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Abstract

This work presents a collection of methods that integrate symmetry

reduction and under�approximation with symbolic model checking in

order to reduce space and time� The main objective of these methods

is falsi�cation� However� under certain conditions� they can provide

veri�cation as well�

We �rst present algorithms that use symmetry reduction to per�

form on�the��y model checking for temporal safety properties� These

algorithms avoid building the orbit relation and choose representa�

tives on�the��y while computing the reachable states� We then extend

these algorithms to check liveness properties as well� In addition� we

introduce an iterative on�the��y algorithm that builds subsets of the

orbit relation rather than the full relation�

Our methods are fully automatic� The user should supply some ba�

sic information about the symmetry in the veri�ed system� However�

the methods are robust and work correctly even if the information sup�

plied by the user is incorrect� Moreover� the methods return correct



results even when the computation of the symmetry reduction has not

been completed due to memory or time explosion�

We implemented our methods within the IBM model checker Rule�

Base and compared their performance to that of RuleBase� In most

cases� our algorithms outperformed RuleBase in both time and space�
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� Introduction

This work presents a collection of model�checking methods that integrate
symmetry reduction and under�approximation with symbolic model checking
in order to reduce space and time� The main objective of these methods is
falsi�cation� that is� proving that a given system does not satisfy its speci�ca�
tion� However� under certain conditions they can also be used for veri�cation�
i�e�� proving that the system does satisfy its speci�cation�

Our methods are fully automatic� The user should supply some basic
information about the symmetry in the veri�ed system� However� the meth�
ods are robust and work correctly even if the information supplied by the
user is incorrect� Moreover� the methods return correct results even when
the computation of the symmetry reduction has not been completed due to
memory or time explosion�

Temporal logic model checking ��� is a technique that accepts a �nite state
model of a system and a temporal logic speci�cation and determines whether
the system satis�es the speci�cation� The main problem of model checking
is its high memory requirements� Symbolic model checking ��	� can be used
to overcome this problem� Symbolic model checking� based on BDDs �
�� can
handle larger systems� but is still limited in its capacity� Thus� additional
work is needed in order to make model checking feasible for larger systems�

Symmetry reduction can also be employed to reduce the memory and
time requirements of symbolic model checking� This is the method we ex�
ploit in this work� Symmetry reduction is based on the observation that
many systems consist of several similar components� Switching the roles of
such components does not change system behavior� Thus� system states can
be partitioned into equivalence classes called orbits� and the system can be
veri�ed by examining only representative states from each orbit�

Two main problems arise� however� when integrating symmetry reduction
with symbolic model checking� One is building the orbit relation and the
other is choosing a representative for each orbit� ���� proves that the BDD for
the orbit relation is exponential in the number of BDD variables and suggests
choosing more than one representative for each orbit in order to obtain a
smaller BDD� However� this method does not solve the problem of choosing
the representatives� The choice of representatives is signi�cant because it
strongly in
uences the size of the BDDs representing the symmetry�reduced
model� ���� suggests choosing generic representatives� This approach involves
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compiling the symmetric program to a reduced model over the generic states�
Such a compilation can only be applied to programs written with a special
syntax in which symmetry is de�ned inside the program� ���� introduces
a DFS algorithm for explicit model checking� This algorithm chooses as
a representative for an orbit the �rst state discovered in that orbit� thus
avoiding the need to choose the representative in advance� Unfortunately�
it is not applicable to symbolic model checking because performing DFS is
very ine�cient with BDDs�

We suggest a new approach that avoids building the orbit relation and
chooses representatives on�the�
y while computing the reachable states� Un�
like ����� our algorithm uses BDD criteria to guide the choice of the represen�
tatives� Reachability is performed using under�approximation which� at each
step� explores only a subset of the reachable states� Some of the unexplored
states are symmetric to the explored ones� and the symmetry information
is exploited to ensure that those states will never be explored� Thus� easier
symbolic forward steps are obtained�

We �rst apply this approach to verifying properties of the form AG�p���
where p is a boolean formula� If we �nd a �bad� state that does not satisfy
p� we conclude that the checked system does not satisfy AG�p�� On the other
hand� if no �bad� state is found� we cannot conclude that the system satis�
�es AG�p�� This is because reachability with under�approximation does not
necessarily explore every reachable state� We next present a special version
of our algorithm in which the under�approximation is guided by hints ����
Under certain conditions this algorithm can also verify the system�

The algorithms described above are based on reachability and are often
referred to as on�the��y model checking algorithms� How to extend on�the�
y
model checking for AG�p� to verifying general safety temporal properties is
well known� This is done by building an automaton describing the property
and running it together with the system� We speci�ed conditions on the
automaton that also guarantee the correctness of the on�the�
y algorithm
when the automaton runs together with the symmetry�reduced model� The
suggested conditions hold for the tableau construction used for symbolic LTL
model checking ���� when restricted to LTL safety properties� They also hold
for the satellite used in symbolic model checking of RCTL formulas ���� By
running the automaton together with the reduced model� we save both space

�AG�p� means that p holds along every path� in every state on the path�
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and time when verifying such formulas�
On�the�
y model checking cannot handle liveness properties� In order to

handle them� we developed two extensions that combine symmetry reduc�
tion with classical �not on�the�
y� symbolic model checking� One is easy to
perform and is mainly suitable for falsi�cation� The other is more expensive
but can handle veri�cation as well�

Another approach to the orbit relation problem is to build the orbit rela�
tion iteratively� We present an on�the�
y symbolic algorithm in which only a
subset of the orbit relation is built in each iteration� The quotient model is
constructed according to this subset and the property is checked on the quo�
tient model� This algorithm may take more iterations to �nd a �bad� state
than do on�the�
y algorithms with symmetry reduction� However� since it
keeps the BDDs which represent the model small� it may terminate where
the on�the�
y algorithms would explode�

Previous works expect the user to provide a symmetry group that is also
an invariance group ����� In many cases two formulas checked on the same
model require di�erent invariance groups because each formula breaks the
symmetry of the model di�erently� Thus� the user needs to supply di�erent
invariance groups for di�erent formulas� In other works ���� �	�� the program
is written in a special syntax by which the invariance group can be found�
In these cases only formulas which do not break the symmetry of the model
are allowed�

In contrast� we build the invariance group automatically� once the sym�
metry group has been given� Supplying the symmetry group usually requires
only a high�level understanding of the system and therefore is easier than
supplying the invariance group�

We implemented our methods within the enhanced model checking tool
RuleBase ���� developed by the IBM Haifa Research Laboratories� and com�
pared the performance of our methods with that of RuleBase� Experiments
show that our methods performed signi�cantly better� with respect to both
time and space� in checking liveness properties� For temporal safety proper�
ties one method performed better with respect to time� However� its space
requirements were worse for small examples and identical for larger ones�
The other method performed signi�cantly better� with respect to both time
and space� in special cases�

The rest of the paper is organized as follows� Section � gives some basic
de�nitions� Section � shows how to build the invariance group� Section �
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presents an algorithm for on�the�
y symbolic model checking with symmetry
reduction and then introduces hints into this algorithm� Sections � and �
handle temporal safety properties and liveness properties� respectively� Sec�
tion � presents an iterative algorithm for on�the�
y symbolic model checking
which builds a subset of the orbit relation in each iteration� and Section �
presents our experimental results� We conclude in Section �	 with directions
for future research�

� Preliminaries

��� Temporal logic � CTL�� ACTL�

CTL� is a powerful temporal logic� In this work we de�ne CTL� in negation
normal form in which negations are applied only to atomic propositions�
CTL� is de�ned over a set of atomic propositions AP� There are two types
of formulas in CTL�� state formulas and path formulas� de�ned as follows�

� state formulas�

� If p � AP � p and �p are state formulas�

� If �� and �� are state formulas� then ����� and ����� are state
formulas�

� If �� is a path formula� then E�� and A�� are state formulas�

� path formulas�

� If �� is a state formula� then �� is also a path formula�

� If �� and �� are path formulas� then �� � ��� �� � �� X��� F���
G��� ��U��� and ��R�� are path formulas�

CTL� is the set of state formulas generated by these rules�
The semantics of CTL� are de�ned with respect to a Kripke structure

M��S�S��R�L�� where S is a �nite set of states� R � S�S is a total transition
relation� L is a labeling function which labels each state with the set of atomic
propositions AP true in that state� and S� is the set of initial states� A path
� in a Kripke structure M is an in�nite sequence of states� s�� s�� s�� � � �� in
which �i 	 	 �si� si��� � R� �i denotes the su�x of � starting at si� For a
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state formula � M� s j� � indicates that � is true in state s� and for a path
formula � M�� j� � indicates that � is true along ��

Assuming that �� and �� are state formulas and �� and �� are path
formulas� the relation j� is de�ned as follows�

� M�s j� p
 p � L�s��

� M�s j� �p
M�s �j� p�

� M�s j� �� � �� 
M�s j� �� or M�s j� ���

� M�s j� �� � �� 
M�s j� �� and M�s j� ���

� M�s j� E�� 
 there exists a path � � s�� s�� � � � in M such that s� � s
and M�� j� ���

� M�s j� A�� 
 for every path � � s�� s�� � � � in M such that s� � s�
M�� j� ��

� M�� j� �� 
 s is the �rst state of � and M�s j� ��

� M�� j� �� � �� 
M�� j� �� or M�� j� ���

� M�� j� �� � �� 
M�� j� �� and M�� j� ���

� M�� j� X�� 
M��� j� ���

� M�� j� F�� 
 �k 	 	 M��K j� ���

� M�� j� G�� 
 �i 	 	 M��i j� ���

� M�� j� ��U�� 
 �k 	 	 M��k j� �� and �	 
 i � k M� �i j� ���

� M�� j� ��V �� 
 �k 	 	 if �i � k M� �i �j� �� then M��k j� ���

A structure M satis�es formula � �M j� �� if every initial state s � S�

satis�es ��
ACTL� is the sub�logic of CTL� in which all formulas contain only uni�

versal path quanti�ers�
A CTL� formula is boolean if it contains only atomic propositions and

boolean operators�






De�nition ��� A formula � is a maximal boolean subformula of a formula
� if � is a boolean subformula of � and for all subformulas �� of �� if � is a
subformula of �� then �� is not boolean�

��� BDDs

A Binary Decision Diagram �BDD� �
� is a data structure for representing
boolean functions� BDDs are de�ned over boolean variables� They are often
�but not always� concise in their memory requirement� and most boolean
operations can be performed e�ciently on BDD representations� In ��	� it has
been shown that BDDs can be very useful for representing Kripke structures
and performing model checking symbolically� Given a Kripke structure M
whose set of states is to be represented by BDDs� we represent each state s
of M by a valuation of a vector of BDD variables �v� We also associate with
each BDD variable vi an additional variable v�i� We can now represent the
transition relation R � S � S by the BDD R��v� �v���

��� Model Checking

Model checking is a technique for verifying �nite state systems� The state
space of the system is exhaustively searched to determine if it satis�es a
given speci�cation ���� The model under veri�cation is usually described
by a Kripke structure M and the speci�cation by temporal logic formulas�
The set of atomic propositions AP� of the formula � under evaluation is
a subset of the set of atomic propositions AP of the model M � Since the
number of states grows exponentially with the number of state variables�
it is very di�cult to verify large models� This problem is called the state
explosion problem� Symbolic model checking ��� uses BDDs �
� to implement
model checking algorithms� It thus makes model checking applicable to larger
designs� although this applicability is still limited by space requirements�

��� On�the�Fly Symbolic Model Checking

On�the�
y symbolic model checking ��� is a method which checks a given
formula � while computing the reachable states of the model� Most of the
constructions for on�the�
y symbolic model checking build an automaton A�

and a formula � � AG�p�� where p is a boolean formula� The construction
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guarantees that M � A� j� � if and only if M j� �� Since � � AG�p��
verifying � amounts to computing the reachable states while checking that
each state satis�es p� If a state which falsi�es p is found� then there is no
need to complete the reachability computation� If all reachable states satisfy
p� then M j� �� One of the most useful operations in model checking and
on�the�
y model checking in particular is image computation� Given a set
of states S and a relation A� represented by the BDDs S��v� and A��v� �v��
respectively� the image computation �nds the set of all states related by A
to some state in S�

De�nition ��� ImA�S��v�� � ��v�S��v� �A��v� �v����

��� Partial Search

While symbolic model checking can be very e�cient� it can still su�er from
explosion in the BDD size� One solution is to perform a partial search of
the reachable state space while avoiding large BDDs ����� Other methods
perform a partial search guided by the user ��� or by the checked speci�cation
����� In all methods the set of reachable states discovered in each step is an
under�approximation of the set of reachable states which would have been
discovered in BFS� This property enables combining partial search with on�
the�
y model checking�

��	 Bisimulation and Simulation Relation

The goal of our work is to exploit symmetry for producing smaller models
that are easier to model check� It is important that the smaller models will
preserve properties of the original models� To formalize these ideas we de�ne
two relations over models� the bisimulation and the simulation relations�

De�nition ��� Let M and M � be two Kripke structures over the same set
of atomic propositions AP� A relation B � S � S� is a bisimulation relation
between M and M � for a set of boolean formulas BS over AP if for every
initial state s� of M there is an initial state s�� of M

� such that �s�� s��� � B�
and for every initial state s�� of M

� there is an initial state s� of M such that
�s�� s��� � B� Moreover� if �s� s�� � B� then

�� �� � BS �s j� � 
 s� j� ���
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�� �s���s� s�� � R� �s����s
�� s��� � R� � �s�� s��� � B���

	� �s����s
�� s��� � R� � �s���s� s�� � R � �s�� s��� � B���

M and M � are bisimulation equivalent for BS �denoted M �bis M
�� if there is

a bisimulation relation B for BS between M and M �� The following lemma
is immediate from the result in ����

Lemma ��� For every CTL� formula � over BS and two Kripke structures
M� M � over AP� if M �bis M

�� then M � j� �
M j� ��

De�nition ��� Let M and M � be two Kripke structures over the same set
of atomic propositions AP� A relation SIM � S � S� is a simulation relation
between M and M � for a set of boolean formulas BS over AP if for every
initial state s� of M there is an initial state s�� ofM

� such that �s�� s��� � SIM �
Moreover� if �s� s�� � SIM � then

�� �� � BS �s j� � 
 s� j� ���

�� �s���s� s�� � R� �s����s
�� s��� � R� � �s�� s��� � SIM ���

M is smaller thanM � for BS by the simulation relation �denotedM 
sim M ��
if there is a simulation relation for BS SIM � S�S�� The following lemma
is immediate from the result in �����

Lemma ��� For every ACTL� formula � over BS and two Kripke struc�
tures M� M � over AP� if M 
sim M � then M � j� ��M j� ��

Lemma ��� is also true for Kripke structures with �nite paths� See ap�
pendix A for a full de�nition of CTL� over Kripke structures without a total
transition relation and the proof of Lemma ��� on these structures�

��
 The Product Model and the Restricted Model

We now de�ne two special Kripke structures that will be used later�

De�nition ��� Let M� M � be two Kripke structures de�ned over the sets of
atomic propositions� AP and AP �� respectively� The product structure of M
and M � is a Kripke structure over AP �AP �� de�ned as follows� M �M � �
�SM�M �� S�

M�M �� RM�M �� LM�M �� where
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� SM�M � � f �s� s�� j s � S � s� � S� � L�s� �AP � � L��s�� � APg�

� S�
M�M � � f �s� s�� j �s� s�� � SM�M � � s � S� � s� � S�� g�

� ��s� s��� �t� t�� � SM�M �

���s� s��� �t� t��� � RM�M � 
 �s� t� � R � �s�� t�� � R���

� ��s� s�� � SM�M ��L��s� s��� � L�s� � L��s����

De�nition ��	 Let M be a Kripke structure and A be a subset of S� The
restricted model M jA � �SjA� S�jA� RjA� LjA� is de�ned as follows


� SjA � A�

� S�jA � S� � A�

� �s� s� � SjA ��s� s�� � RjA 
 �s� s�� � R��

� �s � SjA �LjA�s� � L�s���

Lemma ��� For every Kripke structure M and A � S� M jA 
sim M �

Proof
 The relation B � f�s� s�js � Ag is a simulation relation between
M and M ��

��� Symmetry

De�nition ��� A permutation on a set A� 	 � A � A is a one�to�one and
onto function�

For a set A� � A� 	�A�� � faja � A � �a� � A� 	�a�� � ag� In this paper we
use permutations over the set of states of a Kripke structure� Given a CTL�

formula � and a structure M� 	��� refers to applying 	 to the set of states
in M that satisfy ��

De�nition ��� A permutation that maps a� � a�� a� � a�� � � � � ak�� �
ak� ak � a� is called a cycle and is denoted by �a�a� � � � ak��

Any permutation can be written as a composition of disjoint cycles 	 �
c�c� � � � cm�
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De�nition ��
 A permutation group G is a set of permutations together
with the composition operation such that


� The identity permutation e is in G�

� For every permutation 	 � G� there is a permutation 	� � G such that
		� � e� Such a 	� is usually called 	���

� For every 	�� 	� � G� 	�	� is also in G�

De�nition ���� 	�� 	�� � � � � 	k are generators of permutation group G �de�
noted G � h	�� 	�� � � � � 	ki
 if G is the closure of the set f	�� 	�� � � � � 	kg under
the composition operation�

De�nition ���� A permutation group G is a symmetry group of a Kripke
structure M if every permutation 	 � G preserves the transition relation and
the initial states� That is� �s� s� � S ��s� s�� � R 
 �	�s�� 	�s��� � R and
s � S� 
 	�s� � S���

To exemplify the notations above� we consider a Kripke structure M
constructed by three identical processes� p�� p�� p�� Each process i uses the
set of variables �vi and each state is over the set of variables �v � �v��v��v�� The
permutation which exchanges the values of �vi and �vj �each variable with its
identical variable in the other process� will be denoted �pi� pj�� Since the
processes are identical� exchanging the values of �vi and �vj for every i and j
will preserve the transition relation and the initial states� Thus the group
G � fe� �p�� p��� �p�� p��� �p�� p��� �p�� p�� p��� �p�� p�� p��g is a symmetry group
of M and the permutations f�p�� p��� �p�� p��g are a set of generators of G�

De�nition ���� Let BS be a set of boolean formulas� A symmetry group G
of a Kripke structure M is an invariance group w�r�t� BS if for every boolean
formula � � BS� every 	 � G and every s � S �M�s j� � 
M�	�s� j� ���

De�nition ���� A boolean formula � preserves the symmetry of a permu�
tation 	 if for every s � S � �M�s j� � 
M�	�s� j� ���

De�nition ���� A boolean formula � breaks the symmetry of a permutation
	 if � does not preserve the symmetry of 	�
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When BS is the set of atomic propositions of formula �� our de�ni�
tion of an invariance group is identical to the de�nition of an invariance
group in ����� However� we prefer the BS set of the maximal subformu�
las of � �see de�nition ����� This is because an invariance group de�ned
w�r�t� the maximal subformulas may contain more permutations than an
invariance group de�ned w�r�t� the set of atomic propositions� Consider
the formula � � AG���p� in critical � p� in critical��� which is evaluated
on M de�ned in the previous example� The set of atomic propositions are
fp� in critical� p� in criticalg� The largest invariance group de�ned accord�
ing to these atomic propositions is G � feg� This is because the atomic
propositions break the symmetry of the permutations which exchange p�� p�
and p�� However� the formula has only one maximal boolean subformula
��p� in critical�p� in critical�� and the largest invariance symmetry group
de�ned according to it is G � f�p�� p��� eg� This is because the formula
preserves the symmetry of the permutation which exchanges p� and p��

Given an invariance group G and a Kripke structure M� we can partition
the states S into equivalence classes� The equivalence class of s is �s� �
fs�j�	 � G� 	�s� � s�g� Each �s� is called an orbit and the relation OR �
f�s� s��js� s� � S and �s� � �s��g is called the orbit relation�

For a Kripke structureM � �S� S�� R� L� and an invariance group G w�r�t�
a set of boolean formulas BS� the quotient structure MG � �SG� S�

G� RG� LG�
is de�ned as follows�

� SG � f �s� j s � S g�

� S�
G � f �s� j s � S� g�

� RG � f ��s�� �s��� j �s� s�� � R g�

� LG��s�� � f�j� � BS � s j� �g�

In ���� ��� it has been proved that for every CTL� formula � over BS� and
every state s � S� MG� �s� j� �
M�s j� ��

The quotient structure is built by having a representative chosen from
each orbit� Then a representative function 
 � S � Rep� which maps each
state s to its orbit representative� is de�ned� MG is now de�ned by

� SG � Rep�

��



� S�
G � fsj�s� 
�s�� � s � s� � S�g�

� RG � f �s� s�� j s� s� � Rep � �s�� � S �R�s� s��� � 
�s��� � s��g�

� LG�s� � f�j� � BS � s j� �g�

In many cases� however� it is easier to choose more than one representative
for each orbit�

De�nition ���� 
 � Rep � S is a representative relation if for all s� s�

�s� s�� � 
 
 s � Rep � �s� � �s���

De�nition ���	 The quotient structure for multiple representative Mm �
�Sm� S�

m� Rm� Lm� is a Kripke structure in which


� Sm � Rep�

� S�
m � f s j �s� � S� �s� s�� � 
g�

� Rm � 
��R
�

� Lm�s� � f�j� � BS � s j� �g�

���� shows that for every CTL� formula � over BS and every state s �
Rep� Mm� s j� �
MG� �s� j� ��

In our work we use a stronger property of the quotient model�

Lemma ��� For every Kripke structure M and every invariance group G of
M w�r�t BS� MG �bis M for BS�

Proof
 B � f��s�� s�js � Sg is a bisimulation relation for BS between MG

and M �

Lemma ��� For every Kripke structure M � every invariance group G of M
for BS and every set Rep � S which contains at least one representative
from each orbit� Mm �bis MG for BS�

Proof
 B � f�s� �s��js � Repg is a bisimulation relation for BS between
Mm and MG�

Lemmas ���� ���� and ��
 imply that for every CTL� formula � over
boolean formulas in BS�

M j� �
MG j� �
Mm j� ��
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� Building the Invariance Group

Previous algorithms showed how to perform model checking with symmetry
when the invariance group is supplied by the user ����� In many cases two
formulas evaluated on the same model require di�erent invariance groups
because each formula breaks the symmetry of the model di�erently� For
example� given two symmetric processes p� and p�� the formula AGAF �p� in
critical� breaks the symmetry between p� and p� while the formula AG��
�p� in critical � p� in critical�� does not break the symmetry at all� This
implies that the user may need to supply di�erent invariance groups for
di�erent formulas� Supplying themmay require close familiarity with system
details� In other works ���� �	�� the program is written in a special syntax
which enables the invariance group to be found� In these cases only formulas
which do not break the symmetry of the model are allowed �e�g�� SCTL
formulas in ������

We suggest a new method that� given a symmetry group G and a formula
�� automatically generates an invariance group Ginv w�r�t� the set of maximal
boolean subformulas of a given formula �� Our method is useful because
providing a symmetry group often requires only a high�level understanding
of the system and is therefore easier to supply than an invariance group�

Our method works as follows� Given a set of generators for a symmetry
group G� an invariance group Ginv is de�ned by restricting the generators of
G to those 	i that satisfy 	i��� � � for every maximal boolean subformula
�� As a result� the orbits of Ginv obtained by its generators do not contain
both states that satisfy � and states that do not satisfy �� This implies that
Ginv is an invariance group� The following lemma illustrates the correctness
of our approach�

Lemma ��� Let 	�� 	�� � � � � 	k be generators of a symmetry group G of a
Kripke structure M and let MAX be the set of maximal boolean subformulas
of a given formula �� If IG � f	ij�� � MAX� 	i��� � �g is not empty� it
generates an invariance group Ginv of M w�r�t� MAX�

Proof
 We �rst prove that if IG is not empty� it generates a permutation
group Ginv� Any 	 � Ginv can be written as a composition of disjoint cycles
	 � c�c� � � � cm�

For all 	 � IG� 	 � c�c� � � � cm of length l�� l�� � � � � lm respectively�
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� Since IG is not empty� �	 � IG� 	l�l����lm � e� Since 	 is a generator
of Ginv � 	l�l����lm � Ginv� which means that e � Ginv�

� For all 	� � IG� 	��l�l����lm��� � 	���� Since 	� is a generator of Ginv�
	��l�l����lm��� � Ginv� which means that 	��� � Ginv� For all 	 �
Ginv� 	 � 	i�	i� � � � 	il where 	i�� 	i�� � � � � 	il � IG� Since 	�� �
	��il � � � 	��i� 	

��
i�

and for all 	� � IG� 	��� � Ginv� we get that 	�� � Ginv�

� For all 	�� 	� � Ginv� 	� � 	i�	i� � � � 	il 	� � 	j�	j� � � � 	jl� �
where 	i�� 	i�� � � � � 	il� 	j�� 	j�� � � � � 	jl� � IG�
Since 	�	� � 	i�	i� � � � 	il	j�	j� � � � 	jl� � 	�	� � Ginv �

We have shown that Ginv is a permutation group� Since its generators are a
subset of the generators of the symmetry group G� Ginv is also a symmetry
group� We still need to show that Ginv is an invariance group�

We �rst prove that for every 	 � Ginv and every � � MAX� 	��� � ��
Ginv is generated by IG� meaning that every 	 � Ginv can be written as
	 � 	i�	i� � � � 	im� where 	i� � 	i�� � � � 	im � IG� By the de�nition of IG we
know that for every j� 	ij��� � �� Thus 	��� � �� Since 	��� � � for
every 	 � Ginv � we have that for every � � MAX� 	 � Ginv and s � S�
�M�s j� � 
M�	�s� j� ���

In our previous example� the set of generators of the symmetry group
of a model with two processes is f	g� where 	 � �p�� p��� For formula � �
AGAF �p� in critical� � the only maximal boolean subformula is p� in critical�
Since 	�p� in critical� � p� in critical� which is not identical to p� in critical�
we conclude that IG � �� This implies that the largest invariance group
w�r�t� the maximal boolean subformulas of � is G � feg� For the for�
mula � � AG���p� in critical � p� in critical��� the only maximal boolean
subformula is ��p� in critical � p� in critical�� Since 	���p� in critical
� p� in critical� � ��p� in critical � p� in critical� � ��p� in critical �
p� in critical�� IG � f	g� Thus� in this case the original symmetry group is
also an invariance group for ��

De�nition ��� The largest invariance group Ginv with respect to a sym�
metry group G is an invariance group such that for every invariance group
G� � G� jG�j 
 jGinvj�

��



For a given symmetry group G� the invariance group Ginv generated
by IG may not be the largest invariance group that exists for M with re�
spect to G� For example� if a symmetry group G � fe� �p�� p��� �p�� p���
�p�� p��� �p�� p�� p��� �p�� p�� p��g is given by the generators f�p�� p��� �p�� p��g�
and IG is calculated with respect to the formula� � � AG���p� in critical�
p� in critical��� Since IG � feg� we get that Ginv � feg� However� the
largest invariance group with respect to G is f�p�� p��� eg�

The largest invariance group with respect to a given symmetry group can
be obtained by restricting the symmetry group G as follows� Ginv � f 	 �
G j �� � MAX� 	��� � �g� However� the number of permutations in G
may be exponential in the number of generators of G� Thus it is not practical
to construct Ginv directly from G�
Below we explain how the construction of the invariance group can be im�
plemented with BDDs�

� A permutation 	 can be represented as a BDD by ��v � 	��v���� However�
it is easier to represent it as a binary relation 	��v� �v��� For example�
consider a permutation �	 de�ned over a set of processes � � � � n� where
each process i uses the set of variables �vi and each state is over the
variables �v � �v��v� � � � �vn� If �	 exchanges the role of processes i and j
we denote it by �	�i� � j� The permutation 	 over the state variables �v
is induced from �	� The BDD 	��v� �v�� that represents 	 will be de�ned
by 	��v� �v�� � �i��vi � �v����i���

� For a boolean formula �� let ���v� be the BDD representing the set of
all states satisfying �� Then the BDD for 	��� is de�ned by 	����v�� �
��v�	��v� �v�� � ���v���

� We check whether 	��� � �� With a BDD representation� this amounts
to checking that the BDDs ���v� and 	����v�� are actually the same BDD
after we unprime the BDD variables in 	����v���

��� Extension to Fairness

When the model under veri�cation consists of fairness constraints� the sets of
fair paths in the quotient model should be identical to the set of fair paths in
the original model� The set of fair paths can be made identical by requiring
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that the generators of the invariance group satisfy 	��� � � for the formulas
in the fairness constraints as well as in the checked formula�

A Kripke structure M with fairness constraints is a �ve�tuple M �
�S� S�� R� L� F � where S� S�� R and L are de�ned as in section ���� and F �
ff�� � � � � fmg� where for all i� fi is a boolean formula over a set of atomic
propositions APF � AP � � is a fair path if and only if for every fi�
inf��� � fi �� � � where inf��� � fs j s � sj for in�nitely many jg� The se�
mantics of CTL� with respect to a Kripke structure with fairness constraints
� denoted j�F � is similar to the semantics of CTL� de�ned in section ����
except for the following changes�

� M�s j�F p
 there exists a fair path starting from s and p � L�s��

� M�s j�F E�� 
 there exists a fair path � starting from s such that
M�� j�F ���

� M�s j�F A�� 
 for every fair path � starting from s� M�� j�F ���

A quotient model for a Kripke structure with fairness constraints is a
�ve�tuple MG � �SG� S�

G� RG� LG� FG�� where SG� S�
G� RG� LG are de�ned as

in section ���� and FG � F �

De�nition ��� Let BS be a set of boolean formulas� A fair bisimulation
relation B for BS overM andM � with F and F � respectively is a bisimulation
relation for BS �De�nition ��	
 which satis�es� in addition� the following
requirement� For every s� s� such that B�s� s�� it holds that


�� For every fair path � � s�s� � � � from s � s� in M there is a fair path
�� � s��s

�
� � � � from s� � s�� in M � such that for all i 	 	� B�si� s�i��

�� For every fair path �� � s��s
�
� � � � from s� � s�� in M � there is a fair path

� � s�s� � � � from s � s� in M such that for all i 	 	� B�si� s�i��

The following lemma is immediate from the result in ����

�Here again� by abuse of notation� fi refers to the set of states that satisfy the formula
fi�
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Lemma ��� Let B be a bisimulation relation for BS and let s� s� be two
states such that B�s� s��� Then for every path � � s�s� � � � from s � s� there
is a path �� � s��s

�
� � � � from s� � s�� such that for all i 	 	� B�si� s�i�� and for

every path �� � s��s
�
� � � � from s� � s�� there is a path � � s�s� � � � from s � s�

such that for all i 	 	� B�si� s�i��

The following lemma presents a su�cient but not necessary condition
which guarantees that B is a fair bisimulation for BS� This condition is
useful since it can easily be applied within our symmetry reduction�

Lemma ��� For a given bisimulation relation B for BS over two Kripke
structures in which F � F � and two states s and s� such that B�s� s��� assume
that the following holds
 for every f � F

s j� f 
 s� j� f�

Then B is a fair bisimulation relation for BS�

Proof
 We show that the additional requirement in de�nition ��� is satis�
�ed�

�� For every s� s� such that B�s� s�� and for every fair path � � s�s� � � �
from s � s� inM there is� according to Lemma ���� a path �� � s��s

�
� � � �

from s� � s�� in M � such that for all i 	 	� B�si� s�i�� According to the
de�nition of a fair path� for every fi� inf��� � fi �� �� Since for every
f � F s j� f 
 s� j� f we get that for every fi� inf�����fi �� �� Thus
�� is also a fair path�

�� Similar to ��

The following lemma is immediate from the result in ����

Lemma ��� For every CTL� formula � over BS and two Kripke structures
M� M � over AP� if M and M � are fair bisimulation equivalent for BS� then
M j�F �
M � j�F � ��

De�nition ��� Let 	�� 	�� � � � � 	k be generators of a symmetry group G of a
Kripke structure M � �S� S�� R� L� F � and let MAX be the set of maximal
boolean subformulas of a given formula �� The fair invariance group of M
w�r�t� MAX�F is the group generated by IG � f	ij�� �MAX�F� 	i��� �
�g �
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Lemma ��� Let Ginv be the fair invariance group generated by IG � f	ij�� �
MAX� 	i��� � �g� If IG is not empty� then M and MGinv

are fair bisimu�
lation equivalent for BS�

Proof
 According to Lemma ���� B � f��s�� s�js � Sg is a bisimulation
relation for MAX � F between MGinv

and M � We show that B also satis�es
the following additional condition� for every f � F

s j� f 
 �s� j� f�

According to the de�nition of the quotient model� FGinv
� F and LGinv

��s�� �
L�s�� which implies that �fi � F �s� j� fi 
 s j� fi� From Lemma ��� we
get that M and MGinv

are fair bisimulation equivalent�

The consequence of Lemma ��
 is that we can use the group generated by
IG � f	ij�� �MAX � F� 	i��� � �g for symmetry reduction of structures
with fairness constraints�

In ���� it is shown that even when the fairness constraints are symmetric to
each other the symmetry in the model is not preserved� Thus no compression
is possible under fairness when using �purely group�theoretic� methods� Our
algorithm does not contradict ����� Assume that the fairness constraints
are symmetric to each other but each single fairness constraint breaks the
symmetry in the model� In this case� the fairness constraints will break
the symmetry of all generators which do not preserve the symmetry in the
model with respect to a single fairness constraint� The symmetry is broken
by removing these generators from the fair invariance group� In other words�
when using our algorithm in this case� the symmetry in the model is not
preserved�

� Symmetry with On�the��y Representatives

The algorithm presented in this section is aimed at avoiding the two main
problems of symmetry reduction� building the orbit relation and choosing a
representative for each orbit�

Let M � �S� S�� R� L� be a Kripke structure and 	�� � � � � 	k be a set of
generators of a symmetry group G of M� Also let � � AG�p�� where p
is a boolean formula� The symbolic algorithm Symmetry MC� presented
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in Figure �� applies on�the�
y model checking for M and �� using under�
approximation and symmetry reduction�

The algorithm works in iterations� Starting with the set of initial states�
a subset under of the current set of states is chosen at each iteration� The
successors of under are computed� However� every state which is symmetric
to �i�e�� in the same orbit with� a previously reached state is removed� The
states that are �rst found for each orbit are taken to be the orbit represen�
tatives� Note that an orbit may have more than one representative if several
of its states are reached when the orbit is encountered for the �rst time� At
any step� the set of representatives is checked to see if it includes a state that
violates p� If such a state is found �line ��� then the computation is stopped
and a counterexample is produced� We then conclude that M �j� AG�p��
The use of under�approximation ensures that if Symmetry MC terminates
without violating p� this does not indicate that M j� AG�p��

Figure � shows a possible execution of Symmetry MC� State s is dis�
covered �rst by the under�approximated search and entered to reach rep

as a representative� When 	�s� is discovered� it is deleted because 	�s� �
	 step�reach rep��

bad states

�p
	�s�

s

Init

Figure �� A possible execution of Symmetry MC

A useful optimization can be performed by deleting from memory the
BDD for the set full reach� which is often quite large� immediately after
it has been used �after line ��� This may prevent memory explosion� In
addition� the forward step in line 
 usually requires large memory utilization
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as well� By removing the BDD for full reach before computing the forward
step� we decrease the memory usage in each iteration�

Symmetry MC�M� �� 	�� � � � 	k�
� Calculate the generators of the invariance group of M

IG � f	ij for all maximal boolean subformulas � of �� 	i��� � �g
� reach rep � S�� i�	
� while Si �� �
� choose under � Si �under is an under�approximation of Si�

 Si�� � ImR�under�
� full reach � 	 Step�reach rep� 	�� � � � 	k�
� Si�� � Si�� � full reach

� reach rep � reach rep �Si��
� if Si����p �� �
�	 generate a counterexample and break�
�� i � i���

Figure �� The algorithm Symmetry MC performs on�the�
y model check�
ing of � on M � using symmetry reduction�

The set of symmetric states that should be removed are computed using
the procedure 	 Step �Figure �� instead of using the orbit relation� 	 Step

applies Im�i�sym states�� in order to obtain the states which are related by
	i to states in sym states� It repeatedly computes Im�i for i � �� � � � � k�
until a �xed point is reached� For a set of states A and a set of generators
IG � f 	�� � � � � 	k g� 	 Step returns the set of all states belonging to the
orbits of states in A according to G � hIGi� The use of 	 Step for removing
symmetric states is demonstrated in Figure ��

We use 	 Step to exploit symmetry information without building the full
orbit relation� There are several reasons to expect that 	 Step will result in
a BDD which is smaller than that of the orbit relation� First� it represents a
set of states and not a relation� Thus� it depends on one set of BDD variables�
while the orbit relation depends on two sets� Second� it is applied only to

��i can be viewed as the binary relation ���v� �v���
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	 Step�A� 	�� 	�� � � � � 	k�
� sym states � A�
� old sym states � �
� while old sym states �� sym states

� old sym states � sym states


 for i � � � � � k
� new sym states � Im�i�sym states�
� sym states � sym states � new sym states

� return sym states

Figure �� The algorithm 	 Step calculates the states belonging to the orbits
of states in A�

reachable states� which are usually represented by smaller BDDs� Indeed�
our experiments successfully applied 	 Step to designs for which building
the orbit relation was impossible�

Computationally� 	 Step is quite heavy� We avoided this problem in
most of our experiments by stopping the computation of 	 Step before it
reached a �xed point� As will be explained in the next section� this does
not e�ect the correctness of Symmetry MC� In general� there is a tradeo�
between the amount of computation in 	 Step and the symmetry reduction
obtained by Symmetry MC�

If� when Symmetry MC terminates� reach rep contains at least one
state from each reachable orbit� then Mm� de�ned according to reach rep

�Sm � reach rep�� is bisimilar toM �see Section ����� Thus� ifMm j� AG�p��
thenM j� AG�p� as well� Note that Mm j� AG�p� can be checked on�the�
y�

��� Robustness of Symmetry MC

We now discuss the robustness of the algorithm Symmetry MC for fal�
si�cation in the presence of an incomplete 	 Step and an incorrect set of
generators� Consider �rst the case in which the computation of procedure
	 Step is stopped before a �xed point is reached� 	 Step then returns only
a subset of the states in the orbits of states in A� In this case� fewer states are
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sym states

� step

Figure �� Removing symmetric states using 	 Step

removed from Si�� and� as a result� reach rep contains more states� Thus�
we might have more representatives for each orbit�

Consider now the case in which the algorithm is given an incorrect set of
generators� If a �bad� generator �a permutation which associates states that
are not symmetric� is given� then 	 Step returns states which are not sym�
metric to any state in reach rep� These states are removed from Si��� and it
is possible that no representatives of their orbits will be added to reach rep�
Thus� reach rep represents an under�approximation of the reachable orbits�
However� reach rep does not contain a representative of an unreachable or�
bit� Thus� if there is a state s � reach rep which does not satisfy p� this
state is reachable in the original model� and the counterexample generated
by Symmetry MC actually exists in the original model�

If a �good� generator �a permutation which associates pairs of symmetric
states� is missing� then 	 Step returns fewer states and� as a result� there is
more than one representative for each orbit� However� as in the previous case�
reach rep contains only reachable states� and therefore Symmetry MC

generates only real counterexamples� The following lemma summarizes the
discussion above�

Lemma ��� Given any set of generators� the algorithm Symmetry MC is
sound for falsi�cation�
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Proof
 We need to prove that if symmetry MC generates a counterex�
ample �line �	�� then there is a reachable state s in M which does not satisfy
p� Since symmetry MC enters line �	 only if Si�� � �p �� �� we only have
to show that for every i and for every s � Si� s is reachable along transitions
in M� The proof is by induction�

� i�	� all states in S� are reachable�

� Assume all states in Si are reachable� Si�� � ImR�under� � 	 step

�reach rep� where under � Si� Since all states in Si are reachable� all
states in under are reachable� By the de�nition of ImR� ImR�under�
is also a set of reachable states� In addition� Si�� � ImR�under�� and
thus all states in Si�� are reachable�

Several BDD optimizations common in the computation of forward steps
in symbolicmodel checking may be useful in the implementation of procedure
	 Step�

� To simplify each 	i according to sym states before computing Im�i

�sym states�� Simplifying the BDD representing 	i will result in a
smaller BDD� The �rst possibility is that this BDD might contain pairs
of states which are not symmetric to each other and in which the �rst
state is not in sym states� The second possibility is that this BDD
might not contain pairs of states which are symmetric to each other
and in which the �rst state is not in sym states� In both cases the
result of Im�i�sym states� is the same as without simpli�cation�

� To apply the partitioned transition relation with early quanti�cation
���� in the computation of Im�i� This is applicable because a permuta�
tion is often given as a conjunction of simpler expressions ��	i��v� �v�� �
�j��vj � �v���j����

� Symmetry Reduction Combined with Hints

In this section we present a special case of the algorithm Symmetry MC

in which the under�approximation is guided by a sequence of hints given by
the user ����
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Let M � �S�S��R�L� be a Kripke structure� 	�� � � � � 	k be a set of generators
of a symmetry group G on M� and h�� � � � � hl be a sequence of hints where
for all i� hi � S and hl � S� Also� let � � AG�p� be a formula where p is a
boolean formula� The algorithm Hints Sym� presented in Figure 
� applies
on�the�
y model checking for M and � using hints and symmetry reduction�
In each iteration we choose under to be the conjunction of a hint and the
result of the previous image computation� First we calculate under according
to h�� When a �xed point is reached for hint hi �i�e�� there is no state which is
both in the result of the previous image computation and in hi�� we switch to
calculating under according to hi��� Since hl � S� the image computations
in the last �xed point computation are no longer restricted� As a result� when
the last �xed point is reached reach rep contains at least one representative
from each orbit�

If 	�� � � � � 	k contain no �bad� generator� then our hints guarantee that
when Si � �� reach rep contains at least one state from each orbit� Since
hl � S when hint � hl� under is equal to Si in each iteration� Thus�
when Si � �� all reachable orbits are searched� In this case� the algorithm
Hints Sym is suitable for veri�cation as well as for falsi�cation� In many
cases� the nonexistence of bad generators can be easily determined by the
program syntax� for example when using the syntax presented in ���� or the
one presented in ��	�� In other cases it is expensive but possible to check
whether all generators are good� �This can be done by checking whether
s �bis 	�s� for every state s and every generator 	��

A useful optimization is to compute the set full reach according to
reach rep only once for each hint �on line �� instead of line � in algorithm
Hints Sym�� and to use it in order to remove states in all steps in which this
hint is used� This optimization saves computation time but may use more
space since full reach is in memory when ImR is computed� Again there
is a tradeo� here between time and space�

We chose to combine hints with Symmetry MC since hints may be very
useful in on�the�
y model checking of models with symmetry� For example�
if for each process there is a signal eni� which is active only when processor i
is active� running the algorithm with the following hints will search the state
space gradually�

� h� � fsjs j� ���i�n�eni � false�g�
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Hints Sym�M� �� 	�� � � � � 	k� h�� h�� � � � � hl�
� Calculate the generators of the invariance group of M

IG � f	ij for all maximal boolean subformula � of �� 	i��� � �g
� reach rep � S�� i � 	� hint � h�� j � �
� while Si �� �
� under � Si� hint


 Si�� � ImR�under�
� full reach � 	 Step�reach rep� 	�� � � � 	k�
� Si�� � Si���full reach

� reach rep � reach rep �Si��
� if Si����p �� �
�	 generate counterexample and break
�� if Si��� � � j 
 l
�� hint � hj
�� j � j��
�� Si�� � reach rep

�
 i � i��
�� � is TRUE

Figure 
� The algorithm Hints Sym applies on�the�
y model checking of �
on M � using hints and symmetry reduction�

� h� � fsjs j� ���i�n�eni � false�g�

� � � �

� hn�� � fsjs j� �enn � false�g�

� hn � S�

When combining hints with symmetry reduction in algorithmHints Sym�
the �rst reachable states of the k processes will be discovered when using
hintk and will be kept as a representative in reach rep� All other reach�
able states of k processors will be discovered by 	 step �line �� and removed
from the model �line �� in the following iterations� For example� for k�� all
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combinations of processes � and � will be discovered when using hint� and
entered into reach rep� When using hint�� all combinations of processes
� and �� and all combinations of processes � and �� will be discovered and
immediately removed since they are symmetric to states in reach rep

If a bug occurs when � processes are active� it will be discovered while
using hint� when only processes ��� and � are active� Since other combina�
tions of three processes will be discovered only later� these hints enable us to
�nd the bug before the BDD representing the reachable state space becomes
too big�

� Extension for Temporal Safety Properties

In this section we extend algorithm Symmetry MC for temporal safety
properties� There are several known algorithms which use a construction A�

for the evaluated formula � and the product modelM�A� in order to model
check more complex properties� We now show that it is possible to combine
symmetry reduction with these algorithms�

Lemma 	�� Let M�A� be the product model of M and A�� Then for every
invariance group Ginv of M w�r�t� the maximal boolean subformulas of �� and
for every 	 � Ginv� �s� t� � SM�A� 
 �	�s�� t� � SM�A�

Proof


According to the de�nition of an invariance group� for every invariance
group Ginv and every 	 � Ginv � L�s� � L�	�s��� According to the de�nition
of a product model� �s� t� is a state in the product model if and only if
L�s� � APA� � LA��t� � APg� It follows that for every invariance group
Ginv of M w�r�t� the maximal boolean subformulas of �� and for every 	 �
Ginv��s� t� � SM�A� 
 �	�s�� t� � SM�A� �

In this section a permutation is a permutation on each variable� The per�
mutation is applied on each variable value 	�s� � 	��a��� 	��a��� � � � � 	k�ak�
where s � �a�� a�� � � � � ak�� If the permutation is applied to a bigger set of
variables� then the permutation on the additional variables is the identity
permutation�

We �rst specify the requirements necessary for using construction A� with
symmetry reduction�

��



De�nition 	�� Given a logic L and a construction that associates with each
� � L a structure A�� the construction A� is safe for symmetry reduction
w�r�t L if there exists � � CTL� such that the following conditions are sat�
is�ed


�� �� � L �M j� �
M �A� j� �
�

�� For every invariance group Ginv of M w�r�t� the maximal boolean sub�
formulas of �� every 	 � Ginv � and every �s� t� � SM�A� � we have that
	��s� t�� � �	�s�� t� 	�

	� For every � � AP� and every �s� t�� �s�� t� � SM�A� �

�s� t� j� � 
 �s�� t� j� ��

The second condition requires that 	 be de�ned only on s and that t be left
unchanged� The third condition requires that the truth of all � in � depends
only on t�

Lemma 	�� For every construction A� which is safe for symmetry reduction
w�r�t L� if G is an invariance group of structure M w�r�t� the maximal boolean
subformulas of formula � � L� then G is an invariance group of structure
M �A� w�r�t the maximal boolean subformulas of ��

Proof


First we show that for every � � AP�� every 	 � G� and every �s� t� �
M �A�� �M �A�� �s� t� j� � 
M �A�� 	�s� t� j� ���
By condition � of safe construction� �� � AP� �	 � G ��s� t� � M � A�

�s� t� j� � 
 �	�s�� t� j� �� By condition � we have that �s� t� j� � 

	�s� t� j� �� as required � �	�s�� t� � SM�A� � by lemma �����

Next we show that �	 � G ��s� t��s�� t�� � SM�A� ��s� t�� �s�� t��� � RM�A� 

�	�s� t�� 	�s�� t��� � RM�A���

For every 	 � G and for every �s� t�� �s�� t�� � SM�A�

��s� t�� �s�� t��� � RM�A� � �by the de�nition of product structure�
�s� s�� � R � �t� t�� � RA� � �G is an invariance group of M�

�Note that ���s�� t� � SM�A� � according to lemma ����
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�	�s�� 	�s��� � R � �t� t�� � RA� � ��	�s�� t� and �	�s��� t��� are in SM�A� by
Lemma ��� and by the de�nition of product structure�
��	�s�� t�� �	�s��� t��� � RM�A� � �condition � of safe construction�
�	�s� t�� 	�s�� t��� � RM�A��

For every 	 � G and for every �s� t�� �s�� t�� such that 	�s� t�� 	�s�� t�� �
SM�A�

�	�s� t�� 	�s�� t��� � RM�A� � �condition � of safe construction�
��	�s�� t�� �	�s��� t��� � RM�A� � �by the de�nition of product structure�
�	�s�� 	�s��� � R � �t� t�� � RA� � �G is an invariance group of M�
�s� s�� � R � �t� t�� � RA� � ��s� t� and �s�� t�� are in SM�A� by Lemma ���
and by the de�nition of product structure�
��s� t�� �s�� t��� � RM�A��

Corollary 	�� For every construction A� which is safe for symmetry re�
duction w�r�t L� for every � � L and the � � CTL� which exists according
to condition � of de�nition ���� the quotient structure �M � A��G� built for
M�A� and an invariance group G of M� satis�es �M�A��G j� � 
M j� ��

Proof
 By condition � of safe construction there is � such that� M j� �

M�A� j� �� SinceM�A� �bis �M�A��G �by lemma �����M�A� j� �

�M �A��G j� �� It follows that �M �A��G j� � 
M j� ��

Note that using the safe construction enables us to �nd a set of generators
of the invariance group of M according to the maximal boolean subformulas
of � and then to evaluate formula � on M �A� with a symmetry reduction
that uses the same generators�

	�� Safe Construction for LTL Model Checking

There are several A� constructions which are safe for symmetry reduction
w�r�t logic L� One example is the tableau construction in ���� when restricted
to LTL safety properties�

LTL is a subset of CTL�� consisting only of formulas of the formAf where
f is a path formula and all its state sub�formulas are atomic propositions�
LTL safety formulas are LTL formulas� restricted to the temporal operators
X�V and G�
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The tableau associated with an LTL formula Af is a structure Tf �
�Sf � S�

f � Rf � Lf � over the set of atomic propositions of f � APf � Sf � �el�f�

where el�f� is de�ned as follows�

� el�p� � fpg if p � APf �

� el��g� � el�g��

� el�g � h� � el�g� � el�h��

� el�Xg� � fXgg � el�g��

� el�gV h� � fX�gV h�g � el�g� � el�h��

� el�Gg� � fXGgg � el�g��

Lf labels each state by the set of atomic propositions contained in the
state� Rf �s� s�� �

V
Xg�el�f��s � sat�Xg� 
 s� � sat�g��� where sat�f� is

de�ned as follows�

� sat�g� � fsjg � sg where g � el�f��

� sat��g� � fsjs �� sat�g�g�

� sat�g � h� � sat�g� � sat�h��

� sat�gV h� � sat�h� � �sat�g� � sat�X�gV h����

� sat�Gg� � sat�g� � sat�XGg��

The initial states of Tf � S�
f � sat�f��

Note that since only LTL safety properties are considered� the tableau
construction does not include fairness constraints�

Lemma 	�� ��� for all Af � LTL� M�s �j� Af if and only if there is a state
t in T�f such that t � sat��f� and �M � T�f�� �s� t� j� EG�true��

Lemma 	�� The tableau construction Tf �without fairness constraints
 ful�
�lls the requirements of De�nition ����
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Our proof is based on the construction in which the states of the tableau
T�f and the states of M are de�ned over disjoint sets of state variables� and
the states of the product model M � T�f are pairs of states �s� t� where s
is a state of M and t is a state in T�f � However� other constructions� which
di�er from this one only in that the states of the product modelM �T�f are
de�ned di�erently� are safe for symmetry reduction as well because they are
equivalent to the �rst construction�
Proof


We will show that all three requirements are ful�lled for L � LTL safety
properties� � � Af � and A� � T�f �

�� According to lemma ���� for all � � L� �M j� � 
 �s � S� there
is no state t in T�f such that �s� t� � sat��f� and M � T�f � �s� t� j�
EG�true��� The set of initial states in T�f is sat��f�� Thus by the de��
nition of a product model we get that there is no state t � sat��f� such
that M�T�f � �s� t� j� EG�true� if and only if M�T�f j� �EG�true���
Therefore �� � �EG�true� such that �� � L �M j� �
M�Tf j� ���

�� Since the state of Tf is de�ned over a set of state variables which
is disjoint from the set of state variables of M� for every invariance
group Ginv of M w�r�t� the maximal boolean subformulas of �� no
	 � Ginv changes the values of the variables which de�ne the state of
Tf � Therefore� for every �s� t� � SM�Tf � 	��s� t�� � �	�s�� t��

�� The only maximal boolean subformula of �EG�true� is � � true� Ev�
ery �s� t�� �s�� t� � SM�T�f satis�es ��s� t� j� true
 �s�� t� j� true��

	�� Safe Construction for RCTL

Model Checking

Another safe construction is the satellite for RCTL formulas de�ned in ����
When specifying a property of a model we usually describe what speci�cation
should hold in the model� Another way to specify a property is to describe
what should never hold in the model� A regular expression can be used to
describe the set of �bad� computations� For a regular expression RE� each
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computation whose pre�x RE describes is a �bad� computation� We denote
a regular expression which describes �bad� computations by fREg�false��

Let A�
RE be a �nite automaton which is built from the regular expression

RE with an additional self�loop for each accepting state� Let ARE be the
Kripke structure that is generated from A�

RE by the standard construction
which translates an automaton to a Kripke structure� Each state in ARE

which is generated from an accepting state in A�
RE is marked with a new

atomic property� matchRE� Finally� M is checked against RE by evaluating
AG��matchRE� over the product model M �ARE�

RCTL is the subset of CTL� which can be translated to a regular expres�
sion� The automaton ARE that is built for a formula � � RCTL is called the
satellite of �� The full de�nition of RCTL and an algorithm for translating a
CTL formula in this subset to a regular expression speci�cation can be found
in ����

Lemma 	�	 The satellite construction Tf for RCTL formulas ��� ful�lls the
requirements of De�nition ����

Proof
 We will show that all three requirements are ful�lled for L � RCTL
and for every � � fREg�false�� for which A� � ARE�

�� In ��� it was proved that for all � � RCTL� M j� � 
 M � A� j�
AG��matchRE�� Thus� �� � AG��matchRE� such that �� � L �M j�
�
M �A� j� ���

�� According to ���� the state of A� is de�ned over a set of state variables
which is disjoint from the set of state variables of M� Thus� for every
invariance group Ginv of M w�r�t the maximal boolean subformulas of
�� no 	 � Ginv changes the values of the variables which de�ne the
states of A�� Therefore� for every �s� t� � SM�A� � 	��s� t�� � �	�s�� t��

�� The only maximal boolean subformula ofAG��matchR� is � � �matchR�
The truth value of matchR depends only on the variables which de�
�ne the states of A�� Since these variables are disjoint from the vari�
ables which code M� every �s� t�� �s�� t� � SM�A� satis�es ��s� t� j� � 

�s�� t� j� ���
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By combining a safe construction with symmetry reduction� we can ap�
ply symmetry reduction to a new set of algorithms� These include symbolic
on�the 
y model checking and symbolic LTL model checking algorithms� for
which it was not applicable until now� We implemented our algorithms using
the construction introduced in ���� which enabled us to check RCTL formulas
on�the�
y while using symmetry reduction�

	 Extensions for Liveness Formulas

We now describe two possible extensions that combine classical �not on�the�

y� symbolic model checking with symmetry reduction� These extensions
are useful for checking liveness properties� as well as other properties which
cannot be checked on�the�
y�


�� Liveness Restricted to Representatives

The purpose of this extension is to falsify ACTL� formulas with respect to a
structure M � while avoiding the construction of its quotient modelMG� The
idea is to get a set of representatives� Rep� and to construct the restricted
model M jRep �see De�nition ����� Since M jRep 
sim M � we have that for
every ACTL� formula �� ifM jRep �j� � thenM �j� �� Thus� � can be checked
on the smaller model M jRep�

Note that in principle this idea works correctly with any set of represen�
tatives� even one that does not include a representative for each orbit� There
are� however� advantages to choosing as Rep the set reach rep obtained from
the algorithm Symmetry MC� First� since reach rep includes only reach�
able states� its BDD is usually smaller than the BDD of an arbitrarily chosen
set of states� Second� by construction� the states in reach rep are connected
by transitions� while an arbitrary set of representatives Rep might not be
connected� Thus� M jreach rep often includes more behaviors than M jRep� As
a result� it is more likely that a bad behavior� if one exists� will be found in
M jreach rep� Third� the states in reach rep represent many other states in
the system� Thus� if the system includes a bad behavior� it is more likely
that reach rep will re
ect it�
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In order to evaluate liveness properties� we propose the Algorithm Live

Rep� This algorithm

� Runs Symmetry MC to obtain reach rep�

� Performs classical symbolic model checking on M jreach rep�

Unfortunately� M jreach rep ��bis M even when there is a representative for
each orbit� Consider Figure �� which shows two symmetric cycles� C� and C��
in M� The states in reach rep are marked in black� One orbit is fs�� t�g� and
s� is its representative� Another orbit is fs�� t�g� and t� is its representative�
There are two edges� r� and r�� between these two orbits� Since neither r�
nor r� are in M jreach rep� M jreach rep ��bis M � This is true even though there
is a representative for each orbit in this example�

s�

t�

t�

s�

C� C�

r� r�

Figure �� M jreach rep ��bis M �


�� Liveness with the Representative Relation

We now present another possibility for handling liveness properties� It is
applicable only if no bad generators exist� This method is more expensive
computationally� but is suitable for veri�cation of liveness properties� As in
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the previous section� we �rst compute reach rep using the algorithm Sym�

metry MC� Then we apply the procedure Create 
� presented below� to
compute the representative relation 
 � reach rep �S �see de�nition ���
��
Next we construct Mm according to 
� Finally� we run classical symbolic
model checking on � and Mm�

Lemma ��� If Sm contains at least one representative for each orbit� then
M �bis Mm� Otherwise� Mm 
sim M �

Proof
 De�ne the relation B � f �s�� s� j �	 � G � 	�s�� � s�s� � Sm g� If
Sm contains at least one representative for each orbit� then B is a bisimulation
relation for the set of maximal boolean subformulas of �� Otherwise� B is a
simulation relation for the set of maximal boolean subformulas of ��

If reach rep is the result of the algorithmHints Sym and all generators
are good� then reach rep indeed contains at least one representative for each
orbit� and Mm is bisimilar to M � Thus� Mm can be used for verifying full
CTL��

����� Computing The Representative Relation 


Figure � presents the BDD�based procedureCreate 
� This procedure builds
the representative relation 
 for a given set of representatives� Rep� and a set
of generators� 	�� � � � � 	k� of an invariance group G of M w�r�t the maximal
boolean subformulas of ��

Suppose that each 	i is represented by a BDD� 	i��v� �v��� and Rep is rep�
resented by a BDD� Rep��v�� Create 
 returns the BDD 
��v� �v�� for the
representative relation 
 � Rep � S�

Note that the computation on line � of the algorithm depends on three
sets of BDD variables� �v� �v�� �v��� Such a computation usually results in large
intermediate BDDs that may cause a memory explosion� To avoid this�
we implement line � using the operator compose odd�A��v� �v��� B��v��� �v����
which computes the BDD ��v�� A��v� �v��� B��v��� �v��� using two sets of BDD
variables rather than three� Thus� it is expected to result in smaller BDDs�
The operator compose odd has been de�ned in �����

Next we show that for every set of generators f	�� � � � 	kg and for every set
of representatives Rep� Create 
 calculates the representative relation 
 for
the invariance group generated by f	�� � � � 	kg� According to De�nition ���
�
�s� s�� � 
 
 s � Rep � �s� � �s��� In Create 
� s� s� are represented by
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Create 
�	�� � � � 	k� Rep�
� 
��v� �v�� � Rep��v� � ��v � �v��
� old 
��v� �v�� � �
� while old 
��v� �v�� �� 
��v� �v��
� old 
��v� �v�� � 
��v� �v��

 for j � � � � � k
� new��v� �v�� � ��v���
��v� �v��� � 	j��v��� �v���
� 
��v� �v�� � 
��v� �v�� � new��v� �v��
� return 
��v� �v��

Figure �� The algorithm Create 
 for computing 
 � Rep � S

�v� �v�� Thus� we have to prove that 
��v� �v�� created by Create 
 satis�es

��v� �v��
 Rep��v� � ��v� � ��v���

Let 
i��v� �v�� be 
��v� �v�� after i iterations of the �for� statement in algorithm
Create 
�

Lemma ��� �i �
i��v� �v��� �Rep��v� � ��v� � ��v�����

Proof
 Proof by induction on i�

� 
���v� �v�� � Rep��v� � �v � �v� �line ���
It follows that 
���v� �v��� Rep��v� � ��v� � ��v���

� According to lines � and �� 
i����v� �v
�� � 
i��v� �v

��� �	j � f	�� � � � 	kg
��v�� �
i��v� �v

��� � 	j��v
��� �v���� For all �v� �v� which satisfy 
i����v� �v

��� one of
the following cases is true�

� �v� �v� satisfy also 
i��v� �v��� In this case �v� �v� satisfy Rep��v����v� � ��v��
since 
i��v� �v��� Rep��v� � ��v� � ��v���

� �v� �v� satisfy �	j � f	�� � � � 	kg��v���
i��v� �v����	j��v��� �v���� In this case
�v satis�es Rep��v� since 
i��v� �v��� � Rep��v� � ��v� � ��v��� and �v� �v�

satisfy ��v� � ��v�� since ��v���
i��v� �v��� � 	j��v��� �v����

In both cases �v� �v� satisfyRep��v����v� � ��v��� which implies that 
i����v� �v��
� Rep��v� � ��v� � ��v���
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Lemma ��� �Rep��v� � ��v� � ��v��� � 
��v� �v��� where 
��v� �v�� is calculated by
Create 
�

Proof
 Assume there exist �v� �v� which satisfy Rep��v� � ��v� � ��v�� but
do not satisfy 
��v� �v��� Since �v� �v� satisfy Rep��v� � ��v� � ��v��� there exists
	j�� 	j� � ���� 	jn � f	�� � � � 	kg such that 	j�	j����	jn��v� � �v��
Let �v�� be 	jh	jh�� ���	jn��v� for the highest h which does not satisfy 
��v� �v���
and let �v� be 	jh�� ���	jn��v� for the same h�
According to these de�nitions� 
��v� �v�� � �
��v� �v���� Assume i is the �rst it�
eration of Create 
 in which 
i��v� �v�� is satis�ed� Since 	jh � f	�� � � � 	kg�
�v�� satis�es �	jh � f	�� � � � 	kg ��v��
i��v� �v�� � 	jh��v

�� �v���� in iteration i� Ac�
cording to lines � and �� �v� �v�� satisfy 
i����v� �v���� which implies that they also
satisfy 
��v� �v���� in contradiction to the de�nition of �v���

Corollary ��� The relation 
 computed by Create 
�	�� � � � 	k� Rep
 is the
representative relation for Rep and the invariance group generated by
f	�� � � � 	kg�

����� Robustness for Falsi�cation

The relation 
 constructed by Create 
 will be used in order to de�ne a
reduced model� as de�ned in ����� If the set Rep contains at least one
representative from each orbit� then Create 
 returns exactly the relation 

used in the de�nition of Rm� Let this 
 be denoted by 
m�

Below we show that we can also get meaningful results in other cases�
First assume that Rep does not include at least one representative from each
orbit� In this case� 
 does not contain pairs of states from the unrepresented
orbits� and 
 � 
m�

Now assume that time or space limitations have prevented the computa�
tion of 
 from being completed �meaning that the computation of Create 

is stopped before old 
 � 
�� In this case 
 might not associate each repre�
sentative with all the states in its orbit� As a result� 
 � 
m�

For any set Rep and for any partially computed 
� we can de�ne the
Kripke Structure MRep � �SRep� S�

Rep� RRep� LRep� in which SRep � Rep�
S�
Rep � �s�
�s� s�� � S��s��� RRep � 
��R
� LRep � L� If 
 � 
m then RRep �

Rm� and there is a bisimulation relation between M and MRep for the set
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of maximal boolean subformulas of � �since MRep �bis Mm �bis M�� This
implies that M and MRep agree on every CTL� formula� If 
 � 
m� then
RRep � Rm� and there is a simulation relation between MRep and M for the
set of maximal boolean subformulas of � �since MRep 
sim Mm �bis M ��
Thus� for every ACTL� formula �� if MRep �j� � then M �j� ��

We conclude that the algorithm Create 
 is robust for falsi�cation in the
presence of incomplete Rep or 
�


 Iterative Symmetry Reduction

In this section we discuss another way to exploit symmetry for falsi�cation of
safety properties� This time the method is based on a variant of the procedure
Create 
� presented in the previous section� In section � we showed how
to use 	 Step to avoid building the orbit relation� Another way to avoid
building the full orbit relation is to build it iteratively� In each iteration� only
a subset of the orbit relation� which is represented by a relatively small BDD�
is built� This approach makes it possible to improve the algorithm presented
in ����� To this purpose we introduce the functionCreate 
 limit �Figure ���
which is identical to Create 
 except for one change� Create 
 limit stops
calculating the 
 relation when the BDD size is larger than limit� We use
Create 
 limit iteratively on di�erent sets of representatives in order to
build di�erent subsets of the orbit relation� We use these subsets of the orbit
relation to search di�erent subsets of the transitions of the quotient model
in each iteration�

Lemma ��� Given two sets of states A�B� if A � B then
Create 
�	�� � � � 	k� A� � Create 
�	�� � � � 	k� B��

Proof
 Let 
l��v� �v
�� be 
��v� �v�� after l executions of the �for� statement in

algorithm Create 
� The proof is by induction on l�

� 
A���v� �v
�� � �A��v� � �v � �v�� and 
B�

��v� �v�� � �B��v� � �v � �v�� �line ���
Since A � B� it follows that 
A���v� �v

�� � 
B�
��v� �v���

� 
Ai��
��v� �v�� � 
Ai

��v� �v����	j � f	�� � � � 	kg��v���
Ai
��v� �v����	j��v��� �v��� and


Bi��
��v� �v�� � 
Bi

��v� �v�� � �	j � f	�� � � � 	kg��v���
Bi
��v� �v��� � 	j��v��� �v���

�lines ����� By the induction hypothesis� 
Ai
��v� �v�� � 
Bi

��v� �v��� It
follows that 
Ai��

��v� �v�� � 
Bi��
��v� �v���
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Create 
 limit�	�� � � � 	k� Rep� limit�
� 
��v� �v�� � Rep��v� � ��v � �v��
� old 
��v� �v�� � �
� while old 
��v� �v�� �� 
��v� �v��

and BDD size�
��v� �v��� 
 limit

� old 
��v� �v�� � 
��v� �v��

 for j � � � � � k
� new��v� �v��� � ��v��
��v� �v�� � 	j��v��� �v���
� 
��v� �v�� � 
��v� �v�� � new��v� �v��
� return 
��v� �v��

Figure �� The algorithm Create 
 limit for computing 
 � Rep � S with
limit on the BDD size

Let M � �S� S�� R� L� be a Kripke structure and f	�� � � � � 	kg be a set of
generators of a symmetry group G of M� In addition� let � be a formula of the
form AG�p� where p is a boolean formula� The algorithm Iterative Sym�
presented in Figure �� applies on�the�
y model checking for M and �� using
iterative symmetry reduction�

Iterative Sym uses Create 
 limit to build� in each iteration� the re�
lation 
i� If the size of the BDD which represents the representative relation

 for Rep is larger than limit� Create 
 limit returns 
i � 
� After calcu�
lating 
i� Iterative Sym calculates a new model M �� M � is di�erent from
the quotient modelMm in two respects� First� it is built using 
i and not the
full representative relation 
� Since the size of the BDD which represents 
i
is smaller in most cases than 
� there is a high probability that the BDDs
which representM � are smaller than the BDDs which representMm� Second�
R� � 
��R � �Rep � Rep�� Note that R� is restricted to states in Rep and
not in Repi� If it were restricted to states in Repi� Create 
 limit might
miss reachable representatives� To see how this might happen� consider three
states� s�� s� and s�� as shown in Figure �	� s� and s� are related by R� and s�
and s� are in the same orbit for which s� is the representative� Assume that
�s�� s�� �� 
i because Create 
 limit did not �nd �s�� s�� in iteration i� As

��



Iterative Sym�M� �� 	�� � � � 	k� Rep� limit�
� Calculate the generators of the invariance group of M

IG � f	ij for all maximal boolean subformulas � of �� 	i��� � �g
� prev reachable states � �
� reachable states � S�

� i � 	

 Rep� � Rep
� while �Repi �� ��prev reachable states �� reachable states�
� old reachable states � reachable states

� 
i � Create 
 limit �	�� � � � 	k� Repi� limit�
� build M � according to 
i
�	 �S� � Rep� S�� � 
��i S�� R� � 
��i R � �Rep �Rep� and L� � L�
�� reachable states � the reachable states of

M � � reachable states

�� if a �bad� state is found while calculating
the reachable states of M �

�� generate counterexample and break
�� i � i � �
�
 Repi � Rep � reachable states�
�� S� � reachable states�

Figure �� The algorithm Iterative Sym evaluates � using iterative symme�
try reduction

a result� �s�� s�� �� R� and s� is not found to be a reachable representative in
this iteration� In iteration i��� s� is no longer in Repi�� since it was already
in reachable states �line �
� even though �s�� s�� � 
i��� If we restrict R�

to Repi��� we get that �s�� s�� is not in R�� Thus� s� is also not found to be
reachable in iteration i� ��

If we restrict R� to Rep� then� since s� � Rep� �s�� s�� � R� and s� is
entered into reachable states in iteration i� �� Once M � is constructed�
a �bad� state found in M � will cause a counterexample to be generated� If
a �bad� state is not found� the set reachable states is a subset of the
union of the reachable states of Mm and the initial states of M � We mark
them as the initial states of the next iteration and build 
i again only for the
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Figure �	� Two iterations of Iterative Sym

representatives which are not known to be reachable states in Mm� In the
next iteration we build 
i�� for a smaller set of representatives� Therefore
we may build a larger portion of 
 for these representatives before we reach
the limit in Create 
 limit� As a result� we might discover new states when
computing the set of reachable states for M � in iteration i� ��

We now prove the correctness of the algorithm Iterative Sym for falsi�
�cation of safety properties� First we show that the transition relation R��
which is built in each iteration of Iterative Sym� is a subset of the transi�
tion relation Rm of the quotient model Mm� de�ned for rep �see de�nition
������

Lemma ��� Given a representative relation 
� 
��R��Rep�Rep� � 
��R
�

Proof
 �s� s�� � 
��R � �Rep �Rep��
�s� s�� � 
��R � s � Rep�
�s� s�� � 
��R � �s� s� � 
 � �s� s�� � 
��R
�

Let 
m be the representative relation for the set of representatives Rep
given as parameter to Iterative Sym �de�nition ���
��

Lemma ��� For every iteration i of algorithm Iterative Sym� 
i � 
m�

Proof


�	



� According to line �
� Repi � Rep for all i� By Lemma ��� we get that
for all i�
Create 
�	�� � � � 	k� Repi� � Create 
�	�� � � � 	k� Rep��

� Create 
 limit�	�� � � � 	k� Repi� limit� is identical to Create 
 except
that it may be stopped after fewer iterations� In addition� once a
pair of states is entered to 
��v� �v��� it is not removed in either algo�
rithm� It follows that Create 
 limit�	�� � � � 	k� Repi� limit� � Cre�

ate 
�	�� � � � 	k� Repi��

� By corollary ���� Create 
�	�� � � � 	k� Rep� produces the representative
relation 
m for the set of representatives Rep�

It follows that for all iterations i of Iterative Sym� 
i � Create 
 limit

�	�� � � � 	k� Repi� limit� � 
m�

Lemma ��� For every iteration i of algorithm Iterative Sym� R� � Rm�

Proof
 According to Lemma ���� for every iteration i of algorithm It�

erative Sym� 
i � 
m� This implies that R� � 
��i R � �Rep � Rep� �

��m R � �Rep�Rep� �Lemma 
�� 


��
m R
m � Rm�

Next we show that if Iterative Sym �nds a �bad� state� this state is a
�bad� reachable state of structure Mm�

Lemma ��� For every iteration i of Iterative Sym� every s � reacha

ble states is either a reachable representative in Mm or an initial state of
M �

Proof
 Let reachable statesi be the set reachable states after itera�
tion i� The proof is by induction on i�

� For every s � reachable states�� s is in S�� and thus it is an initial
state of M �

� For every s � reachable statesi��� one of the following cases is true�

� s is in reachable statesi� In this case� according to the induction
hypothesis� s is either reachable in Mm or an initial state of M �

��



� There exists a state s� � S�� from which s is reachable in M ��
According to Lemma ���� 
i�� � 
m� It follows that all states
in 
��i���reachable statesi� are representatives of orbits in which
there are states from reachable statesi� According to the induc�
tion hypothesis and because S�� � 
��i���reach able statesi�� s� is
either a representative of an initial state of M or a representative
of a reachable orbit in Mm� In both cases s� is reachable is Mm�
By Lemma ���� R� � Rm� Thus� s is either reachable in Mm or an
initial state of M as well�

The conclusion from the previous lemma is that if a �bad� state is found
by Iterative Sym� M does not satisfy ��

� Experimental Results

We implemented the algorithms Hints Sym� Live Rep� Iterative Sym�
Create 
 and Create 
 limit in the IBM model checker RuleBase ���� We
ran it on a number of examples which contain symmetry� For each example
we tuned our algorithms according to the evaluated formula� the di�culty
level of computing the reachable states� and the di�culty level of building
the transition relation� In most cases� our algorithms outperformed RuleBase
with respect to both time and space� In the tables below� time is measured in
seconds� memory �mem� in bytes� and the transition relation size �TR size�
in the number of BDD nodes�

The Futurebus example
 We ran the algorithm Live Rep in order to
check liveness properties on the Futurebus cache�coherence protocol with a
single bus and a single cache line for each processor� We checked the property
�along every path in�nitely often some processor is in exclusive write�� This
property fails because our model does not include fairness constraints� The
table in Figure �� presents the results of evaluating the property for di�erent
numbers of processors� For comparison� we also ran the RuleBase classical
symbolic model checking algorithm� Both algorithms applied dynamic BDD
reordering� Dynamic BDD reordering is very important because the best
BDD order for the classical algorithm is di�erent from the best BDD order for
our algorithm� In order to obtain a fair comparison between these algorithms�

��



we ran each one twice� In the �rst run� the algorithm reordered the BDD
with no time limit in order to �nd a good BDD order� The initial order of
the second run was the BDD order which was found by the �rst run�

The most di�cult step in the Futurebus example is building the transition
relation� When the transition relation was restricted to the representatives
which were chosen on�the�
y� its size decreased and� as a result� the evaluation
became easier� In this case we chose to complete the calculation of 	 Step in
order to obtain the maximal reduction in the size of the transition relation�
Figure �� shows that both time and space were reduced dramatically using
Live Rep� We can also observe that the larger the number the processors
was� the better the results were� This is to be expected� as the increase in
the number of the reachable representatives is smaller than the increase in
the number of reachable states�

� � classic algorithm Live Rep
of processors vars time mem TR size time mem TR size

 �
 ��� ��M ���	�� �	� ��M ������
� 
� �	� ���M ��	��
 ��
 
�M ���
��
� �� ��
� ���M ����	� �	� ��M ������
� �� ���	 
��M ���	

 ���� �	�M �
����
� �� ������ �	�M ���
��� �
�� �	�M ������
�	 �	 � 
 �G � ��	� ��	M ���	��

Figure ��� Hints Sym on Futurebus example

The Arbiter example
 We ran algorithmHints Sym on an arbiter ex�
ample with n processes� We checked the arbiter with regard to RCTL formu�
las which were translated to safe A� and �� For comparison� we ran RuleBase
on�the�
y model checking and on�the�
y model checking with hints �without
symmetry�� All algorithms used dynamic BDD reordering and a partitioned
transition relation ����� In this case we calculated 	 Step only when we
changed hints and stopped 	 Step before the �xed point was reached� The
table in Figure �� presents the results of the three algorithms on arbiter with
�� � and �	 processes� For each case we checked one property that passed and
one that failed� We note that Hints Sym reduced time but not necessarily
space� This can be explained by the fact that 	 Step produced large inter�
mediate BDDs but resulted in a signi�cant reduction in Si� thus reducing the
computation time of the image steps�

��



� status � on�the�
y on�the�
y � hints Hints Sym
of processors vars time mem time mem time mem
� passed �
 
� �	M �� �	M �� �	M
� failed �
 ��� 
�M �� ��M 
� ��M
� passed �� 
�� ��M �

 ��M ��� ��M
� failed �� ��
 ��M 
�� ��M ��� ��M
�	 passed �	
 ���	 ��M 
�� ��M �
� ��M
�	 failed �	
 ��	� ��M ��	 ��M 
�	 ��M

Figure ��� Hints Sym compared to other on�the�
y algorithms

Comparing Create 
 and Orbit To 

 ���� presents an algorithm for
computing 
 by building the orbit relation and then choosing the representa�
tives� We refer to this algorithm as Orbit To 
 and compare it to Create 
�
Both algorithms �nd the representative relation 
 � Rep � S for the set of
representatives Rep chosen according to the lexicographic order� The results
in Figure �� show that Create 
 gave better results in both time and space�
We believe that this is because it saves less information while building 
�

num of generators num of vars orbit to � Create �

time mem time mem

� �	 
��	 �	M 
��� �	M

� �
 �
�� ��M ��� �
M

� �� �
�� ���M �
 ��M

	 �
 � ����G ��� ���M

� �� � ����G ��

� ���G

Figure ��� Create � compared to Orbit To �

Combinatorial Covering Suites
 We ran Iterative Sym on the Com�
binatorial Covering Suites problem� This problem is taken from the world of
testing and coverage� Let D��D�� � � � �Dk be the domains of k input variables�
Each test vector is an assignment to all input variables� and a test suite with
N tests is an array of N test vectors� A is a ��wise covering suite if for every
two distinct input variables vi� vj and every T � Di �Dj there exists a test
vector in which the assignment to vi and vj is equal to T � The covering suite
number is the minimum integer N such that there exists a ��wise covering
suite with N test vectors� Combinatorial covering suites is based on the in�

��



tuition that when testing a program where each test is an assignment to all
inputs� it is preferable to use the smallest test suite that still contains all
combinations of inputs� The covering suite number is the minimal size of a
test suite with such a property� We model the problem in RuleBase� We
wrote a speci�cation on the model which must fail if there exists a covering
suite of size k� The counterexample to the speci�cation was the k vectors of
the covering suite� We observed that when the input variables are over the
same domain� there is a symmetry between them� Changing the order of the
input variables in the covering suite results in another covering suite� We ran
Iterative Sym and RuleBase on�the�
y model checking on a special case of
the problem where all inputs are boolean� We compared these algorithms on
di�erent numbers of inputs� Iterative Sym reduced both time and space�
We gave Iterative Sym the set of all the smallest representatives� ordered
lexicographically� as the parameter Rep� We believe Iterative Sym was
successful in this example because sets of lexicographically ordered small�
est representatives were compressed� However� our experience shows that in
most cases the sets of lexicographic representatives are not compressed in
their BDD size� In these cases we expect that Hints Sym will give better
results� The table in Figure �� presents the results of Iterative Sym on
di�erent numbers of inputs�

num of inputs num of vars Iterative Sym on�the��y on�the��y � hints

time mem time mem time mem

� �� ��	 ��M ��
 
	M ���� 	�M

	 		 �� ��M � ��G ���	
� �	��M

� �� �	 ��M � ��G � ��G


 ��
 �
� ��M � ��G � ��G

� ��� ��� �
M � ��G � ��G

�
 ��
 
�� ��M � ��G � ��G

�� ��� ���� ���M � ��G � ��G

�� ��	 �	��
 ���M � ��G � ��G

�� ��� 		�
� �
�M � ��G � ��G

Figure ��� Iterative Sym compared to RuleBase on	the	
y and on	the	
y�hints

�




�� Conclusions and Directions for Future Re�

search

The main contribution of this work is the introduction of an on�the�
y model
checking algorithm that combines under�approximation with symmetry re�
duction� chooses the representatives according to BDD criteria� and avoids
building the orbit relation� In addition� we introduce another iterative on�
the�
y algorithm that builds subsets of the orbit relation rather than the full
relation�

We show how to extend our algorithms both for temporal safety prop�
erties� based on a de�nition of safe for symmetry reduction constructions�
and for liveness properties� We also show how to build the invariance group
automatically from a given symmetry group�

Our work can be extended in several ways� First� rather than using hints
to de�ne the under�approximation �as is done in Hints Sym�� we can apply
Symmetry MC with other criteria for choosing the next set of states to
explore� A useful possibility may be high�density� presented in �����

In addition� our work can be combined with algorithms that use subsets
of the reachable states� Often� if the algorithm is applied to some subset of
states A� it is unnecessary to apply it to states which are symmetric to states
in A� In these cases we may use 	 Step in order to ignore states which are
symmetric to states in A without building the orbit relation� For example�
	 Step can be used in Prioritized Traversal ��
�� There� the BDDs in the
priority queue can be reduced by eliminating states which are in the orbits
of states that were already explored�
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A ACTL
� Preservation Over a Kripke Struc�

ture with Finite Paths

Lemma ��� states that for every ACTL� formula � over a set of boolean
formulas BS over AP and two Kripke structures M� M � over AP� if M 
sim

M � then M � j� � � M j� �� This lemma is proved in ���� for every two
Kripke structures with in�nite paths� In this appendix we show that Lemma
��� is true for every two Kripke structures with �nite paths as well�

First we de�ne the semantics of ACTL� over a Kripke structure with
�nite paths�

An in�nite path � in a Kripke structure M is an in�nite sequence of
states s�� s�� s�� � � � in which �i 	 	 �si� si��� � R� A �nite path � in a
Kripke structure M is a �nite sequence of states s�� s�� s�� � � � sn in which
�	 
 i � n �si� si��� � R and there is no state s� in M such that �sn� s�� � R�
As before� �i denotes the su�x of � starting at si�

The size of a path �� j�j� is de�ned as follows�

� if � is an in�nite path then j�j � inf � where inf 
 n for all n 
 	�

� if � is a �nite path� � � s�� s�� s�� ���� sn then j�j � n�

For a state formula �� we write M�s j�fin � to indicate that � is true in
state s and for a path formula �� we write M�� j�fin � to indicate that � is
true along � where � might be �nite�

The relation j�fin is de�ned as follows� assuming that �� and �� are state
formulas and �� and �� are path formulas�

� M�s j�fin p
 p � L�s��

� M�s j�fin �p
M�s �j�fin p�

��



� M�s j�fin �� � �� 
M�s j�fin �� or M�s j�fin ���

� M�s j�fin �� � �� 
M�s j�fin �� and M�s j�fin ���

� M�s j�fin A�� 
 for every path � � s�� s�� � � � in M such that s� � s�
M�� j�fin ���

� M�� j�fin �� 
 s is the �rst state of � and M�s j�fin ���

� M�� j�fin �� � �� 
M�� j�fin �� or M�� j�fin ���

� M�� j�fin �� � �� 
M�� j�fin �� and M�� j�fin ���

� M�� j�fin X�� 
 j�j � 	 or M��� j�fin ���

� M�� j�fin ��U�� 
 j�j � n��k �	 
 k 
 n�k �� inf �M��k j�fin ��

and �	 
 i � k � M��i j�fin ��� or �n �� inf � �	 
 i 
 n M��i j�fin

��� �

� M�� j�fin ��V �� 
 �	 
 k 
 n �if �	 
 i � k M� �i �j�fin �� then
M��k j�fin ����

There exist di�erent de�nitions of j�fin in the literature� These de�nitions
guarantee that liveness properties actually hold before the path is ended� In
this case the simulation relation should be de�ned di�erently� We use the
regular simulation relation but change the de�nition of j�fin�

Lemma A�� If M�s 
sim M �� s� then for every path � � s�� s�� � � � from
s � s� in M there exists a path �� � s��� s

�
�� � � � in M � such that j�j 
 j��j and

for every i 
 j�j� M�si 
sim M �� s�i�

Proof
 Given any path � � s�� s�� � � � from s � s� in M we show how
to build �� � s��� s

�
�� � � � in M � such that j�j 
 j��j and for every i 
 j�j�

M�si 
sim M �� s�i�

� s�� � s��

� For every 	 
 i � j�j� assume that s��� s
�
�� � � � � s

�
i has already been

de�ned such that M�si 
sim M �� s�i� Since M�si 
sim M �� s�i and
�si� si��� � R� there exists t such that �s�i� t� � R andM�si�� 
sim M �� t�
We choose s�i�� � t�


	



Lemma A�� If M�s 
sim M �� s� then for every

� � ACTL� M �� s� j�fin ��M�s j�fin ��

Proof
 The proof is by induction on �� It is identical to the proof in ����
except for the following changes�

� � � A���
M�s j�fin � if and only if for every path from s� M�� j�fin ��� Let
� be any path from s� According to Lemma A�� there is a path ��

from s� such that j�j 
 j��j and for every i 
 j�j� M�si 
sim M �� s�i� If
M �� s� j�fin �� then M �� �� j�fin �� for every path �� from s�� By the
induction hypothesis we get that for all � from s� M�� j�fin ��� Thus
M�s j�fin ��

� For every path formula � we show that for every � in M and �� in M �

such that j�j 
 j��j and for all i � j�j� M�si 
sim M �� s�i�

M �� �� j�fin ��M�� j�fin �

� � � X���
M �� �� j�fin � implies that j��j � 	 or M �� ��� j�fin ��� If j�j � 	
then M�� j�fin �� Otherwise� since j�j 
 j��j� j��j 
 j���j and
j��j 
 	� In addition� for all i � j��j� M�si�� 
sim M �� s�i��� By
the induction hypothesis we get thatM��� j�fin ��� which implies
that M�� j�fin ��

� � � ��U��

M �� �� j�fin � where j��j � n implies that �k�	 
 k 
 n � k ��
inf � M �� ��k j�fin �� and �	 
 i � k � M �� ��i j�fin ��� or
�n �� inf � �	 
 i 
 n M �� ��i j�fin ���� Assume there is i 
 j�j
such that M��i �j�fin �� and �j 
 i� M� �j �j�fin ��� Then by
the induction hypothesis and the fact that j�j 
 j��j� we get that
there is i 
 j��j such that M �� ��i �j�fin �� and �j 
 i M �� ��j �j� ���
in contradiction to the assumption that M �� �� j�fin ��


�


