
G�� In addition� all states with location P that satisfy B have a transition into I� and those
that do not satisfy B have a transition into I�� Finally� states from end�P�� and end�P�� are
uni�ed with SE � When G is a partition graph of P � �while B do P� od�� the structure of
G contains the structure of G�� and also transitions from I �states with location P � to I� if
B holds and to SE if B does not hold �and P terminates��

�	



a structure M � hS�R� Ii we de�ne M �P � hS �P � R�P � I �Pi� For a set of structures V and a
set of graph edges E � V �P and E �P are obtained by putting in context each element in the set�

De�nition A��� A Partition Graph of a program P is a directed graph G � �V � E � In� Out��
where V is a �nite set of nodes� each node V is a Kripke structure hSV � RV � IV i� E is a �nite
set of edges� In � V is the entry node and Out � V is the exit node� Each edge in E is either
a null edge M� �M�� a yes
edge B

yes
� M or a no
edge B

no
�M �

We use the following notations� Gi � �Vi� Ei� Ini� Outi� for any i� SP � f�P� �� j � � Dng�
MP � hSP � �� SPi� SE � f�E� �� j � � Dng and ME � hSE � �� SEi� The set pg�P � of all
Partition Graphs of P is de�ned inductively as follows � �

�� �fMg� ��M�M�� pg�P � where M � struct�P ��
�� If P � P�
P� then for everyG� � pg�P�� and G� � pg�P��� G � �V � E � In� Out� � pg�P � s�t�
V � V �P�

� � V� E � E �P�
� � E� � fOut

�P�
� � In�g

In � In�P�
� � Out � Out� �See �gure ���

�� If P � �if B then P� else P� ��� then for every G� � pg�P�� and G� � pg�P��� G �
�V � E � In�Out� � pg�P � s�t�
V � V� � V� � fMB�MEg
E � E� � E� � fMB

yes
� In��MB

no
� In�� Out� �ME � Out� �MEg

In �MB � Out �ME

�� If P � �while B do P� od�� then for all G� � pg�P��� G � �V � E � In�Out� � pg�P � s�t�
V � V� � fMB�MEg E � E� � fMB

yes
� In��MB

no
�ME � Out� �MBg

In �MB � Out �ME

The next step is to de�ne the semantics of a partition graph� by means of one Kripke
structure� The goal is that for any G � pg�P � the semantics of G and P will be the same�

De�nition A��� Given a step
edgeMB

yes
� M� �orMB

no
�M�� we de�ne step�MB

yes
� M�� to

be the set of transitions induced by this edge� Assume that l is the location of the command
that evaluates the boolean condition B� which means that l is the location of the states in
MB � Assume also that l� is the location of the states in init�M��� Then we de�ne�
step�MB

yes
� M�� � f��l� ��� �l�� ��� j � j� Bg

step�MB
no
�M�� � f��l� ��� �l�� ��� j � �j� Bg

De�nition A��� Let G � �V � E � In� Out� be a partition graph of some program P � s�t�
V � fV�� � � � � Vng and for every � � i � n� Vi � hSi� Ri� Iii� struct�G� � hS�R� Ii where ��
S �

S
��i�nSi�

I � IIn �where IIn is the set of initial states of the entry node In of G� and
R � �

S
��i�nRi� � �

S
Vi

yes
�Vj�E

step�Vi
yes
� Vj�� � �

S
Vi

no
�Vj�E

step�Vi
no
� Vj���

Lemma A��� For any program P and graph G � pg�P �� struct�P � � struct�G��
Intuitively� when G is a partition graph of P � P�
P�� the structure of G is the union of

the structures of G� and G�� except that G� is �put in context� of P�� This is done by using
S
�P�
� and R

�P�
� instead of S� and R� when creating G� When G is a partition graph of P �

�if B then P� else P� ��� the structure of G contains the union of the structures of G� and

�All unions of nodes and edges are assumed to be disjoint unions� possibly requiring additional labels to
di�erentiate between nodes or edges that happen to have the same name� We ignore the change in names
whenever there is no doubt as to what we are referring to�

�In this de�nition� unions are not disjoint� If there are states appearing in more than one node then when
the sets of states of these nodes are unioned� parts of the corresponding structures are uni�ed�

��



A Appendix

A�� The semantics of NWP programs

We start by de�ning the Remainder set of a program� which will be used as the set of
locations in the program�

De�nition A��� The remainder set of a program P � denoted Remain�P �� is the set including
all sub
programs of P that can appear as the remaining program to run�

� P � Remain�P �
� If P ends with the command ��n� then ��n� � Remain�P �� otherwise E � Remain�P �
� If P�
P� � Remain�P � and P �

� � Remain�P�� then P �
�
P� � Remain�P ��

� If �if B then P� else P� �� � Remain�P � then P� � Remain�P � and P� � Remain�P ��
� If �while B do P� od� � Remain�P � then P�
 while B do P� od � Remain�P ��

Note that� if for instance P � P�
P� then P� will be in the remainder of P � but P� will
not�

Let P � NWP be a program such that x�� � � � � xn are the program variables� all of them
over some �nite domain D�

De�nition A�	� The meaning of a program P is a Kripke structure struct�P � � hS�R� Ii�
The set of states is S � Remain�P � 	Dn� For a state �l� �� we refer to l as the location of
the state� The set of initial states is I � f�P� �� j � � Dng� The transition relation R is
de�ned inductively �using the notation struct�Pi� � hSi� Ri� Iii��

For P � E� R � ��
For P � ��n�� R � f�s� s�js � Sg
For P � �skip�� R � f��P� ��� �E���� j � � Dng
For P � �x �� fe�� � � � � ekg�� R � f��P� ��� �E���x
 ei��� j � � i � k� � � Dng�
For P � P�
P�� R � f��Q
P�� ��� �Q�
P�� �

��� j ��Q� ��� �Q�� ���� � R�g �R��
For P � �if B do P� else P� ��� R � f��P� ��� �P�� ��� j � j� B� � � Dng�

f��P� ��� �P�� ��� j � �j� B� � � Dng � R� �R��
For P � �while B do P� od�� R � f��P� ��� �P�
P� ��� j � j� B� � � Dng�

f��P� ��� �E���� j � �j� B� � � Dng � f��Q
P� ��� �Q�
P� ���� j ��Q� ��� �Q�� ���� � R�g�

Recall that we de�ne E so that for any program P � E
P � P and therefor the states
�E
P�� �� and �P�� �� are the same state� This is signi�cant in the case of sequential compo

sition�

A�� Partition graphs for NWP programs

The set pg�P � contains all possible partition graphs of P � representing di�erent ways of
partitioning P into sub
programs�

The following notation is required for the formal de�nition of partition graphs� It allows
us to take a Kripke structure of a sub
program and put it �in context� of the whole program�
This is done by changing the locations of the sub
program to match them to their locations
in the whole program� For any set of states S� and program P � the set S �P is obtained from
S by replacing each state �l� �� in S by the state �l
P � ��� The transition relation R�P is
obtained from R by replacing every pair ��l�� ���� �l�� ���� in R by ��l�
P� ���� �l�
P� ����� For

��



��� E� M� Clarke and E� A� Emerson� Synthesis of synchronization skeletons for branching time
temporal logic� In Logic of Programs� Workshop� Yorktown Heights� NY� May ����� volume ���
of Lecture Notes in Computer Science� Springer�Verlag� �	
��

��� E� M� Clarke� E� A� Emerson� and A� P� Sistla� Automatic veri�cation of �nite�state concurrent
systems using temporal logic speci�cations� In Proceedings of the Tenth Annual ACM Symposium

on Principles of Programming Languages� January �	
��
�
� E� M� Clarke� E� A� Emerson� and A� P� Sistla� Automatic veri�cation of �nite�state concurrent

systems using temporal logic speci�cations� ACM Transactions on Programming Languages and

Systems� 

����������� �	
��
�	� E� M� Clarke� O� Grumberg� H� Hiraishi� S� Jha� D� E� Long� K� L� McMillan� and L� A� Ness�

Veri�cation of the Futurebus� cache coherence protocol� Formal Methods in System Design�
�
����������� March �		��

���� E� A� Emerson and J� Y� Halpern� �Sometimes� and �Not Never� revisited� On branching time
versus linear time� Journal of the ACM� ���������
� �	
��

���� P� Godefroid� Model checking for programming languages using VeriSoft� In Principle of Pro�

gramming Languages� January �		��
���� O� Grumberg and D�E� Long� Model checking and modular veri�cation� ACM Trans� on Pro�

gramming Languages and Systems� ��
���
���
��� �		��
���� B� Josko� Verifying the correctness of AADL�modules using model checking� In J� W� de Bakker�

W��P� de Roever� and G� Rozenberg� editors� Proceedings of the REX Workshop on Stepwise

Re	nement of Distributed Systems� Models� Formalisms� Correctness� volume ��� of Lecture
Notes in Computer Science� Springer�Verlag� May �	
	�

���� G� Kamhi� O� Weissberg� L� Fix� Z� Binyamini� and Z� Shtadler� Automatic datapath extraction
for e�cient usage of HDD� In Proc� of the �th International Conference on Computer Aided

Veri	cation� LNCS vol� �
��� pages 	������ Springer� June �		��
���� O� Lichtenstein and A� Pnueli� Checking that �nite state concurrent programs satisfy their

linear speci�cation� In Proceedings of the Twelfth Annual ACM Symposium on Principles of

Programming Languages� pages 	������ January �	
��
���� K� L� McMillan� Symbolic Model Checking� An Approach to the State Explosion Problem� Kluwer

Academic Publishers� �		��
���� K� L� McMillan and J� Schwalbe� Formal veri�cation of the Encore Gigamax cache consistency

protocol� In Proceedings of the ���� International Symposium on Shared Memory Multiproces�

sors� April �		��
��
� A� Pnueli� A temporal logic of concurrent programs� Theoretical Computer Science� ���������

�	
��
��	� A� Pnueli� In transition for global to modular temporal reasoning about programs� In K� R� Apt�

editor� Logics and Models of Concurrent Systems� volume �� of NATO ASI series F� Springer�
Verlag� �	
��

���� J�P� Quielle and J� Sifakis� Speci�cation and veri�cation of concurrent systems in CESAR� In
Proceedings of the Fifth International Symposium in Programming� �	
��

��



the inner one� This re�ects the tradeo� between space and time complexity� As larger
programs can be handled �by applying more re�ned partitions� the time complexity grows�

� Conclusions and future development

The algorithm presented in this work can be considered as a framework into which any model
checking algorithm for Kripke structures can be integrated� Since our method uses a given
model checking algorithm as a procedure� whenever a better algorithm is developed it can
immediately be plugged into ours�

Thus� our method can work well with both explicit
state model checking and BDD
based
model checking� The former expects the model of the checked system to be given explicitly
as a graph �e�g� by an adjacency list�� The latter is based on BDD representation ��� of
the system model� Each has its advantage for certain areas of applications and each can be
made modular using our approach�

An important notion suggested in this work is that of partition graphs� In this work� they
were used to partition the model checking task into several sub
tasks� They also maintained
the �ow of information �by means of assumption functions� between the sub
tasks�

Partition graphs can further be used for top
down design of systems� They may enable
to verify a system at an early stage of development� when some of the components have
not yet been written� In such cases� the assumption functions will actually play the role of
assumptions about components that are yet unknown� The use of partition graphs in that
context should be further investigated�

Choosing the right partition graph is crucial to the e�ectiveness of our method� As
presented here� the algorithm is given a speci�c partition graph� but it may be possible to
develop some heuristics that will allow automatic creation of the partition graph�

We will also explore various extensions of our method� to deal with other aspects of
software such as procedures� data structures� templates� and parallel composition�

We are currently working on an implementation of our method using BDDs� We intend to
use it to verify several example programs and compare performance when di�erent partitions
are used�

References

��� I� Beer� S� Ben�David� C� Eisner� D� Geist� L� Gluhovsky� T� Heyman� A� Landver� P� Paanah�
Y� Rodeh� and Y� Wolfstahl� Rulebase� Model checking at IBM� In Proc� of the �th International
Conference on Computer Aided Veri	cation� LNCS vol� �
��� pages �
���
�� Springer� June
�		��

��� R� E� Bryant� Graph�based algorithms for boolean function manipulation� IEEE Transactions

on Computers� C���

�������	�� �	
��
��� J� R� Burch� E� M� Clarke� K� L� McMillan� D� L� Dill� and L� J� Hwang� Symbolic model

checking� ���� states and beyond� Information and Computation� 	

����������� June �		��
��� J�R� Burch� E�M� Clarke� K�L� McMillan� D�L� Dill� and L�J� Hwang� Symbolic model checking�

���� states and beyond� In Proceedings of the Fifth Annual Symposium on Logic in Computer

Science� IEEE� IEEE Computer Society Press� June �		��
��� Olaf Burkart and Bernhard Ste�en� Pushdown processes� Parallel composition and model check�

ing� LNCS 
��� pages 	
����� Springer� �		��

��



�k � fA��lU�m�� E��lU�m�g�

�a� Set i
 ��
InitB 
 As���m� � fs � init�G� j s j� Bg�
The initial assumption function is As� 
 As��
Initialize the value for �k� As

���k�
 As�B��k� � InitB�

�b� do�


 Tmp �CheckGraph�G�� As
i���


 AsiB 
 T �MB

yes
� in�� Tmp�


 De�ne Asi so that for all j � k� Asi��j� 
 As���j� and Asi��k� 

AsiB��k� � As�B��k�


 i
 i� �

as long as Asi �� Asi���

�c� As���k�
 Asi��k�

�� Return As��

Theorem ��	� For any full program P � a CTL formula �� a partition graph G � pg�P � and
an empty assumption function As � cl���� f�g� if As� �CheckGraph�G�As� then for every
� � cl��� and s � init�G�� s � As����� s j� ��

This theorem states that if we run the algorithm on a full program� with an empty
assumption function� the resulting function will give us full knowledge about which formulas
in cl��� hold in the initial states of the program according to the standard semantics of
CTL�

When implementing the above algorithm there are many optimizations that can be done�
such as working on several formulas at the same time and keeping information from previous
calculations�

The space complexity of our modular algorithm is clearly better than that of algorithms
that need to have the full model in the direct memory� Our algorithm holds in the direct
memory at any particular moment only the model for the subprogram under consideration
at that time� In addition� it keeps an assumption function� which at its largest holds the
results of performing model checking on this subprogram� This of course is equivalent to any
model checking algorithm that must keep its own results�

The time complexity is harder to analyze� It depends on the model checking algorithm
used for a single node and on the partition graph� In most cases� our algorithm is of the
same time complexity as algorithms designed to model check unpartitioned models� A case
that might require a signi�cant amount of additional computation occurs when an Until
formula � �either A���U��� or E���U���� is checked on a while program in which the body
is partitioned�

Let G be the partition graph of the while program� The number of iterations through
the body of the while is bounded by the number of initial states of G� Init�G�� At each
iteration� every node in G is model checked with respect to �� Such a case occurs when at
each iteration exactly one state from Init�G� is added to the set of states satisfying �� This
means that there is a a computation that executes the body of the while jinit�G�j times
without passing through the same state twice� Note that in such a case a regular model
checking also has to traverse the same path�

Additional overhead occurs when while loops are nested and each is partitioned� Time
complexity then grows since every pass through the outer loop requires several passes through

��



for a speci�c state s�� In order to �nd out that s� j� E���U��� it is necessary to traverse
the path that proves this� This path is revealed only in the second traversal of the loop�

Following is the recursive de�nition of the algorithm� Given a partition graph G � pg�P �

of a programP� and a consistent assumptionAs � cl���� ��end�G��f
g�� CheckGraph�G�As�

returns an assumption As� � cl���� ��init�G� � f
g��

CheckGraph�G�As
�
The base case is for a single node M � in which case we return As� s�t� �� � cl���� if

As��� � 
 then As���� � 
� otherwise As���� �MC�M�As����� init�M��
The three possible recursive cases are the ones depicted in Figure �� We assume that

in� �in�� is the entry node of G� �G��� MB is the structure in a �B� node� and ME is the
structure in an �E� node�

� For a sequential composition P�
P� �Figure � A� perform�

�� As� 
CheckGraph�G�� As��
�� As� 
CheckGraph�G�� As���
�� Return�As��

� For a graph of P � �if B then P� else P� �� �Figure � B� perform�

�� As� 
CheckGraph�G�� As��
�� As� 
CheckGraph�G�� As��
�� AsB 
 T �MB

yes
� in�� As��

�� As�B 
 T �MB
no
� in�� As��

�� For every formula � � cl���� if AsB��� � 
 then de�ne As���� � 
 �� Other

wise� As���� � AsB��� � As�B��� �Notice that the images of AsB and As�B are
disjoint��

�� Return As�

� For a graph of P � �while B do P� od� �Figure � C� perform�

�� As�B 
 T �MB
no
�ME � As�

�� Find an ordering ��� ��� � � � � �n of the formulas in cl��� such that each formula
appears after all of its sub
formulas� Set As���i� � 
 for all i� For k � �� � � � � n
perform step � to de�ne As���k�

��
�� Perform one of the following� according to the form of �k�

�k � AP � As���k�
 fs � init�G� j �k � L�s�g
�k � ��l� As���k�
 fs � init�G� j s �� As���l�g�
�k � �l � �m� As

���k�
 As���l� �As
���m��

�k � fAX�l�EX�lg�

�a� Tmp
CheckGraph�G�� As
��

�b� Let R
MB

yes
� in�

be the set of transitions induced by the edge MB

yes
� in��

As���k� 
 As�B��k� � fs � init�G� j �s� � init�G��� �s� s
�� � R

MB

yes
� in�

�

�s j� B � s� � Tmp��l��g 	�

�Since AsB and As�B both originate from the same assumption function As� it holds that AsB��� �
�iffAs�B��� � ��

�Notice that when working on �k we have already calculated As� for all of its sub	formulas�
�The de�nition is the same for AX�l and EX�l because for each state s � init�G� there is exactly one

state s� � init�G�� s�t� �s� s�� � R
MB

yes
� in�

�

��



G we �rst check G� and G�� and then compute �backwards� over the step
edges �using the
function T � to get the result for the initial states of G�

The most complicated part of the algorithm is for the partition graph G of a program
P � �while B do P� od�� as in �gure � C� We start from the node ME � for which we have
the assumption As� Walking backwards on the no
edge we use the function T to get an
assumption As�B over the initial states of G that satisfy �B� We now demonstrate the com

putation of E���U���� We assume that As����� and As����� were already calculated� The
goal is to mark all states that satisfy E���U��� �to create As��E���U����� Standard model
checking algorithms would start by marking all states that satisfy ��� and then repeatedly
move backwards on transitions and mark every state that has a transition into a marked
state� and satis�es �� itself� We reconstruct this computation over the partition graph of P �
For initial states of G that satisfy B we have no assumption regarding E���U���� so we mark
all those that satisfy B and �� and keep them in InitB � Together with As�B�E���U����
we have an initial estimate for As��E���U���� �kept in As

���k��� We now want to mark all
the fathers in G of these states� Notice that init�G� � end�G�� so these fathers are inside
G�� Hence we continue from end�G�� backwards inside G� until we arrive at init�G��� At
this point� only the marks on states of init�G�� are kept �in Tmp�� The marks on all other
states of G� are not preserved� Notice that G� itself may consist of more than one node� and
the creation of Tmp is done by a recursive call to CheckGraph� From Tmp we can calculate
a new estimate for As��E���U�����

The whole process repeats itself since the body of a �while� loop can be executed more
than once� Obviously� it is essential that the states satisfying �� and �� be known before this
process can be performed� Therefore� we use the 
 value for E���U��� when working on
the assumptions for �� and ��� Only when calculations for all sub
formulas are completed�
we may begin calculating the proper result for E���U����

s� s� s� s�


�� 
��
��
��

No

Yes Yes Yes Yes

B

init�G��

end�G��

init�G��

end�G�� end�G��

init�G�� init�G��

end�G��

B BBE

s�

Figure �� The steps taken by the algorithm in order to reveal that the state s� satis�es
E���U���

This process stops when the assumption calculated reaches a �x
point �Asi � Asi����
Obviously� no new information will be revealed by performing another cycle� The set of
states in init�G� that are marked increases with each cycle� until all states that satisfy the
formula are marked� at which point the algorithm stops� Figure � illustrates the algorithm

��



truth of formulas in the structure of G then the derived assumption also coincides with the
truth of formulas in the structure� The proof of this is omitted due to space restrictions�

��� The Compositional Algorithm

Following� we give an algorithm to check a formula � on a partition graph G of a full program
P � The result is an assumption function over the set of initial states of P that gives� for
every sub
formula � of �� the set of all initial states of P satisfying �� We start with an
intuitive description of the algorithm�

The algorithm works on G from the exit node upwards to the entry node� First the
structure contained in a leaf node V of G is model checked under an �empty� assumption
for cl���� an assumption in which all values are �� Since V is a leaf it must represent a
full program and therefore all paths in it are in�nite� and the assumption function has no
in�uence on the result� The result of the model checking algorithm is an assumption function
As� that associates with every sub
formula of � the set of all initial states of V that satisfy
that sub
formula� Once we have As� on V we can derive a similar function As on the ending
states of any node U � preceding V in G �that is� any node U from which there is an edge
into V �� Next� we model check U under the assumption As� Proceeding this way� each node
in G can be checked in isolation� based on assumptions derived from its successor nodes�

Given a procedure that properly computes MC�M�As�� we de�ne the algorithm Check

Graph that takes an assumption function As and a partition graph G and performs model
checking under assumption resulting in an assumption As�� The answer to the model check

ing problem is As����� CheckGraph is able to handle partially de�ned assumption functions�
in which there are some 
 values� For any sub
formula � s�t� As��� � 
 we get As���� � 
�
CheckGraph is de�ned by induction on the structure of G� The base case handles a sin

gle node� that may contain the Kripke structure of any program� by using the given model
checking procedure� To model check a partition graph G of P � P�
P�� as in �gure � A�
CheckGraph �rst checks G� under As �see Figure ��� As� is the result of this check �As� is
over the set init�G���� It then uses As� as an assumption on the ending states of G� and
checks P� w�r�t As� � The second check returns for all � � cl��� the set of all initial states
of P� �also initial states of P � that satisfy �� which is the desired result�


��

init�G��

G�

end�G��


��

init�G��

G�


��

init�G��

G�

end�G��

init�G��
As����

init�G��

G�

end�G��


��

the result

Figure �� The operation of the algorithm on sequential composition� The gray area is the
set of states that satisfy ��

Let G be a partition graph of P � �if B then P� else P��� as in �gure � B� To check

�



�P�� a b �P�� a �b �P�� �a b �P�� �a �b

�E� a b �E� �a �b

�P�� a b �P�� a �b �P�� �a b

�E� a b �E� a �b �E� �a b

�P � a b

�E� a �b �E� �a b

�P � �a �b�P � a �b �P � �a b

yes no

�P�� �a �b

�E� �a �b

�E� a b �E� a �b �E� �a b �E� �a �b

�fin� a b �fin� a �b �fin� �a b �fin� �a �b

Figure �� An example partition graph for the program P 
�n� where P is the program from
�gure ��

and MB � hSB � �� SBi� and let As � cl��� � ��S� � f
g� be an assumption function over

M�� T �e� As� � As� s�t� As� � cl��� � ��ST � f
g�� The set ST � SB is the set of states
in SB that satisfy the condition B� This is exactly the set of states from which there will
be an edge into a state of M� in struct�G�� Moreover� assume that l is the location of all
the states in SB and l� is the location of the states in I�� Then the de�nition of struct�G� is
such that from each state s � �l� �� � SB s�t� � j� B there is exactly one transition� into a
state s� � �l�� ��� As a result� there is no di�erence between �for all paths� and �there exists
a path� and therefore the operators AX� and EX� are handled in exactly the same way�
and so are the operators A���U��� and E���U����

If As��� � 
 then As���� � 
� Otherwise� As���� is de�ned recursively as follows 


� For any p � AP � As��p� � fs � ST j p � L�s�g�
� As����� � ST nAs����
� As���� � ��� � As����� �As

�����
� As��AX�� � As��EX�� � f�l� �� � ST j �l�� �� � As���g
� As��A���U���� � As��E���U���� � As����� � �As����� � f�l� �� � ST j �l�� �� �
As�A���U����g�

For a no
edge MB
no
� M� the de�nition is the same� replacing every use of ST by SF which

is the set of states that do not satisfy B�
An important feature of this operation is that if the original assumption coincides with the

	If As��� �� � then for all sub	formulas �� of � it holds that As���� �� ��

�



for B� which is the entry node� and an E node as the exit node� The edges represent
the semantics of the �while� loop� �Figure � C��

G�

no

yes

G�

no

G�

E

B B E

�A� P � P��P� �B� P � if B then P� else P� � �C� P � while B do P� od

G�

G�

yes

Figure �� Creation of partition graphs

The formal de�nition of partition graphs and their semantics �given as Kripke structures�
will be given in the full version� It is de�ned so that given any partition graph G � pg�P ��
the structure that de�nes its semantics� denoted struct�G�� is identical to struct�P �� Infor

mally� struct�G� is created out of the union of all Kripke structures in its nodes �with some
adjustment of the program locations�� Each step
edge induces a set of transitions from the
states in the node representing the boolean expression� to initial states in the node that is
pointed at by the edge� A yes
edge �no
edge� creates one transition from each state that
satis�es �does not satisfy� the condition into the corresponding state �di�erent location� same
assignment to variables�� A null
edge M� �M� does not create transitions�

Given a partition graph G we de�ne init�G� to be the set of initial states in struct�G�
and end�G� to be the set of ending states in struct�G�� Figure � gives an example of an
actual partition graph�

� Performing Modular Model Checking

Our algorithm for modular model checking is based on the notion of satisfaction under as

sumptions� Furthermore� the basic building block in the recursive de�nition of the algorithm
is �model checking under assumptions�� We do not give here an explicit algorithm to com

pute it� we just note that every standard model checking algorithm for CTL can easily be
adapted to handle assumptions�

Before we present our modular algorithm we de�ne a few operations on assumption
functions that we use in the algorithm�

��� Operations on Assumption Functions

We �rst present an operation T that� given a step
edge e � MB

yes
� M� or e � MB

no
� M�

�MB is a structure representing a condition B�� and an assumption function As over the
initial states of M�� results in an assumption function As� overMB � As

� is de�ned so that it
represents all the knowledge that As gives� translated over the edge�

De�nition ���� Let e �MB

yes
� M� be an edge in a partition graph G s�t� M� � hS�� R�� I�i

	



P ��


P��


P��

if a then

else

��

b �� true�

b �� false�

init�struct�P ��

�E� a b �E� a �b �E� �a b �E� �a �b

�P � a b �P � a �b �P � �a b �P � �a �b

�P�� a b �P�� a �b �P�� �a b �P�� �a �b

�P�� a b �P�� a �b �P�� �a b �P�� �a �b

struct
P ���

end�struct�P ��

Figure �� An example of an NWP program�

There are three types of edges� null
edges� yes
edges� and no
edges� denoted M� � M��
M�

yes
� M� and M�

no
� M� respectively� A null edge M� � M�� where M� � struct�P�� and

M� � struct�P��� means that init�P�� � end�P��� This happens when there is no step in the
execution between the corresponding sub
programs� for example� when the program to be
executed is P�
P�� Yes
edges and no
edges� called step�edges� are edges outgoing from a node
representing a boolean expression� Execution from a state in this node continues through
the yes
edge or the no
edge� depending on whether the expression evaluates to true or false
in that state� These edges also represent a step in the execution� A partition graph also has
two designated nodes� the entry node� from which execution starts� and the exit node� at
which it stops�

The set pg�P � contains all possible partition graphs of P � representing di�erent ways
of partitioning P into sub
programs� It is de�ned recursively� where at each step one may
decide to break a given program according to its primary structure� or to create a single node
out of it� Figure � shows the three di�erent ways in which a program may be decomposed�
according to the three structures by which programs are created� We use in� �in�� for the
entry node of G� �G�� and out� �out�� for the exit node�

�� If P � P�
P� we may decompose it into two parts� by creating �recursively� partition
graphs G� � pg�P�� and G� � pg�P��� and connecting them with a null edge from out�
to in�� The entry node of the resulting graph would be in�� and the exit node would
be out� �Figure � A��

�� If P � �if B then P� else P� ��� we again create the two graphs G� � pg�P�� and
G� � pg�P�� but also create two new nodes� one representing the boolean expression B
and the other representing the empty program E� The Kripke structure representing
E has no edges �an empty transition relation� and its set of states is the product of Dn

and the location E� This node is used as the exit node� and the entry node is the B
node� The edges connecting the di�erent components are according to the semantics
of the �if� command� Again� the edges entering G� and G� are to in� and in� and the
edges exiting G� and G� are from out� and out�� �Figure � B��

�� If P � �while B do P� od�� we create a partition graph G� � pg�P�� and again a node

�



� The Programming Language

Following we de�ne the syntax and semantics of our programming language NWP �Non

deterministic While
Programs��

De�nition ���� We assume a �xed set of program variables over some �nite domain D�
A program fragment is one of x �� fe�� � � � � ekg� skip� Prog�
Prog�� �if B then Prog� else
Prog� �� or �while B do Prog� od� s�t� Prog��Prog� are program fragments� B is a boolean
expression over program variables and constants� x stands for any program variable� and e is
an expression over program variables and constants� The meaning of x��fe�� � � � � ekg is a non

deterministic assignment� Prog�
Prog� is the sequential composition of Prog� and Prog��
and the �if� and �while� structures have the same meaning as in all sequential programming
languages�

A full program is of the form Prog
�n where Prog is a program fragment� The meaning
of ��n� is an in�nite loop that does not change the values of program variables� We de�ne
E to be the empty program� such that for every P � NWP it holds that P 
E � E
P � P �
The set NWP is the set of all full programs�

From here on we use the word �program� to refer to either a full program� or a program
fragment� unless stated otherwise�

The semantics of NWP programs is given by means of Kripke structures� We give here
only an informal description� the formal de�nition will appear in the full version�

Let P � NWP be a program such that x�� � � � � xn are the program variables� An assign

ment to the program is be some � � Dn� We create a Kripke structure struct�P � so that
each state is a pair �l� �� where l is a program location and � � Dn is an assignment to
the program variables� Each location is associated with the remaining program to be run
from that point on� The transition relation is created in the intuitive way� following the
usual semantics of the commands� Evaluating a boolean expression �in an �if� or �while�
command� is considered a step in execution� We de�ne the set of initial states init�P � as
the set of states with location P � The set of ending states� end�P �� is the set of states in
struct�P � that have no outgoing transition� If P is a full program then end�P � � �� If P
is a program fragment then this is the set of states with the location E �which means that
there is nothing more to run��

We add to AP the set fat l j l is a location in Pg� The new propositions are used to refer

to a location in the program within the speci�cation� The labeling function L � S � �AP is
extended accordingly so that L��l� ��� � fat lg � fp � AP j � j� pg for every state �l� �� in
struct�P ��

Figure � includes an example of a NWP program� and its structure�

� Partition Graphs

A Partition Graph of a program P is a �nite graph representing a decomposition of P
into several sub
programs while maintaining the original �ow of control� The nodes are
Kripke structures� each representing a sub
program of P or a boolean expression� A node
representing a sub
program P � is of the form struct�P ��� A node representing a boolean
expression B� has the form hS�R� Ii s�t� R � � and S � I � f�l� �� j � � Dng where l is the
program location of the �if� or �while� command that evaluates B�

�



assume that �� holds� When As��� � 
 it means that we have no knowledge regarding the
satisfaction of � in S��

Satisfaction of a CTL formula � in a state s � S under an assumption function As is
denoted �M�L�� s j�As �

�� We de�ne it so that it holds if either M� s j� � directly �by
in�nite paths only�� or through the assumption� For example� M� s j�As E�fUg� if there
exists an in�nite path from s satisfying f in all states until a state satisfying g is reached�
but it is also true if there is a �nite path from s in which the last state� say s�� satis�es
s� � As�E�fUg��� and all states until s� satisfy f � Formally�

De�nition 	��� Let M � hS�R� Ii be a Kripke structure and As a consistent assumption
function over M � For every � � cl����
If As��� � 
 then s j�As � is not de�ned�
Otherwise� we di�erentiate between ending states and other states� If s � end�M� then
s j�As � i� s � As���� If s � S n end�M� then s j�As � is de�ned as follows�

� s j�As p i� p � L�s� for every p � AP �
� s j�As �� � �� i� �s j�As �� or s j�As ����
� s j�As ��� i� s �j�As ���
� s j�As AX�� i� �s

���s� s�� � R� s� j�As ���
� s j�As EX�� i� �s���s� s�� � R � s� j�As ���
� s j�As A���U��� i� for all �maximal� paths 	 � s�� s�� � � � from s there is a number
i � j	j s�t� �either si j�As �� or si � end�M� � si j�As A���U����� and �� � j �

i�sj j�As ����
� s j�As E���U��� i� there exist a �maximal� path 	 � s�� s�� � � � from s and a number
i � j	j s�t� �either si j�As �� or si � end�M� � si j�As E���U���� and �� � j �

i�sj j�As ����

Note that� if the transition relation of M is total then the above de�nition is equivalent
to the traditional de�nition of CTL semantics� because the assumption function is consulted
only on states from which there are no outgoing transitions�

��� Model Checking Under Assumptions

The task of model checking is to �nd all initial states of a given structure that satisfy a
formula �� We write M j�As � i� �s � I� �M� s j�As ��� From here on we assume that � is
the formula to be checked on a structure M � hS�R� Ii �or later� a program��

De�nition 	��� Given an assumption function As over a structure M we de�ne a func

tion MC�M�As� � cl��� � ��S � f
g� so that for any � � cl���� if As��� � 
 then
MC�M�As���� � 
� Otherwise� MC�M�As���� � fs � S jM� s j�As �g�

Notice that MC�M�As� results in an assumption function� Given M and As� this func

tion can be calculated using any known model checking algorithm for CTL �	� ��� ��� after
adapting it to the semantics under assumptions�

�Since we assume a �xed L� we always omit L� When no confusion may occur we also omit M �

�



� Basic De�nitions

��� Kripke Structures

Kripke structures are widely used for modeling �nite
state systems� In this paper we use
Kripke structures to model the behavior of a �nite program�

De�nition 	��� A Kripke Structure is a tuple M � hS�R� Ii s�t� S is a set of states�
R � S 	 S is a transition relation and I � S is a set of initial states� A path in M from a
state s� is a sequence 	 � s�� s�� � � � s�t� �i�si � S and �si� si
�� � R�� A maximal path in M

is a path which is either in�nite� or ends in a state with no outgoing transitions� Let 	 be a
maximal path in M � We write j	j � n if 	 � s�� s�� � � � � sn�� and j	j �� if 	 is in�nite�

De�nition 	�	� For a Kripke structure M � hS�R� Ii we de�ne the set of ending states to
be end�M� � fs � S j ��s���s� s�� � Rg� We also use init�M� to refer to the set I of initial
states�

��� CTL

For our speci�cation language we use the propositional branching
time temporal logic CTL�
It allows us to specify a behavior of a program in terms of its computation tree ����

We assume a set of atomic propositions AP and a labeling function that associates with
each state in a structure the set of atomic propositions true at that state� Throughout the
paper we assume a �xed labeling function L � S � �AP �

We de�ne a CTL formula to be either q for each q � AP � or �f�� f� � f�� AX f�� EX f��
A�f�Uf��� and E�f�Uf�� where f� and f� are CTL formulas� Each temporal operator in
CTL is constructed of a path quanti�er� either A ��for all paths�� or E ��for some path���
and a temporal operator X or U� Intuitively� the operator X means �at the next step�� so
the formula AX q states that in all the paths outgoing from a given state� the second state
satis�es q� A path satis�es pU q �p �Until� q� if there exists a state along it that satis�es q
and all the states preceding it satisfy p�

CTL formulas are usually interpreted over Kripke structures that have a total transition
relation� so that all paths are in�nite� We denote the standard semantics for CTL ���� ��
as M� s j� � �meaning that the state s in the structure M satis�es ��� In this paper we
introduce an interpretation for CTL over a Kripke structure and an assumption function

�de�ned below�� The use of assumption functions enables us to give semantics �over in�nite
paths� in case of incomplete information� When a �nite path occurs in a structure� we view it
as a pre�x of a set of in�nite paths with unspeci�ed continuations� The assumption function
states which formulas are true over this absent continuation� We use this information only
for states in end�M�� so the function may be de�ned only over some subset of S that includes
end�M��

De�nition 	��� The closure of a formula �� cl���� is the set of all the sub
formulas of �
�including itself��

De�nition 	��� An assumption function for a Kripke structure M � hS�R� Ii is a function

As � cl���� ��S
�
� f
g� where S� � S� We require that end�M� � S � and that �� � cl����

if As��� �� 
 then ��� � cl���� As���� �� 
�
For every � � cl���� if As��� �� 
 then As��� represents the set of all states in S�

for which we assume �or know� that � holds� For every state s � S� s�t� s �� As��� we

�



that determines the truth of temporal formulas based on the given assumption function�
Only minor changes are needed in order to adapt a standard model checking algorithm so
that it performs model checking under assumptions�

Given a procedure that performs model checking under assumptions� we develop a mod�

ular model checking algorithm that checks the program in parts� To illustrate how the
algorithm works consider the program P � P�
P�� We notice that every path of P lies either
entirely within P� or has a pre�x in P� followed by a su�x in P�� In order to check a formula
� on P � we �rst model check � on P�� The result does not depend on P� and therefore
the algorithm can be applied to P� in isolation� We next want to model check P�� but now
the result does depend on P�� In particular� ending states of P� have their continuations in
P�� However� each ending state of P� is an initial state of P� for which we have already the
model checking result �� Using this result as an assumption for P�� we can now model check
P� in isolation� This scheme saves signi�cant amounts of space since at any given time the
memory contains only the model of the component under consideration� together with the
assumption function that maps formulas to the ending states of that component�

Our modular algorithm can handle any �nite
state while program with non
deterministic
assignments� In addition to sequential composition� programs may include choices ��if
then

else�� and while loops� nested in any way�

Works discussing model checking of programs written in a high level language are rare�
The closest to our work is ���� that veri�es concurrent systems written in C� However� their
approach is not modular� Moreover� they do not handle a full temporal logic� Another
related work is ���� in which they perform model checking on Pushdown Process Systems by
considering the semantics of �fragments�� which are interpreted as �incomplete portions� of
the process� The model checking algorithm they propose calculates the property transformer

of each fragment� which is a function that represents the semantics of a fragment with respect
to alternation
free mu
calculus formulas� This algorithm� however� works on all fragments
together� It should also be noted that Pushdown Process Systems are suitable for modeling
�parallel� processes but they can hardly be considered as a high level programming language�

In contrast� our work applies model checking to programs written in a high level program

ming language� while exploiting their textual structure in order to reduce space requirements�
We consider our work as a �rst step in making model checking applicable to realistic software
systems�

The paper is organized as follows� In section � we introduce the temporal logic CTL and
de�ne its semantics under assumptions� Section � describes the syntax and semantics of our
programming language and Section � de�nes partition graphs� Section � gives the modular
model checking algorithm� Section � concludes with directions for future research�

�The result includes for each sub formula � of � the set of states satisfying ��

�



� Introduction

This work presents a new modular approach that makes temporal logic model checking
applicable to large sequential �nite
state programs� written in some high level programming
language�

Finite
state programs can be useful for describing� in some level of abstraction� many
interesting systems� They can describe the behavior of communication protocols� They can
be used to describe expert systems� provided that some of the inputs are mapped into a �nite
domain� Such programs �written in behavioral Hardware Description Languages� are being
used to describe the high level behavior of hardware designs� All these examples are reactive�
i�e�� they continuously interact with their environment� They are also quite complex which
makes their veri�cation an important and non
trivial task� Furthermore� even though they
are sequential they might be signi�cantly large�

A �rst step in veri�cation is choosing a speci�cation language� Temporal logics ����� ca

pable of describing behaviors over time� have proven to be most suitable for the speci�cation
of reactive systems� When restricted to �nite
state systems� propositional temporal logic
speci�cations ���� can be checked by e�cient algorithms� called model checking ��� ��� ��� ���
Temporal logic model checking procedures typically receive a system model by means of a
state transition graph and a formula in the logic� and determine the set of states in the model
that satisfy the formula� Tools based on model checking ���� were successful in �nding subtle
bugs in real
life designs ��	� �� and are currently in use by the hardware industry as part of
the veri�cation e�orts of newly developed hardware designs ��� ����

Unfortunately� similar applications of model checking to programs are very limited� One
reason for this de�ciency arises from the fact that large hardware systems are usually com

posed of many components working in parallel� Software systems� on the other hand� can
be extremely large even when they consist of one sequential component� A useful approach
to reducing space requirement is modularity� Modular model checking techniques treat each
component in separation� based on an assumption about the behavior of its environment
���� ��� ���� Existing techniques� however� are based on partitioning the system into pro

cesses that run in parallel�

Our work applies a modular approach to sequential programs� To do so� we suggest a
way of partitioning the program into components that follows the program text� A given
program may have several di�erent partitions� A partition of the program is represented by
a partition graph� whose nodes are models of the subprograms and whose edges represent
the �ow of control between subprograms�

Once the program is partitioned� we wish to check each part separately� However� veri

fying one component in isolation amounts to checking the speci�cation formula on a model
in which some of the paths are truncated� i�e� for certain states in the component we do
not know how the computation proceeds �since the continuation is in another component��
Such states are called ending states� We notice� however� that the truth of a formula at a
state inside a component can be determined solely by considering the state transition graph
of this component� and the set of formulas which are true at the ending state� Moreover� the
truth of the formula at such states depends only on the paths leaving the state and not on
the paths leading to it� This observation is the basis for our algorithm�

We de�ne a notion of assumption function that represents partial knowledge about the
truth of formulas at ending states� Based on that� we de�ne a semantics under assumption

�



Modular Model Checking of Software

Karen Laster Orna Grumberg

Computer Science Department

The Technion

Haifa ������ Israel

email� flaster�ornag�cs�technion�ac�il

July 	
� 	��


Abstract

This work presents a modular approach to temporal logic model checking of software�
Model checking is a method that automatically determines whether a �nite state

system satis�es a temporal logic speci�cation� Model checking algorithms have been
successfully used to verify complex systems� However� their use is limited by the high
space requirements needed to represent the veri�ed system�

When hardware designs are considered� a typical solution is to partition the design
into units running in parallel� and handle each unit separately� For software systems
such a solution is not always feasible� This is because a software system might be too
large to �t into memory even when it consists of a single sequential unit�

To avoid the high space requirements for software we suggest to partition the pro�
gram text into sequentially composed subprograms� Based on this partition� we present a
model checking algorithm for software that arrives at its conclusion by examining each
subprogram in separation� The novelty of our approach is that it uses a decomposition
of the program in which the interconnection between parts is sequential and not parallel�
We handle each part separately� while keeping all other parts in an external memory�
Consequently� our approach reduces space requirements and enables veri�cation of larger
systems�

Our method is applicable to �nite state programs� Further� it is applicable to in�nite
state programs provided that a suitable abstraction can be constructed�

We consider this work as a �rst step towards making temporal logic model checking
useful for software veri�cation�


