G5. In addition, all states with location P that satisfy B have a transition into I; and those
that do not satisfy B have a transition into [5. Finally, states from end(P;) and end(P,) are
unified with Sg. When G is a partition graph of P = "while B do P; od”, the structure of
G contains the structure of (¢, and also transitions from I (states with location P) to I if
B holds and to Sg if B does not hold (and P terminates).

17

a structure M = (S, R, I) we define M¥ = (5% RP ['¥). For a set of structures V and a
set of graph edges &, V¥ and &7F are obtained by putting in context each element in the set.

Definition A.3: A Partition Graph of a program P is a directed graph G = (V, &, In, Out),
where V is a finite set of nodes, each node V' is a Kripke structure (Sy, Ry, Iy}, £ is a finite
set of edges, In € V is the entry node and Out € V is the exit node. Each edge in & is either
a null edge M, — M,, a yes-edge B *= M or a no-edge B % M.

We use the following notations: G; = (V;, &, In;, Out;) for any i, Sp = {(P,0) | 0 € D"},
Mp = (Sp,0,5p), Sg = {(F,0) | 0 € D"} and Mg = (Sg,0,5g). The set pg(P) of all
Partition Graphs of P is defined inductively as follows 7 :

1. {M},0, M, M) € pg(P) where M = struct(P).

2. If P = Pi; Py then forevery Gy € pg(Py) and G4 € pg(Py), G = (V, &, In,Out) € pg(P) s.t.
Vv=v"uy, £=&"U&U{Out? — In,)
In = Ini"*, Out = Out, (See figure 2).

3. If P ="if B then P, else P, fi”, then for every G| € pg(P)) and G5 € pg(Ps), G =
(V,&,In,0ut) € pg(P) s.t.
V=V, UV, U{Mp, Mg}
E=&EUEU{Mg & Iny, Mg ™2 In,, Outy — Mg, Outy, — Mg}
In=Mg,Out= Mg

4. If P ="while B do P, od”, then for all G1 € pg(P,), G = (V, &, In,Out) € pg(P) s.t.
V=V U{Mg, Mg} E=8&U{MgZ In,, M™% Mg, Out, — Mg}
In=Mg,Out= Mg

The next step is to define the semantics of a partition graph, by means of one Kripke
structure. The goal is that for any G € pg(P) the semantics of G and P will be the same.
Definition A.4: Given a step-edge Mp = M, (or Mp ™2 M,) we define step(Mp AN M) to
be the set of transitions induced by this edge. Assume that [is the location of the command
that evaluates the boolean condition B, which means that [is the location of the states in
Mp. Assume also that [’ is the location of the states in init(M;). Then we define:
step(Mp ™= My) = {((l,0),(I',0)) | o |= B}
step(Mp = M) ={((l,0),(I',0)) | o }£ B}

Definition A.5: Let ¢ = (V,&,In,Out) be a partition graph of some program P, s.t.
V={Vy,...,V,} and for every 1 < i < n, V; = (5, R;, I;). struct(G) = (9, R, I) where :
5= U1gz’gn S,

I = I, (where I, is the set of initial states of the entry node In of) and

R = (Uicizn Bi) U Uy, sy e step(Vi = Vi) U (Uy,noy, e step(Vi = V).

Lemma A.1: For any program P and graph G € pg(P), struct(P) = struct(G).

Intuitively, when G is a partition graph of P = P;;Ps, the structure of GG is the union of
the structures of G and G5, except that GGy is "put in context” of P,. This is done by using
572 and R} instead of S; and R; when creating GG. When G is a partition graph of P =
?if B then P, else P, fi”, the structure of G contains the union of the structures of G; and

TAll unions of nodes and edges are assumed to be disjoint unions, possibly requiring additional labels to
differentiate between nodes or edges that happen to have the same name. We ignore the change in names
whenever there is no doubt as to what we are referring to.

81n this definition, unions are not disjoint. If there are states appearing in more than one node then when
the sets of states of these nodes are unioned, parts of the corresponding structures are unified.

16

A Appendix

A.1 The semantics of NWP programs

We start by defining the Remainder set of a program, which will be used as the set of
locations in the program.

Definition A.1: The remainder set of a program P, denoted Remain(P), is the set including
all sub-programs of P that can appear as the remaining program to run:

P € Remain(P)

If P ends with the command ”fin” then "fin” € Remain(P), otherwise £/ € Remain(P)
If Pi; Py € Remain(P) and P| € Remain(Py) then P[; P, € Remain(P).

If 7if B then P, else P; fi” € Remain(P) then P, € Remain(P) and Py, € Remain(P).
If ”while B do P, od” € Remain(P) then P;; while B do P; od € Remain(P).

Note that, if for instance P = P;; P, then P, will be in the remainder of P, but P; will
not.
Let P € NWP be a program such that z,,...,z, are the program variables, all of them

over some finite domain D.

Definition A.2: The meaning of a program P is a Kripke structure struct(P) = (9, R, I).
The set of states is S = Remain(P) x D™. For a state ({,0) we refer to [as the location of
the state. The set of initial states is I = {(P,0) | 0 € D"}. The transition relation R is
defined inductively (using the notation struct(P;) = (5, R;, I;)).

For P = E: R=10.
For P = "fin”: R={(s,s)|s €5}
For P = "skip”: R=A{((P, o), (L, 0))|oceD"}
For P ="x:=He,...,ex}": R={((P,0),(F,olz —¢]) |1 <i<k,o€ D"}
For P = Py Py: R={((Q; P2,0),(Q"; P5,0") | ((Q,0),(Q,0")) € R} U Rs.
For P ="if B do Py else P, fi”: R={((P,0),(P1,0))| o= B,o € D"}U

{((P,o),(Py,0))| o £ B,o € D"}U R; U R,.

P, o)

For P = 7while B do P, od”: R={((P,0),(P;P,0))|ckE=B,ce D"}U
{((P,0),(E,0)) | ol B,o e D"}U{((Q; P,0),(Q P,0') | ((Q,0),(Q,0) € Ri}.

Recall that we define ' so that for any program P, F; P = P and therefor the states
(E; Py,0) and (P,,0) are the same state. This is significant in the case of sequential compo-
sition.

A.2 Partition graphs for NWP programs

The set pg(P) contains all possible partition graphs of P, representing different ways of
partitioning P into sub-programs.

The following notation is required for the formal definition of partition graphs. It allows
us to take a Kripke structure of a sub-program and put it “in context” of the whole program.
This is done by changing the locations of the sub-program to match them to their locations
in the whole program. For any set of states S, and program P, the set S¥ is obtained from
S by replacing each state (I,o) in S by the state (I;P, o). The transition relation R is
obtained from R by replacing every pair ((I1,01), (l2,02)) in R by ((I1; P, 1), (I3; P, 05)). For

15

[6]

[16]

[17]

[18]

[19]

[20]

E. M. Clarke and E. A. Emerson. Synthesis of synchronization skeletons for branching time
temporal logic. In Logic of Programs: Workshop, Yorktown Heights, NY, May 1981, volume 131
of Lecture Notes in Computer Science. Springer-Verlag, 1981.

E. M. Clarke, E. A. Emerson, and A. P. Sistla. Automatic verification of finite-state concurrent
systems using temporal logic specifications. In Proceedings of the Tenth Annual ACM Symposium
on Principles of Programming Languages, January 1983.

E. M. Clarke, E. A. Emerson, and A. P. Sistla. Automatic verification of finite-state concurrent
systems using temporal logic specifications. ACM Transactions on Programming Languages and
Systems, 8(2):244-263, 1986.

E. M. Clarke, O. Grumberg, H. Hiraishi, S. Jha, D. E. Long, K. L. McMillan, and L. A. Ness.
Verification of the Futurebus+ cache coherence protocol. Formal Methods in System Design,
6(2):217-232, March 1995.

E. A. Emerson and J. Y. Halpern. “Sometimes” and “Not Never” revisited: On branching time
versus linear time. Journal of the ACM, 33:151-178, 1986.

P. Godefroid. Model checking for programming languages using VeriSoft. In Principle of Pro-
gramming Languages, January 1997.

O. Grumberg and D.E. Long. Model checking and modular verification. ACM Trans. on Pro-
gramming Languages and Systems, 16(3):843-871, 1994.

B. Josko. Verifying the correctness of AADL-modules using model checking. In J. W. de Bakker,
W.-P. de Roever, and G. Rozenberg, editors, Proceedings of the REX Workshop on Stepwise
Refinement of Distributed Systems, Models, Formalisms, Correctness, volume 430 of Lecture
Notes in Computer Science. Springer-Verlag, May 1989.

G. Kamhi, O. Weissberg, L. Fix, Z. Binyamini, and Z. Shtadler. Automatic datapath extraction
for efficient usage of HDD. In Proc. of the 9th International Conference on Computer Aided
Verification, LNCS vol. 1254, pages 95-106. Springer, June 1997.

O. Lichtenstein and A. Pnueli. Checking that finite state concurrent programs satisfy their
linear specification. In Proceedings of the Twelfth Annual ACM Symposium on Principles of
Programming Languages, pages 97-107, January 1985.

K. L. McMillan. Symbolic Model Checking: An Approach to the State Fzplosion Problem. Kluwer
Academic Publishers, 1993.

K. L. McMillan and J. Schwalbe. Formal verification of the Encore Gigamax cache consistency
protocol. In Proceedings of the 1991 International Symposium on Shared Memory Multiproces-
sors, April 1991.

A. Pnueli. A temporal logic of concurrent programs. Theoretical Computer Science, 13:45-60,
1981.

A. Pnueli. In transition for global to modular temporal reasoning about programs. In K. R. Apt,
editor, Logics and Models of Concurrent Systems, volume 13 of NATO ASI series F. Springer-
Verlag, 1984.

J.P. Quielle and J. Sifakis. Specification and verification of concurrent systems in CESAR. In
Proceedings of the Fifth International Symposium in Programmang, 1981.

14

the inner one. This reflects the tradeoff between space and time complexity. As larger
programs can be handled (by applying more refined partitions) the time complexity grows.

6 Conclusions and future development

The algorithm presented in this work can be considered as a framework into which any model
checking algorithm for Kripke structures can be integrated. Since our method uses a given
model checking algorithm as a procedure, whenever a better algorithm is developed it can
immediately be plugged into ours.

Thus, our method can work well with both explicit-state model checking and BDD-based
model checking. The former expects the model of the checked system to be given explicitly
as a graph (e.g. by an adjacency list). The latter is based on BDD representation [2] of
the system model. Each has its advantage for certain areas of applications and each can be
made modular using our approach.

An important notion suggested in this work is that of partition graphs. In this work, they
were used to partition the model checking task into several sub-tasks. They also maintained
the flow of information (by means of assumption functions) between the sub-tasks.

Partition graphs can further be used for top-down design of systems. They may enable
to verify a system at an early stage of development, when some of the components have
not yet been written. In such cases, the assumption functions will actually play the role of
assumptions about components that are yet unknown. The use of partition graphs in that
context should be further investigated.

Choosing the right partition graph is crucial to the effectiveness of our method. As
presented here, the algorithm is given a specific partition graph, but it may be possible to
develop some heuristics that will allow automatic creation of the partition graph.

We will also explore various extensions of our method, to deal with other aspects of
software such as procedures, data structures, templates, and parallel composition.

We are currently working on an implementation of our method using BDDs. We intend to
use it to verify several example programs and compare performance when different partitions
are used.

References

[1] I. Beer, S. Ben-David, C. Eisner, D. Geist, L. Gluhovsky, T. Heyman, A. Landver, P. Paanah,
Y. Rodeh, and Y. Wolfstahl. Rulebase: Model checking at IBM. In Proc. of the 9th International
Conference on Computer Aided Verification, LNCS vol. 1254, pages 480-484. Springer, June
1997.

[2] R. E. Bryant. Graph-based algorithms for boolean function manipulation. IEEE Transactions
on Computers, C-35(8):677-691, 1986.

[3] J. R. Burch, E. M. Clarke, K. L. McMillan, D. L. Dill, and L. J. Hwang. Symbolic model
checking: 10%° states and beyond. Information and Computation, 98(2):142-170, June 1992.

[4] J.R. Burch, E.M. Clarke, K.L. McMillan, D.L. Dill, and L.J. Hwang. Symbolic model checking:
102° states and beyond. In Proceedings of the Fifth Annual Symposium on Logic in Computer
Science. IEEE, IEEE Computer Society Press, June 1990.

[5] Olaf Burkart and Bernhard Steffen. Pushdown processes: Parallel composition and model check-
ing. LNCS 836, pages 98-113. Springer, 1994.

13

or € {A(@Upn), E(eUp,) }:
(a) Set ¢« 1.

Initg — As'(pn) N{s € init(G) | s = B}.

The initial assumption function is As® «— As’.

Initialize the value for ¢;: As®(¢r) «— As.p(vr) U Initp.
(b) do:

— Tmp =CheckGraph (G, As'™1)
Asly — T(Mp 2 ing, Tmp)
Define As’ so that for all j < k, As'(¢;) — As’(p;) and As'(¢p) —
Asp (r) U Asp (o)
—g—1+1
as long as As' £ As'™L.

(c) As'(¢x) — As'(¢x)

4. Return As'.

Theorem 5.2: For any full program P, a CTL formula 1, a partition graph G' € pg(P) and
an empty assumption function As: ¢l(¢p) — {0}, if As’ =CheckGraph(G, As) then for every
@ € cl() and s € init(G), s € As'(p) & s | .

This theorem states that if we run the algorithm on a full program, with an empty
assumption function, the resulting function will give us full knowledge about which formulas
in ¢l(¢) hold in the initial states of the program according to the standard semantics of
CTL.

When implementing the above algorithm there are many optimizations that can be done,
such as working on several formulas at the same time and keeping information from previous
calculations.

The space complexity of our modular algorithm is clearly better than that of algorithms
that need to have the full model in the direct memory. Our algorithm holds in the direct
memory at any particular moment only the model for the subprogram under consideration
at that time. In addition, it keeps an assumption function, which at its largest holds the
results of performing model checking on this subprogram. This of course is equivalent to any
model checking algorithm that must keep its own results.

The time complexity is harder to analyze. It depends on the model checking algorithm
used for a single node and on the partition graph. In most cases, our algorithm is of the
same time complexity as algorithms designed to model check unpartitioned models. A case
that might require a significant amount of additional computation occurs when an Until
formula 1 (either A(¢1U¢y) or E(¢U¢s)) is checked on a while program in which the body
is partitioned.

Let & be the partition graph of the while program. The number of iterations through
the body of the while is bounded by the number of initial states of G, Init(G). At each
iteration, every node in G is model checked with respect to 1. Such a case occurs when at
each iteration exactly one state from Init(G') is added to the set of states satisfying). This
means that there is a a computation that executes the body of the while |init(G)| times
without passing through the same state twice. Note that in such a case a regular model
checking also has to traverse the same path.

Additional overhead occurs when while loops are nested and each is partitioned. Time
complexity then grows since every pass through the outer loop requires several passes through

12

for a specific state s5. In order to find out that sy = E(¢1Ug,) it is necessary to traverse
the path that proves this. This path is revealed only in the second traversal of the loop.
Following is the recursive definition of the algorithm. Given a partition graph G' € pg(P)

of a program P, and a consistent assumption As : ¢l(¢) — (2€nd(G)U{J_}), CheckGraph(G, As)
returns an assumption As' : ¢l(¢)) — (Qant(G) U{L}).

CheckGraph(G,As):

The base case is for a single node M, in which case we return As’ s.t. Yo € cl(v), if
As(p) = L then As'(¢) = L, otherwise As'(¢) = MC[M, As](p) N init(M).

The three possible recursive cases are the ones depicted in Figure 2. We assume that
iny (ins) is the entry node of GGy (G3), Mp is the structure in a ” B” node, and Mg is the
structure in an 7 E” node.

e Lor a sequential composition P;; Py (Figure 2 A) perform:

1. As; —CheckGraph(Gs, As).

2. As’ —CheckGraph(Gy, As;).

3. Return(As’)

e LFor a graph of P = 7if B then P, else P, fi” (Figure 2 B) perform:
1. As; —CheckGraph(Gy, As).
Asy —CheckGraph(Gs, As).
Asp «— T(Mp vee ing, Asy)
As.p — T(Mp =2 iny, Ass)
For every formula ¢ € cl(v), if Asp(yp) = L then define As'(p) = L *. Other-
wise, As'(p) = Asp(p) U As,g(¢) (Notice that the images of Asg and As_p are
disjoint).
6. Return As’
o For a graph of P = "while B do P; od” (Figure 2 C) perform:

1. Asop « T(Mp % Mg, As)

2. Find an ordering ¢y, ¢a,. .., ¢, of the formulas in ¢/(1) such that each formula
appears after all of its sub-formulas. Set As'(¢;) = L forall . For k=1,...,n
perform step 3 to define As'(¢y) °.

3. Perform one of the following, according to the form of ¢y:
or € AP: As' (1) — {s € init(G) | vr € L(s)}
or = i As' (@) — {s € init(G) | s € As' (@) }.

Pr =1V pm: As'(pr) — A8 (1) U A8 (0m).-

or € {AX ¢, EX ¢}

(a) T'mp «—CheckGraph(Gy, As')

(b) Let R .y be the set of transitions induced by the edge Mp i,
As' (@) — As_p(or) U{s € init(G) | Vs' € init(Gy), (s,8') € R
(s |E B NS €Tmp(a))}°.

*Since Asp and As.p both originate from the same assumption function As, it holds that AsB(go) =
LiffAs-p(p) = L.

®Notice that when working on ¢, we have already calculated As’ for all of its sub-formulas.

6The definition is the same for AX ¢; and EX ¢; because for each state s € intt(G) there is exactly one
state s’ € init(G1) s.t. (s,8') € R yes

Mg Sing

QU = W N

=

yes .,
Mp=—in,

11

G we first check) and G5, and then compute ‘backwards’ over the step-edges (using the
function 7') to get the result for the initial states of G.

The most complicated part of the algorithm is for the partition graph G of a program
P = "while B do P, od”, as in figure 2 C. We start from the node Mg, for which we have
the assumption As. Walking backwards on the no-edge we use the function 7 to get an
assumption As_pg over the initial states of G that satisfy = B. We now demonstrate the com-
putation of E(p;Ugp,). We assume that As'(¢;) and As'(p,) were already calculated. The
goal is to mark all states that satisfy E(pUgp,) (to create As’'(E(¢;Ug,)). Standard model
checking algorithms would start by marking all states that satisfy s, and then repeatedly
move backwards on transitions and mark every state that has a transition into a marked
state, and satisfies ¢, itself. We reconstruct this computation over the partition graph of P.
For initial states of G that satisfy B we have no assumption regarding E(¢; U¢,), so we mark
all those that satisfy B and ¢, and keep them in Initg. Together with As_ p(E(¢1Ugps))
we have an initial estimate for As'(E(¢;Ug,)) (kept in As®(¢;)). We now want to mark all
the fathers in G of these states. Notice that init(G) = end(G4) so these fathers are inside
(1. Hence we continue from end(G/) backwards inside Gy until we arrive at init(G,). At
this point, only the marks on states of init(G) are kept (in T'mp). The marks on all other
states of G are not preserved. Notice that G itself may consist of more than one node, and
the creation of T'mp is done by a recursive call to CheckGraph. From T'mp we can calculate
a new estimate for As'(E(¢;Uwp,)).

The whole process repeats itself since the body of a ”while” loop can be executed more
than once. Obviously, it is essential that the states satisfying ¢; and ¢, be known before this
process can be performed. Therefore, we use the L value for E(¢;Ugps) when working on
the assumptions for ¢; and 5. Only when calculations for all sub-formulas are completed,
we may begin calculating the proper result for E(p,Ug,).

init(Gy) » init(Gh)

end(G1 7 end(G1 7
N I

S1 S1

(2) (3)

Figure 5: The steps taken by the algorithm in order to reveal that the state s, satisfies
E(¢1Ugpy)

This process stops when the assumption calculated reaches a fix-point (As’ = As'~!).
Obviously, no new information will be revealed by performing another cycle. The set of
states in init(G) that are marked increases with each cycle, until all states that satisfy the
formula are marked, at which point the algorithm stops. Figure 5 illustrates the algorithm

10

truth of formulas in the structure of GG then the derived assumption also coincides with the
truth of formulas in the structure. The proof of this is omitted due to space restrictions.

5.2 The Compositional Algorithm

Following, we give an algorithm to check a formula % on a partition graph G of a full program
P. The result is an assumption function over the set of initial states of P that gives, for
every sub-formula ¢ of ¢, the set of all initial states of P satisfying . We start with an
intuitive description of the algorithm.

The algorithm works on G from the exit node upwards to the entry node. First the
structure contained in a leaf node V of G is model checked under an "empty” assumption
for ¢l(v)), an assumption in which all values are (). Since V is a leaf it must represent a
full program and therefore all paths in it are infinite, and the assumption function has no
influence on the result. The result of the model checking algorithm is an assumption function
As’ that associates with every sub-formula of i the set of all initial states of V' that satisfy
that sub-formula. Once we have As’ on V' we can derive a similar function As on the ending
states of any node U, preceding V in G (that is, any node U from which there is an edge
into V). Next, we model check U under the assumption As. Proceeding this way, each node
in GG can be checked in isolation, based on assumptions derived from its successor nodes.

Given a procedure that properly computes MC[M, As], we define the algorithm Check-
Graph that takes an assumption function As and a partition graph G and performs model
checking under assumption resulting in an assumption As’. The answer to the model check-
ing problem is As’(1). CheckGraph is able to handle partially defined assumption functions,
in which there are some L values. For any sub-formula ¢ s.t. As(¢) = L we get As'(¢) = L.
CheckGraph is defined by induction on the structure of G. The base case handles a sin-
gle node, that may contain the Kripke structure of any program, by using the given model
checking procedure. To model check a partition graph G of P = Py; P5, as in figure 2 A
CheckGraph first checks G5 under As (see Figure 4). As; is the result of this check (As; is
over the set init(G5)). It then uses As; as an assumption on the ending states of G; and
checks Py w.r.t As; . The second check returns for all ¢ € ¢l(1)) the set of all initial states
of P, (also initial states of P) that satisfy ¢, which is the desired result.

init(G1) the result
G
' init (G init (GO
end(G4 G1/ Gy

init(G4) Asi(¥) endfGh) end(Gy)

(1) (2) (3) (4)

Figure 4: The operation of the algorithm on sequential composition. The gray area is the
set of states that satisfy .

Let GG be a partition graph of P = 7if B then P, else P57, as in figure 2 B. To check

.E
-/

.e{<
e @
w

=]
e/

\

7

T

it
/
ek

@ =
O

%
o
|

Figure 3: An example partition graph for the program P:fin, where P is the program from
figure 1.

and Mp = (55,0, 55), and let As : cl(¥) — (251 U{L}) be an assumption function over
M,. T(e,As) = As' s.t. As' : cl(vp) — (QST U{L}). The set Sy C Sp is the set of states
in Sp that satisfy the condition B. This is exactly the set of states from which there will
be an edge into a state of M; in struct(G). Moreover, assume that [is the location of all
the states in Sp and I’ is the location of the states in [;. Then the definition of struct(G) is
such that from each state s = (I,0) € Sg s.t. 0 = B there is exactly one transition, into a
state s’ = (I, 0). As a result, there is no difference between “for all paths” and “there exists
a path” and therefore the operators AX ¢ and EX ¢ are handled in exactly the same way,
and so are the operators A(¢;Ugps) and E(p,Ugps).
If As(¢) = L then As'(¢) = L. Otherwise, As'(¢) is defined recursively as follows ?

For any p € AP, As'(p) ={s € Sr|pe L(s)}.

As' (=) = 57\ As'()

As' (01 V @2) = As' (1) U A (i02)

As'(AX) = As'(EX) = {(l,0) € St | (I',0) € As(p)}

As' (A(p1Upy)) = As'(E(p1Ugpy)) = As'(92) U (As'(p1) N {(l,0) € 57 | (I',0) €
As(A(p1Ue))})

For a no-edge Mg 2% M, the definition is the same, replacing every use of Sp by S which

is the set of states that do not satisfy B.
An important feature of this operation is that if the original assumption coincides with the

°If As(p) # L then for all sub-formulas ¢’ of ¢ it holds that As(p') # L.

for B, which is the entry node, and an F node as the exit node. The edges represent
the semantics of the ”while” loop. (Figure 2 C).

7O —(=)
yes

Gy yes no
Gy Ga G
Ga
L
(A) P=P; P (B) P =if B then P; else P, fi (C) P = while B do P; od

Figure 2: Creation of partition graphs

The formal definition of partition graphs and their semantics (given as Kripke structures)
will be given in the full version. It is defined so that given any partition graph G' € pg(P),
the structure that defines its semantics, denoted struct(G), is identical to struct(P). Infor-
mally, struct(G) is created out of the union of all Kripke structures in its nodes (with some
adjustment of the program locations). Each step-edge induces a set of transitions from the
states in the node representing the boolean expression, to initial states in the node that is
pointed at by the edge. A yes-edge (no-edge) creates one transition from each state that
satisfies (does not satisfy) the condition into the corresponding state (different location, same
assignment to variables). A null-edge M; — M, does not create transitions.

Given a partition graph G we define init(G) to be the set of initial states in struct(G)
and end(G) to be the set of ending states in struct(G). Figure 3 gives an example of an
actual partition graph.

5 Performing Modular Model Checking

Our algorithm for modular model checking is based on the notion of satisfaction under as-
sumptions. Furthermore, the basic building block in the recursive definition of the algorithm
is “model checking under assumptions”. We do not give here an explicit algorithm to com-
pute it, we just note that every standard model checking algorithm for C'T'L can easily be
adapted to handle assumptions.

Before we present our modular algorithm we define a few operations on assumption
functions that we use in the algorithm.

5.1 Operations on Assumption Functions

We first present an operation 7 that, given a step-edge e = Mg = M, or e = Mg 22 M,
(Mp is a structure representing a condition B), and an assumption function As over the
initial states of M, results in an assumption function As’ over Mp. As’ is defined so that it
represents all the knowledge that As gives, translated over the edge.

yes

Definition 5.1: Let e = Mp — M, be an edge in a partition graph G s.t. M, = (5, Ry,)

init(struct(P))

struct(P)::

P if a then
(P1) b = true;
else
(P;) b :=false;
ﬁ.

bl

end(struct(P))

Figure 1: An example of an NW P program.

There are three types of edges: null-edges, yes-edges, and no-edges, denoted M; — Mo,
M, 22 M, and M, 22 M, respectively. A null edge M; — M,, where M, = struct(P;) and
My = struct(Py), means that init(P,) = end(P;). This happens when there is no step in the
execution between the corresponding sub-programs, for example, when the program to be
executed is Pp; Py. Yes-edges and no-edges, called step-edges, are edges outgoing from a node
representing a boolean expression. Execution from a state in this node continues through
the yes-edge or the no-edge, depending on whether the expression evaluates to true or false
in that state. These edges also represent a step in the execution. A partition graph also has
two designated nodes: the entry node, from which execution starts, and the exit node, at
which it stops.

The set pg(P) contains all possible partition graphs of P, representing different ways
of partitioning P into sub-programs. It is defined recursively, where at each step one may
decide to break a given program according to its primary structure, or to create a single node
out of it. Figure 2 shows the three different ways in which a program may be decomposed,
according to the three structures by which programs are created. We use in; (in,) for the
entry node of Gy (G5) and out; (outs) for the exit node.

1. If P = Py; P, we may decompose it into two parts, by creating (recursively) partition
graphs Gy € pg(Py) and G5 € pg(P,), and connecting them with a null edge from out,
to 2ns. The entry node of the resulting graph would be in;, and the exit node would
be out, (Figure 2 A).

2. If P = 7if B then P; else P, fi”, we again create the two graphs G € pg(P;) and
(/5 € pg(P) but also create two new nodes, one representing the boolean expression B
and the other representing the empty program FE. The Kripke structure representing
F has no edges (an empty transition relation) and its set of states is the product of D
and the location F. This node is used as the exit node, and the entry node is the B
node. The edges connecting the different components are according to the semantics
of the ”if” command. Again, the edges entering (G; and G5 are to iny and tn, and the
edges exiting GG; and G5 are from out; and out,. (Figure 2 B).

3. If P ="while B do P, 0od”, we create a partition graph Gy € pg(P;) and again a node

3 The Programming Language

Following we define the syntax and semantics of our programming language NWP (Non-
deterministic While-Programs).

Definition 3.1: We assume a fixed set of program variables over some finite domain D.
A program fragment is one of x := {ey,..., e}, skip, Prog,; Prog,, 7if B then Prog, else
Prog, fi” or "while B do Prog, od” s.t. Prog;,Prog, are program fragments, B is a boolean
expression over program variables and constants, 2 stands for any program variable, and e is
an expression over program variables and constants. The meaning of x:={ey,...,e;} is a non-
deterministic assignment, Prog;; Prog, is the sequential composition of Prog, and Progs,,
and the ”if” and ”while” structures have the same meaning as in all sequential programming
languages.

A full program is of the form Prog;fin where Prog is a program fragment. The meaning
of ”fin” is an infinite loop that does not change the values of program variables. We define
FE to be the empty program, such that for every P € NWP it holds that P; K = F; P = P.
The set NWP is the set of all full programs.

From here on we use the word ”program” to refer to either a full program, or a program
fragment, unless stated otherwise.

The semantics of NWP programs is given by means of Kripke structures. We give here
only an informal description, the formal definition will appear in the full version.

Let P € NWP be a program such that z,,...,z, are the program variables. An assign-
ment to the program is be some o € D". We create a Kripke structure struct(P) so that
each state is a pair (/,0) where [is a program location and ¢ € D™ is an assignment to
the program variables. Each location is associated with the remaining program to be run
from that point on. The transition relation is created in the intuitive way, following the
usual semantics of the commands. Evaluating a boolean expression (in an ”if” or "while”
command) is considered a step in execution. We define the set of initial states init(P) as
the set of states with location P. The set of ending states, end(P), is the set of states in
struct(P) that have no outgoing transition. If P is a full program then end(P) = . If P
is a program fragment then this is the set of states with the location F (which means that
there is nothing more to run).

We add to AP the set {at_l | [is a location in P}. The new propositions are used to refer
to a location in the program within the specification. The labeling function £ : .5 — 24P i
extended accordingly so that £(({,0)) = {atl} U{p € AP | o |= p} for every state ([,0) in
struct(P).

Figure 1 includes an example of a NWP program, and its structure.

4 Partition Graphs

A Partition Graph of a program P is a finite graph representing a decomposition of P
into several sub-programs while maintaining the original flow of control. The nodes are
Kripke structures, each representing a sub-program of P or a boolean expression. A node
representing a sub-program P’ is of the form struct(P’). A node representing a boolean
expression B, has the form (S, R,I)s.t. R=0and S=1={(l,0)| o € D"} where [is the
program location of the ”if” or ”while” command that evaluates B.

assume that ¢ holds. When As(¢) = L it means that we have no knowledge regarding the
satisfaction of ¢ in 5’.

Satisfaction of a C'T'L formula ¢ in a state s € 5 under an assumption function As is
denoted (M,L),s FEas ¢ 2. We define it so that it holds if either M,s = ¢ directly (by
infinite paths only), or through the assumption. For example, M,s =4, E(fUyg) if there
exists an infinite path from s satisfying f in all states until a state satisfying ¢ is reached,
but it is also true if there is a finite path from s in which the last state, say ¢, satisfies
s € As(E(fUyg)), and all states until s’ satisfy f. Formally:

Definition 2.5: Let M = (S, R, I) be a Kripke structure and As a consistent assumption
function over M. For every ¢ € cl(1):

If As(p) = L then s |4, ¢ is not defined.

Otherwise, we differentiate between ending states and other states. If s € end(M) then
sEas piff s € As(p). If s € 5\ end(M) then s =45 ¢ is defined as follows:

s Eas piff p € L(s) for every p € AP.

s Fas 01 Vo iff (s Fas @1 o 8 Fas ¢2).

s Eas oy iff s a1

sEas AX g iff V' (s,8) € R = & Eas @1

s Eas EX ¢ iff 35'.(s,8) € RA S FEas ¢1.

s Eas A(p Ugp,) iff for all (maximal) paths m = sg,s;,... from s there is a number
i < |m| s.t. (either s; Fas w2 or 55 € end(M) A s; FEas AlpiUgps)), and VO < j <
ils; s 1)

s Eas E(p1Ugps,) iff there exist a (maximal) path 7 = sg,s;,... from s and a number
i < |7| s.t. (either s; FEas @2 or s; € end(M) A s; Fas E(p1Ugps)) and VO < j <
ils; s 1)

Note that, if the transition relation of M is total then the above definition is equivalent

to the traditional definition of C'T'L semantics, because the assumption function is consulted
only on states from which there are no outgoing transitions.

2.3 Model Checking Under Assumptions

The task of model checking is to find all initial states of a given structure that satisfy a
formula 1. We write M =4, ¢ iff Vs € I,[M, s =4, ¥]. From here on we assume that ¢ is
the formula to be checked on a structure M = (5, R, I) (or later, a program).

Definition 2.6: Given an assumption function As over a structure M we define a func-
tion MC[M,As] : el(vp) — (25 U {L}) so that for any ¢ € cl(), if As(p) = L then
MCIM, As](¢) = L. Otherwise, MC[M, As|(p) ={s € 5| M,s Eas ¢}.

Notice that MC[M, As] results in an assumption function. Given M and As, this func-
tion can be calculated using any known model checking algorithm for CTL [7, 20, 4], after
adapting it to the semantics under assumptions.

2Since we assume a fixed £, we always omit £. When no confusion may occur we also omit M.

2 Basic Definitions

2.1 Kripke Structures

Kripke structures are widely used for modeling finite-state systems. In this paper we use
Kripke structures to model the behavior of a finite program.

Definition 2.1: A Kripke Structure is a tuple M = (S, R,I) s.t. S5 is a set of states,
R C 5 x5 is a transition relation and I C 5 is a set of initial states. A path in M from a

state sy is a sequence T = sq, $1,...s.t. Vi[s; € S and (s, 5;41) € R]. A mazimal path in M
is a path which is either infinite, or ends in a state with no outgoing transitions. Let © be a
maximal path in M. We write |7| = n if 7 = sg,81,...,5,_1 and |7| = oo if 7 is infinite.

Definition 2.2: For a Kripke structure M = (5, R, I') we define the set of ending states to
be end(M) ={s € 5| -3¢ .(s,s) € R}. We also use init(M) to refer to the set I of initial
states.

2.2 CTL

For our specification language we use the propositional branching-time temporal logic CT'L.
It allows us to specify a behavior of a program in terms of its computation tree [6].

We assume a set of atomic propositions AP and a labeling function that associates with
each state in a structure the set of atomic propositions true at that state. Throughout the
paper we assume a fixed labeling function £ : 5 — 2 P

We define a C'T'L formula to be either ¢ for each ¢ € AP, or = f1, fi V fo, AX f1, EX fi,
A(fiUfy), and E(fiUf,) where f; and f; are C'T'L formulas. Each temporal operator in
CTL is constructed of a path quantifier, either A ("for all paths”) or F ("for some path”),
and a temporal operator X or U. Intuitively, the operator X means ”at the next step”, so
the formula AX ¢ states that in all the paths outgoing from a given state, the second state
satisfies ¢. A path satisfies p U ¢ (p ”Until” ¢) if there exists a state along it that satisfies ¢
and all the states preceding it satisfy p.

C'T'L formulas are usually interpreted over Kripke structures that have a total transition
relation, so that all paths are infinite. We denote the standard semantics for CTL [10, 6]
as M,s = 1 (meaning that the state s in the structure M satisfies). In this paper we
introduce an interpretation for C'T'L over a Kripke structure and an assumption function
(defined below). The use of assumption functions enables us to give semantics (over infinite
paths) in case of incomplete information. When a finite path occurs in a structure, we view it
as a prefix of a set of infinite paths with unspecified continuations. The assumption function
states which formulas are true over this absent continuation. We use this information only
for states in end (M), so the function may be defined only over some subset of S that includes
end(M).

Definition 2.3: The closure of a formula 1, ¢l(1), is the set of all the sub-formulas of
(including itself).

Definition 2.4: An assumption function for a Kripke structure M = (S, R, I) is a function
As () — (25/ U{L}) where 5" C 5. We require that end(M) C 5" and that Vo € cl(2),
if As(¢) # L then Vo' € el(p), As(¢’) # L.

For every ¢ € cl(v), if As(p) # L then As(yp) represents the set of all states in 5
for which we assume (or know) that ¢ holds. For every state s € 5’ s.t. s ¢ As(p) we

that determines the truth of temporal formulas based on the given assumption function.
Only minor changes are needed in order to adapt a standard model checking algorithm so
that it performs model checking under assumptions.

Given a procedure that performs model checking under assumptions, we develop a mod-
ular model checking algorithm that checks the program in parts. To illustrate how the
algorithm works consider the program P = P;; P,. We notice that every path of P lies either
entirely within P, or has a prefix in P, followed by a suffix in P,. In order to check a formula
1 on P, we first model check i on P,. The result does not depend on P; and therefore
the algorithm can be applied to P, in isolation. We next want to model check P, but now
the result does depend on P,. In particular, ending states of P, have their continuations in
P5. However, each ending state of P is an initial state of P, for which we have already the
model checking result '. Using this result as an assumption for P, we can now model check
P, in isolation. This scheme saves significant amounts of space since at any given time the
memory contains only the model of the component under consideration, together with the
assumption function that maps formulas to the ending states of that component.

Our modular algorithm can handle any finite-state while program with non-deterministic
assignments. In addition to sequential composition, programs may include choices (“if-then-
else”) and while loops, nested in any way.

Works discussing model checking of programs written in a high level language are rare.
The closest to our work is [11] that verifies concurrent systems written in C. However, their
approach is not modular. Moreover, they do not handle a full temporal logic. Another
related work is [5], in which they perform model checking on Pushdown Process Systems by
considering the semantics of ’fragments’, which are interpreted as 'incomplete portions’ of
the process. The model checking algorithm they propose calculates the property transformer
of each fragment, which is a function that represents the semantics of a fragment with respect
to alternation-free mu-calculus formulas. This algorithm, however, works on all fragments
together. It should also be noted that Pushdown Process Systems are suitable for modeling
(parallel) processes but they can hardly be considered as a high level programming language.

In contrast, our work applies model checking to programs written in a high level program-
ming language, while exploiting their textual structure in order to reduce space requirements.
We consider our work as a first step in making model checking applicable to realistic software
systems.

The paper is organized as follows. In section 2 we introduce the temporal logic CTL and
define its semantics under assumptions. Section 3 describes the syntax and semantics of our
programming language and Section 4 defines partition graphs. Section 5 gives the modular
model checking algorithm. Section 6 concludes with directions for future research.

!The result includes for each sub formula ¢ of ¢ the set of states satisfying .

1 Introduction

This work presents a new modular approach that makes temporal logic model checking
applicable to large sequential finite-state programs, written in some high level programming
language.

Finite-state programs can be useful for describing, in some level of abstraction, many
interesting systems. They can describe the behavior of communication protocols. They can
be used to describe expert systems, provided that some of the inputs are mapped into a finite
domain. Such programs (written in behavioral Hardware Description Languages) are being
used to describe the high level behavior of hardware designs. All these examples are reactive,
i.e., they continuously interact with their environment. They are also quite complex which
makes their verification an important and non-trivial task. Furthermore, even though they
are sequential they might be significantly large.

A first step in verification is choosing a specification language. Temporal logics [18], ca-
pable of describing behaviors over time, have proven to be most suitable for the specification
of reactive systems. When restricted to finite-state systems, propositional temporal logic
specifications [10] can be checked by efficient algorithms, called model checking [8, 20, 15, 3].
Temporal logic model checking procedures typically receive a system model by means of a
state transition graph and a formula in the logic, and determine the set of states in the model
that satisfy the formula. Tools based on model checking [16] were successful in finding subtle
bugs in real-life designs [17, 9] and are currently in use by the hardware industry as part of
the verification efforts of newly developed hardware designs [1, 14].

Unfortunately, similar applications of model checking to programs are very limited. One
reason for this deficiency arises from the fact that large hardware systems are usually com-
posed of many components working in parallel. Software systems, on the other hand, can
be extremely large even when they consist of one sequential component. A useful approach
to reducing space requirement is modularity. Modular model checking techniques treat each
component in separation, based on an assumption about the behavior of its environment
[19, 13, 12]. Existing techniques, however, are based on partitioning the system into pro-
cesses that run in parallel.

Our work applies a modular approach to sequential programs. To do so, we suggest a
way of partitioning the program into components that follows the program text. A given
program may have several different partitions. A partition of the program is represented by
a partition graph, whose nodes are models of the subprograms and whose edges represent
the flow of control between subprograms.

Once the program is partitioned, we wish to check each part separately. However, veri-
fying one component in isolation amounts to checking the specification formula on a model
in which some of the paths are truncated, i.e. for certain states in the component we do
not know how the computation proceeds (since the continuation is in another component).
Such states are called ending states. We notice, however, that the truth of a formula at a
state inside a component can be determined solely by considering the state transition graph
of this component, and the set of formulas which are true at the ending state. Moreover, the
truth of the formula at such states depends only on the paths leaving the state and not on
the paths leading to it. This observation is the basis for our algorithm.

We define a notion of assumption function that represents partial knowledge about the
truth of formulas at ending states. Based on that, we define a semantics under assumption

Modular Model Checking of Software

Karen Laster Orna Grumberg
Computer Science Department
The Technion
Haifa 32000, Israel

email: {laster,orna}@cs.technion.ac.il

July 17, 1997

Abstract

This work presents a modular approach to temporal logic model checking of software.

Model checking is a method that automatically determines whether a finite state
system satisfies a temporal logic specification. Model checking algorithms have been
successfully used to verify complex systems. However, their use is limited by the high
space requirements needed to represent the verified system.

When hardware designs are considered, a typical solution is to partition the design
into units running in parallel, and handle each unit separately. For software systems
such a solution is not always feasible. This is because a software system might be too
large to fit into memory even when it consists of a single sequential unit.

To avoid the high space requirements for software we suggest to partition the pro-
gram text into sequentially composed subprograms. Based on this partition, we present a
model checking algorithm for software that arrives at its conclusion by examining each
subprogram in separation. The novelty of our approach is that it uses a decomposition
of the program in which the interconnection between parts is sequential and not parallel.
We handle each part separately, while keeping all other parts in an external memory.
Consequently, our approach reduces space requirements and enables verification of larger
systems.

Our method is applicable to finite state programs. Further, it is applicable to infinite
state programs provided that a suitable abstraction can be constructed.

We consider this work as a first step towards making temporal logic model checking
useful for software verification.

