
Efficient Automatic STE Refinement Using
Responsibility

Hana Chockler1 and Orna Grumberg2 and Avi Yadgar2

1 IBM Research
Mount Carmel, Haifa 31905, Israel.

hanac@il.ibm.com

2 Computer Science Department
Technion, Haifa, Israel.

orna,yadgar@cs.technion.ac.il

Abstract. Symbolic Trajectory Evaluation (STE) is a powerful technique for
hardware model checking. It is based on 3-valued symbolic simulation, using
0,1, and X (“unknown”). X is used to abstract away values of circuit nodes, thus
reducing memory and runtime of STE runs. The abstraction is derived from a
given user specification.
An STE run results in “pass” (1), if the circuit satisfies the specification, “fail” (0)
if the circuit falsifies it, and “unknown” (X), if the abstraction is too coarse to de-
termine either of the two. In the latter case, refinement is needed: The X values of
some of the abstracted inputs should be replaced. The main difficulty is to choose
an appropriate subset of these inputs that will help to eliminate the “unknown”
STE result, while avoiding an unnecessary increase in memory and runtime. The
common approach to this problem is to manually choose these inputs.
This work suggests a novel approach to automatic refinement for STE, which is
based on the notion of responsibility. For each input with X value we compute
its Degree of Responsibility (DoR) to the “unknown” STE result. We then refine
those inputs whose DoR is maximal.
We implemented an efficient algorithm, which is linear in the size of the circuit,
for computing the approximate DoR of inputs. We used it for refinements for
STE on several circuits and specifications. Our experimental results show that
DoR is a very useful device for choosing inputs for refinement. In comparison
with previous works on automatic refinement, our computation of the refinement
set is faster, STE needs fewer refinement iterations and uses less overall memory
and time.

1 Introduction

Symbolic Trajectory Evaluation (STE) [13] is a powerful technique for hardware model
checking. STE is based on combining 3-valued abstraction with symbolic simulation.
It is applied to a circuit M , described as a graph over nodes (gates and latches). The
specification consists of assertions in a restricted temporal language. An assertions is of
the form A =⇒ C, where the antecedent A expresses constraints on nodes n at different
times t, and the consequent C expresses requirements that should hold on such nodes
(n, t). Abstraction in STE is derived from the specification by initializing all inputs not
appearing in A to the X (“unknown”) value.

An STE run may result in “pass” (1), if the circuit satisfies the specification, “fail”
(0) if the circuit falsifies it, and “unknown” (X), if the abstraction is too coarse to
determine either of the two. In the latter case, a refinement is needed: The X values of
some of the abstracted inputs should be changed.

The main challenge in this setting is to choose an appropriate subset of these inputs,
that will help to eliminate the “unknown” STE result. Selecting a “right” set of inputs
for refinement is crucial for the success of STE: refining too many inputs may result in
memory and time explosion. On the other hand, selecting too few inputs or selecting
inputs that do not affect the result of the verification will lead to many iterations with
an “unknown” STE result.

The common approach to this problem is to manually choose the inputs for re-
finement. This, however, might be labor-intensive and error-prone. Thus, an automatic
refinement is desired.

In this work we suggest a novel approach to automatic refinement for STE, which
is based on the notion of responsibility. For each input with X value we compute its
Degree of Responsibility (DoR) to the “unknown” STE result. We then refine those
inputs whose DoR is maximal.

To understand the notion of responsibility, consider first the following concepts. We
say that event B counterfactually depends on event A [9] if A and B both hold, and
had A not happened then B would not have happened. Halpern and Pearl broadened
the notion of causality saying that A is a cause of B if there exists some change of the
current situation that creates the counterfactual dependence between A and B [8].

n1=1

n2=1

n=1

n1=0

n2=0

n=0

(a) (b)
Fig. 1. Cause

As an example, consider the circuit in Figure 1(a).
The event “n = 1” counterfactually depends on the event
“n1 = 1”. Next consider the circuit in Figure 1(b). “n1 =
0” is a cause of “n = 0”. This is because if we change
n2 from 0 to 1, then “n = 0” counterfactually depends on
“n1 = 0”. Similarly, “n2 = 0 is a cause of “n = 0”.

The notion of responsibility and of weighted responsibility, introduced in [4], quan-
tifies the change that is needed in order to create the counterfactual dependence. The
DoR of A for B is taken to be 1/(k +1), where k is the size of the minimal change that
creates the counterfactual dependence. For instance, in the example above, the DoR of
“n1 = 0” for “n = 0” is 1/2, because the minimal change that creates a counterfactual
dependence is of size 1 (changing the value of n2 from 0 to 1). In this work we use
weighted DoR in order to obtain a finer-grain quantification for changes, in the context
of STE.

Computing responsibility in circuits is known to be intractable in general [4]. In-
spired by the algorithm for read-once formulas in [3], we developed the algorithm
RespSTE for efficiently computing an approximate DoR. Computing the responsi-
bility of the inputs for some output of a circuit involves one traversal of the circuit for
each X valued input in the cone of influence of the output. The overall complexity is
therefore only quadratic in the size of the circuit.

In order to evaluate our algorithm RespSTE, we implemented it and used it in
conjunction with Forte, a BDD based STE tool by Intel [14]. We applied it to several
circuits and specifications. We compared our results with the automatic refinement for
STE, suggested in [15]. In all cases, the comparison shows a significant speedup. A
significant reduction in BDD nodes is also gained in most of the assertions. In some of
the cases, our algorithm needed fewer refinement iterations.

The DoRs we compute gives us a quantitative measure of the importance of each
input to the STE “unknown” result. By examining these values, we conclude that this
quantitative measure is of high quality and is complying with our understanding of the
problem as users who are familiar with the models.

When using these results for automatic refinement, the quality of the results is re-
flected by the number of refinement iterations that were required, and in the number
of symbolic variables that were added to the assertion. We point out that even when
a non-automatic (manual) refinement is applied, our DoRs can serve as recommended
priorities on the candidate inputs for refinement.

Related Work Abstraction-Refinement takes a major role in model checking [6, 10]
for reducing the state explosion problem. In [5], it is shown that the abstraction in STE
is an abstract interpretation via a Galois connection. In [17], an automatic abstraction-
refinement for symbolic simulation is suggested. However, the first automatic refine-
ment for STE has been suggested in [15]. In this refinement scheme, the values of the
circuit nodes, as computed by STE, are used in order to trace X paths, and refine the
STE assertion by adding symbolic variables to A. While this work is the closest to ours,
it is essentially different from using the responsibility concept. We compare our results
to this work in Section 5. In [2], an automatic refinement for GSTE is suggested. This
method, like [15], traverses the circuit nodes after running STE, and performs a model
and an assertion refinement. This method is also essentially different from ours, as it is
aimed at solving GSTE problems, where an assertion graph describes the specification,
and is used in the refinement process.

SAT based refinements were suggested in [12] and [7]. The method presented in
[12] is used for assisting manual refinement. The method presented in [7] takes an au-
tomatic CEGAR approach which is applicable only in the suggested SAT based frame-
work. In [1], a method for automatic abstraction without refinement is suggested. We
believe that our algorithm can complement such a framework.

The rest of the paper is organized as follows. In Section 2 we give the needed back-
ground for STE and present the formal definitions of causality and responsibility. Sec-
tion 3 shows how to define and compute the degrees of responsibility (DoR) in the
context of STE refinement. Section 4 describes the abstraction and refinement loop
for STE with responsibility. Section 5 presents our experiments and concludes with an
evaluation of the results.

2 Preliminaries
2.1 Symbolic Trajectory Evaluation (STE)
A hardware model M is a circuit, represented by a directed graph. The graph’s nodes
N are input and internal nodes, where internal nodes are latches and combinational
gates. A combinational gate represents a Boolean operator. The graph of M may contain
cycles, but not combinational cycles. A graph of a circuit is shown in Figure 4(a). Given
a directed edge (n1, n2), we say that n1 is an input of n2. We denote by (n, t) the value
of node n at time t. The value of a gate (n, t) is the result of applying its operator on the
inputs of n at time t. The value of a latch (n, t) is determined by the value of its input

at time t− 1. The bounded cone of influence (BCOI) of a node (n, t) contains all nodes
(n′, t′) with t′ ≤ t that may influence the value of (n, t), and is defined recursively as
follows: the BCOI of a combinational node at time t is the union of the BCOI of its
inputs at time t, and the BCOI of a latch at time t is the union of the BCOI of its inputs
at time t− 1. The BCOI of a node with no inputs is the empty set.

In STE, a node can get a value in a quaternary domain Q = {0, 1, X,⊥}. A node
whose value cannot be determined by its inputs is given the value X(”unknown”). ⊥ is
used to describe an over constrained node. This might occur when there is a contradic-
tion between an external assumption on the circuit and its actual behavior.

A state s in M is an assignment of values from Q to every node, s : N → Q.
A trajectory π is an infinite series of states, describing a run of M . We denote by
π(i), i ∈ N, the state at time i in π, and by π(i)(n), i ∈ N, n ∈ N , the value of node n
in the state π(i). πi, i ∈ N, denotes the suffix of π starting at time i.

AND X 0 1 ⊥
X X 0 X ⊥
0 0 0 0 ⊥
1 X 0 1 ⊥
⊥ ⊥ ⊥ ⊥ ⊥

OR X 0 1 ⊥
X X X 1 ⊥
0 X 0 1 ⊥
1 1 1 1 ⊥
⊥ ⊥ ⊥ ⊥ ⊥

NOT
X X

0 1
1 0
⊥ ⊥

Fig. 2. Quaternary Operations

Let V be a set of symbolic Boolean variables
over the domain {0, 1}. A symbolic expression
over V is an expression consisting of quaternary
operations, applied to V ∪Q. The truth tables of
the quaternary operators are given in Figure 2.
A symbolic state over V is a mapping from each node of M to a symbolic expression.
A symbolic state represents a set of states, one for each assignment to V . A symbolic
trajectory over V is an infinite series of symbolic states, compatible with the circuit.
It represents a set of trajectories, one for each assignment to V . Given a symbolic tra-
jectory π and an assignment φ to V , φ(π) denotes the trajectory that is received by
applying φ to all the symbolic expressions in π.

A Trajectory Evaluation Logic (TEL) formula is defined recursively over V as
follows: f ::= n is p | f1 ∧ f2 | p→ f |Nf , where n ∈ N , p is a Boolean expression
over V , and N is the next time operator. The maximal depth of a TEL formula f is the
maximal time t for which a constraint exists in f on some node n, plus 1.

Given a TEL formula f over V , a symbolic trajectory π over V , and an assignment
φ to V , we define the satisfaction of f as in [15]:
[φ, π |= f] = ⊥ ↔ ∃i ≥ 0, n ∈ N : φ(π)(i)(n) = ⊥. Otherwise:
[φ, π |= n is p] = 1 ↔ φ(π)(0)(n) = φ(p)
[φ, π |= n is p] = 0 ↔ φ(π)(0)(n) 6= φ(p) and φ(π)(0)(n) ∈ {0, 1}
[φ, π |= n is p] = X ↔ φ(π)(0)(n) = X φ, π |= p→ f ≡ ¬φ(p) ∨ φ, π |= f
φ, π |= f1 ∧ f2 ≡ (φ, π |= f1 ∧ φ, π |= f2) φ, π |= Nf ≡ φ, π1 |= f
Note that given an assignment φ to V , φ(p) is a constant (0 or 1).
We define the truth value of π |= f as follows:
[π |= f] = 0 ↔ ∃φ : [φ, π |= f] = 0
[π |= f] = X ↔ ∀φ : [φ, π |= f] 6= 0 and ∃φ : [φ, π |= f] = X
[π |= f] = 1 ↔ ∀φ : [φ, π |= f] 6∈ {0, X} and ∃φ : [φ, π |= f] = 1
[π |= f] = ⊥ ↔ ∀φ : [φ, π |= f] = ⊥

This definition creates levels of importance between 0 and X . If there exists an
assignment such that [φ, π |= f] = 0, the truth value of π |= f is 0, even if there are
other assignments such that [φ, π |= f] = X .

STE assertions are of the form A ⇒ C, where A (the antecedent) and C (the con-
sequent) are TEL formulae. A expresses constraints on circuit nodes at specific times,

and C expresses requirements that should hold on circuit nodes at specific times. We
define the truth value of [M |= A⇒ C] as follows:
[M |=A⇒C]=1↔ ∀π :[π |=A]=1 implies [π |=C]=1
[M |=A⇒C]=⊥ ↔ ∀π :[π |=A]=⊥
[M |=A⇒C]=0↔ ∃π :[π |=A]=1 and [π |=C]=0
[M |=A⇒C]=X ↔ [M |=A⇒C] 6=0 and ∃π :[π |=A]=1

and [π |=C]=X

t n1 n2 n3 n4 n5 n6

0 X X X 0 X 0

1 X X 0 X 1 X

Fig. 3. Symbolic Simula-
tion

As in [15], an antecedent failure is the case where [M |= A ⇒ C] = ⊥. For a
node n at time t we say that “(n, t) is X-possible”, if there exists a trajectory π and an
assignment φ such that φ(π)(t)(n) is X . If n at time t is also constrained by C, then we
say that it is undecided. In that case, [M |= A⇒ C] = X . Consider the circuit and STE
assertion in Figure 4(a). The table in Figure 3 corresponds to a symbolic simulation of
this assertion. n5 at time 1 is evaluated to 1, and thus the assertion holds.

 1n
 4n

 5n 6n
 3n
 2n

A = (n4 is 0), C = N(n5 is 1)

 4n

 5n 6n
 3n
 2n

 1n
 4n

 5n 6n
 3n
 2n

 1n t = 1t = 0

(a) A circuit M (b) An Unrolling of M to depth 2Fig. 4.

2.2 Refinement in STE

A major strength of STE is the use of abstraction. The abstraction is determined by the
assignment of the value X to input nodes in M by A. However, if the abstraction is too
coarse, then there is not enough information for proving or falsifying the STE assertion.
That is, [M |= A⇒ C] = X .

The common abstraction and refinement process in STE consists of the following
steps: the user writes an STE assertion A⇒ C for M , and receives a result from STE.
If [M |= A ⇒ C] = ⊥ (an antecedent failure), then there is a contradiction between
A and M , and the user has to write a new assertion. If [M |= A ⇒ C] = 0, or [M |=
A ⇒ C] = 1, the process ends with the corresponding result. If [M |= A ⇒ C] = X ,
a refinement is required. In this case, there is some X-possible node (n, t), which is
undecided. The user has to manually decide how to refine the specification such that the
X truth value will be eliminated.

For automatic refinement, we assume that the STE assertion correctly describes
the desired behavior of the model, and that disagreements between the assertion and
the model originate from errors in the model. Thus, the refinement should preserve
the meaning of the original assertion. Note, that refinement is only performed in cases
where an antecedent failure does not occur.

An automatic refinement can be obtained by creating a new antecedent for the STE
assertion. The refinement of A should preserve the semantics of A ⇒ C. Formally, let
Anew ⇒ C denote the refined assertion and let runs(M) denote the set of all concrete
trajectories of M . We require that Anew ⇒ C holds on runs(M) iff A ⇒ C holds on
runs(M).

Refinement Strategy In [15], refinement steps add constraints to A by forcing the
values of some input nodes at certain times to the value of fresh symbolic variables.
That is, symbolic variables that are not already in V . By initializing an input (in, t) with
a fresh symbolic variable instead of X , the value of (in, t) is accurately represented,
and knowledge about its effect on M is added. However, it does not constrain input
behavior that was allowed by A, nor does it allow input behavior that was forbidden by
A. Thus, the semantics of A is preserved. In [15] it is proven that if Anew ⇒ C holds
in M , then so does A⇒ C. Also, if Anew ⇒ C yields a counterexample ce, then ce is
also a counterexample w.r.t A⇒ C.

2.3 Causality and Responsibility
In this section, we review the definitions of causality and responsibility. We start with
causality. The most intuitive definition of causality is counterfactual causality, going
back to Hume [9],which is formally defined as follows.

Definition 1 (Counterfactual causality). We say that an event A is a counterfactual
cause of event B if the following conditions hold: (a) both A and B are true, and
(b) if we assign A the value false, then B becomes false. We sometimes refer to the
dependence of B on A as a counterfactual dependence.

In this paper, we use a simplified version of the definition of causality from [8]. In
order to define causality formally, we start with the definition of causal models (again,
due to [8]).

Definition 2 (Causal model). A causal model M is a tuple 〈U ,D,R,F〉, where U is
the set of exogenous variables (that is, variables whose value is determined by con-
straints outside of the model), D is the set of endogenous variables (that is, variables
whose value is determined by the model and the current assignment to D), R asso-
ciates with each variable in U ∪ D a nonempty range of values, and the function F
associates with every variable Y ∈ D a function FY that describes how the value of Y
is determined by the values of all other variables in U ∪ D.

A context ~d is an assignment for variables in D (the values of variables in U are
considered constant).

In this paper we restrict our attention to models in which variables do not depend
on each other.

A causal formula ϕ is a formula over the set of variables U ∪ D. A causal formula
ϕ is true or false in a causal model given a context ~d. We write (M, ~d) |= ϕ if ϕ is
true in M given a context ~d. We write (M, ~d) |= [~Z ← ~z]ϕ if ϕ holds in the model M

given the context ~d and the assignment ~z to the variables in the set ~Z ⊂ V , such that ~z
overrides ~d for variables in ~Z.

With these definitions in hand, we can give the simplified definition of cause based
on the definition in [8]. The main simplification is due to the fact that in our models,
variables do not depend on each other, and thus there is no need to explicitly check
various cases of mutual dependence between variables.

Definition 3 (Cause). For a constant y, we say that Y = y is a cause of ϕ in (M, ~d) if
the following conditions hold:

AC1. (M, ~d) |= (Y = y) ∧ ϕ.
AC2. There exists a partition (~Z, ~W) ofD with Y ∈ ~Z and some setting (y′, ~w′) of the

variables in Y ∪ ~W such that:
(a) (M, ~d) |= [Y ← y′, ~W ← ~w′]¬ϕ. That is, changing (Y, ~W) from their original

assignment (y, ~w) (where ~w ⊂ ~d) to (y′, ~w′) changes ϕ from true to false.
(b) (M, ~d) |= [Y ← y, ~W ← ~w′]ϕ. That is, setting ~W to ~w′ should have no effect

on ϕ as long as Y has the value y.

Essentially, Definition 3 says that Y = y is a cause of ϕ if both Y = y and ϕ
hold in the current context ~d, and there exists a change in ~d that creates a counterfactual
dependence between Y = y and ϕ.

The definition of responsibility introduced in [4] refines the “all-or-nothing” concept
of causality by measuring the degree of responsibility of Y = y for the truth value of ϕ
in (M, ~d). The following definition is due to [4]:

Definition 4 (Responsibility). Let k be the smallest size of ~W ⊂ D such that ~W sat-
isfies the condition AC2 in Definition 3. Then, the degree of responsibility (DoR) of
Y = y for the value of ϕ in (M, ~d), denoted dr((M, ~d), Y = y, ϕ), is 1/(k + 1).

Thus, the degree of responsibility measures the minimal number of changes that
have to be made in ~d in order to make Y = y a counterfactual cause of ϕ. If Y = y
is not a cause of ϕ in (M, ~d), then the minimal set ~W in Definition 4 is taken to have
cardinality∞, and thus the degree of responsibility of Y = y is 0. If ϕ counterfactu-
ally depends on Y = y, its degree of responsibility is 1. In other cases the degree of
responsibility is strictly between 0 and 1. Note that Y = y is a cause of ϕ iff the degree
of responsibility of Y = y for the value of ϕ is greater than 0.

As we argue in Section 3.1, in our setting it is reasonable to attribute weights to the
variables in order to capture the cost of changing their value. Thus, we use the weighted
version of the definition of the degree of responsibility, also introduced in [4]:

Definition 5 (Weighted responsibility). Let wt(Y) be the weight of Y and wt(~W) the
sum of the weights of variables in the set ~W . Then, the weighted degree of responsibility
of Y = y for ϕ is wt(Y)/(k +wt(Y)), where k is the minimal wt(~W) of a ~W ⊂ D for
which AC2 holds. This definition agrees with Definition 4 if the weights of all variables
are 1.

Remark 1. We note that in general, there is no connection between the degree of respon-
sibility of Y = y for the value of ϕ and a probability that ϕ counterfactually depends on
Y = y. Basically, responsibility is concerned with the minimal number of changes in a
given context that creates a counterfactual dependence, whereas probability is measured
over the space of all possible assignments to variables in D.

3 Responsibility in STE Graphs

In section 4 we will show how to refine STE assertions by using the degree of respon-
sibility (dr) of inputs for X-possible nodes. Consider a model circuit M , and an STE
assertion A ⇒ C, such that [M |= A ⇒ C] = X and let r be an undecided node. In
this section we show how M can be viewed as a causal model, and present an algorithm
for computing the degree of responsibility of an input to M for “r is X-possible”.

3.1 STE circuits as causal models
In order to verify the assertion A ⇒ C, M has to be simulated k times, where k is
the maximal depth of A and C. We create a graph by unrolling M k times. Each node
n ∈ M has k instances in the new graph. The ith instance of node n represents node
n at time i. In the new graph, the connectivity of the input and gate nodes remains the
same. The latches are connected such that the input to a latch at time t are the nodes
at time t − 1, and the latch is an input to nodes at time t. Due to the new connectivity
of the latches, and since M does not have combinational cycles, the unrolled graph is a
DAG. The leaves of the new graph are k instances of each of the inputs to M , and the
initial values of the latches.

We assume that the only nodes assigned by A are leaves. It is straightforward to
extend the discussion to internal nodes that are assigned by A, and to nodes that get their
value from propagating the assignments of A. Consider the circuit and STE assertion
in Figure 4(a). The corresponding unrolling is shown in Figure 4(b). t = 0 and t = 1
are two instances of the circuit. The inputs to the latch n3 in t = 1 are the nodes of
t = 0, thus eliminating the cycle of the original circuit. The inputs to the new circuit
are the first instance of n3 (the initial value of the latch), and the two instances of n1

and n2. From herein we denote by M the unrolled graph of the circuit.
Regarding M as a causal model requires the following definitions: 1) a set of vari-

ables and their partition into U andD, the exogenous and endogenous variables, respec-
tively. 2) R, the range of the endogenous variables. 3) values for the exogenous vari-
ables U . 4) a context ~d, which is an assignment to the variables in D. 5) F , a function
which associates each variable Y ∈ D with a function FY that describes its dependence
in all the other variables.

We define the inputs of M to be the variables of the causal model. The inputs that
are assigned 1 or 0 by the antecedent A are considered the exogenous variables U , and
their values are determined by A. The values of these variables cannot change, and
are viewed as part of the model M . The rest of the inputs to M are the endogenous
variables D. The range of the variables in D is {0, 1, X} ∪ V , where V is the set of
symbolic variables used by A.1The context ~d is the current assignment to D, imposed
by the antecedent A. Last, since the variables are inputs to a circuit, their values do
not depend on each other. Therefore, the function F associates each variable with the
identity function.

Next we have to define a causal formula ϕ. For an undecided node r, we want to
compute the responsibility of the leaves having X values for “r is X-possible”. We
define the causal formula ϕ to be “r is X-possible”. Since the context ~d is imposed by
the antecedent A, and Since “r is X-possible” holds under A, we have (M, ~d) |= ϕ.

We will compute a weighted degree of responsibility, as described in Definition 5.
We choose wt(n) = 1 if ~d(n) ∈ V , and wt(n) = 2 if ~d(n) = X . Next we explain
this choice of weights. For computing the degree of responsibility, we consider changes
in the context ~d that replace the assignments to some of the variables in D from X
or vi ∈ V to a Boolean value. When running STE, a symbolic variable may assume
either of the Boolean values. On the other hand, a leaf that is assigned X cannot take

1 For simplicity of presentation, we do not distinguish between a symbolic variable vi ∈ V and
its corresponding element inR.

a Boolean value without changing the antecedent of the STE assertion. Therefore, we
consider changing ~d for a variable n such that ~d(n) ∈ V to be easier than for a variable
n such that ~d(n) = X . Thus, our choice of weights takes into account the way in which
STE regards X and vi ∈ V .

We have shown how an unrolled model M can be viewed as a causal model. Let
IX(r) and IV (r) be the sets of leaves in BCOI(r), for which A assigns X and sym-
bolic variables, respectively. From herein, for l ∈ IX(r), we denote by dr(M, l, r) the
degree of responsibility of “l is X” for “r is X-possible”. Next we present an algorithm
that computes an approximate degree of responsibility of each leaf in IX(r) for “r is
X-possible”.

3.2 Computing Degree of Responsibility in Trees

Computing responsibility in circuits is known to be FPΣP

2
[log n]-complete 2 in gen-

eral [4], and thus intractable. In order to achieve an efficiently computable approxi-
mation, our algorithm is inspired by the algorithm for read-once formulas in [3]. It
involves one traversal of the circuit for each l ∈ IX(r) and its overall complexity is
only quadratic in the size of M . We start by describing an exact algorithm for M which
is a tree, and then introduce the changes for M which is a DAG.

We define the following values that are used by our algorithm.

– c0(n,M): the minimal sum of weights of leaves in IX(r) ∪ IV (r) that we have to
assign 0 or 1 in order to make n evaluate to 0.

– c1(n,M): the minimal sum of weights of leaves in IX(r) ∪ IV (r) that we have to
assign 0 or 1 in order to make n evaluate to 1.

– s(n,M, l): the minimal sum of weights of leaves in IX(r) ∪ IV (r) that we have to
assign 0 or 1 in order to make “n is X-possible” counterfactually depend on “l is
X”. If there is no such number, that is, there is no change in the context that causes
this dependability, we define s(n,M, l) =∞.

If clear from the context, we omit M from the notation of c0, c1 and s.
We would like to compute the degree of responsibility of every leaf l ∈ IX(r) for

“r is X-possible”. Therefore, for each l ∈ IX(r), our algorithm computes s(r, l). We
denote by A(n) the assignment to node n in M , imposed by A. We discuss a model M
with AND and NOT operators. Extending the discussion to OR,NAND and NOR
operators is straightforward. Given r and l ∈ IX(r), our algorithm computes s(r, l) by
starting at r, and executing the recursive computation described next. Note that only
values that are actually needed for determining s(r, l) are computed.
For a node n, s(n, l) is recursively computed by:

– For n a leaf: if (n = l) then s(n, l) = 0, because the value of l counterfactually
depends on itself. Otherwise, s(n, l) = ∞ since a leaf does not depend on other
leaves.

2 FPΣP
2

[log n] is the class of functions computable in polynomial time with log n queries to
oracle in Σ2.

– For n = n1∧ . . .∧nm: W.l.o.g. we assume that l belongs to the subtree of M rooted
in n1 (since M is a tree, l belongs to a subtree of only one input of n). In order
to make the value of n counterfactually depend on the value of l, all input to n,
except for n1, should be 1, and the value of n1 should counterfactually depend on
the value of l. Thus, s(n, l) = s(n1, l) +

∑m

i=2 c1(ni).
– For n = ¬n1: s(n, l) = s(n1, l), since “n is X-possible” iff “n1 is X-possible”.

For a node n, c0(n) and c1(n) are recursively computed by:

– For n a leaf:
• If A(n) = 0, c0(n) = 0, because no change in the assignments to IX(r) ∪

IV (r) is required. c1(n) =∞, because no change in the assignments to IX(r)∪
IV (r) will change the value of n.
• Similarly, if A(n) = 1, c1(n) = 0 and c0(n) =∞.
• If A(n) = X , c0(n) = c1(n) = 2, because only the value of n has to be

changed, and the weight of n is 2.
• If n is associated with a symbolic variable, c0(n) = c1(n) = 1, because only

the value of n has to be changed, and the weight of n is 1.
– For n = n1,∧ . . . ∧ nm:
• It is enough to change the value of one of its inputs to 0 in order to change the

value of n to 0, thus c0(n) = mini∈{1,...,n} c0(ni).
• The values of all the inputs of n should be 1 in order for n to be 1, thus c1(n) =∑n

i=1 c1(ni).
– For n = ¬n1

• c1(n) = c0(n1) and c0(n) = c1(n1), as any assignment that gives n1 the value
0 or 1, gives n the value 1 or 0, respectively.

The computation above directly follows the definitions of c0, c1 and s, and thus its
proof of correctness is straightforward. For a node r and leaf l, computing the values
c0(n), c1(n) and s(n, l) for all n ∈ BCOI(r) is linear in the size of M . Therefore,
given r, computing s(r, l) for all l ∈ IX(r) is at most quadratic in the size of M . Note
that for a node n, the values c0(n) and c1(n) do not depend on a particular leaf, and
thus are computed only once.

�

�

�

l4=V2 l1=X1 l2=V1

^

n2

^

out

^

n1

s(n1,l3)=�
c1(n1)=3

s(n2,l3)=1

s(out,l3) = 4

l3=X

Fig. 5. Computing Responsibility

We demonstrate the computations done by our
algorithm on the circuit in Figure 5. The an-
tecedent associates l2, l4 and l1, l3 with symbolic
variables and X , respectively. For node out, “out is
X-possible” holds. We want to compute s(out, l3).
l3 is in the subtree of n2. Therefore, s(out, l3) =
c1(n1) + s(n2, l3). Since n1 is an AND gate,
c1(n1) = c1(l1) + c1(l2). n2 is also an AND gate,
and therefore s(n2, l3) = c1(l4) + s(l3, l3). The
weight of the leaves is according to their assign-
ment. Therefore, c1(l2) = c1(l4) = 1 and c1(l1) = 2. Additionally, s(l3, l3) = 0.

Finally, the degree of responsibility of “l is X” for “r is X-possible”, dr(M, l, r)
is 2

s(r,l)+2 . If s(r, l) = ∞, then dr(M, l, r) = 0, which matches Definition 5. In our
example, dr(M, l3, out) = 2

s(out,l3)+2 = 1
3

3.3 Computing an Approximate Degree of Responsibility in DAGs

We now introduce a change to the definition of s(n, l), resulting in an efficiently com-
putable approximation of the degree of responsibility in DAGs, as required for STE.

For a DAG M , and a node n = n1 ∧ . . . ∧ nm, we no longer assume that l belongs
to a subtree of only one input of n. Let NS = {ni|s(ni, l) 6=∞, i ∈ {1, . . . ,m}}, and
let N∞ = {ni|s(ni, l) =∞, i ∈ {1, . . . ,m}}. We define s(n, l) to be:

s(n, l) =
∑

ni∈NS

s(ni, l)

|NS |
+

∑

ni∈N∞

c1(ni)

Recall that dr(M, l, n) is inversely proportional to s(n, l). Thus, our new definition
gives higher degree of responsibility to leaves that belong to subtrees of multiple inputs
of n. Such leaves are likely to be control signals, or otherwise more effective candidates
for refinement than other variables.

�

d2=X d1=X c=X

^

n2

�

out

^

n1

n3

c0(n1)=2
s(n1,d1)=2
s(n1,c)=2

c0(n2)=2
s(n2,d2)=2
s(n2,c)=2

s(out,d1) =4
s(out,d2)=4
s(out,c)=2

out = (c ∧ d1) ∨ (¬c ∧ d2)

Fig. 6. A multiplexer.

We demonstrate the effect of this definition on
the multiplexer in Figure 6. d1 and d2 are the data
inputs to the multiplexer, and c is its control in-
put. If c = 1, then out = d1, else, out = d2.
The value s(out, d1) is given by s(out, d1) =
c0(n2) + s(n1, d1) = 4. The same computation
applies to d2. On the other hand, c belongs to the
subtrees of both n1 and n2. Therefore, s(out, c) =
s(n1,c)+s(n2,c)

2 = 2. Consequently, dr(c, out) = 1
2 ,

whereas dr(d1, out) = dr(d2, out) = 1
3 .

The rest of the algorithm remains as in Section
3.2. Note that since M is a DAG, rather than a tree,
not changing the computation of c0 and c1 makes
it an approximation, as it does not take into account possible dependencies between
inputs of nodes.

4 Applying Responsibility to Automatic Refinement

Refinement of an STE assertion is required when the return value of an STE run is X . In
that case, the set of undecided nodes is returned by STE. The goal of the refinement is
to add information such that undecided nodes become decided. In this section we show
how we employ the concept of responsibility for efficiently refining STE assertions.

The outline of the refinement algorithm follows the discussion in section 2.2: First,
a refinement goal r is selected from within the set of undecided nodes. Then, a set of
input nodes in IX(r) is chosen, to be initialized to new symbolic variables.

Choosing a Refinement goal Our refinement algorithm chooses a single refinement
goal on each refinement iteration. This way, the verification process might be stopped
early if a constraint over a single node does not hold, without handling the other unde-
cided nodes. Additionally, conceptual relations between the undecided nodes may make

them depend on a similar set of inputs. Thus, refinement targeted at one node may be
useful for the other nodes as well. For example, all bits of a data vector are typically
affected by the same set of control signals.

We would like to add as little symbolic variables as possible. Thus, from within
the set of undecided nodes, we choose the nodes with the minimal number of inputs
in its BCOI, and among these we choose the one with the minimal number of nodes
in its BCOI. If multiple nodes have the minimal number of inputs in their BCOI, we
arbitrarily pick one of them. This approach has also been taken in [15].

Choosing Input Nodes Given a refinement goal r, we have to choose a subset of nodes
Iref ⊆ IX(r) that will be initialized to new symbolic variables, trying to prevent the
occurrence of “r is X-possible”. We choose the nodes in IX(r) with the highest degree
of responsibility for “r is X-possible”, as computed by the algorithm in Section 3.3.
These nodes have the most effect on “r is X-possible”, and are likely to be the most
effective nodes for refinement. Our experimental results support this choice of nodes,
as shown in Section 5.

Given the refinement algorithm described above, we construct RespSTE, an iterative
algorithm for verifying STE assertions: for a model M and an STE assertion A ⇒ C,
while STE returns [M |= A ⇒ C] = X , RespSTE iteratively chooses a refinement
root r ∈ M , computes the degree of responsibility of each leaf l ∈ IX(r) for “r is
X-possible” and introduces new symbolic variables to A, for all leaves with the highest
degree of responsibility. A pseudo code of RespSTE is given in Figure 7.

5 Experimental Results

RespSTE(M, A, C)
while [M |= A⇒ C] = X do

r ← choose refinement target
for all l ∈ IX(r) do

compute dr(r, l)
end for
max←max{dr(l, r))|l ∈ IX(r)}
Iref←{l|l ∈ IX(r), dr(l, r)=max}
∀li∈Iref , add symbolic variable vli to A

end while

Fig. 7. RespSTE.

For evaluating our algorithm RespSTE,
presented in Section 4, we implemented
and used it in conjunction with Forte, a
BDD based STE tool by Intel [14].

For our experiments we used the Con-
tent Addressable Memory (CAM) mod-
ule from Intel’s GSTE tutorial, and IBM’s
Calculator 2 design [16]. These mod-
els and their specifications are interest-
ing and challenging for model checking.
All experiments use dedicated computers
with 3.2Ghz Intel Pentium CPU, and 3GB
RAM, running Linux operating system.

5.1 Verifying CAM Module

A CAM is a memory module that for each data entry holds a tag entry. Upon receiving
an associative read (aread) command, the CAM samples the input “tagin”. If a matching
tag is found in the CAM, it gives the “hit” output signal the value 1, and outputs the cor-
responding data entry to “dout”. Otherwise, “hit” is given the value 0. The verification

of the aread operation using STE is described in [11]. The CAM that we used is shown
in Figure 8. It contains 16 entries. Each entry has a data size of 64 bits and a tag size of
8 bits. It contains 1152 latches, 83 inputs and 5064 combinational gates.

hitTAG MEMORY

DATA MEMORY

16

16

64

aread

dwrite
dout

daddr[0..3]

datain[0..63]

8

tagin[0..8]

taddr[0..3]
twrite

Fig. 8. Content Addressable Memory

We checked the CAM against three as-
sertions. For all the assertions, RespSTE
added the smallest number of symbolic vari-
ables required for proving or falsifying the
assertion. Next we discuss Assertion 1.

Given
−−→
TAG and

−→
A , vectors of symbolic

variables, Assertion 1 is: (tagin is
−−→
TAG) ∧

(taddr is
−→
A)∧(twrite is 1)∧N ((aread is 1)∧

(tagin is
−−→
TAG)) =⇒ N (hit is 1). This is to

check that if a tag value
−−→
TAG is written to

an address
−→
A in the tag memory at time 0, and at time 1

−−→
TAG is read, then it should

be found in the tag memory, and hit should be 1. If at time 1 there is no write opera-
tion to the tag memory ((twrite, 1) = 0), then

−−→
TAG should be found in address

−→
A . If

(twrite, 1) = 1,
−−→
TAG should still be found, since it is written again to the tag memory.

Therefore, Assertion 1 should pass. However, since twrite and taddr at time 1 are X ,
the CAM cannot determine whether to write the value of (tagin, 1) to the tag memory,
and to which tag entry to write it. As a result, the entire tag memory at time 1 is X ,
causing (hit, 1) to be X . Thus, [M |= A ⇒ C] = X . In two consecutive refinement
iterations, (twrite, 1) and (tadder, 1) are associated with new symbolic variables, and
the assertion passes. The refinement steps of Assertion 1 are presented in Figure 10(a).
Each row in the table describes a single refinement iteration, the name of the goal node,
and the name and time of the inputs for which symbolic variables were added.

5.2 Verifying Calculator 2

SHIFT PIPELINE

PIPELINE

ADD/SUB

reset

c_clk

req1_cmd_in[0:3]
req1_data_in[0:31]
req1_tag_in[0:1]

req2_cmd_in[0:3]
req2_data_in[0:31]
req2_tag_in[0:1]

req3_cmd_in[0:3]
req3_data_in[0:31]
req3_tag_in[0:1]

req4_cmd_in[0:3]
req4_data_in[0:31]
req4_tag_in[0:1]

out_resp1[0:1]

out_data1[0:31]
out_tag1[0:1]

out_resp2[0:1]
out_data2[0:31]
out_tag2[0:1]

out_resp3[0:1]
out_data3[0:31]

out_resp4[0:1]
out_data4[0:31]
out_tag4[0:1]

out_tag3[0:1]

Fig. 9. Calculator

Calculator 2 design [16], shown in Figure 9,
is used as a case study design in simulation
based verification. It contains 2781 latches,
157 inputs and 56960 combinational gates.
The calculator has two internal arithmetic
pipelines: one for add/sub and one for shifts.
It receives commands from 4 different ports,
and outputs the results accordingly. The cal-
culator supports 4 types of commands: add,
sub, shift right and shift left. The response
is 1 for good, 2 for underflow, overflow or
invalid command, 3 for an internal error and
0 for no response. When running the calcu-
lator, reset has to be 1 for the first 3 cycles.

We checked the calculator against four assertions. For all but one of the assertions,
RespSTE added the smallest number of symbolic variables required for proving or fal-
sifying the assertion. Next we discuss Assertion 2.

Assertion 2 sets the command sent by a port Pi to add. The msb bits of the sent data
are constrained to 0 to avoid an overflow. No constraints are imposed on the commands
sent by other ports. The requirement is that the output data for Pi would match the
expected data. Assertion 2 fails due to an erroneous specification. The calculator gives
priority to the lower indexed ports. Thus, if both ports 1 and 3 send an add command,
port 3 does not receive a response at the first possible cycle. Due to the implementation
of the priority queue, commands of at least 3 ports have to be definite for falsifying the
assertion. IX((out resp2[0], 7)) contains cmd, data and tag inputs of all ports at cycles
3 and 4. Out of them, RespSTE added the least number of inputs required for falsifying
the assertion. The refinement steps of Assertion 2 are presented in Figure 10(b).

5.3 Evaluation of Results

As. It Goal Added Vars
1 1 hit,1 twrite,1
1 2 hit,1 taddr [0:3], 1

(a) CAM
As. It Goal Added Vars
2 1 out_resp2 [0],7 req1_cmd [0:2],3
2 2 out_resp2 [0],7 req1_cmd [3],3
2 3 out_resp2 [0],7 req2_cmd [0:3],3

(b) Calculator 2
Fig. 10. Refinement Steps.

In [15], an algorithm called autoSTE for au-
tomatic refinement in STE, is presented. au-
toSTE exploits the results of the STE run,
as computed by Forte, in order to iden-
tify trajectories along which all nodes have
the value X . The input nodes of these tra-
jectories are the candidates for refinement.
Heuristics are used for choosing subsets of
these candidates.

We compared our experimental results
with those obtained by autoSTE. For the sake
of comparison, we used in our experiments the same parametric representation of the
STE assertions as in [15]. The final results of RespSTE and its comparison with au-
toSTE are shown in Table 1.

The comparison shows a significant speedup in all of the assertions, and up to 18.5×
speedup in the larger ones. A significant reduction in BDD nodes is also gained in most
of the assertions. For some of the assertions, RespSTE added less symbolic variables or
required less refinement iterations than autoSTE. The overall performance of RespSTE
was better than autoSTE even when this was not the case.

Altogether, our experiments demonstrated that using the degree of responsibility as
a measure for refinement is a good choice. It provides a quantitative measure of the
importance of each input to an undecided node being X-possible. By examining these
values, we conclude that this quantitative measure reflects the actual importance of the
inputs in the model. The results obtained by RespSTE agree with the decisions of a user
who is familiar with the circuit. When using these results for automatic refinement,
the quality of the results demonstrates itself in the number of refinement iterations that
were required, and in the total number of symbolic variables that were added to the
antecedent.
Acknowledgements We thank Rotem Oshman and Rachel Tzoref for the fruitful dis-
cussions, and the reviewers for their useful comments.

RespSTE AutoSTE
result Iterations Vars BDD Nodes Time Iterations Vars BDD Nodes Time

1 pass 2 5 3201 2 2 5 4768 3
2 fail 5 11 30726 5 7 11 57424 20
3 fail 1 8 14127 3 3 13 29006 17

1 fail 2 5 7735 32 2 2 6241 87
2 fail 3 8 19717 25 2 8 20134 100
3 fail 1 8 262201 43 1 8 530733 220
4 pass 4 16 14005 27 11 16 17323 494

C
al

c
2

C
A

M

Table 1. Experimental Results. AutoSTE is the algorithm presented in [15]. “Iterations” is the
number of refinement iterations that were performed, “Time” is the total runtime in seconds until
verification / falsification of the property, ”Vars” is the total number of symbolic variables that
were added by the refinements, and “BDD Nodes” is the number of BDD nodes used by Forte.

References
1. Sara Adams, Magnus Bjork, Tom Melham, and Carl Seger. Automatic Abstraction in Sym-

bolic Trajectory Evaluation . In FMCAD ’07, 2007.
2. Yan Chen, Yujing He, Fei Xie, and Jin Yang. Automatic Abstraction Refinement for Gener-

alized Symbolic Trajectory Evaluation. In FMCAD ’07, 2007.
3. H. Chockler, J. Y. Halpern, and O. Kupferman. What causes a system to satisfy a specifica-

tion? ACM TOCL. To appear.
4. H. Chockler and J.Y. Halpern. Responsibility and blame: a structural-model approach. Jour-

nal of Artificial Intelligence Research (JAIR), 22:93–115, 2004.
5. C-T. Chou. The mathematical foundation of symbolic trajectory evaluation. In CAV, 1999.
6. E. M. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith. Counterexample-guided abstraction

refinement. In CAV, 2000.
7. Orna Grumberg, Assaf Schuster, and Avi Yadgar. 3-Valued Circuit SAT for STE with Auto-

matic Refinement . In ATVA ’07, 2007.
8. J.Y. Halpern and J. Pearl. Causes and explanations: A structural-model approach — part 1:

Causes. In Uncertainty in Artificial Intelligence: Proceedings of the Seventeenth Conference
(UAI-2001), pages 194–202, San Francisco, CA, 2001. Morgan Kaufmann Publishers.

9. D. Hume. A treatise of human nature. John Noon, London, 1739.
10. Robert P. Kurshan. Computer-Aided Verification of coordinating processes - the automata

theoretic approach. 1994.
11. M. Pandey, R.Raimi, R. E. Bryant, and M. S. Abadir. Formal verification of content address-

able memories using symbolic trajectory evaluation. DAC, 00:167, 1997.
12. Jan-Willem Roorda and Koen Claessen. Sat-based assistance in abstraction refinement for

symbolic trajectory evaluation. In CAV’06, pages 175–189, 2006.
13. C.-J. H. Seger and R. E. Bryant. Formal verification by symbolic evaluation of partially-

ordered trajectories. Formal Methods in System Design, 6(2), 1995.
14. C.-J. H. Seger, R. B. Jones, J. W. O’Leary, T. F. Melham, M. Aagaard, C. Barrett, and

D. Syme. An industrially effective environment for formal hardware verification. IEEE
Trans. on Computer-Aided Design of Integrated Circuits and Systems, 24(9), 2005.

15. Rachel Tzoref and Orna Grumberg. Automatic refinement and vacuity detection for symbolic
trajectory evaluation. In CAV06, pages 190–204, 2006.

16. B. Wile, W. Roesner, and J. Goss. Comprehensive Functional Verification: The Complete
Industry Cycle. Morgan-Kaufmann, 2005.

17. J.C. Wilson. Symbolic Simulation Using Automatic Abstraction of Internal Node Values.
PhD thesis, Stanford University, Dept. of Electrical Engineering, 2001.

