an analysis of the cause for this result.

The first abstraction-refinement scheme, described in Chapter 4, develops a direct
algorithm for solving the 3-valued model checking game. In case of an indefinite result,
a cause for the indefinite result is identified by following the run of the algorithm that
solves the game. This result also appears in [40].

In the second scheme, described in Chapter 5, a novel notion of a non-losing strategy
is introduced and exploited for refinement. Here, the problem of solving the game is
reduced to solving two 2-valued model checking (parity) games. In case the result is
indefinite, the information needed for refinement is derived from the corresponding non-
losing strategies. This approach is beneficial since it can use any solver for 2-valued
parity games. Thus, it can take advantage of newly developed such algorithms with
improved complexity. This result also appears in [41].

Our abstraction-refinement schemes are incremental in the sense that refinement is
applied only where indefinite results exist and definite results from prior iterations are
used within the model checking algorithm. For finite concrete models our abstraction-
refinement schemes are fully automatic and guaranteed to terminate with a definite
result true or false.

Monotonic Abstraction-Refinement In this work we develop a monotonic 3-valued
abstraction-refinement framework for the µ-calculus, thus improving the effectiveness of
the abstraction-refinement framework.

Monotonicity is an important aspect of abstraction-refinement. A refinement is called
monotonic if the refined model is more precise in the sense that it satisfies more properties
of the concrete model. In most 2-valued frameworks designed for universal logics such as
ACTL and LTL, the refinement is monotonic. However, it turns out that when abstract
models that combine both must and may transitions, such as KMTSs, are refined by
splitting their states the refinement is not monotonic since formulas that had a definite
value in the unrefined model may become indefinite. The problem lies in the must
transitions which under-approximate the concrete transitions. We suggest to overcome
the non-monotonicity problem by using must hyper-transitions to under-approximate
the transitions of the system. A hyper-transition points to a set of states rather than
a single state. Using such an abstract model, which we call Generalized Kripke Modal
Transition System (GTS), ensures that the refinement is monotonic. Namely, it results
in a more precise abstract model in which more formulas have a definite value. Yet,
the number of hyper-transitions might be exponential in the number of states. To
overcome this, we suggest an abstraction-refinement scheme where hyper-transitions
are added gradually in each iteration. Model checking and refinement for GTSs are

8

performed by a generalization of the game-based algorithms suggested for KMTSs. Thus,
we obtain a monotonic game-based abstraction-refinement framework that is suitable for
both verification and falsification of full µ-calculus. More details appear in Chapter 6.

These results also appear in [70], except that there the results are formulated for
the logic CTL and the abstraction-refinement is based on a symbolic model checking
algorithm instead of a game-based algorithm.

More Precision at Less Cost This work investigates both the precision and the
model checking efficiency of abstract models designed to preserve the µ-calculus w.r.t.
a 3-valued semantics.

We refer to precision measured w.r.t. the choice of abstract states, independently of
the formalism used to describe abstract models. We show that the previous approach
that uses GTSs as abstract models does not ensure maximal precision. We suggest a
new class of 3-valued models for the µ-calculus, called Hyper Kripke Modal Transition
Systems (HTSs), and a construction of an abstract HTS which is most precise w.r.t.
any choice of abstract states. That is, given a set of abstract states and an abstraction
mapping that relates each abstract state to the set of concrete states it represents, the
constructed model is at least as precise as any other 3-valued model. HTSs use both
must and may hyper-transitions. As in the case of GTSs, the construction of such models
might involve an exponential blowup, which is inherent by the use of hyper-transitions.
We therefore suggest an efficient algorithm for the alternation-free fragment of the µ-
calculus in which the abstract HTS is constructed during model checking, by need.
Our algorithm achieves maximal precision w.r.t. the given property while remaining
quadratic in the number of abstract states. To complete the picture, we incorporate
it into an abstraction-refinement framework. More details appear in Chapter 7. These
results also appear in [72].

Compositional Verification and 3-Valued Abstractions Join Forces In this
work, we join the forces of abstraction and compositional verification to obtain a novel
fully automatic compositional technique that can determine the truth value of the full
µ-calculus w.r.t. a given system.

Our approach is based on techniques taken from the game-based 3-valued model
checking for abstract models. Namely, given a system M = M1||M2, we view each com-
ponent Mi as an abstraction Mi↑ of the global system. The abstract component Mi↑ is
defined using a 3-valued semantics so that whenever a µ-calculus formula ϕ has a definite
value (true or false) on Mi↑, the same value holds also for M . Thus, ϕ can be checked on
either M1↑ or M2↑ (or both), and if any of them returns a definite result, then this result
holds also for M . If both checks result in an indefinite value, the composition of the
components needs to be considered. However, instead of constructing the composition
of M1↑ and M2↑, we suggest how to automatically identify and compose only the parts
of the components in which their composition is necessary in order to conclude the truth
value of the formula at hand. The parts which can be handled separately are ignored.
The resulting model is often significantly smaller than the full system. Furthermore, we
explain how our compositional approach can be combined with abstraction, in order to
further reduce the size of the checked components. The result is an incremental composi-

9

tional abstraction-refinement framework, which resembles automatic Assume-Guarantee
reasoning. More details appear in Chapter 8. These results also appear in [73].

10

Chapter 2

Preliminaries

2.1 The µ-calculus

Syntax We present our logic in negation normal form. Let AP be a finite set of atomic
propositions and V a set of propositional variables. The set of literals over AP is defined
to be Lit = AP ∪ {¬p : p ∈ AP}. We identify ¬¬p with p. The logic µ-calculus [50] in
negation normal form1 over AP is defined by the following grammar:

ϕ ::= l | �ϕ | ♦ϕ | ϕ ∧ ϕ | ϕ ∨ ϕ | Z | µZ.ϕ | νZ.ϕ

where l ∈ Lit and Z ∈ V. Let Lµ denote the set of closed formulas generated by the
above grammar, where the fixpoint quantifiers µ and ν are variable binders. We will
also write η for either µ or ν. We assume that formulas are well-named, i.e. no variable
is bound more than once in any formula. Thus, every variable Z identifies a unique
subformula fp(Z) = ηZ.ψ of ϕ, where the set Sub(ϕ) of subformulas of ϕ is defined in
the usual way.

Given variables Y,Z we write Y ≺ϕ Z if Z occurs freely in fp(Y) in ϕ, and Y <ϕ Z if
(Y,Z) is in the transitive closure of ≺ϕ. The alternation depth ad(ϕ) of ϕ is the length
of a maximal <ϕ-chain of variables in ϕ such that adjacent variables in this chain have
different fixpoint types. A variable is called outermost if it is maximal w.r.t. <ϕ.

We also consider the alternation-free fragment of the µ-calculus, denoted L0
µ, where

no nesting of fixpoints is allowed. Namely, ϕ ∈ L0
µ if for every subformula ηZ.ψ ∈ Sub(ϕ),

no variable other than Z occurs freely in ψ.

Intuitively, � stands for “all successors”, whereas ♦ stands for “exists a successor”.
µ denotes a least fixpoint, whereas ν denotes greatest fixpoint. Least fixpoints are used
to express liveness, while greatest fixpoints express safety properties. For example, the
Lµ fromula µZ.(p∨♦Z) expresses the (existential) liveness property “there exists a path
along which p eventually holds”. Dually, νZ.(p ∧ �Z) expresses the (universal) safety
property “p is true in all the reachable states”. These formulas are both alternation-free
formulas. The semantics is formally defined in the following sections.

1This is without loss of generality, as every formula can be translated to an equivalent formula in
negation normal form by pushing negations to the literals, while exchanging ∧ with ∨, � with ♦, and µ

with ν.

11

2.2 Concrete Models and Concrete Semantics

Concrete systems are typically modelled as Kripke structures.

Definition 2.1. [19] A Kripke structure is a tuple M = (AP, S, S0, R, L), where AP is
a finite set of atomic propositions, S is a (finite) set of states, S0 ⊆ S is a set of initial
states, R ⊆ S × S is a transition relation, and L : S → 2Lit is a labeling function, such
that for every state s and every p ∈ AP , exactly one of p and ¬p is in L(s).

AP is omitted whenever it is clear from the context. In some cases, when we are
interested in a particular state, the set of initial states S0 is omitted as well. In other
cases, a single initial state, denoted s0 ∈ S, is given instead of S0. Unless explicitly
stated otherwise, we consider finite-state models, in which S is a finite set. Note, that
we do not require R to be total, i.e. we do not require that for every s ∈ S there
exists t ∈ S such that sRt. Note further that we define the labeling function L as a
mapping from states to sets of literals rather than atomic propositions. Typically, L
maps each state to the set of atomic propositions that holds in it, with the meaning that
if p 6∈ L(s), then ¬p holds in s. We explicitly add ¬p to L(s). This allows us a more
unified presentation later when abstract models are introduced.

An example of a Kripke structure is depicted in Figure 2.1(a).

Concrete Semantics Let B be the complete boolean lattice consisting of elements
{tt,ff} denoting truth and falsity respectively, ordered by ff ≤ tt. We use B to interpret
the meaning of formulas of the µ-calculus over concrete Kripke structures.

The concrete semantics [[ϕ]]M of a closed formula ϕ ∈ Lµ over AP w.r.t. a Kripke
structure M = (AP, S, S0, R, L) is an element of S → {tt,ff} – the functions from S to
{tt,ff} – which form a complete lattice under pointwise ordering: for g, h : S → {tt,ff},
g v h iff ∀s ∈ S : g(s) ≤ h(s). Joins and meets in this lattice are denoted gth and guh
resp.

To handle subformulas which are not closed, an environment ρ : V → (S → {tt,ff}),
which explains the meaning of free variables, is introduced. [[ϕ]]M,ρ is defined inductively
as follows. We denote with ρ[Z 7→ g] the environment that maps Z to g and agrees with

ρ on all other arguments. In the following definition f = λg.[[ϕ]]M,ρ[Z 7→g] is an element
of (S → {tt,ff}) → (S → {tt,ff}) and lfp(f), gfp(f) stand for the least and greatest

fixpoints of f . lfp(f) = ⊔{g | [[ϕ]]M,ρ[Z 7→g] v g}, and gfp(f) =
⊔

{g | g v [[ϕ]]M,ρ[Z 7→g]}.
These fixpoints exist according to [79], since the functions in S → {tt,ff} form a complete
lattice when equipped with the partial order v defined above and the functional f is
monotone w.r.t. the order v for any Z, ϕ and S.

12

[[l]]M,ρ := λs.

{
tt, if l ∈ L(s)
ff, if ¬l ∈ L(s)

[[�ϕ]]M,ρ := λs.

{
tt, if ∀t ∈ S, if sRt then [[ϕ]]M,ρ(t) = tt

ff, if ∃t ∈ S s.t. sRt and [[ϕ]]M,ρ(t) = ff

[[♦ϕ]]M,ρ := λs.

{
tt, if ∃t ∈ S, s.t. sRt and [[ϕ]]M,ρ(t) = tt

ff, if ∀t ∈ S if sRt then [[ϕ]]M,ρ(t) = ff

[[ϕ1 ∧ ϕ2]]
M,ρ := [[ϕ1]]

M,ρ u [[ϕ2]]
M,ρ

[[ϕ1 ∨ ϕ2]]
M,ρ := [[ϕ1]]

M,ρ t [[ϕ2]]
M,ρ

[[Z]]M,ρ := ρ(Z)

[[µZ.ϕ]]M,ρ := lfp(λg.[[ϕ]]M,ρ[Z 7→g])

[[νZ.ϕ]]M,ρ := gfp(λg.[[ϕ]]M,ρ[Z 7→g])

For a closed formula ϕ, [[ϕ]]M,ρ = [[ϕ]]M,ρ′

, for any environments ρ, ρ′. Thus, when
closed formulas are considered, we drop the environment from the semantic brackets,
and simply refer to [[ϕ]]M .

[[ϕ]]M (s) = tt (= ff) means that the formula ϕ is true (false) in the state s of the
Kripke structure M .

Similarly, M satisfies ϕ, denoted M |= ϕ, if for every s0 ∈ S0: [[ϕ]]M (s0) = tt. On the
other hand, if there exists s0 ∈ S0 such that [[ϕ]]M (s0) = ff, then M falsifies ϕ, denoted
M 6|= ϕ. In particular, if M has a single initial state s0, then M satisfies (falsifies) ϕ if
[[ϕ]]M (s0) = tt (= ff).

Approximants of Lµ formulas are defined w.r.t. an environment ρ in the usual way:

if fp(Z) = µZ.ϕ then Z0
ρ := λs.ff, Zα+1

ρ := [[ϕ]]M,ρ[Z 7→Zα
ρ] for any ordinal α, and Zλρ :=⊔

α<λ Zαρ for any limit ordinal λ.2 Dually, if fp(Z) = νZ.ϕ then Z0
ρ := λs.tt, Zα+1

ρ :=

[[ϕ]]M,ρ[Z 7→Zα
ρ], and Zλρ := ⊔α<λ Zαρ .

The next theorem is a standard consequence of the Knaster-Tarski theorem [79].

Theorem 2.2. For all Kripke structures M with state set S, and all environments ρ
there is an ordinal α such that for all s ∈ S we have:

if [[ηZ.ϕ]]M,ρ(s) = x then Zαρ (s) = x.

2.3 Abstraction and 3-Valued Semantics

In this section we present abstract models for the µ-calculus and their relation to con-
crete models. It turns out that in order to guarantee preservation of µ-calculus formulas,
which combine both universal and existential quantifiers, from abstract models to con-
crete models, we need to introduce two transition relations [54, 26]: preservation of truth
of universal properties requires an over-approximation, whereas preservation of truth of
existential properties requires an under-approximation. As such, Kripke Modal Transi-
tion Systems [45, 38], which contain both must and may transitions, are often used as
abstract models that preserve the µ-calculus.

2Limit ordinals are only needed if the state space S of M is infinite.

13

Definition 2.3. A Kripke Modal Transition System (KMTS) is a tuple M = (AP, S, S 0,
R+, R−, L), where AP , S, and S0 are defined as before, R+, R− ⊆ S × S are must and
may transition relations (resp.) such that R+ ⊆ R−, and L : S → 2Lit is a labeling
function such that for every state s and p ∈ AP , at most one of p and ¬p is in L(s).

KMTSs generalize the notion of a Kripke structure in two ways. First, the require-
ment that exactly one of p and ¬p is in L(s) is relaxed by allowing that none of them is
in L(s). Second, two transition relations are introduced instead of R.

3-Valued Semantics The 3-valued semantics [[ϕ]]M3 of a closed formula ϕ ∈ Lµ w.r.t.
a KMTS M is a mapping from S to {tt,ff,⊥}. The 3-valued semantics [11, 45, 39]3

preserves both satisfaction (tt) and falsification (ff) from the abstract KMTS to the
concrete model it represents. ⊥ is a new truth value whose meaning is that the truth
value over the concrete model is unknown and can be either tt or ff. The truth values
tt and ff are also called definite, whereas ⊥ is indefinite.

Here too, to handle subformulas which are not closed, an environment ρ : V → (S →
{tt,ff,⊥}), which explains the meaning of free variables, is introduced.

[[ϕ]]M,ρ
3 is defined inductively, similarly to [[ϕ]]M,ρ. The semantics of the logical oper-

ators ∧,∨ and of the fixpoints extends to the 3-valued case in a straightforward way by
extending the ordering of the truth values to ff ≤⊥≤ tt, resulting in the lattice B3. The
order v of the functions in S → {tt,ff,⊥} is extended accordingly. The semantics of the
literals and the modalities is extended to the 3-valued case as follows.

[[l]]M,ρ
3 := λs.

tt, if l ∈ L(s)
ff, if ¬l ∈ L(s)
⊥, otherwise

[[�ψ]]M,ρ
3 := λs.

tt, if ∀t ∈ S, if sR−t then [[ψ]]M,ρ
3 (t) = tt

ff, if ∃t ∈ S s.t. sR+t and [[ψ]]M,ρ
3 (t) = ff

⊥, otherwise

[[♦ψ]]M,ρ
3 := λs.

tt, if ∃t ∈ S, s.t. sR+t and [[ψ]]M,ρ
3 (t) = tt

ff, if ∀t ∈ S if sR−t then [[ψ]]M,ρ
3 (t) = ff

⊥, otherwise

As in the concrete case, when only closed formulas are considered, we omit the
environment from the semantics brackets. The notion of approximants and Theorem 2.2
carry over to the 3-valued case as well.

The intuition behind the 3-valued semantics for KMTSs lies in their application as
abstract models, where must transitions under-approximate the concrete transitions, and
may transitions over-approximate the concrete transitions. Namely, the 3-valued seman-
tics is defined such that a formula is evaluated to tt or ff only when the abstract infor-
mation suffices to determine such a definite truth value that will hold in the represented
concrete model. Therefore, truth of universal formulas (of the form �ψ) is examined

3The 3-valued semantics for µ-calculus defined in [45] is given by means of two semantics, “necessarily”
and “possibly”, where a third possibility “not possibly” is obtained as the complement of the other two.
When viewing “necessarily” as tt, “not possibly” as ff and “possibly but not necessarily” as ⊥, this
semantics coincides with ours.

14

along all the may transitions (which overapproximate the concrete transitions), whereas
falsity of such formulas is shown by a must transition (which underapproximates the
concrete transitions). Dually for existential formulas (of the form ♦ψ).

The notations M |= ϕ and M 6|= ϕ are used for a KMTS as well. In addition, if

neither M |= ϕ norM 6|= ϕ holds, then the value of ϕ in M is indefinite, denoted M |=
?

= ϕ.

Preservation of the µ-calculus The following definition formalizes the relation be-
tween two KMTSs that guarantees preservation of µ-calculus formulas w.r.t. the 3-valued
semantics.

Definition 2.4 (Mixed Simulation). [26, 38] Let M1 = (AP, S1, S
0
1 , R

+
1 , R

−
1 , L1) and

M2 = (AP, S2, S
0
2 , R

+
2 , R

−
2 , L2) be two KMTSs, both defined over AP . We say that

H ⊆ S1 ×S2 is a mixed simulation from M1 to M2 if (s1, s2) ∈ H implies the following:

1. L2(s2) ⊆ L1(s1).

2. if s1R
−
1 s

′
1, then there is some s′2 ∈ S2 s.t. s2R

−
2 s

′
2 and (s′1, s

′
2) ∈ H.

3. if s2R
+
2 s

′
2, then there is some s′1 ∈ S1 s.t. s1R

+
1 s

′
1 and (s′1, s

′
2) ∈ H.

If there is a mixed simulation H s.t. (s1, s2) ∈ H, then (M1, s1) � (M2, s2).
If there is a mixed simulation H s.t. ∀s0

1 ∈ S0
1 ∃s02 ∈ S0

2 s.t. (s01, s
0
2) ∈ H, and

∀s02 ∈ S0
2 ∃s01 ∈ S0

1 s.t. (s01, s
0
2) ∈ H, then M2 is greater by the mixed simulation relation

than M1, denoted M1 �M2.

Definition 2.4 can be applied to a (concrete) Kripke structure MC and an (abstract)
KMTS MA, by viewing the Kripke structure as a KMTS where R+ = R− = R. For
a Kripke structure, the 3-valued semantics agrees with the concrete semantics. Thus,
preservation of Lµ formulas from an abstract model to the concrete model is guaranteed
by the following theorem.

Theorem 2.5. [38] Let H ⊆ S1 × S2 be a mixed simulation relation from a KMTS
M1 to a KMTS M2. Then for every (s1, s2) ∈ H and every ϕ ∈ Lµ we have that

[[ϕ]]M2

3 (s2) 6=⊥⇒ [[ϕ]]M1

3 (s1) = [[ϕ]]M2

3 (s2).
We conclude that if M1 �M2, then for every ϕ ∈ Lµ:

• M2 |= ϕ⇒M1 |= ϕ, and

• M2 6|= ϕ⇒M1 6|= ϕ.

Note that the requirement of Definition 2.4 regarding the bi-directional correspon-
dence between the initial states of the KMTSs M1 and M2 is needed in order to preserve
both truth and falsity from M2 to M1 in the model-level whenever M1 � M2. Namely,
suppose M2 |= ϕ. Then for every s0

2 ∈ S0
2 : [[ϕ]]M2

3 (s02) = tt. In order to conclude that

[[ϕ]]M1

3 (s01) = tt holds for every s0
1 ∈ S0

1 as well, which ensures that M1 |= ϕ, we require
that every s01 ∈ S0

1 has a corresponding s0
2 ∈ S0

2 s.t. (s01, s
0
2) ∈ H. On the other hand,

suppose M2 6|= ϕ, which means that there exists s0
2 ∈ S0

2 s.t. [[ϕ]]M2

3 (s02) = ff. In order to

conclude that there exists s0
1 ∈ S0

1 s.t. [[ϕ]]M1

3 (s01) = ff, which ensures that M1 6|= ϕ, we
require that s01 ∈ S0

1 has a corresponding s0
2 ∈ S0

2 in H.

15

Abstraction Let MC be a concrete Kripke structure with a set of concrete states SC .
We consider state abstractions that are performed by collapsing sets of concrete states
(from SC) into single abstract states (in SA) via a concretization function γ. As such,
an abstraction (SA, γ) for SC consists of a finite set of abstract states SA and a total
concretization function γ : SA → 2SC that maps each abstract state to the (nonempty)
set of concrete states it represents. Every sc ∈ SC is represented by some sa ∈ SA.

Construction of an Abstract KMTS Given an abstraction (SA, γ) for the set of
states SC of a (concrete) Kripke structure MC = (SC , S

0
C , R, LC), an abstract model,

in the form of a KMTS MA = (SA, S
0
A, R

+, R−, LA) which is greater by the mixed
simulation relation than MC , can be defined as follows.

The set of initial abstract states S0
A is built s.t.

s0a ∈ S0
A ⇐⇒ ∃s0c ∈ S0

C s.t. s0c ∈ γ(s0a).

The “iff” is needed in order to ensure the two requirements of Definition 2.4 regarding
the initial states. More specifically, “⇐=” is needed in order to preserve truth from MA

to MC , while “=⇒” is needed to preserve falsity. This requirement is not needed for
state-wise preservation, i.e., for preservation of properties from abstract states to the
concrete states represented by them.

The labeling of an abstract state is defined in accordance with the labeling of all the
concrete states it represents. Namely, for l ∈ Lit,

l ∈ LA(sa) =⇒ ∀sc ∈ γ(sa) : l ∈ LC(sc).

It is thus possible that neither p nor ¬p are in LA(sa).
The may transitions in an abstract model provide an over-approximation of the

concrete transitions. They are computed by an [∃∃] rule s.t. every concrete transition
is represented by them:

∃sc ∈ γ(sa) ∃s′c ∈ γ(s′a) s.t. scRs
′
c =⇒ saR

−s′a

Note that the implication allows that there will be additional may transitions as well.
The must transitions, on the other hand, provide an under-approximation of the concrete
transitions. They represent concrete transitions that are common to all the concrete
states represented by the source abstract state. They are computed by a [∀∃] rule:

∀sc ∈ γ(sa) ∃s′c ∈ γ(s′a) s.t. scRs
′
c ⇐= saR

+s′a

Note that it is possible that there are less must transitions than allowed by this rule.
That is, unlike the initial states, the labeling, may and must transitions do not have

to be exact, as long as they maintain these conditions.

Exact KMTS If the three implications used in the definition of the labeling and the
transitions are replaced by “iff”, then the labeling, may and must transitions are exact,
resulting in the exact KMTS. This model is most precise compared to all the KMTSs
that are constructed as described above w.r.t. the given abstraction (SA, γ).

16

p p

p ¬p

s00

s01

s10

s11

(a)

p

s0 s1

(b)

Figure 2.1: (a) A concrete Kripke structure, and (b) an abstract KMTS for it.

Example 2.6. Consider the concrete system shown in Figure 2.1(a), employing a single
atomic proposition p. Joining s00 and s01 and respectively s10 and s11 yields the (exact)
KMTS shown in Figure 2.1(b), where may transitions are shown as dotted arrows only
when no must transitions are present. Note that the state s1 is not labeled by p, nor by
¬p, which means that the value of p in it is indefinite.

Other constructions of abstract models can be used as well. For example, if γ is a
part of a Galois Connection [24] (γ : SA → 2SC , α : 2SC → SA) from (2SC ,⊆) to (SA,v),
then an abstract model can be constructed as described in [26] within the framework of
Abstract Interpretation [24, 61, 26]. It is then not guaranteed that the must transitions
are a subset of the may transitions, which complicates our further developments. In this
work we always assume that the must transitions are a subset of the may transitions.

All the above constructions assure us that whenever sc ∈ γ(sa), then (MC , sc) �
(MA, sa). The mixed simulation H ⊆ SC×SA is induced by γ as follows: (sc, sa) ∈ H iff
sc ∈ γ(sa). Moreover, the definition of the initial abstract states ensures that MC �MA.
Therefore, Theorem 6.7 guarantees preservation of Lµ from MA to MC .

17

18

Chapter 3

3-Valued Model Checking Games

3.1 Introduction

In this chapter, we present a new model checking game for abstract models (KMTSs)
w.r.t. specifications in the µ-calculus, interpreted over a 3-valued semantics. This sets
the basis for the game-based 3-valued model checking and abstraction-refinement pre-
sented in the following chapters.

Many algorithms for µ-calculus model checking w.r.t. the concrete (2-valued) seman-
tics have been suggested in the literature [33, 78, 80, 21, 62]. An elegant solution to this
problem is the game-based approach [76], in which two players, the verifier (denoted ∃)
and the falsifier (denoted ∀), try to win a game. A formula ϕ is true in a model M iff
the verifier has a winning strategy, meaning that she can win any play, no matter what
the falsifier does. Otherwise, the falsifier has a winning startegy and the formula is false
in the model. The game is played on a game board, consisting of configurations s ` ψ,
where s is a state of the model M and ψ is a subformula of ϕ. The players make moves
between configurations in which they try to verify or falsify ψ in s. These games can
also be seen and studied as parity games [32, 47] and we follow this approach as well.

In model checking games for the 2-valued semantics, exactly one of the players has a
winning strategy, thus the model checking result is either true or false. For the 3-valued
semantics, a third value should also be possible. Following our previous work [74] for
the logic CTL, we change the definition of a game for the µ-calculus so that a tie is
also possible. As before, Player ∃ has a winning strategy iff M |= ϕ, and Player ∀
has a winning strategy iff M 6|= ϕ. However, it is also possible that neither of them
has a winning strategy, in which case the value of ϕ in M is indefinite. To simplify
the presentation, we introduce 3-valued parity games as a generalization of ordinary (2-
valued) parity games, and transform the 3-valued model checking game into an equivalent
3-valued parity game with players 0 and 1.

In the following chapters we use the 3-valued model checking game, in its formulation
as a 3-valued parity game, as the basis for a model checking algorithm, as well as a
refinement mechanism.

19

3.1.1 Related work

Our work characterizes the 3-valued model checking problem of the µ-calculus in terms of
two-players games. This generalizes the characterization of the model checking problem
via the game-theoretic approach in the concrete case [75].

A different characterization of the (concrete) model checking problem can be given
in terms of alternating automata as part of the automata-theoretic approach to model
checking [10, 51]. Alternating automata generalize the standard notion of nondetermin-
istic automata by allowing several successor states in the automaton to simultaneously
proceed along the input. In the automata-theoretic approach of [10, 51], an alternating
(tree) automaton whose language is the set of all trees that satisfy the formula is con-
structed. It “describes” all the models that satisfy the given formula. The alternating
automaton is assembled with the given system model, resulting in the product automa-
ton, which is also an alternating (word) automaton. Model checking is then performed
by checking nonemptiness of the product automaton, which represents the product of
the model and the checked formula.

The game-based and the automata-based approaches to model checking have a strong
resemblance in the concrete setting (see e.g. [58]): Similarly to the configurations of the
model checking game, each state of the automaton represents a state of the model and
a subformula of the checked formula. Furthermore, a winning strategy of the verifier
in the model checking game corresponds to an accepting run of the product automaton
and vice versa. Our work can also be developed in the automata-theoretic framework,
yet this would require some generalization of alternating automata.

The 3-valued model checking game developed in this chapter can be viewed as a
special case of the multi-valued model checking game that we suggested in a more recent
work [71]. In multi-valued model checking, the labeling of states and the transitions
of the system, as well as the meaning of formulas, are interpreted as elements from a
lattice. In the general case of multi-valued model checking games, we no longer talk
about winning. Instead, we talk about the value of the game, which is an element from
the lattice. This is unlike the 3-valued case, where the truth values can still be encoded
as winning with the additional possibility of a tie, which corresponds to the truth value
⊥. This makes the 3-valued case unique compared to the use of an arbitrary lattice.

Further related work regarding the resulting game-based 3-valued model checking
algorithm, as well as the abstraction-refinement framework, appears in Chapter 4.

3.2 Model Checking Games for 3-Valued µ-Calculus

The 3-valued model checking game ΓM (s0, ϕ0) on a KMTS1 M = (S,R+, R−, L) with
state s0 ∈ S and a Lµ formula ϕ0 is played by Players ∃ and ∀ in order to determine
the truth value of ϕ0 in s0, cf. [75]. Player ∃ has the role of the verifier, while Player ∀
takes the role of the falsifier.

1We do not consider a set of initial states in the KMTS since the game is defined for a particular
state. This state can be viewed as an initial state.

20

s ` ψ0 ∨ ψ1

s ` ψi
∃ : i ∈ {0, 1}

s ` ψ0 ∧ ψ1

s ` ψi
∀ : i ∈ {0, 1}

s ` ηZ.ϕ
s ` Z

∃
s ` Z
s ` ϕ

∃ : if fp(Z) = ηZ.ϕ

s ` ♦ϕ

t ` ϕ
∃ : sR+t or sR−t

s ` �ϕ

t ` ϕ
∀ : sR+t or sR−t

Figure 3.1: The model checking game rules for 3-valued µ-calculus.

Configurations, Moves and Plays Configurations are elements of C ⊆ S×Sub(ϕ0),
and written t ` ψ. Each play of ΓM (s0, ϕ0) is a maximal sequence of configurations that
starts with s0 ` ϕ0. The game rules are presented in Figure 3.1. Each rule is marked
by ∃ / ∀ to indicate which player makes the move. A rule is applied when the player is
in configuration Ci, which is of the form of the upper part of the rule. Ci+1 is then the
configuration in the lower part of the rule. The rules shown in the first and third lines
present a choice which the player can make. Since no choice is possible when applying
the rules shown in the second line, we arbitrarily assign one player, let us say ∃, and call
the rules deterministic. If no rule can be applied, the play terminates.

The configurations of ΓM(s0, ϕ0) are classified as ∧, ∨, �, ♦, or literal configurations,
based on their subformuals. Configurations whose subformulas are of the form Z or
ηZ.ψ are called deterministic. Configurations where the play terminates are also called
terminal configurations. These are either literal configurations or � and ♦ configurations
in which the corresponding state of the model has no outgoing transitions.

The reachable configurations in the game present all the information “relevant” for
the model checking: Intuitively, a reachable configuration of the form t ` ψ indicates
that the value of the subformula ψ in the state t is relevant for determining the value
of ϕ0 in s0. The moves that the players choose from a configuration t ` ψ present
“subgoals” that the players define for verifying or falsifying ψ in t. For example, in a
configuration of the form t ` ψ0 ∨ψ1, Player ∃, the verifier, chooses the subformula that
she intends to verify in t. In a configuration of the form t ` ♦ψ, she chooses a successor
of t in which she intends to verify ψ. In configurations of the form t ` ψ0 ∧ ψ1 and
t ` �ψ, Player ∀, the falsifier, makes similar choices for falsification. In order to be able
to both verify and falsify each subformula, the game allows the players to use both may
and must transitions in ♦ and � configurations. The reason is that, for example, truth
of a formula �ψ in a state t should be checked upon outgoing may transitions of t, but
its falsity should be checked upon outgoing must transitions.

Winning Conditions The players use must transitions in order to win, while they
use may transitions in order to prevent the other player from winning. To demonstrate
this, consider again the �ψ example: in a configuration of the form t ` �ψ, Player ∀,
the falsifier, makes a move. If he wants to falsify �ψ, he needs to show a must transition

21

from t to a state that falsifies ψ. Yet, if he only wishes to prevent Player ∃ from verifying
ψ, then it suffices to show a may transition to a state that does not satisfy ψ.

Thus, a player can only win the play if he or she is eager in their moves, meaning
that the player always makes moves that are designed for verification (if the player is
Player ∃), or always makes moves that are designed for falsification (if it is Player ∀).
These moves are all based on must transitions. The other player, on the other hand,
possibly uses both types of transitions:

Definition 3.1. A player is said to play eagerly2 if she or he never chooses a transition
of type R− \ R+. A play is called ∃-eager, resp. ∀-eager, if Player ∃, resp. Player ∀,
plays eagerly.

As a result of the eagerness requirements, it is possible that none of the players wins
a play, i.e. the play ends with a tie. A tie can also occur due to the 3-valued nature of
the labeling function of the KMTS, by reaching a literal configuration where the value
of the literal is indefinite. More precisely:

Player ∃ wins an ∃-eager play C0, C1, . . . iff

1. there is an n ∈ N, s.t. Cn = t ` l with l ∈ L(s), or

2. there is an n ∈ N, s.t. Cn = t ` �ψ and there is no t′ ∈ S s.t. tR−t′, or

3. the outermost variable that occurs infinitely often is of type ν.

Player ∀ wins a ∀-eager play C0, C1 . . . iff

4. there is an n ∈ N, s.t. Cn = t ` l with ¬l ∈ L(s), or

5. there is an n ∈ N, s.t. Cn = t ` ♦ψ and there is no t′ ∈ S s.t. tR−t′, or

6. the outermost variable that occurs infinitely often is of type µ.

In all other cases, the result of the play is a tie.

Example 3.2. For the model checking problem of the formula

νZ.(♦(µY.((Z ∧ p) ∨ ♦Y)))

in the state s0 of the abstract KMTS from Figure 2.1(b) all possible moves are shown
in Figure 3.2. Configurations in which ∃ is to choose are drawn as circles while ∀-
configurations are shown as squares. Moves based on may transitions are not shown
when the same move is possible using a must transition.

The result of the play v00v01v02v03v04v05v06v08 is a tie: while the play ends in a
configuration in which p evaluates to tt, ∃ does not win since choosing the edge from
v02 to v03 violates ∃-eagerness. v00v01v02v13v14v15v16v11v12v13 . . . , on the other hand, is
an ∃-eager play in which the outermost variable occurring infinitely often is of type ν.
Thus, it is won by ∃.

2The notion of ‘eagerness’ replaces the notion of ‘consistency’ from [74, 40].

22

s0 ` νZ.(♦(µY.((Z ∧ p) ∨♦Y)))

s0 ` Z

s0 ` ♦(µY.((Z ∧ p) ∨ ♦Y))

s0 ` µY.((Z ∧ p) ∨♦Y)

s0 ` Y

s0 ` (Z ∧ p) ∨♦Y

s0 ` Z ∧ p s0 ` ♦Y

s0 ` p

s1 ` Z

s1 ` ♦(µY.((Z ∧ p) ∨ ♦Y))

s1 ` µY.((Z ∧ p) ∨ ♦Y)

s1 ` Y

s1 ` (Z ∧ p) ∨♦Y

s1 ` Z ∧ ps1 ` ♦Y

s1 ` p

v00

v01

v02

v03

v04

v05

v06 v07

v08

v11

v12

v13

v14

v15

v16v17

v18

Figure 3.2: All possible moves in the game over the KMTS from Figure 2.1(b).

Strategies In order to relate the model checking game to the model checking problem,
we need the notion of a strategy:

A strategy for Player q is a partial function ζ : C → C, such that its domain is the set
of configurations where Player q moves and for all configurations C and C ′: ζ(C) = C ′

implies that there is a move from C to C ′. Player q plays a game according to a strategy
ζ if all his choices agree with ζ. A strategy for Player q is called a winning strategy if
Player q wins every play where he plays according to this strategy. Note that we restrict
ourselves to so-called memoryless strategies. This will be justified in Section 4.2.

Correctness The following theorem, proven in the remainder of this section, formal-
izes the relation between the model checking game ΓM (s0, ϕ0) and the truth value of ϕ0

in the state s0 of M .

Theorem 3.3. Given a KMTS M = (S,R+, R−, L), an s0 ∈ S, and a closed ϕ0 ∈ Lµ,
we have:

(a) [[ϕ0]]
M (s0) = tt iff Player ∃ has a winning strategy for ΓM(s0, ϕ0),

(b) [[ϕ0]]
M (s0) = ff iff Player ∀ has a winning strategy for ΓM (s0, ϕ0),

(c) [[ϕ0]]
M (s0) =⊥ iff neither Player ∃ nor Player ∀ has a winning strategy for ΓM (s0, ϕ0).

Corollary 3.4. Let MC = (SC , R, LC) be a Kripke structure with sc ∈ SC and MA =
(SA, R

+, R−, LA) be an abstract model of MC w.r.t. an abstraction (SA, γ). Let sa ∈ SA
with sc ∈ γ(sa) and ϕ ∈ Lµ. Then,

(a) If Player ∃ has a winning strategy for ΓMA
(sa, ϕ) then [[ϕ]]MC (sc) = tt.

23

(b) If Player ∀ has a winning strategy for ΓMA
(sa, ϕ) then [[ϕ]]MC (sc) = ff.

Proof. Suppose Player ∃ has a winning strategy in ΓMA
(sa, ϕ). According to Theo-

rem 3.3, we have [[ϕ]]MA(sa) = tt. Applying Theorem 2.5, we get [[ϕ]]MC (sc) = tt. Part
(b) is proved analogously.

The remainder of this section is devoted to the proof of Theorem 3.3. Intuitively, the
theorem holds since the conditions for Player ∃, the verifier, having a winning strategy
resemble the 3-valued semantics for truth. Dually, the conditions for Player ∀, the
falsifier, having a winning strategy resemble the 3-valued semantics for falsity. Therefore,
the player that has a winning strategy in the game corresponds to the truth value of the
formula. For example, ∨ and ♦ configurations are controlled by Player ∃. Thus, Player
∃ has a winning strategy from such a configuration iff she has a winning strategy from
at least one of the succeeding configurations along must transitions. However, in a ∧
or a � configuration, Player ∀ controls the moves and therefore Player ∃ has a winning
strategy in such a configuration iff she has a winning strategy from all of the succeeding
configurations along may transitions. This resembles the 3-valued semantics for truth of
∨, ♦, ∧, and � formulas respectively. We now turn to formally prove the theorem. In
the following, we sometimes omit M from the semantics brackets.

Definition 3.5. The truth value of a configuration t ` ψ in the context of ρ is the
value of [[ψ]]ρ(t). The value tt improves both ⊥ and ff, while ⊥ only improves ff. On
the other hand, x worsens y iff y improves x. A configuration with truth value x under
the environment ρ will also be called an xρ-configuration. We say that a move, i.e. an
application of a game rule between configurations C and C ′ is a xρ-yρ′-improvement if C
is an xρ-configuration, C ′ is an yρ′-configuration and y improves x. Similarly we define
a xρ-yρ′-worsening and a xρ-yρ′-preservation. In the latter case we obviously have x = y.

An inspection of the game rules and the semantics together with Theorem 2.2, which
holds in the case of KMTSs as well, proves the following.

Lemma 3.6. For all environments ρ, and all truth values x, y we have:

a) Player ∃ cannot eagerly make a move that is a xρ-yρ-improvement, but can always
eagerly make a ttρ-ttρ-preservation.

b) Player ∀ cannot eagerly make a move that is a xρ-yρ-worsening, but can always
eagerly make a ffρ-ffρ-preservation.

c) There is an ordinal α such that the deterministic rule for a fixpoint formula ηZ.ϕ
is a xρ-xρ′-preservation when ρ′ := ρ[Z 7→ Zαρ].

d) Let Z be an η-variable and ρ(Z) = Zαρi
for some environment ρi and some ordinal

α > 0. There is an ordinal β < α such that the deterministic rule for unfolding Z
is an xρ-xρ′-preservation when ρ′ := ρ[Z 7→ Zβρi].

Proof. The proof is by a case analysis which considers for each configuration and possible
truth value both the 3-valued semantics and the possible moves of the player. For
example, consider a configuration of the form t ` ψ0 ∨ ψ1, where Player ∃ moves. If its

24

truth value in the context of ρ is tt, then by the definition of the semantics, the truth value
of either t ` ψ0 or t ` ψ1 (or both) in the context of ρ is also tt. Player ∃ can therefore
eagerly make a ttρ-ttρ-preservation by moving to the corresponding configuration whose
truth value is tt. On the other hand, if the truth value of t ` ψ0 ∨ψ1 in the context of ρ
is ff, then the truth value of both t ` ψ0 and t ` ψ1 in the context of ρ is also ff, which
means that no matter which of them Player ∃ chooses, she will not be able to make an
xρ-yρ-improvement.

Lemma 3.7. Let ϕ ∈ Lµ. Player ∃ does not have a winning strategy for the game

ΓM (s, ϕ) if [[ϕ]]M (s) 6= tt.

Proof. Suppose that on one hand [[ϕ]]M (s) 6= tt but Player ∃ has a winning strategy ζ
for ΓM (s, ϕ). Take the partial game tree induced by this strategy, i.e. the tree of all
plays in which all of Player ∀’s choices are preserved but only those of Player ∃’s choices
which agree with ζ.

First we show that this tree contains at least one play C0, C1, . . . for which there is
a corresponding sequence of environments ρ0, ρ1, . . . such that for all i ∈ N, Ci is not a
ttρi

-configuration. Let ρ0 be the empty environment. Since ϕ is closed, the root of this
tree is not a ttρ0 -configuration. According to Lemma 3.6, deterministic rules preserve
the truth value of a configuration – possibly extending the environments – and Player
∃’s choices do not improve the truth value when considering the same environment, as
she is playing eagerly (being that ζ is a winning strategy for her). This can only be
done by Player ∀. However, suppose there is a configuration Ci in which Player ∀ makes
a choice and which has a truth value other than tt under ρi. Then Ci is of the form
t ` ψ0 ∧ ψ1 or t ` �ψ. For the former case note that the truth value of Ci under ρi is
the infimum in B3 of its two successor’s truth values under ρi. Thus, it is not tt only if
there is a successor which has a truth value other than tt under the same environment ρi
– which will also define ρi+1 (that is, ρi+1 = ρi). For the latter case consider [[�ψ]]ρi(t).
It can only differ from tt if there is a t′ such that tR−t′ and [[ψ]]ρi(t′) 6= tt. But t′ ` ψ is
a possible successor configuration of Ci. Thus, it is included in the tree and has a truth
value which is not tt under ρi – which will again define ρi+1 (i.e., ρi+1 = ρi).

This argument can be iterated yielding a path C0, C1, . . . and a sequence ρ0, ρ1, . . . in
which ρi 6= ρi+1 only if the move from Ci to Ci+1 is deterministic. C0, C1, . . . is a path
on which no tt-configuration under the according ρi occurs. Now, this path can either
be finite or infinite. The first case immediately leads to a contradiction since finite paths
won by Player ∃ necessarily end in a tt-configuration under any environment.

Suppose therefore that the path represents a play which is won by Player ∃’s winning
condition 3. Then there is an outermost variable Z of fixpoint type ν which occurs
infinitely often in this play. Take the last occurrence of a configuration t ` νZ.ϕ and
name it Ci. By assumption, [[νZ.ϕ]]ρi(t) = x for some x 6= tt and ρi as constructed
above.

According to Lemma 3.6, ρi+1 interprets Z as an approximant with some index
α 6= 0. That is, ρi+1(Z) = Zαρi

. Lemma 3.6 also shows that subsequent environments

ρj , j > i interpret Z as approximants Zβρi with decreasing indices β. But the ordinals
are well-founded. Hence, there is a j such that Cj = t ` Z for some t and ρj(Z) = Z0

ρi
,

meaning that [[Z]]ρj (t) = tt. But on the other hand, since Cj appears on the above path,

25

we know that Cj is not a ttρj
-configuration. This is a contradiction. We conclude that

Player ∃ cannot have a winning strategy.

Lemma 3.8. Let ϕ ∈ Lµ. Player ∃ has a winning strategy for the game ΓM(s, ϕ) if

[[ϕ]]M (s) = tt.

Proof. Suppose [[ϕ]]M (s) = tt. According to Lemma 3.6, Player ∃ can play eagerly in such
a way that every reached configuration has truth value tt under some environment which
is constructed successively using Lemma 3.6 and starting with the empty environment.
Note that ϕ is assumed to be closed.

Player ∀ cannot help but to make moves that result in ttρ-configurations under the
corresponding ρ as well. This defines a strategy for Player ∃. It remains to be seen that
this strategy guarantees her to win every resulting play. First, by Lemma 3.6 again,
every resulting play is ∃-eager. By preservation of the truth value, a finite play must
end in a tt-configuration under an irrelevant environment. But then it is won by Player
∃ with winning condition 1 or 2.

Suppose therefore that the play C0, C1, . . . at hand is of infinite length. By Player ∃’s
strategy that uses the construction of environments in Lemma 3.6, there are ρ0, ρ1, . . .,
such that Ci is a ttρi

-configuration for all i ∈ N.
Any infinite play has a unique outermost variable Z that occurs infinitely often,

cf. [75]. This variable has a unique fixpoint type η ∈ {µ, ν}. Assume for the sake
of contradiction that fp(Z) = µZ.ψ for some ψ. Then take the last occurrence of
a configuration Ci = t ` µZ.ψ. Since Z is outermost, it is guaranteed to exist, for
otherwise there would be another fixpoint formula that generated µZ.ψ infinitely often.

According to the construction of the strategy, there is an ordinal α such that ρi+1

interprets Z in the following configuration Ci+1 = t ` Z by Zαρi
. Again, by the construc-

tion of the strategy using Lemma 3.6, the next time Z occurs it is interpreted as Zβ
ρi for

some β < α. By the well-foundedness of the ordinals, there will eventually be a ttρk
-

configuration Ck = t′ ` Z such that ρk(Z) = Z0
ρi

which is impossible since Z0
ρi

= λs.ff,
provided that the fixpoint type of Z is µ. Thus, the fixpoint type of Z must have been
ν which makes Player ∃ the winner of the play at hand.

Lemma 3.9. Let ϕ ∈ Lµ. Player ∀ has a winning strategy for the game ΓM (s, ϕ) iff

[[ϕ]]M (s) = ff.

Proof. This is the dual to Lemmas 3.7 and 3.8. Hence, it is proved in the same way
exchanging tt and ff, “improve” and “worsen”, ν and µ, Player ∃ and ∀.

We can now return to the proof of Theorem 3.3:

Proof of Theorem 3.3. Parts (a) and (b) are proved in Lemmas 3.7, 3.8 and 3.9. For
part (c) suppose that [[ϕ0]]

M (s0) =⊥. Then none of the players can have a winning
strategy because using parts (a) and (b) one would immediately contradict the assump-
tion. Conversely, suppose that none of them has a winning strategy but [[ϕ0]]

M (s0) 6=⊥.
Again, using (a) or (b) one obtains an immediate contradiction.

26

3.3 3-Valued Parity Games

The previous section related the 3-valued model checking games with the 3-valued se-
mantics of Lµ. For the sake of readability it is sometimes more convenient to deal with
parity games. In the context of parity games, instead of Player ∃ and ∀, we talk of
Player 0 and Player 1, resp., and use σ to denote Player 0 or 1 and σ = 1 − σ for the
opponent3.

Parity games are traditionally used to describe the model checking game for the
µ-calculus [32]. For simplicity, we consider parity games with dead-end vertices (see
Remark 3.14). In order to describe our 3-valued game for Lµ, we need to generalize
parity games in the following ways: (1) we have two types of edges: must edges and
may edges, where every must edge is also a may edge, (2) terminal configurations (dead-
ends) are classified as either winning for one player, or as tie-configurations, and (3) an
eagerness requirement is added to the winning conditions.

3.3.1 3-Valued Parity Games

A 3-valued parity game G = (A,Θ) has an arena A = (V0, V1, Vtie , E
+, E−) such that

V0, V1 and Vtie are disjoint sets of vertices. Let V := V0 ∪ V1 ∪ Vtie . Then E+ ⊆ E− ⊆
(V \Vtie)×V are sets of must and may edges, meaning that every v ∈ Vtie is a dead-end.
Edges in E− \ E+ are sometimes called genuine may edges. Θ : V → N is a priority
function with a finite image that maps each vertex v ∈ V to a priority.

A play from v0 ∈ V is a maximal sequence of vertices v0, . . . , where Player σ moves
from vi to vi+1 when vi ∈ Vσ and (vi, vi+1) ∈ E−. It is called σ-eager iff Player σ chooses
only moves that are (also) in E+. A σ-eager play is winning for Player σ if

• it is finite and ends in Vσ , or

• it is infinite and the maximal priority occurring infinitely often is even when σ = 0
or odd when σ = 1.

All other plays are a tie.
A strategy for player σ in the 3-valued parity game G = (A,Θ) is a function ζ :

V ∗Vσ → V such that for all v ∈ Vσ and v′ ∈ V : ζ(v) = v′ implies that Player σ can
move from v to v′. A play v0v1 . . . is said to conform to ζ if for all k ∈ N, such that
vk ∈ Vσ: vk+1 = ζ(v0 . . . vk). The strategy is called memoryless if for all w,w ′ ∈ V ∗,
v ∈ Vσ: ζ(wv) = ζ(w′v). As such, a memoryless strategy ζ can simply be viewed as a
function Vσ → V .

A strategy ζ for player σ is a winning strategy from V ′ ⊆ V if every play that starts
from a vertex in V ′ and conforms to ζ is won by player σ. It is called a non-losing
strategy from V ′ if every play from v ∈ V ′ conforming to ζ is either won by player σ or
a tie.

The following can easily be obtained as a generalization from the according result
for ordinary parity games [31].

Theorem 3.10. Player σ has a winning, resp. non-losing strategy in a 3-valued parity
game G iff she has a memoryless winning, resp. non-losing strategy.

3The numbers 0 and 1 have parities and this is more intuitive for this notion of game.

27

Because of this theorem, we restrict ourselves to memoryless strategies in the follow-
ing without mentioning this explicitly every time.

Remark 3.11. The definition of an ordinary (2-valued) parity game is similar to the
definition of the 3-valued game, except that its arena is of the form A = (V0, V1, E) such
that V0 and V1 are defined as before and E is a set of edges. Plays and winning conditions
are defined similarly to the 3-valued case, except that the eagerness requirement is
omitted. Traditionally, E is total, meaning that every vertex has at least one outgoing
edge, thus every play is infinite. A play in an ordinary parity game is always winning to
some player, i.e. a tie is not possible.

3.3.2 Model Checking Games as Parity Games

Just as the model checking games for the modal µ-calculus can be seen as ordinary parity
games [32], the model checking games of the previous section can be transformed into
3-valued parity games.

Let M = {S,R+, R−, L) be a KMTS with state s0 ∈ S and let ϕ0 ∈ Lµ. We associate
with these a 3-valued parity game as follows.

Arena The vertices of the 3-valued parity game are the configurations of the model
checking game, and its edges are applications of the model checking game rules. The set
V0 consists of all configurations in which Player ∃ nominally makes a choice together with
configurations in which the play terminates and ∀ wins. Thus, ∨ and ♦ configurations,
the deterministic configurations and the literal configurations t ` l where ¬l ∈ L(t) are
all in V0. Similarly, the set V1 consists of all configurations in which Player ∀ nominally
makes a choice together with configurations in which the play terminates and ∃ wins.
These include the ∧ and � configurations, as well as the literal configurations t ` l where
l ∈ L(t). The remaining configurations, i.e. the ones of the form t ` l with both l 6∈ L(t)
and ¬l 6∈ L(t) are set to Vtie . An edge is a genuine may edge if in its corresponding
model checking game rule, the player at hand chooses a transition sR−t rather than
sR+t. All other game rule applications lead to must edges.

Priority Function Let Z1, . . . , Zn be all the variables occurring in ϕ0. They are
partially ordered by the relation ≤ϕ0

. Note that it is possible to assign to each variable
a number Θ(Zi) such that for all i, j = 1, . . . , n:

• Θ(Zi) is even iff Zi is of type ν;

• Θ(Zi) ≤ Θ(Zj) whenever Zi ≤ϕ0
Zj .

In fact, setting Θ(Zi) to the alternation depth of fp(Zi) = ηZi.ψ (the fixpoint formula
of Zi), possibly plus 1 to assure that the priority is even iff the fixpoint variable η that
binds Zi in fp(Zi) is ν, ensures that the above requirements are fulfilled. The priorities
on the parity game vertices are then assigned as follows:

Θ(s ` ψ) :=

{
Θ(Z) if ψ = Z

0 otherwise

28

0

2

0

0

1

0

0 0

0

2

0

0

1

0

00

0

v00

v01

v02

v03

v04

v05

v06 v07

v08

v11

v12

v13

v14

v15

v16v17

v18

Figure 3.3: The parity game corresponding to the game from Figure 3.2.

Note that Θ has a finite image. Moreover, the maximal priority in the game corresponds
to the alternation depth of ϕ0.

Example 3.12. In terms of a parity game, the model checking game in Figure 3.2 can
be visualized as shown in Figure 3.3. Round vertices denote vertices of Player 0, whereas
square vertices are of Player 1. Vertex v18 is shaped as a diamond to denote that it is a
(dead-end) tie vertex. The numbers labeling the vertices denote their priorities.

The following proposition follows from the fact that the 3-valued parity game is
simply a different view onto the model checking game.

Proposition 3.13. Player ∃, resp. ∀ has a winning strategy in the model checking game
ΓM (s, ϕ) iff Player 0, resp. 1 has a winning strategy in the associated 3-valued parity
game from the vertex s ` ϕ. Moreover, the strategies used in both games are the same.

Along with the fact that memoryless strategies suffice to determine the result of a
3-valued parity game, this proposition justifies our restriction to memoryless strategies
in the setting of model checking games as well.

Remark 3.14. Since the graph of a model checking game need not be total, the corre-
sponding 3-valued parity game might have dead-end vertices. These can be eliminated
by applying the following simple transformations.

1. For a dead-end vertex in Vσ (in which Vσ loses), set the priority to σ and add a
must edge back to itself.

2. For a (dead-end) vertex v ∈ Vtie , arbitrarily choose σ ∈ {0, 1} and add v to Vσ,
setting its priority to σ and adding a may edge back to itself.

29

Note that these changes make the parity game total, i.e. for every v ∈ V there is
a w ∈ V such that vE−w, and in particular there are no vertices in Vtie . Moreover,
a play looping in the additional edges is won by player σ iff the corresponding play in
the original game is won by the same player. In case (1) this is because of the assigned
priority; in case (2) this is because the assigned priority which repeats infinitely often
is associated with a player who is forced to move along a may edge. Hence, the play is
going to be a tie.

Moreover, this construction preserves the set of vertices of the game. It also preserves
the player (if any) that has a winning strategy from each vertex, and the same strategies
can be used in both games (with the exception that to get a strategy for Player σ in the
total game from a strategy in the original game, one has to add to the strategy the self
loops that were added to dead-end vertices of Player σ).

3.4 Concluding Remarks

This chapter extends the 2-valued model checking game for the µ-calculus to the 3-valued
case, where the model is an abstract KMTS and a third truth value, ⊥, is possible. The
additional truth value corresponds to the new possibility of a tie in the game. The
3-valued model checking game is a special case of a 3-valued parity game, also defined
in this chapter.

In the following chapters we present algorithms for solving 3-valued parity games,
i.e., determining the player that has a winning strategy in the game. Due to the cor-
respondence between the model checking game and the model checking problem, this
results in a model checking algorithm for the µ-calculus w.r.t. the 3-valued semantics.

The result of this chapter also holds for infinite-state KMTSs. However, in the
following chapters, when talking about solving the games, we restrict the discussion to
finite KMTSs.

30

Chapter 4

Game-Based

Abstraction-Refinement: Direct

Approach

4.1 Introduction

This chapter presents a game-based abstraction-refinement approach for specifications
in the µ-calculus, interpreted over a 3-valued semantics. The approach combines a
game-based model checking algorithm for abstract models together with an automatic
refinement for the case where the model checking result is indefinite.

Model checking is performed by determining the winner, i.e. the player that has a
winning strategy, in the corresponding 3-valued model checking game, which we view
as a 3-valued parity game (see Chapter 3). Each outcome (winner) corresponds to a
truth value. In order to determine the winner of the game, if there is one, we adapt the
recursive algorithm for solving parity games by Zielonka [81] using the presentation in
[53]. The algorithm in [81] recursively computes the set of configurations in which one
of the players has a winning strategy. It then concludes that in all other configurations
the other player has a winning strategy.

In our algorithm we need to compute recursively three sets, since there are also those
configurations in which none of the players has a winning strategy. We prove that our
algorithm always terminates and returns the correct result.

The game-based model checking has the advantage of combining the system model
and the checked formula into one structure (the game board). This enables local model
checking, where only the parts of the model that are relevant to the satisfaction (or
falsification) of the checked formula are explored [77]. This combined structure can
be computed “on-the-fly”, limited to the reachable states of the model, which carries
another advantage. Furthermore, the game-based model checking provides auxiliary
information that explains its result. Such information can help analyzing the result. For
example, in [74] the result is used to produce counterexamples.

The 3-valued semantics, used in our work, allows it to be used for verification as well
as falsification. Still, model checking of an abstract model might result in the indefi-
nite result, which calls for refinement. Refinement in this case is aimed at eliminating

31

indefinite results of the model checking, rather than false results.
In case the model checking game results in a tie, meaning the model checking result is

indefinite, we identify a cause for the tie and try to eliminate it by refining the abstract
model. More specifically, we adapt the presented algorithm to keep track of why a
vertex in the game is classified as a tie. We then exploit the information gathered by
the algorithm in order to determine a criterion for refinement. Once a criterion for
refinement is chosen, the refinement is traditionally done by splitting abstract states.
In our case, the refinement is applied only to the parts of the model from which tie
is possible. Vertices from which there is a winning strategy for one of the players are
not changed. Thus, the refined abstract models do not grow unnecessarily. The result
is an incremental abstraction-refinement scheme, where definite results (true or false)
from previous iterations are re-used. If the concrete model is finite then our abstraction-
refinement is guaranteed to terminate with a definite result.

4.1.1 Related Work

Previous works [57, 65, 66, 60, 6] suggested abstraction-refinement mechanisms for var-
ious branching time logics over 2-valued semantics, for specific abstractions. In [57] the
authors consider the logic ECTL – the existential fragment of CTL, in addition to the
universal fragment ACTL. Yet, their work does not allow a combination of existential
and universal quantifiers. The full CTL is considered in [66, 60, 6], while [65] consid-
ers the full µ-calculus. These works are not restricted to the universal or existential
fragment, yet they are designed for specific abstractions: in [65, 66] the concrete and
abstract systems share the same state space. The simplification is based on taking su-
persets and subsets of a given set with a more compact BDD representation. In [60] the
verified system has to be described as a cartesian product of machines. Finally, in [6] the
abstraction collapses all states that satisfy the same subformulas of the checked formula
into an abstract state. Our work uses a 3-valued semantics and is applicable to any
abstraction defined via a set of abstract states and a concretization function.

Model checking of the µ-calculus w.r.t. the 3-valued semantics has been considered
for example in [45, 37, 39]. There, a 3-valued µ-calculus model checking problem is
reduced to two 2-valued µ-calculus model checking problems. No new model checking
algorithm has to be given. However, the underlying transition system has to be studied
and therefore be stored twice. Furthermore, these works lack a refinement mechanism,
which prevents them from comprising an automatic abstraction-refinement framework.
While the reduction to the 2-valued case suffices to decide model checking, it is unclear
how to do refinement in a suitable manner. It is the refinement based on the model
checking algorithm which rules out the reduction approach taken in these works and
justifies our direct approach.

Model checking of multi-valued branching time logics and corresponding tools have
been studied in [49, 48, 17]. These papers focus on CTL or CTL∗ rather than on the
more expressive µ-calculus.

The closest work to the work described in this chapter is our previous work [74], where
we suggested a game-based framework for abstraction-refinement for CTL w.r.t. a 3-
valued semantics. While it is relatively simple to extend this approach to the alternation-
free µ-calculus, the extension to the full µ-calculus is not trivial. This is because, in the

32

game board for the alternation-free µ-calculus each strongly connected component can
be uniquely identified by a single fixpoint. For the full µ-calculus, this is not the case
anymore, thus a more complicated algorithm is needed in order to determine who has
the winning strategy.

In a more recent work [35], we have suggested another game-based abstraction-
refinement approach based on the 3-valued semantics1. There, predicate abstraction
is used and the abstract model is implicit since the refinement is applied directly on the
game board, rather than on the abstract model. More substantially, in [35], the 3-valued
game is solved via a reduction to two 2-valued games. Refinement is based on finding a
cause for the tie result, but the determination of a criterion for refinement is separated
from the (3-valued) model checking. Namely, it does not consider the run of the model
checking algorithm. Instead, three different heuristics for refinement determination are
presented. The relevance of the chosen criterion for the tie result is therefore less clear.
Furthermore, rather than considering a global refinement that splits every abstract state
in the indefinite part of the graph in a refinement step, refinement in [35] is applied
only locally, at a single abstract state, i.e., the lazy abstraction technique [44] for safety
properties is adapted to the µ-calculus.

4.2 Model Checking via Solving 3-Valued Parity Games

In this section we develop a game-based 3-valued model checking algorithm. The cor-
respondence between model checking, the model checking game and the 3-valued parity
games presented in the previous chapter (see Proposition 3.13 along with Theorem 3.3)
implies that the model checking problem for a state s of a KMTS and a formula ϕ ∈ Lµ

reduces to determining the player (if any) that has a winning strategy in the 3-valued
parity game that corresponds to the model checking game ΓM (s, ϕ). In the remainder of
this section we therefore discuss solving 3-valued parity games, which means determining
the player (if any) that has a winning strategy from every vertex.

Note that there are three different outcomes for every vertex in a 3-valued parity
game: Either Player 0 or Player 1 or none of them has a winning strategy. By the defini-
tion of a winning strategy it is obviously not possible for both players to have a winning
strategy (in the context of 3-valued model checking games this is implied by Theorem 3.3
as well). Therefore, solving the 3-valued parity game amounts to partitioning its set of
vertices into three winning sets: W0,W1,Wtie , where for σ ∈ {0, 1}, the set Wσ consists
of all the vertices from which Player σ has a winning strategy and the set Wtie consists
of all the vertices from which none of the players has a winning strategy. We sometimes
say that Player σ wins, or is the winner, in the vertices of Wσ.

When applied to model checking ϕ in the state s of a KMTS, we check when the
algorithm terminates whether the vertex v = s ` ϕ is in W0, W1, or Wtie and conclude
that the model checking result is tt, ff or ⊥, respectively. While the previous chapter
was applicable to both finite and infinite KMTSs, we now restrict the discussion to finite
KMTSs, where the corresponding 3-valued parity game is finite (i.e., has a finite set of
vertices).

1In fact, the underlying abstract model in [35] is more expressive and uses must hyper-transitions
(see Chapter 6).

33

4.2.1 Solving 3-Valued Parity Games

Let G = (A,Θ) be a (finite) 3-valued parity game with arena A = (V0, V1, Vtie , E
+, E−).

We adapt to the 3-valued case the recursive algorithm for solving parity games by
Zielonka [81] using the presentation in [53]. Its recursive nature makes it easy to un-
derstand and analyze, allows simple correctness proofs, and can be used as a basis for
refinement (as we will see in Section 4.3).

The main idea of the algorithm presented in [81] is as follows. In each recursive
call, σ denotes the parity of the maximal priority in the current game. The algorithm
computes the set Wσ iteratively and the remaining vertices form Wσ. In our 3-valued
game, we again compute Wσ iteratively, but we then add a phase where we also compute
Wtie iteratively. Only then, we set Wσ to the remaining vertices.

We start with some definitions. For X ⊆ V , the subgraph of G induced byX, denoted
by G[X], is (A|X ,Θ|X) where A|X = (V0 ∩X,V1 ∩X,Vtie ∩X,E

+ ∩X×X,E−∩X×X)
and Θ|X is the restriction of Θ to X. Note that vertices in Vσ might become dead-ends
in G[X], in which case they are winning for Player σ.

G[X] is a subgame of G w.r.t. σ, for σ ∈ {0, 1}, if all non dead-end vertices of Vσ in
G remain non dead-ends in G[X]. It is a subgame of G if it is a subgame w.r.t. to both
players. That is, if G[X] is a subgame, then every dead-end in it is also a dead-end in G.

For σ ∈ {0, 1} and X ⊆ V , we define the must-attractor set Attr!σ(G, X) ⊆ V and
the may-attractor set Attr?σ(G, X) ⊆ V of Player σ in G.

The must-attractor Attr!σ(G, X) ⊆ V is the set of vertices from which Player σ has
a strategy in the game G to attract the play to X or a dead-end in Vσ (where Player σ
wins) while maintaining eagerness. The may-attractor Attr?σ(G, X) ⊆ V is the set of
vertices from which Player σ has a strategy in G to either (1) attract the play to X or
a dead-end in Vσ ∪ Vtie , possibly without maintaining his (her) own eagernessor (2) to
prevent σ from playing eagerly. In other words, if σ plays eagerly, then σ can attract
the play to one of the vertices described in (1).

Let D0, D1, Dtie denote the dead-end vertices of V0, V1, Vtie respectively (i.e., Dtie =
Vtie). It can be shown that the following is an equivalent definition of the sets Attr!σ(G, X)
and Attr?σ(G, X).

Attr!0σ(G, X) = X ∪Dσ

Attr!i+1
σ (G, X) = Attr!iσ(G, X)

∪ {v ∈ Vσ \Dσ | ∃v′.vE+v′ ∧ v′ ∈ Attr!iσ(G, X)}
∪ {v ∈ Vσ \Dσ | ∀v′.vE−v′ =⇒ v′ ∈ Attr!iσ(G, X)}

Attr!σ(G, X) =
⋃
{Attr!iσ(G, X) | i ≥ 0}

Attr?0
σ(G, X) = X ∪Dσ ∪Dtie

Attr?i+1
σ (G, X) = Attr?iσ(G, X)

∪ {v ∈ Vσ \Dσ | ∃v′.vE−v′ ∧ v′ ∈ Attr?iσ(G, X)}
∪ {v ∈ Vσ \Dσ | ∀v′.vE+v′ =⇒ v′ ∈ Attr?iσ(G, X)}

Attr?σ(G, X) =
⋃
{Attr?iσ(G, X) | i ≥ 0}

The latter definition of the attractor sets provides a method for computing them. As i
increases, we calculate Attr!iσ(G, X) or Attr?iσ(G, X) until it is the same as Attr!i−1

σ (G, X)
or Attr?i−1

σ (G, X), respectively. It is also easy to compute, for each v in Attr!σ(G, X)
or Attr?σ(G, X), the corresponding strategy that allows Player σ to indeed attract the

34

play to the proper vertices as required. For example, if v ∈ Attr!i+1
σ (G, X)\Attr!iσ(G, X)

then choose v′ ∈ Attr!iσ(G, X) with vE+v′ which must exist by definition.
Note that Attr!iσ(G, X) ⊆ Attr?iσ(G, X), and that for X ′ = V \Attr?σ(G, X) we have

X ′ = Attr!σ(G, X
′). Thus, the corresponding must and may attractors partition V .

Furthermore:

Lemma 4.1. For every 3-valued parity game G and set of vertices X we have

1. Attr!σ(G,Attr!σ(G, X)) = Attr!σ(G, X).

2. Attr?σ(G,Attr?σ(G, X)) = Attr?σ(G, X).

Solving the Game

We present a recursive algorithm SolveGame(G) (see Figure 4.4) that computes the sets
W0, W1, andWtie for a 3-valued parity game G. Let n be the maximum priority occurring
in G.

n = 0: W1 = Attr!1(G, ∅)
W0 = V \ Attr?1(G, ∅)
Wtie = Attr?1(G, ∅) \ Attr!1(G, ∅)

Since the maximum priority of G is 0, Player 1 can only win G on dead-ends in V0 or
vertices from which he can eagerly attract the play to such a dead-end. This is exactly
Attr!1(G, ∅), and the strategy for Player 1 follows his strategy for the must attractor set.
From the rest of the vertices Player 1 does not have a winning strategy. For vertices
in V \ Attr?1(G, ∅), Player 0 can always avoid reaching dead-ends in V0 ∪ Vtie , while
playing eagerly. Since the maximum priority in this subgraph is 0, it is easy to see
that she wins in such vertices. Furthermore, since W0 = V \ Attr?1(G, ∅) we know that
W0 = Attr!0(G,W0) (as noted above these must and may attractors partition V). Thus
in order to find the strategy for Player 0 it suffices to compute her strategy for the
must attractor set. The remaining vertices in Attr?1(G, ∅) \ Attr!1(G, ∅) are a subset of
Attr?1(G, ∅), which is why Player 0 does not win from them (and neither does Player 1,
as previously claimed). Therefore none of the players wins in Attr?1(G, ∅) \Attr!1(G, ∅).

n ≥ 1: We assume that we can solve every game with maximum priority smaller
than n. Let σ = n mod 2 be the player that wins if the play visits infinitely often the
maximum priority n.

We first compute Wσ in G. This is done by the algorithm ComputeOpponentWin

shown in Figure 4.2. The sets used by the algorithm are illustrated by Figure 4.1.
Intuitively, in each iteration we hold a subset of the winning region of Player σ. We

first extend it to Xσ by using the must-attractor set of Player σ (which ensures his
eagerness, line 4). From the remaining vertices, we disregard those from which Player σ
can attract the play to a vertex with maximum priority n, perhaps by giving up her
eagerness. Left are the vertices in Y (line 7) and Player σ is basically trapped in it. She
can only “escape” from it to Xσ . Thus, we can add the winning region of Player σ in
G[Y] to his winning region in G. This way, each iteration results in a better (bigger)

35

�����
�̄̄̄̄

����
�̄

�

�����
�

� �	

�

� � �

�
�̄

�

� ̄̄ ̄̄

�

Figure 4.1: Illustration of the sets used by ComputeOpponentWin, and of those used
by ComputeNoWin, in which the must-attractor is replaced by a may-attractor and vice
versa.

Algorithm ComputeOpponentWin(G, σ, n)

1: Wσ := ∅

2: repeat

3: W ′
σ := Wσ

4: Xσ := Attr!σ(G,Wσ)

5: Xσ := V \Xσ

6: N := {v ∈ Xσ | Θ(v) = n}

7: Y := Xσ \ Attr?σ(G[Xσ], N)

8: (Y0, Y1, Ytie) := SolveGame(G[Y])

9: Wσ := Xσ ∪ Yσ

10:until W ′
σ = Wσ

11:return Wσ

Figure 4.2: Computation of winning vertices for the opponent: ComputeOpponentWin.

underapproximation of the winning region of Player σ in G, until the full region is found
(line 10). The proof of the correctness of the algorithm follows.

Lemma 4.2. For every Xσ as used in the algorithm ComputeOpponentWin (see Fig-
ure 4.2), G[Xσ] is a subgame w.r.t. σ.

Proof. We show that no vertex, other than vertices in Vσ , becomes a dead-end when
moving from G to G[Xσ]. Let v ∈ Xσ be a vertex in Vσ which is not a dead-end in
G. Suppose to the contrary that all of its successors are in V \Xσ = Xσ. This means
that v ∈ Attr!σ(G, Xσ) and therefore v ∈ Xσ as well (by Lemma 4.1 since Xσ is a
must-attractor), in contradiction.

Lemma 4.3. For every Y as used in the algorithm ComputeOpponentWin (see Fig-
ure 4.2), G[Y] is a subgame.

36

Proof. We show that no vertex becomes a dead-end when moving from G to G[Y]. Let
v ∈ Y be a vertex which is not a dead-end in G.

We first show that v is not a dead-end in G[Xσ]. By Lemma 4.2, if v is a dead-end
in G[Xσ], then it belongs to Vσ in G, and it became a dead-end (of Player σ) in G[Xσ].
Therefore v ∈ Attr?σ(G[Xσ], N), in contradiction to v ∈ Y = Xσ \ Attr?σ(G[Xσ], N).

We conclude that v is not a dead-end in G[Xσ], and thus has a successor in Xσ. It
remains to show that at least one such successor is not in Attr?σ(G[Xσ], N). This is
because if all the successors in Xσ are also in Attr?σ(G[Xσ], N) (provided that at least
one successor exists in Xσ), then v ∈ Attr?σ(G[Xσ],Attr?σ(G[Xσ], N)), and therefore
v ∈ Attr?σ(G[Xσ], N) as well (by Lemma 4.1), in contradiction to v ∈ Y = Xσ \
Attr?σ(G[Xσ], N).

Moreover, the maximum priority in G[Y] is smaller than n, which is why the recursion
terminates.

Lemma 4.4. At the beginning of each iteration in the algorithm ComputeOpponentWin

(see Figure 4.2), Wσ is a winning region for Player σ in G.

Proof. The proof is by induction. The base case is when Wσ = ∅ and the claim holds.
Suppose that at the beginning of the ith iteration Wσ is a winning region for Player σ
in G. We show that it continues to be so at the end of the iteration and therefore at the
beginning of the i+ 1 iteration.

Clearly, Xσ = Attr!σ(G,Wσ) is also a winning region for Player σ in G: by simply
using his strategy to attract the play to Dσ or to Wσ (where he wins) while being eager,
and from there using the winning strategy of Wσ in G.

We now show that Yσ is also a winning region of Player σ in G. We know that it
is a winning region for him in G[Y] (by the correctness of the algorithm SolveGame for
games with a maximum priority smaller than n). As for G, for every vertex in Yσ , as
long as the play remains in Y , Player σ can use his strategy for G[Y]. Since G[Y] is a
subgame, Player σ will always be able to stay within Y in his moves and if the play stays
there, then he wins (since he uses his winning strategy). Clearly Player σ cannot move
from Y to Xσ \ Y = Attr?σ(G[Xσ], N). Otherwise the vertex v ∈ Y ⊆ Xσ where this is
done belongs to Attr?σ(G[Xσ],Attr?σ(G[Xσ], N)) (because the same move is possible in
G[Xσ]). Hence v belongs to Attr?σ(G[Xσ], N) as well (by Lemma 4.1), in contradiction
to v ∈ Y . Finally, if Player σ moves to V \Xσ = Xσ, then Player σ will use his strategy
for Xσ in G and also win.

We conclude that Xσ ∪ Yσ is a winning region for Player σ in G.

This lemma ensures that the final result Wσ of ComputeOpponentWin is indeed a
subset of the winning region of Player σ in G. It remains to show that this is actually
an equality, i.e. that no winning vertices are missing.

Lemma 4.5. When W ′
σ = Wσ, then V \Wσ is a non-winning region for Player σ in G.

Proof. When W ′
σ = Wσ, it must be the case that the last iteration of SolveGame ended

with Yσ = ∅, and Wσ = Xσ. Therefore it suffices to show that V \ Xσ = Xσ is a
non-winning region for Player σ in G.

37

Clearly, Player σ cannot move from Xσ to Xσ without compromising his eagerness.
Otherwise the vertex v ∈ Xσ where this is done belongs to Attr!σ(G, Xσ) and therefore
to Xσ as well (by Lemma 4.1 since Xσ is a must-attractor). This contradicts v ∈ Xσ.
Hence, Player σ cannot win by moving to Xσ and since G[Xσ] is a subgame w.r.t. σ,
Player σ is never obliged to move to Xσ .

Consider the case where the play stays in Xσ. In order to prevent Player σ from
winning, Player σ will play as follows. If the current configuration is in Y , then Player σ
will use her strategy on G[Y] for preventing Player σ from winning (such a strategy
exists since Yσ = ∅). If the play visits a vertex v ∈ N which is controlled by Player σ,
then Player σ will move to any successor v ′ inside Xσ . Such a successor must exist since
vertices in N are never dead-ends in G. Furthermore, the vertex at hand belongs to Vσ,
thus since G[Xσ] is a subgame w.r.t. σ (by Lemma 4.2), it remains non dead-end in
G[Xσ]. If the play visits Attr?σ(G[Xσ], N) \ N , then Player σ will use his strategy to
either cause Player σ to give up eagerness, or to attract the play in a finite number of
steps to N or D′

σ ∪Dtie (such a strategy exists by the definition of a may-attractor set).
We use D′

σ to denote the dead-end vertices of Player σ in G[Xσ]. Since G[Xσ] is not
necessarily a subgame w.r.t. σ, D′

σ may contain non dead-end vertices of Player σ from
G that became dead-ends in G[Xσ]. However, this means that all their successors are in
Xσ, and as stated before Player σ cannot move eagerly from Xσ to Xσ, thus he cannot
win in them in G as well.

This strategy indeed prevents Player σ from winning: Three cases can occur. First,
from some moment on, the play stays forever inside of Y . In this case Player σ cannot win
(by the correctness of the algorithm SolveGame in G[Y] since Yσ = ∅). Second, Player σ
is not eageror the play reaches a dead-end in (Dσ ∪Dtie) ∩ (Attr?σ(G[Xσ], N) \ N), in
which case Player σ does not win as well. Third, the play visits infinitely often the
maximum priority n (in the set N) and Player σ cannot win.

Corollary 4.6. The result of ComputeOpponentWin is the full winning region of Player σ
in G.

In the original algorithm in [81], given the set Wσ , we could conclude that all the
remaining vertices form the winning region of Player σ in G. Yet, this is not the case
here.

Given the set Wσ, we now divide the remaining vertices into Wtie and Wσ. To do
so, we first compute the set nowin of vertices in G from which Player σ does not have a
winning strategy, i.e. Player σ has a strategy that prevents Player σ from winning. This
is again done iteratively, by the algorithm ComputeNoWin, given in Figure 4.3. Figure 4.1,
which illustrates the sets used by ComputeOpponentWin also illustrates the sets used by
Figure 4.1, when replacing the must-attractor by a may-attractor and vice versa.

The algorithm ComputeNoWin resembles the algorithm ComputeOpponentWin. The
initialization here is to Wσ , since this is clearly a non-winning region of Player σ. Fur-
thermore, in this case after the recursive call to SolveGame(G[Y]), the set Xσ is extended
not only by the winning region of Player σ in G[Y], Yσ , but also by the tie-region Ytie

(line 9). Apart from those differences, one can see that the only difference is that the
use of a must-attractor set is replaced by a may-attractor set and vice versa. This is
because in the case of ComputeOpponentWin we are after a definite win of Player σ,

38

Algorithm ComputeNoWin (G, σ, n, Wσ)

1: nowin := Wσ

2: repeat

3: nowin′ := nowin

4: Xσ := Attr?σ(G, nowin)

5: Xσ := V \Xσ

6: N := {v ∈ Xσ | Θ(v) = n}

7: Y := Xσ \ Attr!σ(G[Xσ], N)

8: (Y0, Y1, Ytie) := SolveGame(G[Y])

9: nowin := Xσ ∪ Yσ ∪ Ytie

10:until nowin′ = nowin

11:return nowin

Figure 4.3: Computation of vertices in which no win is possible: ComputeNoWin.

whereas in the case of ComputeNoWin we also allow a tie, therefore may edges take a
different role. Namely, in this case, when we extend the current set nowin (line 4), we
use a may-attractor set of Player σ because when our goal is to prevent Player σ from
winning, we allow Player σ to not be eager. On the other hand, in the computation of
Y we now remove from Xσ only the vertices from which Player σ can eagerly attract
the play to the maximum priority (using the must-attractor set, line 7). This is because
only such vertices cannot contribute to the goal of preventing Player σ from winning.
Other vertices where he can reach the maximum priority, but only at the expense of
eagerness, can still be of use for this goal.

Lemma 4.7. For every Xσ as used in the algorithm ComputeNoWin (see Figure 4.3),
G[Xσ] is a subgame.

Proof. We show that no vertex becomes a dead-end when moving from G to G[Xσ]. Let
v ∈ Xσ be a vertex which is not a dead-end in G. Suppose to the contrary that all its
successors are in V \Xσ = Xσ (where we know that at least one successor exists). This
means that v ∈ Attr?σ(G, Xσ) and therefore v ∈ Xσ as well (by Lemma 4.1 since Xσ is
a may-attractor), in contradiction.

Lemma 4.8. For every Y as used in the algorithm ComputeNoWin (see Figure 4.3), G[Y]
is a subgame.

Proof. We show that no vertex becomes a dead-end when moving from G to G[Y]. Let
v ∈ Y be a vertex which is not a dead-end in G. Then, by Lemma 4.7, v has a successor
in Xσ . Furthermore, a simple proof by contradiction, similar to the proof of Lemma 4.7,
shows that if v ∈ Vσ, then it has a must successor in Xσ. It remains to show that at
least one such successor is not in Attr!σ(G[Xσ], N). This is because if all the successors
in Xσ, including the must successor for v ∈ Vσ, are also in Attr!σ(G[Xσ], N), then
v ∈ Attr!σ(G[Xσ],Attr!σ(G[Xσ], N)), and therefore v ∈ Attr!σ(G[Xσ], N) as well (by
Lemma 4.1), in contradiction to v ∈ Y = Xσ \ Attr!σ(G[Xσ], N).

39

Again, the maximum priority in G[Y] is smaller than n, which is why the recursion
terminates.

Lemma 4.9. At the beginning of each iteration, the set nowin is a non-winning region
for Player σ in G.

Proof. The proof is by induction. The base case is when nowin = Wσ and the claim
holds. Suppose that at the beginning of the ith iteration nowin is a non-winning region
for Player σ in G. We show that it continues to be so at the end of the iteration and
therefore at the beginning of the iteration i+ 1.

Clearly, Xσ = Attr?σ(G, nowin) is also a non-winning region for Player σ in G:
Player σ can use his strategy to either (1) cause Player σ to not be eager, (2) attract
the play to a dead-end in Dσ ∪Dtie (in which case Player σ cannot win), or (3) attract
the play to nowin, where he can use his strategy for preventing Player σ from winning
in G (by the induction hypothesis).

We now show that Yσ ∪ Ytie is also a non-winning region of Player σ in G. We know
that it is a non-winning region for her in G[Y] (by the correctness of the algorithm
SolveGame for games with a maximum priority smaller than n). As for G, for every
vertex in Yσ ∪ Ytie , as long as the play remains in Y , Player σ can use his strategy in
G[Y]. Since this is a subgame, Player σ will always be able to remain in Y in his moves
and if the play stays there Player σ will not win. Clearly Player σ cannot eagerly move
from Y to Xσ \ Y = Attr!σ(G[Xσ], N). Otherwise the vertex v ∈ Y ⊆ Xσ where this is
done belongs to Attr!σ(G[Xσ],Attr!σ(G[Xσ], N)) (because the same move is possible in
G[Xσ]). Hence v belongs to Attr!σ(G[Xσ], N) as well (by Lemma 4.1), in contradiction
to v ∈ Y . Finally, if Player σ moves to V \Xσ = Xσ, then Player σ will use his strategy
for Xσ in G to prevent her from winning.

We conclude that Xσ ∪ Yσ ∪ Ytie is a non-winning region for Player σ in G.

This lemma ensures that the final result nowin of ComputeNoWin is indeed a subset
of the non-winning region of Player σ in G. It remains to show that this is actually an
equality, i.e. that no non-winning vertices are missing.

Lemma 4.10. When nowin′ = nowin, then V \nowin is a winning region for Player σ
in G.

Proof. When nowin′ = nowin, it must be the case that the last iteration of SolveGame
ended with Yσ = Ytie = ∅, and nowin = Xσ . Therefore it suffices to show that V \Xσ =
Xσ is a winning region for Player σ in G.

Clearly, Player σ cannot move from Xσ to Xσ. Otherwise the vertex v ∈ Xσ where
this is done belongs to Attr?σ(G, Xσ) and therefore to Xσ as well (by Lemma 4.1 since
Xσ is a may-attractor). This contradicts v ∈ Xσ. Hence, Player σ is “trapped” in Xσ

and since G[Xσ] is a subgame, Player σ is never obliged to move to Xσ .
Consider the case where the play stays in Xσ. In order to win, Player σ will play as

follows. If the current configuration is in Y , then Player σ will use his winning strategy on
G[Y] (such a strategy exists since Yσ = Ytie = ∅ and Yσ = Y). If the play visits a vertex
v ∈ N , then Player σ will move to a must successor v ′ inside Xσ. Such a successor exists
because otherwise v ∈ Attr?σ(G, Xσ) and hence also in Xσ (by Lemma 4.1 since Xσ is a

40

Algorithm SolveGame (G)

1: if V = ∅ then return (∅, ∅, ∅)

2: n := max{Θ(v) | v ∈ V }

3: if n = 0 then // return (W0, W1, Wtie)

4: return (V \ Attr?1(G, ∅), Attr!1(G, ∅), Attr?1(G, ∅) \ Attr!1(G, ∅))

5: else

6: σ := n mod 2

7: Wσ := ComputeOpponentWin(G, σ, n)

8: Wσ := V \ ComputeNoWin(G, σ, n, Wσ)

9: Wtie := V \ (Wσ ∪Wσ)

10: return (W0, W1, Wtie)

Figure 4.4: Algorithm SolveGame.

may-attractor), in contradiction to v ∈ N ⊆ Xσ. If the play visits Attr!σ(G[Xσ], N) \N ,
then Player σ will attract it in a finite number of steps to N or Dσ , while being eager.

This strategy ensures that Player σ is eagerand is indeed winning: Three cases can
occur. First, from some moment on, the play stays forever inside of Y . In this case
Player σ wins (by the correctness of the algorithm SolveGame in G[Y]). Second, the
play reaches a dead-end in Dσ ∩ (Attr!σ(G[Xσ], N) \N), in which case Player σ wins as
well. Third, the play visits infinitely often the maximum priority n (in the set N) and
Player σ wins.

Corollary 4.11. ComputeNoWin returns the full non-winning region of Player σ in G.

We can now conclude that the remaining vertices in V \nowin form the full winning
region of Player σ in G, and the tie region in G is exactly nowin \Wσ . This is the set of
vertices from which neither player wins.

To sum up, solving the game is achieved by the algorithm SolveGame shown in
Figure 4.4.

We have suggested an algorithm for computing the winning (and non-winning) re-
gions of the players. In the correctness proofs, we have also defined strategies for the
players. The algorithm can also be used for checking a concrete system in which all may
edges are also must edges and Vtie = ∅.

Remark 4.12. Let G be a 3-valued parity game in which Vtie = ∅ and all edges are must
edges. Then Wtie computed by the algorithm SolveGame is empty.

Complexity Let l and m denote the number of vertices and edges of G, and, let n be
the maximum priority. Computing attractor sets is a reachability problem and as such
linear in m+ l = O(m). Let SG(m, l, n), COW (m, l, n), and CNW (m, l, n) denote the
complexity of SolveGame, ComputeOpponentWin, and ComputeNoWin, respectively. We

41

get the following relations:

SG(m, l, 0) ≤ c1 ·m

SG(m, l, n+ 1) ≤ c2 ·m+ COW (l,m, n+ 1) + CNW (l,m, n+ 1)

COW (m, l, n+ 1) ≤ l1 · (c3 ·m+ SG(m, l, n))

CNW (m, l, n+ 1) ≤ l2 · (c4 ·m+ SG(m, l, n))

where in each recursive call of solveGame, l1 + l2 ≤ l. From this we easily conclude that
the time complexity of the algorithm is in O(m · ln). Thus, the complexity is comparable
to known upper bounds for solving ordinary (2-valued) parity games.

We sum up this section:

Theorem 4.13. Algorithm SolveGame computes the winning regions (W0,W1,Wtie) for
a given 3-valued parity game in time exponential in the maximal priority. Furthermore,
it can be used to determine the winning strategy for the corresponding winner.

We conclude that when applied to a model checking game ΓM (s, ϕ), the complexity
of SolveGame is exponential in the alternation depth of ϕ.

Example 4.14. We illustrate the algorithm SolveGame on the 3-valued parity game G
depicted in Figure 3.3.

SolveGame(G): n = 2, σ = 0 % D0 = ∅, D1 = {v08}, Dtie = {v18}

W1 := ComputeOpponentWin(G, 0, 2) = ∅ % see below.

W0 := V \ ComputeNoWin (G, 0, 2, ∅) = V \ (V \ {v08}) = {v08} % see below.

Wtie := V \ (W0 ∪W1) = V \ {v08}

SolveGame(G) returns ({v08}, ∅, V \ {v08})

ComputeOpponentWin(G, σ = 0, n = 2):

Initially, W1 := ∅

First iteration:

X1 := Attr!1(G, ∅) = ∅ % From X1, Player 1 wins by attracting each play to D0.

X0 := V \X1 = V % In X0, the winner is to be determined.

N := {v ∈ X0 | Θ(v) = 2} = {v01, v11}

% N comprises of vertices with maximal priority. Attr?
0
(G[X0],N) = V .

Y := X0 \ Attr?0(G[X0], N) = V \ V = ∅

% From Y , Player 0 cannot escape to the maximal priority.

(Y0, Y1, Ytie) := SolveGame(G[Y]) = (∅, ∅, ∅)

W1 := X1 ∪ Y1 = ∅ % No vertices were added to W1, thus the loop terminates.

ComputeOpponentWin(G, 0, 2) returns ∅.

ComputeNoWin (G, σ = 0, n = 2, W1 = ∅):

Initially, nowin := ∅ % initialized to W1.

First iteration:

42

X1 := Attr?1(G, ∅) = {v16, v18} % In X1, either Player 1 wins or a tie occurs.

X0 := V \X1 = V \ {v16, v18} % In X0, whether Player 0 can win is to be determined.

N := {v ∈ X0 | Θ(v) = 2} = {v01, v11}

% Attr!
0
(G[X0],N) = {v00 , v01, v03, v04 , v05 , v06, v08, v11}.

Y := X0 \ Attr!0(G[X0], N) = {v12, v13, v14, v15, v17, v02, v07}

% From Y , Player 0 cannot eagerly escape to the maximal priority.

(Y0, Y1, Ytie) := SolveGame(G[Y]) = (∅, Y , ∅) % Recursive call. See below.

nowin := X1 ∪ Y1 ∪ Ytie = {v12, v13, v14, v15, v16, v17, v18, v02, v07}

Second iteration:

X1 := Attr?1(G, nowin) = V \ {v08}

X0 := V \X1 = {v08}

N := {v ∈ X0 | Θ(v) = 2} = ∅ % Attr!
0
(G[X0],N) = {v08}

Y := X0 \ Attr!0(G[X0], N) = {v08} \ {v08} = ∅

(Y0, Y1, Ytie) := SolveGame(G[Y]) = (∅, ∅, ∅)

nowin := X1 ∪ Yσ ∪ Ytie = V \ {v08}

Third iteration:

X1 := Attr?1(G, nowin) = V \ {v08}

% The rest of the execution is the same as the second iteration. nowin remains unchanged and

the loop terminates.

ComputeNoWin (G, 0, 2, ∅) returns V \ {v08}

We conclude that W0 = {v08}, W1 = ∅, and that all remaining vertices form the set
Wtie . We now display the execution of the recursive call SolveGame(G[Y]), where Y =
{v12, v13, v14, v15, v17, v02, v07}. The subgame G[Y] is illustrated in Figure 4.5. In the
following, we use primed versions of the set names in order to prevent confusion with
the sets used by SolveGame(G), in particular Y .

SolveGame(G[Y]): n = 1, σ = 1 % D′

0
= ∅, D′

1
= ∅, D′

tie
= ∅

W ′
0 := ComputeOpponentWin(G[Y], 1, 1) = ∅ % see below.

W ′
1 := Y \ ComputeNoWin (G[Y], 1, 1, ∅) = Y \ ∅ = Y % see below.

W ′
tie := Y \ (W ′

0 ∪W
′
1) = ∅

SolveGame(G[Y]) returns (∅, Y , ∅)

ComputeOpponentWin(G[Y], σ = 1, n = 1):

Initially, W ′
0 = ∅

X ′
0 := Attr!0(G[Y], ∅) = ∅

X ′
1 := Y \X ′

0 = Y

N := {v ∈ X ′
1 | Θ(v) = 1} = {v14} % Attr?

1
(G[X′

1
],N) = Y

Y ′ := X ′
1 \ Attr?1(G[X ′

1], N) = Y \ Y = ∅

(Y ′
0 , Y

′
1 , Y

′
tie) := SolveGame(G[Y ′]) = (∅, ∅, ∅)

W ′
0 := X ′

0 ∪ Y
′
0 = ∅ % No vertices were added to W ′

0
, thus the loop terminates.

43

0

2

0

0

1

0

0 0

0

2

0

0

1

0

00

0

v00

v01

v02

v03

v04

v05

v06 v07

v08

v11

v12

v13

v14

v15

v16v17

v18

Y

Figure 4.5: Subgame G[Y] used by SolveGame (G) in Example 4.14.

ComputeOpponentWin(G[Y], 1, 1) returns ∅

ComputeNoWin (G[Y], σ = 1, n = 1, W ′
0 = ∅):

Initially, nowin′ := ∅

X ′
0 := Attr?0(G[Y], ∅) = ∅

X ′
1 := Y \X ′

0 = Y

N := {v ∈ X ′
1 | Θ(v) = 1} = {v14} % Attr!

1
(G[X′

1
],N) = Y

Y ′ := X ′
1 \ Attr!1(G[X ′

1], N) = Y \ Y = ∅

(Y ′
0 , Y

′
1 , Y

′
tie) := SolveGame(G[Y ′]) = (∅, ∅, ∅)

nowin′ = X ′
0 ∪Y

′
0 ∪Y

′
tie = ∅ % No vertices were added to nowin′, thus the loop terminates.

ComputeNoWin(G[Y], 1, 1, ∅) returns ∅

Based on Proposition 3.13 and Theorem 3.3 from the previous chapter, the algorithm
for solving a 3-valued parity game provides a 3-valued model checking algorithm for
KMTSs.

Remark 4.15. The same algorithm can also be used to model check a formula ϕ ∈ Lµ
on a KMTS that has a set of initial states S0. In this case, to determine the value of
ϕ on the KMTS, we need to consider all the vertices in S0 × {ϕ}. If all of them are
in W0, then the value of ϕ in all the initial states is tt. Thus, the KMTS satisfies ϕ.
If at least one of them is in W1, then the value of ϕ in the corresponding initial state
is ff, and the KMTS falsifies ϕ. Otherwise, the value of ϕ in the KMTS is indefinite.
In order to make sure that all the vertices in S0 × {ϕ} are considered when solving

44

the corresponding 3-valued game, it is possible to add to the 3-valued parity game an
auxiliary initial vertex, connected by edges to all the vertices in S0 × {ϕ}.

4.3 Refinement of 3-Valued Parity Games

Assume we are interested in knowing whether a concrete state sc, represented by an
abstract state sa, satisfies a given formula ϕ. Let (W0,W1,Wtie) be the winning sets
computed for the 3-valued parity game obtained by the model checking game ΓM (sa, ϕ)
for sa and ϕ. By Proposition 3.13 along with Corollary 3.4 if the vertex v = sa ` ϕ is
in W0 or W1 then the answer to the model checking problem is clear: if v ∈W0 then sc
satisfies ϕ, and similarly, if v ∈ W1 then sc falsifies ϕ. However, if v ∈ Wtie , the result
is indefinite and we have to refine the abstraction to get the answer.

When considering a KMTS with a set of initial states S0
A, refinement is needed when

at least one of the vertices in S0
A×{ϕ} is not in W0 (thus the result is not tt), and none

of them is in W1 (thus the result is also not ff). This means that at least one of the
initial vertices is in Wtie .

Refinement is performed by splitting the abstract states. As in most cases, our
refinement consists of two parts. First, we choose a criterion that tells us how to split
the abstract states. We then construct the refined abstract model, using the refined
abstract state space. In the rest of this section we focus on the first part, which is also
performed in two steps: First, some failure cause is identified. Then, the criterion for
altering the abstraction, and splitting all the abstract states, is determined based on a
failure analysis.

4.3.1 Identifying a Failure Cause

Given that v ∈ Wtie , our goal in the refinement is to find and eliminate at least one of
the causes of the indefinite result. Thus, the criterion for splitting the abstract states
is obtained from a failure vertex. This is a vertex v ′ = s′a ` ϕ′ such that (1) v′ ∈ Wtie ;
(2) the classification of v′ to Wtie affects the indefinite result of v; and (3) the indefinite
classification of v′ can be changed by splitting it. The latter requirement means that the
vertex v′ itself is responsible for introducing (some) uncertainty. The other requirements
demand that this uncertainty is relevant to the result in v.

The game solving algorithm is adapted to remember for each vertex in Wtie a failure
vertex, and a failure cause. The state s′a of the failure vertex v′ = s′a ` ϕ

′ is also referred
to as the failure state. We distinguish between the case where n = 0 and the case where
n ≥ 1 in SolveGame.

n = 0: Consider the base case of SolveGame, where n = 0. In this case the set Wtie is
computed by Attr?1(G, ∅)\W1. Note that W1 is already updated when the computation
of Attr?1(G, ∅) starts. We now enrich the computation of Attr?1(G, ∅) to record failure
information for vertices which are not in W1 and thus will be in Wtie .

Since a similar computation is used in the case n ≥ 1 as well, we describe it more
generally. Namely, we set σ = 0, meaning that 0 is replaced by σ, 1 is replaced by σ

45

and the role of W1 is replaced by Wσ. The enriched computation of Attr?σ(G, ∅) is as
follows.

In the initialization of the computation we have two possibilities: (1) vertices in Dσ,
which are clearly not in Wtie , thus no additional information is needed; and (2) vertices
in Dtie , for which the failure vertex and cause are the vertex itself [failDE].

As for the iteration, suppose we have already computed Attr?iσ(G, ∅), with the addi-
tional information attached to every vertex in it which is not in Wσ . We now compute
the set Attr?i+1

σ (G, ∅). Let v′ be a vertex that is added to Attr?i+1
σ (G, ∅). If v′ ∈ Wσ,

then no information is needed. Otherwise, we do the following.

o1. If v′ ∈ Vσ and there exists a may edge v′E−v′′ such that v′′ ∈ Wσ, then v′ is a
failure vertex, with this edge being the cause [failPσ].

o2. If v′ ∈ Vσ and has a may edge v′E−v′′ such that v′′ 6∈ Attr?iσ(G, ∅), then v′ is a
failure vertex, with this edge being the cause [failPσ].

o3. Otherwise, there exists a may (possibly must) edge v ′E−v′′ such that v′′ ∈ Attr?iσ(G, ∅)\
Wσ. The failure vertex and cause of v′ are those of v′′.

Note that the order of the “if” statements in the algorithm determines the failure vertex
returned by the algorithm. Different heuristics can be applied regarding their order.

Lemma 4.16. The computation of failure vertices for n = 0 is well defined, meaning
that all the possible cases are handled. Furthermore, if the failure cause computed by it
is a may edge, then this edge is not a must edge.

Proof. To be convinced of this, one needs to notice that all the possible cases are handled.
Moreover, we need to ensure that whenever cases o1 and o2 apply, then the edge chosen
as a failure cause is not a must edge. By the definition of Attr?1(G, ∅), every vertex
v′ 6∈W1 that is added to the set Attr?i+1

1 (G, ∅) fulfills one of the following possibilities.

• v′ ∈ V1 and has a may edge to a vertex v′′ ∈ Attr?i1(G, ∅). If there exists such an
edge for which v′′ ∈W1, then case o1 applies. In this case we are guaranteed that
(v′, v′′) 6∈ E+, since otherwise v′ would be in W1 as well. If there is no such edge
for which v′′ ∈ W1, then there exists an edge to a vertex v ′′ ∈ Attr?i1(G, ∅) \W1

and case o3 applies.

• v′ ∈ V0 and all its must edges are to vertices in Attr?i1(G, ∅). If it has a may edge
v′E−v′′ such that v′′ 6∈ Attr?i1(G, ∅), then case o2 applies. Furthermore, this edge
is not a must edge, because otherwise the condition for adding v ′ to the attractor
set would not be fulfilled. If there is no such edge, then all the outgoing edges of
v′ are to Attr?i1(G, ∅). If all of them are in W1, then v′ also has to be in W1, in
contradiction. Thus, there exists at least one outgoing edge to Attr?i1(G, ∅) \W1

and case o3 applies.

Intuitively, during each iteration of the computation, if the vertex v ′ ∈ Wtie that is
added to Attr?i+1

1 (G, ∅) is not responsible for introducing its indefinite result (cases o1

46

and o2), then the computation greedily continues with a vertex in Wtie that affects its
indefinite classification (case o3).

One can see that there are three possibilities where we say that the vertex itself is
responsible for the uncertainty and consider it a failure vertex: failDE, failPσ and failPσ.
For a vertex in Dtie (case failDE), the failure cause is clear. Consider case failPσ. In
this case v′ ∈ Vσ is considered a failure vertex, with the may edge to v ′′ ∈Wσ being the
failure cause. By Lemma 4.16 we have that this edge is not a must edge. The intuition
for v′ being a failure vertex is that if this edge was a must edge, then it would change
the classification of v′ to Wσ. If no such edge existed, then v′ would not be added to
Attr?i+1

σ (G, ∅) and thus to Wtie . Finally, consider case failPσ. In this case v ′ ∈ Vσ has a
may edge to v′′ which is still unclassified at the time v ′ is added to Attr?σ(G, ∅). This
edge is considered a failure cause because if it was a must edge rather than a may edge
(which by Lemma 4.16 it is not), then v′ would remain unclassified as well for at least
one more iteration. Thus it would have a better chance to eventually remain outside the
set Attr?iσ(G, ∅) until fixpoint is reached, changing the classification of v ′ to Wσ.

n ≥ 1: We now refer to the case where n ≥ 1 in SolveGame. In this case the set Wtie

is computed by V \ (Wσ ∪Wσ). Recall that Wσ is computed by V \ ComputeNoWin(G,
σ, n, Wσ). Therefore, Wtie is equal to ComputeNoWin(G, σ, n, Wσ) \Wσ , where Wσ is
already updated when the computation of ComputeNoWin(G, σ, n, Wσ) starts. Similarly
to the previous case, we enrich the computation of ComputeNoWin(G, σ, n, Wσ), and
remember a failure vertex for each vertex which is not in Wσ and thus will be in Wtie .
In each iteration of ComputeNoWin the vertices added to the computed set are of three
types: Xσ , Yσ and Ytie .

v′ ∈ Xσ: The set Xσ is computed by Attr?σ(G, nowin). Thus in order to find failure
vertices for such vertices that are not in Wσ we use an enriched computation of the
may-attractor set, as described in the case of n = 0. This time in the initialization
of the computation we also have the set nowin from the previous iteration, for
which we already have the required information.

v′ ∈ Ytie: Vertices in Ytie already have a failure vertex and cause, recorded during the
computation of SolveGame(G[Y]).

v′ ∈ Yσ: Vertices in Yσ have the property that Player σ wins from them in G[Y]. This
means that as long as the play stays in G[Y], Player σ wins. Furthermore, Player σ
can always remain in G[Y] in his moves. Thus, for a vertex v ′ in Yσ that is not
in Wσ it must be the case that Player σ can force the play out of G[Y] and into
(V \ Y) \ Wσ (If the play reaches Wσ then Player σ can win after all). Thus,
v′ ∈ Attr?σ(G, (V \ Y) \Wσ). Let Ȳ = V \ Y denote the set of vertices outside
G[Y]. We get that the subset of Yσ which is in Wtie is Yσ ∩ Attr?σ(G, Ȳ \Wσ).
Therefore, to find the failure cause in such vertices, we compute Attr?σ(G, Ȳ \Wσ).
During this computation, for each vertex v ′ ∈ Yσ that is added to the attractor
set (and thus will be in Wtie) we choose the failure vertex and cause based on
the reason for v′ being added to the set. This is because if the vertex was not in
Attr?σ(G, Ȳ \Wσ), it would be in Wσ in G as well. The information is recorded as
follows.

47

In the initialization of the computation we have vertices in Dσ , Dtie or Ȳ \ Wσ

which are clearly not in Yσ , thus no additional information is needed.

As for the iteration, suppose we have Attr?iσ(G, Ȳ \Wσ), with the additional in-
formation attached to every vertex in it which is in Yσ . We now compute the set
Attr?i+1

σ (G, Ȳ \Wσ). Let v′ be a vertex that is added to Attr?i+1
σ (G, Ȳ \Wσ). If

v′ 6∈ Yσ, then no information is needed. Otherwise, we do the following.

p1. If v′ ∈ Vσ and it has a may edge v′E−v′′ which is not a must edge to v′′ ∈
Ȳ \Wσ, then v′ is a failure vertex, with this edge being the cause [failEsc].

p2. If v′ ∈ Vσ and it has a must edge to v′′ ∈ Xσ \Wσ, then we set the failure
vertex and cause of v′ to be those of v′′ (which are already computed).

p3. Otherwise, v′ has a may (possibly must) edge to a vertex v ′′ ∈ Attr?iσ(G, Ȳ \
Wσ) ∩ Yσ. In this case the failure vertex and cause of v ′ are those of v′′.

The intuition behind the failure identification for v ′ ∈ Yσ is as follows. In case
p1, v′ is considered a failure vertex (case [failEsc]), with the may (not must) edge to
v′′ ∈ Ȳ \Wσ being the cause. This is because the existence of this edge allows Player σ
to “escape” from Yσ where Player σ wins in G[Y] into Ȳ \Wσ where he does not win. If
this edge did not exist, v′ would not be added to the may-attractor set of σ, and thus
would remain in Wσ in G. A careful analysis (see Lemma 4.17 below) shows that the
only possibility where there exists such a must edge to v ′′ ∈ Ȳ \Wσ is when this edge is
to Xσ \Wσ (recall that Xσ ⊆ Ȳ , as illustrated by Figure 4.1). This possibility is handled
separately in case p2. The set Xσ \ Wσ is a subset of Wtie for which the failure was
already analyzed, and in case p2 we set the failure vertex and cause of v ′ to be those of
v′′ ∈ Xσ \Wσ . This is because changing the classification of v ′′ to Wσ would make a step
in the direction of changing the classification of v ′ ∈ Vσ to Wσ as well. Similarly, since
the edge from v′ ∈ Vσ to v′′ is a must edge, changing the classification of v ′′ to Wσ would
change the classification of v′ to Wσ. In all other cases, the computation recursively
continues with a vertex in Yσ that was already added to the may-attractor set and that
affects the addition of v′ to it (case p3).

Lemma 4.17. The computation of failure vertices for n ≥ 1 is well defined, meaning
that all the possible cases are handled.

Proof. To be convinced of this, one needs to notice that when v ′ ∈ Yσ all the possible
cases are handled. By the definition of Attr?σ(G, Ȳ \Wσ), every vertex v′ ∈ Yσ that is
added to the set Attr?i+1

σ (G, Ȳ \Wσ) fulfills one of the following possibilities.

• v′ ∈ Vσ and has a may edge to a vertex v′′ ∈ Attr?iσ(G, Ȳ \Wσ). We have three
possibilities.

– If there exists such an edge which is not a must edge and for which v ′′ ∈ Ȳ \Wσ,
then case p1 applies.

– If v′ has a must edge to a vertex v′′ ∈ Ȳ \Wσ, then we have the following.
We first show that it must be the case that v ′′ ∈ Xσ \Wσ. Note that Ȳ \
Wσ = (Xσ \ Wσ) ∪ (Attr!σ(G[Xσ], N) \ Wσ). Thus it suffices to show that

48

v′′ 6∈ Attr!σ(G[Xσ], N) \ Wσ. Assume the contrary. We know that v ′ ∈
Yσ ⊆ Y ⊆ Xσ. Therefore we get that v′ ∈ Attr!σ(G[Xσ],Attr!σ(G[Xσ], N)) =
Attr!σ(G[Xσ], N) (Lemma 4.1). Yet, we have that Attr!σ(G[Xσ], N) = Xσ \Y ,
in contradiction to the fact that v′ ∈ Y . We conclude that v′′ ∈ Xσ \Wσ and
case p2 applies.

– Otherwise, v′ has a may edge to v′′ ∈ Attr?iσ(G, Ȳ \Wσ)∩Y . Since v′ ∈ Vσ is
in Yσ all its successors in Y have to be in Yσ as well. This is true in particular
for v′′ ∈ Y . Thus, it must be the case that v′′ ∈ Yσ and case p3 applies.

• v′ ∈ Vσ and all its must edges are to vertices in Attr?iσ(G, Ȳ \Wσ). Since v′ ∈ Yσ,
then at least one of these must edges has to be to a vertex v ′′ ∈ Yσ as well. Thus
case p3 applies.

This concludes the description of how SolveGame records the failure information for
each vertex in Wtie . Altogether, the failure vertex is classified as one of four types:
failDE, failPσ, failPσ (identified during the enriched computation of Attr?σ (G, nowin)),
or failEsc (identified during the enriched computation of Attr?σ(G, Ȳ \Wσ)). A simple
case analysis shows the following.

Theorem 4.18. Let vf be a vertex that is classified by SolveGame as a failure vertex.
The failure cause can either be the fact that vf ∈ Vtie , or it can be a genuine may edge
(vf , v

′′) ∈ E− \ E+.

Example 4.19. We illustrate the failure identification on the 3-valued parity game G
depicted in Figure 3.3, where v00 ∈ Wtie (see Example 4.14). We follow the execution
of SolveGame(G) and describe the way it records a failure vertex and a failure cause for
each vertex v which is added to Wtie = V \ {v08}. We denote the failure cause by f(v).
Figure 4.6 visualizes the process of failure identification. Namely, the failure vertices
and their failure causes are depicted in boldface. Moreover, the edges along which the
failure information is propagated from one vertex to another are labeled by f .

In this example n ≥ 1. Therefore, failure information is recorded by ComputeNoWin(G,
σ = 0, n = 2, W1 = ∅) for every new vertex which is added to nowin. We follow the
addition of vertices to nowin as described in Example 4.14, where in each iteration of
the loop, X1, Y1 and Ytie are added to nowin.

In the first iteration, Ytie = ∅, therefore only X1 and Y1 are added to nowin:

X1 := Attr?1(G, ∅) = {v16, v18}. For these vertices, failure information is recorded
during the computation of the may-attractor set as follows (see case n = 0): In
the initialization of the computation, v18 ∈ Dtie is added to Attr?1(G, ∅). Thus,

f(v18) := v18 [failDE]

In the first iteration, v16 ∈ V1 is added since it has a must edge to v18 ∈ Attr?0
1(G, ∅).

Note that v18 6∈W1. Therefore, by case o3, the failure cause of v16 is that of v18:

f(v16) := f(v18) = v18

49

Y1 := Y = {v12, v13, v14, v15, v17, v02, v07}. For these vertices, failure information is
recorded by an enriched computation of Attr?0(G, Ȳ \W1) = Attr?0(G, Ȳ) (since
W1 = ∅): In the initialization of the computation, v18 ∈ Dtie , v08 ∈ D1 and Ȳ are
added to Attr?0

0(G, Ȳ), all of which are not in Y1, thus no information is recorded
for them. In the first iteration, v02 ∈ V0 is added since it has a may edge to
v03 ∈ Attr?0

0(G, Ȳ). Similarly, v07 ∈ V0 is added to the may-attractor set because
of its may edge to v04 ∈ Attr?0

0(G, Ȳ). v03 and v04 are both in Ȳ . Thus, these may
edges allow Player 0 to “escape” (giving up her eagerness) from v02, v07 ∈ Y1 to Ȳ
where it is no longer ensured that Player 1 wins. Therefore, by case p1:

f(v02) := (v02, v03) [failEsc]
f(v07) := (v07, v04) [failEsc]

Still in the first iteration, v15 ∈ V0 is added to the may-attractor set since it has a
must edge to v16 ∈ Attr?0

0(G, Ȳ). Here case p1 does not apply since v16 is not in
Ȳ . However, it is in X1, and already has a failure cause. Therefore, by case p2,
the failure cause of v15 is that of v16, i.e.,

f(v15) := f(v16) = v18

In the second iteration of the may-attractor computation, v14 ∈ V0 is added since
it has a must edge to v15 which is already in the may-attractor set. Similarly, v17

and v13 are added in the third iteration due to the must edge to v14, and v12 is
added in the forth iteration due to the must edge to v13. In all cases, the target
vertices (v15, v14 and v13) are also in Y1, and already have failure causes from the
preceding iteration of the may-attractor computation. Thus case p3 applies and
the failure cause is “inherited” from the target vertex. Namely,

f(v14) := f(v15) = v18

f(v17) := f(v14) = v18

f(v13) := f(v14) = v18

f(v12) := f(v13) = v18

The remaining vertices of Wtie are added to nowin in the second iteration of the
loop of ComputeNoWin, as part of X1 (since Y1 = Ytie = ∅):

X1 := Attr?1(G, nowin) = V \ {v08}. The vertices that are not already in nowin
are added to the may-attractor set in the following order: v01, v05, v11 in the first
iteration, v00, v04, v06 in the second iteration, and finally v03 in the third iteration.
All of them are added as vertices in V0 for which all of the outgoing may edges are
to vertices that are already in the may-attractor set. The target vertices of these
may edges are all not in W1, and hence have a failure cause. The failure cause is
“inherited” from them (see case p3). Namely,

f(v01) := f(v02) = (v02, v03)
f(v05) := f(v07) = (v07, v04)
f(v11) := f(v12) = v18

f(v00) := f(v01) = (v02, v03)
f(v04) := f(v05) = (v07, v04)
f(v06) := f(v01) = (v02, v03)
f(v03) := f(v04) = (v07, v04)

50

0

2

0

0

1

0

0 0

0

2

0

0

1

0

00

0

v00

v01

v02

v03

v04

v05

v06 v07

v08

v11

v12

v13

v14

v15

v16v17

v18

f

f

f

f

f

f

f

f

f

f

f

f

f

Y

Ȳ

Figure 4.6: Illustration of the failure analysis for the 3-valued parity game G depicted in
Figure 3.3.

In particular, the failure vertex of v00 is v02 with the failure cause being the may
edge (v02, v03). No further vertices are added to nowin in the third (and last) iteration.

4.3.2 Failure Analysis

Once we are given a failure vertex vf = s′a ` ϕ
′ and a corresponding cause for failure, we

guide the refinement to discard the cause for failure in the hope of changing the model
checking result to a definite one. This is done as in [74].

For the completeness of the presentation, we repeat here (a simplified version of) the
failure analysis of [74]. There, the failure information is used to determine how the set of
concrete states represented by s′a should be split in order to eliminate the failure cause.
It is then decided how to alter the abstraction in order to ensure the required split. To
solve the latter problem, a criterion for splitting all abstract states, while ensuring the
split of the failure state s′a, is found by known techniques, depending on the type of
abstraction used. Examples of solutions for certain types of abstractions can be found
in [20] (for abstraction based on invisible variables), in [18] (for abstraction based on
formulas clusters) and in [64] (for predicate abstraction). It remains to explain which
subsets of γ(s′a) need to be separated by the refinement. Let MC = (SC , R, LC) and
MA = (SA, R

+, R−, LA) be the concrete and abstract models at hand. The criterion for
the separation depends on the type of the failure vertex vf and is found by the following
analysis.

1. If vf ∈ Vtie , then this means that vf = (s′a, l) where l ∈ Lit is such that both

51

l 6∈ LA(s′a) and ¬l 6∈ LA(s′a). In this case, the indefinite classification results from
the fact that s′a represents concrete states that are labeled by l as well as concrete
states that are labeled by ¬l. In order to avoid the indefinite result in this vertex,
we need to separate these types of concrete states. Hence, our goal is to separate
γ(s′a) to two sets {s′c ∈ γ(s′a) | l ∈ LC(s′c)} and {s′c ∈ γ(s′a) | ¬l ∈ LC(s′c)}.

2. If the failure cause is an edge (vf , v
′′) ∈ E− \ E+, where v′′ = (s′′a, ϕ

′′), then the
edge is based on a may transition (s′a, s

′′
a) of the abstract model which is not a

must transition. Let concmust = {s′c ∈ γ(s′a) | ∃s
′′
c ∈ γ(s′′a) s.t. s′cRs

′′
c} be the set of

all concrete states, represented by s′a, that have an outgoing transition to a state
represented by s′′a. Our goal is to separate the sets concmust and γ(s′a) \ concmust.

The intuition behind the criterion for the split that is derived from case 1 is clear.
Its purpose is to allow us to conclude definite results about the new abstract states
obtained by the split of the failure vertex. In case 2, our goal is to obtain a must
transition between (parts of) s′a and s′′a in the abstract model and on the other hand
remove the may transition altogether between other parts of s′a and s′′a. Either way, this
makes the abstract model closer to the concrete one.

In fact, in [74], a finer distinction is made in case 2 based on the subformula of vf
and on whether v′′ ∈ W0, v

′′ ∈ W1 or v′′ ∈ Wtie . We omit this discussion here, as well
as other optimizations of the failure analysis.

It is possible that one of the sets obtained during the failure analysis is empty and
provides no criterion for the split. Yet, new information can be gained from it as well.
For example, consider case 2. Suppose concmust = γ(s′a), then in fact every state that
is represented by the underlying state s′a of vf has an outgoing transition to a state
represented by the underlying state s′′a of v′′, which means that the transition (s′a, s

′′
a)

can in fact be added as a must transition to the abstract model, and the corresponding
edge (vf , v

′′) can be added as a must edge to the game. If concmust = ∅, then in fact none
of the concrete states in γ(s′a) has a transition to a concrete state that is represented by
s′′a. Thus, the may transition (s′a, s

′′
a) and the corresponding may edge (vf , v

′′) can be
removed. Similar arguments apply to case 1, where a trivial split criterion will indicate
that the labeling function of the abstract model can be updated. Either way, the game
can be re-evaluated based on the new information.

Example 4.20. Consider the 3-valued parity game depicted in Figure 3.3 for the model
checking problem described in Example 3.2. The failure vertex obtained in this example
is v02 and its failure cause is the may edge (v02, v03) (see Example 4.19). This may edge
results from the may transition (s0, s0) of the model (see Figure 2.1). Thus, refinement is
performed by case 2 of the failure analysis: In this example, the failure state s0 represents
the concrete states s00 and s10. Only s00 has an outgoing transition that corresponds to
the may transition. Therefore, concmust = {s00} and refinement is aimed at separating
the sets {s00} and {s10}.

4.4 Incremental Abstraction-Refinement Framework

Having suggested a refinement mechanism that suits the 3-valued model checking algo-
rithm of Section 4.2, we now have all the components required for an iterative abstraction-

52

refinement framework, where each iteration consists of abstraction, model checking and
refinement.

Theorem 4.21. For finite concrete models, iterating the abstraction-refinement process
is guaranteed to terminate with a definite answer.

Proof. Since refinement is done by splitting the abstract states, then applying the re-
finement on the abstract model results in a refined abstract model with the following
properties. Every state sr in the refined model has some super-state su in the unrefined
model, in the sense that the set of concrete states that sr represents is a subset of those
represented by su. Furthermore, since our refinement splits at least one state2, it en-
sures that at least one of the refined states represents strictly less concrete states than
its super-state. Thus, the number of iterations in the abstraction-refinement process
is bounded by the number of concrete states and is guaranteed to end when the state
space is finite.

We refine abstract models by splitting their states. The criterion for the refinement is
decided locally, based on one failure vertex, but it has a global effect, since the refinement
is applied to the whole abstract model.

After refinement, one has to re-run the model checking algorithm on the refined
KMTS to get a definite value for sc and ϕ. Yet, in practice, there is no reason to
split or re-evaluate states for which the model checking results are definite. As in [74],
the game-based model checking algorithm provides us with a convenient framework to
use previous results and avoid unnecessary refinement. Namely, we can restrict the re-
evaluation process to the previous Wtie : When constructing the 3-valued parity game
based on the refined KMTS, every vertex s2

a ` ϕ′ for which a vertex s′a ` ϕ′ (where s2a
results from splitting s′a) exists inW0 orW1 from the previous iteration can be considered
a dead-end winning for Player 0 or Player 1, respectively. This way we avoid unnecessary
refinement. The result is an incremental model checking algorithm based on iterative
abstraction-refinement.

4.5 Concluding Remarks

This chapter presents a game-based model checking for abstract models w.r.t. speci-
fications in µ-calculus, interpreted over a 3-valued semantics, together with automatic
refinement, if the model checking result is indefinite. Model checking is performed by a
new algorithm for solving the 3-valued parity game defined in Chapter 3. The refinement
is based on a failure analysis that follows the run of the algorithm.

While the time complexity of our algorithm for solving the 3-valued game is expo-
nential in the alternation depth d of the formula to check, Jurdzinski [47] presented an
algorithm for solving ordinary parity games that is exponential in d/2. It would be
interesting to find out whether this algorithm could be adapted to the 3-valued setting
with automatic refinement.

2In fact, as explained in Section 4.3.2, a refinement step might not split any state, but in such a case
it will update the labeling or the transitions of the abstract model. These updates are also limited to a
finite number since after at most a number of them which is bounded by the size of the abstract model
an exact abstract model will be obtained.

53

54

Chapter 5

Game-Based

Abstraction-Refinement:

Reduction Approach

5.1 Introduction

Refinement of indefinite model checking results for the µ-calculus w.r.t. abstract models
has been suggested in the previous chapter, following the refinement of [74] for CTL. In
both cases, the refinement is based on finding a cause for the indefinite result by following
the run of an algorithm that solves a corresponding 3-valued model checking game. Being
based on an especially tailored algorithm, a similar approach is not applicable when the
3-valued model checking game is solved via a reduction to two 2-valued model checking
games.

In this chapter we present a novel approach, which shows that refinement information
can be extracted from two 2-valued model checking games, provided that they are defined
over the full game board of the 3-valued game. Our refinement is based on the new
notion of non-losing rather then winning strategies. This approach is beneficial since
it can take advantage of any game-based model checking algorithm for the µ-calculus
w.r.t. the 2-valued semantics [32, 47].

We will now explain our new approach in more detail. Recall that in the 3-valued
model checking game for the µ-calculus defined in Chapter 3, a new possibility of a tie is
added. Therefore, we can now consider for each player, in addition to a winning strategy
also a non-losing strategy, which guarantees that each play will end with either a win
for this player or a tie, no matter what the other player does.

To simplify the presentation, we consider the equivalent formulation of the game as
a 3-valued parity game with players 0 and 1 (see Chapter 3). In order to determine the
winner, if there is one, we reduce this game to two ordinary (2-valued) parity games, G0

and G1. Player 0 has a winning strategy on game G0 iff Player 0 has a winning strategy
on the original 3-valued game G. Furthermore, Player 0 has a winning strategy on G1 iff
she has a non-losing strategy on G. The dual facts hold for Player 1.

When the game G results in a tie, and a refinement is needed, non-losing strategies
become extremely helpful. In this case none of the players have a winning strategy,

55

which means that considering winning strategies does not provide a witness for the tie
result. Non-losing strategies, however, take exactly this role: when the result is a tie,
each player has a non-losing strategy (which corresponds to a winning strategy on one of
the 2-valued games). These strategies can be combined to one play along which a cause
for the tie can be found. A refinement criterion is then suggested and abstract states
are refined (split) accordingly. The refinement itself is performed as in Chapter 4.

We note that the 3-valued model checking game still has an important role. Namely,
a similar approach for refinement is not applicable when the 3-valued model checking
problem itself is reduced to two 2-valued model checking problems (e.g. [39]), each solved
by a separate 2-valued game. This is because then each of the 2-valued games considers a
different part of the game board: one considers the part required for proving the formula,
while the other considers the part required for proving its negation. For refinement
purposes, on the other hand, it is important to consider the full game board of the
3-valued game (see Section 5.3 for more details).

The result of this chapter is an incremental abstraction-refinement scheme for the
µ-calculus, which resembles the scheme developed in Chapter 4, but uses a reduction
for the purpose of solving the model checking game, and uses a novel approach for
determining a cause for the tie in case the model checking result is indefinite. The rest
of this chapter is devoted to the description of these two ingredients.

5.1.1 Related Work

In Chapter 4 we have suggested a game-based abstraction-refinement framework for the
µ-calculus, where the model checking algorithm is based on a direct algorithm for solving
the 3-valued game. The current chapter presents an alternative abstraction-refinement
framework where the model checking algorithm is based on a reduction of the 3-valued
game. It can therefore take advantage of any algorithm for solving ordinary parity
games, which makes it more general than the algorithm presented in Chapter 4 which
generalizes Zielonka’s algorithm for solving parity games. The refinement mechanisms
of the two approaches are incomparable.

The reduction approach to solving the 3-valued game described in this chapter is
reminiscent of the reduction approach to 3-valued model checking used for example
in [45, 37, 39]. Still, in this chapter we reduce the 3-valued game into two 2-valued
games, rather than reducing the model checking problem. As explained above, this is
a crucial difference when it comes to refinement. In particular, the works on 3-valued
model checking via reduction do not suggest an automatic refinement, whereas the work
described in this chapter does.

The model checking algorithm used in our recent work [35] on 3-valued game-based
abstraction-refinement also solves the 3-valued game via reduction, similarly to the al-
gorithm in this chapter. Still, the algorithms differ in their refinement since in [35],
a criterion for refinement is found by heuristics, independently of the model checking
algorithm. The relevance of the chosen criterion for the tie result is therefore less clear
than the criterion chosen in this chapter which is based on non-losing strategies for the
players.

For more details on these works, as well as further related work, we refer the reader
to the related work reported in Chapter 4.

56

5.2 Solving 3-Valued Parity Games via Reduction

In this section, we discuss solving 3-valued parity games via a reduction to ordinary
parity games. We compute the winning sets W0 and W1 of the players, as well as Wtie ,
where none of the players has a winning strategy (see Chapter 4).

It is not hard to see that solving a 3-valued parity game G can be reduced to solving
two ordinary parity games: first try to find a winning strategy for Player 0 disregarding
her genuine may edges (i.e., may edges which are not must edges) and treating dead-end
vertices in Vtie as losing for her. If the result is negative then try to find a winning
strategy for Player 1 disregarding his genuine may edges and treating tie dead-ends as
losing for him. This is reminiscent of the approach of [11], where a 3-valued interpretation
of a formula in a partial model is computed by considering a pessimistic and an optimistic
interpretation.

More precisely, in order to find the winning set of Player σ, we reduce G into an
ordinary parity game denoted Gσ by (1) removing all the outgoing genuine may edges
of vertices of Player σ, (2) ignoring the distinction between may and must edges in the
remaining edges, and (3) adding Vtie to Vσ (meaning that Player σ wins in these vertices).
Note that we do not change the set of vertices, nor the priority function. Formally, Gσ
is defined as follows.

Definition 5.1. Let G = (A,Θ) be a 3-valued parity game with arena A = (V0, V1, Vtie , E
+,

E−). For σ ∈ {0, 1}, the σ-reduced game is an ordinary parity game Gσ = (Aσ ,Θ) with
arena Aσ = (V σ

0 , V
σ
1 , E), where V σ

σ = Vσ ∪Vtie, V σ
σ = Vσ, and E = E− \ {(v, v′) | v ∈

Vσ and (v, v′) 6∈ E+}.

Gσ might contain dead-end vertices, some of which result from dead-end vertices in
G and some result from vertices of Vσ that had only genuine may edges in G. This means
that they become dead-ends in Gσ. However, Gσ can be transformed into a game whose
underlying graph is total as described in Remark 3.14.

Proposition 5.2. Let G be a 3-valued parity game. Then Player σ has a winning
strategy from set V ′ ⊆ V in G iff she has a winning strategy from V ′ in Gσ. Moreover,
a winning strategy for Player σ from V ′ in Gσ is also a winning strategy for her in G.

We conclude that for σ ∈ {0, 1}, the winning set of Player σ in G, Wσ, is exactly the
winning set of Player σ in Gσ and Wtie = V \ (W0∪W1). Therefore, solving the 3-valued
parity game reduces to solving the two ordinary parity games G0 and G1:

Algorithm SolveThreeValuedGame (G)

1. (W 0
0 , W 0

1) := SolveOrdinaryGame (G0);

2. (W 1
0 , W 1

1) := SolveOrdinaryGame (G1);

3. (W0, W1, Wtie) := (W 0
0 , W 1

1 , V \ (W 0
0 ∪W 1

1));

4. return (W0, W1, Wtie);

57

0

2

0

0

1

0

0 0

0

2

0

0

1

0

00

0

v00

v01

v02

v03

v04

v05

v06 v07

v08

v11

v12

v13

v14

v15

v16v17

v18

(a) G0

0

2

0

0

1

0

0 0

0

2

0

0

1

0

00

0

v00

v01

v02

v03

v04

v05

v06 v07

v08

v11

v12

v13

v14

v15

v16v17

v18

(b) G1

Figure 5.1: The reduced games of the parity game from Figure 3.3.

Solving G0 and G1 can be done using any of the existing algorithms for solving
ordinary parity games, maintaining their complexity. Moreover, winning strategies in
the 3-valued game can be easily obtained from winning strategies in the ordinary games,
since a winning strategy for Player σ in Gσ is also a winning strategy for Player σ in G.

Remark 5.3. Note that even if the graph of the original game G is connected, the
underlying graph of Gσ might not be connected. Thus, depending on the algorithm
for solving ordinary parity games, if we wish to classify all the vertices of G, it might
be necessary to invoke the algorithm for every connected component in Gσ separately
(for example, if the algorithm has an on-the-fly nature and it considers only reachable
vertices).

Example 5.4. The reduction of the 3-valued parity game depicted in Figure 3.3 to two
games, G0 and G1 is shown in Figure 5.1. Note that genuine may edges of Player 0
vertices are removed in G0 and that v18 is declared as a Player 0 vertex in G0 (meaning
that Player 1 wins in it) and a Player 1 vertex in G1 (meaning that Player 0 wins in it).

We see that the only vertex from which Player 0 has a winning strategy in G0 is v08.
In G1, Player 1 has no winning strategy regardless of which vertex the game starts in.
We conclude that W0 = {v08}, W1 = ∅, and that all remaining vertices form the set
Wtie .

5.3 Refinement

When the 3-valued parity game at hand is in fact a 3-valued model checking game
ΓM (sa, ϕ), solving the game as described in the previous section results in a model

58

checking algorithm. In this section we discuss refinement that suits the above model
checking algorithm.

Recall that refinement is needed if the vertex of interest v = sa ` ϕ in the 3-valued
parity game is in Wtie . This means that a refinement step is required if none of the
players has a winning strategy from v. Based on this property, it was stated in [74] as
well as Chapter 4 that rather than calling a 2-valued parity games solver twice it is more
helpful for refinement purposes to combine the two runs. This is because combining
both runs carries more information about the cause for the lack of winning strategies.

But even in a combined fashion of two ordinary runs, the above approach in which the
algorithm looks for winning strategies bears a significant disadvantage: if the algorithm
looks for winning strategies it produces witnesses for its answer only in those cases in
which no refinement is needed. Some notion of witness to its answer is, however, needed
if the answer is that none of the players has a winning strategy. This is why we suggest
to consider non-losing strategies instead.

5.3.1 Using Non-Losing Strategies to Solve the Game

Lemma 5.5. Let G be a 3-valued parity game. Player σ has a non-losing strategy from
v in G iff player σ does not have a winning strategy from v in G.

The first direction of the lemma is quite clear as it is impossible that Player σ has
a non-losing strategy and at the same time Player σ has a winning strategy. For the
other direction we use the following proposition that also provides a construction of a
non-losing strategy for Player σ in case Player σ does not have a winning strategy. Recall
that in order to compute winning sets and strategies in a 3-valued parity game G we
considered in Section 5.2 the reduced (ordinary) games G0 and G1. We now note that the
same approach can also be used to compute non-losing strategies for the players. This is
formalized by the following proposition, which is in a sense the dual of proposition 5.2.

Proposition 5.6. Let G be a 3-valued parity game. Then Player σ has a non-losing
strategy from V ′ ⊆ V in G iff she has a winning strategy from V ′ in Gσ. Moreover, a
winning strategy for Player σ from V ′ in Gσ is in itself a non-losing strategy for her in
G.

We now return to the proof of Lemma 5.5.

Proof of Lemma 5.5. Proposition 5.6 states that Player σ has a non-losing strategy from
v in G iff she has a winning strategy from v in Gσ . By determinacy of ordinary parity
games this happens iff Player σ does not have a winning strategy from v in Gσ and by
Proposition 5.2 this is iff Player σ does not have a winning strategy from v in G. This
concludes the proof of Lemma 5.5.

Lemma 5.5 implies that a non-losing strategy for a player can be used as a witness
to explain why the opponent does not win. Moreover, unlike winning strategies, where
it is possible that no player has one, the above lemma implies that at least one player
has a non-losing strategy, thus such an explanatory information always exists (at least
for one player). This is formalized in the following lemma.

59

Lemma 5.7. Let G be a 3-valued parity game and v a vertex in the game. At least one
of the players has a non-losing strategy from v in G.

Proof. Suppose none of the players has a non-losing strategy from v in G. According to
Lemma 5.5 both players would have to have a winning strategy in the game G which is
clearly impossible.

Lemma 5.7 holds the key for refinement: if we use an algorithm that computes non-losing
strategies then we will always have a witness.

Furthermore, Lemmas 5.5 and 5.7 also provide an alternative approach for solving
the 3-valued game by considering non-losing strategies rather than winning strategies,
as they imply that for a 3-valued parity game:

1. v ∈Wσ iff only Player σ has a non-losing strategy from v.

2. v ∈Wtie iff both players have non-losing strategies from v.

In particular, Proposition 5.6 used in the proof of Lemma 5.5 provides a way to compute
non-losing strategies using the reduction approach: to compute a strategy that is non-
losing for Player σ from V \Wσ in G we compute a strategy that is winning for Player σ
from V \Wσ in the ordinary game Gσ .

Thus, in comparison to the previous reduction approach (from Section 5.2), we use
here the same reduced ordinary parity games, but now in the reduced game Gσ, we
are interested in a winning strategy of Player σ rather than of σ. As stated earlier,
this approach is particularly helpful when refinement is needed. Here again it might be
necessary to invoke the solver of each ordinary parity game several times in case the
resulting graph is not connected (see Remark 5.3).

Example 5.8. Let us reconsider the games shown in Figure 5.1, where we are now inter-
ested in non-losing (rather than winning) strategies of the players in the original game.
In G0, Player 1 has a winning strategy from all the vertices except v08, which is shown
in Figure 5.2(a) by bold edges. This strategy constitutes a non-losing strategy for him
in the original game G from the same vertices. Similarly, Player 0 has a strategy to win
every play in G1, regardless of where the play starts (see Figure 5.2(b)). Consequently,
she also has a non-losing strategy from every vertex in the original game G. We conclude
that v08, for which only Player 0 has a non-losing strategy in G, is in W0, whereas the
rest of the vertices are in Wtie since both players have non-losing strategies from them.
As can be expected, this is consistent with Example 3.12, where winning strategies were
considered.

5.3.2 Refinement with Non-Losing Strategies

When using an algorithm that solves the 3-valued parity game by computing non-losing
strategies, refinement is needed in the case where both players have non-losing strategies
from v = sa ` ϕ (meaning that v ∈Wtie).

Our refinement follows the refinement described in Chapter 4. In particular, it is
based on a failure vertex and a failure cause, as defined in Section 4.3. The difference
lies in the algorithm for identifying the failure vertex and cause.

60

0

2

0

0

1

0

0 0

0

2

0

0

1

0

00

0

v00

v01

v02

v03

v04

v05

v06 v07

v08

v11

v12

v13

v14

v15

v16v17

v18

(a) G0

0

2

0

0

1

0

0 0

0

2

0

0

1

0

00

0

v00

v01

v02

v03

v04

v05

v06 v07

v08

v11

v12

v13

v14

v15

v16v17

v18

(b) G1

Figure 5.2: Winning strategies of the reduced games of the parity game from Figure 3.3.

Identifying a Failure Cause

Recall that from each vertex inWtie both players have non-losing strategies. They can be
combined into one strategy for each player. Thus, each player σ ∈ {0, 1} has a strategy
that is non-losing for him from each vertex in V \Wσ and in particular from Wtie . Let
ζ0 and ζ1 be the corresponding strategies of Player 0 and Player 1 respectively. These
strategies can be computed using the reduction approach, as explained in Section 5.3.1.

We use the non-losing strategies ζ0 and ζ1 for the failure search. Our failure search
basically follows the unique play obtained by letting the players play against each other
using their non-losing strategies until it identifies a failure vertex v ′ and a cause for the
failure. More specifically, the failure search proceeds from one tie-vertex (i.e. vertex in
Wtie) to the next along this play, guided by the non-losing strategies: from v ∈ Vσ it
proceeds to ζσ(v). This continues until one of three possibilities occurs:

1. The search reaches a (dead-end) vertex in Vtie .

2. The search reaches a vertex in Wσ for σ ∈ {0, 1}.

3. The search reaches a vertex that was already visited.

Note the following facts regarding the play:

• The play is uniquely determined by ζ0 and ζ1.

• The play is a tie, as it is non-losing for both players (conforms to a non-losing
strategy of each of them).

61

• The play is a simple regular path if |G| = n < ∞ is finite, and one of the three
possibilities occurs after at most n steps in this play.

Now, in the first possibility v ∈ Vtie is considered a failure vertex, since changing
its classification to V0 or V1 (by splitting it) would make one of the players closer to
winning.

As for the second and third possibilities, in each of them there exists one player that
is “closer” to winning the play. In the second possibility this is Player σ, for which the
play reached a vertex in Wσ. In the third possibility this is the player σ that corresponds
to the parity of the maximal priority that appears in the loop that results from the two
occurrences of the same vertex. Note that having identified a loop in the play means
that the rest of the play will be an infinite unwinding of the loop. Thus, the maximal
priority that will occur infinitely often in the play will be the maximal priority that
appears on the loop, whose parity corresponds to σ.

Having that Player σ is “closer” to winning the play, and yet knowing that the play
is a tie, implies that there has to exist a genuine may edge used by Player σ in the prefix
of the play (otherwise Player σ would win). All of these genuine may edges of player σ
are candidates to be considered a failure cause with their source vertex being the failure
vertex. This is because changing the may edge into a must edge (by splitting the source
vertex) would make Player σ closer to winning and on the other hand removing the edge
altogether would make Player σ closer to winning. The choice of one failure vertex from
this set of candidates is a matter of heuristics.

To sum up, given a partition of the vertices of G to (W0,W1,Wtie) and given non-
losing strategies ζ0 and ζ1 for Player 0 and 1 resp., the algorithm FindFailure(v) returns
a failure vertex vf and cause for v ∈Wtie .

Algorithm FindFailure (v)

1. if v ∈ Vtie then return (v, tie);

2. else if v ∈Wσ then return choose(visited · v, σ);

3. else if v ∈ visited then return choose(visited · v, parity(visited, v));

4. else // continue with the search

add v to visited;

let σ be such that v ∈ Vσ;

let w := ζσ(v);

FindFailure(w);

where the function parity(sequence, v) returns 0 if the maximal priority that ap-
pears in the sequence starting from the vertex v is even, and 1 if it is odd. The function
choose(sequence, σ) chooses a vertex from Vσ that appears in the sequence and has a
genuine may edge to its successor in the sequence. It returns the chosen vertex and the
corresponding may edge.

This concludes the description of how FindFailure looks for a failure vertex and
cause. A simple case analysis shows the following.

62

Theorem 5.9. Let vf be a vertex that is returned by FindFailure(v) as a failure vertex.
The failure cause can either be the fact that vf ∈ Vtie , or it can be a genuine may edge
(vf , v

′) ∈ E− \ E+.

Given a failure vertex, we perform the refinement as described in Section 4.3.

Example 5.10. Reconsider the game shown in Figure 3.3, where v00 ∈Wtie (see Exam-
ples 3.12 and 5.8), and the non-losing strategies of the players discussed in Example 5.8
(see Figure 5.2). Following both non-losing strategies in G will guide the play starting
in v00 to vertex v18 through non-winning vertices for both players. Consequently, the
state underlying v18 should be refined, which is s1 (see Figure 3.2).

Now, assume that v18 is a Player 0 vertex (for example after refinement). This means
that v18 is now winning for Player 1 in G. As before, Player 1 has a winning strategy
in G0, and thus a non-losing strategy in G, by forcing the play to v18. But also Player 0
can still win in G1, and thus not lose in G, by choosing in v02 the edge leading to v03

(instead of the edge leading to v13). Now, the combined non-losing strategies would give
a loop v00v01v02v03v04v05v06v01, which asks for refining the may edge from v02 to v03.

This also demonstrates the importance, in terms of the refinement, of not limiting
the computation of winning strategies in the reduced graphs G0 and G1 to vertices that
are reachable from the vertex of interest. Namely, v03 is unreachable in G0 from v00.
Yet, the non-losing strategy of Player 0 takes the play to v03. Thus, the information
about a non-losing strategy of Player 1 from v03 is essential in order to follow the tie
play that guides the refinement. This information is only available provided that v03

was considered during the computation of a winning strategy for Player 1 in G0.

5.4 Concluding Remarks

In this chapter we present a game-based abstraction-refinement scheme w.r.t. specifica-
tions in the µ-calculus, interpreted over a 3-valued semantics, similarly to Chapter 4.

However, in contrast to Chapter 4, model checking is determined by solving two
ordinary (2-valued) parity games. Still, these games are based on the full board of the
3-valued game. This is particularly important for refinement, for which the board of the
3-valued game holds more information than the two boards of the 2-valued games.

The refinement is based on the novel notion of a non-losing strategy. In case the
model checking result is indefinite, both players have non-losing strategies. Combining
these strategies of the two players comprises a play, resulting with a tie. From this play,
a failure vertex and a cause are derived and exploited for refinement.

A non-losing strategy for Player σ can easily be extracted by computing a winning
strategy for Player σ on the 2-valued game Gσ . This can be done using any algorithm
for solving 2-valued model checking games. Thus, our approach can take advantage of
efficient algorithms for this problem, such as Jurdzinski’s algorithm for parity games [47].

Recently, there has been an active research on completeness and precision of ab-
stractions for branching time logics (e.g. [63, 70, 27, 29, 28]). Various abstract models
which are more expressive than KMTSs were suggested. These models add some kind of
disjunctiveness to the model: for example, [27] introduces focus operations, and [70, 29]
use hyper-transitions (first introduced by [55]) to model the abstract transitions. Some

63

of these models (e.g. [27, 28]) also consider fairness conditions. While fairness requires
different techniques (e.g. in order to determine how to refine the fairness conditions),
disjunctiveness can be handled by the approach suggested in this research. This simply
requires to define a 3-valued model checking game for such models and to encode the
game as a 3-valued parity game. An example of the way this is done in the presence of
must hyper-transitions appears in Chapter 6.

64

Chapter 6

Monotonic

Abstraction-Refinement

6.1 Introduction

The goal of this chapter is to improve the effectiveness of the 3-valued abstraction-
refinement framework for the µ-calculus. We generalize the definition of abstract models
(KMTSs) in order to provide a monotonic abstraction-refinement framework. The new
definition results in more precise abstract models in which more µ-calculus formulas
can be proved or disproved. Finally, we adjust the 3-valued game-based abstraction-
refinement approach described in the previous chapters to the new monotonic framework.

In order to motivate the main result of this chapter we first recall the definition
of KMTSs, used as abstract models in the context of the µ-calculus. Typically, each
state of an abstract model represents a set of states of the concrete model. In order
to be conservative for the µ-calculus the abstract model contains both may transitions
(R−) which over-approximate transitions of the concrete model, and must transitions
(R+), which under-approximate the concrete transitions. More specifically, in an (exact)
abstract KMTS, for every abstract states sa and s′a, saR

−s′a iff there exists a concrete
state sc represented by sa and there exists a concrete state s′c represented by s′a such that
scRs

′
c (∃∃-condition). saR

+s′a iff for all sc represented by sa there exists s′c represented
by s′a such that scRs

′
c (∀∃-condition). On the other hand, abstractions designed for

the verification of universal temporal logics, such as ACTL and LTL, require only over-
approximated (may) transitions.

Refinements “split” abstract states so that the new, refined states represent smaller
subsets of concrete states. In most abstraction-refinement frameworks designed for uni-
versal temporal logics such as ACTL and LTL (e.g. [52, 18, 8, 20, 16]), the refined model
obtained from splitting abstract states has less (may) transitions. It is therefore more
precise, in the sense that it satisfies more properties of the concrete model. We call such
a refinement monotonic.

For the full µ-calculus with the 3-valued semantics, an abstraction-refinement frame-
work has been suggested in the previous chapters. For such a framework, one would
expect that after splitting, the number of must transitions will increase as the number
of may transitions decreases. Unfortunately, this is not the case. Once a state s ′a is

65

split, the ∀∃-condition that allowed saR
+s′a might not hold anymore. As a result, the

refinement is not monotonic since µ-calculus formulas that had a definite value in the
unrefined model may become indefinite.

In [37] this problem has been addressed. They suggest to keep copies of the unre-
fined states in the refined model together with the refined ones. This avoids the loss of
must transitions and guarantees monotonicity. Yet, this solution is not sufficient because
the old information is still expressed w.r.t. the “unrefined” states and the new infor-
mation (achieved by the refinement) is expressed w.r.t. the refined states. As a result
the additional precision that the refinement provides cannot be combined with the old
information. This is discussed extensively in Section 6.2.1.

In this work we suggest a different monotonic abstraction-refinement framework
which overcomes this problem. For a given set of abstract states, our approach re-
sults in a more precise abstract model in which more µ-calculus formulas have a definite
value. Moreover, our approach avoids the need to hold copies of the unrefined states.

Inspired by [63], we define a Generalized Kripke Modal Transition System (GTS)
in which must transitions are replaced by must hyper-transitions [55], which connect a
single state sa to a set of states A. A GTS includes saR

+A iff for all sc represented
by sa there exists s′c represented by some s′a ∈ A such that scRs

′
c. This weakens the

∀∃-condition by allowing the resulting states s′c to be “scattered” in several abstract
states.

In general, the number of must hyper-transitions might be exponential in the number
of states in the abstract model. In practice, optimizations can be applied in order to
reduce their number. We suggest an automatic construction of an initial GTS and its
successive refined models in a way that in many cases avoids the exponential blowup.

In order to complete our framework, we also adjust for GTSs the 3-valued game-
based model checking and the refinement suggested in the previous chapters for KMTSs.
Thus, we obtain a monotonic abstraction-refinement framework that is suitable for both
verification and falsification of the full µ-calculus.

6.1.1 Related Work

Our new notion of abstract models takes its inspiration from [63], where it is suggested
to weaken the condition required from must transitions in order to achieve completeness
of the abstraction framework. Completeness means that whenever the concrete model
satisfies the formula there exists a finite abstract model that allows to verify it. Their
work refers to the must transitions in an abstract alternating transition system, formed
by the product of a program with an alternating tree automaton describing the checked
property. Our work, on the other hand, addresses the abstract model directly. Thus, it
is more general. We also use a different description for the new (weaker) requirement of
must transitions. Furthermore, we suggest an abstraction-refinement framework based
on the new notion, whereas the discussion in [63] is merely theoretical: It addresses the
completeness of the abstraction framework and does not suggest any model checking
algorithm, nor a refinement mechanism.

This is also the case in [27], where focus operations, which resemble our must hyper-
transitions are used. Similarly to [63], their primary concern is also completeness of the
abstraction framework. Moreover, the focus operations of [27] are used in the evaluation

66

of ∨ formulas, whereas our must hyper-transitions are used in the evaluation of the
modalities.

In parallel to our work, must hyper-transitions were also used in [29] for the purpose
of abstracting two-player turn-based games. There, the logic of interest is the alter-
nating µ-calculus. They also use must hyper-transitions to ensure completeness. Yet,
unlike [63, 27], they also consider model checking in the presence of hyper-transitions:
Their result for abstract game structures implies that the model checking problem for
GTSs is reducible to concrete model checking in linear time (and logarithmic space)
in the size of the GTS. Yet, the GTS itself might be of size exponential in the size of
the set of abstract states (due to the existence of hyper-transitions). Thus the overall
complexity is exponential. In addition, they do not suggest an automatic refinement.

In [70] we have suggested a similar abstraction-refinement for GTSs, except that
we considered the logic CTL and instead of basing the abstraction-refinement on the
game-theoretic approach, we used a symbolic 3-valued model checking algorithm and a
suitable refinement.

In our more recent work [35], we have suggested another game-based abstraction-
refinement approach where the underlying abstract models are GTSs. The refinement
there is more local, and splits only one abstract state. For the split state, all must
hyper-transitions are calculated, unlike the approach taken in this chapter, where must
hyper-transitions are “learned” from the previous iteration. For more details on the
differences between the two approaches see Chapter 4.

6.2 Generalized Abstract Models

In this section we suggest the notion of a generalized KMTS and its use as an abstract
model which preserves the µ-calculus. This notion allows better precision of the abstrac-
tion.

6.2.1 Motivation

The main flaw of using KMTSs as abstract models is in the must transitions, which
make the refinement not necessarily monotonic w.r.t. the precision preorder.

Definition 6.1 (Precision Preorder). Let M1, M2 be two KMTSs over states S1, S2 and
let s1 ∈ S1 and s2 ∈ S2. We say that (M1, s1) is more precise than (M2, s2), denoted
(M1, s1) ≤µ (M2, s2), if for every ϕ in Lµ: [[ϕ]]M2

3 (s2) 6=⊥ ⇒ [[ϕ]]M1

3 (s1) = [[ϕ]]M2

3 (s2).
Similarly, we say that M1 is more precise than M2, denoted M1 ≤µ M2, if for every

ϕ ∈ Lµ: M2 |= ϕ ⇒ M1 |= ϕ, and M2 6|= ϕ ⇒ M1 6|= ϕ.

The following example demonstrates the non-monotonicity problem. We consider
the traditional refinement that is based on splitting the states of the (abstract) model.

Example 6.2. Consider the following program P .
P :: input: x > 0

pc=1: if x > 5 then x := x+ 1 else x := x+ 2 fi
pc=2: while true do if odd(x) then x := −1 else x := x+ 1 fi od

67

M::

s1

s0

s2

pc = 2

x ≤ 0x > 0

pc = 2

x > 0

pc = 1

M’::
s01

s21s20

s00

s11s10

x > 0
odd(x)
x ≤ 0
pc = 2

¬odd(x)
x ≤ 0
pc = 2

¬odd(x)
x > 0
pc = 2

pc = 1

odd(x)
x > 0
pc = 1

odd(x)

x > 0

pc = 2

¬odd(x)

(a) (b)

Figure 6.1: (a) An abstract model M describing the program P , and (b) the abstract
model M ′ resulting from its refinement. Outgoing transitions of s21 are omitted since
they are irrelevant.

Suppose we are interested in checking the property ϕ = µZ.((x ≤ 0) ∨ ♦Z) which
means “there exists a path in which x ≤ 0 is eventually satisfied”. This property is
clearly satisfied by this program. The concrete model of the program is an infinite state
model. Suppose we start with an abstract model where concrete states that “agree” on
the predicate (x ≤ 0) (taken form the checked property ϕ) are collapsed into a single
abstract state. Then we get the abstract model M described in Figure 6.1(a), where the
truth value of ϕ is indefinite. Now, suppose we refine the model by adding the predicate
odd(x). Then we get the model M ′ described in Figure 6.1(b), where we still cannot
verify ϕ. Moreover, we “lose” the must transition s0R

+s1 of M . This transition has
no corresponding must transition in the refined model M ′. This loss causes the formula
♦(x > 0) which is true in M to become indefinite in M ′. Thus M ′ 6≤µ M .

The source of the problem is that when dealing with KMTSs as abstract models, we
are not guaranteed to have a mixed simulation between the refined abstract model and
the unrefined one, even if both are exact. This means that the refined abstract model
is not necessarily more precise than the unrefined one, even though each of its states
represents less concrete states. This is again demonstrated by Example 6.2. There, both
the initial states of M ′ cannot be matched with the (only) initial state s0 of M in a way
that fulfills the requirements of mixed simulation. This is because s0 has an outgoing
must transition whereas the initial states of M ′ have none. Consequently, M ′ 6�M .

[37] suggests a refinement where the refined model is smaller by the mixed simulation
than the unrefined one. The solution there is basically to use both the new refined
abstract states and the old (unrefined) abstract states. This is a way of overcoming the
problem that the target states of must transitions are being split, causing an undesired
removal of such transitions. This indeed prevents the loss of precision. Yet, this solution
is not sufficient, as demonstrated by the following example.

Example 6.3. Figure 6.2 presents the refined model M ′′ achieved by applying refine-
ment as suggested in [37] on the model M from Figure 6.1(a). Indeed, we now have
a mixed simulation relation from the refined model M ′′ to the unrefined model M , by
simply matching each state with itself or with its super-state, and the loss of precision
is prevented. In particular, the truth value of ♦(x > 0) in M ′′ (unlike M ′ from Fig-
ure 6.1(b)) is tt, since there are must transitions from the initial states of M ′′ to the old

68

M" ::

s1
s11s2

s10

s0 s00 s01

s21s20

¬odd(x)

pc = 1
x > 0
odd(x)

pc = 2
x > 0
odd(x)

pc = 2pc = 2
x ≤ 0x > 0

odd(x)

x > 0
pc = 1

¬odd(x)
x ≤ 0
pc = 2

¬odd(x)
x > 0

pc = 2

x > 0
pc = 1

pc = 2
x ≤ 0

Figure 6.2: The model M ′′ achieved by applying refinement as suggested in [37] on M
from Figure 6.1(a). Outgoing transitions of s21 are omitted since they are irrelevant,
and so are additional outgoing may transitions of the unrefined states (there are no
additional outgoing must transitions for the unrefined states).

unrefined state s1. Yet, in order to verify the desired property ϕ = µZ.((x ≤ 0) ∨ ♦Z),
we need a must transition to (at least one of) the new refined states s10 and s11 from
which a state satisfying x ≤ 0 is definitely reachable (this information was added by the
refinement). However, the ∀∃ condition is still not fulfilled between these states. As a
result we cannot benefit from the additional precision that the refinement provides and
ϕ is still indefinite.

This example demonstrates that even when using the refinement suggested in [37],
must transitions may still be absent from the “refined” part of the model, containing
the new refined states. As a result the additional precision that the refinement provides
cannot necessarily be combined with the old information.

6.2.2 Generalized KMTSs

Having understood the problems that result from the use of must transitions in their
current form, our goal here is to suggest an alternative that will allow to weaken the
∀∃ condition. Following the idea presented in [63] (in a slightly different context), we
suggest the use of hyper-transitions to describe must transitions.

Definition 6.4 (Hyper-Transition). Given a set of states S, a hyper-transition is a pair
(s,A) where s ∈ S and A ⊆ S is a nonempty set of states.

A (regular) transition (s, s′) can be viewed as a hyper-transition (s,A) where A =
{s′}.

Recall that a (regular) must transition exists from sa to s′a in an abstract model only
if every state represented by sa has a (concrete) transition to some state represented
by s′a. The purpose of the generalization is to allow such a concrete transition to exist
to some state represented by some (abstract) state in a set Aa (which plays the role of
s′a). That is, instead of having one abstract state s′a as the target state and requiring
that all the concrete transitions reach concrete states that are represented by s ′a, we will
allow the target state to be “scattered” among several states. This can be achieved by
using a hyper-transition. The hyper-transition will still perform as a must transition in

69

the sense that it will represent at least one concrete transition of each concrete state
represented by sa (maintaining the ∀∃ meaning).

Definition 6.5. A Generalized Kripke Modal Transition System (GTS) is a tuple M =
(S, S0, R+, R−, L), where S, S0, R− and L are defined as in a KMTS, except that R+ ⊆
S × 2S such that for every (s,A) ∈ R+, we have that A 6= ∅ and for each s′ ∈ A,
(s, s′) ∈ R− holds.

The latter requirement replaces the requirement that R+ ⊆ R− in a KMTS. A KMTS
can be viewed as a GTS where every must hyper-transition consists of a singleton target
set.

3-Valued Semantics for GTSs We generalize the 3-valued semantics of Lµ for GTSs.
The semantics is defined similarly to the 3-valued semantics for KMTSs, except that the
use of must transitions is replaced by must hyper-transitions. This affects the definition
for formulas of the form �ψ or ♦ψ. Namely,

[[�ψ]]M,ρ
3 := λs.

tt, if ∀t ∈ S, if sR−t then [[ψ]]M,ρ
3 (t) = tt

ff, if ∃A ⊆ S s.t. sR+A and ∀t ∈ A : [[ψ]]M3 (t) = ff
⊥, otherwise

[[♦ψ]]M,ρ
3 := λs.

tt, if ∃A ⊆ S s.t. sR+A and ∀t ∈ A : [[ψ]]M3 (t) = tt

ff, if ∀t ∈ S if sR−t then [[ψ]]M,ρ
3 (t) = ff

⊥, otherwise

The notion of a mixed simulation relation, that guarantees preservation of µ-calculus
formulas between two KMTSs, is generalized as well when dealing with GTSs.

Definition 6.6 (Generalized Mixed Simulation). Let M1 = (S1, S
0
1 , R

+
1 , R

−
1 , L1) and

M2 = (S2, S
0
2 , R

+
2 , R

−
2 , L2), be two GTSs, both defined over AP . We say that H ⊆ S1×S2

is a generalized mixed simulation from M1 to M2 if (s1, s2) ∈ H implies the following:

1. L2(s2) ⊆ L1(s1).

2. if s1R
−
1 s

′
1, then there is some s′2 ∈ S2 s.t. s2R

−
2 s

′
2 and (s′1, s

′
2) ∈ H.

3. if s2R
+
2 A2, then there is some A1 ⊆ S1 s.t. s1R

+
1 A1 and (A1, A2) ∈ H∀∃, where

(A1, A2) ∈ H∀∃ ⇔ ∀s′1 ∈ A1 ∃s′2 ∈ A2 : (s′1, s
′
2) ∈ H.

If there is a generalized mixed simulation H s.t. (s1, s2) ∈ H, then (M1, s1) � (M2, s2).
If there is a generalized mixed simulation H s.t. ∀s0

1 ∈ S0
1 ∃s02 ∈ S0

2 s.t. (s01, s
0
2) ∈ H,

and ∀s02 ∈ S0
2 ∃s01 ∈ S0

1 s.t. (s01, s
0
2) ∈ H, then M2 is greater by the generalized mixed

simulation relation than M1, denoted M1 �M2.

Thus, the requirements of a generalized mixed simulation are the same as those of a
mixed simulation (see Definition 2.4), except that requirement 3 is replaced.

In particular, Definition 6.6 can be applied to a (concrete) Kripke structure MC and
an (abstract) GTS MA, by viewing the Kripke structure as a GTS where R− = R and
R+ = {(s, {s′}) | (s, s′) ∈ R}. For (sc, sa) ∈ H requirement 3 can be simplified as
follows:

70

3. if saR
+
AAa, then there is some s′c s.t. scRs

′
c and there is s′a ∈ Aa s.t. (s′c, s

′
a) ∈ H.

This is because requirement 3 requires that for saR
+Aa there exists scR

+Ac such that
(Ac, Aa) ∈ H∀∃. Yet, when viewing a Kripke structure MC as a GTS, every must hyper-
transition scR

+Ac models a regular transition scRs
′
c, where Ac = {s′c}. For such a

transition, (Ac, Aa) ∈ H∀∃ translates into: for (the single) s′c ∈ Ac, there exists s′a ∈ Aa
s.t. (s′c, s

′
a) ∈ H.

For a Kripke structure the 3-valued semantics agrees with the concrete semantics.
Thus, preservation of Lµ formulas is guaranteed by the following theorem.

Theorem 6.7. Let H ⊆ S1 ×S2 be a generalized mixed simulation relation from a GTS
M1 to a GTS M2. Then for every (s1, s2) ∈ H we have that (M1, s1) ≤µ (M2, s2). We
conclude that if M1 �M2 then M1 ≤µ M2.

Proof. The proof is obtained by induction on the structure of µ-calculus formulas, sim-
ilarly to the proof of Theorem 2.5. The only changes occur in cases where must hyper-
transitions are used instead of (ordinary) must transitions:

• Suppose [[�ψ]]M2,ρ
3 (s2) = ff. Then by the definition of the semantics there exists a

must hyper-transition from s2 to A2 such that for each s′2 ∈ A2: [[ψ]]M2,ρ
3 (s′2) = ff.

Moreover, since (s1, s2) ∈ H, we know that there exists A1 such that s1 has a must
hyper-transition to A1 and (A1, A2) ∈ H∀∃, meaning that ∀s′1 ∈ A1 ∃s′2 ∈ A2 :
(s′1, s

′
2) ∈ H. Let s′1 be such a state in A1 and s′2 the corresponding state from

A2. Since s′2 ∈ A2, we know that [[ψ]]M2,ρ
3 (s′2) = ff. By the induction hypothesis,

this implies that [[ψ]]M1,ρ
3 (s′1) = ff. That is, ∀s′1 ∈ A1: [[ψ]]M1,ρ

3 (s′1) = ff. Thus

[[�ψ]]M1,ρ
3 (s1) = ff.

• The treatment of the case where [[♦ψ]]M2,ρ
3 (s2) = tt is dual.

The conclusion that M1 ≤µ M2 is due to the requirement regarding the initial states (as
in the case of a mixed simulation relation between KMTSs).

Construction of an Abstract GTS Given a concrete Kripke structure MC =
(SC , S

0
C , R, LC), and an abstraction (SA, γ) for SC , an abstract GTS MA is constructed

similarly to an abstract KMTS with the following difference: The must hyper-transitions
are computed by a [∀∃∃] rule:

∀sc ∈ γ(sa) ∃s′a ∈ Aa ∃s′c ∈ γ(s
′
a) s.t. scRs

′
c ⇐= saR

+Aa

This construction assures us that whenever sc ∈ γ(sa), then (MC , sc) � (MA, sa).
The generalized mixed simulation H ⊆ SC×SA is induced by γ as follows: (sc, sa) ∈ H iff
sc ∈ γ(sa) (see the following theorem). Therefore, Theorem 6.7 guarantees preservation
of Lµ from MA to MC .

Theorem 6.8. Let MC be a concrete Kripke structure over SC , and let MA be a GTS
computed as described above based on an abstraction (SA, γ) for SC. Then whenever
sc ∈ γ(sa) then (MC , sc) � (MA, sa). We conclude that MC �MA.

71

Proof. We show that H ⊆ SC ×SA defined by (sc, sa) ∈ H iff sc ∈ γ(sa) is a generalized
mixed simulation. Let sc ∈ γ(sa). Requirements 1 and 2 regarding the labeling and the
may transitions are fulfilled as in an abstract KMTS. We now refer to requirement 3.
Let Aa ⊆ SA be such that saR

+Aa. By the remark following Definition 6.6, we need
to show that there is some s′c ∈ SC s.t. scRs

′
c and there is s′a ∈ Aa s.t. (s′c, s

′
a) ∈ H.

Since saR
+Aa, this means (by the construction) that ∀sc ∈ γ(sa) ∃s′a ∈ Aa ∃s′c ∈

γ(s′a) s.t. scRs
′
c. In particular, for our sc, we have that ∃s′a ∈ Aa ∃s′c ∈ γ(s′a) s.t. scRs

′
c.

By the definition of H, s′c ∈ γ(s′a) implies that (s′c, s
′
a) ∈ H. Thus, by changing the order

of the existential quantifiers, the requirement holds. The conclusion that MC � MA is
due to the definition of the initial states (as in a KMTS).

Other constructions of abstract GTSs can also be suggested. For example, the con-
struction of a mixed transition system from [26] within the framework of abstract inter-
pretation can be extended to GTSs as well.

The use of GTSs allows construction of abstract models that are more precise than
abstract models described as KMTSs, when using the same abstract state space and the
same concretization function. This is demonstrated by the following example.

Example 6.9. Consider the exact KMTS M described in Figure 6.1(a) for the program
P from Example 6.2. The state s1 has no outgoing must transition. Therefore, even
verification of the simple formula ♦♦(true) fails, although this formula holds in every
concrete model where the transition relation is total. Using a GTS (rather than a
KMTS) as an abstract model allows us to have a must hyper-transition from s1 to the
set {s1, s2}. Therefore we are now able to verify the formula ♦♦(true).

Exact GTS As with KMTSs, the must hyper-transitions of a GTS do not have to be
exact, as long as they maintain the new ∀∃∃ condition. That is, it is possible to have
less must hyper-transitions than allowed by the ∀∃∃ rule. If all the components of the
GTS are exact, then we get the exact GTS, which is most precise compared to all the
GTSs that are constructed by the same rules based on the given abstraction (SA, γ).

Optimization Any abstract GTS and in particular the exact GTS can be reduced
without damaging its precision, based on the following observation. Given two must
hyper-transitions saR

+Aa and saR
+A′

a, where Aa ⊂ A′
a, the transition saR

+A′
a can be

discarded without sacrificing the precision of the GTS. Therefore, a possible optimization
would be to use only minimal must hyper-transitions whereAa is minimal. This is similar
to the approach of [26], where the target state of a (regular) must transition is chosen
to be the smallest state w.r.t. a given partial order on SA.

In general, even when applying the suggested optimization, the number of must
hyper-transitions in the exact GTS might be exponential in the number of states. In
practice, computing all of them is computationally expensive and unreasonable. Later
on, we will suggest how to choose an initial set of must hyper-transitions and increase
it gradually in a way that in many cases avoids the exponential blowup.

72

6.3 Monotonic Abstraction-Refinement Framework

In this section our goal is to show how GTSs can be used in practice within an abstraction-
refinement framework designed for full µ-calculus. We also show that using the suggested
framework allows us to achieve the important advantage of a monotonic refinement when
dealing with the full µ-calculus and not just a universal fragment of it.

We start by pointing out that using exact GTSs as abstract models solves the problem
of the non-monotonic refinement, described in Section 6.2.1.

Definition 6.10 (Split). Let SC be a set of concrete states, let SA and S′
A be two sets of

abstract states and let γ : SA → 2SC , γ′ : S′
A → 2SC be the corresponding concretization

functions. We say that (S ′
A, γ

′) is a split of (SA, γ) iff there exists a (total) function

β : S′
A → SA s.t. for every sa ∈ SA:

(⋃
β(s′a)=sa

γ′(s′a)
)

= γ(sa). If β(s′a) = sa then s′a

is a substate of sa, and sa is the superstate of s′a.

Theorem 6.11 (Monotonicity of GTSs). Let MC be a (concrete) Kripke structure and
let MA, M ′

A be two exact GTSs defined based on abstractions (SA, γ), (S′
A, γ

′) respec-
tively, s.t. MC � MA and MC � M ′

A. If (S′
A, γ

′) is a split of (SA, γ), then whenever
s′a ∈ S

′
A is a substate of sa ∈ SA then (M ′

A, s
′
a) � (MA, sa). We conclude that M ′

A �MA.

Proof. Suppose that s′a ∈ S′
A is a substate of sa ∈ SA. We show that (M ′

A, s
′
a) �

(MA, sa). For this purpose we show that H ⊆ S ′
A × SA defined by (s′a, sa) ∈ H iff

β(s′a) = sa (i.e. s′a is a substate of sa) is a generalized mixed simulation. Let (s′a, sa) ∈ H.
We show that the three requirements hold.

1. Suppose l ∈ LA(sa). Then by the construction scheme, ∀sc ∈ γ(sa) : l ∈ LC(sc).
Since s′a is a substate of sa, then γ′(s′a) ⊆ γ(sa), thus in particular ∀sc ∈ γ′(s′a) :
l ∈ LC(sc) and by the construction scheme l ∈ LA′(s′a). Thus LA(sa) ⊆ LA′(s′a).

2. Suppose s′aR
−
A′ s̃′a. Then by the construction, ∃sc ∈ γ′(s′a) ∃s′c ∈ γ′(s̃′a) s.t. scRs

′
c.

Since s′a is a substate of sa, then γ′(s′a) ⊆ γ(sa). Let s̃a ∈ SA be the superstate
of s̃′a, i.e., γ′(s̃′a) ⊆ γ(s̃a). Then in particular ∃sc ∈ γ(sa) ∃s′c ∈ γ(s̃a) s.t. scRs

′
c.

This implies that saR
−
A s̃a. Moreover, (s̃′a, s̃a) ∈ H by the definition of H.

3. Suppose saR
+
AAa. Then by the construction, ∀sc ∈ γ(sa) ∃sa1 ∈ Aa ∃s′c ∈

γ(sa1) s.t. scRs
′
c, i.e. ∀sc ∈ γ(sa) ∃s

′
c ∈ γ(Aa) s.t. scRs

′
c. Since s′a is a substate of

sa, then γ′(s′a) ⊆ γ(sa), thus in particular ∀sc ∈ γ′(s′a) ∃s
′
c ∈ γ(Aa) s.t. scRs

′
c. Let

A′
a ⊆ S′

A be the set consisting of all the substates of states in Aa. By definition

of a split,
(⋃

β(s′a)=sa
γ′(s′a)

)
= γ(sa), meaning that γ ′(A′

a) = γ(Aa). Thus the

following holds: ∀sc ∈ γ′(s′a) ∃s′c ∈ γ′(A′
a) s.t. scRs

′
c. This implies that s′aR

+
A′A′

a.
Moreover, (A′

a, Aa) ∈ H∀∃ since for every s′a1 ∈ A′
a, at least one of its superstates

sa1 is in Aa (otherwise s′a1 would not be included in A′
a), and as such (s′a1, sa1) ∈ H.

Thus ∀s′a1 ∈ A′
a ∃sa1 ∈ Aa : (s′a1, sa1) ∈ H.

To conclude that M ′
A �MA we show that the initial states of M ′

A and MA also fulfill
the requirements of the generalized mixed simulation relation.

73

First, for every s0
a
′
∈ S0

A
′
, by the construction it holds that ∃s0

c ∈ S0
C s.t. s0c ∈

γ′(s0a
′
). Let s0a ∈ SA be the superstate of s0

a
′
, i.e., γ′(s0a

′
) ⊆ γ(s0a). Then in particular

∃s0c ∈ γ(s0a) s.t. s0c ∈ γ(s0a). This implies that s0
a ∈ S0

A (by the construction of the exact

GTS). Moreover, (s0
a
′
, s0a) ∈ H by the definition of H.

In the opposite direction, for every s0
a ∈ S0

A, by the construction it holds that ∃s0
c ∈

S0
C s.t. s0c ∈ γ(s0a). Let s0a

′
∈ S′

A be the substate of s0
a s.t. s0c ∈ γ′(s0a

′
). Then, s0a

′
∈ S0

A
′

(by the construction of the exact GTS). Moreover, (s0
a
′
, s0a) ∈ H by the definition of

H.

Theorem 6.11 claims that for exact GTSs, refinement that is based on splitting
abstract states is monotonic. This is true without the need to hold “copies” of the
unrefined abstract states. Yet, as claimed before, constructing the exact GTS is not
practical. Therefore, we suggest a compromise that fits well into the framework of
abstraction-refinement. We show how to construct an initial abstract GTS and how to
construct a refined abstract GTS (based on splitting abstract states). The construction
is done in a way that is on the one hand computationally efficient and on the other hand
maintains a monotonic refinement.

The basic idea is as follows. In each iteration of the abstraction-refinement we first
construct an exact KMTS, including its may transitions and its (regular) must transi-
tions. We transform the KMTS into a GTS by viewing each (regular) must transition
(s, s′) as a hyper-transition (s, {s′}) whose target set is the singleton set consisting of the
target state of the regular transition. We then compute additional must hyper-transitions
as described below.

Construction of an Initial Abstract Model M0:
Given an initial set of abstract states S0 and a concretization function γ0:

1. construct an exact KMTS based on (S0, γ0) and transform it to a GTS.

2. If the transition relation of MC is known to be total, then for every abstract state
s ∈ S0, add an outgoing must hyper-transition whose target set consists of the
targets of all the outgoing may transitions of s.

Note that if the concrete transition relation is total, then the set of all the outgoing
may transitions of a state indeed fulfills the ∀∃∃ condition and thus can be added as a
must hyper-transition. This results from the property that every concrete transition is
represented by some may transition. We call such must hyper-transitions trivial.

Construction of a Refined Model Mi+1:
Suppose that model checking of the abstract model Mi resulted in an indefinite result
and refinement is needed. Let (Si+1, γi+1) be the split of (Si, γi), computed by some
kind of a refinement mechanism. Construct Mi+1 as follows.

1. construct an exact KMTS based on (Si+1, γi+1) and transform it to a GTS.

2. for every must hyper-transition (including regular must transitions) siR
+Ai in Mi

and for every state si+1 ∈ Si+1 that is a substate of si ∈ Si, add to Mi+1 the must
hyper-transition (si+1, {s

′
i+1 | s′i+1 is a substate of s′i ∈ Ai and si+1R

−s′i+1}).

74

3. [optional] discard from Mi+1 any must hyper-transition si+1R
+Ai+1 that is not

minimal, which means that there is si+1R
+A′

i+1 in Mi+1 where A′
i+1 ⊂ Ai+1.

The purpose of step 2 above is to avoid the loss of information from the previous
iteration, without paying an additional cost. To do so, we derive must hyper-transitions
in Mi+1 from must hyper-transitions in Mi, while avoiding the recomputation of the ∀∃∃
rule. Namely, if there is a must hyper-transition from si to Ai in Mi, then for every
state si+1 in Mi+1 that is a substate of si we add an outgoing must hyper-transition to
the set of all substates of states in Ai, excluding states to which si+1 does not have a
may transition. Clearly, given that siR

+Ai, we are guaranteed that the ∀∃∃ condition
holds for the corresponding hyper-transitions in Mi+1 as well. Note that this is not
damaged by excluding from the target set states to which si+1 does not have a may
transition. This is because the lack of a may transition shows that the ∃∃ condition does
not hold between si+1 and the relevant states. Therefore they cannot contribute to the
satisfaction of the ∀∃∃ condition anyway and can be removed. By using this scheme,
the construction of the GTS requires no additional computational cost, compared to the
construction of a (regular) KMTS.

The purpose of step 3 is to reduce the GTS without sacrificing its precision. Note
that the reduction done in this step can be performed during step 2.

Theorem 6.12. Let MC be a concrete Kripke structure and let M0,M1, . . .Mi, . . . be
the abstract GTSs constructed as described above. Then
(1) for every i ≥ 0: MC �Mi; and (2) for every i ≥ 0: Mi+1 �Mi.

Proof. The proof is by induction on i. The base of the induction holds since M0 is
constructed as an abstract KMTS. We now prove the induction step.

We first prove (1). As in the exact GTS, the generalized mixed simulation Hi+1

from MC to Mi+1 is given by (sc, si+1) ∈ Hi+1 iff sc ∈ γ(si+1). To prove that this is a
generalized mixed simulation from MC to Mi+1 it suffices to refer to the must hyper-
transitions (requirement 3), since the rest of the components of Mi+1 are computed as
in the exact KMTS (GTS) and thus we are guaranteed that the other requirements are
fulfilled (see Theorem 6.8). We prove that requirement 3 holds for (sc, si+1) ∈ Hi+1.

Suppose si+1R
+
i+1Ai+1. If the hyper-transition results from a regular must transi-

tion of the exact KMTS, then the requirement is fulfilled based on the properties of an
abstract KMTS. Otherwise, the hyper-transition results from a must hyper-transition
siR

+
i Ai of Mi, where si is a superstate of si+1. This means that Ai+1 = {s′i+1 |

s′i+1 is a substate of s′i ∈ Ai and si+1R
−s′i+1}. We need to show that there is a state

s′c ∈ SC s.t. scRs
′
c, and there is s′i+1 ∈ Ai+1 s.t. (s′c, s

′
i+1) ∈ Hi+1 (see the remark fol-

lowing Definition 6.6). Since si is a superstate of si+1, we have that γi+1(si+1) ⊆ γi(si).
Along with the definition of Hi+1, this implies that sc ∈ γi+1(si+1) ⊆ γi(si), and there-
fore (sc, si) ∈ Hi. Thus, by the induction hypothesis, there exists a state s′c ∈ SC s.t.
scRs

′
c, and there exists s′i ∈ Ai s.t. (s′c, s

′
i) ∈ Hi, meaning that s′c ∈ γi(s

′
i). For the latter

s′i ∈ Ai, consider its substate s′i+1 s.t. s′c ∈ γi+1(s
′
i+1). Then, by the rules of the con-

struction of the may transitions in an abstract KMTS, si+1R
−s′i+1 (since sc ∈ γi+1(si+1),

s′c ∈ γi+1(s
′
i+1) and scRs

′
c). This ensures that s′i+1 ∈ Ai+1. Moreover, (s′c, s

′
i+1) ∈ Hi+1

since s′c ∈ γi+1(s
′
i+1). This concludes the proof.

75

We now prove (2). The generalized mixed simulation Hi+1 from Mi+1 to Mi is given
by (si+1, si) ∈ Hi+1 iff si+1 is a substate of si. Again, to prove that this is a generalized
mixed simulation from Mi+1 to Mi it suffices to refer to the must hyper-transitions
(requirement 3), since the rest of the components are constructed as in the exact KMTS
(GTS), and thus the requirements for them are ensured by Theorem 6.11. We prove
that requirement 3 holds for (si+1, si) ∈ Hi+1.

Suppose siR
+
i Ai. Then the construction of Mi+1 ensures that si+1, which is a sub-

state of si, has a corresponding must hyper-transition si+1R
+
i+1Ai+1 to Ai+1 = {s′i+1 |

s′i+1 is a substate of s′i ∈ Ai and si+1R
−s′i+1}. We need to show that (Ai+1, Ai) ∈ H∀∃

i+1,
i.e. that ∀s′i+1 ∈ Ai+1 ∃s′i ∈ Ai : (s′i+1, s

′
i) ∈ Hi+1. Consider some s′i+1 ∈ Ai+1. Then by

the definition of Ai+1, we know that s′i+1 is a substate of some s′i ∈ Ai, which ensures
that (s′i+1, s

′
i) ∈ Hi+1. This concludes the proof of (2).

Theorem 6.12 first ensures that the construction of the initial and the refined GTSs
described above yields abstract models which are greater by the generalized mixed sim-
ulation relation than the concrete model. Moreover, it ensures that although we do
not use the exact GTSs, we still have a generalized mixed simulation relation between
GTSs from different iterations in a monotonic fashion. This means that we do not lose
information during the refinement and we get “closer” to the concrete model.

Note that the first part of the theorem holds even if in each step of the algorithm
we do not base the construction on the exact KMTS. Moreover, the monotonicity of the
must hyper-transitions is maintained as well. However, for the rest of the components
monotonicity is not ensured if the construction does not use the exact KMTS.

Example 6.13. To demonstrate these ideas we return to the program P from Exam-
ple 6.2 and see how the use of GTSs as described above affects it. The initial GTS
M0 is similar to the KMTS M from Figure 6.2(a), with two additional trivial must
hyper-transitions from s1 and from s2 to {s1, s2} (since in this case the concrete tran-
sition relation is known to be total). Yet, the truth value of ϕ = µZ.((x ≤ 0) ∨ ♦Z)
remains indefinite in this model. When we construct the refined model M1 (based on
the addition of the predicate odd(x)), we get a GTS that is similar to the KMTS M ′

from Figure 6.2(b), but M1 also has additional must hyper-transitions. In particular, it
has two trivial must hyper-transitions from both of its initial states to the set {s10, s11}.
These must hyper-transitions are the refined version of the (regular) must transition
from s0 to s1 in M0: They exist because the initial states of M1 are substates of the
initial state s0 of M0 and the set {s10, s11} consists of all the substates of s1. Their
existence in M1 allows to verify ϕ, since due to them each of the initial states now has
an outgoing must hyper-path in which all the paths reach s20 where x ≤ 0.

Example 6.13 also demonstrates our advantage over [37] which stems from the fact
that our refinement does not use “copies” of the unrefined abstract states, unlike [37].
This example shows that in our approach the old information (from the unrefined model)
is expressed w.r.t. the new refined states. Consequently, the old information and the
new information, for which refinement was needed, can be combined, resulting in a better
precision.

To conclude this section and make the suggested ideas complete, it remains to provide
(1) a model checking algorithm that evaluates µ-calculus formulas over GTSs, using the

76

s ` ♦ϕ
t ` ϕ

∃ : sR+{t} or sR−t
s ` �ϕ

t ` ϕ
∀ : sR+{t} or sR−t

s ` ♦ϕ
A ` ♦ϕ

∃ : sR+A
s ` �ϕ

A ` �ϕ
∀ : sR+A

A ` ♦ϕ

t ` ϕ
∀ : t ∈ A

A ` �ϕ

t ` ϕ
∃ : t ∈ A

Figure 6.3: New model checking game rules for GTSs.

generalized 3-valued semantics; and (2) a suitable refinement mechanism to be applied
when the model checking result is indefinite. Using these two components within the gen-
eral framework suggested above, results in an actual abstraction-refinement framework
where the refinement is monotonic.

Model Checking As a 3-valued model checking algorithm for GTSs we suggest a sim-
ple generalization of the game-based algorithms presented in Chapters 4 and 5. Namely,
we modify the rules of the model checking game from Chapter 3 (see Figure 3.1) in
configurations whose subformula is of the form �ψ or ♦ψ to account for the use of must
hyper-transitions. The new rules appear in Figure 6.3.

First, we replace the role of regular must transitions by must hyper-transitions whose
target set is a singleton and adapt the original rules accordingly (see first line of Fig-
ure 6.3). Moreover, we add rules that allow the players to use “real” must hyper-
transitions: In any configuration of the form (s,♦ϕ) or (s,�ϕ) where a player chooses
to use a “real” must hyper-transition, his or her move is split into two steps. First, he
or she chooses the desired must hyper-transition, (s,A) ∈ S × 2S (second line of Fig-
ure 6.3). Then, the other player chooses a single state t ∈ A and the play proceeds to
the configuration (t, ϕ) (third line). Intuitively, since all the states in A together form
the target of the must hyper-transition, whenever a player uses such a hyper-transition,
he makes a statement about all the states in A. The opponent chooses one state from
this set as a challenge to make it harder on the player, with the idea that if some state
from A does not fulfill the expected property, the opponent will be able to choose it and
entrap the player.

Lemma 3.6 is maintained (after a simple extension of Definition 3.5 to the new
intermediate configurations) and as such the correctness of the game, described by The-
orem 3.3, carries over to this case as well. The translation to a 3-valued parity game, as
well as the algorithms for solving the game, remain the same.

Refinement As for the refinement mechanism, we use the algorithms suggested in
Chapters 4 and 5 in order to find a failure vertex, analyze the failure and decide how to
split the abstract states. To be convinced that no change is needed, one needs to notice
that the refinement is based on may transitions only.

77

Moreover, the construction of a refined model Mi+1 can be improved when this
refinement mechanism is used. Namely, during the failure analysis it is possible to learn
about additional must hyper-transitions that can be added to Mi+1. This is because if
the cause for failure is a may transition siR

−s′i (inMi) then the split is done by separating
the set concmust of all the concrete states represented by si that have a corresponding
outgoing transition from the rest of the states represented by si (see Section 4.3.2).
In this case, we are guaranteed that after the split, the ∀∃∃ condition holds between
the substate of si representing the concrete set concmust and the set containing all the
substates of s′i. Therefore, we can add such a must hyper-transition to Mi+1 without
additional computational cost.

Theorem 6.14. For finite concrete models, iterating the suggested abstraction-refinement
process is guaranteed to terminate with a definite answer.

6.4 Concluding Remarks

In this chapter we investigate the non-monotonicity problem of KMTSs which arises
during refinement. We identify the must transitions as the source of the problem and
suggest generalized KMTSs (GTSs) as alternative abstract models for branching time
logics such as the µ-calculus.

GTSs result in more precise abstract models in which more µ-calculus formulas can
be proved or disproved. Yet, they suffer from a (potential) exponential blowup. In order
to maintain the effectiveness of the abstraction-refinement technique while benefiting
from the better precision of GTSs, we develop a new abstraction-refinement scheme.
Namely, we adjust the 3-valued abstraction-refinement approach described in the pre-
vious chapters to the new monotonic framework. However, instead of constructing the
exact GTS in each iteration of abstraction-refinement, we construct the abstract GTS in
a more gradual fashion by taking into consideration the GTS from the previous iteration.
We start with some initial GTS which consists of (mostly) ordinary transitions. Then,
during refinement, when the abstract states are split, instead of computing all must
hyper-transitions (as is done in the exact GTS), we“learn” must hyper-transitions from
must transitions (and hyper-transitions) that existed in the previous iteration. Thus, in
many cases we avoid the exponential blowup.

78

Chapter 7

More Precision at Less Cost

7.1 Introduction

In this chapter we investigate both the precision of abstract models for the µ-calculus,
and the efficiency of their model checking. We provide a new definition of precision
of abstract models, which measures precision w.r.t. the choice of the abstract states,
independently of the formalism used to describe abstract models. We then show that
GTSs are not yet satisfactory in terms of precision. We suggest how to overcome their
imprecision by using may hyper-transitions. This results in a new class of models, for
which we also suggest a construction of an abstract model which is most precise w.r.t.
any choice of abstract states. We then suggest an efficient abstract model checking
algorithm for the alternation-free µ-calculus that achieves the newly obtained maximal
precision while avoiding the exponential blowup inherent by the use of hyper-transitions.
To complete the picture, we incorporate our abstract model checking algorithm into an
abstraction-refinement framework.

Abstract models are typically constructed based on some given abstraction. Recall
that an abstraction consists of a set of abstract states SA and a mapping (or concretiza-
tion function) γ that defines the relation between abstract states and the concrete states
that they represent. The rest of the components of the concrete model then also need
to be lifted into the abstract world, in order to result in an abstract model. This can be
done in various ways by using some class of abstract models.

For example, previous works used KMTSs [45, 38] that contain both must transitions
and may transitions as abstract models. Other works used GTSs defined in Chapter 6,
or their variants. In these models must hyper-transitions take the place of the (regular)
must transitions. This is because must transitions were shown to behave badly in refine-
ment in the sense of causing a loss of precision (see Chapter 6). They were also shown
in [63, 27, 29] to be a source of incompleteness, in the sense that when limited to the use
of must transitions, it is not always possible to construct a finite abstract model in which
a property holds, even if it holds on the concrete model. As described in Chapter 6, must
hyper-transitions prevent the loss of precision during refinement. They also result in a
complete abstraction framework for the fragment of the µ-calculus defined with greatest
fixpoints only [27, 29] ([27] also introduces fairness and hence achieves completeness for
the full µ-calculus).

79

s1a

sc

sa

s2a

p,¬q

¬p, q

s
′

c
p, q Rectangles depict concrete states circled

by the abstract states representing them.

Figure 7.1: Illustration of Example 7.1.

In this chapter, we are first interested in the precision of abstract models. Precision
of an abstract model is measured by the extent to which it enables to verify or falsify for-
mulas. Specifically, given an abstraction (SA, γ), it is desirable to construct an abstract
model over the states SA in which as many formulas as possible have a definite value
(true or false). With this purpose in mind, we address the allegedly non-problematic may
transitions. We show that while being good enough for completeness purposes [27, 29],
they are in fact a source of imprecision. This might sound surprising, yet the explanation
is simple: when completeness is investigated, the choice of the abstraction (SA, γ) is left
open. On the other hand, when precision is investigated, one is interested in how precise
the model is for a given abstraction.

In order to elaborate further on the imprecision problem we recall the definition
of abstract models for the µ-calculus. To ensure logic preservation, may transitions in
an abstract model have to be such that whenever there is a concrete transition from a
concrete state sc to a concrete state s′c, then every abstract state that represents sc has
to have a may transition to some abstract state that represents s′c. This is because the
may transitions are used to over-approximate the concrete transitions. Now, consider
the following example.

Example 7.1. Suppose that we are interested in verifying the formulas �p (“all the
successors satisfy p”) and �q (“all the successors satisfy q”) in a concrete state sc that
has exactly one successor s′c satisfying both p and q. Suppose further that we are given
an abstraction in which sc is represented by sa, and no other concrete state is represented
by sa. Moreover suppose that s′c is represented by two abstract states: s1a that satisfies
p but has an indefinite value on q, and s2a that satisfies q but has an indefinite value
on p. Figure 7.1 illustrates this setting. Then at least one of the transitions (sa, s1a)
or (sa, s2a) has to be included as a may transition in the abstract model to ensure logic
preservation. However, choosing the first will enable verification of �p, but not �q,
choosing the second will enable the opposite, and including both transitions will prevent
verification of both properties. In other words, no choice of a may transition relation
will enable verification of both �p and �q. In particular, none of them will enable to
verify �p ∧ �q.

Intuitively, in order to achieve the desired precision in the above example one has
to consider both may transitions, but each of them has to be considered separately. We
therefore suggest a new class of models, called Hyper Kripke Modal Transition Systems
(HTSs), in which may transitions are also replaced by hyper-transitions, with the mean-
ing that each outgoing may hyper-transition of an abstract state sa over-approximates

80

all the concrete transitions of the states represented by sa, but several different approxi-
mations (may hyper-transitions) can be used. Other possible solutions involve changing
the abstract state space, for example by some kind of completion that improves the
states precision (e.g. [25]). However, in this work we do not follow such solutions since
we wish to “make the most” of the given abstract states.

Using HTSs as abstract models solves the problem demonstrated by Example 7.1,
but one may wonder if there are other imprecision sources that HTSs do not address.
To answer this question and justify the use of HTSs as abstract models we show how to
construct, given any abstraction, an HTS which is as precise as the abstraction allows.
We formalize this by introducing a new, simple, definition of precision which measures
the precision w.r.t. the abstraction (SA, γ) itself, independently of the class of abstract
models used. This enables us to claim that the constructed HTS is as precise as possible,
among all possible abstract models with a standard 3-valued semantics.

HTSs therefore settle the issue of precision, as they allow maximal precision. Yet,
in terms of efficiency, their use only increases the problem which already exists in GTSs
due to the must hyper-transitions: In general, the number of hyper-transitions might
be exponential in the number of states in the abstract model. Thus, the need to han-
dle hyper-transitions makes both the construction of an abstract model and its model
checking computationally expensive.

This problem was already addressed in Chapter 6 w.r.t. must hyper-transitions.
Recall that the solution there is to “learn” must hyper-transitions from must transitions
(and hyper-transitions) that existed in the previous iteration of abstraction-refinement.
Yet, this approach suffers from several disadvantages. First, it only works as a part of an
abstraction-refinement loop. More importantly, the produced must hyper-transitions are
not necessarily the ones that are needed in practice for a specific proof. Some of them
might be redundant, as they are irrelevant for proving the desired property, whereas
others which are needed to verify the desired property might not be produced, making
the model not precise enough.

We wish to obtain efficiency without compromising the precision that an HTS enables
to get. We achieve this goal for the alternation free fragment of the µ-calculus. The
ability to do this results from the fact that the precise HTS is precise w.r.t. every
µ-calculus formula, whereas we are only interested in one particular (alternation-free)
formula. This can be exploited to save unnecessary efforts.

Suppose, for example, that we wish to check the formula ♦p (“there is a successor
that satisfies p”) in an abstract state sa, for which the number of outgoing must hyper-
transitions in the precise HTS is exponential in the number of states. If we want the
abstract model to be as precise as possible w.r.t every µ-calculus formula, we might
need to consider all of the hyper-transitions (or at least the minimal ones). However,
for the verification of ♦p in sa it suffices to consider a single must hyper-transition
(underapproximation), in which all the target states satisfy p. In other words, w.r.t.
the particular formula, an HTS that contains only the relevant must hyper-transition is
as precise as the precise HTS. Similar reasoning applies to may hyper-transitions. The
question is how to find these designated hyper-transitions and avoid the computation of
the rest.

The key idea is to construct the HTS during the model checking, and thus avoid the

81

(exponential) construction of the precise HTS. We use the model checking to guide the
computation of hyper-transitions, by checking for the existence of hyper-transitions only
when needed.

We obtain an automatic construction of an abstract model which is as precise as the
precise HTS w.r.t. the property of interest, along with a new abstract model checking
algorithm for the alternation-free µ-calculus with complexity O(|SA|

2 × |ϕ|). This is
comparable to the model checking complexity of the alternation free µ-calculus over
models limited to ordinary transitions (recall that the number of ordinary transitions
over |SA| states is O(|SA|

2)), except that our algorithm also ensures maximal precision.
We emphasize that while may hyper-transitions are not always necessary for max-

imal precision, must hyper-transitions are in fact mandatory for completeness. This
demonstrates the importance of such an algorithm, which handles both may and must
hyper-transitions efficiently. Moreover, our approach can be beneficial even in cases
where ordinary transitions suffice for the construction of a precise abstract model for a
formula. This is because such constructions are usually expensive as they require find-
ing best approximations of the concrete transitions (e.g. [26]). In our approach, instead
of computing best approximations, the model checking algorithm wisely chooses can-
didates for which we perform the simpler task of checking if the given candidate is a
correct approximation – not necessarily the best one.

To complete the discussion, we show how to use our abstract model checking within
an abstraction-refinement framework, and show that the refinement has the desirable
property of monotonicity, meaning that the precision of an abstract model never de-
creases as a result of refinement.

Finally, in Section 7.6, we consider concrete systems with multiple initial states, and
show that similar imprecision and efficiency questions arise, and are settled by similar
techniques.

7.1.1 Related Work

Precision of modal (or mixed) transition systems, with ordinary may and must tran-
sitions, is studied in [22, 26, 69]. They suggest constructions of such abstract models
which are most precise among all models from this specific class. In Chapter 6 GTSs
are considered. There, we suggest a construction of an abstract GTS (with must hyper-
transitions) and show that it is most precise among all models produced by a specific
construction method. In contrast to the above, this chapter defines a general notion
of precision, which is independent not only of the construction method, but also of the
class of abstract models.

A similar approach is taken in [43]. They refer to multi-valued concrete models and
use an abstract semantics which is more general than the 3-valued semantics. They
also define precision w.r.t. the abstraction itself, but then use (multi-valued) transition
systems as abstract models, which causes a loss of precision. Our work, on the other
hand, suggests a class of models that achieves maximal precision for the case of 2-
valued concrete models. Moreover, [43] defines precision within the framework of abstract
interpretation [24] and assumes that every set of concrete states has a unique most precise
abstract state that describes it. We do not impose any restrictions on the abstraction
and provide a simple, “stand alone”, definition of precision.

82

The work of [29] also measures the precision of an abstract model by comparison
to the precision of the abstraction. They define the precision of an abstraction (SA, γ)
in terms of a game over the concrete model. Their definition considers abstract states
as precise in less cases than our definition. In particular, the abstract state sa from
Example 7.1 is not considered precise for �p by their definition (when translating it to
logic terms), although as demonstrated by Example 7.1, it does carry enough information
to verify �p in the (only) concrete state it represents. Using this stronger definition they
show that the construction of an abstract model which is equivalent to the exact GTS
(see Chapter 6) results in a precise abstract model. This is in contrast to our result
that shows that GTSs do not allow maximal precision, since we measure the precision
of a model compared to a more general definition of precision of an abstraction. As
a consequence, when pursuing precision w.r.t. our definition, we get abstract models
which are strictly more precise. They thus allow to verify and falsify more properties of
the concrete model.

[37] refers to precision with a different motivation. They suggest how to define
the abstraction (SA, γ) after refinement in order to maintain precision of an abstract
model after refinement. Thus, they measure precision only w.r.t. the precision before
refinement and not independently.

A different approach to precision, pursued in [12, 38], uses a more precise 3-valued
semantics, referred to as the thorough semantics. This semantics gives more definite an-
swers than the standard 3-valued semantics, at the expense of increasing the complexity
of model checking. Namely, the resulting model checking problem has the same complex-
ity as satisfiability. We are interested in an effective framework, thus we use the standard
3-valued semantics, which is less precise, but enjoys a better model checking complexity.
We note that the imprecision problem described in this chapter still exists even if the
thorough semantics is used. Namely, the thorough semantics evaluates a formula in an
abstract model depending on its value in all possible (consistent) concretizations of the
abstract model. This is in general more precise than the standard (inductive) semantics
which might implicitly consider inconsistent underlying concrete models. However, the
described problem results from the imprecision of the abstract model itself, meaning that
undesired concrete models are included as part of its “real” concretizations. Thus, even
the thorough semantics, which considers only the real concretizations, does not help to
overcome the imprecision.

May hyper-transitions resemble the de-focus operations of [27], just like must hyper-
transitions resemble the focus operations. However, the focus and de-focus operations
of [27] are used in the evaluation of ∨ and ∧-formulas. We use the standard semantics for
∨ and ∧, which does not depend on the underlying model. Instead, we use may and must
hyper-transitions in the evaluation of � and ♦-formulas, where the transitions of the
underlying model need to be considered. In addition, in [27] the authors are interested
in completeness and do not refer to the precision or model checking cost of the suggested
class of models.

In terms of model checking, our approach in which we construct the abstract model
during the model checking has some resemblance to the work of [67]. They perform
reachability analysis, where they execute the concrete transitions, while storing abstract
versions of the concrete states that are visited. Their approach is limited to falsification

83

of safety properties, as they consider only an underapproximation of the concrete model.
Our work, on the other hand, is suitable for any property expressed in the alternation
free µ-calculus, and is based on a 3-valued setting which enables both verification and
falsification.

7.2 Abstraction Framework

In order to allow a more thorough discussion of the precision of abstract models, which is
not limited to the scope of a specific class of models, we define the 3-valued abstraction
framework more generally.

Let MC be a concrete Kripke structure with a set of concrete states SC . Recall that
an abstraction (SA, γ) for SC consists of a finite set of abstract states SA and a total
concretization function γ : SA → 2SC that maps each abstract state to the (nonempty)
set of concrete states it represents. Every sc ∈ SC is represented by some sa ∈ SA.

The abstract states provide descriptions of the concrete states. The other components
of the model MC then also need to be lifted into the abstract world. Several classes of
abstract models have been suggested for this purpose (examples are the classes of KMTSs
and GTSs).

A class of models consists of some form of a transition system. It is accompanied
with a semantics for the logic of interest, in our case the µ-calculus, over models from
the class, and some preservation relation � between states that ensures preservation of
the logic. An abstract model for MC is then a model MA from the class, over SA, in
which (MC , sc) � (MA, sa) whenever sc ∈ γ(sa).

1

We are particularly interested in classes of abstract models that use a 3-valued seman-
tics, where the truth values are {tt,ff,⊥}, and where the preservation relation ensures
preservation of both tt and ff. We refer to such classes of models as 3-valued classes.

A 3-valued semantics was suggested for various classes of abstract models (e.g. [45,
39]. In order to allow a more uniform discussion, we define a generic 3-valued semantics
that generalizes these definitions.

A 3-valued class defines, for each model M from the class, sets lM ∈ 2S , for every
l ∈ Lit, and operators �

M ,♦M : 2S → 2S . These definitions are given in terms of the
components of M (e.g. abstract transitions and labeling), with the requirements that lM

and (¬l)M are disjoint and the operators �
M and ♦M are monotone w.r.t. set inclusion.

The 3-valued semantics for the class is then defined based on Kleene’s 3-valued logic for
∧ and ∨, and with the standard definition for fixpoints. Only the definition for formulas
of the form l ∈ Lit, �ψ, and ♦ψ depends on the particular class of M .

Definition 7.2 (Generic 3-Valued Semantics). Let M be a model from a 3-valued class.
The tt-set [[ϕ]]M,ρ

tt ⊆ S and the ff-set [[ϕ]]M,ρ
ff ⊆ S of a µ-calculus formula ϕ over M and

an environment ρ : V → 2S are defined inductively as follows.

In the following definition the functionals f = λg.[[ϕ]]
M,ρ[Z 7→g]
tt and f = λg.[[ϕ]]

M,ρ[Z 7→g]
ff

are elements of 2S → 2S and lfp(f) and gfp(f) denote their least and greatest fixpoints
resp. These fixpoints exist according to [79] since the elements in 2S form a complete

1We consider concrete models that do not have a set of initial states. Therefore, we require state-wise
preservation. In Section 7.6 we extend the discussion to models that have a set of initial states.

84

lattice under set inclusion ordering (⊆) and the functionals f are monotone w.r.t. this
ordering for any Z, ϕ and S.

[[l]]M,ρ
tt := lM

[[�ϕ]]M,ρ
tt := �

M ([[ϕ]]M,ρ
tt)

[[♦ϕ]]M,ρ
tt := ♦M ([[ϕ]]M,ρ

tt)

[[ϕ1 ∧ ϕ2]]
M,ρ
tt := [[ϕ1]]

M,ρ
tt ∩ [[ϕ2]]

M,ρ
tt

[[ϕ1 ∨ ϕ2]]
M,ρ
tt := [[ϕ1]]

M,ρ
tt ∪ [[ϕ2]]

M,ρ
tt

[[Z]]M,ρ
tt := ρ(Z)

[[µZ.ϕ]]M,ρ
tt := lfp(λg.[[ϕ]]

M,ρ[Z 7→g]
tt)

[[νZ.ϕ]]M,ρ
tt := gfp(λg.[[ϕ]]

M,ρ[Z 7→g]
tt)

[[l]]M,ρ
ff := (¬l)M

[[�ϕ]]M,ρ
ff := ♦M([[ϕ]]M,ρ

ff)

[[♦ϕ]]M,ρ
ff := �

M([[ϕ]]M,ρ
ff)

[[ϕ1 ∧ ϕ2]]
M,ρ
ff := [[ϕ1]]

M,ρ
ff ∪ [[ϕ2]]

M,ρ
ff

[[ϕ1 ∨ ϕ2]]
M,ρ
ff := [[ϕ1]]

M,ρ
ff ∩ [[ϕ2]]

M,ρ
ff

[[Z]]M,ρ
ff := ρ(Z)

[[µZ.ϕ]]M,ρ
ff := gfp(λg.[[ϕ]]

M,ρ[Z 7→g]
ff)

[[νZ.ϕ]]M,ρ
ff := lfp(λg.[[ϕ]]

M,ρ[Z 7→g]
ff)

If ϕ is a closed formula, then [[ϕ]]M,ρ
tt = [[ϕ]]M,ρ′

tt , and [[ϕ]]M,ρ
ff = [[ϕ]]M,ρ′

ff , for any
environments ρ, ρ′. Thus, when closed formulas are considered, we drop the environment
from the semantic brackets.

If for every ϕ ∈ Lµ, [[ϕ]]Mtt ∩ [[ϕ]]Mff = ∅, then M is consistent. The 3-valued semantics

of ϕ ∈ Lµ over M , denoted [[ϕ]]M3 , is then defined to be a mapping S → {tt,ff,⊥}:

[[ϕ]]M3 (s) =

tt, if s ∈ [[ϕ]]Mtt
ff, if s ∈ [[ϕ]]Mff
⊥, otherwise

Remark 7.3. It is easy to verify that for consistent models, the 3-valued semantics [[ϕ]]M3
can equivalently be defined as in Section 2.3, i.e., based on the lattice (S → {tt,ff,⊥},v),
except that the semantics of formulas of the form l ∈ Lit, �ψ, or ♦ψ is defined as follows.

[[l]]M,ρ
3 := λs.

tt, if s ∈ lM

ff, if s ∈ (¬l)M

⊥, otherwise

[[�ψ]]M,ρ
3 := λs.

tt, if s ∈ �
M ({s | [[ϕ]]M,ρ

3 (s) = tt})

ff, if s ∈ ♦M ({s | [[ϕ]]M,ρ
3 (s) = ff})

⊥, otherwise

[[♦ψ]]M,ρ
3 := λs.

tt, if s ∈ ♦M ({s | [[ϕ]]M,ρ
3 (s) = tt})

ff, if s ∈ �
M ({s | [[ϕ]]M,ρ

3 (s) = ff})
⊥, otherwise

Here, the environment ρ is a mapping V → (S → {tt,ff,⊥}).

Note that if M is an abstract model, preservation of both tt and ff of Lµ from M
to the concrete model guarantees that M is consistent. From now on we restrict the
discussion to abstract models, which ensures their consistency.

Example 7.4. An example of a 3-valued class of models is the class of GTSs with
generalized mixed simulation as a relation that ensures logic preservation. For a GTS
M = (S,R+, R−, L), we define lM ,�M ,♦M as follows. For every l ∈ Lit, lM = {s | l ∈

85

L(s)}. For every U ⊆ S: �
M(U) = {s | ∀t ∈ S, if sR−t then t ∈ U}, and ♦M (U) =

{s | ∃A ⊆ S s.t. sR+A and A ⊆ U}. When integrated into Definition 7.2 along with
Remark 7.3 this results in the 3-valued semantics of GTSs defined in Section 6.2.2.

Remark 7.5. The need to first separately define the tt-sets and the ff-sets of µ-calculus
formulas rather than immediately defining the 3-valued semantics arises since in the
general case the value of a formula in a state of a model from a 3-valued class can be
both tt and ff, resulting in a 4-valued semantics.

When talking about KMTSs and GTSs, the requirement that the must (hyper) tran-
sitions are included in the may transitions ensures consistency and prevents such a
scenario. More generally, this requirement ensures that if U1, U2 ⊆ S are disjoint sets,
then �

M (U1) ∩ ♦M (U2) = ∅, which ensures (by induction) that for every ϕ ∈ Lµ,

[[ϕ]]Mtt ∩ [[ϕ]]Mff = ∅. Therefore, for KMTSs and GTSs the 3-valued semantics can immedi-
ately be defined as a mapping S → {tt,ff,⊥}, without the need to first define the tt-sets
and the ff-sets separately (as defined in Sections 2.3 and 6.2.2).

One could think of requiring an equivalent requirement from any 3-valued class in
order to ensure consistency. However, such a requirement also restricts the expressiveness
of the models. For example, when considering KMTSs, the constructions of [26] do
not maintain this requirement, even though they are consistent. These constructions
only ensure that if U1 and U2 represent disjoint sets of concrete states then �

M(U1) ∩
♦M (U2) = ∅. This is a sufficient condition for consistency. Yet, since it involves the
underlying concrete states, it cannot be used in the more general context.

Thus, we do not add such restrictions. This allows the consideration of more expres-
sive classes of models, at the price of complicating the semantics and allowing the value of
a formula in a state to be both tt and ff. However, as explained above, when considering
an abstract model, consistency is ensured, and a 3-valued semantics is obtained.

7.3 Increasing Precision

Let MC be a concrete Kripke structure. In this section we are interested in the precision
of the abstract model constructed for MC with a given abstraction (SA, γ).

Specifically, in Section 6.2.2 we described GTSs as a class of abstract models, along
with constructions of abstract models from this class. We now ask the following ques-
tions: (1) Do the constructions of GTSs from Section 6.2.2 produce the most precise
abstract model that we can hope for, given an abstraction? and more fundamentally:
(2) Does the use of GTSs enable to express the most precise abstract model?2

Of course, to answer these questions we first need to define what the most precise
abstract model that we can hope for is, given an abstraction. We measure precision
w.r.t. a 3-valued semantics. We therefore restrict the discussion to abstract models
from 3-valued classes.

2In the discussion of GTSs in this chapter we omit the requirement that the must (hyper) transitions
are included in the may transitions in order to allow more generality. Moreover, we do not consider a
set of initial states.

86

7.3.1 Precision of Abstract Models

We wish to capture maximal precision within the boundaries of the inductive 3-valued
semantics as defined in Definition 7.2. When using this semantics, the verification or
falsification of any Lµ formula over an abstract model MA boils down to manipulations

of lMA , �
MA(UA), and ♦MA(UA) for various l ∈ Lit and UA ⊆ SA. We therefore view a

set UA ⊆ SA as a new formula with the following semantics.

Definition 7.6. Let (SA, γ) be an abstraction for a concrete Kripke structure MC , and
let UA ⊆ SA. Then, for every concrete state sc in MC , [[UA]]MC (sc) = tt iff sc ∈ γ(UA),
where γ(UA) stands for

⋃
sa∈UA

γ(sa).

Moreover, for any abstract model MA for MC (from a 3-valued class), [[UA]]MA

tt = UA,

meaning that [[UA]]MA

3 (sa) = tt iff sa ∈ UA.

We do not define the ff-sets of formulas of the form UA ⊆ SA since they are not
needed for our further developments. Moreover, the definition of the tt-sets of such
formulas does not depend on an environment since they are considered closed formulas.

Using Definition 7.6 in conjunction with Definition 7.2, we get that �
MA(UA) =

[[�UA]]MA
tt , and ♦MA(UA) = [[♦UA]]MA

tt . In addition, recall that lMA = [[l]]MA
tt . Since

model checking boils down to manipulations of lMA , �
MA(UA), and ♦MA(UA), this

makes the tt-sets of formulas of the form l, �UA, and ♦UA the building blocks of any
model checking problem over MA. As such, the precision of MA is determined by its
precision w.r.t. truth of such formulas.

In the spirit of [29] we first define the precision of an abstraction w.r.t. such formulas.
This is the precision that a precise abstract model will then be expected to match.

Definition 7.7 (Precision of Abstractions). Given an abstraction (SA, γ) for MC and
a state sa ∈ SA, we say that sa fulfills ϕ = l, �UA or ♦UA, for l ∈ Lit and UA ⊆ SA, if
∀sc ∈ γ(sa) : [[ϕ]]MC (sc) = tt.

Note that this definition is independent of the class of abstract models, as it is meant
to capture the precision of the abstraction itself, in terms of the information carried
within the abstract states. For example, for the abstraction to reflect the fact that �UA
holds in an abstract state sa (meaning it holds in all the concrete states it represents),
it has to be the case that all the concrete states in γ(sa) share the property that all of
their outgoing (concrete) transitions are to γ(UA), which is the “description” of UA in
the concrete world.

Definition 7.8 (Precision of Models). An abstract model MA for MC (from some 3-
valued class) is precise w.r.t. (SA, γ) if for all sa ∈ SA, l ∈ Lit and UA ⊆ SA: whenever
sa fulfills ϕ = l, �UA or ♦UA, then [[ϕ]]MA

3 (sa) = tt.

Thus whenever the information about l, �UA, or ♦UA exists in the abstract states, a
precise abstract model enables to see that. To formalize the generality of Definition 7.8,
we extend Definition 7.7 to more complicated formulas and to falsification, following the
3-valued semantics. We then show that whenever an abstract model is precise w.r.t.
truth of l,�UA,♦UA, it is also precise w.r.t. any other formula.

87

Definition 7.9. Let A = (SA, γ) be an abstraction. We define an abstract semantics
[[ϕ]]A3 by using the generic 3-valued semantics (see Definition 7.2) with the following
definitions of lA ∈ 2SA, and �

A,♦A : 2SA → 2SA . For l ∈ Lit: lA = {sa | sa fulfills l}.
For UA ⊆ SA: �

A(UA) = {sa | sa fulfills �UA}, and ♦A(UA) = {sa | sa fulfills ♦UA}.
We say that sa ∈ SA enables verification (falsification) of ϕ ∈ Lµ if [[ϕ]]A3 (sa) = tt (ff).

Recall that by Definition 7.2, [[ϕ]]A3 (sa) = tt if sa ∈ [[ϕ]]Att, and [[ϕ]]A3 (sa) = ff if

sa ∈ [[ϕ]]Aff . The abstract semantics is well defined since whenever sa ∈ [[ϕ]]Att (resp.

[[ϕ]]Aff), then ∀sc ∈ γ(sa) : [[ϕ]]MC (sc) = tt (resp. ff). This ensures that [[ϕ]]Att ∩ [[ϕ]]Aff = ∅.
For example, by this definition sa enables verification of ϕ = �ψ iff sa fulfills �UA

for some UA ⊆ SA such that every s′a ∈ UA enables verification of ψ.

Theorem 7.10. Let MA be an abstract model for MC (from some 3-valued class) which
is precise w.r.t. (SA, γ). Then whenever sa ∈ SA enables verification (falsification) of
ϕ ∈ Lµ, then [[ϕ]]MA

3 (sa) = tt (ff).

Note that [[ϕ]]MA
3 is well-defined since MA is an abstract model for MC , thus it is

consistent.

Proof. We prove that if sa enables verification of ϕ, i.e. [[ϕ]]Att(sa) = tt, then [[ϕ]]MA

3 (sa) =
tt. The proof for falsification is implied since the 3-valued semantics ensures that
[[ϕ]]MA

3 (sa) = ff iff [[¬ϕ]]MA

3 (sa) = tt, and similarly for the abstract semantics, where
¬ϕ stands for the formula resulting by pushing the negation to the literals, while ex-
changing ∧ with ∨, � with ♦, and µ with ν. The proof is by induction on the structure
of µ-calculus formulas. More specifically, we prove that for every µ-calculus formula ϕ
and every environment ρ, if sa ∈ [[ϕ]]A,ρtt , then sa ∈ [[ϕ]]MA,ρ

tt . This implies that for a

closed formula, if [[ϕ]]A3 (sa) = tt, i.e. sa ∈ [[ϕ]]Att = [[ϕ]]A,ρtt , then sa ∈ [[ϕ]]MA,ρ
tt = [[ϕ]]MA

tt

and hence [[ϕ]]MA

3 (sa) = tt. The interesting cases are when ϕ = l ∈ Lit, �ψ, or ♦ψ. The

remaining cases are immediate as both [[ϕ]]A,ρtt and [[ϕ]]MA,ρ
tt are defined according to the

generic 3-valued semantics.

• If ϕ = l ∈ Lit and sa ∈ [[l]]A,ρtt , then since [[l]]A,ρtt = lA and by the definition
of lA we conclude that sa fulfills l. Thus by the definition of a precise model
sa ∈ [[l]]MA

tt = [[l]]MA,ρ
tt .

• Suppose sa ∈ [[�ψ]]A,ρtt . This means that sa ∈ �
A([[ψ]]A,ρtt). By the definition of

�
A, this means that sa fulfills �UA for UA = [[ψ]]A,ρtt . By the induction hypothesis

for ψ, for every such s′a ∈ UA = [[ψ]]A,ρtt , we have that s′a ∈ [[ψ]]MA,ρ
tt . Thus UA ⊆

[[ψ]]MA,ρ
tt . Moreover, since sa fulfills �UA, then by the definition of a precise model

sa ∈ [[�UA]]MA

tt , meaning that sa ∈ �
MA([[UA]]MA

tt) = �
MA(UA). Monotonicity

of �
MA w.r.t. ⊆ implies that �

MA(UA) ⊆ �
MA([[ψ]]MA,ρ

tt), and therefore sa ∈

�
MA([[ψ]]MA,ρ

tt), thus by the 3-valued semantics sa ∈ [[�ψ]]MA,ρ
tt as well. The case of

ϕ = ♦ψ is similar.

88

The next theorem ensures that an abstract model which is precise w.r.t. the abstrac-
tion is also most precise when compared to other abstract models, provided that their
class has the following property.

Definition 7.11. A 3-valued class of models is structural if its definitions of �
M ,♦M :

2SA → 2SA ensure that for every abstract model MA from the class based on an abstrac-
tion (SA, γ) for a concrete model MC , and for every UA ⊆ SA, whenever sa ∈ �

M (UA),
then for every sc ∈ γ(sa) all the concrete successors of sc are in γ(UA). Similarly,
whenever sa ∈ ♦M(UA), then every sc ∈ γ(sa) has a successor in γ(UA).

Note that for every UA ⊆ SA which is equal to [[ϕ]]Mtt for some ϕ ∈ Lµ, the conditions

of Definition 7.11 are guaranteed to hold, since in this case �
M (UA) = [[�ϕ]]Mtt , and

similarly ♦M (UA) = [[♦ϕ]]Mtt . Thus the conditions are implied by the preservation guar-
antee of the class. However, for a class to be structural, we require that these conditions
hold for every UA ⊆ SA. Intuitively, for �

M and ♦M to maintain such consistency with
the concrete world, they have to be based on some (structural) abstract description of
the concrete transitions in the abstract model. For example, KMTSs, GTSs and their
variants are such classes.

Theorem 7.12. Let MA,M
′
A be two abstract models for MC (from possibly different

3-valued classes) based on an abstraction (SA, γ). If MA is precise w.r.t. (SA, γ) and

the class of M ′
A is structural, then for every sa ∈ SA and every ϕ ∈ Lµ: [[ϕ]]

M ′

A

3 (sa) 6=⊥

⇒ [[ϕ]]MA

3 (sa) = [[ϕ]]
M ′

A
3 (sa).

Proof. Let M ′
A be some abstract model as described in the theorem, and MA a pre-

cise model w.r.t. (SA, γ). We prove that for every sa ∈ SA, if [[ϕ]]
M ′

A
3 (sa) = tt, then

[[ϕ]]MA

3 (sa) = tt. The proof for falsification is implied since the 3-valued semantics ensures

that [[ϕ]]
M ′

A
3 (sa) = ff iff [[¬ϕ]]

M ′

A
3 (sa) = tt and similarly for MA, where ¬ϕ stands for the

formula resulting by pushing the negation to the literals as in the proof of Theorem 7.10.
The proof is by induction on the structure of µ-calculus formulas. More specifically, we

prove that for every µ-calculus formula ϕ and every environment ρ, if sa ∈ [[ϕ]]
M ′

A,ρ

tt ,

then sa ∈ [[ϕ]]MA,ρ
tt . This implies that for a closed formula, if [[ϕ]]

M ′

A
tt (sa) = tt, i.e.

sa ∈ [[ϕ]]
M ′

A
tt = [[ϕ]]

M ′

A,ρ

tt , then sa ∈ [[ϕ]]MA,ρ
tt = [[ϕ]]MA

tt and hence [[ϕ]]MA

3 (sa) = tt. As
before, we present the interesting cases where ϕ = l ∈ Lit, �ψ, or ♦ψ. The remaining

cases are immediate as both [[ϕ]]
M ′

A,ρ

tt and [[ϕ]]MA,ρ
tt are defined with the generic 3-valued

semantics.

• For ϕ = l ∈ Lit, if sa ∈ [[l]]
M ′

A,ρ

tt = [[l]]
M ′

A
tt , then by the preservation guarantee of

M ′
A, we conclude that ∀sc ∈ γ(sa), sc ∈ [[l]]MC (i.e. [[l]]MC (sc) = tt), thus sa fulfills

l. Since MA is precise w.r.t. (SA, γ), we conclude that sa ∈ [[l]]MA

tt = [[l]]MA,ρ
tt .

• Suppose ϕ = �ψ, and sa ∈ [[�ψ]]
M ′

A,ρ

tt . Let UA = [[ψ]]MA,ρ
tt . To show that sa ∈

[[�ψ]]MA,ρ
tt , we need to show that sa ∈ �

MA(UA). Since sa ∈ [[�ψ]]
M ′

A,ρ

tt , then

by the 3-valued semantics, sa ∈ �
M ′

A([[ψ]]
M ′

A,ρ

tt). By the induction hypothesis,

[[ψ]]
M ′

A,ρ

tt ⊆ [[ψ]]MA,ρ
tt = UA. Thus, by monotonicity of �

M ′

A w.r.t. ⊆, we conclude

89

that �
M ′

A([[ψ]]
M ′

A,ρ

tt) ⊆ �
M ′

A(UA), thus sa ∈ �
M ′

A(UA). Since M ′
A belongs to a

structural class, this ensures us that for every sc ∈ γ(sa) all the concrete successors
of sc are in γ(UA), and thus belong to [[UA]]MC . Thus ∀sc ∈ γ(sa) : sc ∈ [[�UA]]MC

(i.e., [[�UA]]MC (sc) = tt). Thus by definition sa fulfills �UA. Since MA is precise
w.r.t. (SA, γ), this ensures that sa ∈ [[�UA]]MA

tt . Thus by the 3-valued semantics

sa ∈ �
MA(UA) = �

MA([[ψ]]MA,ρ
tt), and sa ∈ [[�ψ]]MA,ρ

tt . The proof for ϕ = ♦ψ is
similar.

Now, equipped with formal definitions of precision, we go back to our questions about
the precision of GTSs.

Theorem 7.13. If the abstraction (SA, γ) partitions the concrete states, i.e. for each
sa, s

′
a ∈ SA : γ(sa) ∩ γ(s

′
a) = ∅, then the exact GTS from section 6.2.2 is precise w.r.t.

(SA, γ).

Proof. Let MA denote the exact GTS from section 6.2.2.

• Suppose that sa ∈ SA fulfills l ∈ Lit. This means that ∀sc ∈ γ(sa) : [[l]]MC (sc) = tt
(i.e. sc ∈ [[l]]MC), and by the concrete semantics this implies that ∀sc ∈ γ(sa) : l ∈
LC(sc). Therefore by the construction of the exact GTS, l ∈ LA(sa) and hence
sa ∈ {s | l ∈ LA(s)} = lMA = [[l]]MA

tt .

• Suppose that sa ∈ SA fulfills ϕ = �UA. Thus, ∀sc ∈ γ(sa) : [[�UA]]MC (sc) = tt
(i.e. sc ∈ [[�UA]]MC). This means that ∀sc ∈ γ(sa) ∀s

′
c, if scRs

′
c then s′c ∈ [[UA]]MC .

In other words, ∀sc ∈ γ(sa) ∀s′c, if scRs
′
c then s′c ∈ γ(UA) (1). Now, consider an

outgoing may transition of sa to some s′a in MA. It was computed based on the
∃∃ condition, meaning that ∃sc ∈ γ(sa) ∃s′c ∈ γ(s′a) s.t. scRs

′
c. By (1), this also

ensures that s′c ∈ γ(UA). Thus there exists s′′a ∈ UA such that s′c ∈ γ(s′′a). Since
we have a partition, it implies that s′a = s′′a (since also s′c ∈ γ(s′a)). Thus s′a ∈ UA
and as such s′a ∈ [[UA]]MA

tt . As this is true for every outgoing may transition of sa,

we conclude that sa ∈ �
MA([[UA]]MA

tt) = [[�UA]]MA

tt .

• Suppose that sa ∈ SA fulfills ϕ = ♦UA. Thus, ∀sc ∈ γ(sa) : [[♦UA]]MC (sc) = tt
(i.e., sc ∈ [[♦UA]]MC). This means that ∀sc ∈ γ(sa) ∃s′c such that scRs

′
c and s′c ∈

[[UA]]MC , i.e. s′c ∈ γ(UA). In other words, ∀sc ∈ γ(sa) ∃s
′
c ∈ γ(UA) such that scRs

′
c.

Thus, by the construction there exists a must hyper-transition in MA from sa to
UA, where all the states belong to [[UA]]MA

tt (by definition). Thus sa ∈ ♦MA(UA) =

♦MA([[UA]]MA
tt) = [[♦UA]]MA

tt .

However, in many cases it might be desirable to gather the concrete states into
non-disjoint sets, as this can reduce the size of the abstract state space that enables
verification or falsification of the desired property. We show that in this general setting,
the answer to both questions is “no”.

90

7.3.2 May Transitions as a Source of Imprecision

As demonstrated by Example 7.1, when the given abstract states do not represent disjoint
sets of concrete states, the may transitions can become a source of imprecision. In this
example there is no abstract GTS for MC over SA that will enable verification of both
�p and �q in sa. This is while the abstraction does enable verification of both �p and
�q in sa (see Definition 7.9). Thus, none of the possible GTSs is precise w.r.t. the
given abstraction. As this example does not involve must hyper-transitions, the same
conclusion holds even if we relax the requirement that the must hyper-transitions are
included in the may transitions.

Theorem 7.14. GTSs do not always suffice for the construction of a precise abstract
model w.r.t. a given abstraction, even if the requirement that the must hyper-transitions
are included in the may transitions is omitted.

We emphasize that this imprecision is not limited to a certain construction. Indeed,
the construction of the exact GTS from Section 6.2.2 is simplistic, as it might introduce
redundancy in the may transitions (for example, in Example 7.1 both may transitions
would be included). Yet, Theorem 7.14 holds even for optimized constructions that avoid
redundant may transitions (e.g. in the style of [26]).

It can be shown that the imprecision results from the may transitions and not from
the other components of the GTS. This is because whenever the abstraction enables
verification of l ∈ Lit or ♦UA, so does the exact GTS, which implies that the labeling
and the must hyper-transitions (used for verification of such formulas) are precise enough.

More than that, analyzing Example 7.1 shows that the imprecision arises when there
is no “best” choice of may transitions, in which case one needs to consider all of their
(incomparable) possibilities to achieve maximal precision. Unfortunately, a GTS does
not enable to do that. We therefore suggest to model the may transitions as hyper-
transitions as well, with the meaning that each may hyper-transition (sa, Aa) ∈ SA×2SA

provides some overapproximation of all the outgoing transitions of the concrete states
represented by sa.

7.3.3 Hyper Kripke Modal Transition Systems

This brings us to the new class of abstract models that we suggest to be used in order
to obtain maximal precision.

Definition 7.15. A Hyper Kripke Modal Transition System (HTS) is a tuple M =
(S,R+, R−, L), where S,L,R+ are defined as before, and R− ⊆ S × 2S.

In particular, the target sets of the may and must hyper-transitions of an HTS might be
empty.

3-Valued Semantics for HTSs To adapt the 3-valued semantics of Lµ for HTSs we

redefine �
M . The definitions of lM and ♦M are the same as for GTSs. For every U ⊆ S:

�
M (U) = {s | ∃A ⊆ S s.t. sR−A and ∀t ∈ A : t ∈ U}. This changes the definition for

91

�ψ in a consistent HTS to:

[[�ψ]]M3 (s) =

tt, if ∃A ⊆ S s.t. sR−A and

∀t ∈ A : [[ψ]]M3 (t) = tt
ff, if ∃A ⊆ S s.t. sR+A and

∀t ∈ A : [[ψ]]M3 (t) = ff
⊥, otherwise

and dually for [[♦ψ]]M3 (s) when exchanging tt with ff.
Thus, in order to evaluate a �ψ formula to tt, instead of requiring that all the may

transitions of s are to states that satisfy ψ, we now require that there exists a may hyper-
transition of s such that all the states within the target set satisfy ψ. This is justified by
the fact that in an abstract HTS, each may hyper-transition of s (as opposed to all the
may transitions of s together in an abstract GTS) will over-approximate all the concrete
transitions leaving the concrete states represented by s.

Note that an HTS might be inconsistent. For example, a state s of an HTS M might
have both a may hyper-transition to [[l]]Mtt = {s′ | l ∈ L(s′)} and a must hyper-transition

to [[l]]Mff = {s′ | ¬l ∈ L(s′)}. This means that s ∈ [[�l]]Mtt ∩ [[�l]]Mff . Yet, we are interested
in abstract HTSs which are always consistent.

A GTS, and thus also a Kripke structure, can be viewed as an HTS, where every
state has exactly one outgoing may hyper-transition, whose target set consists of the
target states of all of its (ordinary) may transitions. This encoding preserves the logical
semantics of the models. Note that we allow the target of a may hyper-transition to be
an empty set, in case the (may) transition relation of the Kripke structure or the GTS
is not total. In particular, a may hyper-transition whose target set is empty causes the
value of a formula of the form �ψ to be tt in the source state of the hyper-transition.
This coincides with the case of a state that has no outgoing (may) transitions in a Kripke
structure or a GTS. Preservation of Lµ between HTSs (and in particular between an
HTS and a Kripke structure) is then guaranteed by the following relation.

Definition 7.16 (Hyper Mixed Simulation). Let M1 = (S1, R
+
1 , R

−
1 , L1) and M2 =

(S2, R
+
2 , R

−
2 , L2) be two HTSs, both defined over AP . We say that H ⊆ S1 × S2 is a

hyper mixed simulation from M1 to M2 if (s1, s2) ∈ H implies the following:

1. L2(s2) ⊆ L1(s1).

2. if s2R
−
2 A2, then there is some A1 ⊆ S1 s.t. s1R

−
1 A1 and (A1, A2) ∈ H

∀∃.

3. if s2R
+
2 A2, then there is some A1 ⊆ S1 s.t. s1R

+
1 A1 and (A1, A2) ∈ H

∀∃,

where as before: (A1, A2) ∈ H∀∃ ⇔ ∀s′1 ∈ A1 ∃s′2 ∈ A2 : (s′1, s
′
2) ∈ H.

If there is a hyper mixed simulation H s.t. (s1, s2) ∈ H, then (M1, s1) � (M2, s2).

Thus, the requirements of a hyper mixed simulation are the same as those of a gen-
eralized mixed simulation (see Definition 6.6), except that requirement 2 is replaced.
Namely, instead of requiring that for each may transition of M1, there exists a corre-
sponding may transition in M2 such that the target states satisfy (s′1, s

′
2) ∈ H, i.e. s′2

over-approximates s′1, we now require that for each may hyper-transition of M2 there

92

exists a corresponding may hyper-transition in M1 (note that the indices are swapped),
such that the target sets satisfy (A1, A2) ∈ H, i.e. A2 over-approximates A1.

Intuitively, there can be less may hyper-transitions in M2 but each one has to over-
approximate some hyper-transition in M1. Thus, if some may hyper-transition was used
to verify �ψ in M2, then the may hyper-transition that it over-approximates can be used
to verify it in M1. Note that a may hyper-transition of M1 that has no representation
in M2 can only cause formulas with a definite value in M1 to be indefinite in M2 and
not vice versa.

When applying Definition 7.16 to a (concrete) Kripke structureMC and an (abstract)
HTS MA, requirements 2 and 3 simplify as follows. For (sc, sa) ∈ H,

2. if saR
−Aa, then for every s′c s.t. scRs

′
c, there is s′a ∈ Aa s.t. (s′c, s

′
a) ∈ H.

3. if saR
+
AAa, then there is some s′c s.t. scRs

′
c and there is s′a ∈ Aa s.t. (s′c, s

′
a) ∈ H.

The simplification of requirement 3 is the same as in the case of generalized mixed
simulation (see Chapter 6). As for requirement 2, recall that it requires that for saR

−Aa
there exists scR

−Ac such that (Ac, Aa) ∈ H∀∃. Yet, when viewing a Kripke structure
MC as an HTS, every state sc ∈ SC has exactly one outgoing may hyper-transition
scR

−Ac where Ac consists of all the target states of the ordinary transitions of sc, i.e.,
Ac = {s′c | scRs

′
c}. Therefore requirement 2 narrows down to this may hyper-transition,

and (Ac, Aa) ∈ H∀∃ translates into: for every s′c ∈ Ac, i.e., for every s′c s.t. scRs
′
c, there

exists s′a ∈ Aa s.t. (s′c, s
′
a) ∈ H.

Theorem 7.17. For HTSs M1 and M2 with states s1 and s2 resp., if (M1, s1) � (M2, s2)
then for every ϕ ∈ Lµ: s2 ∈ [[ϕ]]M2

tt ⇒ s1 ∈ [[ϕ]]M1

tt , and s2 ∈ [[ϕ]]M2

ff ⇒ s1 ∈ [[ϕ]]M1

ff .

Proof. The proof is obtained by induction on the structure of µ-calculus formulas, simi-
larly to the proof of Theorem 6.7. The only changes occur in cases where the semantics
was changed, i.e. where may hyper-transitions are used instead of (ordinary) may tran-
sitions.

• Suppose s2 ∈ [[�ψ]]M2,ρ
tt . Then by the definition of the semantics there exists a

may hyper-transition from s2 to A2 such that for each s′2 ∈ A2: s′2 ∈ [[ψ]]M2,ρ
tt .

Moreover, since (s1, s2) ∈ H, we know that there exists A1 such that s1 has a may
hyper-transition to A1 and (A1, A2) ∈ H∀∃, meaning that ∀s′1 ∈ A1 ∃s′2 ∈ A2 :
(s′1, s

′
2) ∈ H. Let s′1 be such a state in A1 and s′2 the corresponding state from

A2. Since s′2 ∈ A2, we know that s′2 ∈ [[ψ]]M2,ρ
tt . By the induction hypothesis, this

implies that s′1 ∈ [[ψ]]M1,ρ
tt . That is, ∀s′1 ∈ A1: s

′
1 ∈ [[ψ]]M1,ρ

tt . Thus s1 ∈ [[�ψ]]M1,ρ
tt .

The treatment of the case where s2 ∈ [[♦ψ]]M2,ρ
ff is dual.

In particular, if Theorem 7.17 is applied on a concrete Kripke structure MC and an
abstract HTS MA for it (meaning MA is consistent), then whenever sc ∈ γ(sa), we have
that [[ϕ]]MA

3 (sa) 6=⊥⇒ [[ϕ]]MC (sc) = [[ϕ]]MA

3 (sa).

93

Construction of an Abstract HTS Let MC = (SC , R, LC) be a (concrete) Kripke
structure. Given an abstraction (SA, γ) for it, an abstract model in the form of an
HTS MA = (SA, R

+, R−, LA), can be constructed as a GTS (see Section 6.2.2) with
the exception that R− now consists of hyper-transitions, constructed as follows. A may
hyper-transition saR

−Aa exists only if a [∀∀∃] condition holds:

∀sc ∈ γ(sa) ∀s′c [scRs
′
c ⇒ ∃s′a ∈ Aa s.t. s′c ∈ γ(s′a)]

That is, every outgoing may hyper-transition of sa over-approximates all the concrete
transitions of the states represented by sa. In other words, each of the target sets
of the outgoing may hyper-transitions of sa over-approximates all the targets of the
concrete transitions leaving the concrete states represented by sa. An example of a
“legal” may hyper-transition that satisfies the ∀∀∃ condition is (sa, Aa) for every sa ∈ SA
and Aa = {s′a | ∃sc ∈ γ(sa) ∃s′c ∈ γ(s′a) s.t. scRs

′
c}. Note that the “only if” allows to

include less hyper-transitions than allowed by the rule. The following theorem formalizes
the correctness of the construction.

Theorem 7.18. Let MC be a concrete Kripke structure over SC , and let MA be an HTS
computed as described above based on an abstraction (SA, γ) for SC. Then whenever
sc ∈ γ(sa) then (MC , sc) � (MA, sa).

Proof. We show that H ⊆ SC × SA defined by (sc, sa) ∈ H iff sc ∈ γ(sa) is a hyper
mixed simulation. Let sc ∈ γ(sa). Requirements 1 and 3 regarding the labeling and the
must hyper-transitions are fulfilled as in a GTS. We now refer to requirement 2. Let
Aa ⊆ SA be such that saR

−Aa. By the remark following Definition 7.16, we need to
show that for every s′c s.t. scRs

′
c, there is s′a ∈ Aa s.t. (s′c, s

′
a) ∈ H. Since saR

−Aa, this
means (by the construction) that ∀sc ∈ γ(sa) ∀s′c [scRs

′
c ⇒ ∃s′a ∈ Aa s.t. s′c ∈ γ(s′a)].

In particular, for our sc, we have that ∀s′c [scRs
′
c ⇒ ∃s′a ∈ Aa s.t. s′c ∈ γ(s′a)]. By the

definition of H, s′c ∈ γ(s′a) implies that (s′c, s
′
a) ∈ H. Thus, the requirement holds.

For example, to verify �p and �q in Example 7.1, we include (sa, {s1a}) and (sa, {s2a})
as may hyper-transitions. Note that both of these hyper-transitions satisfy the ∀∀∃
condition, which ensures that each of them over-approximates all the concrete transitions
of the concrete state represented by sa (in this case there is only one such concrete
transition). In addition, the labeling function defines LA(s1a) = {p}, and LA(s2a) = {q}.
Now, the may hyper-transition (sa, {s1a}) enables to verify �p. Similarly, the may hyper-
transition (sa, {s2a}) enables to verify �q. Thus, �p ∧ �q is verified.

Exact HTS If the “only if” in the definition of may hyper-transitions is replaced by
“iff”, the may hyper-transitions are exact. If all components are exact, we get the exact
HTS.

Theorem 7.19. Let MC be a Kripke structure and ME
A the exact HTS computed as

described above based on an abstraction (SA, γ). Then ME
A is precise w.r.t. (SA, γ).

Proof. The cases where sa ∈ SA fulfills l ∈ Lit or ♦UA are exactly as in the proof of
theorem 7.13 (note that the proof of these cases did not rely on the fact that we had a
partition of the concrete states). We refer to the remaining case, which is different.

94

• Suppose that sa ∈ SA fulfills ϕ = �UA. This means that ∀sc ∈ γ(sa) : [[�UA]]MC (sc) =
tt (i.e. sc ∈ [[�UA]]MC). In other words, ∀sc ∈ γ(sa) ∀s′c, if scRs

′
c then s′c ∈

[[UA]]MC , or equivalently ∀sc ∈ γ(sa) ∀s′c, if scRs
′
c then s′c ∈ γ(UA), meaning that,

∀sc ∈ γ(sa) ∀s′c [scRs
′
c ⇒ ∃s′a ∈ Ua s.t. s′c ∈ γ(s′a)]. Thus, by the construction

of the exact HTS there exists a may hyper-transition in MA from sa to UA. In
addition, all the (abstract) states in UA belong to [[UA]]MA

tt (by definition), thus by

the 3-valued semantics over HTS sa ∈ �
MA(UA) = �

MA([[UA]]MA

tt) = [[�UA]]MA

tt .

Optimization As suggested in Chapter 6 for must hyper-transitions, an HTS can be
reduced without damaging its precision by discarding may and must hyper-transitions
(sa, Aa) that are not minimal, meaning that there is another hyper-transition (sa, A

′
a)

of the same type where A′
a ⊂ Aa. In particular, Theorem 7.19 still holds after this

optimization is applied.
For example, in the exact HTS constructed for Example 7.1, R− (and also R+) in-

cludes in addition to the hyper-transitions (sa, {s1a}) and (sa, {s2a}), the hyper-transition
(sa, {s1a, s2a}), which is not minimal. Thus the same precision is achieved when it is
omitted. The same reasoning applies to other non-minimal hyper-transitions which are
included in R− and R+, leaving us with R+ = R− = {(sa, {s1a}), (sa, {s2a})}.

Note that in an HTS, both the 3-valued semantics and the preservation relation
(hyper mixed simulation) treat may and must hyper-transitions in the same way, rather
than dually. Still, may hyper-transitions and must hyper-transitions have different roles
in an abstract model: the first provides an overapproximation of the concrete transitions,
and the latter provides an underapproximation for them. This difference is captured by
the fact that when viewing a Kripke structure as an HTS, the may and must hyper-
transitions are defined differently. Namely, each concrete transition is considered a must
hyper-transition, whereas all the concrete transitions together form a single may hyper-
transition. As such, the may and must hyper-transitions of an abstract HTS, which is
related to the concrete Kripke structure by a hyper mixed simulation, are each required
to satisfy different rules w.r.t. the concrete transitions. This is demonstrated by the
construction of an abstract HTS, where the may and must hyper-transitions are defined
differently.

7.4 Decreasing the Model Checking Cost

Using the exact HTS as an abstract model ensures maximal precision w.r.t. the given
abstraction. Yet, it involves an exponential blowup (even with the suggested optimiza-
tion). In this section we suggest an efficient model checking for the alternation-free
µ-calculus, which remains quadratic in the number of abstract states, and yet produces
a result which is as precise as possible w.r.t. a specific property.

In the remainder of this section we restrict the discussion to the alternation free
fragment of the µ-calculus. Let MC be a concrete Kripke structure and ϕ ∈ L0

µ a
formula that we wish to check in some state sc of MC . Moreover, suppose that we
are given a (finite) abstraction (SA, γ). All the abstract states that represent sc are

95

s ` ψ0 ∨ ψ1
s ` ψi

: i ∈ {0, 1} s ` ψ0 ∧ ψ1
s ` ψi

: i ∈ {0, 1}

s ` ηZ.ψ
s ` Z

s ` Z
s ` ψ : if fp(Z) = ηZ.ψ

s ` ♦ψ
t ` ψ : sR̃t

s ` �ψ
t ` ψ : sR̃t

Figure 7.2: Rules for the construction of the model checking graph.

candidates to enable verification or falsification of ϕ in sc. We therefore refer to them as
designated states. Our purpose is to evaluate ϕ in all these designated abstract states
in the exact HTS ME

A .
Our algorithm is based on a generalization of the game-based model checking sug-

gested in [74] for CTL over KMTSs (with ordinary may and must transitions). We no
longer formulate the problem as a game, but we use a graph that resembles the game
graph of the model checking game as an underlying structure for our algorithm. We
refer to this structure as the model checking graph, or in short MC-graph.

Model Checking Graph (MC-Graph) The MC-graph resembles the underlying
graph of the model checking game for the µ-calculus presented in Section 3.2. It presents
all the information “relevant” for the model checking: Every vertex in the graph is labeled
by sa ` ψ, where sa is an abstract state and ψ is a subformula of ϕ, indicating that
the value of ψ in sa is relevant for determining the model checking result. The outgoing
edges of a vertex sa ` ψ can be seen as defining “subgoals” for the goal of checking ψ in
sa.

Formally, let ϕ ∈ L0
µ be a formula, SA a set of states, Sd ⊆ SA a set of designated

states in which we want to evaluate ϕ, and R̃ ⊆ SA × SA a transition relation. R̃ is
meant to provide a basic description of the possible transitions between states (we will
soon see how it is obtained). The MC-graph G w.r.t. ϕ, SA, Sd and R̃ is a graph (V,E)
with a set of vertices V ⊆ SA×Sub(ϕ) and a set of edges E ⊆ V ×V , defined as follows.
The initial vertices V0 ⊆ V consist of Sd×{ϕ}. The (rest of the) vertices and the edges
are defined by the rules of Figure 7.2, with the meaning that whenever v ∈ V is of the
form of the upper part of the rule, then the result in the lower part of the rule is also a
vertex v′ ∈ V and (v, v′) ∈ E.

The rules in Figure 7.2 resemble those given in Figure 3.1 for the 3-valued model
checking game over KMTSs, except that only one transition relation R̃ is used (instead
of both must and may transition relations).

The vertices of G are classified as ∧, ∨, �, ♦, or literal vertices, based on their
subformuals. Vertices whose subformulas are of the form Z or ηZ.ψ are deterministic
– they have exactly one son. Vertices that have no outgoing edges are called terminal
vertices.

Since ϕ is an alternation-free formula, each strongly connected component (SCC)
in G which is non-trivial, i.e. has at least one edge, contains exactly one free fixpoint

96

variable Z ∈ V, called a witness. If fp(Z) = µZ.ψ, then Z is a µ-witness. Otherwise it
is a ν-witness.

Coloring Algorithm To determine the model checking result, a coloring algorithm
is applied on the MC-graph with the purpose of labeling each vertex v = sa ` ψ in it
by T , F , ? depending on the value of ψ in the state sa in ME

A , based on the 3-valued
semantics.

We start with some background on the coloring algorithm of [74]. There, the al-
gorithm processes the graph of the model checking game in a bottom-up manner by
iterating two phases: In the sons-coloring phase, a vertex is colored based on the colors
of its sons by rules which reflect the 3-valued semantics of the logic. In the witness-
coloring phase a special procedure is applied to handle cycles (non trivial SCCs) in the
graph.

The witness-coloring phase analyzes vertices that remained uncolored after iterating
the rules of the sons-coloring phase. Such vertices are necessarily a part of a non-trivial
SCC which has a witness3. Depending on the witness, one of the definite colors (T or
F) is ruled out for the remaining uncolored vertices, yet another phase is needed to
decide between ? and the remaining definite color. For example, a µ-witness rules out
the T -color, as infinite paths cannot contribute to satisfaction of a µ (least fixpoint)
formula. Thus, for an uncolored vertex v in such an SCC it remains to be checked if the
condition for coloring v by F , which depends on v’s type, can still hold for it, and if not
color it ?. This is done similarly to the sons-coloring phase, except that the rules are
now aimed at checking that v has no potential to be colored F . The remaining vertices
are colored F . A ν-witness, on the other hand, rules out the F -color, thus vertices that
remain uncolored in such an SCC are colored T or ?.

As for our algorithm, for the sake of the explanation, suppose first that we con-
struct the MC-graph based on ME

A (of course, eventually the point will be to avoid

the construction of ME
A). The transition relation R̃ will then simply be the set R̃E =

{(sa, s
′
a) | s′a ∈ Aa and (saR

−Aa or saR
+Aa)}, where R− and R+ are the transition

relations of ME
A . That is, R̃E contains all the (ordinary) transitions that participate

in some hyper-transition in ME
A . In this case we also define may and must hyper-sons

in G: If v = s ` ♥ψ ∈ V for ♥ ∈ {�,♦} and sR−A (sR+A), then the set of vertices
B = A× {ψ} ⊆ V is a may (must) hyper-son of v.

The coloring can be extended to handle hyper-sons in the same way that the 3-
valued semantics is extended to handle hyper-transitions. For example, a �-vertex will
be colored by F iff it has a must hyper-son whose vertices are all colored by F . It will be
colored by T iff it has a may hyper-son whose vertices are all colored by T . Otherwise
it will be colored ?. Dually for a ♦-vertex. Thus, the coloring algorithm can be seen,
in a sense, as exhaustively trying to find the justification for coloring each vertex. Yet,
instead of considering all the hyper-sons and checking if any of them justifies coloring
the vertex, we suggest to use the information gathered so far in the bottom-up coloring
to perform this check wisely.

For example, to color a �-vertex v by F , it suffices to check, whenever some son of

3In [74], the model checking game is designed for the logic CTL. In particular, a witness there is
defined differently. We adapt the presentation to the alternation-free fragment of the µ-calculus.

97

v gets colored by F , if all of v’s currently F -colored sons comprise a must hyper-son
(i.e., their underlying states fulfill the ∀∃∃ rule). This is because must hyper-sons whose
vertices are not all colored F will not justify coloring v by F , and thus need not be
checked. Moreover, if some subset of the F -colored sons of v comprises a must hyper-
son, then so does the full set. Similarly, to conclude that v should not be colored F (as
is done in the witness-coloring phase), it suffices to check that v’s currently F -colored
sons along with the uncolored sons (if exist) do not form a must hyper-son. If they
do not, then the same holds for any of their subsets, and clearly other sets of vertices
cannot form a must hyper-son whose vertices are all colored F . This means that v has
no potential to have a must hyper-son whose vertices are all colored by F , and it is
safe to conclude that it cannot be colored F . Thus, checking these candidates is as
informative as checking all of the possible must hyper-sons. Similar reasoning applies
to may hyper-sons.

This leads us to the following algorithm, where ME
A is not constructed in advance.

7.4.1 Optimized Abstract Model Checking

Let MC be a concrete model, sc ∈ SC a concrete state, ϕ ∈ L0
µ a formula that we wish

to check in sc, and (SA, γ) an abstraction. The algorithm is as follows.

MC-Graph Construction Construct a partial HTS M̃A = (SA, R̃, LA), where LA
is defined as in the exact HTS, and R̃ ⊆ SA × SA is defined by R̃ = {(sa, s

′
a) | ∃sc ∈

γ(sa) ∃s′c ∈ γ(s′a) s.t. scRs
′
c}. This ensures that R̃ ⊇ R̃E. Construct the MC-graph G

based on ϕ, SA, R̃ as above, and Sd = {sa | sc ∈ γ(sa)}.

Partition The MC-graph G is partitioned into Maximal Strongly Connected Compo-
nents (MSCCs), denoted Qi’s, and a (total) order ≤ is determined on them, such that
for every v ∈ Qi and v′ ∈ Qj , (v, v′) ∈ E only if Qj ≤ Qi. Such an order exists because
the MSCCs form a directed acyclic graph.

Coloring The following two phases are performed repeatedly until all vertices are
colored.

1. Sons-coloring phase. Apply the following rules until none is applicable.

• A terminal vertex sa ` l where l ∈ Lit is colored T if l ∈ LA(sa), F if
¬l ∈ LA(sa), and ? otherwise.

• A terminal vertex of the form sa ` �ψ (sa ` ♦ψ) is colored T (F).

• An ∧-vertex (∨-vertex) is colored by:

– T (F) if both its sons are colored T (F).

– F (T) if it has a son that is colored F (T).

– ? if it has a son that is colored ? and the other is colored 6= F (T).

• A deterministic vertex is colored as its (only) son.

• A non-terminal �-vertex (♦-vertex) is colored by:

98

– T (F) if its currently T (F)-colored sons form a may hyper-son.

– F (T) if its currently F (T)-colored sons form a must hyper-son.

– ? if all of its sons are colored, yet none of the above holds.

2. Witness-coloring phase. If there are still uncolored vertices, let Qi be the smallest
MSCC w.r.t. ≤ that is not yet fully colored. Qi is necessarily a non-trivial MSCC
that has exactly one witness. Its uncolored vertices are colored according to the
witness. For a µ-witness:

(a) Repeatedly color ? each vertex in Qi satisfying one of the following.

• An ∧-vertex (∨-vertex) that both (at least one) of its sons are colored
6= F .

• A deterministic vertex whose son is colored ?.

• A �-vertex (♦-vertex) whose F -colored sons along with its remaining
uncolored sons do not form a must (may) hyper-son.

(b) Color the remaining vertices in Qi by F .

The case where the witness is of type ν is dual, when exchanging F with T , ∧ with
∨, and � with ♦.

In each phase of the coloring, the rules will initially be checked once for every un-
colored vertex, and later will only be checked when one of the sons of the vertex gets
colored by an appropriate color. Several optimizations can be used. For example, during
phase 1 it is possible to color a �-vertex (♦-vertex) by ? before all of its sons are colored
by checking that all of its T (F)-colored sons along with its uncolored sons do not form
a may hyper-son, and in addition all of its F (T)-colored sons along with its uncolored
sons do not form a must hyper-son. Note that if one of these conditions holds at one
time then it will remain valid, thus it need not be checked again.

Remark 7.20. Checking if a set B of vertices forms a may or must hyper-son of a
�-vertex or a ♦-vertex v is performed by checking the ∀∀∃ or the ∀∃∃ condition (resp.)
between the underlying states of the vertex v and the set of vertices B.

The following theorem formalizes the correctness of the algorithm, by relating the
colors of vertices in the MC-graph to truth values of the corresponding formulas in the
corresponding states. To refer to formulas in the MC-graph which are not closed, we
use the following notation. For a (possibly not closed) alternation free formula ϕ1, ϕ

∗
1

denotes the result of replacing every free occurrence of Z ∈ V in ϕ1 by fp(Z). ϕ∗
1 is

always a closed formula.

Theorem 7.21. Let ME
A denote the exact HTS for MC w.r.t. (SA, γ) and let ϕ ∈ L0

µ.
Furthermore, let G be the MC-graph produced by the algorithm. Then for every v = sa `
ϕ1 ∈ G the following holds:

1. [[ϕ∗
1]]
ME

A
3 (sa) = tt iff v = sa ` ϕ1 is colored by T .

2. [[ϕ∗
1]]
ME

A
3 (sa) = ff iff v = sa ` ϕ1 is colored by F .

99

3. [[ϕ∗
1]]
ME

A
3 (sa) =⊥ iff v = sa ` ϕ1 is colored by ?.

In the proof of the theorem we use a variation of the Knaster-Tarski theorem (see
Theorem 2.2) which holds for HTSs. Instead of using approximants as defined in Chap-
ter 2, we formulate the theorem using unwindings of fixpoint formulas. Namely, for a
formula ηZ.ψ, we denote by ψi the unwinding of the fixpoint formula i times. Formally,

ψ0 =

{
false, if η = µ
true, if η = ν

and ψi+1 = ψ[Z := ψi]. For any HTS M over S, we define [[true]]Mtt = [[false]]Mff = S

and [[false]]Mtt = [[true]]Mff = ∅. Then, for an HTS with a finite set of states S, and for

a closed formula ηZ.ψ, there exists i ∈ N such that [[ηZ.ψ]]Mtt = [[ψi]]
M
tt . Similarly, there

exists i ∈ N such that [[ηZ.ψ]]Mff = [[ψi]]
M
ff . We now return to the proof of Theorem 7.21.

Proof of Theorem 7.21 (sketch). The proof is by induction on the run of the coloring
algorithm. For any vertex which is colored within the sons-coloring phase the correctness
follows directly from the 3-valued semantics, combined with the fact that if all the T -
colored sons of a vertex v do not comprise a must (may) hyper-son, then v does not have
a must (may) hyper-son whose vertices are all colored T . Similarly for F . Thus it is
sufficient to check if the selected candidates comprise hyper-sons, rather than considering
all the possible subsets of sons, as described before.

As for vertices which are colored in the witness coloring phase, the proof consists of
several steps. We demonstrate the idea of the proof for a Qi with a witness Z of type µ
(the proof for the case of a ν-witness is similar).

In this case vertices are either colored by ? (in phase 2a) or F (in phase 2b). The first
step is thus to show that the remaining uncolored vertices in Qi at the beginning of this
phase should indeed not be colored T . Let v = sa ` ϕ1 be a vertex in Qi. We show that

if [[ϕ∗
1]]
ME

A
3 (sa) = tt, i.e. v should be colored T , then v must have already been colored T

in the sons-coloring phase. Thus none of the uncolored vertices should be colored T .
Suppose that fp(Z) = µZ.ψ. Since the abstract state space is finite, there exists i

such that [[µZ.ψ]]
ME

A
tt = [[ψi]]

ME
A

tt , where ψi denotes the unwinding of the fixpoint formula

i times. Let ϕ1 and sa be such that [[ϕ∗
1]]
ME

A
3 (sa) = tt, i.e. sa ∈ [[ϕ∗

1]]
ME

A
tt . By the definition

of ϕ∗
1, [[ϕ∗

1]]
ME

A
tt = [[ϕ1[Z := µZ.ψ]]]

ME
A

tt = [[ϕ1]]
ME

A ,ρ[Z 7→[[µZ.ψ]]
ME

A
tt

]
tt = [[ϕ1]]

ME
A ,ρ[Z 7→[[ψi]]

ME
A

tt
]

tt =

[[ϕ1[Z := ψi]]]
ME

A
tt . Note that ϕ1[Z := ψi] is fixpoint-free, and it does not contain any free

variable. Thus, one can follow the inductive definition of the 3-valued semantics for ∧,
∨, � and ♦ and construct a finite tree over pairs of states and formulas that explains

why sa ∈ [[ϕ1[Z := ψi]]]
ME

A
tt . The root of the tree is (sa, ϕ1[Z := ψi]). All the pairs

(s′a, ϕ
′) in the proof tree will be such that s′a ∈ [[ϕ′]]

ME
A

tt . For example, for a pair of the
form (s′a, ϕ

′
1 ∧ ϕ

′
2), both (s′a, ϕ

′
1) and (s′a, ϕ

′
2) will be included as sons in the proof tree.

For a pair (s′a,�ϕ
′) some set A′

a × {ϕ′} such that s′aR
−A′

a is a may hyper-transition

in ME
A and A′

a ⊆ [[ϕ′]]
ME

A
tt will be included. The property that all the pairs (s′a, ϕ

′) in

the tree are such that s′a ∈ [[ϕ′]]
ME

A
tt ensures that ψ0 will not be included in the tree,

100

as [[ψ0]]
ME

A
tt = [[false]]

ME
A

tt = ∅. In addition, since no free variables or fixpoints exist in
the tree, the subformulas become strictly shorter along paths of the tree. These two
properties ensure that every path in the tree eventually reaches a formula that does not
contain ψj as a subformula for any j ≥ 0. These will be the leaves of the tree, which
makes the tree finite (this results from the fact that we have explicitly unwound the
fixpoint).

We now map every formula in the proof tree back to the original formula that pro-
duced it (by replacing ψj by Z), i.e. if ϕ′ = ϕ[Z := ψj], then we define σ(ϕ′) = ϕ.
This defines a mapping σ̃ from the vertices of the proof tree to the vertices of the MC-
graph: σ̃(s′a, ϕ

′) = s′a ` σ(ϕ′). Since the leaves of the proof tree do not contain formulas
of the form ψj for any j ≥ 0, we are guaranteed that all the leaves of the proof tree
are mapped to vertices in the MC-graph that do not contain Z, thus they belong to
smaller Qj ’s. This is the crucial observation as it means that these vertices were already
colored by the time the witness-coloring phase is applied on Qi and by the induction
hypothesis their coloring is correct, i.e. they are colored T . This provides the basis for
an inductive argument (on the depth of the proof tree) that shows that for every vertex
(s′a, ϕ

′) in the proof tree, the corresponding vertex σ̃(s′a, ϕ
′) in the MC-graph could be

colored T in the sons-coloring phase. The induction step follows by a case analysis on
the type of subformulas, and results from the relation between the 3-valued semantics
and the rules of the coloring in the sons-coloring phase. Since the sons-coloring phase
is iterated as long as some rule is applicable, the corresponding vertices must have been
indeed already colored T . For example, consider some pair (s′a,�ϕ

′) in the proof tree
for which the tree contains as an explanation the pairs A′

a × {ϕ′} for some may hyper-

transition s′aR
−A′

a such that A′
a ⊆ [[ϕ′]]

ME
A

tt . Then first by the definition of R̃, and since
σ(�ϕ′) = �σ(ϕ′), all of the vertices A′

a × {σ(ϕ′)} to which A′
a × {ϕ′} are mapped by

σ̃ are sons of the vertex s′a ` σ(�ϕ′) that corresponds to (s′a,�ϕ
′) in the MC-graph.

By the induction hypothesis, all of these sons get colored T in the sons-coloring phase.
Thus, at latest when the last of them gets colored T , then the algorithm finds out that
the set of currently T -colored sons of s′a ` σ(�ϕ′), which is a superset of A′

a × {σ(ϕ′)},
is a may hyper-son of s′a ` σ(�ϕ′) = σ̃(s′a ` �ϕ′), and therefore colors it T during the
sons-coloring phase. In particular, for the root of the proof tree, (sa, ϕ1[Z := ψi]), we
have that σ̃(sa, ϕ1[Z := ψi]) = sa ` ϕ1, which ensures that v = sa ` ϕ1 already got
colored T in the sons-coloring phase.

Now, for vertices which are colored in phase 2a, a similar analysis as in the sons-
coloring phase, following the 3-valued semantics, combined with the fact that if all the
F -colored sons along with the uncolored sons of a vertex v do not comprise a must (may)
hyper-son then v does not have a must (may) hyper-son whose vertices are all colored F ,
shows that the vertices colored in phase 2a should not be colored F . Together with the
previous argument saying that they should not be colored T , this ensures the correctness
of their coloring by ?.

To complete the proof it remains to show that the vertices sa ` ϕ1 which are colored
in phase 2b should indeed be colored F . Alternatively, it suffices to show that every
vertex sa ` ϕ1 that should not be colored F , i.e. [[ϕ∗

1]]3(sa) 6= ff, is indeed already colored
by a different color (T or ?) when this phase is reached. Again, since the state space is

finite, there exists i such that [[µZ.ψ]]
ME

A

ff = [[ψi]]
ME

A

ff , where ψi denotes the unwinding of

101

the fixpoint formula i times. In particular, [[ϕ∗
1]]
ME

A

ff = [[ϕ1[Z := ψi]]]
ME

A

ff . The proof again
uses a construction of a proof tree, except that now this is a proof tree that explains why

sa 6∈ [[ϕ1[Z := ψi]]]
ME

A

ff . Here again the crucial observation is that ψ0 cannot be part of

the proof tree, since [[ψ0]]
ME

A

ff = [[false]]
ME

A

ff = SA, whereas all the vertices (s′a, ϕ
′) in the

proof tree are such that s′a 6∈ [[ϕ′]]
ME

A

ff . Thus all the leaves of the proof tree are mapped to
vertices in smaller Qi’s, which are already colored correctly (i.e. 6= F) before phase 2b
and by induction on the depth of the proof tree so are the rest of the vertices of the
MC-graph which are mapped to internal vertices of the proof tree. For example, for a
pair (s′a,�ϕ

′) the proof tree contains as an explanation a set A′
a × {ϕ′} such that A′

a

contains at least one state s∗a such that s∗a 6∈ [[ϕ′]]
ME

A

ff from every must hyper-transition
s′aR

+A∗
a in ME

A . Thus, at latest in phase 2a, after the last of the vertices s∗a ` σ(ϕ′) for
s∗a ∈ A′

a gets colored 6= F (this happens by the induction hypothesis), it holds that the
set B of F -colored sons of s′a ` σ(�ϕ′) along with its uncolored sons does not form a
must hyper-son, since for every must hyper-transition of ME

A at least one target state
comprises a vertex which belongs to A′

a×{σ(ϕ′)}, and is thus colored 6= F at this point,
and does not belong to B. Thus, s′a ` σ(�ϕ′) gets colored ?.

Thus, for all the vertices in the MC-graph, the coloring is as precise as model checking
with ME

A , even though ME
A is not constructed by the algorithm. Note that if ϕ1 is closed

then ϕ∗
1 = ϕ1. Thus, for a vertex v = sa ` ϕ1 whose formula is closed the theorem

immediately implies that the color of v in G matches the truth value of ϕ1 in the state
sa of ME

A . In particular, this is true for V0 = Sd × {ϕ}. Therefore, by the choice of Sd,
we are guaranteed that whenever the abstraction is precise enough, i.e., whenever one of
the designated states enables verification or falsification of ϕ, at least one initial vertex
will be colored by a definite color T or F , in which case by Theorems 7.21 and 7.17,
[[ϕ]]MC (sc) = tt or ff respectively. Note, that it is impossible that some initial vertex will
be colored T and another will be colored F . If all the initial vertices in the MC-graph
are colored ?, then the result is indefinite.

Remark 7.22. By considering the underlying hyper-transitions of hyper-sons computed
by the algorithm, the final MC-graph induces an abstract HTS for MC which is as precise
as the exact HTS w.r.t. ϕ.

Complexity During all applications of the sons-coloring phase, the ∀∃∃ and the ∀∀∃
conditions are checked at most |SA| times for each vertex, as each vertex has at most |SA|
sons, and between checks the set of candidates to comprise a hyper-son is monotonically
increasing. Similar analysis holds for phase 2a, with the difference that the sets of
candidates to comprise a hyper-son are monotonically decreasing. As the number of
vertices in the MC-graph is O(|SA|× |ϕ|), the total number of checks of the ∀∃∃ and the
∀∀∃ conditions is O(|SA|

2 ×|ϕ|). This is the dominant part which determines the model
checking complexity.

Example 7.23. Consider Example 7.1, where the purpose is to verify �p ∧ �q in the
concrete state sc, abstracted by sa (see Figure 7.1). This makes sa the designated
state. In this case R̃ = {(sa, s1a), (sa, s2a)}. Thus, we obtain the MC-graph depicted

102

7

5 6

1 2 3 4

sa ` 2p ∧ 2q

sa ` 2p sa ` 2q

s1a ` p s2a ` p s1a ` q s2a ` q

Figure 7.3: A colored model checking graph. Gray vertices are colored ?, while white
vertices are colored T .

in Figure 7.3, where sa ` �p ∧ �q is the initial vertex. Each vertex in the MC-graph
comprises a (trivial) MSCC. Figure 7.3 also determines an order on the MSCCs, as
indicated by the numbering of the vertices. The vertices s1a ` p, s2a ` p, s1a ` q and
s2a ` q are colored as terminal vertices in the sons-coloring phase (in some arbitrary
order). Their coloring is depicted in Figure 7.3. For example, s1a ` p is colored T since
p ∈ LA(s1a), but s2a ` p is colored ? since both p 6∈ LA(s2a) and ¬p 6∈ LA(s2a). Once
s1a ` p is colored T , it is checked if the set {s1a ` p}, which consists of the currently
T -colored sons of the vertex sa ` �p, forms a may hyper-son of sa ` �p. This is checked
by checking if the ∀∀∃-condition holds for sa and the set {s1a}. Since the condition
holds, sa ` �p is colored T . Similarly, once s2a ` q is colored T , it is checked if the set
{s2a ` q} forms a may hyper-son of sa ` �q (by checking the ∀∀∃-condition). Since the
condition holds, sa ` �q is colored T . Thereafter, sa ` �p ∧ �q is colored T , and we
conclude that the value of �p ∧ �q in sa is tt, thus sc satisfies �p ∧ �q. In fact, the
abstract model checking has “discovered” the two may hyper-transitions (sa, {s1a}) and
(sa, {s2a}), which are the ones needed for the verification of the formula in this example.

7.5 Abstraction-Refinement

Our abstract model checking ensures maximal precision. Still, its result might be indef-
inite if the abstraction is not precise enough. In this case, refinement can be applied
by splitting the abstract states, similarly to the refinement of [74] for KMTSs (adapted
to the alternation-free µ-calculus and with various optimizations that exploit the use of
hyper-transitions).

When refinement is introduced, monotonicity in the precision of the abstract models
before and after the refinement is desirable, meaning that formulas that had a definite
value before the refinement will not become indefinite after refinement (see Chapter 6).
This is guaranteed by the following theorem.

Theorem 7.24 (Monotonicity of HTSs). Let MC be a concrete model and let M ′
A and

MA be two exact HTSs defined based on abstractions (S ′
A, γ

′) and (SA, γ) resp., where
(S′
A, γ

′) is a split of (SA, γ), as defined in Definition 6.10. Then whenever s′a ∈ S′
A is a

substate of sa ∈ SA then (M ′
A, s

′
a) � (MA, sa).

Proof. Suppose that s′a ∈ S′
A is a substate of sa ∈ SA. We show that (M ′

A, s
′
a) �

(MA, sa). For this purpose we show that H ⊆ S ′
A × SA defined by (s′a, sa) ∈ H iff s′a

103

is a substate of sa (see Definition 6.10) is a hyper mixed simulation. Let (s′a, sa) ∈ H.
We show that the three requirements hold. For requirements 1 and 3, which refer to the
labeling and to the must hyper-transitions, the proof is identical to the proof of Theo-
rem 6.11 which refers to the monotonicity of GTSs. This is because these requirements
are identical to the requirements of a generalized mixed simulation, and in addition the
construction of the labeling function and must hyper-transitions in an exact HTS is the
same as in an exact GTS. We now prove that requirement 2 holds as well.

2. Suppose saR
−
AAa. Then by the construction, ∀sc ∈ γ(sa) ∀s′c [scRs

′
c ⇒ ∃sa1 ∈

Aa s.t. s′c ∈ γ(sa1)], i.e. ∀sc ∈ γ(sa) ∀s′c [scRs
′
c ⇒ s′c ∈ γ(Aa)]. Since s′a is a

substate of sa, then γ′(s′a) ⊆ γ(sa), thus in particular ∀sc ∈ γ′(s′a) ∀s′c [scRs
′
c ⇒

s′c ∈ γ(Aa)]. Let A′
a ⊆ S′

A be the set consisting of all the substates of states
in Aa. By definition of a split, γ ′(A′

a) = γ(Aa). Therefore the following holds:
∀sc ∈ γ′(s′a) ∀s′c [scRs

′
c ⇒ s′c ∈ γ′(A′

a)]. This implies that s′aR
−
A′A′

a. Moreover,
(A′

a, Aa) ∈ H∀∃ since for every s′a1 ∈ A′
a, at least one of its superstates sa1 is in

Aa (otherwise s′a1 would not be included in A′
a), and as such (s′a1, sa1) ∈ H. Thus

∀s′a1 ∈ A′
a ∃sa1 ∈ Aa : (s′a1, sa1) ∈ H.

Monotonicity implies that refinement of an exact HTS will never take us further from
the (definite) result. In particular, we will not “miss” the opportunity to get a definite
result only due to excess refinement. Thus, our approach, which is as precise as using
the exact HTS w.r.t. the desired property, will ensure the same.

Moreover, if the concrete model MC is finite, an iterative abstraction-refinement is
guaranteed to terminate with a definite answer:

Theorem 7.25. For finite concrete models, iterating the suggested abstraction-refinement
process is guaranteed to terminate with a definite answer.

7.6 Handling Multiple Initial States

So far we considered the verification problem of a formula in a specific concrete state.
We now extend the discussion to the case where the concrete Kripke structure MC has
a set of initial states, denoted S0

C , with the usual meaning, that MC satisfies ϕ, denoted

MC |= ϕ, if ∀s0 ∈ S0
C : [[ϕ]]MC (s0) = tt. Otherwise, MC falsifies ϕ, denoted MC 6|= ϕ.

Typically, when the concrete model has a set of initial states, so does the abstract
model. For example, in a KMTS or a GTS (see Chapters 2 and 6), in order to ensure
a (generalized) mixed simulation from MC to MA, the set of abstract initial states S0

A

has to be some set such that

∀∃(1) : ∀s0c ∈ S0
C ∃s0a ∈ S0

A s.t. s0c ∈ γ(s0a), and

∀∃(2) : ∀s0a ∈ S0
A ∃s0c ∈ S

0
C s.t. s0c ∈ γ(s0a).

∀∃(1) is needed to preserve truth, as it ensures that the initial states of the abstract
model represent all the concrete initial states. On the other hand, ∀∃(2) is needed

104

to preserve falsity, as it ensures that each abstract initial state represents at least one
concrete initial state. For example, in Chapter 2, S0

A is built such that s0a ∈ S0
A iff

∃s0c ∈ S0
C s.t. s0c ∈ γ(s0a).

This construction is precise if the abstract states represent disjoint sets of concrete
states. Yet, similarly to the imprecision introduced by the may transitions when the
abstract states are not necessarily disjoint, the same problem occurs w.r.t. the initial
states of an abstract model.

In particular, suppose that some concrete initial state s0c is represented by two
abstract states: sa in which ϕ1 is true, but ϕ2 is indefinite, and s′a in which ϕ2 is true,
but ϕ1 is indefinite. Then considering sa as the only initial state will enable verification
of ϕ1 but not ϕ2, and vice versa for s′a. Yet, no choice of a set of initial states will enable
verification of both formulas, even if s0c is the only initial state: including sa in S0

A will
prevent verifying ϕ2 and including s′a will prevent verifying ϕ2.

This example demonstrates that sometimes different sets of initial abstract states
need to be considered for different properties. Therefore, to get a precise abstract model,
one needs to allow multiple sets of initial states, with the meaning that any one of them
suffices to verify or falsify a property.

Thus, rather than a set of initial states, the class of HTSs is extended by a set of
sets of initial states S0 ⊆ 2SA , with the meaning that each of the sets in S0 is a “legal”
set of initial states, i.e., it satisfies the [∀∃(1)] and [∀∃(2)] conditions. In the exact HTS
ME
A , S0 will consist of all the sets that satisfy these conditions.
An extended HTS satisfies ϕ, denoted MA |= ϕ, if there exists S0

A ∈ S0 where all the
states satisfy ϕ. It falsifies ϕ, denoted MA 6|= ϕ, if there exists S0

A ∈ S0 where at least

one state falsifies ϕ. Otherwise the value of ϕ in MA is indefinite, denoted MA |=
?

= ϕ.
Provided that the sets in S0 fulfill conditions ∀∃(1) and ∀∃(2), this ensures preservation
of both truth and falsity from an extended HTS to the concrete model it represents.

Here again, instead of checking for each possible set of abstract states if it should be
included in S0 (which requires two ∀∃ checks), and then checking if it enables verification
or falsification of ϕ, one may use a similar technique as was used for the hyper-transitions
and choose the candidates more carefully.

The idea is to apply the previous model checking algorithm by setting Sd to {sa | ∃s0c ∈
S0
C s.t. s0c ∈ γ(s0a)}. This is the maximal set that fulfills condition ∀∃(2). Thus, the

sets in S0 in the exact HTS are exactly all the subsets of Sd that fulfill ∀∃(1) (including
Sd itself). When the coloring is over, we do the following.

1. If at least one initial vertex v ∈ Sd × {ϕ} is colored F , then MC 6|= ϕ. This is
because v = sa ` ϕ for some sa ∈ Sd. Since Sd ∈ S0 this implies that ME

A 6|= ϕ,
thus MC 6|= ϕ.

2. Otherwise, let S0T = {sa ∈ Sd | v = sa ` ϕ is colored T} be the set of underlying

states of the initial vertices that are colored T . If S0T fulfills the ∀∃(1) condition,
then it is a “legal” set of initial states, in which all of the states satisfy ϕ, meaning
that ME

A |= ϕ, and thus MC |= ϕ.

3. If none of the above holds, then ME
A |=

?

= ϕ, which means that the abstraction is not
precise enough. The correctness of this conclusion results from the fact that had

105

there been a possible set of initial states in S 0 that falsifies ϕ, then this set would
have contained a state from Sd that falsifies ϕ, in which case the first item would
have applied. Similarly, had there been a possible set of initial states that enables
verification of ϕ, then it would have clearly been a subset of S0T , thus the second
item would have applied.

7.7 Concluding Remarks

In this chapter we investigate the precision and model checking complexity of 3-valued
abstract models that preserve the full µ-calculus.

In order to evaluate precision of models, we suggest a new definition of precision
of 3-valued abstract models, which measures the precision of a model compared to the
information retained in the abstract states and concretization function. Namely, the
abstract states define the “resolution” through which one can look at the concrete states
at every point during the inductive evaluation of a property. An abstract model is precise
if it enables to verify or falsify every property that the resolution of the abstract states
enables to verify or falsify, resp.

Examining previously suggested abstract models using our new definition reveals
that may transitions do not always enable to achieve maximal precision. We therefore
suggest a new class of models that use may hyper-transitions to over-approximate the
concrete transitions. We propose a construction of a precise abstract model from this
class.

Hyper-transitions make the size of the model exponential in the number of abstract
states. To avoid this exponential blowup, which already exists in previously suggested
models that use must hyper-transitions, we suggest a new abstract model checking algo-
rithm for the alternation free µ-calculus, in which the hyper-transitions are computed by
need. As a result, the model checking complexity reduces to O(|SA|

2×|ϕ|), without com-
promising its precision. We believe that similar techniques can be used to develop precise
abstract model checking algorithms for the full µ-calculus, with complexity comparable
to model checking of ordinary transition systems.

Finally, we incorporate our abstract model checking into an abstraction-refinement
algorithm, where the refinement is monotonic in terms of the precision of the models
before and after refinement.

106

Chapter 8

Compositional Verification and

3-Valued Abstractions Join Forces

8.1 Introduction

Two of the most promising approaches to fighting the state explosion problem are ab-
straction and compositional verification. In this work we join their forces to obtain a
novel fully automatic compositional technique that can determine the truth value of the
full µ-calculus w.r.t. a given system.

More specifically, we introduce a new ingredient to compositional model checking,
which enhances its modularity: we use a 3-valued model checking game graph as a
means to exchange information between the components of a system in the points where
their composition is indeed necessary, and ignore the parts which can be handled sep-
arately. Thus, our approach avoids the construction of the full composition. We then
develop a compositional, incremental, and fully automatic abstraction-refinement frame-
work, which benefits from the modular model checking, and where the refinement is
also applied to each component separately. When viewing abstractions as assumptions,
our compositional abstraction-refinement has some resemblance to iterative Assume-
Guarantee (AG) reasoning. From the AG point of view, our approach can be viewed
as a new, automatic, mechanism for assumption generation, which uses the power of
abstraction-refinement, and is applicable to the full µ-calculus.

We first present our method for concrete systems, composed of concrete (unab-
stracted) components. We then extend it to abstract systems, in which one or both
of the components have been abstracted (separately). In both cases we avoid the con-
struction of the full system and compose only the parts of the components in which the
value of the checked formula remained inconclusive. For simplicity we refer to systems
that consist of two components M1||M2. However, our approach can be extended to the
composition of n components.

In our setting M1 and M2 are Kripke structures that synchronize on the joint labeling
of the states. This means that a state of one model is composed with all the states of the
other that agree with it on the joint labels. This composition is suitable for modeling
synchronous systems with shared variables. In particular, it is suitable for hardware
designs that synchronize on their inputs and outputs, since our models can be viewed

107

as Moore machines [42]. The underlying ideas are applicable to other models as well,
such as Labeled Transition Systems (LTSs), where components synchronize on their joint
transitions and interleave their local transitions (see Section 8.6).

Given a system M = M1||M2, we view each component Mi as an abstract model Mi↑
of the global system M , in which the values of the local (unshared) variables and the
transitions of the other component are unknown. We consider the 3-valued semantics of
the µ-calculus, in which the value of a formula in a model is either tt (true), ff (false),
or ⊥ (indefinite). The abstract component Mi↑ is defined so that whenever a µ-calculus
formula ϕ has a definite value (tt or ff) on Mi↑, the same value holds also for M . Thus,
ϕ can be checked on either M1↑ or M2↑ (or both), and if any of them returns a definite
result, then this result holds also for M . Only if both checks result in ⊥, the value of ϕ
in M is unknown.

For the 3-valued abstraction, when the model checking returns ⊥, the abstract model
should be refined in order to eliminate the ⊥ result. For our framework, a refinement
could be achieved by composing M1↑ and M2↑. This, however, is not desired and not
necessary. Instead, only the parts of the abstract models for which the model checking
result is ⊥ are identified and composed. The resulting refined model is often significantly
smaller than the full system and is guaranteed to return the correct model checking result.

To achieve this goal, our approach uses the game-based 3-valued model checking of
the µ-calculus suggested in Chapters 4 and 5. Recall that the vertices of the 3-valued
game for model checking (see Chapter 3) are labeled by s ` ψ, where s is a state of the
checked model and ψ is a subformula of the checked formula, such that the value of ψ in
s is relevant for determining the model checking result. The model checking algorithms
derived from the game determine for each such vertex the truth value of ψ in s based on
the 3-valued semantics. We first apply the model checking algorithm to each component
separately. If the truth value for s in M1↑ is tt (ff), then it is guaranteed that every
state in the composed system M , whose first component is s, satisfies (falsifies) ψ. A
similar property holds for M2↑. Thus, when the model checking returns ⊥ then only
the subgraphs of vertices where ⊥ results were obtained require further checking and are
therefore composed.

The advantage of our approach is that instead of constructing the composition of M1↑
and M2↑, it focuses on the parts of the components in which their composition is indeed
necessary to conclude the truth value of the checked property, due to dependencies
between them. It ignores the parts which can be handled separately. Furthermore,
if a certain formula only depends on one component, then it can be resolved on this
component alone while avoiding the composition altogether. Our technique is orthogonal
to the AG approach, and can also be applied when the composed system consists of a
component and an assumption on its environment.

To further reduce the size of the checked components, we combine our compositional
approach with abstraction. Abstraction not only reduces the state-space of the com-
ponents, but also allows to handle infinite-state components by abstracting them into
finite-state components. Given a system composed of two (or more) components, we
first abstract each component separately. However, in order to guarantee preservation of
both tt and ff we require that the common alphabet (e.g. common inputs and outputs
for hardware designs) will not be abstracted. Only local (unshared) variables can be

108

abstracted. While this limits the amount of reduction that can be achieved by the ab-
straction on a single component, it enables additional reduction due to the compositional
reasoning.

We propose an automatic construction of the initial abstraction for each component
separately. We then proceed as before: we run a 3-valued model checking on each
of the components. If both return ⊥, then we identify and compose the parts where
indefinite results were obtained, and apply 3-valued model checking to the composed
model. While in the concrete case this step always terminates with a definite result,
here we may obtain an indefinite result due to abstraction. In such a case, we follow
Chapters 4 and 5 in finding the cause for the indefinite result on the composed model.
However, the refinement itself is applied on each of the components separately. Moreover,
we adopt the incremental approach of Chapters 4 and 5 and refine only the indefinite
part of each component. Thus, results from previous iterations are re-used. The result
is a compositional abstraction-refinement framework.

An abstraction of a component Mi (which comprises the environment of the other
component) can be viewed as providing an assumption on Mi. From this point of view,
when applying abstraction-refinement on one or both of the components, the result is
an automatic mechanism for assumption generation, which is either symmetric (refers
to both components) or asymmetric (abstracts only one component). In each iteration,
more information about the component is revealed, by need – based on the cause for
the indefinite result. This resembles iterative AG reasoning. The use of conservative
abstractions guarantees that the assumption describes the component correctly (by con-
struction). Thus unlike typical AG reasoning, this need not be verified. Moreover, our
approach benefits from the modular model checking described above.

8.1.1 Related Work

Many of the works on compositional model checking are based on the Assume-Guarantee
(AG) paradigm [46, 68]. Recently, [23] followed by [5, 15, 34], considered automatic as-
sumption generation for AG reasoning. They use learning algorithms for finite automata
in order to automatically produce suitable assumptions for an AG rule. A similar ap-
proach is taken in [9], where the AG rule used is symmetric. Assumption generation in
a more general setting (not necessarily for AG reasoning) is addressed in [36]. The work
of [2] on interface synthesis for application programs can also be seen as assumption
generation. These works are all restricted to universal safety properties (either in a
linear time or a branching time setting). More recently, [34] extended the learning-based
approach to liveness properties as well (in a linear time setting), by proposing a learning
algorithm for the full class of ω-regular languages. The learning algorithms used in these
works also perform some kind of an abstraction-refinement. However, these algorithms
are not specifically tailored for verification. In particular, they do not always maintain a
conservative abstraction of the environment. As such, the assumption sometimes needs
to be weakened and sometimes needs to be strengthened. In contrast, our approach is
based on techniques taken from the 3-valued game-based model checking for abstract
models described in the previous chapters. In our case an assumption (abstraction)
should never be weakened. Moreover, we increase the modularity of the model check-
ing step by using the game-based approach, which also enables an incremental analysis.

109

Most importantly, our approach is applicable to the full (branching-time) µ-calculus.
The game-based model checking enables us to identify the places where the value of

a subformula in a component’s state is the same for all environments. We exploit this
information to reduce the model checking instance of the entire system. Other authors
have also used similar information for reductions. In [1] the authors merge component’s
states that share the same value for a given CTL formula in all environments, thus
minimizing the component. In [3] the authors use reachability and controllability in-
formation about the concrete components (gathered via game-theoretic techniques) in
order to construct abstract components for invariance properties. The composition of
the abstract components is then computed and model checked. We, on the other hand,
do not try to minimize each component. Instead, the game graph enables us to prune
parts of each component’s model checking instance whose effect was already taken into
consideration. As a result, we reduce the state space exploration of the entire system.
This is applicable even if no states of the individual components can be merged.

[30] uses controllability information to speed up falsification of invariance properties.
They identify unpreventable violations of the property based on each component sepa-
rately, which enables to prune the state space exploration of the compound system before
a violation is actually encountered. The authors state that their method can be extended
to arbitrary LTL properties. However, they only use controllability information w.r.t.
the entire formula. Our approach enables to gather information about subformulas as
well, and thus can result in more substantial reductions. In addition, our approach is
aimed at both verification and falsification (with a 3-valued semantics) and is applicable
to a full branching time logic.

[59] also uses 3-valued model checking for modular verification. They consider
feature-oriented modules, where the composition is via interfaces and has a more se-
quential nature. As a result, they only refer to unknown propositions and not to un-
certainty in the transitions. A substantial part of their work is devoted to determining
what information needs to be included in a feature’s interface to support compositional
reasoning. In our case, we use the game graph for sharing such auxiliary information
about the individual components.

In [4] the authors suggest to use game structures to reason about composition of
components. [29, 7] suggest abstraction-refinement frameworks for such models, w.r.t.
alternating time temporal logics, which enable to describe properties of the interaction
between components. We are interested in properties of the compound system, thus the
focus in these works is different. In addition, they abstract each component separately
and then model check the entire system. The model checking step is not modular.

[14] develops a compositional counterexample-guided abstraction refinement for a
universal temporal logic (which extends ACTL). In their approach, the abstraction and
the refinement steps are performed on each component separately, but the model check-
ing step is done on the entire (abstract) system. In our approach, the model checking
step is also compositional, and the properties considered are not limited to a universal
logic.

110

8.2 Preliminaries

In this chapter we consider KMTSs as abstract models, rather than other formalisms.
This is because KMTSs come up very naturally when viewing a component of a system
as an abstract model of the entire system (see Section 8.4).

The compositional approach developed in this chapter utilizes the game-based 3-
valued model checking algorithms of Chapters 4 and 5. In this section we briefly remind
the reader of these algorithms. The description of the algorithms is customized in order
to make the presentation of the compositional approach simpler. It slightly differs from
the original presentation.

We consider KMTSs (in particular Kripke structures) with a single initial state.
As such, we describe the 3-valued model checking game and the derived model checking
algorithms for the initial state of the KMTS. In the following, let M = (S, s0, R+, R−, L)
be a KMTS and ϕ ∈ Lµ.

8.2.1 Game Graph

Consider the 3-valued model checking game ΓM(s0, ϕ) of ϕ ∈ Lµ over the initial state
s0 of the KMTS M (see Section 3.2). The game induces a game graph, denoted G =
(V, v0, E+, E−), where V ⊆ S × Sub(ϕ) is the set of vertices, v0 = s0 ` ϕ is the initial
vertex, and E+ ⊆ E− ⊆ V × V are sets of must and may edges. The vertices of the
game graph consist of the reachable configurations in the game, classified as ∧, ∨, �, ♦,
literal, or deterministic vertices, based on the classification of the configurations. The
edges are defined by the moves of the game (see Figure 3.1) and are classified as must
vs. may edges accordingly: The edges that are based on a may transition of M which is
not a must transition are genuine may edges in E− \E+ and all the rest are both must
and may edges, i.e., belong to both E+ and E−. The game graph G is isomorphic to the
arena of the 3-valued parity game associated with ΓM (s0, ϕ), except that no distinction
is made between V0, V1, and Vtie . Moreover, for convenience we refer to the vertex s0 ` ϕ
as the initial vertex of the game graph.

Figure 8.2(b) presents examples of the game graphs of the 3-valued model checking
games for ϕ = �(¬i ∨ ♦o) and the models from Figure 8.2(a), where all transitions are
considered may transitions.

8.2.2 Coloring Algorithm

The model checking algorithms described in Chapters 4 and 5 can be viewed as coloring
algorithms1 that label (color) each vertex v = s ` ψ in the game graph of the 3-valued
model checking game by T , F , ? depending on the player that has a winning strategy in
the game, or equivalently depending on the truth value of ψ in the state s in M (based
on the 3-valued semantics). The result of the coloring is a 3-valued coloring function
χ : V → {T, F, ?}.

In both Chapter 4 and Chapter 5 the coloring is performed by solving the 3-valued
parity game that corresponds to the model checking game, where each color stands for

1We refer to the model checking algorithms of Chapters 4 and 5 as coloring algorithms although they
were not originally described in these terms.

111

a possible result (winner) in the game. In fact, any other algorithm for solving 3-valued
parity games can be used as well.

However, for simplicity, we refer to these algorithms as coloring algorithms which
are applied on the game graph G induced by the 3-valued model checking game. This is
justified by the observation that in the context of the 3-valued model checking game, the
game graph carries all the information regarding the corresponding parity game. Namely,
the game graph is isomorphic to the arena of the parity game, and the subformulas of
the vertices uniquely determine both the classification of the vertices to V0, V1 and Vtie

and the priorities of the vertices.
The coloring is correct if the color that it assigns to each vertex corresponds to

the player that has a winning strategy from that vertex. In the context of 3-valued
model checking games, this also relates to the semantics. We therefore use the following
definition. For a (possibly not closed) formula ψ, ψ∗ denotes the result of replacing every
free occurrence of a variable Z ∈ V in ψ by fp(Z), until no free variable remains. ψ∗ is
always a closed formula. Note that if ψ is closed, then ψ∗ = ψ.

Definition 8.1. Let G be the game graph of the 3-valued model checking game for
a KMTS M with initial state s0 and ϕ ∈ Lµ. A (possibly partial) coloring function
χ : V → {T, F, ?} for G (or its subgraph) is correct if for every s ` ψ ∈ V , whenever
χ(s ` ψ) is defined, then it matches the semantics, i.e.:

1. [[ψ∗]]M3 (s) = tt iff χ(s ` ψ) = T .

2. [[ψ∗]]M3 (s) = ff iff χ(s ` ψ) = F .

3. [[ψ∗]]M3 (s) =⊥ iff χ(s ` ψ) =?.

Theorem 3.3 relates the truth value of ϕ in s0 to the player that has a winning
strategy in the model checking game ΓM (s0, ϕ). Therefore, along with the correctness of
the algorithms for solving 3-valued parity games, it ensures the correctness of the color
of the initial vertex v0. In this chapter we will also be interested in the internal vertices
of the game graph. We therefore generalize the correspondence between the 3-valued
semantics and the coloring to all the vertices in the game graph.

Theorem 8.2. Let χF be the (total) coloring function returned by the coloring algorithm
of Chapter 4 or Chapter 5 for the game graph G. Then χF is correct.

Proof. It suffices to prove that the correspondence between the truth value of ψ∗ in s
and the player that has a winning strategy starting from the vertex s ` ψ in the model
checking game ΓM (s0, ϕ) is maintained when talking about internal vertices s ` ψ ∈
V , and not just when talking about the initial vertex (as described in Theorem 3.3).
The correctness of the algorithms for solving 3-valued parity games will then imply the
correspondence to the color.

Note that the player that has a winning strategy in the model checking game ΓM (s0, ϕ)
starting from the vertex s ` ψ is the same as the player that has a winning strategy in
the game ΓM (s, ψ). Therefore, we equivalently relate the truth value of ψ∗ in s to the
player that has a winning strategy in ΓM(s, ψ).

112

For closed subformulas ψ of ϕ the claim is immediately implied by Theorem 3.3
(since ψ∗ = ψ in this case). We now consider subformulas which are not closed. We first
show that replacing a free occurrence of a variable Z ∈ V in ψ by fp(Z) does not change
the player that has a winning strategy in the game. Namely, the winner in the game
ΓM (s, ψ) is the same as the winner in the game ΓM(s, ψ[Z := fp(Z)]). This is because
the only difference between the games is an additional deterministic move in the latter
one from vertices of the form s′ ` fp(Z) to s′ ` Z. Clearly, deterministic moves do not
change the winner of the game.

Iterating this argument implies that the player that has a winning strategy in the
game ΓM (s, ψ) is the same as the player that has a winning strategy in the game
ΓM (s, ψ∗). By Theorem 3.3, the latter corresponds to the truth value of ψ∗ in s, which
concludes the proof.

The result of the coloring of the game graphs for ϕ = �(¬i ∨ ♦o) and the models
from Figure 8.2(a) is demonstrated in Figure 8.2(b).

8.3 Partial Coloring and Subgraphs

In the following sections we use the game-based model checking in order to identify and
focus on the places where the dependencies between components of the system affect
the model checking result. In this section we set the basis for this, by investigating
properties of the game graph and the coloring algorithms.

Specifically, the coloring algorithms of Chapters 4 and 5 have the important property
that they can be applied on a partially colored graph, in which case they extend the
given coloring to the rest of the graph in a correct way. Moreover, the coloring can also
be applied on a partially colored subgraph, and under certain assumptions it will yield a
correct coloring of the subgraph. We now formalize this property.

Recall that in the 3-valued parity game that corresponds to the 3-valued model
checking game, Player 0 takes the role of the verifier and Player 1 takes the role of the
falsifier. In the final coloring of the game graph, vertices where Player 0 wins are colored
T , vertices where Player 1 wins are colored F and the rest are colored ?.

A partially colored subgraph G′ of the game graph G of a 3-valued model checking
game also induces a 3-valued parity game. The induced game differs from the original
one in the omission of the vertices (and edges) outside G′. In addition, the vertices which
are colored T by the initial coloring function become terminal vertices in V1 (i.e., winning
for Player 0), the vertices colored F become terminal vertices in V0 (i.e., winning for
Player 1), and the vertices colored ? become terminal vertices in Vtie (i.e. not winning
for both players). This ensures that the winner of the already colored vertices in the
induced game corresponds to their color. The priorities remain the same.

Due to their nature, as algorithms for solving a 3-valued parity game, the coloring
algorithms can be applied on the induced game (which is also a 3-valued parity game).
Similarly to before, instead of referring to the algorithms as applied on the induced
game, we simply refer to them as applied on G′ with an initial coloring function since
these carry all the information regarding the induced game. To formalize the conditions
that ensure the correctness of the coloring we need the following definitions.

113

Definition 8.3. Let G be the game graph of a 3-valued model checking game and χF its
final coloring function. For a non-terminal vertex v in G we define its witnessing sons
as follows, depending on its type:

∧, �: the witnessing sons are those colored F or ? by χF .

∨, ♦: the witnessing sons are those colored T or ? by χF .

deterministic: the witnessing son is the only son.

The sons are witnessing in the sense that they suffice to determine the color (winner)
of the vertex, thus removing the rest of the vertex’s sons from the graph does not damage
the result of the coloring. More specifically, when considering the game induced by the
graph after the remaining vertex’s sons are removed, the winner (and thus the color)
remains unchanged. This is because the sons which are not witnessing will never be used
in a winning (or even non-losing) strategy: In a ∧-vertex or a �-vertex v, where Player
1 moves, he will never choose a son colored T (where Player 0 has a winning strategy)
as part of a winning or non-losing strategy. In particular, if v has no witnessing sons,
meaning all its sons are colored T (i.e., won by Player 0), then Player 1 simply has no
winning (nor non-losing) strategy from v, i.e., the winner in v is Player 0 and it should
be colored T . This is also the winner (color) in the induced game when keeping only the
witnessing sons (i.e., when no sons remain and the vertex becomes a terminal vertex in
V1). Similarly for a F -colored son of a ∨-vertex or a ♦-vertex, where Player 0 moves.

Definition 8.4. A subgraph G′ of a game graph G of a 3-valued model checking game
is closed if every vertex in G′ is either a terminal vertex, or all its witnessing sons (and
corresponding edges) from G are also in G′.

Theorem 8.5. Consider a closed subgraph G′ of a game graph G of a 3-valued model
checking game with a partial coloring function χ which is correct and defined over (at
least) all the terminal vertices in G′. Then applying the coloring algorithm of Chapter 4
or Chapter 5 on G′ with χ as an initial coloring results in a correct coloring of G′.

Proof. It suffices to show that the winner of each vertex in G′ is the same both in the
induced game and in the full game. This ensures the correctness of the coloring which
is performed by solving the 3-valued parity game induced by G′.

For the terminal vertices of G′ this is clear, since the terminal vertices are classified
such that their winner corresponds to their initial color and the initial coloring of the
terminal vertices is correct (see Definition 8.1). Thus, a terminal vertex in V0 is a vertex
that was colored F in the full graph, meaning that Player 1 wins from it in both games.
Similarly for the terminal vertices in V1.

As for the non-terminal vertices in G′, we first recall that ∨ and ♦ vertices are
controlled by Player 0, whereas ∧ and � vertices are controlled by Player 1. For ∨
and ♦ vertices, controlled by Player 0, the non-witnessing sons are colored F , which
means they are winning for Player 1 in the full game, thus Player 0 will not use them
in a winning strategy. Dually, For ∧ and � vertices, controlled by Player 1, the non-
witnessing sons are colored T , which means they are winning for Player 0, thus Player
1 will not use them in a winning strategy.

114

To show that the winner of each non-terminal vertex in G′ is the same in both games,
we show that each winning strategy in the full game translates to a winning strategy of
the same player in the induced game, and vice versa. Consider such a vertex v:

Suppose that Player σ has a winning strategy in the full game starting at v. Then,
the same strategy is a winning strategy in the induced game, with the exception that
in the “new” terminal vertices of G′ the strategy is “pruned”, and the winner remains
the same due to the above claim regarding the terminal vertices of G′. Note that the
winning strategy in the full game never uses sons which are not witnessing (since as
explained above, in the vertices controlled by Player σ the non-witnessing sons are not
winning for σ). Therefore the strategy is well defined in the induced game as well.

For the opposite direction, suppose that Player σ has a winning strategy in the
induced game starting at v. Then the same strategy is a winning strategy in the full
game, except that starting from the “new” terminal vertices of G′ the “original” strategy
is used – again, due to the above claim the winner there remains the same. Moreover,
starting from the non-witnessing sons of vertices controlled by Player σ (which are not
present in the induced game), the original winning strategy of σ is used (as explained
above such non-witnessing sons are winning for σ in the full game), and the winner
remains the same.

In fact, for the coloring of the subgraph to be correct, not all the witnessing sons are
needed, as long as there is enough information to explain the correct coloring of each
uncolored vertex. However, we will see that in our case we will need all of them, as
we will deduce from the game graph of one component to the game graph of the full
system, where some of the vertices will be removed and for some an indefinite color (?)
will change into T or F . This means that some of the witnessing sons will not remain
witnessing sons in the game graph of the full system. Thus, we will not be able to know
a-priori which of them is the “right” choice to include in a way that will also provide
the necessary information for a correct coloring in the game graph of the full system.

Another notion that we will need later is the following.

Definition 8.6 (?-Subgraph). Let G be a colored graph whose initial vertex is colored
?. The ?-subgraph is the least subgraph G? of G that obeys the following:

• the initial vertex is in G? (and is the initial vertex of G?).

• For each vertex in G? which is colored ? in G all its witnessing sons (and corre-
sponding edges) in G are included in G?.

G? is accompanied with a partial coloring function χI which is defined over the ter-
minal vertices in G?, and colors them as the coloring function χF of G.

The ?-subgraph G? and its initial coloring meet the conditions of Theorem 8.5. In-
tuitively, this means that G? contains all the information regarding the indefinite result.
Figure 8.2(b) provides examples of ?-subgraphs.

8.4 Compositional Model Checking

In compositional model checking the goal is to verify a formula ϕ on a compound system
M1||M2. In our setting M1 and M2 are Kripke structures that synchronize on the joint

115

labeling of the states. Since a Kripke structure is a special case of a KMTS where
R = R+ = R−, we define the composition for the more general case of KMTSs. In the
following we denote by Lit1 and Lit2 the sets of literals over AP1 and AP2, resp.

Definition 8.7. Two KMTSs M1 = (AP1, S1, s
0
1, R

+
1 , R

−
1 , L1) and M2 = (AP2, S2, s

0
2, R

+
2 ,

R−
2 , L2) are composable if their initial states agree on their joint labeling, i.e. L1(s

0
1) ∩

Lit2 = L2(s
0
2) ∩ Lit1.

Definition 8.8. Let M1 = (AP1, S1, s
0
1, R

+
1 , R

−
1 , L1) and M2 = (AP2, S2, s

0
2, R

+
2 , R

−
2 , L2)

be two composable KMTSs. We define their composition, denoted M1||M2, to be the
KMTS (AP, S, s0, R+, R−, L), where

• AP = AP1 ∪AP2

• S = {(s1, s2) ∈ S1 × S2 | L1(s1) ∩ Lit2 = L2(s2) ∩ Lit1}

• s0 = (s01, s
0
2)

• R+ = {((s1, s2), (t1, t2)) ∈ S × S | (s1, t1) ∈ R+
1 and (s2, t2) ∈ R+

2 }

• R− = {((s1, s2), (t1, t2)) ∈ S × S | (s1, t1) ∈ R−
1 and (s2, t2) ∈ R−

2 }

• L((s1, s2)) = L(s1) ∪ L(s2)

In particular, if M1 and M2 are Kripke structures with transition relations R1 and R2

resp., then M1||M2 is a Kripke structure with R = {((s1, s2), (t1, t2)) ∈ S×S | (s1, t1) ∈
R1 and (s2, t2) ∈ R2}.

From now on we fix AP to be AP1 ∪ AP2. For i ∈ {1, 2} we use i to denote the
remaining index in {1, 2} \ {i}.

We use the mechanism produced for abstractions of full branching time logics for the
purpose of compositional verification. The basic idea is to view each Kripke structure
Mi as a partial model that abstracts the complete system M1||M2.

Definition 8.9. Let Mi = (APi, Si, s
0
i , Ri, Li) be a Kripke structure. We lift Mi into

a KMTS Mi ↑= (AP, Si, s
0
i , R

+
i ↑, R−

i ↑, Li ↑) over AP where R+
i ↑= ∅, R−

i ↑= Ri and
Li↑ (s) = Li(s).

That is, we view Mi as a KMTS Mi↑ over AP (rather than APi). This immediately
makes the value of each literal over AP \APi in each state of Mi↑ indefinite (as neither
p nor ¬p are in Li(s)) – indeed, it depends on Mi. In addition, each transition of Mi is
considered a may transition (since in the composition it might be removed if a matching
transition does not exist in Mi, but transitions can never be added).

Theorem 8.10. For each i ∈ {1, 2}, M1||M2 � Mi ↑. The mixed simulation relation
H ⊆ S × Si is given by {((s1, s2), si) | (s1, s2) ∈ S}.

Proof. For a state s = (s1, s2) of M1||M2 and i ∈ {1, 2} let πi(s) denote the projection
of the pair on its ith component. The mixed simulation relation H ⊆ S × Si is given by
{(s, si) | πi(s) = si}. That is, a state si of Mi↑ is related by a mixed simulation relation
to all the states of M1||M2 where the corresponding state in the pair is si. Clearly, the
initial states are in H since by definition of the composition, the initial state of M1||M2

consists of the initial states of both components. Let (s, si) ∈ H. Then:

116

• L(s) = L1(π1(s)) ∪ L2(π2(s)) (by the definition of composition), and the latter is
clearly a superset of Li(πi(s)) = Li(si).

• The requirement for must transitions is met vacuously as there are no must tran-
sitions in Mi↑.

• Let (s, s′) ∈ R. Then by definition of the composition, in particular for i, there
exists a transition (πi(s), πi(s

′)) ∈ Ri, meaning that (πi(s), πi(s
′)) ∈ R−

i ↑ (by the
definition of Mi↑). In addition, by the definition of H, (s′, πi(s

′)) ∈ H.

Since eachMi↑ abstractsM1||M2, we are able to first consider each component separately:
Theorem 2.5 ensures that if ϕ has a definite value (tt or ff) in the KMTS Mi↑ under
the 3-valued semantics, then the same value holds in M1||M2 as well. In particular, the
values in M1 ↑ and M2 ↑ cannot be contradictory, and it suffices that one of them is
definite in order to determine the value in M1||M2.

The more typical case is that the value of ϕ on both M1 ↑ and M2 ↑ is indefinite.
This reflects the fact that ϕ depends on both components and their synchronization.
Typically, an indefinite result requires some refinement of the abstract model. In our
case refinement means considering the composition with the other component. Still, in
this case as well, having considered each component separately can guide us into focusing
on the places where we indeed need to consider the composition of the components.

The game-based approach to model checking provides a convenient way for presenting
this information. If the KMTS Mi ↑ is model checked using the 3-valued game-based
algorithm of Chapter 4 or Chapter 5, then the result is a colored game graph, in which
T and F represent definite results (i.e. truth values that hold no matter what the
environment is), but the ? color needs to be resolved by considering the composition.
This is where the ?-subgraph (see Definition 8.6) becomes handy, as it points out the
places where this is really needed.

The ?-subgraph for each component is computed top-down, starting from the ini-
tial vertex. As long as a vertex colored ? is encountered, the search continues in a
BFS manner by including the witnessing sons. Definite vertices which are included in
the subgraph become terminal vertices, and their coloring defines the initial coloring
function.

The ?-subgraphs of the two colored graphs present all the indefinite information that
results from the dependencies between the components. Thus, to resolve the indefinite
result, we compose the ?-subgraphs.

Definition 8.11 (Product Graph). Let G?1 and G?2 be two ?-subgraphs as above with
initial vertices s0

1 ` ϕ and s02 ` ϕ resp. We define their product to be the least graph
G|| = (V||, v

0
|| , E

+
|| , E

−
||) such that:

• v0
|| = (s01, s

0
2) ` ϕ is the initial vertex in V||.

• If (s1, s2) ` ψ ∈ V|| and (s1 ` ψ, s′1 ` ψ′) ∈ E−
1 and (s2 ` ψ, s′2 ` ψ′) ∈ E−

2 and
L1(s

′
1) ∩ Lit2 = L2(s

′
2) ∩ Lit1 (i.e. (s′1, s

′
2) is a state of M1||M2), then: (s′1, s

′
2) `

ψ′ ∈ V|| and ((s1, s2) ` ψ, (s
′
1, s

′
2) ` ψ

′) is in E+
|| and E−

|| .

117

Note that all the edges in G|| are must edges, whereas in the ?-subgraphs we had
may edges (the transitions of each component were treated as may transitions in the
lifted version). This is because the product graph already refers to the complete system
M1||M2, where all transitions are concrete transitions (modeled as must transitions).

The product graph is constructed by a top-down traversal of the subgraphs, where,
starting from the initial vertices, vertices that share the same formulas and whose states
agree on the joint labeling are composed (recall that s0

1 and s02 agree on their joint
labeling). Whenever two non-terminal vertices are composed, the outgoing edges are
computed as the product of their outgoing edges, limited to legal vertices (w.r.t. the
restriction to states that agree on their labeling). In particular, this means that if a
vertex in one subgraph has no matching vertex in the other, then it will be omitted from
the product graph. In addition, when a terminal vertex of one subgraph is composed
with a non-terminal vertex of the other, the resulting vertex is a terminal vertex in G ||.

We accompany G|| with an initial coloring function for its terminal vertices based on
the initial coloring functions of the two subgraphs. We use the following observation:

Proposition 8.12. Let v = (s1, s2) ` ψ be a terminal vertex in G||. Then one of the
following holds. Either (a) at least one of s1 ` ψ and s2 ` ψ is a terminal vertex in its
subgraph, in which case at least one of them is colored by a definite color by the initial
coloring of its subgraph, and contradictory definite colors are impossible. We denote this
color by col(v); Or (b) both s1 ` ψ and s2 ` ψ are non-terminal vertices but no outgoing
edges were left in their composition.

Proof. Clearly, if s1 ` ψ and s2 ` ψ are both non-terminal vertices, then for v = (s1, s2) `
ψ to be a terminal vertex in G||, it has to be the case that no outgoing transitions were
left in the composition of s1 ` ψ and s2 ` ψ. This refers to case (b).

As for case (a), if at least one of s1 ` ψ and s2 ` ψ is a terminal vertex in its
?-subgraph, then we show that at least one of them is colored by a definite color: First,
by the construction of a ?-subgraph, an indefinite color for a terminal vertex is only
possible when its subformula is a literal. This is because if a vertex with any other
formula is colored ?, then it has at least one witnessing son which will be included in the
?-subgraph, making the vertex non-terminal. For example, a �-vertex which is colored
? has at least one son which is colored 6= T , and is thus a witnessing son. A literal only
has an indefinite value if it refers to a local atomic proposition of the other component,
in which case the vertex in the other component has a definite color.

In addition, contradictory definite colors cannot exist due to the correctness of the
coloring w.r.t. the 3-valued semantics: if s1 ` ψ is colored T , then the value of ψ in
s1 is tt, and by the mixed simulation relation, its value in (s1, s

′
2), for every s′2 that is

composable with s1, is also tt. By the same arguments, if s2 ` ψ is colored F , then the
value of ψ in (s′1, s2), for every s′1 that is composable with s2, is also ff. This leads to
contradiction since s1 and s2 are composable.

Definition 8.13. We define the initial coloring function χI of G|| as follows. Let v be
a terminal vertex in V||. If it fulfills case (a) of Proposition 8.12, then χI(v) = col(v).
If it fulfills case (b), then χI(v) = T if v is a ∧-vertex or a �-vertex, and χI(v) = F if
v is a ∨-vertex or a ♦-vertex. χI is undefined for the rest of the vertices.

118

In particular, if a terminal vertex in G|| results from a terminal vertex which is colored
by ? in one subgraph and a terminal vertex which is colored by some definite color in
the other (case (a)), then the definite color takes over.

Note that a terminal vertex that fulfills case (b) cannot be deterministic, thus all the
possible cases are covered by the definition of the initial coloring function of G ||.

Note further that the initial coloring function of the product graph colors all the
terminal vertices by definite colors. Along with the property that all the edges in the
product graph are must edges, this reflects the fact that the composition resolves all the
indefinite information that existed in each component when it was considered separately.
Therefore, when applying (one of) the coloring algorithms to the product graph, all the
vertices are colored by definite colors (in fact, a 2-valued coloring can be applied).

Theorem 8.14. The resulting product graph G|| is a closed subgraph of the game graph
over M1||M2. In addition, the initial coloring function is correct w.r.t. M1||M2 and
defined over all the terminal vertices in the subgraph.

Proof. We first show that G|| is a closed subgraph of the game graph that corresponds
to the composition M1||M2. It is easy to see that it is a subgraph, since the structure in
terms of the subformulas and edges is maintained. We now show that the subgraph is
closed. Assume to the contrary that it contains a non-terminal vertex v whose witnessing
sons are not all included. Let v′ be such a witnessing son. This means that both of the
vertices that correspond to v in the ?-subgraphs of the two components are colored
by indefinite colors (otherwise, if at least one of them was colored by a definite color, it
would have been a terminal vertex and so would v). Moreover, at least one of the vertices
that correspond to the witnessing son v ′ is not included in its subgraph (otherwise v ′

would have been included in the product graph). Denote this vertex by ṽ ′. By the
relation of the colors to the 3-valued semantics and by the preservation guarantee of the
3-valued semantics, the color of ṽ ′ in its game graph is either the same as the color of v ′

in the game graph for the composition M1||M2, or indefinite. However, in both cases this
makes it a witnessing son in its game graph, which means it should have been included
in the ?-subgraph. To see why ṽ′ is a witnessing son of ṽ (the vertex that corresponds
to v) in its game graph, first note that if ṽ ′ is colored ?, then this is immediate. If ṽ ′

is colored by a definite color in its game graph, then, as explained above, its color is
the same as the color of v′ in the full game graph of M1||M2. Therefore, since v′ is a
witnessing son of v, and since the types of v and ṽ (resp. v ′ and ṽ′) are the same, it
holds that ṽ′ is also a witnessing son of ṽ.

We show that the initial coloring function is correct by a case analysis. For terminal
vertices that are colored based on case (a) this directly results from the preservation
guarantee of the 3-valued semantics (Theorem 2.5). As for terminal vertices that are
colored based on case (b), consider the case of a vertex v with a ∧ or a � formula (the
other case is dual). If v is also a terminal vertex in the full game graph of M1||M2, then it
must consist of a � formula and of a state of M1||M2 that has no successors, which means
it satisfies the � formula and the T -color of v is correct. Otherwise, since all the sons of
v were removed during the composition, this means that every one of them corresponds
to a vertex that does not exist in the ?-subgraph of at least one component, which means
it was colored T in the game graph of the component. Again, the preservation theorem

119

Step 1 Model check each Mi↑ separately (for i ∈ {1, 2}):

1. Construct the game graph Gi for ϕ and Mi↑.

2. Apply the 3-valued coloring on Gi. Let χi be the resulting coloring func-
tion.

If χ1(v
0
1) or χ2(v

0
2) is definite, return the corresponding model checking result

for M1||M2.

Step 2 Consider the composition M1||M2:

1. Construct the ?-subgraphs for G1 and G2.

2. Construct the product graph G|| of the ?-subgraphs.

3. Apply the 3-valued coloring on G|| (with the initial coloring function).

Return the model checking result corresponding to χ||(v
0
||).

Figure 8.1: Compositional model checking algorithm.

ensures that the color of all the sons in the game graph of M1||M2 is also T , and thus T
is the correct color of v.

By Theorem 8.5, this means that coloring G|| results in a correct result w.r.t. the model
checking of ϕ in M1||M2. Thus, to model check ϕ on M1||M2 it remains to color G||.
Note that the full graph for M1||M2 is not constructed. The resulting compositional
model checking algorithm appears in Figure 8.1.

Example 8.15. Consider the two components depicted in Figure 8.2(a). The atomic
proposition o (short for output) is local to the first component M1, i (input) is local to
the second component M2, and r (receive) is the only joint atomic proposition that the
components M1 and M2 synchronize on. Suppose we wish to verify in the compound
system M1||M2 the property �(¬i∨♦o), which states that in all the successor states of
the initial state, an input signal implies that there is a successor state where the output
signal holds. Figure 8.2(b) depicts the colored game graph of each (lifted) component,
and highlights the ?-subgraph of each of them. The product graph and its coloring is
depicted in Figure 8.2(c), as an “intersection” of the two subgraphs. All the edges in
the product graph are must edges. All vertices, and in particular the initial vertex, are
colored T , thus the property is verified. One can see that most of the efforts were done
on each component separately, and the product graph only considers a small part of the
compound system.

8.5 Adding Abstraction

In Section 8.4 we considered concrete components. The indefinite results on each compo-
nent resulted only from their interaction, and were resolved by composing the indefinite

120

G1::

s0 `¬i ∨♦o

s0 `♦o

s0 ` o s2 ` o

s1 `¬i ∨♦o

s1 `♦o

s0 `�(¬i ∨ ♦o)

s1 ` o

s0 `¬i s1 `¬i

G2::

t1 `¬i ∨ ♦o

t2 `¬it1 `¬i t2 `♦o

t0 `�(¬i ∨ ♦o)

t0 `¬i ∨♦o

t0 ` o t1 ` o t2 ` o

t2 `¬i ∨ ♦o

t1 `♦ot0 `¬i t0 `♦o

(b)

¬r,¬o

r, or,¬o

s0

s2s1

M1::

¬i,¬r

¬i, ri, r

t0

t1 t2

M2::

(a)

(s0, t0)`�(¬i ∨ ♦o)

(s2, t1)` o

(s1, t1)`♦o

(s1, t1)`¬i ∨♦o

(c)

Figure 8.2: (a) Components, (b) their game graphs and their ?-subgraphs (enclosed by
a line), and (c) the product graph. Dashed edges denote may edges which are not must
edges. The colors reflect the coloring function: white stands for T , dark gray stands for
F and light gray stands for ?.

parts. We now combine this idea with existing abstraction-refinement techniques that
abstract one or both of the components (separately), and refine them gradually when
necessary. This will enable us to combine the benefits of the compositional approach
with the power of iterative abstraction-refinement.

8.5.1 Motivation

Composing the ?-subgraphs of two components, as suggested in Section 8.4, corresponds
to making a global refinement, i.e. refining all the possible causes for the indefinite
result. We now show how to use abstraction in order to make the refinement more local
and gradual by eliminating one of the causes for the indefinite result at a time.

Suppose that the coloring of the game graph G1 for the lifted concrete component
M1 ↑ results in an indefinite result. The coloring algorithms of Chapters 4 and 5 ac-
company such a result with a failure state and a failure cause, which is either a literal
whose value in the failure state is ⊥, or an outgoing may transition of the failure state in
the underlying model which is not a must transition. Rather than globally refining the
?-subgraph, we wish to eliminate the failure cause returned by the coloring algorithm
for M1↑. Suppose that s is the failure state. It abstracts all the states of M1||M2 that
consist of s and a matching state of M2. Eliminating the cause for failure amounts to
exposing from M2 the information that involves the failure, namely, which of the states
composable with s satisfy the failure literal or have the corresponding transition and
which of them do not, and splitting s accordingly. For example, in Figure 8.2, a possible
failure cause in G1 is the may transition of M1↑ from s1 to s2. In order to either remove
it or turn it into a must transition, we need to consider all the states of M2 which are
composable with s1. These are the states labeled r. We need to find out which of them

121

have a transition to a state labeled r (i.e., a state composable with s2), and which of
them do not.

Clearly, the complete composition of the ?-subgraphs achieves this goal. However,
it exposes more information than relevant for the given failure cause: It exposes all
the information relevant to any possible cause for failure. In the general case, however,
eliminating all failure causes is not necessary. Thus we do not want to resort to that
(in this example it is indeed necessary, but in the general case not all the causes for
failure need to be eliminated). We now sketch the idea that allows us to only consider
the information from M2 that is needed for eliminating the particular failure cause of
M1↑. This will be described more formally in Section 8.5.2.

We abstract M2 into M̂2. We start with a most coarse abstraction of M2 w.r.t.
AP1 ∩AP2, where each state is abstracted by its labeling, restricted to AP1 ∩AP2.

Definition 8.16. Let Mi = (APi, Si, s
0
i , Ri, Li) be a Kripke structure. The most coarse

abstraction for Mi w.r.t. AP ′ ⊆ APi is the KMTS M̂∗
i = (APi, 2

AP ′

, Li(s
0
i)∩AP

′, ∅, 2AP
′

×
2AP

′

, L∗
i), where for ŝ ∈ 2AP

′

, L∗
i (ŝ) = ŝ ∪ {¬p | p ∈ AP ′ \ ŝ}.

Theorem 8.17. Mi � M̂∗
i . The mixed simulation is given by {(si, Li(si) ∩AP

′) | si ∈
Si}.

Proof. We show that (si, Li(si)∩AP
′) | si ∈ Si} is a mixed simulation relation from Mi

to M̂∗
i . Clearly, the initial states are in H since the initial state of M̂∗

i is Li(s
0
i) ∩AP

′.
Let (si, ŝ) ∈ H, i.e. ŝ = Li(si) ∩AP

′. Then:

• Li(si) ⊇ Li(si) ∩ Lit
′ = L∗

i (ŝ). The latter equality holds since by the definition of
the most coarse abstraction, L∗

i (ŝ) = ŝ ∪ {¬p | p ∈ AP ′ \ ŝ}. ŝ = Li(si) ∩ AP
′.

Thus, {¬p | p ∈ AP ′\ŝ} = {¬p | p ∈ AP ′\(Li(si)∩AP
′)} = {¬p | p ∈ AP ′ and p 6∈

Li(si)} = {¬p | p ∈ AP ′ and ¬p ∈ Li(si)} = Li(si)∩¬AP ′. Therefore, altogether,
the union of ŝ and {¬p | p ∈ AP ′ \ ŝ} is equal to Li(si) ∩ Lit

′.

• The requirement for must transitions is met vacuously as there are no must tran-
sitions in M̂∗

i .

• The requirement for may transitions is also met trivially as every pair of states in
M̂∗
i have a may transition between them.

An example of the most coarse abstraction of M2 from Figure 8.2(a) w.r.t. {r} ap-
pears in Figure 8.4. The construction of the most coarse abstraction requires almost no
knowledge of the component. More precise transitions can be computed as described in
Chapter 2. Starting from the most coarse abstraction of M2, we iteratively model check
the composition of M1 and the abstract model M̂2. The model checking is performed in a
compositional fashion, similarly to Section 8.4, without computing the full composition.
If the result in some iteration is indefinite, we refine M̂2 depending on the failure cause
over M1||M̂2. The refinement of M̂2 is performed as described in Chapters 4 and 5 by
splitting the abstract states in a way that eliminates the failure cause. Recall that our
purpose was to eliminate a failure cause over M1↑. Since we start with a most coarse

122

abstraction of M2 w.r.t. the joint atomic propositions, M1||M̂2 is initially isomorphic to
M1↑. As a result, in the first iteration the failure cause over M1||M̂2 reflects the fail-
ure cause over M1↑, and the refinement of M̂2 indeed exposes the relevant information
from M2. Similarly, in the next iterations, the failure cause over M1||M̂2 reflects the
failure cause over M1↑, after taking into consideration the elimination of previous failure
causes. In this sense, in each iteration we eliminate one failure cause over M1↑, and M̂2

“accumulates” the information required to eliminate these failure causes.
This means that we keep one of the components, M1, concrete, and construct an ab-

stract environment for it, by applying an iterative abstraction-refinement on M2, where
refinement is aimed at eliminating the indefinite results that arise when considering M1

with the abstract environment. An abstraction of M2 (which comprises the environment
of M1) can be viewed as providing an assumption on M2. From this point of view, when
applying abstraction-refinement on M2, the result is reminiscent of an iterative applica-
tion of an asymmetric Assume-Guarantee rule. The next step is to make the approach
symmetric by abstracting both components. This amounts to constructing abstract en-
vironments for both the components. In this case, refinement also needs to be applied
on both components.

8.5.2 Compositional Abstraction-Refinement

We now describe in detail the combination of the compositional approach with abstraction-
refinement. This provides a framework for using both the asymmetric and the symmetric
abstraction-refinement approaches sketched above. On the one hand, we enhance the
compositional model checking suggested in Section 8.4 by using abstraction and a more
gradual refinement. On the other hand, we enhance the abstraction-refinement frame-
work by making both the abstract model checking and the refinement compositional.
We no longer require that the state spaces of the concrete components are finite, as long
as the abstract state spaces are finite.

Compositional Abstraction Composition of abstract models (KMTSs) is defined
in Definition 8.8. In order to ensure that the composition of two abstract models
M̂1 = (AP1, Ŝ1, ŝ

0
1, R

+
1 , R

−
1 , L̂1) and M̂2 = (AP2, Ŝ2, ŝ

0
2, R

+
2 , R

−
2 , L̂2), for M1 and M2

respectively, results in an abstract model for M1||M2, we consider appropriate abstract
models w.r.t. AP1 ∩AP2. We say that M̂i is an appropriate abstract model of Mi w.r.t.
AP1 ∩AP2 if M̂i and Mi are related by a mixed simulation relation which is appropriate
w.r.t. AP1 ∩AP2, as defined below.

Definition 8.18. Let H ⊆ Si × Ŝi be a mixed simulation from Mi to M̂i, both defined
over APi. We say that H is appropriate w.r.t. AP ′ ⊆ APi if for every (si, ŝi) ∈ H,
Li(si) ∩ Lit

′ = L̂i(ŝi) ∩ Lit
′, where Lit′ denotes the set of literals over AP ′.

In particular, the most coarse abstraction w.r.t. AP1 ∩ AP2 (see Definition 8.16) is
appropriate w.r.t. AP1 ∩AP2. Appropriateness of M̂1 and M̂2 w.r.t. AP1 ∩AP2 means
that the abstraction of each component only identifies states that agree on their labelings
w.r.t. the joint atomic propositions. It ensures that if (ŝ1, ŝ2) is a state of the abstract
composition and ŝ1 abstracts s1 and ŝ2 abstracts s2, then since ŝ1 and ŝ2 agree on the

123

joint labeling, then so do s1 and s2. This ensures that (s1, s2) is a state of the concrete
composition, abstracted by (ŝ1, ŝ2). We now have the following.

Theorem 8.19. Let M̂i be an appropriate abstract model for Mi w.r.t. AP1 ∩AP2 (for
i ∈ {1, 2}). Then M1||M2 � M̂1||M̂2.

Proof. Let H1 ⊆ S1 × Ŝ1 and H2 ⊆ S2 × Ŝ2 denote the mixed simulations between each
component and its abstract model. Then the mixed simulation relation H ⊆ S × Ŝ is
given by {(s, ŝ) | (π1(s), π1(ŝ)) ∈ H1 and (π2(s), π2(ŝ)) ∈ H2}. Clearly, the pair of initial
states ((s01, s

0
2), (ŝ

0
1, ŝ

0
2)) is in H because (s0

1, ŝ
0
1) is in H1 and (s02, ŝ

0
2) is in H2 (since H1

and H2 are mixed simulations). Let (s, ŝ) ∈ H. Then

• L(s) = L1(π1(s))∪L2(π2(s)) ⊇ L̂1(π1(ŝ))∪ L̂2(π2(ŝ)) = L̂(s) (the inclusion follows
since H1 and H2 are mixed simulations).

• Let (ŝ, ŝ′) ∈ R+ in M̂1||M̂2. By the definition of (abstract) composition this implies
that for each i, (πi(ŝ), πi(ŝ

′)) ∈ R+
i . Then since H1 and H2 are mixed simulations,

we conclude that for each i, there exists ti ∈ Si s.t. (πi(s), ti) ∈ Ri and (ti, πi(ŝ
′)) ∈

Hi. Since M̂i is an appropriate abstract model for Mi w.r.t. AP1 ∩ AP2, we have
that L̂i(πi(ŝ

′)) ∩Lit1 ∩Lit2 = Li(ti)∩Lit1 ∩Lit2. Moreover, since (π1(ŝ
′), π2(ŝ

′))
is a state in M̂1||M̂2, then L̂1(π1(ŝ

′)) and L̂2(π2(ŝ
′)) agree on the joint atomic

propositions, thus so do L1(t1) and L2(t2), and there exists a state (t1, t2) in
M1||M2. In addition, by definition of H, ((t1, t2), ŝ

′) ∈ H. It remains to show
that (s, (t1, t2)) ∈ R. This is immediate from the definition of the (concrete)
composition.

• Let (s, s′) ∈ R. Then by definition of the (concrete) composition, there exists a
transition (πi(s), πi(s

′)) ∈ Ri, and since Hi are mixed simulations, there exist t̂i s.t.
(πi(ŝ

′), t̂i) ∈ R−
i and (πi(s

′), t̂i) ∈ Hi. Since M̂i is an appropriate abstract model

for Mi w.r.t. AP1∩AP2, we have that L̂i(πi(ŝ
′))∩Lit1∩Lit2 = Li(ti)∩Lit1∩Lit2.

Moreover, since (π1(s
′), π2(s

′)) is a state, then L1(π1(s
′)) agrees with L2(π2(s

′))
on the joint atomic propositions, thus so do L̂1(t̂1) and L̂2(t̂2), and there exists a
state (t̂1, t̂2). In addition, by definition of H, (s′, (t̂1, t̂2)) ∈ H. It remains to show
that (ŝ, (t̂1, t̂2)) ∈ R−. This is immediate from the definition of the (abstract)
composition.

Thus, if each of M1 and M2 is abstracted separately by an appropriate abstraction w.r.t.
AP1 ∩AP2, then the composition of the corresponding abstract components M̂1 and M̂2

results in an abstract model for M1||M2. However, we do not wish to construct M̂1||M̂2

and model check it. Instead, we suggest to model check M̂1||M̂2 compositionally.

Compositional (abstract) Model Checking The general scheme is similar to the
concrete case: we first try to make the most out of each (abstract) component separately,
and if this does not result in a definite answer, we consider the product of the ?-subgraphs
which enable to exchange information via a compact representation. We start by viewing
each abstract component M̂i as a partial model that abstracts their composition M̂1||M̂2.

124

Definition 8.20. Let M̂i = (APi, Ŝi, ŝ
0
i , R

+
i , R

−
i , L̂i) be a KMTS. We lift M̂i into a

KMTS M̂i ↑= (AP, Ŝi, ŝ
0
i , R

+
i ↑, R−

i ↑, L̂i ↑) over AP where R+
i ↑= ∅, R−

i ↑= R−
i and

L̂i↑ (ŝ) = L̂i(ŝ).

That is, when M̂i is lifted into M̂i↑, only the may transitions of M̂i are useful, because
must transitions are not really must w.r.t. M̂1||M̂2. Similarly to the concrete case:

Theorem 8.21. M̂1||M̂2 � M̂i↑.

Proof. Similar to the proof of Theorem 8.10.

Corollary 8.22. If M̂i is an appropriate abstract model for Mi w.r.t. AP1 ∩AP2, then
M1||M2 � M̂i↑.

Proof. Follows immediately from Theorem 8.19 and Theorem 8.21 by the transitivity of
�.

Therefore one can model check each of M̂i↑ separately, and the definite results follow
through to M1||M2. In fact, it is possible to show that M1||M2 � M̂i↑ holds even if we
omit the appropriateness requirement. Thus appropriateness is not needed for this step.
However, it is needed for the next steps, where we deduce from M̂1||M̂2 to M1||M2.

If both checks result in indefinite results, the (abstract) ?-subgraphs for both game
graphs are produced and their product is considered. This is where the main difference
between the concrete and the abstract case arises. Namely, having composed the ?-
subgraphs of the two components resolves dependencies between them, but the result
is still abstract, as it refers to the abstract composition M̂1||M̂2. This results in two
differences compared to the concrete case.

First, the may edges do not necessarily become must edges. Instead, the distinction
between may and must edges is determined by the type of the underlying transitions in
the (unlifted) abstract models M̂i, which have been ignored so far. Second, it is now
possible that a terminal vertex v = (ŝ1, ŝ2) ` ψ in G|| with ψ = l for a local literal
l ∈ Lit \ (Lit1 ∩ Lit2) results from terminal vertices ŝ1 ` l and ŝ2 ` l which are both
colored by ? in their subgraphs (one, since l is local to the other component, and is
thus treated as indefinite, and the other due to the abstraction). We add this possibility
as case (c) to Proposition 8.12 which characterizes the terminal vertices in the product
graph G||. It is taken into account when determining the initial coloring of G||. Formally:

Definition 8.23 (Abstract Product Graph). Let G?1 and G?2 be two abstract ?-subgraphs
as above. Their product graph G|| = (V||, v

0
|| , E

+
|| , E

−
||) is defined as before, except for the

definition of E+
|| : an edge ((ŝ1, ŝ2)`ψ, (ŝ

′
1, ŝ

′
2)`ψ

′) in E−
|| is also in E+

|| iff ŝiR
+
i ŝ

′
i for

each i ∈ {1, 2}.

Proposition 8.24. Let v = (ŝ1, ŝ2) ` ψ be a terminal vertex in an abstract product
graph G||. Then one of the following holds: (a) at least one of ŝ1 ` ψ and ŝ2 ` ψ is a
terminal vertex in its subgraph and is colored by a definite color by the initial coloring
of its subgraph. We denote this color by col(v); Or (b) both ŝ1 ` ψ and ŝ2 ` ψ are
non-terminal vertices but no outgoing edges were left in their composition; Or (c) ψ = l
for l ∈ Lit \ (Lit1 ∩Lit2) and ŝ1 ` l and ŝ2 ` l are both terminal vertices colored by ? in
their subgraphs.

125

Definition 8.25. We define the initial coloring function of an abstract product graph
G|| as before (see Definition 8.13), with the addition that a terminal vertex that fulfills
case (c) in Proposition 8.24 is colored ?.

Theorem 8.26. The resulting abstract product graph G|| is a closed subgraph of the

game graph over M̂1||M̂2. In addition, the initial coloring function is correct and defined
over all the terminal vertices in the subgraph.

Proof. Similar to the proof of Theorem 8.14, with the following additions. First, in
� and ♦ vertices, the types of the outgoing edges (may vs. must) are determined by
the same guidelines as the types of the transitions in M̂1||M̂2, which ensures that the
abstract product graph is a subgraph of the game graph that corresponds to M̂1||M̂2.
Second, for terminal vertices that are colored based on case (c) the correctness of the
initial coloring function results from the fact that case (c) represents the case of a vertex
(ŝ1, ŝ2) ` l in G||, where l ∈ Liti is local to M̂i but its value in ŝi is indefinite. This

implies that its value in the corresponding state (ŝ1, ŝ2) of M̂1||M̂2 is also indefinite (by
the definition of composition), which makes the initial coloring correct.

Along with Theorem 8.5, this implies that G|| can be colored correctly (w.r.t. the

model checking of ϕ on M̂1||M̂2) using the 3-valued algorithm. If the initial vertex is
colored by a definite color, then by Theorem 8.19 the result holds in M1||M2 as well and
we are done.

Compositional Refinement Since an abstraction is used, the result of the model
checking can be ⊥, in which case the coloring algorithms of Chapters 4 and 5 return
a failure cause that needs to be eliminated. The failure cause is either a literal whose
value in a certain state is ⊥, or a may transition of the underlying model which is not a
must transition.

In our setting, the refinement step is done compositionally: If the failure cause is a
literal l whose value in the failure state of M̂1||M̂2 is ⊥, then l has to be a local literal of
one of the components. This is because the abstraction is appropriate w.r.t. AP1 ∩AP2,
which implies that no indefinite values for the joint atomic propositions occur in M̂1||M̂2.
Thus, refinement need only be applied on the corresponding component.

Otherwise, the failure cause is a may transition (which is not a must transition) of
M̂1||M̂2 that needs to be refined in order to result in a must transition or no transition
at all. Let ((ŝ1, ŝ2), (ŝ

′
1, ŝ

′
2)) be this may transition. Then it results from may transitions

(ŝ1, ŝ
′
1) and (ŝ2, ŝ

′
2) of M̂1 and M̂2 resp., such that at least one of them is not a must

transition. In order to refine ((ŝ1, ŝ2), (ŝ
′
1, ŝ

′
2)), one needs to refine the individual may

transitions in each component separately. If both of them are not must transitions, then
refinement should be applied in each component. This is because a must transition in the
composition results from must transitions in both components. Otherwise, refinement
should only be applied in the component where it is not a must transition.

In each component where refinement is necessary, the refinement can be done as in
Chapters 4 and 5. Moreover, in each component we adopt the incremental approach
of Chapters 4 and 5 and avoid unnecessary refinement. In this approach, only vertices
with indefinite colors are refined. In our setting, this corresponds to the ?-subgraph of

126

each component. The result is the compositional abstraction-refinement loop presented
in Figure 8.3.

Step 0 For i ∈ {1, 2}, abstract Mi into M̂i appropriately w.r.t. AP1∩AP2 (e.g. as
in Definition 8.16).

Step 1 Model check each M̂i↑ separately (for i ∈ {1, 2}):

1. Construct the game graph Gi for ϕ and M̂i↑.

2. Apply the 3-valued coloring on Gi. Let χi be the resulting coloring func-
tion.

If χ1(v
0
1) or χ2(v

0
2) is definite, return the corresponding model checking result

for M1||M2.

Step 2 Consider the composition M̂1||M̂2:

1. Construct the ?-subgraphs for G1 and G2.

2. Construct the (abstract) product graph G|| of the ?-subgraphs.

3. Apply the 3-valued coloring on G|| (with the initial coloring function).

If χ||(v
0
||) is definite, return the corresponding model checking result for

M1||M2.

Step 3 Refine: Consider the failure cause returned by the coloring of G|| (where
χ||(v

0
||) =?).

If it is l ∈ Liti then refine M̂i;

Else let it be the may transition ((ŝ1, ŝ2), (ŝ
′
1, ŝ

′
2)). Then:

1. If (ŝ1, ŝ
′
1) is not a must transition in M̂1, refine M̂1.

2. If (ŝ2, ŝ
′
2) is not a must transition in M̂2, refine M̂2.

Refine the ?-subgraphs of G1 and G2 accordingly (as in the incremental ap-
proach);
Go to Step 1(2) with the refined subgraphs.

Figure 8.3: Compositional abstraction-refinement algorithm.

Note that the must transitions of each abstract component are only used when G|| is
constructed. Thus, their computation can be deferred to step 2 and be limited to must
transitions that are needed during model checking. Hyper-transitions can also be used,
e.g. with the algorithm of Chapter 6 or Chapter 7.

Using the compositional abstraction-refinement starting from the most coarse ab-
straction w.r.t. AP1 ∩AP2 of one or both of the components results in the asymmetric,
resp. symmetric, approach described in Section 8.5.1.

127

r t̂1

M̂
∗

2
::

¬rt̂0

Figure 8.4: Most coarse abstraction of M2 from Figure 8.2(a) w.r.t. {r}.

Theorem 8.27. For finite concrete components, iterating the compositional abstraction-
refinement process is guaranteed to terminate with a definite answer.

Example 8.28. We demonstrate the compositional abstraction-refinement scheme on
Example 8.15, which also served as a motivating example for introducing abstraction (see
Section 8.5.1). We use the asymmetric approach, where only one component, in our case
M2, is abstracted. Initially, M2 is abstracted using the most coarse abstraction w.r.t.
the only shared atomic proposition r, as depicted in Figure 8.4. Namely, M̂2 = M̂∗

2 .
The (initial) state t̂0 of the most coarse abstraction, labeled ¬r, represents the initial
concrete state t0 which is also labeled ¬r, and the state t̂1, labeled r, represents the two
concrete states t1 and t2 which are labeled r. M̂2 is lifted into M̂2↑ and model checked.
The game graph G2 of M̂2↑ is depicted in Figure 8.5(a), where the initial vertex, as well
as all other vertices, are colored ?. This is expected since the most coarse abstraction
basically reveals no information on the concrete component.

Since all vertices are colored ?, the ?-subgraph of G2 consists of the entire game
graph. Recall that the initial vertex of the game graph G1 that corresponds to M1↑ is
also colored ? (see Figure 8.2(b)). Therefore, the product graph G|| of the ?-subgraphs
of G1 (see Figure 8.2(b)) and G2 is constructed, as depicted in Figure 8.5(b). Note that
G|| is still abstract: it contains may edges and terminal vertices which are colored ?. In
fact, it is isomorphic to the ?-subgraph of G1. Thus, its coloring is identical to that of
G1. In particular, it results in an indefinite value, accompanied with failure information.

Suppose that the failure state returned by the coloring is (s1, t̂1) with the failure
cause being its outgoing may transition to the state (s2, t̂1), which is the underlying
transition of the may edge from (s1, t̂1) ` ♦o to (s2, t̂1) ` o in the product graph. This
may transition results from the concrete transition from s1 to s2 in M1, and the self may
loop of t̂1 in M̂2. Therefore, refinement is needed (only) in M̂2, where the corresponding
transition is not a must transition. Note that while the refinement is performed in
M̂2, it is in fact based on the point where more information is needed by the model
checking instance of M1, namely, whether or not the transition from s1 to s2 has a
corresponding transition in M2. This is because the failure cause is derived from the
product graph which is isomorphic to the ?-subgraph of G1. In particular, the may edge
from (s1, t̂1) ` ♦o to (s2, t̂1) ` o in the product graph, from which the failure cause is
derived, reflects the may edge from s1 ` ♦o to s2 ` o in G1, which is one of the failure
causes in G1.

The refinement of M̂2 is aimed at splitting t̂1 such that each of the resulting substates
either has a corresponding must transition or no transition at all. However, it turns out
that in this case both of the concrete states represented by t̂1 have a corresponding
transition, which means that the self loop of t̂1 can simply be added as a must transition
and no split is required.

128

G2 G||

iteration 1

t̂0 `♦o t̂1 `♦ot̂0 `¬i

t̂0 `�(¬i ∨♦o)

t̂0 `¬i ∨ ♦o t̂1 `¬i ∨ ♦o

t̂1 `¬i

t̂1 ` ot̂0 ` o

(s0, t̂0)`¬i ∨ ♦o (s1, t̂1)`¬i ∨ ♦o

(s1, t̂1)`♦o

(s2, t̂1)` o

(s0, t̂0)`�(¬i ∨ ♦o)

(s0, t̂0)`¬i (s1, t̂1)`¬i

(a) (b)

iteration 2

no change

(s0, t̂0)`¬i ∨ ♦o (s1, t̂1)`¬i ∨ ♦o

(s2, t̂1)` o

(s0, t̂0)`�(¬i ∨ ♦o)

(s0, t̂0)`¬i (s1, t̂1)`¬i (s1, t̂1)`♦o

(c)

iteration 3

t̂0 `♦o t̂1 `♦ot̂0 `¬i

t̂0 `�(¬i ∨♦o)

t̂0 `¬i ∨ ♦o t̂1 `¬i ∨ ♦o

t̂1 `¬i

t̂1 ` ot̂0 ` o

(s1, t̂1)`¬i ∨ ♦o

(s2, t̂1)` o

(s0, t̂0)`�(¬i ∨ ♦o)

(s1, t̂1)`¬i (s1, t̂1)`♦o

(d) (e)

Figure 8.5: Game graphs arising during the run of the compositional abstraction-
refinement algorithm described in Example 8.28.

The second iteration starts from the refined ?-subgraph of G2 (which is the entire
graph in this case). In fact, since no states were split, and since in the lifted component
all transitions are viewed as may transitions, the so-called refined ?-subgraph remains
unchanged and no recoloring is needed. In particular, the ?-subgraph computed in the
second iteration remains the same, i.e. it consists of the entire game graph. However,
when the product graph is constructed, the may edge from (s1, t̂1) ` ♦o to (s2, t̂1) ` o
becomes a must edge, since it results from the concrete transition from s1 to s2 in M1,
and the self loop of t̂1 in M̂2 which turns out to be a must transition. As a result, the
coloring changes as depicted in Figure 8.5(c). The initial vertex is still colored ?, and
new failure information is provided.

Suppose that the failure state returned by the coloring is now (s0, t̂0) with the failure
cause being the literal ¬i, whose value in (s0, t̂0) is indefinite (this failure information is
derived from the terminal vertex (s0, t̂0) ` ¬i which is colored ? in the product graph).
The literal ¬i is local to M2. Therefore, refinement is again needed in M̂2 only, and
it reflects the fact that the information regarding ¬i is needed by the model checking

129

instance of M1 (to resolve the ?-color of the vertex s0 ` ¬i, which is one of the failure
causes in G1).

The refinement of M̂2 is aimed at splitting t̂0 such that each of the resulting substates
is labeled by i or ¬i. However, it turns out that in this case the (only) concrete state
represented by t̂0 is labeled ¬i, which means that the labeling of t̂0 can be updated and
no split is required.

The third iteration starts from the refined ?-subgraph of G2 from the second iteration.
Recall that the ?-subgraph in the second iteration consists of the entire game graph. The
only change in the refined ?-subgraph is that the terminal vertex t̂0 ` ¬i is now colored
T . As a result, the coloring of the refined ?-subgraph of G2 changes as described in
Figure 8.5(d), which also highlights the new ?-subgraph. Figure 8.5(e) presents the
resulting product graph, and its coloring, where the initial vertex is now colored T ,
meaning that the property is verified.

While this small example does not really demonstrate the full power of abstraction, it
nicely shows how the use of abstraction achieves the goal of a gradual refinement, where
one failure cause is eliminated at a time. In this example, each refinement step reveals
from M2 additional information based on one failure cause found in the product graph,
which reflects the model checking instance of M1. This information is accumulated in
M̂2.

Optimization In some cases, the ?-subgraphs can be pruned further at the end of an
iteration, before they are refined, based on the product graph computed in the same
iteration and its coloring. One possible reduction is the following. We say that a vertex
v of a ?-subgraph appears as a sub-vertex of some vertex in the product graph if some
vertex in the product graph shares the same subformula as v and its state (which is a
pair of states of the individual components) consists of the state of v. Now, if a vertex
v of a ?-subgraph does not appear as a sub-vertex of any vertex in the corresponding
product graph, then v can be removed from its ?-subgraph as well. For example, at
the end of the first iteration of Example 8.28, the vertices t̂0 ` ♦o and t̂0 ` o of the
?-subgraph depicted in Figure 8.5(a) can be removed since they are not sub-vertices of
any vertex in the product graph of the first iteration, depicted in Figure 8.5(b).

Moreover, if a vertex v of a ?-subgraph only appears as a sub-vertex of vertices
that are colored by T (resp. F) in the corresponding product graph, then v can be
colored the same way in its ?-subgraph. For example, at the end of the first iteration
of Example 8.28, the vertex t̂1 ` o of the ?-subgraph depicted in Figure 8.5(a) can be
colored T since it only appears as a sub-vertex of (s2, t̂1) ` o, which is colored T , in the
product graph of the first iteration, depicted in Figure 8.5(b). Furthermore, at the end
of the second iteration, the vertices t̂1 ` ¬i ∨ ♦o and t̂1 ` ♦o of the ?-subgraph from
the second iteration, depicted in Figure 8.5(a), can be colored T since the corresponding
vertices in the product graph of the second iteration, depicted in Figure 8.5(c), are all
colored T . This allows for further pruning of the ?-subgraph which removes the entire
subgraph whose root is the vertex t̂1 ` ¬i ∨♦o, since once this vertex is colored T , it is
no longer a witnessing son of the initial vertex.

Applying these optimizations in Example 8.28 allows us to prune the ?-subgraph
depicted in Figure 8.5(a) at the end of the second iteration, before refinement is applied,

130

t̂0 `¬i

t̂0 `�(¬i ∨♦o)

t̂0 `¬i ∨ ♦o

t̂0 `¬i

t̂0 `�(¬i ∨♦o)

t̂0 `¬i ∨ ♦o

(a) (b)

Figure 8.6: (a) Pruned ?-subgraph, and (b) its re-coloring after refinement which changes
the color of t̂0 ` ¬i to T .

into the one depicted in Figure 8.6(a). The refinement is then applied to this pruned
subgraph. As before, it changes the color of the vertex t̂0 ` ¬i to T (see Example 8.28).
The third iteration starts from the resulting subgraph. Figure 8.6(b) exhibits its coloring,
computed in the third iteration. The initial vertex is now colored T . Thus, due to these
optimizations, the property is verified without the need to construct the product graph
in the third iteration.

Relation to Assume-Guarantee Reasoning As explained in Section 8.5.1, an ab-
straction of a component Mi (which comprises the environment of the other compo-
nent) can be viewed as providing an assumption on Mi. From this point of view, our
compositional abstraction-refinement resembles iterative AG reasoning: When applying
abstraction-refinement on one or both of the components, the result is an (asymmetric
or symmetric) automatic mechanism for assumption generation. In each iteration, more
information about the component is revealed based on the cause for the indefinite re-
sult. The use of conservative abstractions guarantees that the assumption describes the
component correctly (by construction). Thus unlike typical AG reasoning, this need not
be verified. Moreover, each iteration of our approach benefits from the compositional
model checking described in the previous section.

8.6 Extension: Labeled Transition Systems

In this section we sketch how our compositional model checking technique can be applied
to Labeled Transition Systems (LTSs). We refer to the case where the components are
concrete. However, similar extensions are applicable in the abstract case. We follow the
formulation of [23] for LTSs, but change the notation.

A Labeled Transition System (LTS) is a tuple M = (A,S, s0, R), where A is a set
of observable actions, called the alphabet of M , S is a finite set of states, s0 ∈ S is the
initial state, and R ⊆ S× (A∪{τ})×S is a transition relation. τ denotes a local action,
unobservable to M ’s environment.

Composition of LTSs is defined as follows. Let M1 = (A1, S1, s
0
1, R1) and M2 =

(A2, S2, s
0
2, R2) be two LTSs. Their composition, denoted M1||M2, is the LTS M =

131

(A,S, s0, R), where A = A1 ∪A2, S = S1 × S2, s
0 = (s01, s

0
2), and

R = {((s1, s2), a, (t1, t2)) | a ∈ A1 ∩A2 and (s1, a, t1) ∈ R1 and (s2, a, t2) ∈ R2}

∪{((s1, s2), a, (t1, s2)) | a ∈ (A1 \A2) ∪ {τ} and (s1, a, t1) ∈ R1 and s2 ∈ S2}

∪{((s1, s2), a, (s1, t2)) | a ∈ (A2 \A1) ∪ {τ} and (s2, a, t2) ∈ R2 and s1 ∈ S1}

Actions in A1 ∩A2 are joint actions, while actions in (Ai \Ai)∪{τ} are local actions of
Mi. The first type of transitions represent synchronization on the joint actions, whereas
the second and third types represent interleaving of local actions, i.e. actions that do
not belong to A1 ∩A2. In the latter type of transitions, one component proceeds along
its transition, while the other component does not change its state.

It is convenient to add τ to the alphabet of the LTS, and distinguish between unob-
servable actions of different LTSs. As such, we redefine Ai to be Ai ∪ {τi}, and replace
any occurrence of τ in Ri by τi.

Now, an LTS Mi can be viewed as an abstraction Mi↑ of M1||M2 by viewing its local
transitions (i.e., transitions which are labeled by local actions, including τi) as must tran-
sitions. This is because such transitions do not require synchronization, and thus their
existence in the composition does not depend on the other component. The transitions
which are labeled by joint actions are viewed as may transitions, as their existence in the
composition depends on the other component. We also add to Mi↑ additional idle may
transitions (si, ã, si) for any si ∈ Si, where ã is a new action that represents all the local
actions of the other component, Mi , and can therefore synchronize with all of them. The
purpose of these idle transitions is to account for the local transitions of Mi , which may
or may not exists, and as such, might contribute transitions to the composition. Thus,
Mi↑ now contains both may and must transitions. The game graphs of the lifted LTSs
are constructed and colored as before, and if necessary the ?-subgraphs are computed.

When the product graph of the ?-subgraphs of the lifted LTSs is constructed, every
pair of vertices that share the same subformula is composed, with no further restriction
on the states of the underlying LTSs. In practice, the vertices of the product graph
are computed in a top-down fashion, hence only reachable pairs are included. The
edges of the product graph are computed from the edges of the two ?-subgraphs by the
same rules as the transitions of M1||M2. As a result, if for some vertex one ?-subgraph
contains a may edge which is labeled by a joint action or ã, but the other ?-subgraph
has no matching edge, either since a corresponding transition does not exist in the
corresponding component, or since it was pruned from the ?-subgraph, then the edge
will not be included in the product graph. In addition, outgoing must edges of a vertex in
one ?-subgraph which are labeled by local actions can be pruned as well: for such edges,
the game graph of the other component always contains a corresponding (idle may) edge,
however the corresponding edge can be pruned when the ?-subgraph is constructed (if
it points to a non-witnessing son), in which case it will also be pruned from the product
graph. This allows pruning of both may and must edges in the product graph. The
remaining edges are all must edges (as they refer to the full system). Since the product
graph is computed top-down, the pruning of the edges also results in pruning of the
vertices.

The fact that there is no restriction in terms of the LTS states on which vertices of
the ?-subgraphs are composed reflects the different synchronization mechanism of LTSs.

132

However, our approach can still yield reduction in this case as well, due to the fact that
each of the ?-subgraphs is pruned. Thus, the resulting product graph is also pruned
compared to the full game graph for M1||M2.

8.7 Concluding Remarks

This chapter suggests a new approach for compositional verification which utilizes the
game-based techniques developed for 3-valued model checking of abstract models.

Our method is described for systems composed of two components, but it can be
extended to the composition of n components. The main difference is that in the general
case, after combining the ?-subgraphs of a subset of the (concrete) components, we will
still be left with an abstract graph containing strict may edges and ?-colored terminal
vertices due to information missing from the rest of the components.

The method can be adapted to take advantage of further knowledge of the system.
For example, if the composed system has a total transition relation (e.g. [3, 30]), then
our approach can be adapted to use an extended 3-valued semantics that yields definite
results in more cases, based on the totality assumption. The extended semantics defines
the value of a formula of the form ♦ψ in an (abstract) state s to be tt also in the case
where the value of ψ in all the may-successors of s is tt (dually for �ψ when exchanging
tt and ff). This is justified by the fact that the totality of the underlying concrete system
ensures that at least one such successor exists.

We use KMTSs that have ordinary may and must transitions as abstract models,
but the approach can be extended to handle hyper-transitions as well.

133

134

Chapter 9

Conclusion

In this research, we investigate abstraction-refinement and compositional techniques for
specifications in the µ-calculus.

We extend the game-theoretic approach to µ-calculus model checking to the abstract
case, using a 3-valued semantics, which enables to both verify and falsify properties
on the same abstract model. For this purpose, we define a 3-valued model checking
game. From the 3-valued model checking game, we derive two 3-valued model checking
algorithms: one where a direct algorithm is used to solve the 3-valued game, and another
where the 3-valued game is reduced to two 2-valued games. We accompany each of
these algorithms with an automatic refinement, resulting in novel abstraction-refinement
schemes for the full µ-calculus. Our abstraction-refinement schemes are incremental in
the sense that in each iteration the model checking re-uses definite results from previous
iterations.

Next, we study the precision of the abstract models that preserve the µ-calculus.
We realize that previously suggested abstract models encounter a precision problem
during refinement. Namely, formulas that had definite values (true or false) before
refinement can become indefinite after refinement, which means that the refinement is
not monotonic. To overcome this problem we suggest the use of hyper-transitions to
under-approximate the concrete transitions.

Still in the context of precision, we realize that even when hyper-transitions are used
to under-approximate the concrete transitions, the resulting abstract model is not as
precise as the choice of the abstract states enables it to be. We formalize the notion of
precision and suggest a new class of models where hyper-transitions are used both to
under-approximate and over-approximate the concrete transitions. We prove that this
class ensures maximal precision.

Hyper-transitions make the size of the abstract model potentially exponential in
the number of abstract states. We therefore suggest efficient game-based model check-
ing algorithms for abstract models with hyper-transitions that prevent the exponential
blowup. Our first algorithm is suitable for models that use hyper-transitions only for
the under-approximation of the concrete transitions. It is defined within an abstraction-
refinement framework, where the idea is to “learn” hyper-transitions from the transitions
of the previous iteration instead of computing all of them. Our second algorithm, on the
other hand, can be used both independently and within an abstraction-refinement loop.

135

It handles alternation-free µ-calculus formulas and achieves maximal precision w.r.t. the
checked property, while remaining quadratic in the number of abstract states.

Finally, we exploit the game-based techniques developed for 3-valued model checking
to obtain a novel fully automatic compositional technique that can determine the truth
value of the full µ-calculus w.r.t. a given system.

Examination of our ideas in practice is the subject of future work. For example, it
would be interesting to compare the abstraction-refinement approaches of Chapters 4 and
5, where the refinement is global, i.e. applied on the entire abstract models, to our work
in [35] which takes a lazy approach and applies the refinement more locally. Furthermore,
each of these abstraction-refinement schemes uses a different mechanism for determining
a criterion for refinement, which would be interesting to compare. Similarly, it would be
interesting to compare our compositional technique to the automated assume-guarantee
techniques suggested in the literature (e.g. [23, 5, 15]) for universal temporal logics.

136

Bibliography

[1] V. A. Aziz, T. R. Shiple and A. L. Sangiovanni-vincentelli. Formula-dependent
equivalence for compositional CTL model checking. In David L. Dill, editor, sixth
International Conference on Computer-Aided Verification CAV, volume 818, pages
324–337, Standford, California, USA, 1994. Springer-Verlag.

[2] R. Alur, P. Cerny, P. Madhusudan, and W. Nam. Synthesis of interface specifications
for Java classes. In POPL ’05: Proceedings of the 32nd ACM SIGPLAN-SIGACT
symposium on Principles of programming languages, pages 98–109, New York, NY,
USA, 2005. ACM Press.

[3] R. Alur, L. de Alfaro, T. A. Henzinger, and F. Y. C. Mang. Automating modular
verification. In CONCUR, pages 82–97, 1999.

[4] R. Alur, T. Henzinger, and O. Kupferman. Alternating-time temporal logic. In
Proceedings of the 38th IEEE Symposium on Foundations of Computer Science,
Florida, October 1997.

[5] R. Alur, P. Madhusudan, and W. Nam. Symbolic compositional verification by
learning assumptions. In Computer Aided verification (CAV’05), volume 3576 of
LNCS, pages 548–562, 2005.

[6] A. Asteroth, C. Baier, and U. Assmann. Model checking with formula-dependent
abstract models. In Computer-Aided Verification (CAV), volume 2102 of LNCS,
pages 155–168, 2001.

[7] T. Ball and O. Kupferman. An abstraction-refinement framework for multi-agent
systems. In Proc. 21st IEEE Symp. on Logic in Computer Science, 2006.

[8] S. Barner, D. Geist, and A. Gringauze. Symbolic localization reduction with re-
construction layering and backtracking. In Proc. of Conference on Computer-Aided
Verification (CAV), Copenhagen, Denmark, 2002.

[9] H. Barringer, D. Giannakopoulou, and C. Pasareanu. Proof rules for automated
compositional verification through learning. In 2nd Workshop on Specification and
Verification of Component-Based Systems (SAVCBS), 2003.

[10] O. Bernholtz, M. Vardi, and P.Wolper. An automata-theoretic approach to
branching-time model checking. In Proceedings of the 6th International Conference
on Computer Adided Verification (CAV’94), volume 818 of LNCS, pages 142–155.
Springer-Verlag, 1994.

137

[11] G. Bruns and P. Godefroid. Model checking partial state spaces with 3-valued
temporal logics. In Computer Aided Verification, pages 274–287, 1999.

[12] G. Bruns and P. Godefroid. Generalized model checking: Reasoning about partial
state spaces. In CONCUR’00, volume 1877, pages 168–182, 2000.

[13] J. R. Burch, E. M. Clarke, K. L. McMillan, D. L. Dill, and L. J. Hwang. Symbolic
model checking: 1020 states and beyond. Information and Computation, 98(2):142–
170, June 1992.

[14] S. Chaki, E. Clarke, O. Grumberg, J. Ouaknine, N. Sharygina, T. Touili, and
H. Veith. State/event software verification for branching-time specifications. In Pro-
ceedings of the 5th International Conference on Integrated Formal Methods (IFM),
volume 3771 of LNCS, pages 53–69, 2005.

[15] S. Chaki, E. M. Clarke, N. Sinha, and P. Thati. Automated assume-guarantee
reasoning for simulation conformance. In Computer Aided verification (CAV’05),
volume 3576 of LNCS, pages 534–547, 2005.

[16] P. Chauhan, E. Clarke, J. Kukula, S. Sapra, H. Veith, and D.Wang. Automated ab-
straction refinement for model checking large state spaces using SAT based conflict
analysis. In Formal Methods in Computer Aided Design (FMCAD), 2002.

[17] M. Chechik, B. Devereux, S. Easterbrook, and A. Gurfinkel. Multi-valued sym-
bolic model-checking. ACM Transactions on Software Engineering and Methodology
(TOSEM), 12:371–408, 2003.

[18] E. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith. Counterexample-guided
abstraction refinement. In 12th International Conference on Computer Aided Ver-
ification (CAV’00), LNCS, Chicago, USA, July 2000.

[19] E. Clarke, O. Grumberg, and D. Peled. Model Checking. MIT press, 1999.

[20] E. Clarke, A. Gupta, J. Kukula, and O. Strichman. SAT based abstraction-
refinement using ILP and machine leraning techniques. In Proc. of Conference
on Computer-Aided Verification (CAV), Copenhagen, Denmark, 2002.

[21] R. Cleaveland. Tableau-based model checking in the propositional mu-calculus.
Acta Inf., 27:725–747, 1990.

[22] R. Cleaveland, P. Iyer, and D. Yankelevich. Optimality in abstraction of model
checking. In Static Analysis Symposium (SAS), pages 51–63, 1995.

[23] J. M. Cobleigh, D. Giannakopoulou, and C. S. Pasareanu. Learning assumptions for
compositional verification. In Conference on Tools and Algorithms for the Construc-
tion and Analysis of Systems (TACAS’03), volume 2619 of LNCS, pages 331–346,
Warsaw, Poland, 2003.

[24] P. Cousot and R. Cousot. Abstract interpretation: A unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In Proceedings

138

of the 4th ACM SIGACT-SIGPLAN symposium on Principles of programming lan-
guages (POPL’77), pages 238–252, New York, NY, USA, 1977. ACM.

[25] P. Cousot and R. Cousot. Comparing the Galois connection and widening/nar-
rowing approaches to abstract interpretation. In Proceedings of the Conference on
Programming Language Implementation and Logic Programming (PLILP’92), pages
269–295. Springer-Verlag, August 1992. Lecture Notes in Computer Science 631.

[26] D. Dams, R. Gerth, and O. Grumberg. Abstract interpretation of reactive systems.
ACM Transactions on Programming Languages and Systems (TOPLAS), 19(2),
March 1997.

[27] D. Dams and K. Namjoshi. The existence of finite abstractions for branching time
model checking. In 19th IEEE Symposium on Logic in Computer Science (LICS),
pages 335–344. IEEE Computer Society, 2004.

[28] D. Dams and K. S. Namjoshi. Automata as abstractions. In 6th international con-
ference on Verification, Model Checking and Abstract Interpretation (VMCAI’05),
volume 3385 of Lecture Notes in Computer Science, pages 216–232, Paris, France,
2005.

[29] L. de Alfaro, P. Godefroid, and R. Jagadeesan. Three-valued abstractions of games:
Uncertainty, but with precision. In Proceedings of the 19th Annual IEEE Symposium
on Logic in Computer Science (LICS), pages 170–179, 2004.

[30] L. de Alfaro, T. A. Henzinger, and F. Y. C. Mang. Detecting errors before reaching
them. In Computer Aided Verification, pages 186–201, 2000.

[31] E. Emerson and C. Jutla. Tree automata, mu-calculus and determinacy. In
Proc. 32th Symp. on Foundations of Computer Science (FOCS), pages 368–377.
IEEE Computer Society Press, 1991.

[32] E. A. Emerson, C. S. Jutla, and A. P. Sistla. On model-checking for fragments
of mu-calculus. In Computer-Aided Verification, volume 697 of Lecture Notes in
Computer Science, pages 385–396, 1993.

[33] E. A. Emerson and C.-L. Lei. Efficient model checking in fragments of the propo-
sitional mu-calculus. In Proceedings of the First Annual Symposium on Logic in
Computer Science. IEEE Computer Society Press, June 1986.

[34] A. Farzan, Y.-F. Chen, E. M. Clarke, Y.-K. Tsay, and B.-Y. Wang. Extending
automated compositional verification to the full class of omega-regular languages.
In Proceedings of the 14th International Conference on Tools and Algorithms for
the Construction and Analysis of Systems (TACAS), volume 4963 of Lecture Notes
in Computer Science, pages 2–17. Springer, 2008.

[35] H. Fecher and S. Shoham. Local abstraction-refinement for the mu-calculus. In
Proceedings of the 14th International SPIN Workshop on Model Checking Software,
pages 4–23, 2007.

139

[36] D. Giannakopoulou, C. S. Pasareanu, and H. Barringer. Assumption generation
for software component verification. In Proceedings of the 17th IEEE international
conference on Automated software engineering (ASE), page 3, Washington, DC,
USA, 2002. IEEE Computer Society.

[37] P. Godefroid, M. Huth, and R. Jagadeesan. Abstraction-based model checking using
modal transition systems. In Proceedings of CONCUR’01, 2001.

[38] P. Godefroid and R. Jagadeesan. Automatic abstraction using generalized model
checking. In Proc. of Conference on Computer-Aided Verification (CAV), volume
2404 of LNCS, pages 137–150, Copenhagen, Denmark, 2002. Springer-Verlag.

[39] P. Godefroid and R. Jagadeesan. On the expressiveness of 3-valued models. In
Proceedings of VMCAI’2003 (4th Conference on Verification, Model Checking and
Abstract Interpretation), volume 2575 of LNCS, pages 206–222, New York, 2003.
Springer-Verlag.

[40] O. Grumberg, M. Lange, M. Leucker, and S. Shoham. Don’t know in the µ-calculus.
In 6th international conference on Verification, Model Checking and Abstract Inter-
pretation (VMCAI’05), volume 3385 of LNCS, pages 233–249, Paris, France, 2005.

[41] O. Grumberg, M. Lange, M. Leucker, and S. Shoham. When not losing is better
than winning: Abstraction and refinement for the full µ-calculus. Information and
Compuatation, 205:1130–1148, August 2007.

[42] O. Grumberg and D. Long. Model checking and modular verification. ACM Trans.
on Programming Languages and Systems, 16(3):843–871, 1994.

[43] A. Gurfinkel, O. Wei, and M. Chechik. Systematic construction of abstractions for
model-checking. In VMCAI, 2006.

[44] T. A. Henzinger, R. Jhala, R. Majumdar, and G. Sutre. Lazy abstraction. In
Proceedings of the 29th ACM SIGPLAN-SIGACT symposium on Principles of pro-
gramming languages (POPL), pages 58–70, Portland, Oregon, 2002. ACM Press.

[45] M. Huth, R. Jagadeesan, and D. Schmidt. Modal transition systems: A founda-
tion for three-valued program analysis. In European Symposium on Programming
(ESOP’01), volume 2028, pages 155–169, 2001.

[46] C. Jones. Specification and design of (parallel) programs. In Information Processing
83: Proc. of the IFIP 9th World Congress, pages 321–332, North-Holland, 1983.

[47] M. Jurdzinski. Small progress for solving parity games. In STACS, volume 1770 of
Lecture Notes in Computer Science, pages 290–301, 2000.

[48] B. Konikowska and W. Penczek. Model checking for multi-valued computation
tree logics. In Beyond two: theory and applications of multiple-valued logic, pages
193–210. Physica-Verlag GmbH, 2003.

[49] B. Konikowska and W. Penczek. On designated values in multi-valued CTL∗ model
checking. Fundamenta Informaticae, 60(1–4):221–224, 2004.

140

[50] D. Kozen. Results on the propositional µ-calculus. TCS, 27, 1983.

[51] O. Kupferman, M. Y. Vardi, and P. Wolper. An automata-theoretic approach to
branching-time model checking. Journal of the ACM (JACM), 47(2):312–360, 2000.

[52] R. Kurshan. Computer-Aided-Verification of Coordinating Processes. Princeton
University Press, 1994.

[53] R. Küsters. Memoryless determinacy of parity games. In Automata, Logics and
Infinite Games, volume 2500 of Lecture Notes in Computer Science, pages 95–106.
Springer, 2002.

[54] K. Larsen and B. Thomsen. A modal process logic. In Proceedings of Third Annual
Symposium on Logic in Computer Science (LICS), pages 203–210. IEEE Computer
Society Press, 1988.

[55] K. Larsen and L. Xinxin. Equation solving using modal transition systems. In
J. Mitchell, editor, Proceedings of the Fifth Annual IEEE Symp. on Logic in Com-
puter Science (LICS), pages 108–117. IEEE Computer Society Press, 1990.

[56] K. G. Larsen. Modal specifications. In J. Sifakis, editor, Proceedings of the 1989 In-
ternational Workshop on Automatic Verification Methods for Finite State Systems,
Grenoble, France, volume 407 of Lecture Notes in Computer Science. Springer-
Verlag, June 1989.

[57] W. Lee, A. Pardo, J.-Y. Jang, G. D. Hachtel, and F. Somenzi. Tearing based
automatic abstraction for CTL model checking. In ICCAD, pages 76–81, 1996.

[58] M. Leucker. Model checking games for the alternation free mu-calculus and alter-
nating automata. In 6th International Conference on Logic for Programming and
Automated Reasoning (LPAR’99), 1999.

[59] H. C. Li, S. Krishnamurthi, and K. Fisler. Modular verification of open features
using three-valued model checking. Autom. Softw. Eng., 12(3):349–382, 2005.

[60] J. Lind-Nielsen and H. R. Andersen. Stepwise CTL model checking of state/event
systems. In Computer Aided Verification, pages 316–327, 1999.

[61] C. Loiseaux, S. Graf, J. Sifakis, A. Bouajjani, and S. Bensalem. Property preserving
abstractions for the verification of concurrent systems. Formal Methods in System
Design, 6:11–45, 1995.

[62] D. Long, A. Browne, E. Clark, S. Jha, and W. Marrero. An improved algorithm
for the evaluation of fixpoint expressions. In Computer Aided Verification, (CAV),
volume 818 of Lecture Notes in Computer Science, pages 338–350, 1994.

[63] K. S. Namjoshi. Abstraction for branching time properties. In Proceedings of the
15th International Conference on Computer Aided Verification (CAV’03), volume
2725 of LNCS, pages 288–300, Boulder, CO, USA, 2003. Springer.

141

[64] K. S. Namjoshi and R. P. Kurshan. Syntactic program transformations for auto-
matic abstraction. In Proc. of Conference on Computer-Aided Verification (CAV),
volume 1855 of LNCS, pages 435–449, Chicago, IL, USA, 2000. Springer.

[65] A. Pardo and G. D. Hachtel. Automatic abstraction techniques for propositional
mu-calculus model checking. In Computer Aided Verification, pages 12–23, 1997.

[66] A. Pardo and G. D. Hachtel. Incremental CTL model checking using BDD subset-
ting. In Design Automation Conference, pages 457–462, 1998.

[67] C. S. Pasareanu, R. Pelánek, and W. Visser. Concrete model checking with abstract
matching and refinement. In Computer Aided Verification (CAV), pages 52–66,
2005.

[68] A. Pnueli. In transition for global to modular temporal reasoning about programs.
In K. R. Apt, editor, Logics and Models of Concurrent Systems, volume 13 of NATO
ASI series F. Springer-Verlag, 1984.

[69] D. A. Schmidt. Closed and logical relations for over- and under-approximation of
powersets. In Static Analysis Symposium (SAS), pages 22–37, 2004.

[70] S. Shoham and O. Grumberg. Monotonic abstraction-refinement for CTL. In 10th
International Conference on Tools and Algorithms for the Construction and Anal-
ysis of Systems (TACAS), volume 2988 of LNCS, pages 546–560, Barcelona, Spain,
2004.

[71] S. Shoham and O. Grumberg. Multi-valued model checking games. In Third Interna-
tional Symposium on Automated Technology for Verification and Analysis (ATVA),
volume 3707 of LNCS, pages 354–369, 2005.

[72] S. Shoham and O. Grumberg. 3-valued abstraction: More precision at less cost.
In Twenty-First Annual IEEE Symposium on Logic In Computer Science (LICS),
pages 399–410, Seattle, Washington, Aug. 2006.

[73] S. Shoham and O. Grumberg. Compositional verification and 3-valued abstractions
join forces. In Proceedings of the 14th International Static Analysis Symposium
(SAS), volume 4634 of Lecture Notes in Computer Science, pages 69–86, Kongens
Lyngby, Denmark, August 2007. Springer.

[74] S. Shoham and O. Grumberg. A game-based framework for CTL counterexamples
and 3-valued abstraction-refinement. ACM Transactions on Computational Logic
(TOCL), 9(1):1, 2007.

[75] C. Stirling. Local model checking games. In Proceedings of the 6th International
Conference on Concurrency Theory (CONCUR’95), volume 962 of LNCS, pages
1–11, Berlin, Germany, 1995. Springer.

[76] C. Stirling. Modal and Temporal Properties of Processes. Springer, 2001.

[77] C. Stirling and D. Walker. Local model checking in the modal µ-calculus. Theoretical
Computer Science, 89(1):161–177, 1991.

142

[78] C. Stirling and D. J. Walker. Local model checking in the modal mu-calculus. In
J. Diaz and F. Orejas, editors, Proceedings of the 1989 International Joint Confer-
ence on Theory and Practice of Software Development, volume 351–352 of Lecture
Notes in Computer Science. Springer-Verlag, Mar. 1989.

[79] A. Tarski. A lattice-theoretical fixpoint theorem and its applications. Pacific J.
Math, 5:285–309, 1955.

[80] G. Winskel. Model checking in the modal ν-calculus. In Proceedings of the Sixteenth
International Colloquium on Automata, Languages, and Programming, 1989.

[81] W. Zielonka. Infinite games on finitely coloured graphs with applications to au-
tomata on infinite trees. Theoretical Computer Science, 200(1–2):135–183, 1998.

143

	Abstract
	Notation and Abbreviations
	Introduction
	Abstraction-Refinement
	Compositional Verification
	Overview of the Thesis

	Preliminaries
	The -calculus
	Concrete Models and Concrete Semantics
	Abstraction and 3-Valued Semantics

	3-Valued Model Checking Games
	Introduction
	Related work

	Model Checking Games for 3-Valued -Calculus
	3-Valued Parity Games
	3-Valued Parity Games
	Model Checking Games as Parity Games

	Concluding Remarks

	Game-Based Abstraction-Refinement: Direct Approach
	Introduction
	Related Work

	Model Checking via Solving 3-Valued Parity Games
	Solving 3-Valued Parity Games

	Refinement of 3-Valued Parity Games
	Identifying a Failure Cause
	Failure Analysis

	Incremental Abstraction-Refinement Framework
	Concluding Remarks

	Game-Based Abstraction-Refinement: Reduction Approach
	Introduction
	Related Work

	Solving 3-Valued Parity Games via Reduction
	Refinement
	Using Non-Losing Strategies to Solve the Game
	Refinement with Non-Losing Strategies

	Concluding Remarks

	Monotonic Abstraction-Refinement
	Introduction
	Related Work

	Generalized Abstract Models
	Motivation
	Generalized KMTSs

	Monotonic Abstraction-Refinement Framework
	Concluding Remarks

	More Precision at Less Cost
	Introduction
	Related Work

	Abstraction Framework
	Increasing Precision
	Precision of Abstract Models
	May Transitions as a Source of Imprecision
	Hyper Kripke Modal Transition Systems

	Decreasing the Model Checking Cost
	Optimized Abstract Model Checking

	Abstraction-Refinement
	Handling Multiple Initial States
	Concluding Remarks

	Compositional Verification and 3-Valued Abstractions Join Forces
	Introduction
	Related Work

	Preliminaries
	Game Graph
	Coloring Algorithm

	Partial Coloring and Subgraphs
	Compositional Model Checking
	Adding Abstraction
	Motivation
	Compositional Abstraction-Refinement

	Extension: Labeled Transition Systems
	Concluding Remarks

	Conclusion
	Bibliography

