Bounded Model Checking of Concurrent
Programs

Ishai Rabinovitz!}? and Orna Grumberg?!

! Technion - Israel Institute of Technology
2 IBM Haifa Research Laboratory, Haifa, Israel
ishai@il.ibm.com orna@cs.technion.ac.il

Abstract. We propose a SAT-based bounded verification technique,
called TCBMC, for threaded C programs. Our work is based on CBMC,
which models sequential C programs in which the number of executions
for each loop and the depth of recursion are bounded.

The novelty of our approach is in bounding the number of context
switches allowed among threads. Thus, we obtain an efficient modeling
that can be sent to a SAT solver for property checking. We also sug-
gest a novel technique for modeling mutexes and Pthread conditions in
concurrent programs. Using this bounded technique, we can detect bugs
that invalidate safety properties. These include races and deadlocks, the
detection for which is crucial for concurrent programs.

1 Introduction

In recent years there have been two main trends in formal verification. The first
is that SAT-based Bounded Model Checking (BMC) [2] has become the leading
technique for model checking of hardware. BMC constructs a propositional for-
mula describing all possible executions of the system of length &, for some bound
k. This formula, conjuncted with the negation of the specification, is fed into a
SAT solver. If the formula is satisfied, the specification is violated.

The second trend is that software verification using formal methods has be-
come an active research area. Special attention is given to verification of con-
current programs, in which testing tools often fail to find bugs that are revealed
only with very specific inputs or timing windows.

However, adopting the BMC technique for software causes a severe problem.
This technique is sensitive to the length of the error trace, i.e., the number
of execution steps until an error state is reached. In software, error traces are
typically quite long, and therefore a large bound k is needed. This, in turn,
may result in a propositional formula that is too large to be handled by a SAT
solver. Ivancic et al. [6] try to shorten the trace length by compressing multiple
statements within one basic block into one complex statement. However, the
resulting traces may still be too long.

C-Bounded Model Checking (CBMC) [4] presents a different approach to
utilizing a SAT solver in order to verify software. CBMC translates a program
with no loops and no function calls into single assignment form (SSA form). In
this form, variables are renamed so that each variable is assigned only once. As
a result there is no need for a notion of state. Such a program can be viewed as a

set of constraints and solved using a SAT solver. This technique is less sensitive
to the length of a trace.

CBMC can also deal with pointers, arrays, and real size integers rather than
just their restricted abstractions. This distinguishes it from other model checkers,
which use abstractions in order to cope with size problems. Still, most if not
all interesting programs include functions and loops. CBMC handles this by
bounding the number of times each loop may be executed and unwinding the
loop to this bound. It is then possible to inline function calls and even handle
recursion (after bounding its depth as well). As in ordinary Bounded Model
Checking, the bounds over the loops can be increased iteratively until a bug is
found or the SAT solver explodes.

Each variable in a bounded program has a bounded number of assignments
that can be indexed statically in an increasing order. CBMC translates the pro-
gram in such a way that each indexed assignment is to a fresh variable, yielding
a program in SSA form. This is very simple for sequential programs and was
proven effective for some real-life examples [7].

However, it is not straightforward to extend this approach to concurrent pro-
grams. This is because it is not possible to index assignments to global variables
statically. When there are assignments in two different threads to the same global
variable, we cannot determine the order in which they will be executed.

In this paper we propose an extension of CBMC to concurrent C programs,
called TCBMC (Threaded-C Bounded Model Checking). Concurrent C programs
have shared memory and several threads that run concurrently. Each thread has
its own local variables, whereas global variables are shared. Only one thread is
executed at any given time, until, after an unknown period, a context switch
occurs and another thread resumes its execution (see Figure 2). A set of con-
secutive lines of code executed with no intervening context switch is called a
context switch block.

To obtain a bounded concurrent C program, TCBMC bounds the number
of allowed context switches. This strategy is reasonable since most bug patterns
have only a few context switches [5]. For each context switch block ¢ and each
global variable x, TCBMC adds a new variable val_z;, which represents the value
of = at the end of block i. It then models the concurrent program in SSA form,
where the value of x in block 7 + 1 is initialized to val_z;.

The technique of bounding the number of context switches was independently
suggested in [8], However [8] uses this idea on Boolean programs using pushdown
automata.

Next we show how synchronization primitives such as mutexes and conditions
can be modeled efficiently within TCBMC. We present a novel approach which,
instead of modeling the internal behavior of a mutex, eliminates all executions in
which a thread has waited for a mutex to unlock. We show that any bug which
can be found in the naive model will also be found in our reduced model.

Our approach to modeling synchronization primitives is general, and as such,
it is applicable to explicit and BDD-based symbolic model checkers as well.
There, it decreases the number of interleavings and hence gains efficiency.

We next suggest how the TCBMC model can be altered to detect synchro-
nization bugs such as races and deadlocks. Different extensions to the model are
needed for each one. Thus, it will be more efficient to apply TCBMC three times:
for detecting “regular” bugs, races, and deadlocks.

We implemented a preliminary version of TCBMC. This version supports
only two threads. It supports mutexes and conditions, but it cannot detect dead-
locks. Preliminary experiments show that TCBMC can handle a real represen-
tation of integers and that it performs well for data-dependent bugs.

The rest of this paper is organized as follows. The next section presents
the preliminaries and explains CBMC. Section 3 presents TCBMC. Section 4
extends TCBMC to model mutexes and conditions. Section 5 describes another
extension of TCBMC that allows for detection of races and deadlocks. Section
6 presents our experiments with TCBMC, and Section 7 outlines future work.

2 Preliminaries

A statement uses a variable when it reads its value, and it defines a variable
when it writes a value to it. A statement accesses a variable when it either uses
it or defines it.

In this paper we consider a concurrent program to be a program with several
threads that share global variables. An execution of such a program starts to
execute statements from a certain thread, after which it performs a context
switch and continues to execute statements from another thread. It keeps track
of the last statement executed in each thread and, when performing a context
switch back to this thread, it continues the execution from the next statement.

A statement is wvisible if it accesses a global variable!', and it is invisible
otherwise. A wisible block is a block of consecutive lines in which only the first
statement is visible. A statement is atomic if no context switch is allowed during
its execution. A sequence of consecutive statements is atomic if each statement
is atomic and no context switch is allowed between them.

The assert function receives a Boolean predicate that should evaluate to True
in all executions. Evaluation of assert to False indicates a bug in the program.

In this paper x and z; are global variables, and y, y;, w, w;, z and z; are
local variables.

2.1 CBMUC: C-Bounded Model Checking

CBMC [4] is a tool that gets a C program and an integer bound. It trans-
lates the program into a bounded program by unrolling each loop to the given
bound, inlining functions (bounding also the number of recursion calls with the
given bound). CBMC then takes the bounded C program and generates a set of
constraints. There is a one-to-one mapping from the possible executions of the
bounded program to the satisfying assignments of the set of constraints.
CBMC automatically generates cleanness specifications such as no access to
dangling pointers, no access out of array bounds, and no assert violations. It adds
a constraint which requires that one of these specifications be violated. It then

1 A local variable that can be pointed by a global pointer is considered to be global
for this definition

activates a SAT solver over these constraints. If it finds a satisfying assignment
to all the constraints, then it follows that there exists a valid execution that
violates one of the specifications.

CBMC generates the constraints by translating the code to SSA form, in
which each variable is assigned no more than once. To this aim CBMC generates
several copies of each variable, indexed from zero to the number of assignments
to this variable.

Each statement in a C program is executed only if all the “if” conditions
that lead to it are evaluated to True. In order to reflect this in the generated
constraint, CBMC also has several guard variables. Each guard variable is as-
sociated with the conjunction of all the conditions in the “if”s that lead to a
certain statement in the code (If the statement is in the “else” clause of an “if”
condition, the negation of the condition is used). Note that several statements
may have the same guard.

CBMC is best understood by example. Assume CBMC gets the following C
program with bound two.

T =3
while (x> 1){
if (%2==0) x=2x/2;
else r=3xx+1;

It first unrolls the loop, resulting in the program in Figure 1(a). It also adds
an assert that ensures sufficient unrolling (This assert will fail in our example).
Figure 1(b) presents the constraints representing this bounded code. Consider
Constraint (3). It describes the behavior of Line (4) in the bounded code. This is
the second assignment to x and therefore the constraint is on z;. This statement
is executed only if the two “if”s leading to it are True, i.e, guards is True. The
constraint presents the following behavior: if guards is True, then x; = z¢/2;
otherwise (the statement is not executed) x1 = x¢ (z does not change).

(1) z=3; (0) zo=3
(2) if (z>1)} (1) guard; =z > 1
(3) if (%2 ==0) (2) guards = guard; & zo%2 ==10
(4) T =ux/2; (3) z1 = (guard2?z0/2 : o)
(5) else x=3xx+1; (4) guards = guard, & (zo%2 == 0)
(6) if(x > 1){ (5) x2 = (guards?3xx1+1:x1)
(7) if (x%2==0) (6) guards = guardy & x2 > 1
(8) x=2x/2; (7) guards = guards & z2%2 == 0
9) else ©=3xx+1; (8) =3 = (guards?z2/2 : x2)
(10) assert(z <=1); (9) guards = guards & (z2%2 == 0)
(11) } (10) z4 = (guards?3 * x3 + 1 : x3)
(12) } Specification: !(z4 <= 1)

(a) Bounded C code (b) Constraints

Fig. 1. Translation from bounded code to constraints
As mentioned previously, CBMC supports the assert function and detects
bugs in which an assert is violated. CBMC also supports the assume function.
This function informs CBMC that all legal executions of the program must

satisfy a certain constraint. Assume is the opposite of assert in the sense that
when the constraint does not hold in a certain execution, CBMC ignores this
execution without complaining.

Pointers and Arrays In CBMC, every assignment to a dereference of a pointer
is actually instantiated to several assignments, one for each possible value of the
pointer. The instantiations are limited to values that the pointer might have
gotten in the previous assignments. Here is the code for the statement *xp; = 3;
where the indexes are for a possible program in which this statement appears.

x12 = (p == &x)?3 : 211
yr = (p == &y)?3 : ye;
z4 = (p==&2)73: z3;

Every assignment to an array cell is treated similarly, by instantiating it for
each possible value of the array index. Statements that include the use of a
dereference of a pointer or of an array cell are treated in a similar manner.

Since the program is bounded, the number of malloc calls is bounded as well.
CBMC treats each allocated memory as a regular global variable. CBMC also
supports pointer arithmetic inside array bounds.

3 Bounded Model Checking for Concurrent C Programs

In this section we describe how a concurrent program can be efficiently translated
to a set of constraints.

The main idea is to bound the number of context switches in the run while
allowing them to be anywhere in the code. We denote this bound by n. This
strategy is reasonable since most bug patterns have only a few context switches
[5]. This strategy is also consistent with the main idea of CBMC. We first present
our method for programs with two threads. Later, we describe the required
changes for more than two threads.

We note that it is possible to limit the places in which a context switch can
occur. There is no advantage in allowing a context switch before an invisible
statement [3]; allowing context switches only before visible statements decreases
the number of possible executions.

Similarly to CBMC, our goal is to translate concurrent C programs into a
set of constraints. As in CBMC, these constraints will be conjuncted with those
representing the negation of the specification, and checked for satisfiability.

The translation process consists of three stages.

Stage 1 - Preprocessing A C statement is not always executed as an atomic
statement. Consider the code generated by a compiler for a C statement of the
form z1 = x9 + x3. The generated assembly code is:

Tq = X2} Th < T3} Te < Ta+7b; T1 < T¢; | (Where each r is a register). A con-
text switch may occur between these instructions. Statements that involve at
most one global variable are not affected by this. To allow such context switches
in statements that access more than one global variable we need to break state-
ments just as a compiler does. For example, the statement z1 = x2 + x3; (in
which each z; is a global variable) is translated to the following code (in which

each y; is a new temporary local variable): ‘yl =T9; Yo =x3; X1 = Y1+Yo;
“if” and loop statements, in which the condition accesses more than one global
variable, are treated similarly. Note that the order of execution of an expres-
sion is not guaranteed under C semantics. Since we assume that this order is
consistent for a compiler, we can configure CBMC for compatibility with any
given compiler. This preprocessing can also be avoided if we are not interested
in examining such interleavings.

Stage 2 - Applying CBMC separately on each thread In this stage
the first phase of CBMC is applied on each thread, and a list of constraints
is obtained for each. We refer to this set of constraints as a template. In this
template each variable has several copies, and each copy appears only once on
the left-hand side of a constraint.

We can think of this template as either a list of constraints or as a program
in which each constraint is an assignment and each variable is assigned only
once. In the rest of this section we use the latter interpretation, and refer to the
template as being executed.

As a result of the preprocessing, this template has four types of statements:

1. An assignment of an expression defined over local variables to a local variable,
e.g., wy = (quard, Ty, * 2 : wg_1)

2. An assignment of an expression defined over local variables to a global vari-
able, e.g., xr = (quard, Y. 2 : x_1)

3. An assignment of a global variable to a local variable, e.g., y. = (guard,?xy, :
ycfl)

4. An assignment to a guard variable. The guard is local and there may be at
most one copy of a global variable on the right-hand side, e.g., guard, =
guard, _18&&x; > y.

After CBMC is applied, each variable has several copies, one for each assignment,
where z; refers to the j-th assignment to z.

We will denote by m the number of constraints in this template and enumer-
ate them from 0 to m — 1. We will use the notation ly; to refer to the number
of the constraint in which z; is assigned.

Each thread may have its own code and therefore its own template. We

translate each thread into a set of constraints. In the following description we
will refer to thread ¢. To avoid name collision, we add the prefix thread; to each
variable.
Stage 3 - Generating constraints for concurrency The main idea of this
stage is to associate with each line ! in the template a variable thread;_cs(l).
The value of this variable indicates the number of context switches that occurred
before this line was executed.

We induce the following constraints on the values of the thread;-cs(l) vari-
ables:

— Monotonicity: The value of thread;_cs must increase monotonically:
Vo<i<m—1 thread;-cs(l) < thread-cs(l +1). 2

2 Our implementation of the tool is more efficient: When two lines are in the same
visible block (the assignment in line [+ 1 is invisible), the constraint can be

— Interleaving bound: There is a bound on the number of context switches. If
the bound is n, then the maximum value of thread;_cs is n. This is described
as follows: threadi-cs(m —1) <n

— Parity: Each context switch changes the thread that runs. Having only two
threads (see extension at the end of Section 3), the values of thread;_cs(l)
can be restricted to be even for ¢ = 0 and odd for ¢ = 1. This is described
as follows: Vo<i<m—1 (thread,_cs(l)mod 2) = t.

Any assignment to the thread;_cs(l) variables determines a concurrent execu-
tion over the thread templates: first the block of lines for which thready_cs(l) =0
is executed, then those that have thread;_cs(l) = 1, then those that have
thready-cs(l) = 2, and so on. Figure 2 illustrates such an execution.

It will be useful to extend the definition of thread;_cs in the following manner:
thread; cs(vj) = thread;_cs(ly;). This definition maps a copy of a variable to
the value of thread; _cs(lvj), where [, is the line in which v; was assigned. Thus
thread;_cs(vj;) is the context switch block number in which v; gets its value.

csvaue Thread O csvalue Thread 1
0
0 1
0| Context Switch Block O 1
0 1 | Context Switch Block 1
0 1
2 1
2 1
2
2| Context Switch Block 2
2 3 | Context Switch Block 3
2 3
2
2 5
4 5
4 5 | Context Switch Block 5
4| Context Switch Block 4 5
4 5
4 5

Fig. 2. Context Switch Blocks

Up to this point we added the thread;_cs(l) variables that determine where
the context switches occurs. We still need to generate constraints for the values
of global variables. Because the global variables are shared among the threads,
their behavior is not fully covered by the constraints in the templates.

In order to correctly model the global variables in a concurrent program, we
define n new variables x_val; for each global variable z, and 0 < i < n. Variable
x_val; is the value of variable x at the end of the i-th context switch block. We
can think of x_val; as the thread interface. This is because in our model, threads
can influence each other only through these variables.

Before we define the constraint over z_val;, we remind the reader that z
has several copies in a template, one for each assignment. These assignments
are numbered from 0 to p — 1 (assuming p is the number of assignments to z).
The assignment to z; is in context switch block thread;_cs(z;). Note that the
template of thread zero sets x_val; for even values of i, and the template of
thread one sets z_val; for odd values of 7.

thread;_cs(l) = threadi-cs(l + 1). As a result, these two variables can become one.
In this paper we disregard this improvement for better readability.

Variable z_val; should get its value according to the last assignment that was
made to x in the i-th context switch block. If x was assigned in the i-th context
switch block, z_val; will be equal to z;, the last assignment to z in this block.
Otherwise, if there were no assignments to x in the i-th context switch block,
then x_val; preserves the value it had at the end of the previous block.

Vi s.t. 1 mod 2=t
rzwal; =for 0<j<p
if (thread,_cs(x;) ==1) A (i < thread;_cs(z;j11)))
thread;_x;
if (Vo<j<p threadi_cs(xj) # 1)
rvali_1

For simplicity we define: x_val(_y) = init_value(x), thread;_cs(x,) = n + 1.

After introducing the additional variables needed for concurrent programs
and their constraints, we are now ready to translate each statement in the tem-
plate into a constraint. We present the translation for each of the four statement
types in the template:

1. For regular statements, which do not access global variables
(e.g. y; = (quard,?(f(zk, we),yj—1), we simply add the thread prefix:
thread,y; = (thread;_guard,? f (thread;_zx, thread;-w.) : thread;-y;—1)
2. For statements of the form y; = (guard,?zy : yj_1), where y is a local
variable and x is a global variable, there are two options:
— If the assignment to zj is in the same context switch block as the as-
signment to y;, the thread prefix can simply be added.
— Otherwise, the z_val of the previous context switch block should be used.

thread,y; = if (thread;-guard,)
it (thread,_cs(y;) == thread;-cs(zy))
thread;_xy
else
x—val(threadt_cs(yj)—l)
else
thread;-y(;j1)

3. For statements that have a global variable in their left-hand side and in the
else clause of their right-hand side (e.g., z; = (guard,?f(yg, we) : zj—1),
special treatment is required for the else clause. This treatment is similar to
that given in the previous item.

thready_x; = if (thread;_guard,)
f(thread; _yy, thread; w.);
else
if (threadi_cs(x;) == thread;_cs(z;—1))
thread;_x;_1;
else
x—val(threadt_cs(xj)—l);
4. For an assignment to a guard that does not access a global variable, we
simply add the correct prefixes (as in the first item). An assignment to a
guard that uses a global variable is treated as in the second item.

Pointers and Arrays No special treatment is required to support assignments
to a pointer dereference or to a cell in an array. Such an assignment is already
instantiated into several assignments, one for each possible value, when executing
CBMC in Stage 2. Note that for concurrent programs there are more potential
values for a global pointer (or a global index of an array), since it may get its
value in another thread.

However, we do need to handle dereference of a pointer that may point to
a global variable (or a use of a global array cell). These are handled in the
preprocessing stage. Their handling is similar to that of expressions with more
than one global variable: we break the statement in two. In the first statement,
the value of the dereference of the pointer is assigned to a new local variable, y.
The second statement is a copy of the original statement, in which the value of
the dereference is replaced with y. For example, the statement vy = *p + vo; (in
which each p may point to a global variable, and each v; is a local variable) is
translated to the following code: |y = *p; v1 =y + v2; ‘

More Than Two Threads There are two options for extending this algorithm
to T threads where T' > 2: The first is to enforce a round robin among the threads
(thread 0 runs first, then thread 1, 2, ..., T-1, and then 0 again and so on). Note
that a thread might not perform any statement while running, but the number of
context switches still increases. The changes to the constraints are quite trivial.
In particular, we change the parity constraint and use mod T instead of mod 2.
This will often require a larger bound over the number of context switches.

Another option for extending TCBMC to T' threads is to add a new set of
variables: run; for 0 < i < n, where run; is the ID of the thread that runs in
the i-th context switch block. The value of run; is set by the SAT solver, and
determines the order in which the threads run. There are some changes in the
constraints, which we explain in the full version of this paper. We suggest two
methods for extending TCBMC because neither one is better than the other for
all input programs.

Note that, when threads are dynamically generated, T' can be increased it-
eratively until a bug is found or the SAT solver explodes.

4 Modeling Synchronization Primitives

Until this point the model we present enables the threads to communicate with
each other only via global variables. Concurrent programs usually use synchro-
nization primitives as well. In this section we will describe how we can efficiently
model mutexes and the Pthread condition (i.e., the wait/signal mechanism).
The modeling presented in this section interferes with deadlock detection, and
will be revisited in subsection 5.2 where deadlocks are handled. We will present
the modeling of the synchronization primitives via transformation to C code. It is
possible and sometimes even more efficient to directly create the model without
changing the C code first. In fact, our implementation actually constructs the
model directly from the original code. However, we find the current presentation
more readable and easy to understand.

10

4.1 Modeling Atomic Sections
The first primitive we model is the atomic section, which is not a real program-
ming primitive but is used to model other primitives. Atomic sections are also
useful in the verification process. If TCBMC users do not wish to allow context
switch along certain sections, they can mark these sections as atomic. This will
yield a shorter formula, which will result in a better performance of the SAT
solver.

Modeling an atomic section is very simple. We just add constraints that force
the thread;-cs values of the lines in an atomic section to be identical. Thus, no
context switch is allowed along this section.

4.2 Modeling Mutexes

Mutex is the mechanism for implementing mutual exclusion between threads.
A mutex has two states, L (locked) and U (unlocked), and at least two basic
operations: lock and unlock. Lock waits until the mutex is in U and then changes
its state to L. Unlock is applied to a mutex in state L and changes its state to
U. There are two common ways to implement the lock operation: The first is to
wait until the mutex is in state U. This is done by means of a busy wait. The
second is to move the thread to the operating system’s sleep state. The thread
will return to a ready state when the mutex returns to state U.

A naive approach may model mutexes by including one of these implementa-
tions explicitly. The result is a complicated model. In fact, this is not necessary.
Our goal is not to verify that the mutex implementation is correct; we assume it
is correct. Rather we aim at verifying the programs that use mutexes. We also
manage to avoid the main difficulty in modeling mutexes: the modeling of lock
operations when the mutex is in state L.

Before explaining how we model mutexes, we present two definitions and a
lemma that help us to explain the idea behind our method.

Two executions of a concurrent program are mutez-free-equivalent iff they
have the same states when ignoring the internal implementation of mutexes (We
consider only the state of the mutex U or L). We use the notation 7 /2, © to
indicate that m and 7’ are mutex-free-equivalent.

We define redundant-attempt as an attempt to lock a mutex that is already in
state L. A wait-free execution is an execution that has no redundant-attempts.

Lemma 1. Let P be a concurrent program. For every non-wait-free execution
m of P there is a wait-free execution w' that satisfies ™ =, 7.

In our modeling all executions are wait-free. If a thread tries to lock a mutex,
it either succeeds (the mutex is in state U) or this execution is eliminated. Fur-
thermore, all errors other than deadlock that appear in a non-wait-free execution
appear also in a mutex-free equivalent wait-free execution. Thus it is possible to
find all the errors.

We model a mutex by implementing special C functions for the lock and
unlock primitives, and translate it using CBMC. The lock function uses the
assume function. Figure 3 presents the modeling of lock and unlock. Only 1
bit is used for each mutex. In order to improve performance, we maximize the

11

atomic sections in the modeling of lock. We will continue to maximize the atomic
sections in other modelings as well.

locking_trd_id can be added to the mutex modeling to ensure that the thread
that performs the unlock operation is the same one that locked it earlier. A
bounded counter of the number of locks can also be added to support recursive
mutexes.

atomic{ atomic{
assume(xmutex == U); assert(xmutex == L);
smutexr = L; smutexr = U;
} }
(a) lock(mutex) (b) unlock(mutex)

Fig. 3. Modeling of lock and unlock in C
4.3 Modeling Conditions

A condition has 3 primitives: wait, signal and broadcast. wait(cond, mutezx)
stops the run of the thread until it is awakened by another thread’s call to signal
or broadcast. Signal(cond) awakens one of the threads that are waiting for this
condition. There is no guarantee as to which of the waiting threads will be
awakened. Broadcast awakens all the threads that are waiting for this condition.
If a signal is sent and there is no thread waiting for it, then the signal is lost;
there is no accumulation of signals. wait also receives mutex as parameter. It
needs to unlock it before stopping and lock it again before continuing (after the
thread has been awakened).

Here we model each condition cond using a vector of flags, one for each thread.
To model a wait in thread ¢ we raise the cond|[i] flag, allow context switch, and
then assume that the cond[i] is down. The idea is similar to the one we used for
mutexes; we actually eliminate all the interleavings in which this thread resumes
running before it should. To model signal, we nondeterministically choose one
raised flag and lower it. Broadcast is modeled by simply lowering all the flags.

In order to understand why this modeling is similar to that of mutexes, recall
that the wait operation can be divided into four stages:

1. Raise a flag indicating that this thread is waiting.

2. Unlock the mutex.

3. Wait for this flag to reset.

4. Lock the mutex again.
We model only wait-free executions: wait operations that do not wait in the
third stage.

Figure 4 presents the modeling of wait and signal. broadcast(cond) is simply

modeled by lowering all the flags.

atomic{ atomic{
Zﬁﬂﬁzzzﬁmad] =1 © = rand(number of threads);
’ assume(cond[i] == 1||cond == 0);
assume(cond[current thread) == 0); }cond[z] =9
lock(mutex);
(a) wait(cond, mutex) (b) signal(cond)

Fig. 4. Modeling of wait and signal in C

12

5 Verifying Race Conditions and Deadlocks

When verifying concurrent programs it is important to detect race conditions
and deadlocks. This section presents the changes in the model for each of them.

5.1 Detecting Races
A race condition is a state in which the next instructions of different threads
access the same memory location and at least one of them is a write.

We can identify races by adding to each global variable z a new global bit
variable x_write_flag. x_write_flag is raised whenever z is defined (i.e., as-
signed to) and lowered in the next instruction. There can be a context switch
between these two instructions. In addition, on every access to x we assert that
its x_write_flag is low. Figure 5 presents an example of such translation.

Pointers and Arrays Special treatment is required for pointers and arrays.
When there is an assignment to a dereference of a pointer p that points to
x, we should change x_write_flag. We have to consider all possible variables
which p might point to (see example in subsection 2.1). For each one, we change
the corresponding flag while changing the variable itself. Arrays are handled
similarly.

atomic{
assert(z_write_flag == 0);
x = 3; assert(zwrite_flag == 0);
r_write_flag = 1; Yy =x;

}

z_write_flag = 0;

(a) Translation of x = 3 (b) Translation of y =z
Fig. 5. Detecting races

5.2 Finding Deadlocks

Deadlock detection is one of the most interesting issues in concurrent programs.
We divide deadlocks into two kinds: a global deadlock is a deadlock in which
all the threads are waiting for a mutex or a condition, and a local deadlock is
a deadlock in which some of the threads form a waiting cycle (e.g., thread 1 is
waiting for mutex m, which is held by thread 2 which is waiting for mutex my
which is held by thread 1). In this section we present the extension to TCBMC
that allows for detection of global deadlocks. In the full version of this paper we
present the extension of TCBMC that allows for detection of local deadlocks 3.
When modeling the code to detect deadlocks, we ignore the existence of other
errors. As mentioned before, we encourage TCBMC users to perform three runs:
for detecting “regular” errors, for detecting races, and for detecting deadlocks.
In the model we presented in Section 4 we eliminated non-wait-free exe-
cutions. But this could result in missing global deadlocks because these occur
when all threads are in a waiting state. Therefore, we must change the mod-
eling of lock(m), and wait(cond, mutex): We add a new global counter called
trds_in_wait. This counter counts the number of threads in a wait state. When

3 We are able to find local deadlocks that involve only mutexes. It is not always possible
to find deadlocks that involve conditions when bounding the program.

13

modeling lock(m), if mutex m is already in state L, we increase trds_in_wait,
allow context switch, and then assert that trds_in_wait < T. If the assertion
fails, a global deadlock was detected; otherwise we eliminate this execution, as
in the original mutex modeling. When modeling wait(cond, mutex), we increase
trds_in-wait after raising the cond|current thread] flag, allow context switch,
and then assert that trds_in_wait < T. If the assertion fails, a deadlock was
detected; otherwise we decrease trds_in_wait and continue as in the original
modeling of wait(cond, mutex) by assuming that the flag is down.

We also add a global Boolean flag named dd(deadlock detected), This flag is
raised when a deadlock is found. Once a deadlock has been detected, we know
that a bug has been found, and so we can ignore later uses of lock and wait.
More details can be found in the full version.

Figure 6 present the modeling of lock(m) and wait(cond, mutex).

RN if (ldd){
atomic{ atomic{
unlocked = (¥m == U); cond[current thread] = 1;
if (unlocked) xm = L unlock(mutez);
else trds_in_wait + +; trds_sin_wait + +;
} }
atomic{ atomic{
if (lunlocked){ dd = (trdsan_wait ==T);
dd = (trds_in-wait ==T); assert(!dd);
assert(!dd); assume(dd V cond|current thread] == 0);
assume(dd); trds_in_wait — —;
} }
} lock(mutex);
} }
(a) lock(m) (b) wait(cond, muter)

Fig. 6. Modeling of lock and unlock in C when looking for deadlocks

6 Experimental Results

We implemented an initial version of TCBMC that works with two threads
and supports mutexes and conditions. Future extensions will support more than
two threads, as well as detect deadlocks using the described algorithms. We
performed preliminary experiments that checked TCBMC on a naive concurrent
implementation of bubble sort. We executed TCBMC over several array sizes,
for different values of n (i.e., the number of allowed context switches), and for
different integer widths. We used a sufficient loop unwinding bound. The bug in
this implementation was dependent on both data and the interleaving.

We also compared it with Microsoft’s Zing [1], a state-of-the-art explicit
model checker for software that uses various reductions including partial order
resuctions. Note that Zing and TCBMC were executed on different platforms .
The results are summarized in Table 1.

From this preliminary experiment we can deduce the following;:

4 Zing was executed on the Windows operating system on a Pentium4 1.8Ghz with

1GB memory. TCBMC was executed on the Linux operating system on a Pentium4
2Ghz with 250MB memory.

14

— It seems that TCBMC scales better with respect to integer widths. Zing ran
for more than an hour for 12 bits, while TCBMC managed to get results
even for 32 bits.

— Although tested on different platforms, it seems that TCBMC performs bet-
ter than Zing for detecting bugs dependent on both data and interleavings.

— Increasing the number of allowed context switches (n) sometimes improves
the performance (e.g., array size of 4, and 8 bits). This unexpected behavior
can be explained by the fact that for larger n, TCBMC generates a larger
formula, but with more satisfying assignments.

array size Zing TCBMC

8 bit |12 bit| 8 bit 16 bit 32 bit

n=6 [n=10| n=6 | n=10 | n=6 [n=10

330.0s| > 1h| 0.4s| 0.2s| 3.6s 4.0s| 20.3s| 48.3s

831.0s| > 1h|11.5s| 1.3s| 14.6s| 58.7s| 135.2s(323.0s

5 1496.0s| > 1h|71.0s| 94.18|125.7s|3013.0s|1124.0s| > 1h
Table 1. Run time comparison of Zing and TCBMC

7 Conclusions and Future Work

This paper presented an extension of CBMC for concurrent C programs. It
explained how to model synchronization primitives and how to detect races and
deadlocks. We should complete our implementation to support all of the above.

We also consider changing the template translation into constraints: rather
than defining for each line a variable indicating in which context switch block it
is executed, we can define, for each context switch block, a variable indicating
in which line it begins. This will result in a completely different formula which
may be handled better by the SAT solver.

= w

Acknowledgments: We thank Sharon Barner, Ziv Glazberg and Daniel Kroen-
ing for many helpful discussions.

References

1. T. Andrews, S. Qadeer, S. K. Rajamani, J. Rehof, and Y. Xie. Zing: Exploiting
program structure for model checking concurrent software. In CONCUR, 2004.

2. A. Biere, A. Cimatti, E. Clarke, and Y. Zhu. Symbolic model checking without
BDDs. In Proc. 5" International Conference on Tools and Algorithms for the Con-
struction and Analysis of Systems (TACAS), LNCS 1579. Springer-Verlag, 1999.

3. E. Clarke, O. Grumberg, and D. Peled. Model Checking. MIT Press, 1999.

4. E. Clarke, D. Kroening, and F. Lerda. A tool for checking ANSI-C programs. In
TACAS 2004, pages 168-176. Springer, 2004.

5. E. Farchi, Y. Nir, and S. Ur. Concurrent Bug Patterns and How to Test them.
Workshop on Parallel and Distributed Systems: Testing and Debugging, 2003.

6. F. Ivancic, Z. Yang, A. Gupta, M. K. Ganai, and P. Ashar. Efficient SAT-based
bounded model checking for software verification, ISoLA, 2004.

7. D. Kroening, E. Clarke, and K. Yorav. Behavioral consistency of C and Verilog
programs using bounded model checking. In DAC, 2003.

8. S. Qadeer and J. Rehof. Context-bounded model checking of concurrent software.
In TACAS, 2005.

