
Distributed Symbolic Model Checking

Tamir Heyman





Distributed Symbolic Model Checking

Research Thesis

Submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy

Tamir Heyman

Submitted to the senate of The Technion - Israel Institute of Technology

TEVET, 5764 Haifa December 2003



The research thesis was done under the supervision of Prof. Orna Grumberg and Prof.
Assaf Schuster, in the Faculty of Computer Science, the Technion - Israel Institute of Tech-
nology.

The generous financial help of the Technion is gratefully acknowledged.

To my best friend since high school, my partner in life, the mother of my girl, Yafit my
wife, for been on my side for so many years, through so many hard and good times. For the
many good decisions you helped to make. You are my sunshine.

To Orna and Assaf, for been the most dedicated supervisors anyone could hope for. For
letting me choose directions and milestones. For holding my hand and standing behind me
all the way through. For working so hard, so long, so late with so much humor to meet such
aggressive milestones. I thank you from my bottom of my heart.

Special thanks to my brother Amnon Heyman, for his help in debugging and designing
sophisticated C++ code and for his availability around the clock.

Many thanks Karen Yorav, my old friend, and to Ran Wolff, my room-mate, for being
supportive and giving so much wise advice.

Many thanks are due to Sharon Kessler for her time, patience and help with many tech-
nical English texts.





Contents

Abstract 1

1 Introduction 3
1.1 Distributed Symbolic Reachability Analysis . . . . . . . . . . . . . . . . . 3
1.2 Division . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 A Work-efficient Distributed Algorithm for Reachability Analysis . . . . . 5
1.4 On-the-Fly Model Checking . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.5 Distributed Symbolic μ-calculus . . . . . . . . . . . . . . . . . . . . . . . 6
1.6 Network of Workstations (NOW) . . . . . . . . . . . . . . . . . . . . . . . 7
1.7 Thesis Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Related Work 9
2.1 Reachability Analysis with Partitioned BDDs . . . . . . . . . . . . . . . . 9
2.2 Explicit State Model Checking . . . . . . . . . . . . . . . . . . . . . . . . 14
2.3 Parallel Algorithms for Constructing BDDs . . . . . . . . . . . . . . . . . 14
2.4 Sequential Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3 Achieving Scalability in Parallel Reachability Analysis of Very Large Circuits 17
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.2 Parallel Reachability Analysis . . . . . . . . . . . . . . . . . . . . . . . . 19

3.2.1 Memory Balancing . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.2.2 Termination Detection . . . . . . . . . . . . . . . . . . . . . . . . 20

3.3 Boolean Function Slicing . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.3.1 Slicing a Function in Two: SelectVar . . . . . . . . . . . . . . 21
3.3.2 Slicing a Function into k Slices . . . . . . . . . . . . . . . . . . . 23

3.4 Optimizing the SelectVar Procedure . . . . . . . . . . . . . . . . . . . 23
3.5 Efficient Transfer of BDDs . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.6 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.6.1 Slicing Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.6.2 Space Reduction Using Parallel Reachability Analysis . . . . . . . 30
3.6.3 Timing and Communication . . . . . . . . . . . . . . . . . . . . . 30



4 Division 39
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.2 System Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.2.1 Infrastructure Layer . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.2.2 Distributed Computation Layer . . . . . . . . . . . . . . . . . . . 41
4.2.3 Distributed Symbolic Computation Layer . . . . . . . . . . . . . . 41

4.3 Using Division . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.3.1 Installing Division . . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.3.2 General Support for Measuring Performance . . . . . . . . . . . . 42

4.4 Future Development . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

5 A Work-Efficient Distributed Algorithm for Reachability Analysis 44
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
5.2 The Worker Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
5.3 The Coordinators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

5.3.1 The ex coor . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
5.3.2 The small coor . . . . . . . . . . . . . . . . . . . . . . . . . . 50
5.3.3 The pool mgr . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

5.4 Optimizing the Splitting in Image Computation Overflow . . . . . . . . . . 50
5.5 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

5.5.1 Number of Workers for Reachability Analysis . . . . . . . . . . . . 54
5.5.2 Timing and Communication . . . . . . . . . . . . . . . . . . . . . 55

6 Scalable Distributed On-the-Fly Symbolic Model Checking 57
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
6.2 The Sequential On-the-Fly Algorithm . . . . . . . . . . . . . . . . . . . . 58
6.3 Distributed Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

6.3.1 Distributed Model Checking . . . . . . . . . . . . . . . . . . . . . 59
6.3.2 Distributed Counterexample Generation . . . . . . . . . . . . . . . 61
6.3.3 Reducing Peak Memory Requirement . . . . . . . . . . . . . . . . 62

6.4 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
6.4.1 Space Reduction Using the Distributed Algorithm . . . . . . . . . 66
6.4.2 Timing and Communication in the Distributed Algorithm . . . . . . 67

6.5 Regular Expressions in Symbolic Model Checking . . . . . . . . . . . . . 67

7 Distributed Symbolic μ-calculus 72
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
7.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

7.2.1 The Propositional μ–Calculus . . . . . . . . . . . . . . . . . . . . 73
7.2.2 Elements of Distributed Symbolic Model Checking . . . . . . . . . 75

7.3 Distributed Model Checking for μ–Calculus. . . . . . . . . . . . . . . . . . 76
7.3.1 Switching to the Distributed Phase . . . . . . . . . . . . . . . . . . 76
7.3.2 The Distributed Phase . . . . . . . . . . . . . . . . . . . . . . . . 77



7.4 Correctness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
7.4.1 The Processes Own Disjoint Subsets . . . . . . . . . . . . . . . . . 84

7.5 Scalable Distributed Pre-image Computation . . . . . . . . . . . . . . . . 88
7.5.1 Model Checking Algorithm with Sliced Transition Relation . . . . 89
7.5.2 Distributed Construction of the Sliced Full Transition Relation . . . 89
7.5.3 Correctness of the Algorithm with a Sliced Transition Relation . . . 90

7.6 Scalability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

8 Conclusions and Future Work 93

Bibliography 95



List of Figures

3.1 Breadth First Search . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.2 Slicing f into f1 and f2 using v1 . . . . . . . . . . . . . . . . . . . . . . 22
3.3 Pseudo–code for the algorithm SelectVar(f, δ). . . . . . . . . . . . . . 23
3.4 Pseudo–code for the algorithm BestGeneral(f, g′, α, SliceSet). . . . . 24
3.5 Pseudo–code for the algorithm ImprovingSplit(f,BestV ar, SliceSet, α). 25
3.6 Pseudo–code for the algorithm LowDuplication(f,BestV ar, SliceSet, α). 26
3.7 Pseudo–code for the algorithm UsingBestVars(f,BestV ar1, . . . , BestV arl, α, δ, SliceSet) 26
3.8 Pseudo–code for the algorithm SelectVar(f, δ), with the optimizations. . 27
3.9 Values of α that are used when slicing into 32 parts. . . . . . . . . . . 31
3.10 Average values of α used by the slicing process. . . . . . . . . . . . . 33
3.11 Memory utilizations by 1,2,4,8,16,32 nodes, during reachability anal-

ysis of prolog. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.12 Memory utilizations by 1,2,4,8,16,32 nodes, during reachability anal-

ysis of s1269. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.13 Memory utilizations by 1,2,4,8,16,32 nodes, during reachability anal-

ysis of s3330. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.14 Memory utilizations by 1,2,4,8,16,32 nodes, during reachability anal-

ysis of s5378. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.15 Memory utilizations by 1,2,4,8,16,32 nodes, during reachability anal-

ysis of s1423. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.16 Memory utilizations by 1,2,4,8,16,32 nodes, during reachability anal-

ysis of BIQ. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.17 Memory utilizations by 1,2,4,8,16,32 nodes, during reachability anal-

ysis of ARB. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.1 Division layers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

5.1 High–level pseudo–code for a worker . . . . . . . . . . . . . . . . . . . . 46
5.2 Pseudo–code for a worker in the distributed reachability computation . . . . 48
5.3 Pseudo–code for the ex coor. . . . . . . . . . . . . . . . . . . . . . . . . 51
5.4 Number of workers required in each BFS step of s1269. Overflow is

declared for worker memory utilization exceeding 6M BDD nodes. . . 53
5.5 Number of workers in each BFS step. . . . . . . . . . . . . . . . . . . 54
5.6 Number of workers in each BFS step of s1423. . . . . . . . . . . . . . 55



6.1 Sequential algorithm for on-the-fly model checking, including coun-
terexample generation . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

6.2 Process Pj in the distributed algorithm for on-the-fly model checking,
including the generation of a counterexample. . . . . . . . . . . . . . . 63

6.3 Memory utilization during on-the-fly model checking of BIQ (spec 1) . . . . . . . 68
6.4 Memory utilization during on-the-fly model checking of BIQ (spec 2) . . . . . . . 68
6.5 Memory utilization during on-the-fly model checking of s1423 (spec 1) . . . . . . 68
6.6 Memory utilization during on-the-fly model checking of s1423 (spec 2) . . . . . . 69
6.7 Memory utilization during on-the-fly model checking of GXI (spec 1), using quan-

tification. An overflow occurs during counterexample generation. . . . . . . . . . 70
6.8 Memory utilization during on-the-fly model checking of GXI (spec 1), using substitution 70
6.9 Memory utilization during on-the-fly model checking of s5378 (spec 1) . . . . . . 71

7.1 Pseudo–code for sequential μ–calculus model checking . . . . . . . . . . . 74
7.2 Pseudo–code for computing fixpoint . . . . . . . . . . . . . . . . . . . . . 75
7.3 Pseudo–code for a process id in the distributed model checking . . . . . . . 79
7.4 Pseudo–code for exchanging non-owned states after pre-image computation

using the sliced transition relation . . . . . . . . . . . . . . . . . . . . . . 89



List of Tables

3.1 Characteristics of our benchmark suite, taken from ISCAS89 and ad-
dendum’93, and from the IBM Gigahertz processor. . . . . . . . . . . 31

3.2 Partitioning results measured by two parameters: . . . . . . . . . . . . 32
3.3 Partitioning results measured by two parameters: . . . . . . . . . . . . 33
3.4 Statistics for values of alpha by the memory balance algorithm for

parallel execution on 32 machines. . . . . . . . . . . . . . . . . . . . . 34
3.5 Timing data (seconds) for parallel execution on 32 machines. . . . . . 38
3.6 Timing data (seconds) for parallel execution on 1,2,4,8,16,32 machines. 38

5.1 Benchmark suite characteristics. . . . . . . . . . . . . . . . . . . . . . 54

6.1 The specifications in Sugar with explanations. . . . . . . . . . . . . . . 69
6.2 Characteristics of our benchmark suite . . . . . . . . . . . . . . . . . . 70
6.3 Timing data (seconds) for parallel execution on 32×512MB machines. 71



Abstract
This work presents a scalable method for parallelizing symbolic reachability analysis on
a distributed memory environment of workstations. We have developed an adaptive par-
titioning algorithm that significantly reduces space requirements. The memory balance is
maintained by dynamically repartitioning the state space throughout the computation. A
compact BDD representation allows coordination by shipping BDDs from one machine to
another. This representation allows for different variable orders in the sending and receiving
processes. The algorithm uses a distributed termination protocol, with none of the memory
modules preserving a complete image of the set of reachable states. No external storage is
used on the disk. Rather, we make use of the network, which is much faster.

In order to implement a better algorithm we had to develop the Division system. The
Division system is a generic distributed system for research on distributed model check-
ing. Our preliminary experimental results show that the algorithm is indeed work-efficient.
Although the goal of this research is to check larger models, the results also indicate the
potential to obtain high speedups, because communication overhead is very small.

Division enables the development of a novel distributed symbolic algorithm for reacha-
bility analysis that can effectively exploit, “as needed”, a large number of machines working
in parallel. The novelty of the algorithm is in its dynamic allocation and reallocation of pro-
cesses to tasks and in its mechanism for recovery, from local state explosion. As a result,
the algorithm is work efficient: it utilizes only those resources that are actually needed. In
addition, its high adaptability makes it suitable for exploiting the resources of very large
distributed, non-dedicated environments. Thus, it has the potential of verifying very large
systems.

We combine a scheme for on-the-fly model checking for safety properties with a scheme
for scalable reachability analysis. We suggest an efficient, BDD-based algorithm for a dis-
tributed construction of a counterexample. The extra memory requirement for counterexam-
ple generation is evenly distributed among the processes by a memory balancing procedure.
At no point during the computation does the memory of a single process contain all the data.
This enhances scalability. Collaboration between the parallel processes during counterex-
ample generation reduces memory utilization for the backward step.

We further propose a distributed symbolic algorithm for model checking of propositional
μ–calculus formulas. μ-calculus is a powerful formalism and μ–calculus model checking
can solve many problems, including, for example, verification of (fair) CTL and LTL prop-
erties. This work thus significantly extends the scope of properties that can be verified
distributively, enabling us to specify sophisticated properties for very large designs.

The algorithm distributively evaluates subformulas. It results in sets of states which
are evenly distributed among the processes. We show that this algorithm is scalable and
therefore can be implemented on huge distributed clusters of computing nodes. The memory
modules of the computing nodes collaborate to create a very large memory space, thus
enabling the checking of much larger designs. We formally prove the correctness of the
parallel algorithm. We complement the distribution of the state sets by showing how to
distribute the transition relation.

1



Chapter 1

Introduction

Hardware designs are becoming larger and more sophisticated, while their development cy-
cle is getting shorter. At the same time, VLSI technology is improving rapidly. However,
the technology used to test that a product implements the specification cannot keep up with
the rapid growth in hardware complexity. This is because testing is done with simulations,
which cannot cover all the states in a big design. This gap between design size and verifica-
tion capability is known as the verification crisis. As opposed to verification by simulation,
formal verification methods have been more successful in proving that a given design im-
plements its specification. Yet formal verification methods have also been limited in their
ability to deal with large designs.

One such formal verification method widely used in the industry is model checking. A
model checking algorithm gets a model and a specification written as a temporal formula.
If the model satisfies the formula, it returns ‘true’; otherwise it returns ‘false’. When the
algorithm returns ‘false’ it also provides a counterexample that demonstrates why the model
does not satisfy the formula. The counterexample feature is vital to the debugging of the
system.

In the early 1980s, procedures for model checking that were capable of handling systems
consisting of a few thousands of states were proposed [25, 58, 48]. Model checking tools
have successfully uncovered subtle errors in small-sized complex designs. It is the large
memory requirements of these tools, known as the state explosion problem, that limits their
applicability to large designs. This is their main drawback.

1.1 Distributed Symbolic Reachability Analysis

Reachability analysis is a key component, and a dominant one, in model checking. In fact,
for most safety properties, model checking can be reduced to reachability analysis [9]. Thus,
for safety properties, verification is possible if reachability analysis is possible.

Many approaches to reducing the memory requirements of model checking tools have
been investigated. One of the most successful approaches is symbolic model checking [17],
in which computation is done over sets of states. Nowadays, many model checkers represent

2



these sets using binary decision diagrams (BDDs) [15]. The symbolic approach has made
model checking applicable to industrial designs of medium size.

Current model checking tools can verify systems with hundreds of variables using BDD-
based methods [17, 52] and falsify systems with thousands of variables using SAT-based
methods [13]. A recent comparison [2] shows that each of the BDD-based and SAT-based
methods is superior to the other for certain types of problems. But it is widely understood
that the capability of model checking tools must be extended further. Typically, BDD-based
model checking tools suffer from high space requirements while SAT-based tools suffer
from high time requirements. The goal of this work is to overcome the space problem of
BDD-based model checkers.

We presents a basic algorithm for distributed symbolic reachability analysis. The state
space on which the reachability analysis is performed is partitioned into slices, where each
slice is owned by one process. The processes perform a standard Breadth First Search (BFS)
algorithm on their own slices. However, this BFS algorithm can discover states that do not
belong to the slice the process owns. Such states are called non-owned states. When non-
owned states are discovered, they are sent to the process that owns them. As a result, a
process only requires memory for storing the reachable states it owns, and for computing
the set of immediate successors for these states. The experimental results show that com-
munication is not the bottleneck.

1.2 Division

In order to improve the algorithm, we developed the Division system. The Division system
is a generic distributed system developed for research of distributed model checking. Di-
vision is an event driven system. An event can be the arrival of an object or method at a
process. Division’s processes can exchange any object including objects that have BDDs.
Furthermore, this generalization adds almost no computation and communication overhead.

The system includes a simple and small interface to an external sequential model checker
(e.g., NuSMV). This allows Division to work with several external sequential model check-
ers, each implementing the same interface. Furthermore, the system can potentially benefit
from the external model checker’s sequential optimizations.

Division provides the functionality required for distributed symbolic computation. It
supports transmitting BDDs, slicing them, and invoking a process with a sequential model
checker. Transmitting BDDs is very efficient and the size of objects that include BDDs are
translated to messages with smaller size than the original object.

The Division user is a researcher in the distributed model checking field, who wants
to implement a new algorithm. Division was designed to minimize the changes that take
place in the system when a new algorithm is implemented. The layered design of Division
restricts these changes to a specific layer at a time.

3



1.3 A Work-efficient Distributed Algorithm for Reachabil-
ity Analysis

We suggest a new distributed algorithm which overcomes the drawbacks of the previous,
basic one. The algorithm uses two types of processes: coordinators and workers. Each
worker can be either active or free. The algorithm works iteratively. It is initialized with
one active worker that runs a symbolic reachability algorithm, starting from the set of initial
states. While the algorithm is running, workers are allocated and freed, as needed. At any
iteration, each of the active workers applies image computation and then sends those states
it does not own to their owners. Therefore, we will refer to these as a worker’s non-owned
states.

Our algorithm is designed to overcome the problem of memory overflow that is likely
to occur during image computation and the exchange operation. For image computation we
use a new BDD operation that resembles ordinary image computation, except that it stops
if the intermediate results create memory overflow. In this case, the BDD representing the
intermediate results is partitioned into k slices. One slice is left with the overflowed worker
and the others are distributed to k− 1 free colleagues. k is called the splitting degree. It is a
parameter of the new algorithm and is usually small (often k = 2). Since the BDD is huge,
the slicing is very effective. Once the BDD is split, each worker resumes the computation
of (its part of) the image from the point at which it stopped. However, each worker now
works on a smaller BDD. If state explosion occurs during the exchange procedure, then the
BDD is split for sharing with k − 1 free colleagues. Exchanging of non-owned states then
proceeds according to the new ownership.

The new algorithm enables the slicing procedure to split according to set of new states,
the set of reachable states or intermediate results, depending on what caused the memory
overflow. Since the chosen BDDs are large, slicing is always very effective. Furthermore,
slicing affects the performance of the new algorithm much less than it affects the basic one
because, in the case of a high work load at one of the coworkers, the new algorithm can
simply split again. Therefore, the new algorithm can use a more heuristic and faster slicing
algorithm in order to reduce the slicing overhead. These features provide the new algorithm
with strength and flexibility.

It may also happen that the memory requirement of a worker decreases below a certain
threshold (the size of a BDD may decrease even if it represents a larger set of states). In
that case, several workers with small memory requirements are combined and all but one
become free.

It is important to note that splitting occurs only “as needed,” when a worker actually has
a memory overflow. Thus the algorithm is work efficient: it exploits to the maximum the
resources of the active workers before allocating additional ones. This efficiency allows, for
a given network, computing reachability of (i.e., verifying) larger systems. Moreover, our
algorithm can effectively exploit any network size. Thus, the larger the available network,
the larger the systems that can be verified.

4



1.4 On-the-Fly Model Checking

Another approach for dealing with the state explosion problem is on-the-fly model checking.
In this approach parts of the model are developed whenever the need arises. The check is
usually guided by an automaton that monitors the behavior of the system in order to detect
erroneous behaviors. A lot of work is saved because the algorithm stops as soon as an
erroneous behavior is detected. On-the-fly algorithms [32, 57, 12] usually use a depth-first
search (DFS) to traverse the state space. Therefore they do not work well with BDD-based
methods.

In [9], on-the-fly model checking of regular expressions has been reduced to reachability
analysis. As a result, it can be implemented with BDDs. Furthermore, this method uses
a monitoring automaton whose size is linear in the length of the formula, whereas other
methods use automata of exponential size. The method can handle a large class of safety
properties, including RCTL(subset of CTL that can be expressed in regular expressions).

We extend the basic reachability analysis algorithm to on-the-fly model checking of
regular expressions. Our method includes a distributed algorithm that employs several pro-
cesses for counterexample generation: the entire set of states is never held in a single pro-
cess. Therefore, this extension is scalable and can handle large designs.

Producing the counterexample requires additional storage of sets of states during reach-
ability analysis, one set for each step. In the distributed algorithm each process stores only
part of each set. In order to balance the parts of the sets across the processes, we apply a
slicing function that defines for each process the parts of the set it should store. The parts
a process stores may belong to different parts of the state space. This makes the distributed
counterexample generation somewhat tricky: we need to track the steps backwards while
switching different slices and maintaining the memory requirement at a low level.

1.5 Distributed Symbolic μ-calculus

We extend the specification language even further. It presents a distributed symbolic model
checking algorithm for the μ-calculus. The μ-calculus is a powerful formalism for express-
ing properties of transition systems by means of least and greatest fixpoint operators. Many
temporal and modal logics can be encoded by the μ–calculus. Moreover, model checking
algorithms for μ–calculus work particularly well with BDDs. This is due to the fact that the
μ–calculus model checking is based on set manipulations, for which BDDs are particularly
suitable.

Burch et al. showed that many verification problems can be solved by translating them
into μ–calculus model checking problems [17]. One such problem is CTL with fairness (fair
CTL) model checking. Fairness is essential for many aspects of modeling and specification.
It is used, for instance, in describing the environment in which a system executes. It is
also used for excluding unrealistic behaviors which have been added to the model due to
abstraction. Other problems that can be solved by translating them into μ-calculus model
checking problems include LTL model checking, bisimulation equivalence, and language

5



containment of ω-regular automata [17].
Many sequential algorithms for μ-calculus model checking have been suggested [34,

65, 69, 29, 49]. The basic algorithm works bottom-up through the formula, evaluating each
subformula based on the evaluation of its own subformulas. A formula is interpreted as the
set of states in which it is true. Thus, for each μ–calculus operation, the algorithm receives
a set (or sets) of states and returns a new set of states.

The distributed algorithm follows the same lines as the sequential one, except that each
process runs its own copy of the algorithm and each set of states is stored distributively
among the processes. Every process owns a slice of the set, so that the disjunction of all
slices contains the whole set. An operation is now performed on a set (or sets) of slices and
returns a set of slices. As with previous algorithms none of the processes stores a whole set.
Therefore, this extension is scalable and can handle large designs.

1.6 Network of Workstations (NOW)

There are several platforms that allow the implementation of distributed algorithms. We
used a network of workstations (NOW) as our computing resource. A NOW is a comput-
ing system that uses an entire workstation as its building blocks. These building blocks
are interconnected by a local area network. In this system, a distributed algorithm can uti-
lize both the computation power and memory resources of the workstations in the network.
Moreover, this computing resource uses an existing infrastructure.

A NOW system is attractive as a memory resource because of its memory capacity,
access time and bandwidth. The current access time of a standard network is 1000 times
faster than disk access time but 1000 times slower than main memory access time. In the
future [3], network access time is expected to further exceed disk access time while main-
taining its present access time in comparison to the main memory. Currently the network
bandwidth is 1 Gbit per second for a standard network.

The algorithms that are presented here are scalable. By utilizing the scalability of a
NOW system, they become scalable solutions capable of handling large designs.

1.7 Thesis Organization

Chapter 2 compares and contrasts related works and discusses these works in relation to
ours. Chapter ?? presents the principle of distributed symbolic model checking as well as
a basic algorithm for distributed symbolic reachability analysis. Chapter 4 presents the Di-
vision system, which was developed as an infrastructure for the implementation of much
more sophisticated algorithms. Chapter 5 presents a new approach for distributed sym-
bolic model checking. The new approach is work efficient and splits the BDDs only ”as
needed.” Moreover, it includes a new BDD operator for image computation that allows the
distributed algorithm to overcome memory overflows. Chapter 6 extends the distributed
symbolic reachability analysis to distributed on-the-fly symbolic model checking of regular

6



expressions. Chapter 7 extends the specification language even further. It presents a dis-
tributed symbolic model checking algorithm for the μ-calculus. Finally, Chapter 8 presents
our conclusions.

7



Chapter 2

Related Work

2.1 Reachability Analysis with Partitioned BDDs

Narayan et al. [56] present a partitioned ROBDD (PROBDD). Their work presents a new
data structure to store and manipulate Boolean functions. The new data structure consists of
k partitions, each of which is responsible for (owns) part of the work. They use the concept
of a window function, which is also mentioned in [45]. A Boolean function f is sliced by a
set of window functions w1, . . . , wk. The set of window functions is complete, i.e., ∨k

i=1wi =
1. Each slice fi is equal to f ∧ wi and f is represented by {(wi, fi) | 1 ≤ i ≤ k}. For some
cases it is more efficient to choose disjoint windows, i.e., ∀1 ≤ i �= j ≤ k.wi ∧ wj = 0.

In their work it is assumed that the set of window functions is the same for all functions.
It is further assumed that the ith partition in all functions has the same variable ordering.
Under these restrictions, given two Boolean functions f and g and a set of window functions
w1, . . . , wk, the following holds. (a) The PROBDD representing f (i.e., NOT f) is {(wi, wi∧
fi) | 1 ≤ i ≤ k}. (b) The PROBDD representing f � g where � represents any binary
operation between f and g is {(wi, wi ∧ (fi � gi)) | 1 ≤ i ≤ k}.

There are two differences between their work and ours. The most important is that theirs
is sequential. Therefore, their algorithm requires additional developments before it can be
applied to distributed systems. Furthermore, our work is more general because we allow
different sets of window functions for each function in order to maintain the efficiency of
the original slicing.

Narayan et al. [55] show a way to compute reachability analysis using PROBDD sequen-
tially. They make the following observation: Given a set of window functions w1 . . . wk that
slices a set of states R into Ri = R ∧ wi, for1 ≤ i ≤ k, the image of Ri under Tii, where
Tii = wi(s) ∧ wi(s

′) ∧ T (s, s′) lies completely within the partition i. Similarly, the image
of Ri under Tij , where Tij = wi(s) ∧ wj(s

′) ∧ T (s, s′) lies completely within the partition
j. Multiple steps of image computation are performed on each Ri under Tii. In accordance
with the above observation, these steps add states only within partition i. Once a fixed point
is reached within a partition i, the transition relation Tij is used to compute the states for
each additional partition j.

Since this work uses a single machine, exchanging non-owned states at every step is too

8



expensive. This is the reason why the authors choose to perform the image computation on
owned states locally until a fixed point is reached, and only then to compute the non-owned
states. The image computation for non-owned states is then performed for each partition
separately. This computation is optimized to produce only the non-owned states for a single
partition. However, the computation includes all the states that are reachable from the local
partition in any number of steps. In our method each process owns part of the state space
according to a set of window functions. Each process knows the window function of all other
processes. Each process computes all the states that are reachable from the local partition in
a single step. Then the non-owned states are sliced according to the set of window functions
and are sent to their owners. Therefore, the two methods are not comparable.

The number of steps in the basic sequential algorithm is equal to the number of dis-
tributed steps in our algorithm. The number of steps in their approach is greater than in the
basic sequential algorithm for two reasons: First, once a partition has reached a fixed-point,
k − 1 more steps are needed in order to compute, for each one of the k − 1 remaining par-
titions, the non-owned states. Second, since synchronization between different partitions is
done only after both partitions reach a fixed-point, the worst case scenario is one in which
there is one order of magnitude more steps than a regular sequential algorithm.

In [55] the authors comment that they believe their algorithm can be parallelized. This,
however, would have required additional developments. In order to exploit the full power of
the parallel machinery, it was necessary to adapt the BFS for asynchronous computation. We
had to coordinate and minimize communications, avoid unnecessary blocking, and employ
a distributed termination detection scheme.

Cabodi et al. [21] present a way to compute reachability analysis using a different
method of BDD partitioning. The computation is partitioned into three levels. At the top
level, the frontier is broken into several subsets, each smaller than a given threshold. The
image computation is then applied to each subset. After image computation is completed,
the big sets are re-sliced and the small sets are merged.

The authors show that an image computation can be broken down internally into two
additional levels: the image computation level and the conjunction steps within the image
computation. In the first level the current state and the transition relations are decomposed
using the same variable. The image of the original set is the disjunction of images of each
subset. The disjunction is obtained by using the appropriate decomposed transition relation.
The second level is suitable for partitioned transition relations. In this situation the image
computation is obtained through several micro-steps. The authors claim, but do not prove,
that the first level can be applied in a micro-step.

Their approach differs from ours in each of the three decomposition levels. Since their
decomposition at the top level creates duplication of states, several partitions may still in-
clude the same state after the image computation is complete. This duplication reduces the
effectiveness of their decomposition, whereas we proved in Chapter 7 that in our approach
the subsets remain disjoint.

Their next level of decomposition, the image computation level, partitions the current
states and the transition relation using one of the current variables. In our basic algorithm
we partition the set using only the current states and use the restrict operator on the tran-

9



sition relation. Using this operator is equal to or better than partitioning. In Chapter 7 we
present the Sliced Transition Relation, obtained from slicing the transition relation not only
according to the current states, but according to the next states as well.

The conjunction steps level is extended in our work in two ways. First, we prove the va-
lidity of splitting the micro-step. Second, we split the micro-step in order to find a better way
of dividing the work among processes by splitting the BDDs according to the complexity of
the image computation. This is in contrast to Cabodi et al. who split the micro-step only for
small image computation that does not justify their first level of internal decomposition.

Cabodi et al. [22] present a faster heuristic method for finding a BDD variable to slice
a Boolean function. They first estimate, for each variable, the number of nodes that appear
in the cofactor, and then select the variable to slice accordingly. They traverse the function
once and estimate the number of nodes in the cofactor of each variable. Given a variable v
from the support of a function f , the sizes of the two cofactors, fv and fv, are estimated.
The estimation is based on two sets of nodes: Lvl(f, v), the set of nodes marked with v,
and Rch(f, v, φ), the set of nodes that has a path to a node that is connected by φ edges
(with φ ∈ 0, 1) to a node in Lvl(f, v). The authors observe that Rch(f, v, 0) is a potential
overestimation of nodes outside the cofactor. Since the nodes in Lvf(v) disappear in fv and
fv, they are excluded from the resulting estimations of | fv | and | fv |. The estimated size
of fv is | f | − | Lvl(v) | − | Rch(v, 0) | and the estimated size of fv is | f | − | Lvl(v) |
− | Rch(v, 1) |.

Ferare et al. [36] present a different way to compute reachability analysis using a par-
titioned BDD. A different heuristic is used to traverse the function once and estimate the
number of nodes that appear in the cofactor of each of the variables. For a BDD that repre-
sents a function F , each node in that BDD is the root of a sub-DAG represents a sub-function
f . For each such BDD node representing a function f , they estimate the number of nodes
in the sub-DAG of f and mark this as c[f ]. Clearly, c[f ] ≤ c[f0] + c[f1] + 1, and equality
is obtained when there is no sharing between f0 and f1. An exact c[f ] may be calculated as
c[f ] ≤ c′[f0] + c′[f1] + 1, where c′[f0] and c[f1] are the number of unvisited nodes encoun-
tered during the traversal of f0 and f1, respectively. If the traversal starts with f0, the value
of c′[f0] is an exact estimation while c′[f1] is an underestimation and vice versa.

In order to compute the c[f ] for all f in F , two traversals are performed: one in which the
0-edge is expanded first and one in which the 1-edge is expanded first. In each traversal c[f ]
is updated to be the maximum value of both. Once the computation of c[f ] is complete, a
heuristic cost is assigned to each variable using a heuristic cost function, and the N variables
with the minimal cost are selected. Then, a much more accurate check is performed to select
the best variable.

An additional contribution of Ferare’s paper is the use of a priority queue to select the
next partition to be searched. The paper suggests that the best priority strategy is to select
the smallest remaining partition. The algorithm starts with one set of states and computes
the set of successors. If the set of successors is bigger than a given threshold, it is split into
several parts. All parts are then put into the priority queue. The part with the highest priority
is then extracted from the queue and the set of its successors is computed.

In each step one part is extracted from the queue. Only the successors that have not yet

10



been developed are put back into the queue. When there are no more new states, no new
parts are put back into the queue, and the computation terminates.

11



Another work on partitioning BDDs was done by Matsuura et al. [51]. This work show
how to compress the presentation of a shared BDD (SBDD), also known as a ”multi-rooted
BDD,” by partitioning. The SBDD represents a set of functions in the same BDD manager;
hence, the variable order is the same in each function. Note that in many cases a better
variable order can be found for each function separately. The work includes an algorithm
that divides a set of functions into two subsets, called bi-partition SBDDs. Each subset
then uses a different BDD manager and may use a different BDD order. An optimal algo-
rithm is required to check all the different orders and partitions; hence it is not practical for
large BDDs. The algorithm, which is heuristic and uses dynamic reorder [61], finds a bi-
partitioned SBDD. The algorithm first finds the smallest possible size of each function, by
applying dynamic reorder only for this function. Then it compares the minimal size of each
function to its size in the current BDD order. Next, it divides the set of functions into two
subsets: the functions whose minimal size is similar to their size in the current BDD order,
and the others. Afterwards, the algorithm applies dynamic reorder on each subset. Finally,
the algorithm consider replacing two functions and it may in fact decide not to replace them.
It select one function in each subset, and check what is the size of the same be-partitioned
SBDD except this function is in the other subset.

Their partitioning is focused on hardware synthesis, where there are several large func-
tions. Therefore, their algorithm requires additional developments before it can be applied
to verification, where only two large functions exist. Furthermore, they present only the
partitioning method but do not explain how to manipulate the partitioned functions.

12



2.2 Explicit State Model Checking

Stern and Dill present a way to parallelize the explicit murϕ verifier [64]. They present
an asynchronous algorithm for reachability analysis. The algorithm includes a termination
detection procedure and a counterexamples procedure for cases when the algorithm finds
a bug. Their algorithm is intended to achieve speedup and indeed it does. The impact of
the communication infrastructure on the algorithm was analyzed. This analysis included
the impact of delays in communicating a small message, the time consumed in sending
a message, and the minimum time between two messages. Their experiments show that
the algorithm is insensitive to slow communication. This can be explained by the overlap
between the latency and the communication.

Each process has a unique ID but runs the same code. A hash function maps each state
to one of the processes. The randomness of the hash function provides random load balance.
Probability methods are used to prove that there is a high chance for very even distribution
of the state space over the nodes. A process first computes the set of successors from one
of its states. Next, it performs symmetry reduction, and only then sends the states to their
owners.

The termination detection algorithm starts when the master sends a message to each
of the processes telling them to report their status. Each process reports the number of
messages it sent, the number of messages it received, and the number of states it has to
develop. The master compares the sum of sends to the sum of receives: if they are equal and
none of the processes has undeveloped states, it terminates the algorithm.

The main difference between this algorithm and ours is that it is explicit while ours is
symbolic. The explicit algorithm uses the fact that each of the states is manipulated sep-
arately to divide the work among the processes. The experimental results show that the
randomness of the hash function indeed distributes the reachable states evenly, but there is
no way to guarantee this in general. Our slicing algorithm uses sets of states represented
as BDDs and therefore cannot use a hash function. However, our method continually slices
processes that have a large amount of work. In this way, the work load is balanced dynami-
cally.

2.3 Parallel Algorithms for Constructing BDDs

Kimura and Clarke present a parallel algorithm for constructing binary decision diagrams [46].
They consider a BDD as an automaton and a BDD operation as the automaton product con-
struction that is followed by a minimization phase. The sequential product construction
phase creates new states. A new state is a pair of states, each of which belongs to an au-
tomaton. After a new state is created, it is connected by an edge to its predecessors. When
the product construction ends, the minimization phase starts and all redundant states are
deleted.

The parallel algorithm, implemented on a shared memory machine, starts with a single
process. The process starts the construction phase and creates a new state; then it delivers

13



its successors to other processes. When the other processes complete the construction and
minimization phases, this process starts the minimization phase and completes the construc-
tion. This method imposes a total order on the processes because they are invoked in layer
by layer order.

Ranjan et al. use a network of workstations to implement BDDs [59]. They assign one
or more layers, depending on their size, to each process. The process that owns the upper
and lower layers owns more layers than the process that owns the middle layers. This work
defines a generalized address for a BDD node that is obtained from its BDD variable ID
and its address in the computer that owns this node. The use of a variable ID as part of
the address makes it possible to identify, without any communication, which machine this
nodes belongs to.

A BDD operation starts with the process that owns the top layer. This process starts in
the apply phase. When this process reaches a BDD node that belongs to a layer lower than
its own lowest layer, it creates a request for that node and puts it in the appropriate request
queue. When the process receives the results for all the requests, it starts the reduction
phase. In the reduction phase the process sends nodes to processes that own layers above
the highest layer the process owns. The reduction phase continues until the process sends
all the nodes it does not own. The assignment of BDD sections imposes a total order on the
processes.

Since the computations are carried out one process at a time, only the memory resources
of the workstations are exploited. Moreover, the variable indices are statically distributed
over several processors. One disadvantage of this approach is that if the number of nodes in
certain levels grows very large, an uneven distribution of nodes may result.

Both Kimura et al. and Ranjan et al. work at the BDD level. The disadvantage is that
because each BDD operation involves communication, scalability is limited by communica-
tion overhead. Moreover, since BDD accesses are pseudo random, applying BDD operations
requires many random accesses, thus aggravating communication. The more machines in
the system, the higher the ratio between remote and local accesses. In contrast, all accesses
of a BDD operation in our method are local, except at the end of each forward step. Further-
more, the volume of communication in our method does not depend on the internal BDD
data structure. In particular, it does not depend on the pseudo-random process of accessing
BDD nodes.

2.4 Sequential Optimization

The distributed approach to model checking is orthogonal to other efforts in improving the
capacity of current model checking algorithms. Many techniques have been developed in
order to reduce the size of the model for sequential algorithms. These techniques are called
model reduction techniques, and they include abstraction [26], symmetry [27, 33], partial
order [54, 68], static analysis [18, 19], and manual reductions [6].

The BDD variable order affects the BDD size significantly. Many efforts have been made
to find a variable order that reduces memory requirements [61, 1, 20, 44, 53, 62, 63, 67].

14



Since finding the best variable order is an NP-hard problem, these approaches are heuristics.
They all apply a dynamic reordering procedure during the model checking computation.
When the reordering procedure is invoked, it usually reduces the BDD size.

15



Chapter 3

Achieving Scalability in Parallel
Reachability Analysis of Very Large
Circuits

3.1 Introduction

Reachability analysis is a key component, and a dominant one, in model checking. In fact,
for most safety properties, model checking can be reduced to reachability analysis [9]. Thus,
for safety properties, verification is possible if reachability analysis is possible.

This chapter presents a scalable parallel algorithm for performing reachability analysis
on very large circuits [42]. Our algorithm relies on partitioning the state space and it actu-
ally parallelizes the computation of the different tasks. Our method parallelizes symbolic
reachability analysis on a network of processes with disjoint memory that communicate via
message passing. Its main characteristics are as follows:

• An adaptive cost function, used in partitioning the memory representation, results in
k small and balanced slices with small duplication. This significantly increases the
size of the overall state space that can be handled by the reachability analysis.

• Balance is initially obtained by iteratively partitioning the largest slice into two smaller
ones, until k slices are obtained. Balance is maintained through the entire computa-
tion by pairing large slices with small ones and re-slicing their union. Re-slicing of
different pairs is performed in parallel.

• Termination of the reachability analysis is detected, with none of the processes pre-
serving the complete image of the reachable states. Balancing is important in order to
avoid overflow in one of the processes while other have free memory.

• A compact and efficient BDD representation is used to allow shipping BDDs between
processes by means of store, send and restore operations. Furthermore, the processes
do not have to use the same BDD variable order when passing BDDs among them-
selves.

16



• No external storage is used such as disk. Rather, we make limited use of the network,
which is much faster.

We now describe our method in greater detail. The state space on which the reachability
analysis is performed is partitioned into slices, where each slice is owned by one process.
The processes perform a standard Breadth First Search (BFS) algorithm on their own slices.
However, this BFS algorithm can discover states that do not belong to the slice that the pro-
cess owns. Such states are called non-owned states. When non-owned states are discovered,
they are sent to the process that owns them. As a result, a process only requires memory
for storing the reachable states it owns, and for computing the set of immediate successors
for these states. The experimental results in Section 6.4 show that communication is not the
bottleneck. We can thus conclude that the number of non-owned states found by a process
is usually small.

Computation on a single slice of a set generally requires less memory than computation
on the whole set. The memory reduction, which is the ratio between the original set size and
the largest slice, determines the success of the partitioning. Thus, large memory reduction
enables the reachability analysis of models larger than those which can be analyzed using
sequential methods. Furthermore, applying parallel computation reduces execution time.

Effective slicing should significantly increase the size of the overall state space that can
be handled. Obtaining an effective slicing is, however, no simple matter, since low memory
requirements of BDDs are based on sharing among their parts. Our slicing procedure is
therefore designed to avoid as much duplication as possible in the partitioned slices. This
is achieved by means of an adaptive cost function. This function chooses slices with small
duplication. At the same time, it avoids trivial partitioning in which one part is of size 0
and the other contains the whole set. Experimental results show that our procedure results
in significantly better slicing than can be obtained by fixed cost functions (e.g., [21, 55]).

Memory balance is also instrumental in making parallel computation more effective. The
balance obtained by the initial slicing may be destroyed as more reachable states are found
by each process. Therefore, balancing is dynamically applied throughout the computation
by means of a procedure that keeps the memory requirement more or less uniform for the
different processes.

Our method requires passing BDDs between processes, both for sending non-owned
states to their owners and for balancing. For this purpose, we developed a compact and
efficient BDD representation as a buffer of bytes. This representation allows for different
variable orders in the sending and receiving processes.

We implemented our technique on a loosely-connected distributed environment of work-
stations, embedded it in a powerful model checker called RuleBase [8], and tested it by
performing reachability analysis on a set of large benchmark circuits. Compared to exe-
cution on a single machine with 256MB memory, the parallel execution on 32 machines
with 256MB memory uses much less space, and covers more steps when the analysis over-
flows. Our slicing algorithm achieves a linear memory reduction factor which is maintained
throughout the analysis by the memory balancing protocol. By a linear memory reduction
factor we mean that when the number of slices increases the size of each slice decreases

17



linearly. The timing breakdown shows that the communication is not a bottleneck with our
approach, even when the network is relatively slow.

3.2 Parallel Reachability Analysis

The set of reachable states is usually computed by applying a Breadth First Search (BFS),
starting from the set of initial states. In general, two sets of nodes have to be maintained
during the reachability analysis:

1. The set of nodes discovered so far, called reachable. This set becomes the set of
reachable states when the exploration ends.

2. The set of reached but not yet developed nodes, called new.

The right side of Figure 3.1 gives the pseudo–code of the sequential BFS algorithm.

1 mySlice = receive(fromSingle) reachable = new = initialStates
2 reachable = receive(fromSingle) while (new �= ∅) {
3 new = receive(fromSingle) next = nextStateImage(new)
4 while (Termination(new)==0) { new = next \ reachable
5 next = nextStateImage(new) reachable = reachable ∪ next
6 next = sendReceiveAll(next) }
7 next = next ∩ mySlice
8 new = next \ reachable
9 reachable = reachable ∪ next
}

(a) BFS by one process (b) Sequential BFS

Figure 3.1: Breadth First Search

The parallel algorithm is composed of an initial sequential stage and a parallel stage,
depicted on the left side of Figure 3.1. In the sequential stage, the reachable states are
computed on a single node as long as memory requirements are below a certain threshold.
When the threshold is reached, the algorithm that will be described in Section 3.3 slices the
state space into k slices. Then it initiates k processes. Each process is informed of the slice
it owns and of the slices owned by each of the other processes. The process receives its own
slice and proceeds to compute the reachable states for that slice in iterative BFS steps

During a single step, each process computes the next set of states that are reached
directly from the states in its new set. The procedure sendReceiveAll runs in parallel by all
process to exchange none owned states. The next set contains owned as well as non-owned
states. sendReceiveAll runs in parallel by all processes to exchange none owned states.
Each process splits its next set according to the k slices and sends the non-owned states to
their corresponding owners. At the same time, the process receives the states it owns from
the other processes.

18



The reachability analysis procedure for one process is presented on the left side of Fig-
ure 3.1. Lines 1-3 describe the setup stage: the process is notified as to which slice it owns;
it also receives the initial sets of states it needs to compute from. The rest of the procedure
is an iterative computation that repeats until distributed termination is detected. The main
difference between the two procedures in Figure 3.1 is the modification of the next set in
lines 6-7 as the result of communication with the other processes.

The parallel stage requires an extra process called the coordinator. This process coor-
dinates the communication between the processes, including exchange of states, dynamic
memory balance, and distributed termination detection. However, the information does not
go through the coordinator, but is exchanged directly between the processes.

In order to exchange non-owned states, each process sends to the coordinator the list of
processes with which it needs to communicate. The coordinator matches pairs of processes
and instructs them to communicate. The pairs exchange states in parallel and then wait for
the coordinator to match them with other processes. Matching continues until all commu-
nication requests are fulfilled. A process that ends its interaction may continue to the next
step, without waiting for the rest of the processes to complete their interaction.

3.2.1 Memory Balancing

One of the objectives of slicing is to distribute the memory requirements equally among the
nodes. Initial slicing of the state space is based on the known reachable set at the beginning
of the parallel stage. This slicing may become inadequate as more states are discovered
during reachability analysis. Therefore the memory requirements of the processes are mon-
itored at each step; whenever they become unbalanced, a balance procedure is executed.
The coordinator matches those processes that have a very large memory requirement with
processes that have a very small one. Each pair of processes then re-slices the union of its
two slices, to obtain a better balanced slicing. The pair uses the same procedure that is used
to slice the whole state space (described in Section 3.3), with k = 2. After the balance
procedure is completed, the pair informs the other processes of the new slicing.

3.2.2 Termination Detection

In the sequential BFS algorithm, termination is detected when there are no more undevel-
oped states (i.e., new is empty). In the parallel algorithm, each process can only detect when
new is empty in its slice. However, a process may eventually receive new states even if at
some step its new set is temporarily empty.

The parallel termination detection procedure starts after the processes exchange all non-
owned states. Each process reports to the coordinator whether its new set is empty or
non-empty. If all the processes report an empty new set, the coordinator concludes that
termination has been reached and reports this to all the processes.

19



3.3 Boolean Function Slicing

Model checking uses several sets of states, as well as a transition relation between these
sets. In symbolic computation these sets are represented as Boolean functions. This repre-
sentation allows the handling of huge sets of states; unfortunately it may be very large by
itself. We can, however, partition a large set into smaller subsets whose union is the whole
set. Each partition, or slice, should require less memory. Furthermore, the subsets should
be disjoint. Disjoint subsets will allow us to avoid duplication of work during reachability
analysis. Since sets are represented as Boolean functions, slicing is defined for this kind of
functions.

Definition 1: [Boolean function slicing] [56] Given a Boolean function f : Bn → B, and
an integer k, a Boolean function slicing χ(f, k) of f is a set of k function pairs, χ(f, k) =
{(S1, f1), . . . , (Sk, fk)}, which satisfy the following conditions:

1. Si and fi are Boolean functions, for 1 ≤ i ≤ k

2. S1 ∨ S2 ∨ . . . ∨ Sk ≡ 1

3. Si ∧ Sj ≡ 0, for i �= j

4. fi ≡ Si ∧ f , for 1 ≤ i ≤ k

The Si functions that define the partitioning of the state space are referred to as slices. The
reduction in memory requirements depends on which set of slices S1, . . . , Sk is chosen.

The low memory requirements of BDD trees are based on sharing among their subtrees
(see Figure 3.2 for a BDD example). Each subtree of the BDD is stored only once even if it
is used many times (node 4 in Figure 3.2, for example). After slicing, this is no longer true.
A subtree of the BDD that is used by two slices and belongs to two owners is duplicated in
both owners. It is the slicing itself that causes the duplication. As the duplication increases,
so does the total amount of work, and further slicing is thus required in order to reduce the
slice size. Since the number of possible slices equals the number of nodes in the system, we
are limited in the number of slices that we can obtain. Consequently, we must try to reduce
the size of the slices as much as possible. An effective slicing should therefore reduce the
slice size as well as prevent duplication.

Given a model with n variables, there is a superexponential number of ways to slice a
set of states in to two: 22n

. Therefore, a heuristic approach is needed. One such possible
approach is to find a slicing that minimizes MAX(|f1|, . . . , |fk|). However, based on the
above argument and on our experiments in Section 3.6, a better approach is to slice in a way
that also minimizes the sharing of BDD nodes among the k functions f1, . . . , fk.

3.3.1 Slicing a Function in Two: SelectVar

Our slicing algorithm, SelectVar, slices a Boolean function (a BDD) into two by assign-
ing a value to a BDD variable. The algorithm receives a BDD, f , and a threshold, δ. It

20



2 3V2 V3

1 V1

4 V4

2 V2

1 V1

4 V4

3 V3

1 V1

4 V4

f1f f2

Figure 3.2: Slicing f into f1 and f2 using v1

selects one of the BDD variables v and slices f into fv = f ∧ v and fv = f ∧ v. Figure 3.2
shows an example of this kind of slicing, in which variable v is used to slice the function f
into f1 and f2.

The cost of such a slicing is defined as:

Definition 2: [Cost(f, v, α):] α ∗ MAX(|fv |,|fv |)
|f | + (1− α) ∗ |fv |+|fv |

|f |

The MAX(|fv |,|fv |)
|f | factor gives an approximate measure to the reduction achieved by the

partition. The |fv |+|fv |
|f | factor gives an approximate measure of the number of shared BDD

nodes in fv and fv (e.g., node 4 in Figure 3.2), and therefore reflects the duplication in the
partition.

The cost function depends on the value of α, where 0 ≤ α ≤ 1. An α = 0 means that
the cost function completely ignores the reduction factor, while α = 1 means that the cost
function completely ignores the duplication factor. Our algorithm uses a novel approach
in which α is adaptive and its value changes in each application of the slicing algorithm.
The algorithm accomplishes two important goals: (1) the size of each slice is below a given
threshold δ, and (2) there is as little duplication as possible.

Initially, the algorithm only attempts to find a BDD variable that minimizing the dupli-
cation factor (α = 0), while still reducing the memory requirements below the threshold
(i.e., max(|f1|, |f2|) ≤ |f | − δ). If such a slicing does not exist, the algorithm increases
α gradually, allowing a gradual increase in duplication until max(|f1|, |f2|) ≤ |f | − δ is
reached or α = 1.

The threshold is used to guarantee that the partition is not trivial, i.e., it is not the case
that |f1| ≈ |f | and |f2| ≈ 0. If the largest slice is approximately |f | − δ and the duplication
is small, the other slice will be approximately of size δ. This partition is not trivial, but it is
unbalanced. If the largest slice is less than |f | − δ and the duplication is small, the partition
will be more balanced.

The pseudo–code for the algorithm SelectVar(f, δ) is given in Figure 3.3. We set
STEP = min(0.1, 1

k
) and δ = |f |

k
, where k is the number of overall slices we want to obtain.

Note that even though our algorithm may compute the cost functions for many different
α, |f ∧ v| and |f ∧ v| are computed only once for each variable v. Therefore, computation
time is not increased. Furthermore, the computation of |f ∧ v| and |f ∧ v| for different vari-
ables v is done in parallel, with different computers computing the values for the different

21



α = Δα = STEP
BestV ar = the variable v with minimal cost(f, v, α)
while ((max(|f ∧BestV ar|, |f ∧BestV ar|) > |f | − δ) ∧ (α ≤ 1))

α = α + Δα
BestV ar = the variable v with minimal cost(f, v, α)

return BestVar

Figure 3.3: Pseudo–code for the algorithm SelectVar(f, δ).

variables. The values are then sent to yet another computer that determines the variable with
the minimal cost. Also note, that the algorithm searches for a good partitioning in the cur-
rent BDD order. Each process is then invokes dynamic reorder to take the advantage of the
partitioning. Rather than gradually increasing α, it is possible to find the best α using binary
search. For a model with a large number of BDD variables and large k, this improvement is
essential to the efficiency of our method.

Our slicing procedure is different from those of [56, 21] in that we use adaptive α, and
place a marked emphasis on obtaining small duplication. Since cost functions are computed
in parallel, we can allow them to be computed more precisely, thus achieving a more finely
tuned slicing. The comparison to fixed α as suggested in [56, 21] is given in Table 3.2.

3.3.2 Slicing a Function into k Slices

Recall that SelectVar may result in two unbalanced slices that are approximately of
sizes |f | − δ and δ. Unbalanced slices render our method less effective. In order to avoid
this problem, we repeatedly slice the largest slice until k slices are obtained. In this way we
obtain a balanced partition.

3.4 Optimizing the SelectVar Procedure

SelectVar(f, δ) selects a state variable v and uses it to split a set f into two sets: f ∧ v
and f ∧ v. Recall that the algorithm attempts to satisfy two conditions: (1) that the size of
both resulting sets is at most |f | − δ, and (2) that the duplication is minimized.

The efficiency of this algorithm and its success in meeting the above conditions are cru-
cial factors in the efficiency of the whole scheme, especially when the number of processes
increases. In this section we discuss several possible improvements in the algorithm.

Our main observation is that the split of f which best meets the required conditions might
not be achieved using a single variable. Indeed, it was suggested earlier that the algorithm
can achieve better results by the choice of a general function g which determines two sets:
f ∧ g and f ∧ g [56]. However, since the number of candidates for g is exponential, it would
be too time consuming to try them all. In the rest of this section we develop heuristics which
help to choose a “good” g while maintaining a reasonable complexity for the choice.

22



We construct g iteratively as follows. Suppose that for a certain step we already have
g′. We now choose a state variable v and compute the smallest cost Cost(f, g, α), using
definition 2, of all the functions of the form g = g′ op v. There are 16 possibilities, 8 of
which are symmetrical, since we use both g and g. The option g = 0 means that one slice
is the empty set and the other is the whole set, therefore it does not help slicing. The option
g = g′ is the same as the current slicing. The option g = v has already been checked when
g′ was only one variable. We are left, therefore, with the following options: g′ ∧ v, g′ ∧ v,
g′ ⊗ v, g′ ∧ v, g′ ∨ v. Definition 3 defines the general functions gi, using a base function g′

and a state variable v.

Definition 3: [general function gi(g
′, v)] Let g′ be a base function and v a state variable.

Then the following are general functions: g1 = g′ ∧ v, g2 = g′ ∧ v, g3 = g′ ⊗ v, g4 = g′ ∧ v,
g5 = g′ ∨ v

Figure 3.4 presents the pseudo–code for the algorithm BestGeneral(f, g′, α, SliceSet).
This algorithm chooses the best splitter from the set of SliceSet and one of the general func-
tions with g′. The set of states to be sliced is f , the base function is g′ and the set of potential
slicers, initially the set of all variables, to be used is SliceSet.

BestGeneral(f, g′, α, SliceSet)
MinCost =∞
forall v ∈ SliceSet
forall i ∈ {1..5}
if (MinCost > Cost(f, gi, α))

MinCost = Cost(f, gi, α)
g = gi

return g

Figure 3.4: Pseudo–code for the algorithm BestGeneral(f, g′, α, SliceSet).

The complexity of BestGeneral, assuming that we try all state variables, can be as
high as five times the number of state variables times the cost of a BDD operation. We
attempt to lower the complexity of this procedure by selecting variables that are very likely
to provide a good result.

In what follows, we describe how the above observation can be utilized by means of
a set of heuristics that we found to be effective in selecting such a general function (see
Figure 3.2). There are several configurable parameters which appear in the description of
the heuristics; currently, these parameters are set in our implementation by trial-and-error.

Optimization 1. The general construction of a splitting function g, as described above,
is called by SelectVar(f, δ) in several cases. The construction is not, however, called
directly. When a splitting variable BestV ar is found by SelectVar, we first call
ImprovingSplit. ImprovingSplit(f,BestV ar, SliceSet, α) then applies BestGeneral

23



using BestV ar as a base function with the last value of α, in an attempt to further improve
the cost. In this case BestGeneral is applied with the set of all potential slicers. The
pseudo–code for the algorithm ImprovingSplit is given in Figure 3.5.

ImprovingSplit(f,BestV ar, SliceSet, α)
g = BestV ar
Loop:

g′ = g
g = BestGeneral (f, g′, α, SliceSet)

until Cost(f, g′, α) ≤ Cost(f, g, α)
return g′

Figure 3.5: Pseudo–code for the algorithm ImprovingSplit(f,BestV ar, SliceSet, α).

ImprovingSplit is also called to apply the general construction when a splitting
variable which meets the conditions cannot be found, and the algorithm is forced to increase
α. In these cases, the base function for the construction, namely BestVar, is the variable
with the lowest cost so far. This may be viewed as an attempt by SelectVar to find
a function which meets the required conditions while α (and thus the duplication) is still
small.

When α is very small, it may be misleading to choose slicing functions according to
the cost. This is because, for very small α, the trivial slicing into empty part and original
function is common. Obviously, this choice ensures that there will be no progress from the
point of view of SelectVar. We thus attempt to reduce the size of the slices, even if
we have to pay the price of a somewhat increased duplication. This brings us to the next
optimization.

Optimization 2. (Only very small α) We choose the best splitting variable so far, and
iteratively add more variables according to the general construction of the slicing function.
This time, however, we first select those variables that really do decrease the size of the
slices that were designated useful by Definition 4 below. Only then, out of those variables
selected, do we choose the one for which the slicing function achieves a minimal cost. The
pseudo–code for the algorithm LowDuplication(f,BestV ar, SliceSet, α) is given in
Figure 3.6.

Definition 4: [useful variable (f, g′, v)] Let g′ be a base function and v a state variable.
Then v is useful if and only if:

5∨
i=1

(max(|f ∧ g′|, |f ∧ g′|) > max(|f ∧ gi(g
′, v)|, |f ∧ gi(g′, v)|))

While the previous optimizations attempt to create a general construction by a base func-
tion and a state variable, it is possible to use the same construction with two functions. Def-
inition 3 is used with the modification that v is a Boolean function. The third optimization
adds function with high potential to becoming good slicers to the list SliceSet.

24



LowDuplication(f,BestV ar, SliceSet, α)
g = BestV ar
Loop:

g′ = g
g = BestGeneral (f, g′, α, {v | v ∈ SliceSet ∧ useful(f, g′, v)})

until Cost(f, g′, α) ≤ Cost(f, g, α)
return g′

Figure 3.6: Pseudo–code for the algorithm LowDuplication(f,BestV ar, SliceSet, α).

Optimization 3. We choose a small number l of the best variables found so far BestVar1,
. . ., BestVarl, and send them as inputs to BestGeneral. This time we use each vari-
able only once: we start with the best one, BestVar1, add the second best, BestVar2,
etc. If any of the l − 1 resulting functions meet the conditions – we are done. Otherwise,
they are added to the existing list SliceSet. This may increase the input to the next iteration
of SelectVar by l−1 functions. These functions have a high potential for becoming good
slicers. The pseudo–code for the algorithm UsingBestVars(f,BestV ar1, . . . , BestV arl,
α, δ, SliceSet) is given in Figure 3.7.

UsingBestVars(f,BestV ar1, . . . , BestV arl, α, δ, SliceSet)
g′ = BestV ar1

for i = 2 . . . l do
g = BestGeneral (f, g′, α, {BestV ari})
if (max(|f ∧ g|, |f ∧ g|) ≤ |f | − δ) return g
SliceSet = SliceSet ∪ {g}
g′ = g

Figure 3.7: Pseudo–code for the algorithm UsingBestVars(f,BestV ar1, . . . , BestV arl, α, δ, SliceSet)
.

The pseudo–code for the algorithm SelectVar that uses all three optimizations is
given in Figure 3.8.

3.5 Efficient Transfer of BDDs

As described in Section 6.3.1, processes periodically exchange BDDs during reachability
analysis. In order to exchange BDDs three issues should be addressed. The address in
BDD pointers refers to the sender local memory and does not have any meaning in the
receiver local memory. The sender and the receiver may have different BDD order therefore

25



SelectVar(f, δ)
α = Δα = STEP
SliceSet = all state variables
BestV ar = the slicer v ∈ SliceSet with minimal cost(f, v, α)
BestV ar = LowDuplication(f,BestV ar, SliceSet, α)
while ((max(|f ∧BestV ar|, |f ∧BestV ar|) > |f | − δ) ∧ (α ≤ 1))

α = α + Δα
BestV ar = the slicer v ∈ SliceSet with minimal cost(f, v, α)
BestV ar = ImprovingSplit (f,BestV ar, SliceSet, α)
BestV ar = UsingBestVars (f,BestV ar1, . . . , BestV arl, α, δ, SliceSet)

return BestVar

Figure 3.8: Pseudo–code for the algorithm SelectVar(f, δ), with the optimizations.

a function may has different BDD representation. During computation large BDD trees are
shifted and may overload the communication.

The BDD data structure is a graph in which each node has two pointers to other nodes.
In order to send such a graph to other processes, one should make the pointers point to the
same nodes, even though the nodes addresses may be different. This is a well known in
remote procedure calls world, and there exist algorithms for generating messages to move
data including graph data structures [14]. However, in our case the sender and receiver may
have different BDD orders. In this case the graph created at the receiver side is different
from the original graph in the sender side.

Moving of data across the network is slower than other process operations. Reducing
the size of the transferred data is especially important in preventing communication from
becoming the bottleneck of our method.

Below we describe our solution to the problems listed above. Two utility functions are
used: bdd2msg translates a BDD into compact msg data, and msg2bdd translates the
msg data back to a BDD after the transfer has taken place. The purpose of bdd2msg is to
serialize the BDD structure in order to make it suitable for raw buffer transfer.

BDD nodes represent a Boolean function f recursively. The functions 0 and 1 are repre-
sented by two special BDDs, called ZERO and ONE. Other functions are represented by a
node that contains a variable identification x, and two pointers, leftPtr and rightPtr,
pointing to two other BDD nodes that represent fx and fx, respectively. The function f is
expressed according to the Shannon expansion: xfx + xfx.

The reduction achieved is 50% of the size of the original BDD. There are two causes for
this reduction: the removal of the “next” pointer (used for garbage collection) and the fact
that the number of nodes in a msg is limited to a predefined buffer size, which is smaller
than the address space. As a results, the pointers leftPtr and rightPtr are smaller
than pointers to addresses in memory.

We enumerate the variables and use the variable number instead of its name in order to
save space. The msg data is a sequence of records. Each msg record has four fields: an

26



index for that record (symbolic pointer), denoted as Sid; a variable’s number, denoted as
Xid; an Sid for the record’s left successor, and one for its right successor. The index field
indicates the record’s location in the msg data. The records ZERO and ONE have special
indexes.

bdd2msg traverses the nodes of BDD f in Depth–First Search (DFS) post order. It
creates the corresponding msg records from the leaves upwards. Every time it creates a new
msg record, it increments an index, which serves as the Sid for that record. The relationship
between the actual pointer of the BDD node pointer and the corresponding Sid is recorded
in a dictionary. Thus, when a pointer to a BDD node is encountered for the second time, the
pointer is replaced by the Sid taken from the dictionary. The records are created in DFS
post order. This ensures that every time a new record needs to be created, the Sids for its
left and right successors are already in the dictionary.

msg2bdd traverses the msg records sequentially from beginning to end. It creates the
corresponding BDD nodes one by one as it traverses the data. Since the created BDD might
have a different variable order than the original, it is not possible to use the pointers in the
msg record “as is”. Instead, the Shannon expansion is used to create the corresponding
BDD node from the record. Thus, the msg data does not have to be in the same order as in
the original BDD. The relationship between the Sid and the corresponding pointer of the
BDD node is again recorded in a dictionary. Thus, when an Sid of a record is encountered
as a left or right successor of another record, the Sid of the successor can be replaced by the
BDD pointer in the dictionary. The organization of msg ensures that every time a new node
needs to be created, the pointers for its left and right successors are already in the dictionary.

Remark: The transferred BDD f is compressed by the restrict operator described in
[31]. This further reduces the size of the BDD. In order to obtain the compression, non-
owned states can be treated as “don’t-cares”. The restrict operator changes f by adding
or removing non-owned states such that the BDD size of the restricted f is smaller. The
senders use the restrict operator using states non-owned by the receiver as “don’t-cares”. The
receiving process ensures that the BDD is intersected with its slice after the reconstruction.

3.6 Experimental Results

In this section we report initial performance results achieved using our approach. We imple-
mented our partitioned BDD and embedded it in an enhanced version of McMillan’s SMV
[52] at the IBM Haifa Research Laboratory [8].

Our parallel testbed included 32 RS6000 machines, each consisting of a 225MHz Pow-
erPC processor and 256MB memory. The communication between the nodes consisted of
a 100Mbps token ring. The nodes were non-dedicated; they were mainly employee work-
stations, which were often in use (along with the network) at the same time that we ran our
experiments.

After each invocation of the garbage collector, the total size of the BDD manager was
examined. If the size of the BDD manager at a certain machine exceeded 4M nodes, com-
putation was terminated on this machine, as well as on all other machines taking part in the

27



parallel computation, and “overflow” was declared. If overflow occurs during step t (begin-
ning at step 0), then the maximal size of the set of reachable states is obtained at the end of
step t− 1.

We conducted our experiments using five of the largest circuits we found in the ISCAS89
and addendum’93 benchmarks. Two additional large examples (BIQ and ARB) are compo-
nents in the IBM Gigahertz processor. The characteristics of the seven circuits are given in
Table 3.1.

3.6.1 Slicing Results

The success of our slicing algorithm is a crucial factor in the efficiency of the parallel execu-
tion. This success is indicated by two parameters of the obtained partition: the duplication,
which is the ratio between the overall size of the slices and the original reachable size, and
the memory reduction, which is the ratio between the original reachable size and the largest
slice in the partition.

Table 3.2 presents the slicing results of reachable sets for four slicing methods. The
figure gives results for 16, 32, 65, and 130 slices. These results are included to show phe-
nomena which appear only towards large numbers of slices. The slicing algorithms are
invoked when the size of the reachable set exceeds a threshold of 100,000 BDD nodes.

The first method selects the slicing function variable which achieves the greatest memory
reduction. In the SelectVar algorithm, this corresponds to choosing α = 1. The second
method is the same as that used in Cabodi et al. [21]. This corresponds to choosing the
splitting variable with the a fixed α, as suggested by Cabodi et al.[21]. The third method
is the one presented in Section 3.3, which adapts α to select the partition with minimal
duplication. The fourth method includes the optimizations described in Section 3.4, and
splitting is carried out using the general function described in that section.

The table shows that the average improvements in the memory reduction factor obtained
by our optimizations (adapting α and choosing a general splitting function), relate to fixed α
are 25%, 22%, 18%, and 10% for slicing into 130, 65, 32, and 16 parts, respectively. These
optimizations are of greater significance as the number of slices increases. Thus, opting
for lower duplication when the number of slices grows is the key to better slicing, and this
choice served as the guideline for our optimizations.

An average memory reduction factor of more than 55 was achieved over our benchmark
suite when slicing into 130 slices. When the number of slices increases, a larger threshold
should be chosen. This is because the threshold per slice, 100, 000/130 = 750 in our
experiments, may be too small. On the other hand, efficiency dictates an earlier split when
the bottleneck is the complexity of the slicing algorithm or the resources required by the
initial sequential stage.

High level slicing results for three of the circuits, and for an additional component in
the IBM Gigahertz processor GXI with 298 variables, are given in Table 3.3. Since the
threshold was increased to 275,000, the slicing took place at a later step. The slicing method
is the adaptive alpha without optimizations. An average memory reduction factor of more
than 220 was achieved over our benchmark suite when slicing into 512 slices. This shows

28



that when the circuits and the threshold are large enough, better slicing can be achieved even
without the computationally costly optimizations.

The adaptive alpha algorithm chooses a value for alpha in every slicing. Figure 3.9
presents the value of alpha as determined at each slicing, when slicing to 32 slices. Fig-
ure 3.10 presents the average of values over all the examples. On average, the first 15 slices
used a rather low value of alpha; the latter slices used a much larger alpha. This is con-
sistent with our desire that low duplication be the dominant factor at the beginning of the
slicing. After the first 15 slices are produced, we want each one to be sliced into two small
parts regardless of duplication. Indeed, a high value of alpha causes memory reduction to
dominate, as was explained in Definition 2.

During the memory balance procedure, the slicing function is used to reslice the unified
state space of pairs of processes. The statistics for the values of alpha, as chosen by the
adaptive slicing function, are given in Table 3.4. In most cases, a low value for alpha is
selected.

3.6.2 Space Reduction Using Parallel Reachability Analysis

Figures 3.11 to 3.17 show the results for memory use, giving the reachable size and peak
usage for every step. The state space is first sliced into a number of slices that equals the
number of machines. Then, during memory balance, the initial slices are resliced. Each
of the graphs compares memory use in the single machine execution to that of the parallel
system.

The graphs show that scalability is obtained due to the performance of the slicing al-
gorithm, which achieves a good memory reduction. In the parallel execution, the circuits
which do overflow always cover more steps safely when the level of parallelism increases.
Figure 3.16 shows the analysis process for circuit BIQ, which safely reaches step 30 with
32 machines, as opposed to step 19 with the single machine execution.

3.6.3 Timing and Communication

Table 3.5 gives the timing breakdown for reachability analysis on the benchmark suite. This
table provides information regarding the ratio of computation (the compute column in the
figure) to communication (the exchange column) and memory balancing (the balance col-
umn) in our scheme. The traversal is synchronous; hence it is interesting to note the amount
of time the nodes were idle while waiting for the other nodes. The overall time spent on
exchange and balance is an upper bound on the idle time. The table shows that the overall
picture is fairly balanced. In other words, communication is not a bottleneck in our algo-
rithm, despite the fact that we use a relatively slow network.

Table 3.6 shows the computation time for increasing levels of parallelism. The results
show that for sufficiently large circuits, speedups increase as parallelism increases.



Circuit # max reachable max new peak fixed point gc
vars size step size step size step time steps time

prolog 117 402K 5 578K 5 1,283K 6 1,452 9 193
s1269 55 98K 3 128K 3 3,055K 5 1,601 10 296
s3330 172 839K 6 2,107K 6 4,250K 7 20,055 9 1,017
s5378 198 524K 25 157K 35 4,058K 19 136,309 44 10,163
s1423 91 3,831K 13 3,691K 13 11,413K 14 3,863 ov(14) 714
BIQ 187 853K 19 798K 19 4,468K 20 12,390 ov(20) 2,234
ARB 116 1,193K 6 1,183K 6 8,893K 7 4,112 ov( 7) 788

Table 3.1: Characteristics of our benchmark suite, taken from ISCAS89 and adden-
dum’93, and from the IBM Gigahertz processor.
All sizes are given in BDD nodes and all times in seconds. Max reachable is the maximal
(over the steps) set of nodes already reached. Max new is the maximal (over the steps)
set of nodes reached but not yet developed. Note that new may be larger than reachable
(at any step), since the joint BDD representation of the current step new and the previous
step reachable may decrease in size. The peak is the maximal size at any point during a
step. In order to mask the effect of garbage collection (gc) scheduling decisions, the peak is
measured after every gc invocation. Fixed point is the number of steps/time it takes to get
to fixed point. Ov(x) means memory overflow at step x. The time was measured using an
RS6000 machine, consisting of a 225MHz PowerPC processor with 256MB memory.

Figure 3.9: Values of α that are used when slicing into 32 parts.
The slicing procedure is called 31 times, each using a different value of α.

30



circuit/method 16 slices 32 slices 65 slices 130 slices
mem dup mem dup mem dup mem dup

prolog, 4th step, reachable size is 199,961 BDD nodes
α = 1 8.33 1.38 14.75 1.65 23.26 2.09 37.79 2.69
fixed α 8.33 1.38 14.98 1.65 23.26 2.09 37.76 2.60
adaptive α 10.23 1.34 16.82 1.44 28.54 1.84 43.23 2.34
adaptive α + optimizations 9.89 1.22 16.66 1.44 30.01 1.66 48.87 2.04
s1269, 3rd step, reachable size is 100,170 BDD nodes
α = 1 12.75 1.05 22.45 1.21 36.84 1.42 60.75 1.74
fixed α 12.75 1.04 22.33 1.19 36.16 1.38 61.47 1.66
adaptive α 12.75 1.04 21.40 1.20 36.04 1.38 62.53 1.62
adaptive α + optimizations 12.75 1.02 22.33 1.18 38.53 1.27 70.42 1.41
s3330, 4th step, reachable size is 233,952 BDD nodes
α = 1 6.18 2.17 9.23 2.86 13.46 3.93 19.83 5.35
fixed α 6.18 2.15 9.11 2.82 13.46 3.83 19.83 5.20
adaptive α 6.02 2.16 8.92 2.82 14.00 3.68 19.94 4.72
adaptive α + optimizations 6.17 1.92 9.81 2.40 19.81 3.16 24.16 4.16
s1423, 10th step, reachable size is 175,631 BDD nodes
α = 1 9.87 1.24 16.65 1.37 30.51 1.51 54.59 1.74
fixed α 9.87 1.24 16.65 1.34 31.97 1.47 55.60 1.69
adaptive α 10.64 1.13 19.21 1.21 35.88 1.36 64.76 1.50
adaptive α + optimizations 11.60 1.10 18.24 1.18 38.36 1.23 70.68 1.35
s5378, 7th step, reachable size is 177,105 BDD nodes
α = 1 5.37 2.13 8.96 2.72 13.83 3.43 22.84 4.39
fixed α 5.88 1.95 8.96 2.72 13.83 3.43 25.29 3.84
adaptive α 7.71 1.74 11.81 2.04 19.43 2.63 28.46 3.58
adaptive α + optimizations 8.63 1.56 12.14 2.03 19.94 2.51 30.70 3.26
BIQ, 14th step, reachable size is 203,019 BDD nodes
α = 1 8.06 1.48 13.33 1.67 24.43 1.93 41.12 2.26
fixed α 8.54 1.44 13.60 1.60 26.87 1.86 43.35 2.15
adaptive α 8.54 1.37 16.33 1.50 29.36 1.69 50.00 1.97
adaptive α + optimizations 8.79 1.27 20.11 1.21 37.65 1.24 65.50 1.38
ARB, 5th step, reachable size is 177,105 BDD nodes
α = 1 10.43 1.35 17.15 1.50 28.78 1.72 48.46 1.97
fixed α 9.99 1.31 16.15 1.45 28.77 1.63 51.76 1.83
adaptive α 10.03 1.28 17.46 1.34 32.61 1.46 58.31 1.66
adaptive α + optimizations 10.72 1.08 19.64 1.17 37.03 1.26 71.21 1.27

Table 3.2: Partitioning results measured by two parameters:
the duplication dup, which is the ratio between the overall size of the slices and the original
reachable size, and the memory reduction mem, which is the ratio between the original
reachable size and the largest slice in the partition. Slicing threshold = 100,000 BDD nodes.

31



circuit size 64 slices 128 slices 256 slices 512 slices
mem dup mem dup mem dup mem dup

s1423 511,802 38.51 1.18 76.81 1.21 140.81 1.39 230.41 1.58
s5378 275,876 54.85 0.91 97.52 1.10 146.28 1.43 195.04 2.12
BIQ 501,752 31.82 1.51 43.14 1.79 86.29 2.21 143.82 2.51
GXI 1,561,983 42.88 1.05 83.96 1.81 166.40 1.13 312.88 1.24

Table 3.3: Partitioning results measured by two parameters:
the duplication (dup), which is the ratio between the overall size of the slices and the original
reachable size, and the memory reduction (mem), which is the ratio between the original
reachable size and the largest slice in the partition. Slicing threshold = 275,000 BDD nodes.

Figure 3.10: Average values of α used by the slicing process.
Since the first 15 applications are more concerned with duplication, the resulting α is rela-
tively small. Latter applications are more concerned with memory reduction; hence, a larger
α is chosen.

32



Circuit # Balance Ave Stdev Min Max
prolog 82 0.165 0.116 0.1 0.8
s1269 102 0.194 0.183 0.1 1.0
s3330 32 0.133 0.058 0.1 0.4
s5378 329 0.142 0.103 0.1 0.4
s1423 83 0.138 0.068 0.1 0.4
BIQ 186 0.109 0.040 0.1 0.4
ARB 44 0.119 0.040 0.1 0.2

Table 3.4: Statistics for values of alpha by the memory balance algorithm for parallel
execution on 32 machines.
# Balance gives the total number of memory balance calls during execution by all processes.
Ave gives the average value of α. Stdev gives the standard deviation of the values. Min is
the minimum value and Max is the maximum value.

(a) Size of reachable states set (b) Nodes allocated (peak)

Figure 3.11: Memory utilizations by 1,2,4,8,16,32 nodes, during reachability analysis
of prolog.

33



(a) Size of reachable states set (b) Nodes allocated (peak)

Figure 3.12: Memory utilizations by 1,2,4,8,16,32 nodes, during reachability analysis
of s1269.

(a) Size of reachable states set (b) Nodes allocated (peak)

Figure 3.13: Memory utilizations by 1,2,4,8,16,32 nodes, during reachability analysis
of s3330.

34



(a) Size of reachable states set (b) Nodes allocated (peak)

Figure 3.14: Memory utilizations by 1,2,4,8,16,32 nodes, during reachability analysis
of s5378.

(a) Size of reachable states set (b) Nodes allocated (peak)

Figure 3.15: Memory utilizations by 1,2,4,8,16,32 nodes, during reachability analysis
of s1423.

35



(a) Size of reachable states set (b) Nodes allocated (peak)

Figure 3.16: Memory utilizations by 1,2,4,8,16,32 nodes, during reachability analysis
of BIQ.

(a) Size of reachable states set (b) Nodes allocated (peak)

Figure 3.17: Memory utilizations by 1,2,4,8,16,32 nodes, during reachability analysis
of ARB.

36



Circuit steps total seq. slicing compute exchange balance gc
stage non-owned

prolog 9 5,031 9 1,712 438 2,330 628 225
s1269 10 5,212 12 530 613 4,388 369 100
s3330 9 14,989 34 1,603 8,406 4,881 1,192 538
s5378 44 25,045 427 3,371 9,977 6,006 6,158 1,730
s1423 (12)14 12,039 144 2,221 1,697 1,721 6,036 1,043
BIQ (20)30 50,012 74 724 25,102 7,939 16,156 5,641
ARB (6)7 8,744 13 793 1,995 2,114 3,753 567

Table 3.5: Timing data (seconds) for parallel execution on 32 machines.
Each of the measures is the worst sample over all the machines. The steps count shows
that when overflow occurred in our system, it happened at a later stage than in the single-
machine experiment (shown in brackets). The sequential stage shows the time it took to
get to the threshold. The slicing gives the time it took a single node to compute the initial
slicing. The total parallel is the total time over all steps, including computing, exchanging
non-owned states, memory balancing, and garbage collection time. Note that the total
time is the maxima over sums and not the sum over maxima. Note also that communication
time is counted only in the exchange non-owned and balancing columns.

Circuit seq. 2 4 8 16 32
prolog 1,452 2,410 3,789 4,682 4,078 5,023
s1269 1,608 997 1,656 1,919 2,327 5,327
s3330 20,055 20,443 10,934 10,220 12,786 14,989
s5378 136,309 53,727 50,993 61,977 24,506 25,158

Table 3.6: Timing data (seconds) for parallel execution on 1,2,4,8,16,32 machines.
Each of the measures is the worst sample over all the machines. The seq. column gives the
time it took a single node to get to fixed point. The remaining of the columns show the time
it took 2,4,8,16,32 nodes to get to fixed point.

37



Chapter 4

Division

4.1 Introduction

The Division system is a generic distributed system developed for research of distributed
model checking. The Division system includes several layers, each having a simple small
interface. The system uses an external sequential model checker and can potentially benefit
from its optimizations. Division is an event-driven system. An event can be the arrival of
an object or method at a process. Division’s processes can exchange any object including
objects that have BDDs. Furthermore, this generalization adds almost no computation and
communication overhead.

Division’s prospective user is a researcher in the distributed model checking field who
wants to implement a new algorithm, and this chapter, which describes the Division system,
can be used as a reference manual. Division was designed to minimize the changes that take
place in the system when a new algorithm is implemented. The layered design of Division
restricts these changes to a specific layer at a time. The system assists in collecting the
experimental results.

4.2 System Design

This section describes each one of the layers as shown in Figure 4.1.
The lowest layer, called the infrastructure layer, provides the functionality required from

the infrastructure and hides any implementation details of the sequential model checker
in use. This layer provides infrastructures for sequential symbolic computation and for
sequential administration. It includes a simple and small interface to an external sequential
model checker (e.g., NuSMV). This allows Division to work with several external sequential
model checkers, each implementing the same interface.

The second layer, called the distributed computation infrastructure layer, provides the
functionality required for distributed computation. This layer provides interfaces for com-
munication, distributed output, transferring objects (not including BDDs), and invoking pro-
cesses based on their roles. This layer requires a distributed file system and an interface for

38



Slicing Trans. Bdd Distributed symbolic computation layer

Transmitting Distributed computation layer
Method Object CAddress Crole

Sequential admin. Symbolic Infrastructure layer
Output Config CBFn CmodelChecker

Figure 4.1: Division layers

communication.
The third layer, called the distributed symbolic computation layer, provides the function-

ality required for distributed symbolic computation. This layer supports transmitting BDDs,
slicing them, and invoking a process with a sequential model checker.

4.2.1 Infrastructure Layer

This layer provides sequential symbolic functionality and sequential administration. The in-
terface for symbolic computation includes two handler classes. One handler class represents
a Boolean function (CBFn), and another handler class represents a model checker interface
(CModelChecker). The interface for sequential administration consists of two mechanisms:
a mechanism for configuration and a mechanism for output control.

The CBFn supplies a uniform interface for a Boolean function which is independent
of the model checker in use. This interface includes the methods required for reachability
analysis: getting the initial set, set manipulations, image computation, and storing a set in or
retrieving it from a message buffer. This class assumes that there will be no calls to it until
the CModelChecker class is invoked and the sequential model checker is initialized.

The CModelChecker supplies a uniform interface independent of the model checker in
use. It has special method Init(. . .) for initializing the sequential model checker. During
initialization the sequential model checker reads the program and translates it into BDDs.
Once the initialization is completed the sequential model checker is ready for the class
CBFn calls. The CModelChecker class has methods to reorder the BDD and force garbage
collection.

The configuration mechanism includes a class called CConfig. This class uses a data
member: this data member is a set of pairs, each containing a parameter name and a default
value. Upon initialization, this class reads a configuration file and updates the parameter
values. Whenever a set of parameters is required, a new class, which inherits from CConfig,
is declared. The new class includes member functions that check the parameters and return
their values.

The output control mechanism enables the user to collect, to filter, and to present the
processes’ output. The process puts a message in a channel. The channel is connected to
a view that is presented to the user by a watch. The channel has runtime severity values,

39



and only messages with at least that severity are allowed through the channel. The user can
create multiple channels to refine the output. Views are the way the data is displayed or
stored, e.g., in a file. Watches can be used to collect and organize messages in a readable
way.

4.2.2 Distributed Computation Layer

This layer supports attaching an address to each process, invoking the processes with dif-
ferent roles, transmitting objects and transmitting methods. This layer implements the class
CAddress that defines a unique address for each process. A distributed algorithm includes
several types of processes, each having a different role. This layer includes the class CRole,
which holds a set of pairs of addresses and roles. When a process starts to run, it uses the
class CRole to get its role name, and takes action accordingly.

Transmitting objects and transmitting methods requires storing an object in a message
(serialization) and retrieving the object from it. Division uses a message buffer that has
methods for reading and writing elementary types. Each object that needs to be serialized
has a unique code, a store method, and a retrieve method. The object store’s method puts
the values of the data members in a message buffer. In order to send an object or a method,
the sender puts the object in a message buffer and attaches an object code in front. Then, it
sends this buffer to the receiver.

The mechanism used by Division to retrieve an object consists of two stages: retrieving
the object from a message, and executing a handler for this object. The object’s retrieve
method sets the data members according to the values in the message buffer. The receiver
uses the object code to select the retrieve method that creates a new object from the message.
Then the receiver executes the handler for this object code on the new object.

4.2.3 Distributed Symbolic Computation Layer

This layer supports transmitting BDDs, slicing them, and invoking a process with a sequen-
tial model checker. Division includes a mechanism for storing and retrieving BDDs, thus
enabling them to be transmitted. The slicing mechanism allows many different slicing algo-
rithms to be implemented by means of several building blocks that can be selected easily by
the user.

Division uses a special message buffer, which the sequential model checker can use to
store and retrieve BDDs. The CBFn store method uses the sequential model checker to
place the contents of its BDD in the message buffer. The CBFn retrieve method uses the
sequential model checker to get the contents of its BDD from the message buffer. In order
to send a CBFn object, the sender first uses the store method to put the object’s contents in
a buffer and then it sends the buffer. The receiver gets the buffer and uses the CBFn retrieve
method to create a new CBFn object.

The slicing mechanism includes the class CSlice, which has a set of states and a window
function. This class includes a method called split, which can be configured to use any of

40



the splitting algorithms. Split selects the best way to slice a given set and creates several
new CSlices in accordance with the splitting degree.

A process that requires a sequential model checker uses the handler class CModelChecker.
The process uses the Init(. . .) method to initialize the model checker. Then it uses the class
CRole to get its role name, and takes action accordingly.

4.3 Using Division

Division is a platform for research, and as such, it includes a mechanism for running many
configurations of the same example and producing graphical reports. The current distri-
bution uses NuSMV as the external model checker, but it can be replaced by any other
symbolic model checker that implements the same interface.

4.3.1 Installing Division

Division requires an external model checker, communication infrastructure, and a Unix op-
erating system or one of its flavors (e.g., Linux ). The external model checker should provide
the functionality required by the interface for symbolic computation. The communication
infrastructure should support MPI runs.

To install Division, download the tar file from www.cs.technion.ac.il\tamirh
and follow the instructions in the README file. In order to ensure portability, all the
sources of Division, as well as the external model checker, need to be compiled. There are
several simple examples that can be run to test the installation.

4.3.2 General Support for Measuring Performance

Division includes general support for measuring the performance of a distributed algorithm.
There are two types of measurements: those performed at one point in time are called stat-
ics and those performed over a period of time are called dynamics. Division uses a special
process called checker that collects measurements from all the processes and builds reports
summarizing them. In addition, we developed a methodology for running the same algo-
rithm on different examples, using a different configuration each time.

Each process in Division can send static data to the checker asynchronously. Each pro-
cess runs timers that can be reset, suspended, and resumed. Timers are used to collect
dynamic data. When a process resets a timer, the timer sends its value to the checker and
then clears the value. Each measure contains the name of the parameter and the measured
value.

The checker process maintains several reports. Each report is an organized collection of
measurements and contains a method called print. Print puts all the data inside a message,
which can then be placed in a file. The checker adds a measurement it received to the
appropriate report. The report then updates its output using the print method. The print

41



method may place the data in such a way that it can be used by programs like GnuPlot to
generate more sophisticated outputs.

Since the algorithm is going to be run on different examples using a different configura-
tion each time, each example has a separate directory. Each directory includes a subdirec-
tory for each of the configurations. A subdirectory includes a configuration file and, after a
run, it contains all the output reported. Thus the user can collect experimental results in an
organized way.

4.4 Future Development

Division version 1.0 was used to implement the work efficient distributed algorithm for
reachability analysis in Chapter 5. Several important features are being considered for fu-
ture versions. Communication in Division is currently based on MPI [35] version 1.0. An
important feature, not supported in this version, is the addition and removal of processes af-
ter the system has started to run. An additional feature that has not yet been implemented is a
checkpoint restart mechanism for fault tolerance. Finally, in order to speed up the distributed
algorithm, a fast splitting algorithm based on[36, 22] is required as a building block.

42



Chapter 5

A Work-Efficient Distributed Algorithm
for Reachability Analysis

5.1 Introduction

The algorithm in chapter 3 has several drawbacks for systems with very large number of
processes. First, it immediately splits to as many slices as the number of processes in the
network and does not release them until it terminates. Thus, it occupies all processes in the
network all the time, regardless of actual need. Second, slicing is often inefficient because it
partitions a relatively small BDD into many small slices. The more processes in the system,
the less efficient the slicing is, which renders the algorithm non-scalable. Third, it does not
provide a means to overcome the memory overflow that occurs during an image computation
or an exchange operation. It is well known that intermediate results of image computation
may be orders of magnitude larger than its initial and resulting BDDs. Similarly, during
an exchange operation the memory of a process may overflow as a result of the BDDs it
receives. Unfortunately, even when there are under-utilized processes, there is no way to
recover from such overflows since load balancing is available only at the end of iterations.
Finally, balancing is applied only to the sets R. However, the size of intermediate results in
image computation depends on N and is often much larger than R. Thus, load balancing
does not handle the dominant factors of memory overflow.

In this chapter we suggest a new algorithm which overcomes the drawbacks of the pre-
vious one [40]. The algorithm uses two types of processes: coordinators and workers. Each
worker can be either active or free. The algorithm works iteratively. It is initialized with
one active worker that runs a symbolic reachability algorithm, starting from the set of initial
states. During its run, workers are allocated and freed, as needed. At every iteration, each
of the active workers applies image computation and then sends those states it does not own
to their owners. Therefore, we will refer to these as a worker’s non-owned states.

Since memory overflow is likely to occur during the image computation and the ex-
change operation, our algorithm is designed to overcome these problems. For image compu-
tation we use a new BDD operation that resembles ordinary image computation, except that
it stops if the intermediate results create memory overflow. In this case, the BDD represent-

43



ing the intermediate results is partitioned into k slices. One slice is left with the overflowed
worker and the others are distributed to k−1 free colleagues. k is called the splitting degree.
It is a parameter of the new algorithm and is usually small (often k = 2). Since the BDD
is huge, the slicing is very effective. Once the BDD is split, each worker resumes the com-
putation of (its part of) the image from the point at which it stopped. However, each worker
now works on a smaller BDD. If state explosion occurs during the exchange procedure, then
R ∪ N is split in to k − 1 free colleagues. Exchanging of non-owned states then proceeds
according to the new ownership.

The new algorithm enables the slicing procedure to split according to R, N , or inter-
mediate results, depending on what caused the memory overflow. Since the chosen BDDs
are large, slicing is always very effective. Furthermore, slicing affects the performance of
the new algorithm much less than it affects the one from [42] because, in the case of a high
work load at one of the co-workers, the new algorithm can simply split again. These fea-
tures provide the new algorithm with strength and flexibility, and allow to reduce the slicing
complexity.

It may also happen that the memory requirement of a worker decreased below a certain
threshold (the size of a BDD decrease even if it represents a larger set of states). In that case,
several workers with small memory requirements are combined and all but one become free.

It is important to note that splitting occurs only “as needed”, when a worker actually has
a memory overflow. Thus the algorithm is work-efficient: it exploits to the maximum the
resources of the active workers before allocating additional ones. This efficiency allows, for
a given network, computing reachability (i.e., verifying) of larger systems. Moreover, our
algorithm can effectively exploit any network size. Thus, the larger the available network,
the larger the systems that can be verified.

We have implemented our algorithm in Division, a generic platform for the study of
distributed symbolic model checking [38]. Division requires a model checker as an external
module. We used NuSMV [23] for this purpose: a re-implementation of McMillan’s SMV
[52].

Unfortunately, using NuSMV implied that we could not directly compare the results of
[42] to the results of this work. The experiments in [42] were conducted using the high-
performance RuleBase [8] model checker that was not available to us in this work. The two
tools are not comparable as many of the RuleBase optimizations are not implemented in
NuSMV.

Our parallel testbed included 25 dual process PC machines. The nodes communicated
via a fast Ethernet connection. We conducted our experiments using four of the largest
circuits from the ISCAS89 and addendum’93 benchmarks.

With our distributed algorithm, we can compute larger models than we can compute
with a single machine using the same model checker. In all the examples the new algorithm
using the less sophisticated model checker (NuSMV) would be sufficient to compute the
same models and reach the same BFS step as in [42].

44



5.2 The Worker Algorithm

Our distributed algorithm uses a set of window functions [21, 56] to partition the state space
among all workers in the network. Each worker owns the states in one of the window
functions and computes the reachable states in this window.

Figure 5.1 presents a high-level view of the workers algorithm. Essentially, the algorithm
performs a reachability task. The algorithm starts with only one worker that owns the entire
state space, while the rest of the workers are free. If a worker runs out of memory (memory
overflow), it distributes parts of its work among a few free workers.

The worker repeatedly computes images and sends its non-owned states to their own-
ers until termination is detected (namely, a fixed-point is reached). While iterating, if the
workload of the worker becomes too small, it participates in a collect small procedure.

There are two points at which a worker may run out of memory (memory overflow):
during the image computation and during the exchange of non-owned states. Upon memory
overflow, the worker splits the states it owns into two parts: one that will be processed at
the current worker and another to be processed at another worker. As a result, the states
belonging to the new worker become non-owned and are sent out to the new worker.

function reach task()
1 Loop until termination()
2 Image() if overflow, split and use new workers
3 Exchange() if overflow, split and use new workers
4 Collect small()
5 return owned states

Figure 5.1: High–level pseudo–code for a worker

Let us describe the algorithm for the workers in greater detail, as shown in Figure 5.2.
The reachability task includes a set of reachable states R and a set of reachable states that
are not yet developed, N . For brevity, we omit in this section the worker subscript id from
Rid and Nid, as well as the window function wid. The set R is included in a window function
w. The sets R and N , as well as the window function w, may change during the algorithm’s
execution.

In the Image procedure, the worker computes the set of states that can be reached in
one step from N and stores the result in a new N . However, if during image computation
the memory overflows, the worker splits w and updates R and N accordingly, as described
below.

In the Exchange procedure the worker uses w to define the part of the state space it
“owns”. It sends out the non-owned states (N \ w) to their owners and receives its owned
states that were found by other workers.

Finally, if only a small amount of work remains, the worker joins the Collect small
procedure. The collect small procedure adds up the tasks of several workers, each of which
has only a small amount of work. This is done by joining together the parts of the state

45



space owned by those workers and assigning the unified ownership to one of them. The
others become “free” (w = ∅) and return to the pool of free workers.

In the Image procedure, the image is computed using a new BDD operation,
The Image procedure is using a new BDD operation, boundedImage(N,Max, Failed).
This operation is different from traditional image computation in that it stops the local com-
putation in case of a memory overflow (i.e., the number of BDD nodes exceeds Max).
Upon overflow, the Image procedure calls the Split procedure, which repartitions the
ownership of the worker and updates R,w and N accordingly.

In the Exchange procedure, the worker first requests and receives from the ex coor
process the up-to-date list of window functions owned by the other workers. The worker
then sends the ex coor the list of workers to whom it wishes to send non-owned states.
Then, in the Exchange loop procedure, the ex coor schedules the worker for state ex-
change with other workers.

In the Exchange loop procedure the worker is scheduled by the ex coor to exchange
non-owned states with colleagues that either found states owned by the worker or own states
that were found by the worker. The worker continues to receive exchange commands from
the ex coor until it gets a < done > command when there are no more pending exchanges.
If the worker’s memory overflows during the exchange procedure and the worker fails to
receive more owned states, it notifies the ex coor and calls the Split procedure to reduce
its ownership.

If the worker in the Collect Small procedure has enough work, it exits immediately.
Otherwise, the worker notifies the small coor about the sizes of its N and R sets. In
reply, it receives one of three commands and proceeds accordingly: < End > commands it
to exit the Collect Small; < Non owner, pclg > commands it to deliver its ownership and
owned states to a colleague worker pclg, waits for the ex coor to acknowledge the update
of its window functions (performed by pclg), and then return to the pool; < Owner, pclg >
commands it to take over the ownership and states of another worker pclg and report the new
ownership to the ex coor.

The Split procedure starts by requesting from the pool mgr k−1 new workers (which,
together with the overflowed worker, makes it a k-way split). If Split is called from Ex-
change, then the window function w of the overflowed worker is split into k new window
functions {W ′

i}, such that {W ′
i ∩ R} have approximately the same sizes. If Split is called

from Image, then two sets of k new window functions are computed, as follows. If R is big
enough, then, as in the previous case, a set of window functions {W ′

i} is computed such that
the sizes of {W ′

i ∩ R} are approximately the same. Otherwise, if R is too small, one of the
workers gets all of w while the others remain empty. In any case, the ith new window func-
tion W ′

i determines, for the ith worker, its new window wi. In addition, w is split again into
another set of window functions {Nw′

i}, this time making {Nw′
i ∩N} equal in size. After

the new window functions are computed, the overflowed worker sends the corresponding
states to its new colleagues.

The reason for computing two different partitions when Image overflows is that {Nw′
i}

attempts to balance the current image computation, while {W ′
i} attempts to balance the

memory requirement in the full reachability process. In section 5.4 we further discuss the

46



function reach task(R, w, N, method) procedure Image(R, w, N )
if method = “exchange′′ N = boundedImage(N, Max, Failed)
goto Exchange loop(R, w, N) While(Failed)

Loop forever Split(R, w, N, “Image′′)
Image(R, w, N) N = boundedImage(N, Max, Failed)
Exchange(R, w, N)
if (termination()) return R procedure Exchange loop(R, w, N )
N=N \R loop until < done > received from ex coor
R=R ∪N <pclg, wclg>=receive from ex coor
Collect small(R, w, N) send <N ∩ wclg> to pclg

if(w = ∅) <N ′>=receive from pclg

send <to pool, id> to ex coor overflow = N ′ is too large
return to pool send <overflow> to pclg

send <<status>=receive from pclg> to ex coor
procedure Exchange(R, w, N ) if (overflow) Split(R, w, N, “Exchange′′)

<{wi}>=receive from ex coor else
send <{pi}> to ex coor N=N ∪N ′

Exchange loop(R, w, N) send <“done′′> to ex coor

procedure Collect Small(R, w, N ) procedure Split(R, w, N, method)
While(| N | + | R |< Min) <{p2 . . . pk}>=receive from pool mgr
send <(| N |, | R |)> to small coor if(method = “exchange′′

<action>=receive from small coor {W ′
i}={Nw′

i}=Slice(R ∪N, k)
if acction =< End > return else
if action =< Non owner, pclg > if(| R | big enough

send <R, w, N> to pclg {W ′
i}=Slice(R, k)

R=w=N=∅ else
<“release′′>=receive from ex coor {W ′

i}=∅, i ∈ 2 . . . k; W ′
1=w

return {Nw′
i}=Slice(N, k)

if action =< Owner, pclg > ∀i ∈ 2 . . . k:
<R′, w′, N ′>=receive from pclg send <R ∩W ′

i , w ∩W ′
i , N ∩Nw′

i, method> to pi

R=R ∪R′; w=w ∪ w′; N=N ∪N ′ R=R ∩W ′
1; w=w ∩W ′

1,N=N ∩Nw′
1

send <w, pid, pclg> to ex coor send <{i ∈ 1..k | w ∩W ′
i}> to ex coor

Figure 5.2: Pseudo–code for a worker in the distributed reachability computation

47



optimization of the partitioning process.
In the case that R is ”too small” or even empty, the new colleagues are simply helping

the overflowed worker with a single image computation. Once the image is computed, all
states produced by the helpers are non-owned and will be sent to other workers that own
them. From our experience, this case is not uncommon; it occurs when the peak memory
requirement during image computation is much larger than R.

As mentioned in the introduction, an important advantage of our algorithm over previ-
ous works is that it calls the Slice function only when the memory overflows, and with k
much smaller than the total number of workers. This makes slicing much more effective in
producing even splits of the input sets of states.

We remark that the Slice procedure itself is no different from the slicing mechanisms
described in [42]. Thus, in this chapter, we use it as a black box and focus on the distributed
algorithm itself.

5.3 The Coordinators

There are three coordinators in the algorithm: The ex coor coordinator responsible for the
exchange procedure. The small coor coordinator collects as many under-utilized work-
ers as possible. The pool mgr coordinator keeps track of free workers. The coordinators
does not take part in the computation and does not hold set of states. Instead they coordinate
the workers communications. In a large distributed system they may need to be distributed
as well.

5.3.1 The ex coor

The ex coor coordinator holds the current set of window functions and coordinates the
exchange of non-owned states between workers. In order to hold a consistent view of the
current set of window functions, the ex coor is notified immediately on every split or
merge of windows. It takes the following actions on incoming event notifications:

• When a worker requests an exchange it first registers at the ex coor. The ex coor
replies with the up-to-date set of window functions and receives in return the set of
colleagues the worker wants to communicate with.

• When a worker splits, the ex coor updates the set of window functions. If the
splitting worker is already registered for exchange states, the ex coor notifies all
the workers that have asked to send it states that they should send the states to the new
set of workers, according to the new set of window functions.

• When workers perform Collect Small and join their ownerships, the ex coor up-
dates the set of window functions. If there are workers registered for exchanging
states with the joining workers, the ex coor redirects them to the new owner. When
the ex coor completes to update the set of window functions it sends < release >
command to the worker that becomes non-owner.

48



• When a worker completes the exchange of non-owned states with another worker, the
coordinator marks it as available for another round of exchange states.

• When a worker asks to re-launch an exchange because the colleague overflowed and
had to split while they were interacting, the ex coor adds this request to the list of
exchange requests.

5.3.2 The small coor

The small coor coordinator collaborates with ex coor to prevent deadlocks and to col-
lect as many under-utilized workers as possible. The small coor receives registration
requests from workers that completed the exchange phase and are left with a very low load
(very small R ∪ N ). The first registrant is blocked until more of them arrive. When there
are several registrants the small coor instructs them to merge.

5.3.3 The pool mgr

The pool mgr coordinator keeps track of free workers. During initialization, the pool mgr
marks all but one worker as free. When a worker invokes the Split procedure, it sends a
request to the pool mgr for k − 1 free workers (where k is the splitting degree). The
pool mgr replies with a list of k − 1 worker ids and removes them from the free list.
Throughout the algorithm, when a worker becomes free, i.e., when its ownership becomes
empty, it returns to the pool mgr and is added to the free list for later assignments.

If at the time free workers are requested from the pool mgr, the free list happens to be
empty or is shorter than k− 1, the pool mgr announces a “worker overflow” and stops the
execution globally.

5.4 Optimizing the Splitting in Image Computation Over-
flow

Our algorithm is based on the assumption that in case of a memory overflow during image
computation, splitting the window of the overflowing worker enables the completion of the
computation using more workers. The current splitting method strives to effectively slice the
set N on which the image is computed (see Chapter ??). However, since the computation is
symbolic, reducing the size of the subsets does not guarantee a corresponding reduction in
the image size. Furthermore, it guarantees even less for the size of the intermediate results
that commonly dictate the peak memory requirement during the image computation. Our
experience shows that even when the size of the parts is the same, the size of the peaks may
differ greatly. Thus, while one of the slices may have no problem in completing the image
computation, another may overflow again.

Another problem with the current splitting method is the time penalty for memory over-
flow. When the image computation overflows and the set N is split, the work that was

49



function ex coor
1 Ws[0]=full; Comm list={}
2 Loop-forever
3 if ∃pi, pj s.t. (pi, pj) ∈ Comm list ∧ pi ready ∧pj ready
4 mark pi busy; send <pi,Ws[pi]> to pj

5 mark pj busy; send <pj,Ws[pj]> to pi

6 <cmd>=receive from any worker
7 if cmd =< “done′′, pid > mark pid ready
8 if cmd =< “resend′′, pid, pcolleague > add (pid, pcolleague) to Comm list
9 if cmd =< “exchange′′, pid >

10 send <Ws> to pid

11 <comm>=receive from pid

12 add comm to Comm list
13 if cmd =< “collect− small′′, pid, wid, pi >
14 Ws[pid]=wid

15 ∀pj s.t. (pj, pi) ∈ Comm list
16 replace (pj, pi) with (pj, pid) in Comm list
17 remove pid from list of active workers
18 send <dismissed> to pi

19 if cmd =< “split′′, pid, NewWs={(pi, wi)} >
20 ∀(pi, wi) ∈ NewWs: Ws[pi]=wi

21 ∀pj, pi s.t. (pj, pid) ∈ Comm list ∧ (pi, wi) ∈ NewWs add (pj, pi) to Comm list
22 if pid already registered
23 ∀(pi, wi) ∈ NewWs register pi; mark pi as ready
24 if all {pi} already registered
25 ∀pi s.t. (ready pi) ∧ (not pi ∈ Comm list): send <“done′′> to pi

26 if all {pi} registered and Comm list is empty
27 allow registrations from next image step

Figure 5.3: Pseudo–code for the ex coor.
Terminology: An active worker is such that is not in the pool of free workers. An active
worker that completes current image computation registers at the ex coor for exchanges
of non-owned states. From the point of registration and until there are no more states to
exchange, the worker is either busy in sending and receiving states to a certain colleague, or
it is ready waiting for a colleague to register or to become ready.

50



invested in the current image step is lost, and the work is repeated all over again. In fact,
in the case of several subsequent memory overflows, the work is repeated again and again.
Notice that the ratio between the peak memory requirement in the image computation and
the set N is commonly two or three orders of magnitude. Thus, memory overflow com-
monly occurs when a big part of the image computation has already been done locally, and
all this work must be repeated. Since the image computation takes most of the time in our
distributed algorithm, the repeated work slows down the algorithm substantially.

The solution to the above two problems is simply to split the intermediate results and
not the set N . After the splitting, the parts of the intermediate results are distributed among
the new workers, so computing the image for each of them continues from the point of the
overflow. In this way there is no time penalty for overflow except for the splitting computa-
tion (which is of somewhat higher complexity than before). Of course, communicating the
intermediate results requires a much higher bandwidth. However, network bandwidth and
communication delay turn out to be minor factors as compared with the time spent in the
image computation, even with our standard Fast Ethernet.

In terms of memory requirements this solution has two advantages. First, splitting is
applied to a much larger set, which makes it a lot easier to split effectively. Second, splitting
is applied much closer to the peak, which makes it more efficient in reducing the peak
memory requirements of the resulting parts.

The optimized algorithm uses a partitioned transition relation. The full transition relation
is a conjunction of all partitions:

T (V, V ′) = T1(V, V ′) ∧ T2(V, V ′) ∧ . . . ∧ Tn(V, V ′),

and an image computation thus becomes

S ′(V ′) = ∃V [S(V ) ∧ T1(V, V ′) ∧ T2(V, V ′) ∧ . . . ∧ Tn(V, V ′)].

The technique for image computation suggested by Burch et al. [16] is to iteratively con-
joining the partitions, and to quantify-out variables as soon as further steps do not depend
on them. The order in which Ti(V, V ′) are conjoined is very important to the efficiency of
this technique [37]. For the sake of simplicity, let us assume the order is given such that T1

is the first to conjunct, then T2, until Tn. Let Di be the set of variables on which Ti(V, V ′)
depend. Let Ei = Di − ⋃n

m=i+1 Dm. A symbolic step is carried out iteratively as follows:

S1(V, V ′) = ∃E1[T1(V, V ′) ∧ S(V )]

S2(V, V ′) = ∃E2[T2(V, V ′) ∧ S1(V, V ′)]
...

S ′(V ′) = ∃En[Tn(V, V ′) ∧ Sn−1(V, V ′)].

If overflow occurs during step 0 < j < n, we look for a set of window functions w1 . . . wk

such that
∨k

i=1 wi = 1. The ith worker will get Sj(V, V ′)∧wi. We can now rewrite the j +1
step as follows:

Sj+1(V, V ′) = ∃Ej+1[
k∨

i=1

Tj+1(V, V ′) ∧ Sj(V, V ′) ∧ wi].

51



1

2

3

4

5

6

7

8

9

10

1 2 3 4 5 6 7 8 9 10

N
um

be
r 

of
 w

or
ki

ng
 p

ro
ce

ss
es

BFS steps

Number of Processes in each BFS step

k = 2
k = 3
k = 4
k = 8

(a) with no optimization

1

2

3

4

5

6

7

8

9

10

1 2 3 4 5 6 7 8 9 10

N
um

be
r 

of
 w

or
ki

ng
 p

ro
ce

ss
es

BFS steps

Number of Processes in each BFS step

k = 2
k = 3
k = 4
k = 8

(b) optimized

Figure 5.4: Number of workers required in each BFS step of s1269. Overflow is
declared for worker memory utilization exceeding 6M BDD nodes.

Since the existential quantification is distributive over disjunction, the above expression
is equal to:

Sj+1(V, V ′) =
k∨

i=1

∃Ej+1[Tj+1(V, V ′) ∧ Sj(V, V ′) ∧ wi].

Therefore, the disjunction of the j + 1th step assigned to each worker is equal to the step
done without splitting.

The algorithm uses a new BDD operation: BoundInc(S(V, V ′), {Ti(V, V ′)},Max),
where S(V, V ′) is the function from which the image computation continues, {Ti(V, V ′)}
is the set of partitions that were not yet used, and Max is the threshold for overflow during
image computation. In the beginning of the algorithm, S(V, V ′) is the set of states whose
image is to be computed in this step, and {Ti(V, V ′)} are all the partitions. If the algorithm
overflows, BoundInc returns in S(V, V ′) the last intermediate result computed prior to
the overflow, and in {Ti(V, V ′)} the rest of the partitions that have not been used. If the
algorithm completes the image computation, S(V, V ′) equals the next set of states, and an
empty list of partitions is returned.

Figure 5.4 illustrates the benefit of using the optimized algorithm for the circuit s1269.
Figure 5.4(a) provides the number of workers required in each step for various splitting
degrees. For instance, for splitting degree k = 2, six workers are needed in order to com-
plete Step 3. Figure 5.4(b) shows that this step requires only four workers when using the
optimization described in this section. In all other steps and splitting degrees the number
of workers required by the optimized algorithm was always less than or equal to the non-
optimized version.

5.5 Experimental Results

Our parallel testbed included 25 PC machines, each consisting of dual 1.7GHz Pentium 4
processors with 1GB memory. The communication between the nodes consisted of a Fast

52



Circuit #vars peak fixed point
size step time steps

prolog 117 2.6M 5 2,431 9
s1269 55 16M 5 5,053 10
s3330 172 16M > Ov(3) - Ov(3)
s1423 88 16M > Ov(13) - Ov(13)

Table 5.1: Benchmark suite characteristics.
The peak is the maximal memory requirement at any point during an image step. Fixed
point is the number of image steps and the time (seconds) it takes to get to the fixed point.
Ov(m) denotes memory overflow at step m.

 0

 5

 10

 15

 20

 25

 30

 35

 1  2  3  4  5  6  7  8  9

N
um

be
r 

of
 w

or
ki

ng
 p

ro
ce

ss
es

BFS steps

k = 2
k = 4
k = 8

k = 16
k = 32

(a) prolog Max = 1M nodes allo-
cated

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 1  2  3  4  5  6  7  8  9

N
um

be
r 

of
 w

or
ki

ng
 p

ro
ce

ss
es

BFS steps

W-overflow

k = 2
k = 4

k = 32

(b) S3330 Max = 7M nodes allo-
cated

Figure 5.5: Number of workers in each BFS step.
Overflow is declared for worker memory utilization exceeding Max BDD nodes.

W-overflow halts the computation when more than 60 workers are required.

Ethernet. We conducted our experiments using four of the largest circuits from the ISCAS89
benchmarks. The characteristics of the circuits are given in Table 5.1.

5.5.1 Number of Workers for Reachability Analysis

Since the memory required by each worker is bounded by a given threshold, we only care
about the number of active workers at each iteration. Figures 5.5(a), 5.5(b), 5.6 and 5.4
give the number of workers required at any step of the analysis, and the threshold that was
used. The figures prove that using a lower splitting degree is more work efficient, namely,
the computation can be carried using fewer resources with a lower splitting degree. This is
explained by the fact that when the splitting degree is high, new workers may join in even
when the computation can do without them: the computation proceeds with workers that
may be under-utilized (but not sufficiently so to be collected by the Collect Small process).

In steps 1, 2, 3 in Figure 5.5(a) only one worker is needed. In step 4, this worker needs
help in order to complete the image computation. Dividing the work into two is sufficient,

53



 0

 10

 20

 30

 40

 50

 60

 2  4  6  8  10  12  14  16

Nu
mb

er 
of 

wo
rki

ng
 pr

oc
es

se
s

BFS steps

W-overflow

W-overflow

W-overflow

W-overflow
W-overflow

k = 2
k = 4
k = 8

k = 16
k = 32

Figure 5.6: Number of workers in each BFS step of s1423.
Overflow is declared for worker memory utilization exceeding 6M BDD nodes. W-
overflow is where more than 60 workers required.

but when the splitting degree is higher we occupy more workers without actually needing
them. In steps 8 and 9 the image computation requires less memory and the size of the sets
R and N requires less workers. Indeed the number of workers decreases as a result of the
Collect Small procedure.

Figure 5.5(b) shows that the distributed system can complete the reachability analysis,
whereas a single machine overflows.

5.5.2 Timing and Communication

We have performed some initial studies regarding the timing and breakdown of running our
distributed system. The results show several very clear findings and trends that we now
briefly discuss.

First, communication overhead is minor. Our experiments show that the time to reach
local overflow is much higher than the time required to dump the contents of memory into
the network. Although this finding should be re-evaluated when our system is further op-
timized (see below), it seems strong enough to sustain. If the system scales up to include
more workers, the communication time might grow as a result of more non-owned states
that are found. Nevertheless, we expect the computation time to remain dominant because
the communication volume for every worker at any split or exchange operation is bounded
by the size of the RAM of that worker. We remark that technology trends predict much
faster commodity networks (even when compared to the larger expected RAMs) very soon.

Second, splitting is a major element in the computation. It can count up to dozens of
percentage points of the computation time, and these numbers grow rapidly when the system
scales up. Others have previously addressed the splitting complexity [22]; we intend to
speed up the splitting module in our future work.

Third, the fact that the reachability computation is synchronized in a step-by-step fashion
has a major impact on the computation time. The problem is that at the end of a step
all computing workers wait for the slowest one, who may be slicing and re-slicing several
times during the step (remember that slicing is slow!). However, despite its synchronized

54



operation, the new algorithm is very flexible. We believe that it can become the basis for a
truly non-synchronized variant.

One interesting phenomena that was not masked by the inefficiencies above is a tradeoff
between being work efficient and obtaining speedups. While the best hardware utilization is
achieved with splitting degree of 2, the fastest computation times are obtained using some-
what higher splitting degrees (e.g., k = 8 for Prolog). Thus, a splitting degree higher that 2
may become instrumental in cases that the speedup is more important than RAM utilization.

55



Chapter 6

Scalable Distributed On-the-Fly
Symbolic Model Checking

6.1 Introduction

A model checking algorithm takes a model and a specification written as a temporal formula.
If the model satisfies the formula, the algorithm returns ‘true’;otherwise it returns ‘false’ and
provides a counterexample demonstrating why the model does not satisfy the formula. The
counterexample feature is vital to the debugging of the system.

A powerful approach to reducing the memory requirements of model checking is on-
the-fly model checking, in which parts of the model are developed whenever the need arises.
The check is usually guided by an automaton that monitors the behavior of the system in
order to detect errors and stop the evaluation as soon as an error is found. Several on-the-fly
algorithms [32, 57, 12] for CTL* use a depth-first search (DFS) traversal of the state space.
Since BDD-based methods work efficiently on sets of states, we use an on-the-fly algorithm
suggested by Beer et al. [9]. This algorithm uses breadth-first search (BFS) for traversal
of the state space. It model checks specifications given as regular expressions describing
“bad” (unwanted) behaviors. Note the difference from regular model checking in which the
specification formula describes the good behaviors. In this method, a regular expression is
translated into an automaton, using the standard algorithm [43]. The acceptance state of the
automaton indicates an error state in the model for the given specification. The automaton
and the model are then multiplied. Finally, a BFS is used for reachability analysis. The BFS
stops as soon as an error state is detected. Industrial temporal languages such as Sugar [7]
and ForSpec [4] employ regular expressions. See Section 6.5 for a detailed description of
model checking regular expressions on-the-fly.

In this chapter we combine the approaches of [9] and Chapter 3, obtaining a distributed
symbolic on-the-fly model checking method that can handle very large designs [10]. Our
method includes a distributed algorithm that employs several processes for counterexample
generation: the entire set of states is never held in a single process.

Producing the counterexample requires additional storage of sets of states during reach-
ability analysis, one set for each step. In the distributed algorithm each process stores only

56



part of each set. In order to balance the parts of the sets across the processes, we apply a
slicing function that defines for each process the parts of the set it should store. The parts
a process stores may belong to different parts of the state space. This makes the distributed
counterexample generation somewhat tricky: we need to track the steps backwards while
switching different slices and maintaining the memory requirement at a low level.

We implemented our method inside the high-performance verification tool RuleBase [8],
developed by the IBM Haifa Research Lab. We used a distributed, non-dedicated, slow net-
work system of 32 standard workstations. The performance results show that our method
scales well. Large examples that could not fit into the memory of a single machine ter-
minate using the parallel system. The parallel system appears to be balanced with respect
to memory utilization. Furthermore, communication over the network does not become a
bottleneck.

We were also able to show that the distributed algorithm is more effective for on-the-fly
model checking that includes counterexample generation than it is for reachability analysis.
There are two main reasons for this. First, the counterexample generation procedure requires
that sets of states be saved, and this consumes more space. The parallel system, however,
enables the effective splitting and balancing of this additional space. This enhances scalabil-
ity. Second, the parallel system, even when failing to complete reachability to the fixpoint,
is usually able to proceed for several steps beyond the point reached by a single machine.
This improves the chances that our on-the-fly model checking will find an error state during
these steps.

6.2 The Sequential On-the-Fly Algorithm

In this section we describe the main characteristics of the sequential on-the-fly model check-
ing algorithm, for safety properties, presented in [9]. This algorithm is the basis for our
distributed method.

Given a system model M and a regular expression ϕ describing “bad” behavior, the
corresponding automaton A is constructed and combined with M . A monitors the behavior
of M . If it detects an erroneous behavior, an error flag is set. A then enters a special state
and stays there forever. We call a state that satisfies the error flag an error state. Thus, M
does not contains any bad behaviors that satisfies ϕ if and only if the combination of M and
A (that is, M × A) does not reach an error state. In order to check that M satisfies ϕ, we
run a reachability analysis on M ×A that constantly checks whether an error state has been
encountered. The algorithm traverses the (combined) model using a breadth–first search
(BFS). Starting from the set of initial states, it constructs a doughnut at each iteration. This
doughnut is the set of new states found in that iteration. The doughnuts are kept for later
use in the generation of the counterexample. Keeping the doughnuts increases the space
requirements of this algorithm, and they exceed those of (pure) reachability analysis.

The model checking algorithm terminates successfully if all reachable states have been
traversed and no error state has been found. If at any stage an error state is encountered, the
model checking algorithm stops and the generation of a counterexample begins.

57



A counterexample is a sequence of states that starts with an initial state and ends with
an error state. It is generated backwards. The algorithm begins with an error state and
selects a state from among its predecessors. Then the generation continues, following the
doughnuts that were produced and stored by the reachability analysis algorithm. All these
selected states are saved in the order in which they were found. Counterexample generation
terminates when the doughnut of the initial states is reached. At this point the selected states
comprise a complete counterexample sequence.

Figure 6.1 presents the sequential algorithm for on-the-fly model checking, including
the counterexample generation procedure. The algorithm differs from simple BFS in three
ways: it evaluates the formula while computing the set of reachable states; it saves the
sets of states for the counterexample generation; if it reaches an error state, it constructs
a counterexample. The counterexample generation procedure is based on the one in [24].
Lines 1–9 describe the model checking phase. At each iteration i, the set of new states that
have not yet been reached is kept in doughnut Si.

The algorithm terminates if either no new states are found (new = ∅), in which case
it announces success, or if an error state is found (new ∩ error �= ∅), in which case it
announces failure.

In lines 16–22, the counterexample Ce0, . . . Cek is generated. The counterexample is of
length k + 1 (line 14), since an error state was first found in the k-th iteration. We choose
Cek ∈ Sk from among the error states reached. Having already chosen a state Cei ∈ Si, we
compute the set of bad states by finding the set of predecessors for Cei: pred(Cei). We
then intersect it with the doughnut Si−1 (line 19). Since each state in Si is a successor of
some state in Si−1, the set bad will not be empty. We now choose Cei−1 from the set of
bad states. The generation of the counterexample continues until Ce0 is chosen.

6.3 Distributed Algorithm

The distributed algorithm for on-the-fly model checking consists of two phases:

• The model checking phase

• The counterexample generation phase

6.3.1 Distributed Model Checking

In the distributed algorithm, an initial sequential stage precedes the distributed stage. The
reachable states are first computed on a single process. When a certain memory requirement
threshold is reached, the state space is partitioned into k slices, whose union is the whole
state space. This partition, or slicing, should require less memory. Furthermore, the subsets
should be disjoint. Disjoint subsets will allow us to avoid duplication of work during reach-
ability analysis. The slicing algorithm [41, 55, 22] selects a variable and uses it to slice a
set into two disjoint subsets. Using the slicing algorithm k times results in k subsets that are
distributed to k processes. This ends the sequential stage.

58



1 reachable = new = initialStates
2 i = 0
3 while ((new �= ∅)&&(new ∩ error = ∅)) {
4 Si = new
5 i = i+1
6 next = nextStateImage(new)
7 new = next \ reachable
8 reachable = reachable ∪ next
9 }
10 if (new = ∅) {
11 print ‘‘formula is true in the model’’
12 return
13 }
14 k = i
15 print ‘‘formula is false in the model’’
16 bad = new ∩ error
17 while (i>=0) {
18 Cei = choose one state from bad
19 if (i>0) bad=pred(Cei)∩Si−1

20 i = i-1
21 }
22 print ‘‘counterexample is:’’ Ce0 · · ·Cek

Figure 6.1: Sequential algorithm for on-the-fly model checking, including counterex-
ample generation

59



The distributed stage begins with each process being informed of the slice it owns, and
of the slices owned by each of the other processes (which are non-owned by this process).
The process receives its own slice and proceeds to compute the reachable states for that slice
in iterative BFS steps. At each such step, the set of new states is kept in a doughnut.

Each process computes the set next of states that are reached directly from the states in
its new set. The next set contains owned as well as non-owned states. Each process splits
its next set according to the k slices and sends the non-owned states to their corresponding
owners. At the same time, the process receives the set of states it owns from the other
processes.

The model checking phase for one process Pj is given in lines 1–13 of Figure 6.2. Lines
1–3 describe the setup stage where the process receives the slice it owns and the initial sets
of states it needs to compute from. Lines 5–17 describe the iterative computation.

Distributed termination detection (line 5) is used to determine when this phase should
end. All processes should end at this phase if one of two conditions holds: none of the
processes found a new state or one of them found an error state. In the first case, the speci-
fication has been proven correct and the algorithm terminates. In the second case the speci-
fication is false, and all processes proceed to the counterexample generation phase. In order
to distinguish between the two cases, the termination detection procedure is used (line 14)
with the error parameter equal 0.

Several points distinguish distributed model checking from sequential model checking.
When distributed model checking is used,

• the set next is modified (lines 9–10) through communication with the other processes
and is restricted to include only owned states;

• distributed termination detection is applied;

• for each doughnut i, each process Pj stores the slice of the doughnut S(i,j) it owns.

Our distributed algorithm is made particularly effective by the memory balancing pro-
cedure, which maintains approximately equal memory requirements across the processes
during the entire computation. This is accomplished by pairing large slices with small ones
and reslicing their union in a balanced way. As a result, a process owns (and stores) dif-
ferent slices of the doughnuts in different iterations. Therefore, in some iteration, a process
may own a state that does not have any predecessors stored in the slices of the doughnuts it
owned previously. The distributed generation of a (correct) counterexample is nonetheless
guaranteed by the following property, which is true by construction:

Si =
⋃
j

S(i,j), (6.1)

where Si is the doughnut computed by the sequential algorithm at iteration i.

6.3.2 Distributed Counterexample Generation

To generate a counterexample, our algorithm uses the doughnut slices that are stored in the
memory of the processes. The distributed counterexample generation algorithm consists of

60



local phases and coordination phases. In the local phase, all processes run in parallel. Each
process takes the counterexample generated so far, denoted by the suffix Cei . . .Cek. It
then executes the sequential algorithm for counterexample generation, adding the additional
states Cei−1,Cei−2,. . . until it can proceed no further. A process may get stuck after pro-
ducing a counterexample with suffix Cei . . .Cek if it cannot find a predecessor for Cei in
its own slice of the (i-1)th doughnut. However, by property (6.1) and by the fact that each
element in Si has a predecessor in Si−1, there must be a process that has such a predecessor
for Cei.

In the coordination phase, the process that produces the largest suffix is selected and
used to reinitiate the local phase in all processes. If this suffix is complete (i.e., it contains all
states Ce0. . .Cek), the process simply prints its counterexample and all processes terminate.
Otherwise, the process broadcasts its suffix, together with its iteration number, to all other
processes. Each process updates its data accordingly and reinitiates the local phase from
that point. The algorithm continues until a complete suffix is found.

Lines 18–35 of Figure 6.2 describe the algorithm. Lines 22–26 contain the local phase,
while lines 27–35 contain the coordination phase. The algorithm uses the following three
variables:

• myId, which is the index of the process (myId=j for process Pj);

• minIte, the smallest iteration number, chosen at the start of the coordination phase;

• minProc, the smallest index among the processes with the smallest iteration number.

6.3.3 Reducing Peak Memory Requirement

In order to generate the counterexample, the sets bad = pred(Cei)∩S(i,j) must be com-
puted. This is done by intersecting the doughnut slice S(i,j) with the set of predecessors
of the state Cei (lines 24, 35). The BDDs for Cei and bad are usually small. However,
a very large peak in memory use may be caused by intermediate BDDs obtained during
the computation of bad. This phenomenon can be viewed in example GXI (Figure 6.7),
where a significant increase in memory use causes the parallel system to overflow during
the computation of the counterexample.

Changing the order of operations can, however, produce smaller intermediate BDDs.
This, in turn, reduces the peak memory requirement. In the new order, we first restrict the
transition relation of our model to the doughnut slice S(i,j) and only then use it to compute
pred(Cei). Since our implementation is based on the partitioned transition relation [16],
we actually restrict each one of the partitions to the doughnut slice.

To increase precision, we define the operations we perform by means of Boolean func-
tions (represented as BDDs). Assume that our model consists of a set of Boolean variables
V . The Boolean function TR(V, V ′) represents the transition relation of the model, where
V and V ′ represent the current and next state, respectively.

61



1 mySlice = receive(fromSingle)
2 reachable = receive(fromSingle)
3 new = receive(fromSingle)
4 i = 0
5 while (Termination(new,error)==0) {
6 S(i,j) = new
7 i = i+1
8 next = nextStateImage(new)
9 next = sendReceiveAll(next)
10 next = next ∩ mySlice
11 new = next \ reachable
12 reachable = reachable ∪ next
13 }
14 if (Termination(new,0)==1) {
15 print ‘‘formula is true in the model’’
16 return
17 }
18 k = i
19 print ‘‘formula is false in the model’’
20 bad = new ∩ error
21 while (i>=0) {
22 while ((i>=0) &&(bad �= ∅)) {
23 Cei = choose one state from bad
24 if (i>0) bad=pred(Cei)∩ S(i−1,j)

25 i = i-1
26 }
27 (minIte,minProc)=MinIteFromAll(i,myId)
28 i = minIte
29 if (i<0) {
30 if (myId == minProc)
31 print ‘‘counterexample is:’’ Ce0 · · ·Cek

32 return
33 }
34 Cei+1 · · ·Cek=broadcast(minProc,Cei+1 · · ·Cek)
35 bad=pred(Cei+1)∩ S(i,j)

}

Figure 6.2: Process Pj in the distributed algorithm for on-the-fly model checking,
including the generation of a counterexample.

62



Let Cei(V ) be the Boolean function for the singleton set consisting of the state Cei, and
let S(i,j)(V ) be the Boolean function for the slice S(i,j). Then the computation of bad at the
j’th process can be described by the expression

∃V ′ [ TR(V, V ′) ∧ Cei(V
′) ] ∧ S(i,j)(V ). (6.2)

Our transition relation consists of partitions PTRn(V, V ′) such that TR(V, V ′) =
∧

n PTRn(V, V ′).
Consequently, the previous expression can be rewritten as

∃V ′ [
∧
n

PTRn(V, V ′) ∧ Cei(V
′) ] ∧ S(i,j)(V ). (6.3)

Since S(i,j)(V ) does not depend on V ′, it can be moved into the scope of the quantifier,
resulting in an equivalent expression:

∃V ′[
∧
n

(
PTRn(V, V ′) ∧ S(i,j)(V )

)
∧ Cei(V

′)]. (6.4)

This expression describes the computation at the j’th process. First, each partition of the
transition relation is restricted to the doughnut slice S(i,j), and then the predecessors of Cei

are computed.
This computation can be made more efficient by using the simplify-assuming tech-

nique [31]. Let f : E −→ {0, 1} be a Boolean function over some domain E. If we
are concerned only with the value of f over some subset D of E, then we may reduce the
BDD size for f . This can be done by finding another function f ′ which agrees with f on D
and can have any value on elements not in D.

Formally, given a function f : E −→ {0, 1} and an assumption D ⊆ E, we say that a
function f ′ : E −→ {0, 1} simplifies f assuming D if it satisfies

f ′ ∧D = f ∧D. (6.5)

We denote such an f ′ by f |D.
The algorithm given by [31] guarantees that the BDD size of f ′ is equal to or smaller than

the BDD size of f . We use this technique to reduce the size of each partition in the transition
relation. The reduced partition sizes decrease the memory requirement during the compu-
tation of the expression in (6.4). Instead of intersecting each PTRn(V, V ′) with S(i,j)(V ),
we simplify PTRn(V, V ′) assuming S(i,j)(V ) and intersect the result with S(i,j)(V ). Since
simplify-assuming satisfies (6.5), the expression in (6.4) is equivalent to

∃V ′[
∧
n

(
PTRn(V, V ′)|S(i,j)(V ) ∧ S(i,j)(V )

)
∧ Cei(V

′)]. (6.6)

Since S(i,j)(V ) does not depend on V ′, it can be moved outside of the scope of the
quantifier, resulting in an equivalent expression:

∃V ′[
∧
n

(
PTRn(V, V ′)|S(i,j)(V )

)
∧ Cei(V

′)] ∧ S(i,j)(V ). (6.7)

63



The improvement described above uses precise information in order to restrict the par-
titions of the transition relation. This requires computing a different restriction for each
doughnut in each step of the counterexample generation. We suggest a different method of
restriction, which is computed only once for each process. Process Pj simplifies PTRn(V, V ′)
assuming Uj , where Uj = ∪iS(i,j) is the union of all the doughnut slices owned by Pj . Since
S(i,j) ⊆ Uj , the expression in (6.4) is equivalent to

∃V ′[
∧
n

(
PTRn(V, V ′)|Uj(V )

)
∧ Cei(V

′)] ∧ S(i,j)(V ). (6.8)

Note that PTRn(V, V ′)|Uj(V ) is computed only once at the beginning of the counterexample
generation process.

We next suggest an orthogonal improvement that exploits the fact that we compute the
set of predecessors of a singleton (Cei(V

′), which contains only one state, Cei). We re-
place the intersection of PTRn(V, V ′) and Cei(V

′) by substituting the state Cei for V ′ in
PTRn(V, V ′). The existential quantifier is then redundant and can be removed. Modified
thus, equation (6.3) can first be rewritten as

∃V ′ [
∧
n

( PTRn(V,Cei) ) ] ∧ S(i,j)(V ). (6.9)

The existential quantifier is then redundant and can be removed to obtain
∧
n

( PTRn(V,Cei) ) ∧ S(i,j)(V ). (6.10)

Combining the above optimization with simplify-assuming, we can compute (6.3) as

S(i,j)(V ) ∧∧
n

(
PTRn(V,Cei)|Uj(V )

)
. (6.11)

Again, PTRn(V, V ′)|Uj(V ) is computed only once. At step i of the counterexample gener-
ation procedure, Pj assigns Cei to each of PTRn(V, V ′)|Uj(V ) and then intersects S(i,j)(V )
with them.

Experimental results show that all of the suggested optimizations significantly reduce
memory requirements. Compare, for instance, the results in Figure 6.7, where example GXI
is run without any optimization, to the results in Figure 6.8 where it runs with the optimiza-
tion in expression 6.10. On the other hand, we found the optimization in expression 6.11 to
have no significant advantage over the one in expression 6.10.

6.4 Experimental Results

In this section we report on the performance evaluation of our approach. We implemented
our method inside the high-performance verification tool RuleBase [8], which is based on
McMillan’s SMV [52] and was developed by the IBM Haifa Research lab. Our parallel test-
bed includes 32 RS6000 machines, each consisting of a 225 MHz PowerPC processor and

64



512 MB memory. The communication between the nodes consists of a 100 Megabit/second
token ring.

We selected large circuits to show that the parallel system can find errors that the sequen-
tial algorithm cannot find. This is because the sequential algorithm uses more memory than
is available in a single machine. We experimented with two of the largest circuits we found
in the benchmarks: ISCAS89 +addendum’93. In order to test the counterexample gener-
ation, we used common properties that are often tested when verifying hardware designs.
We also used two large examples, BIQ and GXI, which are components of IBM’s Giga-
hertz processor. We used the original properties for these examples. These properties are
explained in Table 6.1. We mapped properties to automata using the IBM implementation
as described in [9]. Characteristics of the circuits and the automata are given in Table 6.2.

6.4.1 Space Reduction Using the Distributed Algorithm

This section presents the results for on-the-fly model checking of the benchmark suite using
our 32 machine test-bed. Figures 6.3 to 6.9 summarize memory utilization, giving the peak
memory consumption for every step. Each of the graphs compares the memory utilization
in the single-machine execution to that of the parallel system. For the parallel system we
give the highest (peak) memory utilization in any of the machines.

We give examples for four models and six properties. Two properties are checked for the
BIQ and S1423 models: one that overflows on a single machine, and another that completes
the computation even when only a single machine is used.

As Figure 6.3 shows, an overflow occurs at cycle 15 while the algorithm searches for an
error state in BIQ using a single machine. The overflow occurs because the counterexample
generation (CE) phase requires that the doughnuts be saved, and this consumes a lot of
memory. In contrast, the parallel algorithm does not overflow. It finds the error state in BIQ
at cycle 17.

At the cycle where the error state is found, we see a drop in memory utilization. This
drop is due to the fact that the CE phase will begin in the next step, making state exchange
and load balancing unnecessary. State exchange and load balancing may contribute signif-
icantly to the observed peak in memory requirement. This effect is particularly strong in
BIQ spec1, s1423 spec1, and s5378 spec1 (Figure 6.5, Figure 6.3 and Figure 6.9).

Figure 6.4 shows another drop in memory utilization, at the first counterexample cy-
cle. This drop, which is characteristic of many examples, is caused by two factors. First,
the transition relation computations during a backward step are usually simpler than those
performed during a forward step, and they require less memory. This is due to the relative
simplicity of the relation consisting of a single origin (the last state in the CE found so far).
Second, the set of reachable states can be released since it is not needed for counterexample
generation.

The parallel algorithm finds an error state in cycle 14 of S1423, as depicted in Figure 6.5.
In this case, finding the error state on-the-fly is essential because, even with our parallel
system, we were not able to complete reachability analysis on this example.

65



Figure 6.7 demonstrates why our optimizations are necessary. In this example, an over-
flow occurs during a step backwards from a single state using the original transition relation.
The overflow occurs because we are using the partitioned transition relation, in which back-
ward steps are much harder to perform than forward. We can avoid this problem by using
substitution of the singleton (as describe in Section 6.3.3) instead of quantification over the
partitioned transition relation. Figure 6.8 demonstrates the effect of this method on our
example.

6.4.2 Timing and Communication in the Distributed Algorithm

Table 6.3 gives the timing breakdown for on-the-fly model checking on our benchmark
suite. The parallel reachability stage takes most of the computation time. As shown in [41],
communication does not become a bottleneck at this stage.

6.5 Regular Expressions in Symbolic Model Checking

When specifying a formula in temporal logic, one describes what should hold in the model.
Another way to specify a property is to describe what should never hold in the model, that
is, to describe the set of bad computations rather than the good ones. A nice way to describe
a set of finite bad computations is by means of regular expressions (RE), as follows: Let W
be a finite set of symbols (in our case, signal names in the model under test). The alphabet
Σ, over which the regular expressions are defined, is the set of all Boolean expressions over
W .

As an example, consider a model with two signals: req and ack, and consider a property
specifying that every req must be followed by an ack in the next cycle. Σ in this case
consists of all 16 possible Boolean functions (true, false, req, ¬req, req ∨ ack, etc.). A
description of the bad computations of this property would state that sequences with req
holding in one state and ack not holding in the next state are illegal.

Using regular expressions, we get the following:

(true∗)(req)(¬ack)

In order to check a given model M against a RE specification r, one has to build the corre-
sponding automaton Ar [43] and check that any word in L(Ar) is not a prefix of a computa-
tion path in M .

Using RuleBase, we perform this check in the following way: First, we translate Ar into
a corresponding non-deterministic finite state machine Fr in the input language of SMV,
with final states q1, ..., qn. We then model-check the CTL formula

AG(¬q1∧, ...,∧¬qn)

against the model M × Fr.

66



Figure 6.3: Memory utilization during on-the-fly model checking of BIQ (spec 1)

Figure 6.4: Memory utilization during on-the-fly model checking of BIQ (spec 2)

Note that the formula to be checked is of the form AG(p), where p is a Boolean formula.
It can thus be checked on-the-fly [50, 9], saving a lot of time and space. Model checking of
regular expressions is more efficient in most cases than model checking of CTL formulas [9].

The expressive power of the regular expressions we have described above differs from
that of temporal logics. In [9], Beer et al. present an algorithm for translating a subset of
CTL formulas to RE specifications. The subset of CTL which can be translated to RE is
called RCTL.

Figure 6.5: Memory utilization during on-the-fly model checking of s1423 (spec 1)

67



BIQ spec 1
If the writeP tr points to P and the value on the bus is D,
then four cycles after the next time a read from P occurs,
the value going out should be D.
Sugar: {[∗], (writeP tr(0..3) = P (0..3))&(dataIn(0) = D(0)),
goto(readPtr(0..3) = P (0..3))}(AX[4](dataOut(0) = D(0)))
BIQ spec 2
If the writeP tr points to P and the value on the bus is D,
then two cycles after the next time a read from P occurs,
the value going out should be D.
Sugar: {[∗], (writeP tr(0..3) = P (0..3))&(dataIn(0) = D(0)),
goto(readPtr(0..3) = P (0..3))}(AX[2](dataOut(0) = D(0)))
s1423 spec 1
If G729 and G726 are true, then G726 is true ten cycles
later.
Sugar: AG(G729&G726→ AX[10](G726))
s1423 spec 2
If G729 and G726 are true, then G726 is true seven cycles
later.
Sugar: AG(G729&G726→ AX[7](G726))
GXI spec 1
If start is true and the address is A, then if two cycles later
a rejection occurs, then between 2 to 32 cycle later, start
should hold again, with address equals A.
Sugar: {[∗], START&ADDR(0..2) = A, true, reject}
(ABF [2..32](START&ADDR(0..2) = A))
s5378 spec 1
If n3104gat is true, then starting six cycle later,
n3106gat should hold before n3104gat holds.
Sugar: AG(n3104gat→ AX[6](n3106gat before n3104gat))

Table 6.1: The specifications in Sugar with explanations.

Figure 6.6: Memory utilization during on-the-fly model checking of s1423 (spec 2)

68



Circuit #vars + sat peak spec check
size step time steps CE

BIQ
spec 1 102 + 5 5.85M 15 15,059 Ov(15)
spec 2 102 + 5 5.33M 14 3,811 15 95
s1423
spec 1 91 + 4 8.64M 12 2,024 Ov(12)
spec 2 91 + 3 1.54M 10 625 11 58
GXI
spec 1 292 + 6 8.14M 44 16,222 Ov(44)
s5378
spec 1 188 + 4 9.66M 6 4,440 Ov(6)

Table 6.2: Characteristics of our benchmark suite
#vars gives the number of variables in the model and in the sat(ellite). Sizes are given in
million BDD nodes, and all times in seconds. The peak is the maximal memory requirement
at any point during a step. In order to mask the effect of garbage collection scheduling
decisions, the peak is measured after gc invocations. Spec check is the number of steps it
takes to find an error state, and the time it takes to generate a counterexample (CE). Ov(x)
designates memory overflow during step x. All measurements were taken using an RS6000
machine consisting of a 225 MHz PowerPC processor with 512 MB memory.

Figure 6.7: Memory utilization during on-the-fly model checking of GXI (spec 1), using quantifica-
tion. An overflow occurs during counterexample generation.

Figure 6.8: Memory utilization during on-the-fly model checking of GXI (spec 1), using substitution

69



Figure 6.9: Memory utilization during on-the-fly model checking of s5378 (spec 1)

Circuit steps total Reachability Spec check
spec seq par eval CE
BIQ 1 17(15) 1,957 174 1,804 31 74
BIQ 2 15 921 184 731 24 52
s1423 1 14(12) 16,032 13 15,911 35 117
s1423 2 11 521 116 337 10 102
GXI 1 45(44) 8,468 1,866 6,570 26 138
s5378 1 7(6) 12,873 384 11,509 69 105

Table 6.3: Timing data (seconds) for parallel execution on 32×512MB machines.
Each of the measures is the worst sample over all the machines. The steps count shows that
the parallel system always reaches a point beyond that at which a single machine overflows
(this point is given in brackets). Total is the total time over all steps, including the sequential
stage, parallel reachability stage and counterexample generation time. Note that the total
time is the maxima over sums and not the sum over maxima. Seq(uential) is the time it took
to reach the threshold at which the parallel stage started. Par(allel) is the parallel reachability
analysis time. Eval(uation) is the total time it took to evaluate, at each step, whether one of
the processes found an error state. (Note that in the sequential stage, Eval is a single BDD
operation, while in the parallel stage it also requires global interaction over the network).
CE is the time it took to generate the counterexample.

70



Chapter 7

Distributed Symbolic μ-calculus

7.1 Introduction

This chapter extends the scope of properties that can be verified for large designs. It presents
a distributed symbolic model checking algorithm for the μ-calculus, which is a powerful for-
malism for expressing properties of transition systems using least and greatest fixpoint oper-
ators. Many verification procedures can be solved by translating them into μ–calculus model
checking[17] problems. Such verification procedures include (fair) CTL model checking,
LTL model checking, bisimulation equivalence, and language containment of ω-regular au-
tomata.

Many algorithms for μ-calculus model checking have been suggested [34, 65, 69, 29,
49]. In this work we parallelize a simple sequential algorithm [28]. The algorithm works
bottom-up through the formula, evaluating each subformula based on the value of its own
subformulas. A formula is interpreted as the set of states in which it is true. Thus, for each
μ–calculus operation, the algorithm receives a set (or sets) of states and returns a new set of
states.

The distributed algorithm follows the same lines as the sequential one, except that each
process runs its own copy of the algorithm and each set of states is stored distributively
among the processes [39]. Every process owns a slice of the set, so that the disjunction of
all slices contains the whole set. An operation is now performed on a set (or sets) of slices
and returns a set of slices. At no point in the distributed algorithm is a whole set is stored by
a single process.

The intuitive solution for a distributed computation might prove to be deceptive for some
operations. For instance, in order to evaluate a formula of the form ¬g, the set of states
satisfying g should be complemented. It is impossible for a single process to carry out this
operation locally. Rather, each process sends the other processes the states they own, which
are not in g “to the best of its knowledge.” If none of the processes “knows” that a state is
in g, then the state is (distributively) determined to be in ¬g.

While performing an operation, a process may obtain states that are not owned by it. For
instance, when evaluating the formula EXf , a process will find the set of all predecessors
of states in its slice for f . However, some of these predecessors may belong to the slice of

71



another process. Therefore, the procedure exch is executed (in parallel) by all processes,
and each process sends its non-owned states to their respective owners.

Memory requirements are kept low through frequent calls to a memory balancing pro-
cedure. It ensures that each set is partitioned evenly among the processes. This ensures
that the memory requirements, which are usually proportional to the size of the manipulated
set, are evenly distributed among the processes. However, this also requires different slicing
functions for different sets. As a result, we may need to apply an operation to two sets that
are sliced according to different partitions. In the case of conjunction, for instance, the two
sets should first be re-sliced according to the same partition. Only then do the processes ap-
ply conjunction to their individual slices. Narayan et al. [56] show how to perform negation,
conjunction, and disjunction under the assumption that the set of window functions does not
change. However, if the set does not change, the memory requirement will be unbalanced
as explained. This will render the distributed system ineffective.

Distributing the sets of states is only one facet of the problem. The transition relation
also strongly influences the memory peaks that appear during the computation of pre-image
(EX) operations. The pre-image operation has one of the highest memory requirements
in model checking. Even when its final result is of tractable size, its intermediate results
might cause memory overflow. We propose a scalable distributed method for the pre-image
computation, including slicing of the transition relation.

7.2 Preliminaries

7.2.1 The Propositional μ–Calculus

Below we define the propositional μ–calculus [47]. We will not distinguish between a set
of states and the Boolean function that characterizes this set. By abuse of notation we will
apply both set operations and Boolean operations on sets and Boolean functions. Let AP be
a set of atomic propositions and let V AR = {Q,Q1, Q2, . . .} be a set of relational variables.
The μ–calculus formulas are defined as follows:

• if p ∈ AP , then p is a formula;

• a relational variable Q ∈ V AR is a formula;

• if f and g are formulas, then ¬f ,f ∧ g,f ∨ g, EX f are formulas;

• if Q ∈ V AR and f is a formula, then μQ.f and νQ.f are formulas.

μ–calculus consists of the set of closed formulas in which every relational variable Q is
within the scope of μQ or νQ.

Formulas of the μ–calculus are interpreted with respect to a transition system M =
(St,R, L), where St is a nonempty and finite set of states, R ⊆ St × St is the transition
relation, and L : St→ 2AP is the labelling function that maps each state to the set of atomic
propositions true in that state.

72



In order to define the semantics of μ–calculus formulas, we use an environment e :
V AR→ 2St, which associates with each relational variable a set of states from M .

Given a transition system M and an environment e, the semantics of a formula f , de-
noted [[f ]]Me, is the set of states in which f is true. We denote by e[Q ← W ] a new
environment that is the same as e except that e[Q ← W ](Q) = W . The set [[f ]]Me is
defined recursively as follows (where M is omitted when clear from the context).

• [[p]]e = {s | p ∈ L(s)} • [[g1 ∧ g2]]e = [[g1]]e ∩ [[g2]]e
• [[Q]]e = e(Q) • [[g1 ∨ g2]]e = [[g1]]e ∪ [[g2]]e
• [[¬g]]e = St \ [[g]]e • [[EXg]]e = {s | ∃t [(s, t) ∈ R and t ∈ [[g]]e] }
• [[μQ.g]]e, [[νQ.g]]e are the least and greatest fixpoints, respectively, of the
predicate transformer τ : 2St → 2St defined by: τ(W ) = [[g]]e[Q← W ]

Tarski [66] showed that least and greatest fixpoints always exist if τ is monotonic. If τ is also
continuous, then the least and greatest fixpoints of τ can be computed by ∪i∈Nτ i(False) and
∩i∈Nτ i(True), respectively. In [28] it is shown that if M is finite then any monotonic τ is
also continuous.

In this chapter we consider only monotonic formulas. Since the only transition systems
we consider are finite, they are also continuous. The function fixpt in Figure 7.2 describes
an algorithm for computing the least or greatest fixpoint, depending on the initialization of
Qval. If the parameter init is False, the least fixpoint is computed. Otherwise, if init =
True, the greatest fixpoint is computed.

Given a transition system M , an environment e, and a formula f of the μ–calculus, the
model checking algorithm for μ–calculus finds the set of states in M that satisfy f . Figure 7.1
presents a sequential recursive algorithm for evaluating μ–calculus formulas. For closed μ–
calculus formulas, the initial environment is irrelevant. The necessary environments are
constructed during recursive applications of the eval function.

function eval(f, e)
1 case
2 f= p: res= {s | p ∈ L(s)}
3 f= Q: res= e(Q)
4 f= ¬g: res= ¬eval(g, e)
5 f= g1 ∨ g2: res= eval(g1, e)∨eval(g2, e)
6 f= g1 ∧ g2: res= eval(g1, e)∧eval(g2, e)
7 f= EXg: res= {s | sRt ∧ t ∈eval(g, e)}
8 f= μQ.g: res= fixpt(Q, g, e, False)
9 f= νQ.g: res= fixpt(Q, g, e, T rue)
10 endcase
11 return(res)
end function

Figure 7.1: Pseudo–code for sequential μ–calculus model checking

73



function fixpt(Q, g, e, init)
1 Qval= init
2 repeat
3 Qold= Qval

4 Qval= eval(g, e[Q← Qval])
5 until (Qval = Qold )
6 return Qval

end function

Figure 7.2: Pseudo–code for computing fixpoint

7.2.2 Elements of Distributed Symbolic Model Checking

Our distributed algorithm includes several basic elements that were developed in Chapter ??.
For completeness, we give a brief overview of these elements in this subsection.

Sets of states in the transition system, as well as the intermediate results, are represented
by BDDs. At any point during the algorithm’s execution, the sets of states obtained are
partitioned among the processes. A set of window functions is used to define the partitioning,
determining the slice that is owned by each process.

Definition 5: [Complete set of window functions [56, 22]] A window function is a Boolean
function that characterizes a subset of the state space. A set of window functions W1, . . . ,Wk

is complete if and only if
∨k

i=1 Wi = 1.

Unless otherwise stated, we assume that all sets of window functions are complete.
We use the slicing algorithm, as described in Chapter ??, to get a set of window func-

tions.
Maintaining an equal load while the intermediate results are being stored is essential

for the scalability of the parallel algorithm. The equal load is maintained throughout the
algorithm by means of the memory balance procedure in Chapter ??.

More formally, the ldBlnc procedure is a parallel algorithm, as follows. Let W1, . . . ,Wk

be a set of window functions, and res be a set of states, so that process i owns the subset
resi = res∧Wi. When ldBlnc terminates, a new set of window functions W ′

1, . . . ,W
′
k is

produced, and process i owns res′i = res ∧W ′
i .

During the memory balance procedure, as well as during other parts of the distributed
model checking algorithm, BDDs are shipped between the processes. A compact and uni-
versal BDD representation is used, as described in Chapter ??, for the communication. To
send a local BDD structure, the process first converts it to the universal representation, then
sends it to a different process which converts the universal representation back to its local
BDD structure. Different variable order is allowed in the different processes. The size of the
universal representation is independent of local variable ordering, and it is linear in the BDD
size. Converting a universal represented BDD into the receiver BDD structure (according
to the local variable order) may sometimes involve higher complexity (up to exponential in
certain cases).

74



7.3 Distributed Model Checking for μ–Calculus.

The general idea of the distributed algorithm is as follows. The algorithm consists of two
phases. The initial phase starts as the sequential algorithm, described in Section 7.2. It
terminates when the memory requirement reaches a given threshold. At this point, the dis-
tributed phase begins. In order to distribute the work among the processes, the state space is
partitioned into several parts, using a slicing procedure. Throughout the distributed phase,
each process owns one part of the state space for every set of states associated with a certain
subformula. When a computation of a subformula produces states owned by other processes,
these states are sent out to the respective processes. A memory balancing mechanism is used
to repartition imbalanced sets of states produced during the computation. A distributed ter-
mination algorithm is used to announce global termination. In the rest of this section we
describe elements used by this algorithm.

7.3.1 Switching to the Distributed Phase

When the initial phase terminates, several subformulas have already been evaluated and the
sets of states associated with them have been stored. In order to start the distributed phase,
we slice the sets of states found so far and distribute the slices among the processes.

Each set of states is represented by a BDD and its size is measured by the number of
BDD nodes. In each process all sets are managed by the same BDD manager, where parts
of the BDDs that are used by several sets are shared and stored only once. Thus, two factors
affect the partitioning of the sets: the required storage space for the sets, and the space
needed to manipulate them. In order to keep the first factor small, it is best to partition the
sets so that the space used by the BDD manager for all sets in each process is small. To keep
the second factor small, each part of each set in each process should also be kept small. This
is possible because the memory used in performing an operation is proportional to the size
of the set it is applied to.

In model checking, the most acute peaks in memory requirement usually occur while
operations are being performed. Thus, it is more important to reduce the second factor.
Indeed, rather than minimizing the total size of each process, our algorithm slices each set
in a way that reduces the size of its parts. As a result, the slicing criterion may differ for
different sets. We use a slicing algorithm[42] described generally in Section 7.2.2. Slicing is
applied to each one of the sets that has already been evaluated when phase switching occurs.

The slicing algorithm updates two tables: InitEval and InitSet. InitEval keeps track
of which sets have been evaluated by the initial phase of the algorithm. InitEval(f) is
True if and only if f has been evaluated by the initial algorithm. Each process id has the
table InitSet, which for each formula f such that InitEval(f) = True, holds the subset of
the set of states satisfying f and owned by this process. Formally, for each process id, and
for each formula f , if InitEval(f) = True then InitSet(f) = f ∧Wid. The distributed
phase will start by sending the tables InitEval and InitSet, as well as the list of slices Wi,
to all the processes.

75



7.3.2 The Distributed Phase

The distributed version of the model checking algorithm for the μ–calculus is given in Fig-
ure 7.3. While the sequential algorithm finds the set of states that satisfy, in a given model,
a formula of the μ–calculus logic, each process in the distributed algorithm finds the part of
this set that the process owns. Intuitively, the distributed algorithm works as follows: given
a set of slices Wi, a formula f , and an environment e, the process id finds the set of states
eval(f, e) ∧Wid.

In fact, a weaker property is required in order to guarantee the correctness of the algo-
rithm. It is enough to know that when evaluating a formula f , every state satisfying f is
collected by at least one of the processes. For efficiency, however, we require in addition
that every state be collected by exactly one process.

Given a formula f , the algorithm first checks if the initial phase has already evaluated
it by checking if InitEval(f) = True. If so, it uses the result stored in InitSet(f).
Otherwise, it evaluates the formula recursively. Each recursive application associates a set
of states with some subformula.

Preserving the work load is an inherent problem in distributed computation. If the mem-
ory requirement in one of the processes is significantly larger than in the others, the effec-
tiveness of the distributed system is disrupted. To avoid this situation, a memory balance
procedure is invoked whenever a new set of states is created, in order to maintain a balanced
memory requirement for the new set. The memory balance procedure changes the slices Wi

and updates the parts of the new set in each of the processes accordingly. Old sets are kept
unchanged. Since each set is balanced, so is the overall memory requirement.

Each process in the distributed algorithm evaluates each subformula f as follows (see
Figure 7.3):

A propositional formula p ∈ AP : evaluated by collecting all the states s that satisfy two
conditions: p is in the labelling L(s) of s and, in addition, s is owned by this process.

A relational variable Q: evaluated using the local environment of the process. Since
only closed μ–calculus formulas, every variable is in the scope of μ or ν, are evaluated, the
environment must have a value for Q (computed in a previous step).

A subformula of the form ¬g: evaluated by first evaluating g, and then using the special
function exchnot. Given a set of states S and a partition S1, . . . , Sk of S, each process i
runs the procedure exchnot on Si. The process reports to all the other processes about the
states that do not belong to S “as far as it knows.” Since each state in S belongs to some
process, if none of the processes knows that s is in S, then s is in ¬S.

Since each process holds only the states of ¬S that it owns, the processes only send
states that are owned by the receiver. This reduces communication.

A subformula of the form g1 ∨ g2: evaluated by first evaluating g1 and g2, possibly with
different slicing functions. This means that a process can hold a part of g1 with respect to
one slicing and a part of g2 with respect to another slicing. Nevertheless, since each state of
g1 and of g2 belongs to one of the processes, each state of g1 ∨ g2 now belongs to one of the
processes as well. Applying the function exch results in a correct distribution of the states
among the processes, according to the current slicing.

76



A subformula of the form g1 ∧ g2 can be translated, using De Morgan’s laws, to ¬(¬g1∨
¬g2). However, evaluating the translated formula requires four communication phases (via
exch and exchnot). Instead, such a formula is evaluated by first evaluating g1 and g2.
As in the previous case, they might be evaluated with respect to different window functions.
Here, however, the slicing of the two formulas should agree before a conjunction can be
applied. This is achieved by applying exch twice, thus reducing the overall communication
to only two rounds.

A subformula of the form EXg: evaluated by first evaluating g and then computing the
pre-image using the transition relation R. Since every state of g belongs to one of the
processes, every state of the pre-image also belongs to one of the processes . In fact, a state
may be computed by more than one process if it is obtained as a pre-image of two parts.
Applying exch completes the evaluation correctly.

Subformulas of the form μQ.g and νQ.g (the least and greatest fixpoints, respectively):
evaluated using a special function fixpt that iterates until a fixpoint is found. The com-
putations for the formulas differ only in the initialization, which is False for μQ.g and is
the current window function for νQ.g. The fixpt function uses a distribution termination
detection procedure, parterm, to check whether a fixpoint has been reached. Each pro-
cess calls parterm with a Boolean value. The process reports true if and only if a fixpoint
has been reached “as far as it knows.” The fixpoint is evaluated by applying exch on both
the last and current value of Q and comparing the parts that the process owns. Since each
state belongs to some process, a fixpoint is reached if none of the processes gets a new state
during the last iteration.

7.4 Correctness

In this section we prove the correctness of the distributed algorithm, assuming the sequential
algorithm is correct. The sequential algorithm evaluates a formula by computing the set of
states that satisfy it. In the distributed algorithm every such set is partitioned among the
processes. The union over all the partitions for a given subformula is called the global set.
In the proof we show that, for every μ–calculus formula, the set of states computed by the
sequential algorithm is identical to the global set computed by the distributed algorithm.
Note that the global set is never actually computed and is introduced only for the sake of the
correctness proof. In the proof that follows we need the following definition.

Definition 6: [Well-partitioned environment] An environment e is well partitioned by parts
e1, . . . , ek if and only if, for every Q ∈ V AR, e(Q) =

∨k
i=1 ei(Q).

The procedures exch are applied by all processes with a set of non-disjoint subsets Si

that cover a set res. Given a set of window functions, the procedures exchange non-owned
parts so that at termination each process has all the states from res that it owns. The set of
window functions does not change. Lemma 1 defines the relationship between the output of
the procedure exch and the current set of window functions.

77



function peval(f, e)
1 case
2 InitEval(f) : return(InitSet(f))
3 f= p : res= {s | p ∈ L(s)} ∧Wid

4 f= Q : return (e(Q))
5 f= ¬g : res= exchnot(peval(g, e))
6 f= g1 ∨ g2 : res= exch(peval(g1, e)∨peval(g2, e))
7 f= g1 ∧ g2 : res1= peval(g1, e) res2= peval(g2, e)
8 res= exch(res1)∧exch(res2)
9 f= EXg : res= exch({s | ∃t[sRt ∧ t ∈peval(g, e)]})
10 f= μQ.g : res= fixpt(Q, g, e, False)
11 f= νQ.g : res= fixpt(Q, g, e, Wid)
12 endcase
13 ldBlnc(res) /* balances W; updates res accordingly */
14 return(res)
end function

function fixpt(Q, g, e, init)
1 Qval= init
2 repeat
3 Qold= Qval

4 Qval= peval(g, e[Q← Qold])
5 until (parterm(exch(Qval)=exch(Qold)))
6 return Qval

end function

function exch(S) 1 function exchnot(S)
1 res= S ∧Wid 2 res= (¬S) ∧Wid

2 for each process i �= id 3 for each process i �= id
3 sendto(i, S ∧Wi) 4 sendto(i, (¬S) ∧Wi)
4 for each process i �= id 5 for each process i �= id
5 res= res∨ receivefrom(i) 6 res= res∧ receivefrom(i)
6 return res 7 return res
end function 8 end function

Figure 7.3: Pseudo–code for a process id in the distributed model checking

78



Lemma 1 [exch procedure] Let W1, . . . ,Wk be a set of window functions and res be a
set of states. Assume that each process id runs procedure exch with subset Sid, where∨k

i=1 Si = res. Then the set of window functions does not change and, after all procedures
terminate, each process id has resid = res ∧Wid =

∨k
i=1 Si ∧Wid.

Proof: At termination of procedure exch, process id has the following set:

resid = (Sid ∧Wid) ∨
∨

j �=id

(Sj ∧Wid) =
k∨

i=1

Si ∧Wid = res ∧Wid.

Q.E.D.
Let f be a μ–calculus formula and eid be the environment in process id.
pevalid(f, eid) denotes the set of states returned by procedure peval, when run by process
id on f and eid.
Theorem 1 defines the relationship between the outputs of the sequential and the distributed al-
gorithms.

Theorem 1 (Correctness) Let f be a μ–calculus formula, W1 . . . Wk be a complete set of
window functions, and W ′

1 . . . W ′
k be the set of window functions when eval(f, e) termi-

nates. In addition, let e be a well–partitioned environment by e1, . . . ek, and e′ be the envi-
ronment when eval(f, e) terminates. Furthermore, for all i = 1, . . . , k, let e′i be the envi-
ronment when pevali(f, ei) terminates. Then e′ is well partitioned by e′1, . . . e

′
k, W ′

1 . . . W ′
k

is a complete set of window functions, and eval(f, e) =
∨k

i=1 pevali(f, ei).

It follows trivially from Theorem 1 that the disjunction of all the parts of a set evaluated by
the processes for a function f is equal to the entire set evaluated by the sequential algorithm.

Proof: We prove the theorem by induction on the structure of f . In all but the last two cases
of the induction step the environments do not change, and therefore e′ is well partitioned by
e′1, . . . e

′
k.

The set of window functions is modified by applying ldBlnc at the end of peval. The
procedure ldBlnc repartitions the subsets between the processes. However, their disjunc-
tion remains the same. Therefore, W ′

1 . . . W ′
k is a complete set of window functions.

Base: f = p for p ∈ AP
∨k

i=1 pevali(f, ei) =
∨k

i=1 ({s | p ∈ L(s)} ∧Wi) = {s | p ∈
L(s)} ∧ ∨k

i=1 Wi.
Since

∨k
i=1 Wi = 1 (the set of window functions is complete), the above expression is equal

to {s | p ∈ L(s)}, which is exactly eval(f, e).

Induction:

1. f = Q, where Q ∈ V AR is a relational variable:
∨k

i=1 pevali(Q, ei) =
∨k

i=1 ei(Q).
Since e is well partitioned, e(Q) =

∨k
i=1 ei(Q), which is equal to eval(f, e).

79



2. f = ¬g: pevalid(¬g, eid) first applies pevalid(g, eid), which results in Sid. It then
runs the procedure exchnot(Sid), which returns the result resid.

resid = ((¬Sid) ∧Wid) ∧
∧

j �=id

((¬Sj) ∧Wid) =
k∧

j=1

((¬Sj) ∧Wid).

When exchnot terminates in all processes, the global set computed by all processes
is (recall that

∨k
i=1 Wi = 1):

k∨
i=1

⎛
⎝ k∧

j=1

((¬Sj) ∧Wi)

⎞
⎠ =

k∧
j=1

(¬Sj) ∧
k∨

i=1

Wi =
k∧

j=1

(¬Sj) = ¬
k∨

j=1

Sj.

Since Si = pevali(g, ei), ¬∨k
j=1 Sj = ¬∨k

j=1 pevali(g, ei), which by the induction
hypothesis is identical to ¬ eval(g, e). This, in turn, is identical to eval(¬g, e).
Thus, eval(¬g, e)=

∨k
i=1 pevali(¬g, ei).

3. f = g1 ∨ g2: pevalid(g1 ∨ g2, eid) first computes pevalid(g1, eid) ∨
pevalid(g2, eid). At the end of this computation, the global set is:

k∨
i=1

(pevali(g1, ei) ∨ pevali(g2, ei)) =
k∨

i=1

pevali(g1, ei) ∨
k∨

i=1

pevali(g2, ei).

By the induction hypothesis, this is identical to eval(g1, e) ∨ eval(g2, e), which is
identical to eval(g1 ∨ g2, e). Applying the procedures exch and ldBlnc changes
the partition of the sets among the processes, but not the global set.

4. f = g1 ∧ g2: pevalid(g1 ∧ g2, eid) first computes the two sets resid
1 =

pevalid(g1, eid) and resid
2 = pevalid(g2, eid), then applies exch to each of them, and

finally conjuncts the results. Note that no ldBlnc is invoked between the two appli-
cations of exch. Therefore, both use the same window functions. Let W1, . . . ,Wk be
those window functions. Then the global set is

k∨
i=1

resi =
k∨

i=1

(exch(resi
1) ∧ exch(resi

2)) =

k∨
i=1

⎛
⎝(Wi ∧

k∨
j=1

resj
1) ∧ (Wi ∧

k∨
j=1

resj
2)

⎞
⎠ .

By the induction hypothesis,
∨k

j=1 resj
1 = eval(g1, e) and

∨k
j=1 resj

2 = eval(g2, e).
Thus,

k∨
i=1

resi =
k∨

i=1

(eval(g1, e) ∧ eval(g2, e) ∧Wi) =

80



eval(g1 ∧ g2, e) ∧
k∨

i=1

Wi = eval(g1 ∧ g2, e).

Applying ldBlnc does not change the global set; thus
∨k

i=1 pevali(g1 ∧ g2, ei) =
eval(g1 ∧ g2, e).

5. f = EX g: pevalid(EXg, eid) evaluates the set of all predecessors of states in pevalid(g, eid),
using the transition relation R. The global set of all predecessors s can be represented
by the formula

∨k
i=1 ∃t[(s, t) ∈ R ∧ t ∈ pevali(g, ei)]. The global set computed at

this stage is:
k∨

i=1

∃t [(s, t) ∈ R ∧ t ∈ pevali(g, ei)] .

Since disjunction and existential quantification are commutative, the above formula is
identical to

∃t
[

k∨
i=1

(s, t) ∈ R ∧ t ∈ pevali(g, ei)

]
= ∃t

[
(s, t) ∈ R ∧ t ∈

k∨
i=1

pevali(g, ei)

]
.

By the induction hypothesis,
∨k

i=1 pevali(g, ei) = eval(g, e). Thus, the global set is
identical to

∃t [(s, t) ∈ R ∧ t ∈ eval(g, e)] = eval( EX g, e).

Since the procedures exch and ldBlnc do not change the global set,∨k
i=1 pevali(EXg, ei) = eval(EXg, e).

6. f = μQ.g, a least fixpoint formula: pevalid(μQ.g, eid) evaluates the least fixpoint
formula by calling fixptid(Q, g, eid, False)). Similarly, the sequential algorithm,
eval(μQ.g, e), evaluates the least fixpoint formula by calling the sequential func-
tion fixpt(Q, g, e, False)). As in previous cases, we would like to prove that∨k

i=1 pevali(μQ.g, ei) =
eval(μQ.g, e). Since ldBlnc does not change the correctness of this claim, we
only need to prove that

∨k
i=1 fixpti(Q, g, ei, False)) =

fixpt(Q, g, e, False)). In addition, we need to show that the environment remains
well partitioned when the computation terminates. The following lemma proves stronger
requirements. It shows that at every iteration, the results of the sequential algorithm
are identical to the global results of the distributed algorithm and that both algorithms
terminate at the same iteration. This guarantees that the results at termination match.
The lemma also proves that the environment is well partitioned at every iteration. The
lemma uses the following property of procedure parterm.

81



Property 1: Procedure parterm is invoked by each of the processes with a Boolean
parameter. If all processes send True, then parterm returns True to all processes.
Otherwise, it returns False to all processes.

Lemma 2 Let Qj be the value of Qval in iteration j of the sequential fixpoint algo-
rithm. Similarly, let Qj

id be the value of Qval in iteration j of the distributed fixpoint
algorithm in process id. Q0 is the initialization of the sequential algorithm; Q0

id is the
initialization of the distributed algorithm. Then,

(a) At every iteration, e is well partitioned by e1, . . . , ek.

(b) For every j: Qj =
∨k

i=1 Qj
i .

(c) If the sequential fixpt algorithm terminates after i0 iterations, then so does
the distributed fixpt algorithm.

Proof: We prove the lemma by induction on the number j of iterations in the loop of
the sequential function fixpt.

Base: j = 0:

(a) At iteration 0, e is well partitioned, according to the induction hypothesis of
Theorem 1.

(b) In the case that f = μQ.g, the value of both the sequential and the distributed
algorithm at initialization is False. Hence, Q0 = Q0

id = False, which implies
Q0 =

∨k
i=1 Q0

i .

(c) Since both algorithms perform at least one iteration, they will not terminate at
iteration 0.

Induction: Assume Lemma 2 holds for iteration j. We prove it for iteration j + 1.

(a) Let e′, e′1, . . . , e
′
k be the environments at the end of iteration j + 1, and assume

that e is well partitioned by e1, . . . , ek at the end of iteration j. The only changes
to the environments in iteration j + 1 may occur in line 5 of the distributed
and sequential algorithms. Changes may occur for two reasons: e(Q) may be
assigned a new value Qj , or a recursive call to eval may change e. Similarly,
in the distributed algorithm, two changes may occur: eid(Q) may be assigned a
new value Qj

id, or a recursive call to pevalid may change eid.
By the induction hypothesis of Lemma 2 we know that Qj =

∨k
i=1 Qj

i . Hence,
e[Q ← Qj](Q) =

∨k
i=1 ei[Q ← Qj

i ](Q). Since no other change has been made
to the environments, and since e is well partitioned, we conclude that e[Q← Qj]
is well partitioned by e1[Q← Qj

1], . . . , ek[Q← Qj
k].

In iteration j + 1, eval is now invoked with an environment that is well parti-
tioned by the environments pevalid is invoked with. The induction hypothesis
of Theorem 1 therefore guarantees that e′ is well partitioned by e′1, . . . , e

′
k.

82



(b) Qj+1 = eval(g, e[Q← Qj]) (line 5 of the sequential algorithm) and Qj+1
id =

pevalid(g, e[Q← Qj
id]) (line 5 of the distributed algorithm).

By item (a), e[Q ← Qj] is well partitioned. Thus, the induction hypothesis of
Theorem 1 is applicable and implies that

eval(g, e[Q← Qj]) =
k∨

i=1

pevali(g, e[Q← Qj
i ]).

Hence, Qj+1 =
∨k

i=1 Qj+1
i .

(c) The sequential fixpt procedure terminates at iteration j +1 if Qj = Qj+1. We
prove that this holds if and only if for every process id, exch(Qj

id) = exch(Qj+1
id ),

and therefore parterm returns True to all processes.

Let W1, . . . ,Wk be the current window functions. By item (b), Qj =
∨k

i=1 Qj
i

and Qj+1 =
∨k

i=1 Qj+1
i .

∀id[exch(Qj
id) = exch(Qj+1

id )] ⇔

∀id[
k∨

i=1

Qj
i ∧Wid =

k∨
i=1

Qj+1
i ∧Wid] ⇔

∀id[Qj ∧Wid = Qj+1 ∧Wid] ⇔ Qj = Qj+1.

The last equality is implied by the previous one because the window functions
are complete. This completes the proof of the lemma. Q.E.D.

7. f = νQ.g, a greatest fixpoint formula: The proof for this case is almost identical to
the previous one. The only change should be made to the definition of Q0, Q0

i in the
statement of the lemma, so that Q0 = True and Q0

i = Wi. The proof of second bullet
in the base case should be changed accordingly. This completes the proof. Q.E.D.

7.4.1 The Processes Own Disjoint Subsets

Theorem 1 can be extended to state that when all procedures pevalid(f, eid) terminate, the
subsets owned by each of the processes are disjoint. This is important in order to avoid
duplication of work. A set of window functions that defines disjoint ownership is presented
in the following definition:

Definition 7: [Disjoint Set of Window Functions] A set of window functions W1, . . . ,Wk

is disjoint if and only if, for every 1 ≤ t, l ≤ k, t �= l, Wt ∧Wl = 0.

The distributed algorithm uses the exchange procedure to store disjoint subsets of
each set. The following lemma specifies this property:

83



Lemma 3 [exch procedure makes disjoint parts] Let W1, . . . ,Wk be a set of disjoint
window functions and S be a set of states. Assume that each process id runs procedure
exch with a subset Sid. Then at termination of the procedures in all processes, for every
1 ≤ t, l ≤ k, t �= l, exch(St)∧exch(Sl) = 0.

Proof: By Lemma 1, at termination of procedure exch, for every 1 ≤ t, l ≤ k, t �=
l,rest ∧ resl = (

∨k
j=1 Sj ∧ Wt) ∧ (

∨k
j=1 Sj ∧ Wl). Since Wi is a set of disjoint window

functions, the last expression equals 0. Q.E.D.
We now show that, for every μ–calculus formula, the subsets computed by the distributed

algorithm are disjoint. In the proof that follows we need the following definition.

Definition 8: [Disjoint Environment] Environment parts e1, . . . , ek are disjoint if and only
if, for every Q ∈ V AR, for every 1 ≤ t, l ≤ k, t �= l, et(Q) ∧ el(Q) = 0.

Theorem 2 proves that given a disjoint set of window functions, the distributed algorithm
returns disjoint results.

Theorem 2 (The Processes Own Disjoint Subsets) Let f be a
μ–calculus formula, W1 . . . Wk be a disjoint set of window functions, and W ′

1 . . . W ′
k be the

set of window functions when eval(f, e) terminates. In addition, let e1, . . . ek be disjoint
environment parts, and for all i = 1, . . . , k, let e′i be the environment when pevali(f, ei)
terminates. Then e′1, . . . e

′
k are disjoint environment parts, W ′

1 . . . W ′
k is a disjoint set of

window functions, and for every 1 ≤ t, l ≤ k, t �= l,

pevalt(f, et) ∧ pevall(f, el) = 0.

Proof: We prove the theorem by induction on the structure of f . In all but the last two cases
of the induction step the environments are not changed and therefore e′1, . . . e

′
k are disjoint.

The set of window functions is modified by applying ldBlnc at the end of peval.
The procedure ldBlnc repartitions the subsets between the processes. However, the set
of window functions remains disjoint. Therefore, W ′

1 . . . W ′
k is a disjoint set of window

functions.
Base: f = p for p ∈ AP for every 1 ≤ t, l ≤ k, t �= l, pevalt(f, et)∧ pevall(f, el) =
{s | p ∈ L(s)} ∧Wt ∧ {s | p ∈ L(s)} ∧Wl.
Since for every 1 ≤ t, l ≤ k, t �= l, Wt ∧Wl = 0 (the set of window functions is disjoint),
the above expression is equal to 0.

Induction step:

1. f = Q, where Q ∈ V AR is a relational variable: for every 1 ≤ t, l ≤ k, t �=
l,pevalt(f, et)∧ pevall(f, el) = et(Q) ∧ el(Q). Since e1, . . . , ek are disjoint, the
last expression equals 0.

84



2. f = ¬g: pevalid(¬g, eid) first applies pevalid(g, eid), which results in Sid. It then
runs the procedure exchnot(Sid), which returns the result resid.

resid = ((¬Sid) ∧Wid) ∧
∧

j �=id

((¬Sj) ∧Wid) =
k∧

j=1

((¬Sj) ∧Wid).

Therefore, for every 1 ≤ t, l ≤ k, t �= l,pevalt(f, et)∧ pevall(f, el) = rest ∧
resl =

k∧
j=1

((¬Sj) ∧Wt) ∧
k∧

j=1

((¬Sj) ∧Wl).

Since Wt ∧Wl = 0, the above expression is equal to 0. Applying ldBlnc at the end
of peval repartitions the subsets between the processes; however, the subsets remain
disjoint. Thus, for every 1 ≤ t, l ≤ k,t �= l,pevalt(f, et)∧ pevall(f, el) = 0.

3. f = g1 ∨ g2: pevalid(g1∨ g2, eid) first computes the disjunction of pevalid(g1, eid)
and pevalid(g2, eid), which results in Sid. Then it runs the procedure exch(Sid).
Therefore, for every 1 ≤ t, l ≤ k, t �= l, pevalt(f, et)∧pevall(f, el) =exch(St)∧exch(Sl).
By the induction hypothesis, the window functions used by exch are disjoint. There-
fore we can apply Lemma 3, which ensures that the last expression equals 0.

4. f = g1 ∧ g2: pevalid(g1∧g2, eid) first computes the two sets resid
1 = pevalid(g1, eid)

and resid
2 = pevalid(g2, eid). It then applies exch to each set and conjuncts the re-

sults. Therefore, for every 1 ≤ t, l ≤ k, t �= l, pevalt(f, et)∧ pevall(f, el) =
exch(rest

1)∧ exch(rest
2)∧ exch(resl

1)∧ exch(resl
2). Lemma 3 ensures that the

last expression equals 0.

5. f = EX g: pevalid(EXg, eid) evaluates the set of all predecessors of states in pevalid(g, eid),
which results in Sid. It then runs the procedure exch(Sid). Therefore, for every
1 ≤ t, l ≤ k, t �= l,pevalt(f, et)∧ pevall(f, el) =exch(St)∧exch(Sl). Lemma 3
ensures that the last expression equals 0.

6. f = μQ.g, a least fixpoint formula: pevalid(μQ.g, eid) evaluates the least fixpoint
formula by calling fixptid(Q, g, eid, False)). As in previous cases, we would like
to prove that for every 1 ≤ t, l ≤ k, t �= l,pevalt(f, et)∧ pevall(f, el) = 0. Since
ldBlnc does not change the correctness of this claim, we only need to prove that for
every 1 ≤ t, l ≤ k, t �= l,fixptt(Q, g, et, False))∧ fixptl(Q, g, el, False)) = 0.
In addition, we need to show that the environment remains disjoint when the compu-
tation terminates. The following lemma proves stronger requirements. It shows that
at every iteration, the results and the environment parts are disjoint. This guarantees
that at termination they are disjoint as well.

Lemma 4 Let Qj
id be the value of Qval in iteration j of the fixpoint algorithm in

process id. Q0
id is the value of Qval at initialization. Then,

85



(a) At every iteration, e1, . . . , ek are disjoint.

(b) For every j,1 ≤ t, l ≤ k, t �= l, Qj
t ∧Qj

l = 0.

Proof: We prove the lemma by induction on the number j of iterations in the loop of
the function fixpt.

Base: j = 0:

(a) At iteration 0, e1, . . . , ek are disjoint, according to the induction hypothesis of
Theorem 2.

(b) In case f = μQ.g, the initialization of the distributed algorithm is False. Hence,
for every 1 ≤ t, l ≤ k, t �= l, Q0

t = Q0
l = 0, which implies Q0

t ∧Q0
l = 0.

Induction step: Assume Lemma 4 holds for iteration j. We prove it for iteration j+1.

(a) Let e′1, . . . , e
′
k be the environments at the end of iteration j + 1, and assume that

e1, . . . , ek are disjoint at the end of iteration j. The only changes to the envi-
ronments in iteration j + 1 may occur in line 5 of the algorithms. Changes may
occur for two reasons: eid(Q) may be assigned a new value Qj

id, or a recursive
call to pevalid may change eid.

By the induction hypothesis of Lemma 4 we know that for every 1 ≤ t, l ≤ k,
t �= l, Qj

t ∧ Qj
l = 0. Hence, for every 1 ≤ t, l ≤ k, t �= l, et[Q ← Qj

t ](Q) ∧
el[Q← Qj

l ](Q) = 0. Since no other change has been made to the environments,
and since e1, . . . , ek are disjoint, we conclude that for every 1 ≤ t, l ≤ k, t �= l,
et[Q← Qj+1

t ](Q) ∧ el[Q← Qj+1
l ](Q) = 0.

In iteration j + 1, pevalid is now invoked with a disjoint environment. The
induction hypothesis of Theorem 2 therefore guarantees that e′1, . . . , e

′
k are dis-

joint.

(b) Qj+1
id = pevalid(g, e[Q← Qj

id]) (line 5 of the distributed algorithm).

By item (a), eid[Q ← Qj
id] are disjoint. Thus, the induction hypothesis of

Theorem 2 is applicable and implies that for every 1 ≤ t, l ≤ k, t �= l,
pevalt(g, e[Q ← Qj

t ]) ∧pevall(g, e[Q ← Qj
l ])= 0. Hence, for every 1 ≤

t, l ≤ k, t �= l, Qj+1
t ∧Qj+1

l = 0.

This completes the proof of the lemma Q.E.D.

7. f = νQ.g, a greatest fixpoint formula: The proof for this case is almost identical to
the previous one. The only change should be made to the definition of Q0

i in the state-
ment of the lemma, so that Q0

i = Wi. The proof of the second bullet in the base case
should be changed accordingly. This completes the proof. Q.E.D.

86



7.5 Scalable Distributed Pre-image Computation

The main goal of our distributed algorithm is to reduce the memory requirement of the
symbolic model checking operations. In symbolic model checking, pre-image is one of
the operations with the highest memory requirement. Given a set of states S, pre-image
computes pred(S) (also denoted by EX S in μ-calculus), which is the set of all predeces-
sors of states in S. The pre-image operation can be described by the formula pred(S) =
∃s′[R(s, s′) ∧ S(s′)]. It is easy to see that the memory requirement of this operation grows
as the sizes of the transition relation R and the set S grow. Furthermore, intermediate results
sometimes exceed the memory capacity even when pred(S) can be held in memory.

Our distributed algorithm reduces memory requirements by slicing each of the computed
sets of states. This takes care of the S parameter of a pre-image computation, but not of the
R parameter. In order to make our method scalable for very large models, we need to reduce
the size of the transition relation as well.

The transition relation consists of pairs of states. We distinguish between the source
states and the target states by referring to the latter as St′. Thus, R ⊆ St× St′.

A reduction of the second parameter of R, St′, can be achieved by applying the well-
known restriction operator [30]: Prior to any application of the pre-image computation, a
process that owns a slice Si of S reduces its copy of R by restricting St′ to Si. Since
pre-image operations are applied to different sets during model checking, this reduction is
dynamic.

We further reduce R by adding a static slicing of St according to (possibly different)
window functions U1, . . . , Um. The slicing algorithm of Section 7.2.2 can be used to produce
U1, . . . , Um, so that R is partitioned to m slices of similar size. Each slice Rj is a subset
of (St ∩ Uj) × St′. Since R does not change during the computation, U1, . . . , Um do not
change either.

Having k window functions W1, . . . ,Wk for S and m window functions U1, . . . , Um for
R, we use k × m processes. All processes (i, 1), (i, 2), . . . , (i,m) have the same Wi and
hence own the same Si = S ∧Wi. However, these processes have a different Ul. Process
(i, l) with Wi and Ul computes the pre-image of Si by predj(Si) = ∃s′[Rl(s, s

′) ∧ Si(s
′)].

Figure 7.5 above demonstrates a pre-image computation using a sliced transition relation
with k = 2 and m = 3. Given a set S sliced into S1, S2 according to W1,W2 respectively,
the pre-image of S1 is computed by three processes. Each process uses a different slice of
the transition relation, R1, R2 and R3, according to U1, U2 and U3.

87



7.5.1 Model Checking Algorithm with Sliced Transition Relation

The algorithm parevalstr(f, e) is similar to peval, but uses a sliced transition relation.
Formulas not in the form of EXg do not use the transition relation. The algorithm works
the same way as peval does on these formulas, using one process (i, 1) for each window
function Wi. The exch algorithm and the ldBlnc algorithm work only with the relevant
processes (1, 1),(2, 1),. . .,(k, 1).

A formula in the form EXg is evaluated by first using the processes (1, 1),(2, 1),. . .,(k, 1)
to evaluate g. Then each process (i, 1) broadcasts its copy of gi to the processes (i, 2),. . .,(i,m).
Each process (i, l) computes the pre-image of gi using Rl. Finally, the processes use the al-
gorithm exchstr (given in Figure 7.4) to complete the evaluation and update the processes
(1, 1),(2, 1),. . .,(k, 1).

functionexchstr(S,< uId, wId >)
1 for all 1 ≤ i ≤ k
2 sendto(< i, 1 >,S ∧Wi)
3 if uId �= 1 return 0

/* uId = 1 */
4 res= ∅
5 for all 1 ≤ l ≤ m
6 for all 1 ≤ i ≤ k
7 res= res∨receivefrom(< i, l >)
8 return res
end function

Figure 7.4: Pseudo–code for exchanging non-owned states after pre-image computation
using the sliced transition relation

The method suggested in this section applies slicing to the full transition relation if it
can be held in memory but is too big to enable a successful completion of the pre-image
operation. However, the given transition relation is often partitioned, i.e., it is given as a
set of small relations Nl, each defining the value of variable vl in the next states. The size
of the partitioned transition relation is usually small; therefore it can be constructed by one
process and then sliced using the algorithm suggested in [55]. In this case, model checking
is done directly with the partitioned transition relation [16].

7.5.2 Distributed Construction of the Sliced Full Transition Relation

In this section we consider cases in which the full transition relation R is a conjunction
of all Nl. We consider cases where either the size of R or intermediate results during its
construction cannot fit into the memory of a single process.

Our goal is to construct slices Rj of R, with none of the processes ever holding R.
One process starts the construction by computing the conjunction of partitions Nl gradually,

88



until a threshold is reached. The current (partial) transition relation is then sliced among
the processes, using the slicing algorithm. Each process continues to conjunct the partitions
that have not yet been handled, until all partitions are conjuncted. During the conjunction,
further slicing or balancing are applied so that the final slices are balanced.

7.5.3 Correctness of the Algorithm with a Sliced Transition Relation

In this section we prove the correctness of the distributed algorithm parevalstr. Theo-
rem 3 proves that the output of the distributed algorithm parevalstr and the output of
the distributed algorithm peval are equal. In the proof that follows we need the following
definition.

Definition 9: [Sliced Transition Relation] A transition relation R corresponds to a sliced
transition relation R1, . . . , Rm if and only if for every 1 ≤ l ≤ m, Rl = R ∧ Ul, where
U1, . . . , Um is a complete set of window functions.

Theorem 3 (Correctness with Sliced Transition Relation) Let f be a μ–calculus formula
and let R be a transition with the corresponding sliced transition relation R1, . . . , Rm. In
addition, let e1, . . . ek be a distributed environment, e′i be the environment when pevali(f, ei)
terminates, and e′′i be the environment when parevalstri,1(f, ei) terminates. Then, e′i =
e′′i and pevali(f, ei)= parevalstri,1(f, ei).

From Theorem 3 and Theorem 1 we can conclude that the union over the parts evaluated by
all processes for a function f is equal to the entire set evaluated by the sequential algorithm.

Proof: We prove the theorem by induction on the structure of f .
parevalstri,1(f, ei) works the same way as pevali(f, ei) does for all formulas except
those of the form EXg. Therefore it is enough to prove the theorem only for formulas in the
form EXg.
Base: f = p for p ∈ AP . Immediate, since not EXg.
Induction:
f = EX g: parevalstri,l(EXg, ei) evaluates the set of all predecessors of states in
parevalstri,1(g, ei), using the transition relation Ri. The set of all predecessors si,l can
be represented by the formula ∃t[(s, t) ∈ Ri∧ t ∈ parevalstri,1(g, ei)]. Then each process
runs exchstr(si,l, i, l) and places the results in s′i,l. The result in processes (wId, 1) is as
follows:

s′wId,1 =
m∨

l=1

k∨
i=1

si,l ∧ wi

The above formula is therefore identical to:

wi ∧
m∨

l=1

k∨
i=1

∃t
[
(s, t) ∈ Rl ∧ t ∈ parevalstri,1(g, ei)

]
.

Since disjunction and existential quantification are commutative, the above formula is iden-
tical to

wi ∧ ∃t
[

k∨
i=1

(s, t) ∈ (
m∨

l=1

Rl) ∧ t ∈ parevalstri,1(g, ei)

]
.

89



Since Rl are sliced transition relations, the above formula is identical to:

wi ∧ ∃t
[
(s, t) ∈ R ∧ t ∈

k∨
i=1

parevalstri,1(g, ei)

]
.

By the induction hypothesis, parevalstri,1(g, ei) = pevali(g, ei). Thus, the set
returned by process (i, 1) is identical to

wi ∧ ∃t
[
(s, t) ∈ R ∧ t ∈

k∨
i=1

pevali(g, ei)

]
.

The last expression is identical to:

wi ∧ pevali( EX g, ei).

Lemma 1 ensures that the set returned by procedure exch(pevali(EXg, ei)) is identical to
the above formula, and thus parevalstri,1(EXg, ei) = pevali(EXg, ei).
This completes the proof. Q.E.D.

7.6 Scalability

A distributed algorithm is scalable if it remains effective for large problems when running
on a large number of nodes. The main factors that influence scalability are the memory
requirement of the algorithm at each node and the communication volume. If the mem-
ory requirement at each node decreases as the number of nodes grows, the algorithm can
probably handle larger problems by using a large number of nodes.

Our experience in previous work [42, 11] indicates that the bandwidth of the current
standard network allows systems with a few dozen nodes to work effectively, and commu-
nication does not become a bottleneck. A very large network will need to handle larger
communication volume.

There are two sources for the memory requirements of the algorithm: the memory re-
quired from each node to store the sets and the memory required to compute the image of a
single set. Since each set is distributed evenly among the nodes by the ldBlnc procedure,
the memory requirement from each node is expected to be balanced. Therefore, the memory
required by each node is expected to decrease when the number of nodes increases.

The memory requirement for computing the image of a set depends on the set size.
Since computation is applied to a balanced set, the size of each subset decreases linearly to
the number of nodes. Therefore, the memory requirement for the computation is expected
to decrease when the number of nodes increases.

The algorithm works bottom up through the formula, evaluating each subformula based
on the value of its own subformulas. It evaluates each subformula using a number of nodes
that work in parallel. However, the evaluation is synchronized by the call to the ldBlnc,
exch and exchnot procedures. The evaluation takes a constant number of operations

90



for all the operators except fixpoint. Lemma 2 proves that the distributed algorithm takes
the same number of steps for fixpoint operators as the sequential. Therefore, we conclude
that the complexity of the distributed algorithm is the same as in the sequential case. The
complexity of evaluating a formula depends only on the number of alternations d of the least
and greatest fixpoints [34]. A sequential [34, 49] algorithm requires nd steps where n is the
number of states in the transition system.

Our algorithm requires several standard machines, each consisting of local processors
and local memory. The communication between the machines consists of a standard ether-
net. The algorithm can be implemented using the MPI standard [35]. Therefore, it does not
require any special architecture.

91



Chapter 8

Conclusions and Future Work

This work presents a distributed algorithm for symbolic reachability analysis that improves
significantly on previous works. Its adaptability to any network size and its high utilization
of network resources make it suitable for solving very large verification problems.

The experimental environment that is used to evaluate our new algorithm currently con-
sists of NuSMV and the newly introduced Division system. Division is a new platform for
distributed symbolic model checking research, featuring a high-level generic interface to
“external” model checkers.

Currently, Division is in the final stages of interfacing with Intel’s high-performance
model checker Forest. We thus expect our results to improve substantially and to become
better in the near future. In addition, the algorithm exhibits additional promising features,
to be studied in depth in our future work.

1. Different variable orders for different workers may lead to high – even super linear
– gains in reductions in memory requirement. However, transforming a BDD from
one order to another may result in a memory overflow. With the new algorithm, if an
overflow occurs while exchanging BDDs the exchange is halted and the owned state
space is split. Then the exchange can resume.

2. We expect the new algorithm to execute on very large, possibly non-dedicated net-
works. Further study is required, however, because, in such unstable environments,
machines may frequently crash and recover.

3. The algorithm can run on a network of heterogeneous machines, by setting different
thresholds and parameters for different machines according to their characteristics.

4. The work efficient algorithm requires less synchronization than the one in Chapter ??.
It is a first step towards a fully asynchronous algorithm, mandatory for obtaining high
speedups.

5. If the number of processes in the network is very large the coordinators can be imple-
mented distributively by several processes.

92



6. Resuming image computation after splitting, from the point at which it stopped, is a
novel technique that saves time as well as space. We believe that this technique will
prove to be useful also for non distributed implementations in which the computation
of reachable states is partitioned (e.g. [36, 5, 60]).

93



Bibliography

[1] A. Aziz, S. Tasiran, and R.K. Brayton. BDD Variable Ordering for Interacting Finite State
Machines. In 31st ACM/IEEE Design Automation Conference (DAC), San Diego, CA, June
1994. San Diego Convention Center.

[2] N. Amla, R. Kurshan, K. McMillan, and Medel R. K. Experimental Analysis of Different
Techniques for Bounded Model Checking. In Conference on Tools and Algorithms for the
Construction and Analysis of Systems (TACAS’03), LNCS, Warsaw, Poland, 2003.

[3] T. E. Anderson, D.E Culler, and D. A. Patterson. A Case for NOW:Network of Workstations.
Technical report, 1994.

[4] R. Armoni, L. Fix, A. Flaisher, R. Gerth, B. Ginsburg, T. Kanza, A. Landver, S. Mador-Haim,
E. Singerman, A. Tiemeyer, M.Y. Vardi, and Y. Zbar. The ForSpec Temporal Logic: A New
Temporal Property-Specification Language. In International Conference on Tools and Algo-
rithms for Construction and Analysis of Systems. Springer-Verlag, 2002.

[5] S. Barner and O. Grumberg. Combining symmetry reduction and upper-approximation for
symbolic model checking. In Proc. of the 14th International Conference on Computer Aided
Verification, LNCS, 2002.

[6] J. Baumgartner and T. Heyman. An Overview and Application of Model Reduction Techniques
in Formal Verification. In IEEE International Perfomance, Computing, and Communications
Conference, pages 165–171, 1998.

[7] I. Beer, S. Ben-David, C. Eisner, D. Fisman, A. Gringauze, and Y. Rodeh. The Temporal
Logic Sugar. In Proc. of the 13th International Conference on Computer Aided Verification.
Springer-Verlag, June 2001.

[8] I. Beer, S. Ben-David, C. Eisner, and A. Landver. Rulebase: An Industry-Oriented Formal
Verification Tool. In 33rd Design Automation Conference, pages 655–660, 1996.

[9] I. Beer, S. Ben-David, and A. Landver. On-the-Fly Model Checking of RCTL Formulas. In
Proc. of the 10th International Conference on Computer Aided Verification, LNCS 818, pages
184–194, 1998.

[10] S. Ben-David, O. Grumberg, T. Heyman, and A. Schuster. Scalable Distributed On-the-Fly
Symbolic Model Checking. Software Tools for Technology Transfer, 4(4):496–504, November
2003.

94



[11] S. Ben-David, T. Heyman, O. Grumberg, and A. Schuster. Scalable Distributed On-the-
Fly Symbolic Model Checking. In Third International Conference on Formal methods in
Computer-Aided Design (FMCAD’00), LNCS, Austin, Texas, November 2000.

[12] G. Bhat, R. Cleaveland, and O. Grumberg. Efficient On-the-Fly Model Checking for CTL*. In
Proc. of the Conference on Logic in Computer Science (LNCS’95), June 1995.

[13] A. Biere, A. Cimatti, E.M. Clarke, and Y. Zhu. Symbolic Model Checking Without BDDs. In
Tools and Algorithms for the Construction and Analysis of Systems, 5th International Confer-
ence, TACAS’99, LNCS 1579, 1999.

[14] A. D. Birrell and B. J. Nelson. Implementing Remote Procedure Calls. In Proceedings of the
ACM Symposium on Operating System Principles, page 3, Bretton Woods, NH, 1983. Associ-
ation for Computing Machinery.

[15] R. E. Bryant. Graph-based Algorithms for Boolean Function Manipulation. IEEE Transactions
on Computers, C-35(8):677–691, 1986.

[16] J. R. Burch, E. M. Clarke, and D. E. Long. Symbolic model checking with partitioned transi-
tion relations. In A. Halaas and P. B. Denyer, editors, Proceedings of the 1991 International
Conference on Very Large Scale Integration, August 1991.

[17] J.R. Burch, E.M. Clarke, K.L. McMillan, D.L. Dill, and L.J. Hwang. Symbolic model checking:
1020 states and beyond. Information and Computation, 98(2):142–171, June 1992. Special
Issue: Selections from 1990 IEEE Symposium on Logic in Computer Science.

[18] Olaf Burkart and Bernhard Steffen. Model Checking for Context-free Processes. LNCS 630,
pages 123–137. Springer, 1992.

[19] Olaf Burkart and Bernhard Steffen. Pushdown Processes: Parallel Composition and Model
Checking. LNCS 836, pages 98–113. Springer, 1994.

[20] Kenneth M. Butler, Don E. Ross, Rohit Kapur, and M. Ray Mercer. Heuristics to Compute
Variable Orderings for Efficient Manipulation of Ordered Binary Decision Diagrams. In ACM-
SIGDA; IEEE, editor, Proceedings of the 28th ACM/IEEE Design Automation Conference,
pages 417–420, San Francisco, CA, June 1991. ACM Press.

[21] G. Cabodi, P. Camurati, and S. Quer. Improved Reachability Analysis of Large FSM. In
Proceedings of the IEEE International Conference on Computer Aided Design, pages 354–360.
IEEE Computer Society Press, June 1996.

[22] G. Cabodi, P. Camurati, and S. Quer. Improving the Efficient of BDD-Bsaed Operators by
Means of Partitioning. IEEE Transactions on Computer-Aided Design, pages 545–556, May
1999.

[23] A. Cimatti, E.M. Clarke, F. Giunchiglia, and M. Roveri. NUSMV: a new Symbolic Model Ver-
ifier. In N. Halbwachs and D. Peled, editors, Proceedings Eleventh Conference on Computer-
Aided Verification (CAV’99), LNCS 1633, pages 495–499, Trento, Italy, 1999.

95



[24] E. Clarke, O. Grumberg, K. McMillan, and X. Zhao. Efficient Generation of Counterexamples
and Witnesses in Symbolic Model Checking. In 32rd Design Automation Conference, pages
655–660, 1995.

[25] E. M. Clarke, E. A. Emerson, and A. P. Sistla. Automatic Verification of Finite-State Concur-
rent Systems using Temporal Logic Specifications. In Proceedings of the Tenth Annual ACM
Symposium on Principles of Programming Languages, January 1983.

[26] E. M. Clarke, O. Grumberg, and D. E. Long. Model Checking and Abstraction. ACM Transac-
tions on Programming Languages and Systems (TOPLAS), 16, 5:1512–1542, September 1994.

[27] E.M. Clarke, T. Filkorn, and S. Jha. Exploiting Symmetry in Temporal Logic Model Checking.
In C. Courcoubetis, editor, Proc. of the Fifth International Conference on Computer Aided
Verification, LNCS 697, Crete, 1993.

[28] E.M. Clarke, O. Grumberg, and D.A. Peled. Model Checking. MIT press, December 1999.

[29] R. Cleaveland. Tableau-Based Model Checking in the Propositional μ-calculus. Acta Informat-
ica, 27:725–747, 1990.

[30] O. Coudert, J. C. Madre, and C. Berthet. Verifying of Synchronous Sequential Machines Based
on Symbolic Execution. In J. Sifakis, editor, Workshop on Automatic Verification Methods for
Finite State Systems, pages 365–373. Springer-Verlag, Grenoble, France, 1989.

[31] Olivier Coudert, Jean C. Madre, and Christian Berthet. Verifying Temporal Properties of Se-
quential Machines without Building Their State Diagrams. In R. Kurshan and E. M. Clarke, ed-
itors, Workshop on Computer Aided Verification, DIMACS, LNCS 531, pages 23–32. Springer-
Verlag, New Brunswick, NJ, June 1990.

[32] C. Courcoubetis, M. Vardi, P. Wolper, and M. Yannakakis. Memory Efficient Algorithms for
the Verification of Temporal Properties. Formal Methods in System Design, 1:275–288, 1992.

[33] E. Emerson and A. P. Sistla. Symmetry and Model Checking. In C. Courcoubetis, editor, Proc.
of the Fifth International Conference on Computer Aided Verification, LNCS 697, Crete, 1993.

[34] E. A. Emerson and C.-L. Lei. Efficient Model Checking in Fragments of the Propositional Mu-
calculus. In Proceedings of the First Annual Symposium on Logic in Computer Science. IEEE
Computer Society Press, June 1986.

[35] Message Passing Interface Forum. MPI: A Message-Passing Interface standard. The Interna-
tional Journal of Supercomputer Applications and High Performance Computing, 8, 1994.

[36] R. Fraer, G. Kamhi, B. Ziv, M.Y. Vardi, and L. Fix. Prioritized Traversal: Efficient Reachability
Analysis for Verification and Falsification. In Proc. of the 12th International Conference on
Computer Aided Verification, LNCS, 2000.

[37] D. Geist and I. Beer. Efficient Model Checking by Automated Ordering of Transition Relation
Partitions. In Proc. of the Sixth International Conference on Computer Aided Verification,
LNCS 818, pages 299–310, 1994.

96



[38] O. Grumberg, A. Heyman, T. Heyman, and A. Schuster. Division System: A
General Platform for Distributed Symbolic Model Checking Research, 2003.
http://www.cs.technion.ac.il/Labs/dsl/projects/division web/division.htm.

[39] O. Grumberg, T. Heyman, and A. Schuster. Distributed Model Checking for μ-calculus. In
Proc. of the 13th International Conference on Computer Aided Verification, LNCS, 2001.

[40] O. Grumberg, T. Heyman, and A. Schuster. A Work-Efficient Distributed Algorithm for Reach-
ability Analysis. In Proc. of the 15th International Conference on Computer Aided Verification,
LNCS, 2003.

[41] T. Heyman, D. Geist, O. Grumberg, and A. Schuster. Achieving Scalability in Parallel Reach-
ability Analysis of Very Large Circuits. In Proc. of the 12th International Conference on
Computer Aided Verification, LNCS, 2000.

[42] T. Heyman, D. Geist, O. Grumberg, and A. Schuster. Achieving Scalability in Parallel Reach-
ability Analysis of Very Large Circuits. Formal Methods in System Design, 21(2):317–338,
November 2002.

[43] J.E. Hopcroft and J. Ullman. Introduction to Automata Theory, Languages and Computation.
Addison Wesely, 1979.

[44] J. Jain, W. Adams, and M. Fujita. Sampling schemes for computing variable orderings. In
Proceedings of the IEEE International Conference on Computer-Aided Design, pages 631–638.
IEEE Computer Society Press, 1998.

[45] J. Jain, J. Bitner, J.A. Abraham, and D.S. Fussel. Functional Partitioning for Verification and
Related Problems. In Proc. Brown/MIT VLSI Conference, pages 210–226, March 1992.

[46] S. Kimura and E.M. Clarke. Parallel Algorithms for Constructing Binary Decision Diagrams.
In Proc. of the International Conference on Computer Design, pages 220–223, 1990.

[47] D. Kozen. Results on the propositional μ-calculus. TCS, 27, 1983.

[48] O. Lichtenstein and A. Pnueli. Checking that Finite State Concurrent Programs Satisfy their
Linear Specification. In Proceedings of the Twelfth Annual ACM Symposium on Principles of
Programming Languages, pages 97–107, January 1985.

[49] D. Long, A. Browne, E. Clark, S. jha, and W. Marrero. An Improved Algorithm for the Eval-
uation of Fixpoint Expressions. In Proc. of the Sixth International Conference on Computer
Aided Verification, LNCS 818, pages 338–350, 1994.

[50] D. E. Long. Model Checking, Abstraction, and Compositional Reasoning. PhD thesis, Carnegie
Mellon University, 1993.

[51] M. Matsuura, T. SASAO, J. T. Butler, and Y. Iguchi. Bi-Partition of Shared Binary Decision
Diagrams. IEICE Transaction fundamentals, E85-A(12):2693–2700, 2002.

[52] K. L. McMillan. Symbolic Model Checking: An Approach to the State Explosion Problem.
Kluwer Academic Publishers, 1993.

97



[53] M. R. Mercer, R. Kapur, and D. E. Ross. Functional approaches to generating orderings for ef-
ficient symbolic representations. In Proceedings of the 29th Conference on Design Automation,
pages 624–627, Los Alamitos, CA, USA, June 1992. IEEE Computer Society Press.

[54] H. Miller and S. Katz. Saving Space by Fully Exploiting Invisible Transitions. In Proc. of the
8th International Conference on Computer Aided Verification,LNCS, pages 336–347, 1996.

[55] A. Narayan, A. Isles, J. Jain, R. Brayton, and A. L. Sangiovanni-Vincentelli. Reachability
Analysis Using Partitioned-ROBDDs. In Proceedings of the IEEE International Conference on
Computer Aided Design, pages 388–393. IEEE Computer Society Press, June 1997.

[56] A. Narayan, J. Jain, M. Fujita, and A. L. Sangiovanni-Vincentelli. Partitioned-ROBDDs. In
Proceedings of the IEEE International Conference on Computer Aided Design, pages 547–554.
IEEE Computer Society Press, June 1996.

[57] Doron Peled. Combining Partial Order Reductions with On-The-Fly Model Checking. In Proc.
of the Sixth International Conference on Computer Aided Verification, LNCS 818, pages 377–
390, 1994.

[58] J.P. Quielle and J. Sifakis. Specification and Verification of Concurrent Systems in CESAR. In
Proceedings of the Fifth International Symposium in Programming, 1981.

[59] R. K. Ranjan, J. V. Sanghavi, R. K. Brayton, and A. Sangiovanni-Vincentelli. Binary Deci-
sion Diagrams on Network of Workstations. In IEEE International Conference on Computer
Design, October 1996.

[60] K. Ravi and F. Somenzi. High-density reachability analysis. In Proceedings of the IEEE
International Conference on Computer Aided Design, pages 154–158, November 1995.

[61] R. Rudell. Dynamic Variable Ordering for Ordered Binary Decision Diagrams. In Intl. Conf.
on Computer Aided Design, Santa Clara, Ca., November 1993.

[62] S. Panda and F. Somenzi. Who are the Variables in Your Neighbourhood. In IEEE /ACM
International Conference on CAD, pages 74–77, San Jose, California, 1995. ACM/IEEE, IEEE
Computer Society Press.

[63] S. Panda, F. Somenzi, and B.F. Plessier. Symmetry Detection and Dynamic Variable Ordering
of Decision Diagrams. In IEEE /ACM International Conference on CAD, pages 628–631, San
Jose, California, November 1994. ACM/IEEE, IEEE Computer Society Press.

[64] Ulrich Stern and David L. Dill. Parallelizing the Murphy Verifier. In Proc. of the 9th Interna-
tional Conference on Computer Aided Verification, LNCS 1254, pages 256–267, 1997.

[65] C. Stirling and D. J. Walker. Local Model Checking in the Model Mu-Calculus. In Proc. of the
1989 Int. Joint Conf. on Theory and Practice of Software Development, 1989.

[66] A. Tarski. A lattice-Theoretical Fixpoint Theorem and its Applications. Pacific J. Math, 5:285–
309, 1955.

[67] H. Toutai, H. Savoj, B. Lin, R. Brayton, and A. Sangiovanni-Vincetelli. Implicit State Enu-
meration of Finite State Machines using BDD’s. In Proceedings of the IEEE International
Conference on Computer-Aided Design, pages 130–133. IEEE Computer Society Press, 1990.

98



[68] A. Valmari. A stubborn attack on the state explosion problem. In Auto/Autograph, New
Brunswick, 1990.

[69] G. Winskel. Model Checking in the Modal μ-calculus. In Proceedings of the Sixteenth Inter-
national Colloquium on Automata, Languages, and Programming, 1989.

99


