Combining Symmetry Reduction and
Under-Approximation for Symbolic Model

Checking

Sharon Barner and Orna Grumberg
Computer Science Department
Technion - Israel Institute of Technology
Haifa 32000, Israel

{skeidar,orna}@cs.technion.ac.il

February 24, 2003

Abstract

This work presents a collection of methods that integrate symmetry
reduction and under-approzimation with symbolic model checking in
order to reduce space and time. The main objective of these methods
is falsification. However, under certain conditions, they can provide
verification as well.

We first present algorithms that use symmetry reduction to per-
form on-the-fly model checking for temporal safety properties. These
algorithms avoid building the orbit relation and choose representa-
tives on-the-fly while computing the reachable states. We then extend
these algorithms to check liveness properties as well. In addition, we
introduce an iterative on-the-fly algorithm that builds subsets of the
orbit relation rather than the full relation.

Our methods are fully automatic. The user should supply some ba-
sic information about the symmetry in the verified system. However,
the methods are robust and work correctly even if the information sup-
plied by the user is incorrect. Moreover, the methods return correct

results even when the computation of the symmetry reduction has not
been completed due to memory or time explosion.

We implemented our methods within the IBM model checker Rule-
Base and compared their performance to that of RuleBase. In most
cases, our algorithms outperformed RuleBase in both time and space.

1 Introduction

This work presents a collection of model-checking methods that integrate
symmetry reduction and under-approrimation with symbolic model checking
in order to reduce space and time. The main objective of these methods is
falsification, that is, proving that a given system does not satisfy its specifica-
tion. However, under certain conditions they can also be used for verification,
i.e., proving that the system does satisfy its specification.

Our methods are fully automatic. The user should supply some basic
information about the symmetry in the verified system. However, the meth-
ods are robust and work correctly even if the information supplied by the
user is incorrect. Moreover, the methods return correct results even when
the computation of the symmetry reduction has not been completed due to
memory or time explosion.

Temporal logic model checking [9] is a technique that accepts a finite state
model of a system and a temporal logic specification and determines whether
the system satisfies the specification. The main problem of model checking
is its high memory requirements. Symbolic model checking [20] can be used
to overcome this problem. Symbolic model checking, based on BDDs [5], can
handle larger systems, but is still limited in its capacity. Thus, additional
work is needed in order to make model checking feasible for larger systems.

Symmetry reduction can also be employed to reduce the memory and
time requirements of symbolic model checking. This is the method we ex-
ploit in this work. Symmetry reduction is based on the observation that
many systems consist of several similar components. Switching the roles of
such components does not change system behavior. Thus, system states can
be partitioned into equivalence classes called orbits, and the system can be
verified by examining only representative states from each orbit.

Two main problems arise, however, when integrating symmetry reduction
with symbolic model checking. One is building the orbit relation and the
other is choosing a representative for each orbit. [18] proves that the BDD for
the orbit relation is exponential in the number of BDD variables and suggests
choosing more than one representative for each orbit in order to obtain a
smaller BDD. However, this method does not solve the problem of choosing
the representatives. The choice of representatives is significant because it
strongly influences the size of the BDDs representing the symmetry-reduced
model. [14] suggests choosing generic representatives. This approach involves

compiling the symmetric program to a reduced model over the generic states.
Such a compilation can only be applied to programs written with a special
syntax in which symmetry is defined inside the program. [17] introduces
a DFS algorithm for explicit model checking. This algorithm chooses as
a representative for an orbit the first state discovered in that orbit, thus
avoiding the need to choose the representative in advance. Unfortunately,
it is not applicable to symbolic model checking because performing DFS is
very inefficient with BDDs.

We suggest a new approach that avoids building the orbit relation and
chooses representatives on-the-fly while computing the reachable states. Un-
like [17], our algorithm uses BDD criteria to guide the choice of the represen-
tatives. Reachability is performed using under-approzimation which, at each
step, explores only a subset of the reachable states. Some of the unexplored
states are symmetric to the explored ones, and the symmetry information
is exploited to ensure that those states will never be explored. Thus, easier
symbolic forward steps are obtained.

We first apply this approach to verifying properties of the form AG(p)?,
where p is a boolean formula. If we find a “bad” state that does not satisfy
p, we conclude that the checked system does not satisfy AG(p). On the other
hand, if no “bad” state is found, we cannot conclude that the system satis-
fies AG(p). This is because reachability with under-approximation does not
necessarily explore every reachable state. We next present a special version
of our algorithm in which the under-approximation is guided by hints [3].
Under certain conditions this algorithm can also verify the system.

The algorithms described above are based on reachability and are often
referred to as on-the-fly model checking algorithms. How to extend on-the-fly
model checking for AG(p) to verifying general safety temporal properties is
well known. This is done by building an automaton describing the property
and running it together with the system. We specified conditions on the
automaton that also guarantee the correctness of the on-the-fly algorithm
when the automaton runs together with the symmetry-reduced model. The
suggested conditions hold for the tableau construction used for symbolic LTL
model checking [7], when restricted to LTL safety properties. They also hold
for the satellite used in symbolic model checking of RCTL formulas [2]. By
running the automaton together with the reduced model, we save both space

L AG(p) means that p holds along every path, in every state on the path.

and time when verifying such formulas.

On-the-fly model checking cannot handle liveness properties. In order to
handle them, we developed two extensions that combine symmetry reduc-
tion with classical (not on-the-fly) symbolic model checking. One is easy to
perform and is mainly suitable for falsification. The other is more expensive
but can handle verification as well.

Another approach to the orbit relation problem is to build the orbit rela-
tion iteratively. We present an on-the-fly symbolic algorithm in which only a
subset of the orbit relation is built in each iteration. The quotient model is
constructed according to this subset and the property is checked on the quo-
tient model. This algorithm may take more iterations to find a “bad” state
than do on-the-fly algorithms with symmetry reduction. However, since it
keeps the BDDs which represent the model small, it may terminate where
the on-the-fly algorithms would explode.

Previous works expect the user to provide a symmetry group that is also
an invariance group [18]. In many cases two formulas checked on the same
model require different invariance groups because each formula breaks the
symmetry of the model differently. Thus, the user needs to supply different
invariance groups for different formulas. In other works [22, 10], the program
is written in a special syntax by which the invariance group can be found.
In these cases only formulas which do not break the symmetry of the model
are allowed.

In contrast, we build the invariance group automatically, once the sym-
metry group has been given. Supplying the symmetry group usually requires
only a high-level understanding of the system and therefore is easier than
supplying the invariance group.

We implemented our methods within the enhanced model checking tool
RuleBase [1], developed by the IBM Haifa Research Laboratories, and com-
pared the performance of our methods with that of RuleBase. Experiments
show that our methods performed significantly better, with respect to both
time and space, in checking liveness properties. For temporal safety proper-
ties one method performed better with respect to time. However, its space
requirements were worse for small examples and identical for larger ones.
The other method performed significantly better, with respect to both time
and space, in special cases.

The rest of the paper is organized as follows. Section 2 gives some basic
definitions. Section 3 shows how to build the invariance group. Section 4

presents an algorithm for on-the-fly symbolic model checking with symmetry
reduction and then introduces hints into this algorithm. Sections 6 and 7
handle temporal safety properties and liveness properties, respectively. Sec-
tion 8 presents an iterative algorithm for on-the-fly symbolic model checking
which builds a subset of the orbit relation in each iteration, and Section 9
presents our experimental results. We conclude in Section 10 with directions
for future research.

2 Preliminaries

2.1 Temporal logic - CTL*, ACTL*

CTL” is a powerful temporal logic. In this work we define C'T'L* in negation
normal form in which negations are applied only to atomic propositions.
CTL* is defined over a set of atomic propositions AP. There are two types
of formulas in C'T'L*: state formulas and path formulas, defined as follows:

e state formulas:

— Ifpe AP, p and —p are state formulas.

— If ¢y and @y are state formulas, then ¢y V¢ and @1 A g are state
formulas.

— If ¢y 1s a path formula, then Fp; and Ay, are state formulas.
e path formulas:

— If @1 1s a state formula, then ¢; is also a path formula.

— If ¢y and @9 are path formulas, then @1 V @2, ©1 A w2 X1, Foy,
Go1, p1Upy, and ¢y Rpy are path formulas.

CTL" is the set of state formulas generated by these rules.

The semantics of C'T'L* are defined with respect to a Kripke structure
M=(S,5,R,L), where S is a finite set of states, R C S x S is a total transition
relation, L is a labeling function which labels each state with the set of atomic
propositions AP true in that state, and Sy is the set of initial states. A path
7 in a Kripke structure M is an infinite sequence of states, sg, s1,$2,..., In
which Vi > 0 (s;,841) € R. 7* denotes the suffix of 7 starting at s,. For a

state formula ¢ M, s = ¢ indicates that ¢ is true in state s, and for a path
formula v M, = ¢ indicates that ¢ is true along 7.

Assuming that ¢y and @y are state formulas and ¥; and ¥y are path
formulas, the relation = is defined as follows:

e M,sEp&spe L(s).

e M.s|E=-p& M, s £ p.

e MsEwviVps e Msk=pror M,s E .
e M.sEwviNpa & M, s = and M, s = ¢.

e M, s = Ei¢y < there exists a path m = sg, 81,... in M such that s = s
and M, 7 | .

e M, s E Ay & for every path m = sg, 81,... in M such that sg = s,
M7 =

o M, 7 = 1 & s is the first state of m and M, s |= ¢.

e M.mEY1 Vi & M, E or M, = 1s.

o M.mEYi Npy & M, |E by and M, 7 |= 1hs.

o M,m|E Xty & M, | .

o M7= Fey & k>0 M, 78 =y,

o M,ml=Gyy & YVi>0 Mt =1

o M,m = Uthy < k>0 M, 7% =4y and VO <i < k M, 7" |= .
o M,ml=Vipy & Yk >0if Vi <k M, 7 [~) then M, 7% = 1,.

A structure M satisfies formula ¢ (M | ¢) if every initial state s € S
satisfies ¢.

ACTL” is the sub-logic of C'T'L* in which all formulas contain only uni-
versal path quantifiers.

A CTL* formula is boolean if it contains only atomic propositions and
boolean operators.

Definition 2.1 A formula 8 is @ maximal boolean subformula of a formula
@ if B is a boolean subformula of ¢ and for all subformulas 3’ of v, if B is a
subformula of B’ then B’ is not boolean.

2.2 BDDs

A Binary Decision Diagram (BDD) [5] is a data structure for representing
boolean functions. BDDs are defined over boolean variables. They are often
(but not always) concise in their memory requirement, and most boolean
operations can be performed efficiently on BDD representations. In [20] it has
been shown that BDDs can be very useful for representing Kripke structures
and performing model checking symbolically. Given a Kripke structure M
whose set of states is to be represented by BDDs, we represent each state s
of M by a valuation of a vector of BDD variables v. We also associate with

each BDD variable v; an additional variable v!. We can now represent the
transition relation R C S x S by the BDD R(v,v").

2.3 Model Checking

Model checking is a technique for verifying finite state systems. The state
space of the system is exhaustively searched to determine if it satisfies a
given specification [9]. The model under verification is usually described
by a Kripke structure M and the specification by temporal logic formulas.
The set of atomic propositions AP, of the formula ¢ under evaluation is
a subset of the set of atomic propositions AP of the model M. Since the
number of states grows exponentially with the number of state variables,
it 1s very difficult to verify large models. This problem is called the state
explosion problem. Symbolic model checking [6] uses BDDs [5] to implement
model checking algorithms. It thus makes model checking applicable to larger
designs, although this applicability is still limited by space requirements.

2.4 On-the-Fly Symbolic Model Checking

On-the-fly symbolic model checking [2] is a method which checks a given
formula ¢ while computing the reachable states of the model. Most of the
constructions for on-the-fly symbolic model checking build an automaton A,
and a formula ©» = AG(p), where p is a boolean formula. The construction

guarantees that M x A, = ¢ if and only if M | ¢. Since ¢ = AG(p),
verifying ¢ amounts to computing the reachable states while checking that
each state satisfies p. If a state which falsifies p is found, then there is no
need to complete the reachability computation. If all reachable states satisfy
p, then M = ¢. One of the most useful operations in model checking and
on-the-fly model checking in particular is image computation. Given a set
of states S and a relation A, represented by the BDDs S(v) and A(v,v’)
respectively, the image computation finds the set of all states related by A
to some state in S.

Definition 2.2 Im4(S(v)) = Jv(S(v) A A(v,0")).

2.5 Partial Search

While symbolic model checking can be very efficient, it can still suffer from
explosion in the BDD size. One solution is to perform a partial search of
the reachable state space while avoiding large BDDs [21]. Other methods
perform a partial search guided by the user [3] or by the checked specification
[23]. In all methods the set of reachable states discovered in each step is an
under-approximation of the set of reachable states which would have been
discovered in BF'S. This property enables combining partial search with on-
the-fly model checking.

2.6 Bisimulation and Simulation Relation

The goal of our work is to exploit symmetry for producing smaller models
that are easier to model check. It is important that the smaller models will
preserve properties of the original models. To formalize these ideas we define
two relations over models: the bisimulation and the simulation relations.

Definition 2.3 Let M and M’ be two Kripke structures over the same set
of atomic propositions AP. A relation B C S x S’ is a bisimulation relation
between M and M’ for a set of boolean formulas BS over AP if for every
inttial state so of M there is an initial state sj of M’ such that (sg,s;) € B,
and for every initial state sy of M’ there is an initial state so of M such that
(s0,30) € B. Moreover, if (s,s") € B, then

1.VBeEBS sk s =p.

2. Vsq[(s,81) € R = 3s[(¢,8]) € R' A (s1,5)) € B]].
3. Vsi[(¢,s]) € R = Js1[(s,81) € RA (s1,8)) € B]].

M and M’ are bisimulation equivalent for BS (denoted M =y;5 M') if there is
a bisimulation relation B for BS between M and M’. The following lemma
is immediate from the result in [4].

Lemma 2.1 For every CTL* formula ¢ over BS and two Kripke structures
M, M" over AP, if M =5 M', then M' = & M | ¢.

Definition 2.4 Let M and M’ be two Kripke structures over the same set
of atomic propositions AP. A relation SIM C S x S’ is a simulation relation
between M and M’ for a set of boolean formulas BS over AP if for every
inttial state sg of M there is an initial state sy of M such that (sg, s) € SIM.
Moreover, if (s,s") € SIM, then

1.VpeBS [sEf& s EL.
2. Vsi[(s,81) € R = 3s1[(¢,8]) € R A (s1,8)) € STM]].

M is smaller than M’ for BS by the simulation relation (denoted M <j;,, M")
if there is a simulation relation for BS SIM C S x S’. The following lemma
is immediate from the result in [16].

Lemma 2.2 For every ACTL* formula ¢ over BS and two Kripke struc-
tures M, M' over AP, if M <y, M' then M' = = M = ¢.

Lemma 2.2 is also true for Kripke structures with finite paths. See ap-
pendix A for a full definition of C'T'L* over Kripke structures without a total
transition relation and the proof of Lemma 2.2 on these structures.

2.7 The Product Model and the Restricted Model

We now define two special Kripke structures that will be used later.

Definition 2.5 Let M, M’ be two Kripke structures defined over the sets of
atomic propositions, AP and AP’, respectively. The product structure of M
and M' is a Kripke structure over AP U AP’, defined as follows. M x M' =

0
(SMXM'v’SMlevRMXMlv LMXM’) where

8

o Svuxmr=1(s,8)|seSN S eSNLs)NAP =L'(s)N AP}.

(
d S&XM’:{(SVS/) | (575/) ESMXM' A SESO A SIES(/) }
)

[((s,8),(t,1) € Ruxmr < (s,1) € RA (s, 1) € R'.
o V(s,8") € Smxmr[L((s,8") = L(s)U L'(s)].

Definition 2.6 Let M be a Kripke structure and A be a subset of S. The
restricted model M |4 = (5|4, 5|4, R|a, L|a) is defined as follows:

° S|A =A.
° 50|A:SOQA.
o Vs, '€ S|4 [(s,8) € Rlae (s,8) € R

Vs € Sla [L]a(s) = L(s)].
Lemma 2.3 For every Kripke structure M and A C S, M| <gm M.

Proof: The relation B = {(s,s)|s € A} is a simulation relation between
M and M. n

2.8 Symmetry

Definition 2.7 A permutation on a set A, 0 : A — A is a one-to-one and
onto function.

For aset A" C A, o(A') = {ala € ANTd' € A" o(d’) = a}. In this paper we
use permutations over the set of states of a Kripke structure. Given a C'T'L*
formula 5 and a structure M, o(f3) refers to applying o to the set of states
in M that satisfy .

Definition 2.8 A permutation that maps a; — as,ay — az,...,d5_1 —
ag, ar, — ay is called a cycle and is denoted by (ajasy. .. ay).

Any permutation can be written as a composition of disjoint cycles o =
C1Cy...Chpy.

Definition 2.9 A permutation group G is a set of permutations together
with the composition operation such that:

o The identity permutation e is in G.

o For every permutation o € GG, there is a permutation o’ € G such that
oo’ = e. Such a o' is usually called ™',

o For every oy,00 € GG, 0103 is also in G.

Definition 2.10 o4, 0y,...,04 are generators of permutation group G (de-
noted G = (01, 02,...,0k)) if G is the closure of the set {o1,0,...,0,} under
the composition operation.

Definition 2.11 A permutation group G is a symmetry group of a Kripke
structure M if every permutation o € G preserves the transition relation and
the initial states. That is, Vs, € S [(s,5') € R < (0(s),0(s")) € R and
s € Sy & o(s) € 5ol

To exemplify the notations above, we consider a Kripke structure M
constructed by three identical processes, p1, p2, p3. Each process ¢ uses the
set of variables v; and each state is over the set of variables v = v,v905. The
permutation which exchanges the values of v; and v; (each variable with its
identical variable in the other process) will be denoted (p;,p;). Since the
processes are identical, exchanging the values of v; and v; for every ¢ and j
will preserve the transition relation and the initial states. Thus the group

G = {e,(p1,p2), (P2, p3), (P1,13), (P1, 13, P2), (P1,p2,ps)} is a symmetry group
of M and the permutations {(p1, p2), (p2,p3)} are a set of generators of G.

Definition 2.12 Let BS be a set of boolean formulas. A symmetry group G
of a Kripke structure M is an invariance group w.r.t. BS if for every boolean

formula B € BS, every o € G and every s € S [M,s =< M,o(s) E].

Definition 2.13 A boolean formula 8 preserves the symmetry of a permu-
tation o if for every s € S, [M,s = < M,o(s) = 3]

Definition 2.14 A boolean formula 8 breaks the symmetry of a permutation
o if B does not preserve the symmetry of o.

10

When BS is the set of atomic propositions of formula ¢, our defini-
tion of an invariance group is identical to the definition of an invariance
group in [18]. However, we prefer the BS set of the maximal subformu-
las of ¢ (see definition 2.1). This is because an invariance group defined
w.r.t. the maximal subformulas may contain more permutations than an
invariance group defined w.r.t. the set of atomic propositions. Consider
the formula ¢ = AG(—~(p1-in_critical N pyin_critical)), which is evaluated
on M defined in the previous example. The set of atomic propositions are
{p1an_critical, py_in_critical}. The largest invariance group defined accord-
ing to these atomic propositions is G = {e}. This is because the atomic
propositions break the symmetry of the permutations which exchange py, po
and p3. However, the formula has only one maximal boolean subformula
=(pyoan_critical A pein_critical), and the largest invariance symmetry group
defined according to it is ¢ = {(p1,p2),e}. This is because the formula
preserves the symmetry of the permutation which exchanges p; and p,.

Given an invariance group G and a Kripke structure M, we can partition
the states S into equivalence classes. The equivalence class of s is [s] =
{¢'|Jo € G, o(s) = s'}. Each [s] is called an orbit and the relation OR =
{(s,8")|s,s" € S and [s] = [¢']} is called the orbit relation.

For a Kripke structure M = (5, 5o, R,) and an invariance group G w.r.t.
a set of boolean formulas BS, the quotient structure Mg = (Sa, S&, Ra, La)
is defined as follows:

o So={1]s]|ses}
o 5% ={[s]|s€ S}
o Ro={([s],[s]D | (s,s') € R }.
o La([s]) ={B|B € BSAs B}

In [12, 18] it has been proved that for every C'T'L* formula ¢ over BS, and
every state s € S, Mg, [s] E v & M, s E 1.

The quotient structure is built by having a representative chosen from
each orbit. Then a representative function £ : S — Rep, which maps each
state s to its orbit representative, is defined. Mg is now defined by

o 5S¢ = Rep.

11

o S ={s|3s' £(s') =sA s €5}
o Ro={(s,5")|s,s € RepAIs” €S [R(s,s")NE") =}
o La(s)={p|p € BSAsEp}.

In many cases, however, it is easier to choose more than one representative
for each orbit.

Definition 2.15 £ C Rep x S is a representative relation if for all s,s
(s,s') € £ & s € Rep A s| =[]

Definition 2.16 The quotient structure for multiple representative M, =
(Spy S2, Ry L) is a Kripke structure in which:

o S, = Rep.
o S0 ={s]|3s €S (s,8) €}
e R, =¢('RE

o L(s)=1{3l3 € BSAs | p}.

[18] shows that for every C'TL* formula 1 over BS and every state s €
R@p, vas |: 77Z) g MG7 [S] |: 77Z)

In our work we use a stronger property of the quotient model:

Lemma 2.4 For every Kripke structure M and every invariance group G of
M w.r.t BS, Mg =5 M for BS.

Proof: B = {([s],s)|s € S} is a bisimulation relation for BS between Mg
and M. n

Lemma 2.5 For every Kripke structure M, every invariance group G of M
for BS and every set Rep C S which contains at least one representative

from each orbit, M,, =;s Mg for BS.

Proof: B = {(s,[s])|s € Rep} is a bisimulation relation for BS between
M,, and M. [|

Lemmas 2.1, 2.4, and 2.5 imply that for every CTL* formula ¥ over
boolean formulas in BS,

MEys Mg EY S M, E.

12

3 Building the Invariance Group

Previous algorithms showed how to perform model checking with symmetry
when the invariance group is supplied by the user [18]. In many cases two
formulas evaluated on the same model require different invariance groups
because each formula breaks the symmetry of the model differently. For
example, given two symmetric processes p; and py, the formula AGAF (py-in
_critical) breaks the symmetry between p; and py while the formula AG(—
(p1an_critical A py_in_critical)) does not break the symmetry at all. This
implies that the user may need to supply different invariance groups for
different formulas. Supplying them may require close familiarity with system
details. In other works [22, 10], the program is written in a special syntax
which enables the invariance group to be found. In these cases only formulas
which do not break the symmetry of the model are allowed (e.g., SCTL
formulas in [22]).

We suggest a new method that, given a symmetry group G and a formula
@, automatically generates an invariance group G, w.r.t. the set of maximal
boolean subformulas of a given formula . Our method is useful because
providing a symmetry group often requires only a high-level understanding
of the system and is therefore easier to supply than an invariance group.

Our method works as follows. Given a set of generators for a symmetry
group G, an invariance group G, 1s defined by restricting the generators of
G to those o; that satisfy o;(8) = 8 for every maximal boolean subformula
B. As a result, the orbits of G, obtained by its generators do not contain
both states that satisfy 8 and states that do not satisfy 5. This implies that
Giiny 1s an invariance group. The following lemma illustrates the correctness
of our approach.

Lemma 3.1 Let 01,09,...,01 be generators of a symmetry group G of a
Kripke structure M and let M AX be the set of mazimal boolean subformulas
of a given formula p. If IG ={0;|VB € MAX, 0,(8) = B} is not empty, it
generates an invariance group Gy, of M w.r.t. MAX.

Proof: We first prove that if IG is not empty, it generates a permutation
group Gy,,. Any o € Gy, can be written as a composition of disjoint cycles
0 =0C1Cy...Cp.

For all 0 € IG, 0 = ¢1¢5. .. ¢y, of length [y, 15, ..., 1, respectively.

13

e Since /(G is not empty, 3o € IG. ohl>+m = e, Since o is a generator
of Gipy, ct2tm ¢ G which means that ¢ € G,y

o For all o € IG, o'hl2dm=1) = /=1 Since ¢’ is a generator of G,
g/hbabm=1) o G'iny, which means that ¢'~! € G;,,. For all o €
Gin, © = 04,04 ...0; where ¢;,,0,,...,0;, € IG. Since 7! =

ot .0;102»_11 and for all o' € IG, o'7! € Gy, we get that 071 € Gy

v

e For all 01,09 € Gipyy, 01 =040, ...0; 03=0;0j,...0;,,
where 0;,04,,...,0:,0;,05,...,0;, € IG.
Since 0103 = 0,04, ...04,0,05,...05,, 0102 € Gipy.

We have shown that Gy, is a permutation group. Since its generators are a
subset of the generators of the symmetry group G, G;,, is also a symmetry
group. We still need to show that G, is an invariance group.

We first prove that for every o € GGy, and every g € MAX, o(f) = 5.
Giny 18 generated by IG, meaning that every o € (Y, can be written as
o = 0;,0i,...04,, where 0, ,0,,,...0;, € IG. By the definition of 1G we
know that for every j, o;,(8) = 8. Thus o(3) = . Since o(8) = 8 for
every o € (,,, we have that for every g € MAX, o € G}, and s € 5,
(M,s B & M,o(s) =]

|

In our previous example, the set of generators of the symmetry group
of a model with two processes is {o}, where o = (p1, p3). For formula ¢ =
AGAF (pi-in_critical) , the only maximal boolean subformula is p; -in_critical.
Since o(pyin_critical) = pyin_critical, which is not identical to py in_critical,
we conclude that IG = ¢. This implies that the largest invariance group
w.r.t. the maximal boolean subformulas of ¢ is G = {e}. For the for-
mula ¢ = AG(=(p1an_critical A pyin_critical)), the only maximal boolean
subformula is —(pi_in_critical N py_in_critical). Since o(=(py_in_critical
A pean_eritical) = —(pe_in_critical N\ pyan_critical) = —(pi-in_critical A
pa-in_critical), IG = {o}. Thus, in this case the original symmetry group is
also an invariance group for .

Definition 3.1 The largest invariance group Gy, with respect to a sym-

metry group G is an invariance group such that for every invariance group

G’ g G; |G/| S |G2nv|

14

For a given symmetry group G, the invariance group G,, generated
by IG may not be the largest invariance group that exists for M with re-
spect to (. For example, if a symmetry group G = {e, (p1, p2), (p2,ps),
(P15 p3)s (P15 p3, P2), (P1spe,p3)} is given by the generators {(p1,p2), (p2,p3)},
and (G is calculated with respect to the formula, ¢ = AG(—(py-in_critical A
ps-in_critical)). Since IG = {e}, we get that Gy, = {e}. However, the
largest invariance group with respect to G is {(p1, ps), e}.

The largest invariance group with respect to a given symmetry group can
be obtained by restricting the symmetry group G as follows: Gy, = { 0 €
G| Vs € MAX, o(p) = B}. However, the number of permutations in G
may be exponential in the number of generators of G. Thus it is not practical
to construct Gy, directly from G.

Below we explain how the construction of the invariance group can be im-
plemented with BDDs:

e A permutation o can be represented as a BDD by (v = ¢(v')). However,
it is easier to represent it as a binary relation o(v,v’). For example,
consider a permutation & defined over a set of processes 1...n, where
each process 7 uses the set of variables v; and each state is over the
variables v = v1vy...0v,. If & exchanges the role of processes ¢ and j
we denote it by (i) = j. The permutation o over the state variables v
is induced from 6. The BDD o(v,v’) that represents o will be defined
by o(v,0") = Ai(vi = v5;))-

e For a boolean formula /3, let 3(v) be the BDD representing the set of
all states satisfying 5. Then the BDD for () is defined by o(3(v)) =
Jo(o(v,v") A B(0)).

e We check whether o(3) = . With a BDD representation, this amounts

to checking that the BDDs #(v) and o(/3(v)) are actually the same BDD
after we unprime the BDD variables in o(3(v)).

3.1 Extension to Fairness

When the model under verification consists of fairness constraints, the sets of
fair paths in the quotient model should be identical to the set of fair paths in
the original model. The set of fair paths can be made identical by requiring

15

that the generators of the invariance group satisfy o(8) = /8 for the formulas
in the fairness constraints as well as in the checked formula.

A Kripke structure M with fairness constraints is a five-tuple M =
(S, S0, R, L, F') where S, Sy, R and L are defined as in section 2.1, and F' =
{fi,---, fm}, where for all 7, f; is a boolean formula over a set of atomic
propositions APr C AP. x is a fair path if and only if for every f;,
inf(m)N fi # & ? where inf(7) = {s | s = s, for infinitely many j}. The se-
mantics of C'T'L* with respect to a Kripke structure with fairness constraints
, denoted =g, is similar to the semantics of C'T'L* defined in section 2.1,
except for the following changes:

e M,s Erp p < there exists a fair path starting from s and p € L(s).

o M, s |Fp Evy & there exists a fair path 7 starting from s such that
]\47 T |:F 77Z)1.

e M, s |Ep Ay & for every fair path 7 starting from s, M, 7 |Ep ;.

A quotient model for a Kripke structure with fairness constraints is a
five-tuple Mg = (Sq, 5%, Ra, La, F), where Sg, S, Ra, Lg are defined as
in section 2.8, and Fg = F.

Definition 3.2 Let BS be a set of boolean formulas. A fair bisimulation
relation B for BS over M and M' with F' and F" respectively is a bisimulation
relation for BS (Definition 2.3) which satisfies, in addition, the following
requirement. For every s, s such that B(s,s) it holds that:

1. For every fair path m = sgs1... from s = sq in M there is a fair path
' =spsh .. from s = sy in M such that for all i > 0, B(s;, s%).

2. For every fair path 7’ = sys) ... from s' = sy in M’ there is a fair path
T = 80981... from s = sg in M such that for all i > 0, B(s;,s").

The following lemma is immediate from the result in [8].

?Here again, by abuse of notation, f; refers to the set of states that satisfy the formula

fi

16

Lemma 3.2 Let B be a bisimulation relation for BS and let s,s" be two
states such that B(s,s'). Then for every path m = sos1... from s = sg there
is a path ' = sjsy ... from s = s such that for all ¢ > 0, B(s;, s), and for
every path © = s(s} ... from s’ = s} there is a path m = sgs1... from s = 59

such that for all i > 0, B(s;, s.).

The following lemma presents a sufficient but not necessary condition
which guarantees that B is a fair bisimulation for BS. This condition is
useful since it can easily be applied within our symmetry reduction.

Lemma 3.3 For a given bisimulation relation B for BS over two Kripke
structures in which F'' = F" and two states s and s' such that B(s,s'), assume
that the following holds: for every f € F

sEfesELT
Then B is a fair bisimulation relation for BS.

Proof: We show that the additional requirement in definition 3.2 is satis-

fied.

1. For every s,s" such that B(s,s’) and for every fair path 7 = 551 ...
from s = sg in M there is, according to Lemma 3.2, a path 7’ = s(s] ...
from s’ = s in M’ such that for all ¢« > 0, B(s;, st). According to the
definition of a fair path, for every f;, inf(m) N f; # ¢. Since for every
feFskEf<e s fwegetthat for every fi, inf(x')N fi # ¢. Thus

7' is also a fair path.

2. Similar to 1.

The following lemma is immediate from the result in [8].

Lemma 3.4 For every CTL* formula ¢ over BS and two Kripke structures
M, M" over AP, if M and M’ are fair bisimulation equivalent for BS, then
MEre e M Epp.

Definition 3.3 Let 01,0,,...,04 be generators of a symmetry group G of a
Kripke structure M = (S, S0, R, L, F') and let MAX be the set of mazimal
boolean subformulas of a given formula ¢. The fair invariance group of M

w.r.t. MAXUF is the group generated by IG = {o;|V € MAXUF, 0,(0) =
gt

17

Lemma 3.5 Let Gy, be the fair invariance group generated by IG = {o;|VP €
MAX, o;(8)=p}. If IG is not empty, then M and Mg, are fair bisimu-
lation equivalent for BS.

Proof: According to Lemma 2.4, B = {([s],s)|s € S} is a bisimulation
relation for MAX U F between Mg, and M. We show that B also satisfies

the following additional condition: for every f € F

skEfelslE

According to the definition of the quotient model, Fg;, , = F and Lg,, ([s]) =
L(s), which implies that Vf; € F [s] = fi & s = fi. From Lemma 3.3 we
get that M and Mg, are fair bisimulation equivalent.

nv

inv

|

The consequence of Lemma 3.5 is that we can use the group generated by
IG = {oy|VS € MAX U F, 0,(8) = B} for symmetry reduction of structures
with fairness constraints.

In [13] it is shown that even when the fairness constraints are symmetric to
each other the symmetry in the model is not preserved. Thus no compression
is possible under fairness when using “purely group-theoretic” methods. Our
algorithm does not contradict [13]. Assume that the fairness constraints
are symmetric to each other but each single fairness constraint breaks the
symmetry in the model. In this case, the fairness constraints will break
the symmetry of all generators which do not preserve the symmetry in the
model with respect to a single fairness constraint. The symmetry is broken
by removing these generators from the fair invariance group. In other words,
when using our algorithm in this case, the symmetry in the model is not
preserved.

4 Symmetry with On-the-fly Representatives

The algorithm presented in this section is aimed at avoiding the two main
problems of symmetry reduction: building the orbit relation and choosing a
representative for each orbit.

Let M = (5,5, R, L) be a Kripke structure and oy,...,01 be a set of
generators of a symmetry group G of M. Also let ¢ = AG(p), where p
is a boolean formula. The symbolic algorithm Symmetry MC, presented

18

in Figure 2, applies on-the-fly model checking for M and ¢, using under-
approximation and symmetry reduction.

The algorithm works in iterations. Starting with the set of initial states,
a subset under of the current set of states is chosen at each iteration. The
successors of under are computed. However, every state which is symmetric
to (i.e., in the same orbit with) a previously reached state is removed. The
states that are first found for each orbit are taken to be the orbit represen-
tatives. Note that an orbit may have more than one representative if several
of its states are reached when the orbit is encountered for the first time. At
any step, the set of representatives is checked to see if it includes a state that
violates p. If such a state is found (line 9), then the computation is stopped
and a counterexample is produced. We then conclude that M = AG(p).
The use of under-approximation ensures that if Symmetry MC terminates
without violating p, this does not indicate that M | AG(p).

Figure 1 shows a possible execution of Symmetry MC. State s is dis-
covered first by the under-approximated search and entered to reach rep
as a representative. When o(s) is discovered, it is deleted because o(s) €

o_step(reach_rep).
(C '

bad states

Init

Figure 1: A possible execution of Symmetry MC

A useful optimization can be performed by deleting from memory the
BDD for the set full reach, which is often quite large, immediately after
it has been used (after line 7). This may prevent memory explosion. In
addition, the forward step in line 5 usually requires large memory utilization

19

as well. By removing the BDD for full reach before computing the forward
step, we decrease the memory usage in each iteration.

Symmetry MC(M, ¢, 01,...0%)
1 Calculate the generators of the invariance group of M
IG = {o] for all maximal boolean subformulas 8 of ¢: o;(8) = 5}
reach_rep = Sy, i=0
while S; # ()
choose under C S5; (under is an under-approximation of ;)
Si+1 = Imp(under)
full reach = o_Step(reach.rep, oy,...0%)
Sit1 = Siy1 / full reach
reach rep = reach_rep US4
if Si-|—1 /_'p 7£ @
generate a counterexample and break.

1=1+1.

O 0 =1 O Ut = W N

—_ =
_ O

Figure 2: The algorithm Symmetry MC performs on-the-fly model check-
ing of ¢ on M, using symmetry reduction.

The set of symmetric states that should be removed are computed using
the procedure o_Step (Figure 3) instead of using the orbit relation. o_Step
applies I'm,,(sym_states)” in order to obtain the states which are related by
o; to states in sym_states. It repeatedly computes I'm,, for 1 = 1,... k,
until a fixed point is reached. For a set of states A and a set of generators
IG ={ o1,...,01 }, 0_Step returns the set of all states belonging to the
orbits of states in A according to GG = (I(). The use of o_Step for removing
symmetric states is demonstrated in Figure 4.

We use o_Step to exploit symmetry information without building the full
orbit relation. There are several reasons to expect that o_Step will result in
a BDD which is smaller than that of the orbit relation. First, it represents a
set of states and not a relation. Thus, it depends on one set of BDD variables,
while the orbit relation depends on two sets. Second, it is applied only to

3¢; can be viewed as the binary relation (v, v').

20

o_Step(A, 01,09,...,0%)
sym_states = A;
old sym_states = ()
while 01d_sym_states # sym_states
old_sym_states = sym_states
fori=1...k
new_sym_states = Im,,(sym_states)
sym_states — sym_states U new_sym_states
return sym_states

O ~1 O U= W N~

Figure 3: The algorithm o_Step calculates the states belonging to the orbits
of states in A.

reachable states, which are usually represented by smaller BDDs. Indeed,
our experiments successfully applied o_Step to designs for which building
the orbit relation was impossible.

Computationally, c_Step is quite heavy. We avoided this problem in
most of our experiments by stopping the computation of o_Step before it
reached a fixed point. As will be explained in the next section, this does
not effect the correctness of Symmetry MC. In general, there is a tradeoff
between the amount of computation in o_Step and the symmetry reduction
obtained by Symmetry MC.

If, when Symmetry MC terminates, reach rep contains at least one
state from each reachable orbit, then M,,, defined according to reach rep
(S, = reach.rep), is bisimilar to M (see Section 2.8). Thus, if M,, = AG(p),
then M |= AG(p) as well. Note that M, = AG(p) can be checked on-the-fly.

4.1 Robustness of Symmetry MC

We now discuss the robustness of the algorithm Symmetry MC for fal-
sification in the presence of an incomplete o_Step and an incorrect set of
generators. Consider first the case in which the computation of procedure
o_Step is stopped before a fixed point is reached. o_Step then returns only
a subset of the states in the orbits of states in A. In this case, fewer states are

21

Figure 4: Removing symmetric states using o_Step

removed from S;;; and, as a result, reach rep contains more states. Thus,
we might have more representatives for each orbit.

Consider now the case in which the algorithm is given an incorrect set of
generators. If a “bad” generator (a permutation which associates states that
are not symmetric) is given, then o_Step returns states which are not sym-
metric to any state in reach_rep. These states are removed from 54, and it
is possible that no representatives of their orbits will be added to reach rep.
Thus, reach rep represents an under-approximation of the reachable orbits.
However, reach rep does not contain a representative of an unreachable or-
bit. Thus, if there is a state s € reach rep which does not satisfy p, this
state is reachable in the original model, and the counterexample generated
by Symmetry MC actually exists in the original model.

If a “good” generator (a permutation which associates pairs of symmetric
states) is missing, then o_Step returns fewer states and, as a result, there is
more than one representative for each orbit. However, as in the previous case,
reach rep contains only reachable states, and therefore Symmetry MC
generates only real counterexamples. The following lemma summarizes the
discussion above.

Lemma 4.1 Given any set of generators, the algorithm Symmetry MC is
sound for falsification.

22

Proof: We need to prove that if symmetry MC generates a counterex-
ample (line 10), then there is a reachable state s in M which does not satisfy
p. Since symmetry MC enters line 10 only if S;11 A =p # ¢, we only have
to show that for every ¢ and for every s € S, s is reachable along transitions
in M. The proof is by induction:

o =0, all states in Sy are reachable.

e Assume all states in 5; are reachable. S;y1 = Imp(under) / o_step
(reach.rep) where under C S;. Since all states in 5; are reachable, all
states in under are reachable. By the definition of I'mpg, Impg(under)
is also a set of reachable states. In addition, S;y1 C I'mpg(under), and
thus all states in Sy are reachable.

|

Several BDD optimizations common in the computation of forward steps

in symbolic model checking may be useful in the implementation of procedure
o_Step:

e To simplify each o; according to sym_states before computing I'm,,
(sym_states). Simplifying the BDD representing o; will result in a
smaller BDD. The first possibility is that this BDD might contain pairs
of states which are not symmetric to each other and in which the first
state is not in sym_states. The second possibility is that this BDD
might not contain pairs of states which are symmetric to each other
and in which the first state is not in sym_states. In both cases the
result of I'm,, (sym_states) is the same as without simplification.

e To apply the partitioned transition relation with early quantification
[11] in the computation of Im,,. This is applicable because a permuta-
tion is often given as a conjunction of simpler expressions ((o;(v,v’) =

N (V5 = U))-

5 Symmetry Reduction Combined with Hints

In this section we present a special case of the algorithm Symmetry MC
in which the under-approximation is guided by a sequence of hints given by
the user [3].

23

Let M = (S,50,R,L) be a Kripke structure, o1, ..., 0} be a set of generators
of a symmetry group G on M, and hy,...,h; be a sequence of hints where
for all i, h; € S and hy = S. Also, let ¢ = AG(p) be a formula where p is a
boolean formula. The algorithm Hints_Sym, presented in Figure 5, applies
on-the-fly model checking for M and ¢ using hints and symmetry reduction.
In each iteration we choose under to be the conjunction of a hint and the
result of the previous image computation. First we calculate under according
to hy. When a fixed point is reached for hint &, (i.e., there is no state which is
both in the result of the previous image computation and in h;), we switch to
calculating under according to h;y;. Since by = 5, the image computations
in the last fixed point computation are no longer restricted. As a result, when
the last fixed point is reached reach _rep contains at least one representative
from each orbit.

If o4,...,01 contain no “bad” generator, then our hints guarantee that
when S; = (), reach rep contains at least one state from each orbit. Since
h; = S when hint = h;, under is equal to S; in each iteration. Thus,
when S; = (), all reachable orbits are searched. In this case, the algorithm
Hints_Sym is suitable for verification as well as for falsification. In many
cases, the nonexistence of bad generators can be easily determined by the
program syntax, for example when using the syntax presented in [22] or the
one presented in [10]. In other cases it is expensive but possible to check
whether all generators are good. (This can be done by checking whether
s =pis 0(s) for every state s and every generator o.)

A useful optimization is to compute the set full reach according to
reach_rep only once for each hint (on line 12 instead of line 6 in algorithm
Hints_Sym), and to use it in order to remove states in all steps in which this
hint is used. This optimization saves computation time but may use more
space since full reach is in memory when Imp is computed. Again there
is a tradeoff here between time and space.

We chose to combine hints with Symmetry MC since hints may be very
useful in on-the-fly model checking of models with symmetry. For example,
if for each process there is a signal en;, which is active only when processor ¢
is active, running the algorithm with the following hints will search the state
space gradually.

o hy = {s|s = Vacicn(en; = false)}.

24

Hints Sym(M, ¢, 01,...,0%, h1,ha, ... k)
1 Calculate the generators of the invariance group of M

IG = {o] for all maximal boolean subformula 8 of ¢: o;(8) = g}

2 reach rep = Sy, 1 = 0, hint = hy,] = 2

3 while S; # ()

4 under = S5;N hint

5 Si+1 = Imp(under)

6 full reach = o_Step(reach.rep, oy,...0%)
7 Sip1 = Siy1/full reach

8 reach rep = reach.rep US4

9 if SZ'_H/_'p 7£ @

10 generate counterexample and break
11 if S;p=0A45<I

12 hint = h]‘

13 j =+l

14 Siy1 = reach.rep

15 1=1+1

16 @ is TRUE

Figure 5: The algorithm Hints_Sym applies on-the-fly model checking of ¢
on M, using hints and symmetry reduction.

hy = {s|s |= Vs<i<n(en; = false)}.

hn—1 = {s|s | (en,, = false)}.
e f, =05,

When combining hints with symmetry reduction in algorithm Hints_Sym,
the first reachable states of the k processes will be discovered when using
hinty, and will be kept as a representative in reach rep. All other reach-
able states of k processors will be discovered by o_step (line 6) and removed
from the model (line 7) in the following iterations. For example, for k=2 all

25

combinations of processes 1 and 2 will be discovered when using hinty and
entered into reach rep. When using hints, all combinations of processes
1 and 3, and all combinations of processes 2 and 3, will be discovered and
immediately removed since they are symmetric to states in reach rep

If a bug occurs when 3 processes are active, it will be discovered while
using hints when only processes 1,2 and 3 are active. Since other combina-
tions of three processes will be discovered only later, these hints enable us to
find the bug before the BDD representing the reachable state space becomes
too big.

6 Extension for Temporal Safety Properties

In this section we extend algorithm Symmetry MC for temporal safety
properties. There are several known algorithms which use a construction A,
for the evaluated formula ¢ and the product model M x A, in order to model
check more complex properties. We now show that it is possible to combine
symmetry reduction with these algorithms.

Lemma 6.1 Let M x A, be the product model of M and A,. Then for every
invariance group G, of M w.r.t. the mazimal boolean subformulas of p, and
Jor every o € Giny, (5,1) € Sprxa, & (0(s),1) € Samrxa,

Proof:

According to the definition of an invariance group, for every invariance
group G,y and every o € Gy, L(s) = L(o(s)). According to the definition
of a product model, (s, t) is a state in the product model if and only if
L(s) W APs, = La,(t) N AP}. It follows that for every invariance group
Giny of M w.r.t. the maximal boolean subformulas of ¢, and for every o €
va,(s,t) - SMXA¢ = (U(S),t) € SMXA¢-

|

In this section a permutation is a permutation on each variable. The per-
mutation is applied on each variable value o(s) = o1(ay1), 02(as),. .., or(ar)
where s = (ay,as,...,a;). If the permutation is applied to a bigger set of
variables, then the permutation on the additional variables is the identity
permutation.

We first specify the requirements necessary for using construction A, with
symmetry reduction.

26

Definition 6.1 Given a logic L and a construction that associates with each
¢ € L a structure A,, the construction A, is safe for symmelry reduction
w.r.t L if there exists v € CTL* such that the following conditions are sat-
isfied:

ILYoe L MEee MxA, =¢).

2. For every invariance group G, of M w.r.t. the mazimal boolean sub-
formulas of p, every o € Giny, and every (s,t) € Syxa,, we have that

o((s,1)) = (o(s),1) *.

3. For every € APy and every (s,t),(s',1) € Sypxa,,
(s,8) = B < (s,1) = B.

The second condition requires that o be defined only on s and that t be left
unchanged. The third condition requires that the truth of all g in ¢ depends
only on t.

Lemma 6.2 For every construction A, which is safe for symmetry reduction
w.r.t L, if G is an invariance group of structure M w.r.t. the mazimal boolean
subformulas of formula ¢ € L, then G is an invariance group of structure
M x A, w.r.t the maximal boolean subformulas of).

Proof:

First we show that for every 8 € AP, every o € (i, and every (s,t) €
M x A, (M x Ag(5,8) = B 6 M x Ago(s,0) =)
By condition 3 of safe construction, V3 € AP, Yo € G ¥(s,t) € M x A,
(s,t) E B < (0(s),t) E (. By condition 2 we have that (s,t) E f &
o(s,t) |= B, as required ((0(s),t) € Sprxa,, by lemma 6.1).

Next we show that Vo € G V(s,1)(s',t') € Sarxa, ((s,1),(s",1)) € Ryxa, &
(o(s,t),0(s',t")) € Rarxa,)-

For every ¢ € GG and for every (s,1),(s',t') € Syxa,
((s,1),(s',1")) € Rpyrxa, = (by the definition of product structure)
(s,8) € RA(t,1') € R4, = (G is an invariance group of M)

“Note that (o(s),t) € Syxa,, according to lemma 6.1.

27

(0(s),0(s") € RA(L,1') € Ra, = ((0(s),1) and (o(s'),1')) are in Syrxa, by
Lemma 6.1 and by the definition of product structure)
((o(s),t),(c(s"),t')) € Rarxa, = (condition 2 of safe construction)

(o(s,t),0(s',t')) € Rarxa,-

For every o € (i and for every (s,t),(s,t') such that o(s,t),0(s',t") €
SMXA¢
(o(s,t),0(s',t")) € Rarxa, = (condition 2 of safe construction)
((o(s),1),(c(s"),t")) € Rarxa, = (by the definition of product structure)
(0(s),0(s")) € RA(t,t') € Ry, = (G is an invariance group of M)

(s,8) € RA(t,1) € Ry, = ((s,1) and (s',¢') are in Syrxa, by Lemma 6.1
and by the definition of product structure)
((s,0),(s,1")) € Bin s,

|

Corollary 6.3 For cvery construction A, which is safe for symmetry re-
duction w.r.t L, for every o € L and the ¥ € CTL* which exists according
to condition 1 of definition 6.1, the quotient structure (M x Ay)q, built for
M x A, and an invariance group G of M, satisfies (M x Ay)e Ev & M E ¢

Proof: By condition 1 of safe construction there is ¢ such that: M = ¢ &
M x A, E . Since M X Ay =pis (M x Ay)e (by lemma 6.2), M x A, = ¢ &
(M x Ay)g = . It follows that (M x Ay)g E¢¥ < M E . n

Note that using the safe construction enables us to find a set of generators
of the invariance group of M according to the maximal boolean subformulas
of ¢ and then to evaluate formula ¢» on M x A, with a symmetry reduction
that uses the same generators.

6.1 Safe Construction for LTL Model Checking

There are several A, constructions which are safe for symmetry reduction
w.r.t logic £. One example is the tableau construction in [7], when restricted
to LT L safety properties.

LT L is asubset of C'T'L*, consisting only of formulas of the form A f where
f is a path formula and all its state sub-formulas are atomic propositions.
LT L safety formulas are LT L formulas, restricted to the temporal operators

X,V and G.

28

The tableau associated with an LTL formula Af is a structure Ty =
(55,59, Ry, Ly) over the set of atomic propositions of f, AP;. S; = 2¢lf)
where el(f) is defined as follows:

el(p) = {p} if p € AP;.

el(=g) = el(g).

el(gV h) = el(g) Uel(h).

el(Xg) = {Xg} Uel(g).

el(gVh) = {X(gVh)} Uel(g) Uel(h).
(

el(Gg) = {XGg} Uel(g).

L labels each state by the set of atomic propositions contained in the
state. Rp(s,s') = Axgeain(s € sat(Xg) & s’ € sat(g)), where sat(f) is
defined as follows:

The initial states of T, 59 = sat(f).
Note that since only LT'L safety properties are considered, the tableau

construction does not include fairness constraints.

Lemma 6.4 [7] for all Af € LTL, M,s [~ Af if and only if there is a state
tin Ty such that t € sat(—=f) and (M x T.),(s,t) E EG(true).

Lemma 6.5 The tableau construction Ty (without fairness constraints) ful-
fills the requirements of Definition 6.1.

29

Our proof is based on the construction in which the states of the tableau
T.; and the states of M are defined over disjoint sets of state variables, and
the states of the product model M x T.; are pairs of states (s,t) where s
is a state of M and ¢ is a state in 7'.;. However, other constructions, which
differ from this one only in that the states of the product model M x T_; are
defined differently, are safe for symmetry reduction as well because they are
equivalent to the first construction.

Proof:

We will show that all three requirements are fulfilled for £ = LTL safety

properties, ¢ = Af, and A, = T.;.

1. According to lemma 6.4, for all ¢ € L, (M |E ¢ & Vs € Sy there
is no state t in T.; such that (s,t) € sat(—=f) and M x T-;,(s,t) |
EG(true)). The set of initial states in T-¢ is sat(—f). Thus by the defi-
nition of a product model we get that there is no state t € sat(—f) such
that M x Ty, (s,t) E EG(true) if and only if M x T ; |= = EG(true)).
Therefore 3y = = EG(true) such that Vo € L (M |E o & M xT;).

2. Since the state of Ty is defined over a set of state variables which
is disjoint from the set of state variables of M, for every invariance
group Gy, of M w.r.t. the maximal boolean subformulas of ¢, no
o € Gy changes the values of the variables which define the state of
Ts. Therefore, for every (s,t) € Syxr,,0((s,1)) = (0(s),1).

3. The only maximal boolean subformula of “EG/(true) is § = true. Ev-
ery (s,1),(s',1) € Suxr., satisfies ((s,1) |= true & (s',1) |= true).

6.2 Safe Construction for RCTL
Model Checking

Another safe construction is the satellite for RCTL formulas defined in [2].
When specifying a property of a model we usually describe what specification
should hold in the model. Another way to specify a property is to describe
what should never hold in the model. A regular expression can be used to
describe the set of “bad” computations. For a regular expression RE, each

30

computation whose prefix RE describes is a “bad” computation. We denote
a regular expression which describes “bad” computations by { RE}(false).

Let A%,y be a finite automaton which is built from the regular expression
RE with an additional self-loop for each accepting state. Let Arp be the
Kripke structure that is generated from A%, by the standard construction
which translates an automaton to a Kripke structure. Each state in Arg
which is generated from an accepting state in A%, is marked with a new
atomic property, matchrg. Finally, M is checked against RE by evaluating
AG(—matchgg) over the product model M x Agp.

RCTL is the subset of C'T'L* which can be translated to a regular expres-
sion. The automaton Agg that is built for a formula ¢ € RCT L is called the
satellite of ¢. The full definition of RCT'L and an algorithm for translating a
CTL formula in this subset to a regular expression specification can be found
in [2].

Lemma 6.6 The satellite construction Ty for RCTL formulas [2] fulfills the

requirements of Definition 6.1.

Proof: We will show that all three requirements are fulfilled for £ = RCTL
and for every ¢ = {RE}(false), for which A, = Agrg.

L. In [2] it was proved that for all p € RCTL, M = ¢ & M x A, =
AG(—matchgg). Thus, 3 = AG(—matchgrg) such that Vo € L (M =
p & M x A, 1)

2. According to [2], the state of A, is defined over a set of state variables
which is disjoint from the set of state variables of M. Thus, for every
invariance group G,, of M w.r.t the maximal boolean subformulas of
@, no o € G, changes the values of the variables which define the
states of A,. Therefore, for every (s,t) € Syxa,,o((s, 1)) = (o(s),1).

3. The only maximal boolean subformula of AG(—~matchg)is f = ~matchp.
The truth value of matchr depends only on the variables which de-
fine the states of A,. Since these variables are disjoint from the vari-
ables which code M, every (s,t),(s',1) € Syxa, satisfies ((s,t) =3 &

(s',1) |= 8).

31

By combining a safe construction with symmetry reduction, we can ap-
ply symmetry reduction to a new set of algorithms. These include symbolic
on-the fly model checking and symbolic LTL model checking algorithms, for
which it was not applicable until now. We implemented our algorithms using
the construction introduced in [2], which enabled us to check RCTL formulas

on-the-fly while using symmetry reduction.

7 Extensions for Liveness Formulas

We now describe two possible extensions that combine classical (not on-the-
fly) symbolic model checking with symmetry reduction. These extensions
are useful for checking liveness properties, as well as other properties which
cannot be checked on-the-fly.

7.1 Liveness Restricted to Representatives

The purpose of this extension is to falsifty ACT L* formulas with respect to a
structure M, while avoiding the construction of its quotient model Mg. The
idea is to get a set of representatives, Rep, and to construct the restricted
model M|g., (see Definition 2.6). Since M|pep <sim M, we have that for
every ACT L* formula ¢, if M|ge, = ¢ then M = . Thus, ¢ can be checked
on the smaller model M |ge,.

Note that in principle this idea works correctly with any set of represen-
tatives, even one that does not include a representative for each orbit. There
are, however, advantages to choosing as Rep the set reach_rep obtained from
the algorithm Symmetry MC. First, since reach _rep includes only reach-
able states, its BDD is usually smaller than the BDD of an arbitrarily chosen
set of states. Second, by construction, the states in reach rep are connected
by transitions, while an arbitrary set of representatives Rep might not be
connected. Thus, M|,cqcn_rep Often includes more behaviors than M|g.,. As
a result, it is more likely that a bad behavior, if one exists, will be found in
M, cach_rep- Third, the states in reach_rep represent many other states in
the system. Thus, if the system includes a bad behavior, it is more likely
that reach rep will reflect it.

32

In order to evaluate liveness properties, we propose the Algorithm Live
_Rep. This algorithm

e Runs Symmetry MC to obtain reach rep.
e Performs classical symbolic model checking on M| cach_rep-

Unfortunately, M|, cach_rep Zbis M even when there is a representative for
each orbit. Consider Figure 6, which shows two symmetric cycles, Cy and C,
in M. The states in reach_rep are marked in black. One orbit is {s1,?;}, and
1 1s its representative. Another orbit is {sq,15}, and ¢; is its representative.
There are two edges, r; and ry, between these two orbits. Since neither rq
nor ro are in M|each_reps M |reach_rep Zois M. This is true even though there
is a representative for each orbit in this example.

¢ ¢
@ o O~

/ /

Cl O CQ

o ‘6/0/ . tz./o/

FigUI’e 6: M|reach_r6p ?—ébis M.

7.2 Liveness with the Representative Relation

We now present another possibility for handling liveness properties. It is
applicable only if no bad generators exist. This method is more expensive
computationally, but is suitable for verification of liveness properties. As in

33

the previous section, we first compute reach _rep using the algorithm Sym-
metry _MC. Then we apply the procedure Create_£, presented below, to
compute the representative relation £ C reach rep x5 (see definition 2.15).
Next we construct M, according to £. Finally, we run classical symbolic
model checking on ¢ and M,,.

Lemma 7.1 If S, contains at least one representative for each orbit, then

M =5 M,,. Otherwise, M, <, M.
Proof: Define the relation B={ (s',s) | dJo € G : o(s') =sAs’ € 5, }. If

S, contains at least one representative for each orbit, then B is a bisimulation
relation for the set of maximal boolean subformulas of ¢. Otherwise, B is a
simulation relation for the set of maximal boolean subformulas of .]

If reach rep is the result of the algorithm Hints_Sym and all generators
are good, then reach rep indeed contains at least one representative for each
orbit, and M, is bisimilar to M. Thus, M,, can be used for verifying full
CTL.

7.2.1 Computing The Representative Relation ¢

Figure 7 presents the BDD-based procedure Create_¢. This procedure builds
the representative relation £ for a given set of representatives, Rep, and a set
of generators, oy,...,0, of an invariance group GG of M w.r.t the maximal
boolean subformulas of .

Suppose that each o; is represented by a BDD, o;(v,v’), and Rep is rep-
resented by a BDD, Rep(v). Create_¢ returns the BDD &(v,0') for the
representative relation £ C Rep x 5.

Note that the computation on line 6 of the algorithm depends on three
sets of BDD variables: v,v’,0”. Such a computation usually results in large
intermediate BDDs that may cause a memory explosion. To avoid this,
we implement line 6 using the operator compose_odd(A(v,v’), B(v",v')),
which computes the BDD 3v/(A(v,v")A B(v”,v")) using two sets of BDD
variables rather than three. Thus, it is expected to result in smaller BDDs.
The operator compose_odd has been defined in [19].

Next we show that for every set of generators {7y, . ..o} and for every set
of representatives Rep, Create_¢ calculates the representative relation ¢ for
the invariance group generated by {7y, ...0.}. According to Definition 2.15,
(s,8') € £ & s € Rep A\ [s] = [¢]. In Create.f, s,s" are represented by

34

Create_{(oq,...0%, Rep)
£(v,0") = Rep(v) A (0 = v')
0ld £(v,7) = o
while 01d_£(v,v") # £(v,)
') = ¢
k

O ~1 O U= W N~
—
o
=
—
Il

return £(v, v')

Figure 7: The algorithm Create_¢ for computing £ C Rep x S

v,v’. Thus, we have to prove that £(v,v’) created by Create_£ satisfies
£(0,) & Rep(o) A [7] = [o]

Let &(v,0") be £(v,v') after ¢ iterations of the “for” statement in algorithm
Create_¢£.

Lemma 7.2 Vi [§(v,0) = (Rep(v) A [v] = [0'])].
Proof: Proof by induction on u:

o {o(v,0") = Rep(v) ANv =1 (line 1).

It follows that (v, v") = Rep(v) A [v] = [v'].

e According to lines 6 and 7, &41(v,0") = &(v,0")V Jo; € {o1,...0%}
F0” (&(v,0") A oj(v",0")). For all v,v" which satisfy &41(v,0"), one of
the following cases is true:

— v, 0" satisfy also &(v, v). In this case v, v’ satisfy Rep(v)A[v] = [0']
since &;(v,0") = Rep(v) A [v] = [v'].

— v, 0" satisfy do; € {o1,... 050" (&(v,0")Aoj(0”,0")). In this case
v satisfies Rep(v) since &;(v,0") = Rep(v) A [v] = [0"] and v, v’
satisfy [v] = [0'] since 0" (&(v,0") A o;(0",0")).

In both cases v, v satisfy Rep(v)A[v] = [v], which implies that &4 (7, ?')
= Rep(v) A [v] = [v'].

35

Lemma 7.3 (Rep(v) A [v] = [v]) = &(v,0"), where £(v,0") is calculated by
Create_¢.

Proof: Assume there exist v,v" which satisfy Rep(v) A [v] = [v] but
do not satisfy £(v,v’). Since v, v’ satisfy Rep(v) A [v] = [¢], there exists
Oj1sOjyyeeey 04, € {01, ... op } such that 0;,04,...0;,(v) = 0.

Let v" be 0;,05,.,...0;,(v) for the highest ~ which does not satisfy {(v, ")
and let v* be o, ,...0;,(v) for the same h.

According to these definitions, &(v,v*) A =£(v,0”). Assume ¢ is the first it-
eration of Create_{ in which & (v,v*) is satisfied. Since o;, € {oy,...04},
v" satisfies do;, € {oy,...0,} F0*(&(v,0%) A oy, (0%,0")) in iteration i. Ac-
cording to lines 6 and 7, v, v” satisfy &41(v,0"”), which implies that they also
satisfy £(v,0"), in contradiction to the definition of v”.]

Corollary 7.4 The relation & computed by Create_{(oy,...0, Rep) is the
representative relation for Rep and the invariance group generated by

{o1,...0L}.

7.2.2 Robustness for Falsification

The relation ¢ constructed by Create_¢ will be used in order to define a
reduced model, as defined in 2.16. If the set Rep contains at least one
representative from each orbit, then Create_{ returns exactly the relation ¢
used in the definition of R,,. Let this £ be denoted by &,,.

Below we show that we can also get meaningful results in other cases.
First assume that Rep does not include at least one representative from each
orbit. In this case, £ does not contain pairs of states from the unrepresented
orbits, and & C &,,.

Now assume that time or space limitations have prevented the computa-
tion of £ from being completed (meaning that the computation of Create_¢
is stopped before old_¢ = £). In this case £ might not associate each repre-
sentative with all the states in its orbit. As a result, ¢ C ¢,,.

For any set Rep and for any partially computed £, we can define the
Kripke Structure Mg, = (SRep,S%SP,RRSP,LRw) in which Sg., = Rep,
Shep = 35'€(s,5") A So(s'), Rrep = € RE, Lrey = L. If € = &, then Rpe, =

R,,, and there is a bisimulation relation between M and Mpg., for the set

36

of maximal boolean subformulas of ¢ (since Mpe, =pis My, =pis M). This
implies that M and Mg, agree on every C'T'L* formula. If £ C ¢, then
Rp., C R, and there is a simulation relation between Mp,, and M for the
set of maximal boolean subformulas of ¢ (since Mgy <sim My =wis M).
Thus, for every ACT L* formula ¢, if Mp., = ¢ then M [~ .

We conclude that the algorithm Create_¢ is robust for falsification in the
presence of incomplete Rep or €.

8 Iterative Symmetry Reduction

In this section we discuss another way to exploit symmetry for falsification of
safety properties. This time the method is based on a variant of the procedure
Create_{, presented in the previous section. In section 4 we showed how
to use o_Step to avoid building the orbit relation. Another way to avoid
building the full orbit relation is to build it iteratively. In each iteration, only
a subset of the orbit relation, which is represented by a relatively small BDD,
is built. This approach makes it possible to improve the algorithm presented
in [18]. To this purpose we introduce the function Create_¢_limit (Figure 8),
which is identical to Create_£ except for one change. Create_¢ _limit stops
calculating the £ relation when the BDD size is larger than 1imit. We use
Create_¢_limit iteratively on different sets of representatives in order to
build different subsets of the orbit relation. We use these subsets of the orbit
relation to search different subsets of the transitions of the quotient model
in each iteration.

Lemma 8.1 Given two sets of states A, B, if A C B then
Create {(oy,...04,A) C Create_{(oy,...0%, B).

Proof: Let &(v,0") be £(v,v") after [executions of the “for” statement in
algorithm Create_£. The proof is by induction on {:

o {4,(0,0") = (A(v) Ao = 0') and €, (v,0") = (B(v) Ao = 0') (line 1).
Since A C B, it follows that 4,(v,v") C &g, (v, 0").

b fAi+1 (ﬁv @/) = gAi(ﬁv ﬁ/)\/HO']‘ € {017 s O-k}zlﬁ”(gAi(ﬁ
fBi+1(ﬁv ﬁ/) = gBi(ﬁv @/) N EIU] € {017 s O-k}zlﬁ”(gBi v,V
(lines 6,7). By the induction hypothesis, £4,(v,v") C &g, (v,0"). It
follows that &4,,,(0,0") C B, (0,0").

37

Create_¢_limit(oy,...0%, Rep, 1limit)
1 £(v,0") = Rep(v) A (v ="7")
0ld £(v,v") = ¢
while 01d_£(v,v") # £(v,0')
and BDD size(¢(v,0")) < limit
01d £(v,v") = &(v,0)
forj=1...k
new(v,v") = 30'(&(v,0") A o;(0", 7))

SO =1 O Ot

return £(v, v’)

Figure 8: The algorithm Create_¢_limit for computing ¢ C Rep x S with
limit on the BDD size

|

Let M = (5, S0, R, L) be a Kripke structure and {o1,...,04} be a set of
generators of a symmetry group G of M. In addition, let ¢ be a formula of the
form AG(p) where p is a boolean formula. The algorithm Iterative_Sym,
presented in Figure 9, applies on-the-fly model checking for M and ¢, using
iterative symmetry reduction.

Iterative_Sym uses Create_£_limit to build, in each iteration, the re-
lation &;. If the size of the BDD which represents the representative relation
¢ for Rep is larger than limit, Create_¢_limit returns ¢ C £. After calcu-
lating &;, Iterative_Sym calculates a new model M’. M’ is different from
the quotient model M,, in two respects. First, it is built using & and not the
full representative relation £. Since the size of the BDD which represents ¢&;
is smaller in most cases than ¢, there is a high probability that the BDDs
which represent M’ are smaller than the BDDs which represent M,,. Second,
R = 'R N (Rep x Rep). Note that R’ is restricted to states in Rep and
not in Rep;. If it were restricted to states in Rep;, Create_¢_limit might
miss reachable representatives. To see how this might happen, consider three
states, s1, s9 and s3, as shown in Figure 10. s; and s, are related by R, and s3
and s, are in the same orbit for which s3 is the representative. Assume that
(83,82) € & because Create_£_limit did not find (ss, ;) in iteration i. As

38

Iterative_Sym(M, ¢, o4,...0%, Rep, limit)
1 Calculate the generators of the invariance group of M

IG = {o;] for all maximal boolean subformulas 8 of ¢: o;(8) = 5}

2 prev_reachable states = ¢
3 reachable states = Sy
4 i=0
5 Repg = Rep
6 while (Rep; # ¢/prev_reachable states # reachable_states)
7 old_reachable states = reachable states
8 ¢, = Create_{_limit (o1, ...04, Rep;, limit)
9 build M’ according to &;
10 (S" = Rep, S, = &' So, R = & 'R0 (Rep x Rep) and L' = L)
11 reachable_states = the reachable states of

M’ U reachable states
12 if a “bad” state is found while calculating

the reachable states of M’

13 generate counterexample and break
14 i=1+4+1
15 Rep; = Rep | reachable states.
16 Sy = reachable_states.

Figure 9: The algorithm Iterative_Sym evaluates ¢ using iterative symme-
try reduction

a result, (s1,s3) € R’ and s3 is not found to be a reachable representative in
this iteration. In iteration 1+ 1, s; is no longer in Rep;y; since it was already
in reachable_states (line 15) even though (s3,s2) € &41. If we restrict R’
to Rep;t1, we get that (s1,s3) is not in R’. Thus, s3 is also not found to be
reachable in iteration 7 + 1.

If we restrict R’ to Rep, then, since s3 € Rep, (s1,s3) € R’ and s3 is
entered into reachable_states in iteration ¢ + 1. Once M’ is constructed,
a “bad” state found in M’ will cause a counterexample to be generated. If
a “bad” state is not found, the set reachable states is a subset of the
union of the reachable states of M,, and the initial states of M. We mark
them as the initial states of the next iteration and build §; again only for the

39

$2
®

Figure 10: Two iterations of Iterative_Sym

representatives which are not known to be reachable states in M,,. In the
next iteration we build &4, for a smaller set of representatives. Therefore
we may build a larger portion of £ for these representatives before we reach
the limit in Create_£ _limit. As a result, we might discover new states when
computing the set of reachable states for M’ in iteration ¢ 4 1.

We now prove the correctness of the algorithm Iterative_Sym for falsi-
fication of safety properties. First we show that the transition relation R’,
which is built in each iteration of Iterative_Sym, is a subset of the transi-
tion relation R, of the quotient model M,,, defined for rep (see definition

2.16).
Lemma 8.2 Given a representative relation £, E~'RN(Repx Rep) C €' RE.

Proof: (s,s') € {'RN (Rep x Rep) =
(s,s') € 'R A s € Rep =
(s,8)EETTRA(s,8) € &= (s,8) € ETIRE. |

Let &, be the representative relation for the set of representatives Rep
given as parameter to Iterative_Sym (definition 2.15).

Lemma 8.3 For every ileration ¢ of algorithm Iterative_Sym, & C &,,.

Proof:

40

o According to line 15, Rep; C Rep for all .. By Lemma 8.1 we get that
for all 7,
Create_{(oy,...04, Rep;) C Create {(oy,...0%, Rep).

e Create_{_limit(oy,...ox, Rep;, limit) is identical to Create_¢ except
that it may be stopped after fewer iterations. In addition, once a
pair of states is entered to £(v,v’), it is not removed in either algo-
rithm. It follows that Create_¢_limit(oy,. ..o, Rep;, limit) C Cre-
ate {(oy,...0k, Rep;).

e By corollary 7.4, Create_{(oq,...0%, Rep) produces the representative
relation &, for the set of representatives Rep.

It follows that for all iterations ¢ of Iterative_Sym, ¢, = Create_{_limit
(01,...0%, Rep;, limit) C &,.]

Lemma 8.4 For cvery iteration 1 of algorithm Iterative Sym, R C R,,.

Proof: According to Lemma 8.3, for every iteration i of algorithm It-
erative Sym, & C &,. This implies that R = & 'R N (Rep x Rep) C
EPRN (Rep x Rep) Cremma s.2 £, REn = R]

Next we show that if Iterative_Sym finds a “bad” state, this state is a
“bad” reachable state of structure M,,.

Lemma 8.5 For every iteration 1 of Iterative_Sym, every s € reacha
ble_states is either a reachable representative in M, or an initial state of

M.

Proof: Let reachable states; be the set reachable_states after itera-
tion 7. The proof is by induction on ¢:

e For every s € reachable statesg, s is in Sy, and thus it is an initial
state of M.

e [or every s € reachable states; , one of the following cases is true:

— sisin reachable states;. In this case, according to the induction
hypothesis, s is either reachable in M,, or an initial state of M.

41

— There exists a state s’ € S) from which s is reachable in M.
According to Lemma 8.3, 41 C &,. It follows that all states
in f;l_ll (reachable_states;) are representatives of orbits in which
there are states from reachable states;. According to the induc-
tion hypothesis and because S| = f;l_ll (reach able_states;), s is
either a representative of an initial state of M or a representative
of a reachable orbit in M,,. In both cases s’ is reachable is M,,.
By Lemma 8.4, R' C R,,. Thus, s is either reachable in M,, or an
initial state of M as well.

|
The conclusion from the previous lemma is that if a “bad” state is found
by Iterative_Sym, M does not satisfy .

9 Experimental Results

We implemented the algorithms Hints_Sym, Live Rep, Iterative_Sym,
Create_¢ and Create_¢_limit in the IBM model checker RuleBase [1]. We
ran it on a number of examples which contain symmetry. For each example
we tuned our algorithms according to the evaluated formula, the difficulty
level of computing the reachable states, and the difficulty level of building
the transition relation. In most cases, our algorithms outperformed RuleBase
with respect to both time and space. In the tables below, time is measured in
seconds, memory (mem) in bytes, and the transition relation size (TR size)
in the number of BDD nodes.

The Futurebus example: We ran the algorithm Live_Rep in order to
check liveness properties on the Futurebus cache-coherence protocol with a
single bus and a single cache line for each processor. We checked the property
“along every path infinitely often some processor is in exclusive write.” This
property fails because our model does not include fairness constraints. The
table in Figure 11 presents the results of evaluating the property for different
numbers of processors. For comparison, we also ran the RuleBase classical
symbolic model checking algorithm. Both algorithms applied dynamic BDD
reordering. Dynamic BDD reordering is very important because the best
BDD order for the classical algorithm is different from the best BDD order for
our algorithm. In order to obtain a fair comparison between these algorithms,

42

we ran each one twice. In the first run, the algorithm reordered the BDD
with no time limit in order to find a good BDD order. The initial order of
the second run was the BDD order which was found by the first run.

The most difficult step in the Futurebus example is building the transition
relation. When the transition relation was restricted to the representatives
which were chosen on-the-fly, its size decreased and, as a result, the evaluation
became easier. In this case we chose to complete the calculation of o_Step in
order to obtain the maximal reduction in the size of the transition relation.
Figure 11 shows that both time and space were reduced dramatically using
Live Rep. We can also observe that the larger the number the processors
was, the better the results were. This is to be expected, as the increase in
the number of the reachable representatives is smaller than the increase in
the number of reachable states.

classic algorithm Live_Rep

of processors | vars | time | mem | TR size | time | mem | TR size
5 45 132 | 43M | 144069 | 101 | 41M | 122769
6 54 607 | 118M | 260625 | 265 | 56M | 219572
7 63 2852 | 277M | 418701 | 704 | T76M | 379428
8 72 8470 | 589M | 839055 | 3313 | 101M | 457781
9 81 | 81,171 | 709M | 1935394 | 4571 | 106 M | 819871
10 90 - > 1G - 14909 | 120M | 642083

Figure 11: Hints_Sym on Futurebus example

The Arbiter example: We ran algorithm Hints_Sym on an arbiter ex-
ample with n processes. We checked the arbiter with regard to RCTL formu-
las which were translated to safe A, and ¢. For comparison, we ran RuleBase
on-the-fly model checking and on-the-fly model checking with hints (without
symmetry). All algorithms used dynamic BDD reordering and a partitioned
transition relation [11]. In this case we calculated o_Step only when we
changed hints and stopped o_Step before the fixed point was reached. The
table in Figure 12 presents the results of the three algorithms on arbiter with
6, 8 and 10 processes. For each case we checked one property that passed and
one that failed. We note that Hints_Sym reduced time but not necessarily
space. This can be explained by the fact that o_Step produced large inter-
mediate BDDs but resulted in a significant reduction in \5;, thus reducing the
computation time of the image steps.

43

status | # on-the-fly | on-the-fly + hints | Hints_Sym
of processors vars | time | mem | time mem time | mem
6 passed 65 53 | 40M 39 40M 42 | 40M
6 failed | 65 | 213 | 52M 64 41M 51 | 8™
8 passed 84 | 581 | 64M | 255 A49M | 179 | 87TM
8 failed | 84 | 745 | 7T1IM | 524 7T1IM | 292 | 83M
10 passed | 105 | 1470 | 94M | 598 67M | 358 | 92M
10 failed | 105 | 1106 | 93M | 740 73M | 520 | 91M

Figure 12: Hints_Sym compared to other on-the-fly algorithms

Comparing Create_¢ and Orbit_To_¢: [18] presents an algorithm for
computing ¢ by building the orbit relation and then choosing the representa-
tives. We refer to this algorithm as Orbit_To_¢ and compare it to Create ¢.
Both algorithms find the representative relation £ C Rep x S for the set of
representatives Rep chosen according to the lexicographic order. The results
in Figure 13 show that Create_£ gave better results in both time and space.
We believe that this is because it saves less information while building ¢.

num of generators | num of vars orbit_to £ Create £

time | mem time mem

3 16 | 0.26 26M 0.23 | 26M
4 20 | 304 33M 1.2 28M
5 24 11017 | 114M 18 | 42M
6 28 - | >1.5G 735 | 132M
7 32 - | >1.5G | 29083 | 1.2G

Figure 13: Create_¢ compared to Orbit_To_¢

Combinatorial Covering Suites: We ran Iterative_Sym on the Com-
binatorial Covering Suites problem. This problem is taken from the world of
testing and coverage. Let Dy, D,, ..., Dy be the domains of k input variables.
Each test vector is an assignment to all input variables, and a test suite with
N tests is an array of N test vectors. A is a 2-wise covering suite if for every
two distinct input variables v;,v; and every T' € D; x D; there exists a test
vector in which the assignment to v; and v; is equal to T'. The covering suite
number is the minimum integer N such that there exists a 2-wise covering
suite with N test vectors. Combinatorial covering suites is based on the in-

44

tuition that when testing a program where each test is an assignment to all
inputs, it is preferable to use the smallest test suite that still contains all
combinations of inputs. The covering suite number is the minimal size of a
test suite with such a property. We model the problem in RuleBase. We
wrote a specification on the model which must fail if there exists a covering
suite of size k. The counterexample to the specification was the k£ vectors of
the covering suite. We observed that when the input variables are over the
same domain, there is a symmetry between them. Changing the order of the
input variables in the covering suite results in another covering suite. We ran
Iterative_Sym and RuleBase on-the-fly model checking on a special case of
the problem where all inputs are boolean. We compared these algorithms on
different numbers of inputs. Iterative_Sym reduced both time and space.
We gave Iterative_Sym the set of all the smallest representatives, ordered
lexicographically, as the parameter Rep. We believe Iterative Sym was
successful in this example because sets of lexicographically ordered small-
est representatives were compressed. However, our experience shows that in
most cases the sets of lexicographic representatives are not compressed in
their BDD size. In these cases we expect that Hints_Sym will give better
results. The table in Figure 14 presents the results of Iterative_Sym on
different numbers of inputs.

num of inputs | num of vars | Iterative_Sym | on-the-fly | on-the-fly + hints
time | mem | time | mem | time mem
5 45 5.6 | 39M | 318 | 86M 17.7 67M
6 66 32 | 41M - | >1G | 159605 1624M
7 91 36 | 41M - | >1G - >1G
8 120 103 | 42M - | >1G - >1G
9 153 175 | 50M - | >1G - >1G
10 190 852 | 92M - | >1G - >1G
11 231 | 4429 | 112M - | >1G - >1G
12 276 | 26240 | 177TM - | >1G - >1G
13 325 | 66103 | 303M - | >1G - >1G

Figure 14: Iterative_Sym compared to RuleBase on-the-fly and on-the-fly+hints

45

10 Conclusions and Directions for Future Re-
search

The main contribution of this work is the introduction of an on-the-fly model
checking algorithm that combines under-approximation with symmetry re-
duction, chooses the representatives according to BDD criteria, and avoids
building the orbit relation. In addition, we introduce another iterative on-
the-fly algorithm that builds subsets of the orbit relation rather than the full
relation.

We show how to extend our algorithms both for temporal safety prop-
erties, based on a definition of safe for symmetry reduction constructions,
and for liveness properties. We also show how to build the invariance group
automatically from a given symmetry group.

Our work can be extended in several ways. First, rather than using hints
to define the under-approximation (as is done in Hints_Sym), we can apply
Symmetry MC with other criteria for choosing the next set of states to
explore. A useful possibility may be high-density, presented in [21].

In addition, our work can be combined with algorithms that use subsets
of the reachable states. Often, if the algorithm is applied to some subset of
states A, it is unnecessary to apply it to states which are symmetric to states
in A. In these cases we may use o_Step in order to ignore states which are
symmetric to states in A without building the orbit relation. For example,
o_Step can be used in Prioritized Traversal [15]. There, the BDDs in the
priority queue can be reduced by eliminating states which are in the orbits
of states that were already explored.

Acknowledgments: We thank Cindy Fisner for many helpful discussions.
We also thank Somesh Jha for his help with the examples.

References

[1] 1. Beer, S. Ben-David, C. Eisner, and A. Landver. RuleBase: An
industry-oriented formal verification tool. In Design Automation Con-

ference, pages 655660, June 1996.

46

2]

[10]

[11]

I. Beer, S. Ben-David, and A. Landver. On-the-fly model checking of
RCTL formulas. In A. J. Hu and M. Y. Vardi, editors, Proceedings of the

10th International Conference on Computer-Aided Verification, volume

1427 of LNCS, pages 184-194. Springer-Verlag, June 1998.

R. Bloem, K. Ravi, and F. Somenzi. Symbolic guided search for CTL
model checking. In Design Automation Conference, pages 29-34, June
2000.

M. Browne, E. Clarke, and O. Grumberg. Characterizing finite Kripke
structures in propositional temporal logic. Theoretical Comput. Sci.,

59:115-131, 1988.

R. E. Bryant. Graph-based algorithms for boolean function manipula-
tion. IEEE transactions on Computers, C-35(8):677-691, 1986.

J. R. Burch, E. M. Clarke, K. L. McMillan, D. L. Dill, and L. J. Hwang.
Symbolic model checking: 10?° states and beyond. Information and
Computation, 98(2):142-170, June 1992.

E. Clarke, O. Grumberg, and H. Hamaguchi. Another look at LTL
model checking. Formal Methods in System Design, 10(1), 1997.

E. Clarke, O. Grumberg, and D. Peled. Model Checking. MIT Press,
December 1999.

E. M. Clarke, E. A. Emerson, and A. P. Sistla. Automatic verification of
finite-state concurrent systems using temporal logic specifications. ACM

Trans. Prog. Lang. Syst., 8(2):244-263, 1986.

C.N. Ip and D.L. Dill. Better verification through symmetry. In D.
Agnew, L. Claesen, and R. Camposano, editors, Computer Hardware
Description Languages and their Applications, pages 87-100, Ottawa,
Canada, 1993. Elsevier Science Publishers B.V., Amsterdam, Nether-

lands.

D. Geist and 1. Beer. Efficient model checking by automated ordering
of transition relation. In David L. Dill, editor, Proceedings of the Sizth
International Conference on Computer-Aided Verification, volume 818,
pages 299-310. Springer-Verlag, June 1994.

47

[12]

[13]

[14]

[15]

E. A. Emerson and A. P. Sistla. Symmetry and model checking. In
C. Courcoubetis, editor, Proceedings of the 5th International Conference
on Computer-Aided Verification, volume 697 of LNCS. Springer-Verlag,
June 1993.

E. A. Emerson and A. P. Sistla. Utilizing symmetry when model-
checking under fairness assumptions: An automata-theoretic approach.
ACM Transactions on Programming Languages and Systems, 19(4):617—
638, July 1997.

E. A. Emerson and R. J. Trefler. From asymmetry to full symmetry:
New techniques for symmetry reduction in model checking. In Con-
ference on Correct Hardware Design and Verification Methods, pages
142-156, 1999.

R. Fraer, G. Kamhi, B. Ziv, M. Y. Vardi, and L. Fix. Prioritized traver-
sal: Efficient reachability analysis for verification and falsification. In
E. A. Emerson and A. P. Sistla, editors, Proceedings of the 12th In-
ternational Conference on Computer-Aided Verification, volume 1855 of

LNCS, pages 389-402. Springer-Verlag, July 2000.

O. Grumberg and D. Long. Model checking and modular verification.
ACM Trans. on Programming Languages and Systems, 16(3):843-871,
1994.

V. Gyuris and A. P. Sistla. On-the-fly model checking under fairness that
exploits symmetry. Formal Methods in System Design: An International
Journal, 15(3):217-238, November 1999.

S. Jha. Symmetry and Induction in Model Checking. PhD thesis, CMU,
1996.

S. Katz. Coverage of model checking. Master’s thesis, Technion, Haifa,
Israel, 2001.

K. L. McMillan. Symbolic Model Checking: An Approach to the State
Explosion Problem. Kluwer Academic Publishers, 1993.

K. Ravi and F. Somenzi. High-density reachability analysis. In Proc.
Intl. Conf. on Computer-Aided Design, pages 154-158, November 1995.

48

[22] A. P. Sistla, V. Gyuris, and E. A. Emerson. SMC: a symmetry-based
model checker for verification of safety and liveness properties. Software

Engineering and Methodology, 9(2):133-166, 2000.

[23] C. H. Yang and D. L. Dill. Validation with guided search of the state
space. In Design Automation Conference, pages 599-604, June 1998.

A ACTL" Preservation Over a Kripke Struc-
ture with Finite Paths

Lemma 2.2 states that for every ACTL* formula ¢ over a set of boolean
formulas BS over AP and two Kripke structures M, M’ over AP, if M <,
M’ then M' = ¢ = M = ¢. This lemma is proved in [16] for every two
Kripke structures with infinite paths. In this appendix we show that Lemma
2.2 is true for every two Kripke structures with finite paths as well.

First we define the semantics of ACTL* over a Kripke structure with
finite paths.

An infinite path 7 in a Kripke structure M is an infinite sequence of
states sg, s1,82,... in which Vi > 0 (s;,8,41) € R. A finite path 7 in a
Kripke structure M is a finite sequence of states sg, s1,82,...8, in which
V0 <i <n (8,84+1) € R and there is no state s’ in M such that (s,,s') € R.
As before, m* denotes the suffix of 7 starting at s;.

The size of a path 7, |7|, is defined as follows:

e if 7 is an infinite path then |7| = inf, where inf > n for all n > 0.
e if 7 is a finite path, 7 = s¢, s1, 82, ..., 8, then |7| = n.

For a state formula ¢, we write M, s =7, @ to indicate that ¢ is true in
state s and for a path formula ¢, we write M, 7 =4, ¥ to indicate that v is
true along m where m might be finite.

The relation =y, is defined as follows, assuming that ¢; and @5 are state
formulas and ; and 3, are path formulas.

i M?‘S |:fmp<:>p S L(S)

L M,S |:fm p = M,S |7£fm p.

49

o M,s|Epin o1 V2 M,s = o1 or M, s =pin @
o M,s Ejin o1 N2 & M, s Efin o1 and M, s Epim .

o M,s =i Ay & for every path m = s, s1,... in M such that so = s,
M,Tf' |:fm 77/)1.

o M, 7 Efin v1 < s is the first state of m and M, s =4, ¢1.

o M, [=ypin b1 Viba & M, [=pin b1 or M, T [E i 2.

o M,m Epim i Npg & M, m Epin 1 and M, m =iy s

o M. 7 Xtby & 7| =0o0r M, 7t Epi 1.

o M,m =t 01Uty & |7T| =nATE[0<k<nAk#infAM,r* |:'fm Yy
and V0 < i <k: M,n" |Epin 1] or [n £inf AV0<i<n M7 =
]

o M,m Efin 1 Vihy & VO < k <n [if VO <1<k M, 7w [, 1y then
M, 7% | fin s

There exist different definitions of =, in the literature. These definitions
guarantee that liveness properties actually hold before the path is ended. In
this case the simulation relation should be defined differently. We use the
regular simulation relation but change the definition of |= .

Lemma A.1 If M,s <,;,, M',s" then for every path m = sg,81,... from
s = 8o in M there exists a path ' = s, s},... in M' such that |7| < |n'| and
fO?“ every i S |7T|} M7 Si Ssim Ml?‘sg"

Proof: Given any path m = sg,s1,... from s = sg in M we show how
to build 7" = s{,s],... in M’ such that || < |7'| and for every i < |7],

(A
M,SZ' Ssim M?‘Si‘
® S5 =S.

e For every 0 < ¢ < |r|, assume that s},s),..., s’ has already been
defined such that M,s; <g., M’,s.. Since M,s; <y, M’ s and
(8i,8i41) € R, there exists ¢ such that (s},¢) € Rand M, s;41 <gm M', 1.
We choose s, = 1.

50

Lemma A.2 If M,s <, M', s then for every
o € ACTL M',s' =i 0 = M, s Epin -

Proof: The proof is by induction on ¢. It is identical to the proof in [16]
except for the following changes:

o v = Ap,.
M, s Ein ¢ if and only if for every path from s, M, 7 i, ¢1. Let
7 be any path from s. According to Lemma A.l there is a path =’
from s’ such that |7| < || and for every ¢ < ||, M, s; <gim M', st If
M',s" \=tin @, then M' 7" |=4i 1 for every path 7’ from s’. By the
induction hypothesis we get that for all = from s, M, 7 |=fi, ¢1. Thus
M, S |:fm P.

e For every path formula v we show that for every 7 in M and =’ in M’
such that |7| < |7'| and for all i < |7|, M, s; <gm M, s,

M’,?T/ |:fm 77/) = M,?T |:fm 77/)

— ¢ =Xy
M’ 7' i b implies that |7/| = 0 or M/, 7" =y . I 7| =0
then M, 7 [y, ¢. Otherwise, since |r| < |7/|, |7 < |7"!| and
|7l > 0. In addition, for all i < |7'|, M,siy1 <sim M',si.,. By
the induction hypothesis we get that M, 7! |=;;, ¢, which implies
that M,Tf' |:fm 77/)

— b =1 Uty
M, 7" Ein ¢ where |7'| = n implies that k[0 < k < n Ak #
inf A M, 7' =i Yy and VO < 0 < k@ M 7" =g, i) or
[n #inf AV0 <i<n M 7" =, ¥1]. Assume there is i < |7
such that M, 7" i o and Vj < 4, M, 70 [epin 9. Then by
the induction hypothesis and the fact that |7| < |7'[, we get that
there is 7 < |7'| such that M', 7" b~ i 10y and V5 < 0@ MY 7" B abs,

in contradiction to the assumption that M’ 7’ =4, ¢.

51

